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1 Introduction

Consider an oligopolistic market where firms sell to industrial buyers and interact re-
peatedly. Price and volume of transaction in such a market are typically determined
by bilateral negotiation between a seller and a buyer. Therefore, both price and sales
are private information. This is so-called “secret price-cutting” game of Stigler (1964)
and is a typical example oépeated games with imperfect private monitorindnere
players cannot observe the opponents’ action directly but instead receive noisy private
information. In fact, a firm’s sales level can be viewed as a noisy information channel
of price of the opponents, as it tends to be low if the opponents (secretly) undercut their
price. Harrington and Skrzypacz (2011) point out that lysine and vitamin markets are
recent examples of secret price-cutting gares.

The theory of repeated games with private monitoring has been an active research
area for recent years, and many positive results have been obtained for the case where
observations are nearly perfect or nearly publicdrier and Olszewski (2006) and
Horner and Olszewski (2009) establish general folk theorems for these environments.
On the other hand, for the case where observations are neither almost-perfect nor
almost-public, attention has been restricted to games that have a simple structure. For
example, assuming that players receive statistically independent signals conditional on
an action profile, Matsushima (2004) establishes a folk theorem, but only for two-player
prisoner’s dilemma. Ely, Brner, and Olszewski (2005, hereafter EHO) and Yamamoto
(2007) consider a similar equilibrium construction, but their analyses are still confined
to two-by-two games or to symmetrN-player prisoner’s dilemma. The restriction
to these simple games leaves out many potential applications; for example, none of
these results apply to secret price-cutting games with more than two firms and with
asymmetric payoff functions.

The present paper extends the key idea of Matsushima (2004), EHO, and Yamamoto
(2007) to generdN-player games, and shows that there often exist asymptotically ef-
ficient equilibria. For this, we first introduce the concepbefief-free review-strategy
equilibria, which captures and generalizes the equilibrium strategies of these papers.
Specifically, a strategy profile is a belief-free review-strategy equilibrium if (i) the infi-
nite horizon is regarded as a sequencesgfew phasesuch that each player chooses
a constant action throughout a review phase, and (ii) at the beginning of each review
phase, a player’s continuation strategy is a best negglgirdless of the history up to the
present actioni.e., regardless of the history in the past review phases and regardless
of what pure action the opponents choose in the current phase. While the set of belief-
free review-strategy equilibria is a subset of sequential equilibria, it has the following

1They characterize a stable collusive agreement in secret price-cutting games when players can com-
municate.



nice properties. First, it follows from condition (i) that if the length of each review
phase is long enough, then players can make (almost) precise inferences about what
the opponents did, using cumulative information within the review phase. This infor-
mation aggregation allows players to punish the opponents efficiently, and as a result
we can construct asymptotically efficient equilibria for some games. Also, condition
(i), which is calledstrongly belief-free propertin this paper, ensures that a player’s
best reply does not depend on her beliefs about the opponents’ history in the past re-
view phases or about what action the opponents choose in the current review phase.
Therefore, we do not need to track evolution of these beliefs when verifying incentive
compatibility of a given strategy profile, which greatly simplifies our anal§sis.

An important consequence of the strong belief-free property is that given a review
phase, the set of optimal actions is independent of the history in the past review phase.
This set of optimal actions is calledragime and given a belief-free review-strategy
equilibrium, letp be a probability distribution of regimes which measures how often
each regime appears in the infinite horizon. Belief-free review-strategy equilibria can
be classified in terms of a regime distributipn

The main result of this paper is to precisely characterize the set of belief-free review-
strategy equilibrium payoffs in the limit as the discount factor converges to one, assum-
ing that players’ signals are statistically independent conditional on an action profile.
Specifically, we first find bounds on the payoff set of belief-free review-strategy equi-
libria given a regime distributiop. The lower bound of playetis equilibrium payoff is
her minimax payoff when the opponents are restricted to choose actions from a regime
which is randomly picked according to the distributipnThe upper bound of play&s
equilibrium payoff is her “secured” payoff, that is, the payoff playean obtain when
the opponents maximize playies worst payoffs (payoffs when playetake the worst
action) and players are restricted to choose actions from a regime which is randomly
picked according to the distribution Second, we show that these bounds are tight in
the sense that given@ the limit payoff set of belief-free review-strategy equilibrium
is equal to (a feasible subset of) the product of the intervals between these upper and
lower bounds.

The characterized payoff set is often a subset of the feasible and individually ratio-
nal payoff set, but these two sets coincideNisplayer prisoner’s dilemma games, for
which the folk theorem is established with arbitrary noise. Also, as an application of
the main theorem, we develop a simple sufficient condition for the existence of asymp-
totically efficient equilibria. This sufficient condition is often satisfied in asymmetric

°Note that the strongly belief-free condition here is similar to but stronger than a requirement for
being belief-free equilibria of EHO. In belief-free equilibria, a player’'s best reply is independent of the
history up to the previous periods but can depend on the opponents’ action today. On the other hand, the
strong belief-free condition requires that a best reply be independent of the opponents’ current action.
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secret price-cutting games, so that cartel can be enforced even if a firm’s price and sales
are private information.

The interpretation of the bounds on the equilibrium payoff set is as follows. By
definition, in each review phase of a belief-free review-strategy equilibrium, playing
any action within the corresponding regime is optimal. Therefore, choosing the worst
action within the regime in each review phase is optimal in the entire game. Since a
player’s equilibrium payoff cannot exceed the payoff yielded by this “worst” strategy,
we obtain the upper bound stated above. An argument for the lower bound is stan-
dard; a player’s equilibrium payoff must be at least her minimax payoff, as she plays
an optimal action in a belief-free review-strategy equilibrium. Here, the opponents’
actions in determining the minimax value are constrained by regimes, because in each
review phase, actions not in the regime are suboptimal and should not be played on the
equilibrium path. This gives the lower bound of equilibrium payoffs.

To prove that these bounds are tight, we substantially extend the equilibrium con-
struction of Matsushima (2004), EHO, and Yamamoto (2007). In their analysis, atten-
tion is restricted to a simple class of belief-free review-strategy equilibria where each
player independently chooses either “reward the opponent” or “punish the opponent”
in each review phase; their main result is that this “bang-bang” strategy can often ap-
proximate efficiency in two-player games. However, if there are more than two players,
this bang-bang strategy does not function well, because playiensed to coordinate
their play in order to reward or punish playiet To deal with this problem, we borrow
the idea of “informal communication” of ner and Olszewski (2006) and Yamamoto
(2009), and constructs an equilibrium strategy such that some review phases are re-
garded as “communication stages” where players communicate through a choice of
actions to coordinate a future play.

A main difference from the equilibrium construction obkher and Olszewski
(2006) and Yamamoto (2009) is that we incorporate additional communication stages
where players try to make a consensus about what happened in a previous communi-
cation stage. The role of this additional communication is roughly as follows. In our
model, private signals are fully noisy, so that playeand j often make different in-
ferences about what playedid in the previous communication stage, when pldyer
deviated and did not choose a constant action. Then playerd j fail to coordinate
a continuation play, which might yield better payoffs to the deviatorhe additional
communication stages are useful to deter such a deviation; in the additional communi-
cation stage, playeisand j communicate to make a consensus about plEy@ilay so
that they can avoid a miscoordination in a future play. Note that such a problem is not

3yamamoto (2007) shows that the bang-bang strategy can approximate an efficient outcome in sym-
metric N-player prisoner’s dilemma games, but this result rests on a strong assumption on the payoff
function.



present in rner and Olszewski (2006) and Yamamoto (2009), because they assume
almost-perfect monitoring so that playeémnd j have the same inference about player
I’s action with high probability.

One criticism of the past papers on belief-free review-strategy equilibria is that they
assume conditional independence of signals, which is non-generic in the space of signal
distributions. This paper addresses such a criticism by showing that a payoff vector
in the limit equilibrium payoff set under conditionally-independent monitoring is also
achievable under any nearby monitoring structure. In this sense, belief-free review-
strategy equilibria work well as long as the signal distribution is almost (but not exactly)
conditionally independent.

This robustness result is further extended by a subsequent work by Sugaya (2010).
He modifies the equilibrium construction of this paper, and shows that the main the-
orem remains true for generic monitoring structure, if there are at least four players.
That is, he shows that the limit set of belief-free review-strategy equilibrium payoffs
is characterized by the formula identified by this paper, for any monitoring structure
that satisfies a certain rank condition. His result gives a strong foundation to consid-
eration of belief-free review-strategy equilibria. For example, in prisoner’s dilemma
games with more than three players, a folk theorem is obtained for generic monitoring
structures, and hence patient players have less reason to play other sorts of equilibria,
as far as equilibrium payoffs are concerned.

1.1 Literature Review

There is an extensive literature which studies repeated games with private monitoring.
A pioneering work in this area is Sekiguchi (1997), who constructs a sort of trigger
strategies to approximate an efficient outcome in prisoner’s dilemma when monitoring
approximates perfection. His equilibrium strategiestakef-basedn that a player’s
best reply depends on her belief about the opponent’s past history. Bhaskar and Obara
(2002) extend this equilibrium constructionXbplayer prisoner’s dilemma, and show
that Pareto-efficiency can be approximated when observations are near perfect.
Meanwhile, Piccione (2002), Ely anddimaki (2002), and EHO propose an alter-
native approach to the problem. They considelief-free strategiesvhere a player’s
best reply is always independent of the past history and hence a player’s belief about
the past history is irrelevant to the incentive compatibility constraint. They show that
these strategies often approximate Pareto-efficient outcomes in two-player games with
almost-perfect monitoring. Yamamoto (2007) and Yamamoto (2009) extend their anal-
ysis toN-player games. Brner and Olszewski (2006) further extend this approach,
and show that the folk theorem holds for general games with almost-perfect monitor-
ing. The analysis of this paper is close to this belief-free approach, since the concept of
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belief-free review-strategy equilibria is a combination of the idea of belief-free equilib-
ria with review strategies of Radner (1985).

Recently, Fong, Gossnerdrher, and Sannikov (2011) show an efficiency result in
a repeated two-player prisoner’s dilemma with fully-noisy and fully-private monitoring.
They do not assume that players observe statistically independent signals, so that our
folk theorem does not apply to their model. On the other hand, their analysis does not
include ours either, since they do not have a full folk theorem and their equilibrium
strategies cannot achieve some feasible and individually rational payoff vectors. Also,
they assume the minimal informativeness, which requires that there be a signal that has
a sufficiently high likelihood ratio to test the opponent’s deviation. Such an assumption
is not imposed in this paper.

For games where observations are almost public, Mailath and Morris (2002) and
Mailath and Morris (2006) show that strict perfect public equilibria with bounded recall
is robust to a perturbation of the monitoring structure. Alsoyié¢r and Olszewski
(2009) show that a folk theorem obtains for games with almost-public monitoring.

Once outside cheap-talk communication is allowed, a folk theorem is restored for
very general environments (Compte (1998), Kandori and Matsushima (1998), Fuden-
berg and Levine (2007), and Obara (2009)). Likewise, a folk theorem holds if players
can acquire perfect information at a cost (Miyagawa, Miyahara, and Sekiguchi (2008)).
For more detailed surveys, see Kandori (2002) and Mailath and Samuelson (2006).
Also, see Lehrer (1990) for the case of no discounting, and Fudenberg and Levine
(1991) for approximate equilibria with discounting.

2 Setup

2.1 The Model

The stage game i§l, (A, Qi,Gi)iel,q}; | ={1,2,---,N} is the set of playersA; is
the finite set of players pure actionsQ; is the finite set of player's private signals,
gi : A x Qj — Ris playeri’s profit function, andj is the probability distribution of the
signals. LetA = xjc|A andQ = X Q.

In every stage game, players move simultaneously, and playdrchooses an
actiona; € A; and then observes a noisy private sigmak Q;. The distribution of the
signal profilew = (c, -+, wN) € Q depends on the action profée= (az,---,an) € A,
and is denoted by(-|a) € AQ. Given an actiorg; and a private signady, player
i obtains payoffgi(a;, @ ); note that in this setup, the payoff is not dependent on the
opponents’ actions and signals, and hence does not provide any extra information about



the the opponents’ private histdtyGiven an action profila € A, playeri’s expected
payoffistg(a) = S ,eo d(wla)gi(a, w). For eacta € A, let r(a) = (15(a) i -

Consider the infinitely repeated game with the discount faéter (0,1). Let
(a',w") be the performed action and the observed signal in perjoand leth! =
(af,w")t_, be playeri’s private history up to periotl > 1. Leth? = 0, and for each
t > 0, let H! be the set of alhl. A strategy for playei is defined to be a mapping
s Uieo Hit — AA;. Let§ be the set of all strategies of playierand letS= xi¢S.
Letw;(s) denote player's expected average payoff when players play a strategy profile
sc S that is,wi(s) = (1— d)E[y, 8! 1r(a')|g]. For each strategg € § and his-
tory hf € HY, lets |h} be playeri’s continuation strategy aftdx. Also, for eachs € S,

h} € Hit anda € A, Iets\(h}_‘aq.) be playeri’s strategy§ € S such thaﬁ(h?) =g and
such that for anr € HY, & = S whereh{™ = (h{,hl). In words,s | 4 de-
notes the continuation strategy after histbirput the play in the first period is replaced
with the pure actiom;.

As in Section 5 of EHO, we consider games with conditionally-independent mon-
itoring, where players observe statistically independent signals conditional on actions
played. Formally, we impose the following assumption:

Condition Cl. Thereisg : A— AQ; for eachi such that the following properties hold.

(i) Foreachace Aandw € Q,

q(wla) = ”qi(mlf% @)-

(i) Foreachi €1 anda € Aj, rankQ;(a;) = |A_i| whereQ;(&) is a matrix with rows
(gi(wla,a i) weq foralla_j € A .

Clause (i) says that given an action profileplayers observe statistically indepen-
dent signals. Clause (ii) is a version of individual full-rank condition of Fudenberg,
Levine, and Maskin (1994); it requires that a player can statistically distinguish the
opponents’ actions. Clause (ii) is satisfied for generic monitoring structures, provided
that the set of private signals is sufficiently rich so tj§at > |A_;| for all i.

In addition to (ClI), we assume the signal distribution to be full support:

Condition FS. The signal distributio hasfull supportin thatq(w|a) > Oforallac A
andw € Q.

As Sekiguchi (1997) shows, (FS) assures that for any Nash equililsr& ) there
is a sequential equilibriurd € S that generates the same outcome distribution as for

“Here we follow the existing works and assume that payoffs are observable. However, this assumption
is not necessary; all our results are valid even if payoffs are not observable and directly dependent on the
opponents’ private history.



s. Therefore, under (FS), the set of Nash equilibrium payoffs is identical with that of
sequential equilibrium payoffs.

Remark 1. (CI) is a simple sufficient condition to obtain our main result, Theorem

1, but it is stronger than necessary and can be replaced with a weaker condition. In
Appendix G, we show that Theorem 1 remains valid even if private signals are corre-
lated through an unobservable common shock as in Matsushima (2004) and Yamamoto
(2007).

2.2 Belief-Free Review-Strategy Equilibrium

This section introduces a notion of belief-free review-strategy equilibria, which cap-
tures and generalizes the idea of the equilibrium construction of Matsushima (2004),
EHO, and Yamamoto (2007). In their equilibrium strategies, the infinite horizon is re-
garded as a sequencerefiew phasewith lengthT, and players play constant actions
in every review phase, i.e., once playahooses an actiog in the initial period of
a review phase (say, period + 1), then she continues to choose the same a@ion
up to the end of the review phase (perigdt 1)T). At the end of each review phase,
players makes a statistical inference about the opponents’ actions using the information
pooled within the review phase. Whanis sufficiently large, this statistical test has an
arbitrarily high power so that players can obtain very precise information about what
actions the opponents played.

The present paper considers a slightly broader class of review strategies where each
review phase may have different length.

Definition 1. Let (), be a sequence of integers satisfytgg= 0 andt; > t;_, for
all | > 1. A strategy profiles € Sis areview strategy profile with sequentg)” if
s(h)[al] = 1 for eacht ¢ {t;|VI > 0}, for eachi € 1, and for eactn! = (a7, ")t _; € H!.

Intuitively, t; denotes the last period of thil review phase. For example, the above
definition asserts that for each peribd {2,---,t1}, a player has to choose the same
action as in period one; thus the collection of the firgieriods is regarded as the first
review phase. Likewise, the collection of the nextt; periods is the second review
phase, and so forth. From the law of large numbers, players can obtain almost perfect
information about the opponents’ action in each review phase; ii _1 is sufficiently
large for alll > 1.

A belief-free review-strategy equilibrium, which we focus on in this paper, is a
subset of review strategy profiles. For eaends_;, letBR(s_;) denote the set of player
i's best replies in the infinitely repeated game agamst Also, let supgs_i(h';)}
denote the support af(ht ;); that is, supps_i(h';)} is the set of actiona_; played
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with positive probability in period 4+ 1 when players—i follow the strategys_; and
their past private history i ;.

Definition 2. A strategy profiles € Sis strongly belief-free in thé&th review phasd it
is a review strategy profile with some sequefigg’ ,, and if for alli € 1, hi-1 ¢ Hb-1,
anda_; € supp[s_i(ht':il)},

S € BRS-ilyhaa ) @

A strategy profiles is a belief-free review-strategy equilibrium wittt ), if it is a
review strategy profile witlit,)> , and is strongly belief-free in every review phase.

In words, a review strategy profile is strongly belief-free in ktiereview phase if
a player’s continuation strategy from thté review phase is a best reply independently
of the past history and of what constant action the opponents pick itttiheview
phase. By definition, playing a pure-strategy Nash equilibrium of the stage game in
every period is a belief-free review-strategy equilibrium where each review phase has
length one. On the other hand, playing a mixed-strategy equilibrium of the stage game
in every period needs not be a belief-free review-strategy equilibrium, as it may not
satisfy (1).

Note that the equilibrium strategies of Matsushima (2004), EHO, and Yamamoto
(2007) are belief-free review-strategy equilibria. Note also that a belief-free review-
strategy equilibrium needs not be a belief-free equilibrium of EHO; the reason is that
in belief-free review-strategy equilibria, the belief-free condition is imposed only at the
beginning of each review phase, while a belief-free equilibrium requires that a player’s
continuation strategy is a best reply independently of the past hista@yery period
Conversely, a belief-free equilibrium needs not be a belief-free review-strategy equilib-
rium, as a player’s best reply might depend on the present action of the opponents in a
belief-free equilibrium.

A study of belief-free review-strategy equilibria is motivated by its tractability. By
definition, in this class of equilibria, a player’s best reply does not depend on her be-
liefs about the opponents’ history in the past review phases or about what action the
opponents choose in the current review phase. Therefore, we do not need to calculate
these beliefs at all when verifying incentive compatibility of a given strategy profile,
which greatly simplifies our analysis. (As argued in the last paragraph, a belief-free
review-strategy equilibrium is not a belief-free equilibrium of EHO; indeed, in a belief-
free review-strategy equilibrium, a player’s belief about what signals the opponents
observed in the current review phase is relevant to her best reply. Under (Cl), we can
easily compute this belief, so that it does not cause a serious problem in our analysis.)



3 Characterizing the Limit Equilibrium Payoff Set

3.1 Main Theorem

This section presents the main result of this paper: The set of belief-free review-strategy
equilibrium payoffs is characterized in the limit as the discount factor approaches one.
To state the result, the following notation is useful. A non-empty subsetf A is a
regime generated frorA if <7 has a product structure, i.es = Xic|.4 and.o C A

for alli. Let ¢ be the set of all regimes generated frégnand for each probability
distributionpc A ¢, let

V(p) = CO{MZZ p(«/)mm(a(</))

a() e o, VMEJ}

where c® stands for the convex hull d&. Intuitively, V(p) is theconstrained feasible
payoff seti.e., the set of feasible payoffs when a regime (or a “recommended action
set”) &7 C Alis randomly picked according to the public randomizatpa A ¢, and
players choose actions from this set. Lettipfye A _Z be such thap”(«7) = 1 for
o/ = A, the seV (p*) corresponds to thizasible payoff saif the repeated game. The
feasible payoff set ifull dimensionalf dimV (p?) = |1].

For each and.«7, let

V() = iﬁg,i;ne%m(a) and V() = a_imG%;(_iarjr;i;;i i (a).

Also, for eachi and .7, let @ (/) € o/ and@ (/) € </ be such that (/) and
a (&) solve the above problems, that is,

V;

(/) =maxri(a,d (7)) and Vi(e/) = min7(a,a (<)),

Note that this definition does not pose any constraint on the specificat@faj and
a («); these actions can be arbitrarily chosen from thezgetntuitively, v; () is the
minimax payoff for player when the opponents are restricted to play pure actions from
the recommended set; C A_;. In fact, playeli cannot earn more than(.<7) against
g‘_i(;z%). Likewise,V;(«) is the secured payoff for playewhen players are restricted
to choose pure actions from the recommendedz5&t A. Indeed, player's payoff is
at leasw (/) agains@ ,(.«7) as long as she chooses an action ftefn

For each, lety, be a column vector with the componemts ) for all & € 7, that
is, v, = ' (Vi(#))we s Also, letV; = ' (Vi(«)) e ». Note that, for each distribution
pe A _#Z, the productpy, is equal to the weighted average of the minimax payoffs,
Soe g p(<)v;(«/). Likewise, pv; equals the weighted average of the secured payoffs,

S e g PPV ().
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The stage games are classified into four groups in the following way. Note that this
classification depends only on the (expected) payoff function of the stage game.

e (positive case) For sonee A _#, the seV (p) (N Xiel [PV, pVi] is N-dimensional.
e (empty case) Forange A _#, the seV (p)( Xicl [PV, pVi] is empty.

¢ (negative case) The s€{(p) () XicI [PV, PVi] is a singleton or empty for afp €
A _#,andthereip € A_# such that the intersection ¥f(p) and x| [pv;, pvi]
is a singleton.

e (abnormal case) The s¥t p)( Xici [PV, pVi] is notN-dimensional for allp €
A _#Z, and there ip € A_#Z such that the se¥ (p)( xici[p¥, pVi] is neither
empty nor a singleton.

Given a stage game and gived & (0,1), let E(J) be the set of belief-free review-
strategy equilibrium payoffs. That is, for any payoff vectar E(J), there is a belief-
free review-strategy equilibrium with some sequefigl’ , and with payoffv. The
following is the main result of the paper, which characterizes the limit equilibrium
payoff set for the positive, empty, and negative cases.

Theorem 1. Suppose that (Cl) and (FS) hold. Then,

lim E(8) = U (V(p)Nxici[pv, pu]) ()
- peEA 7

in the positive case(d) = 0 for everyd € (0,1) in the empty case; andns_,; E(d)
equals the convex hull of the set of pure-strategy Nash equilibrium payoffs of the stage
game in the negative case.

To interpret the statement of this theorem, we classify belief-free review-strategy
equilibria in terms of a regime distributign where given a belief-free review-strategy
equilibrium, p is a parameter which measures how often each regime appears in the
infinite horizon. In the positive case, the theorem asserts that for a givere limit
equilibrium payoff set equals (the feasible subset of) the produckgeipv, pvil.

That is, the lower bound of the equilibrium payoffs is equal to the minimax payoff
pv; while the upper bound is the secured paywff. Yamamoto (2009) shows that the

limit set of belief-free equilibrium payoffs is computed by a formula similar to (2); but
note that players are allowed to choose mixed actions when determining the upper and
lower bounds of the payoff set in Yamamoto (2009), while here players are constrained
to play pure actions when calculatimgandy;. This difference comes from the fact

that belief-free review-strategy equilibria impose the strongly belief-free condition (1),
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while belief-free equilibria do not. Since (1) requires playgcontinuation strategy to

be optimalafter mixture by players-i, her equilibrium payoff is at least the minimax
payoff when players are restricted to pure actions. A similar argument applies to the
upper bound.

As Yamamoto (2009) argues, if there are only two players, then the sgpv, pvi]
is a subset o¥ (p) for eachp, so that (2) reduces to

(IsiTlE(é) = |J xielpy, pv.

peA 7

This formula is exactly the same as that of Proposition 10 of EHO for two-by-two
games, which means that Theorem 1 subsumes their result as a special case. Note also
that our Theorem 1 encompasses Theorems 1 and 2 of Matsushima (2004) and Theorem
1 of Yamamoto (2007) as well; See Section 4 for more discussions. (Theorem 2 of
Matsushima (2004) and Theorem 1 of Yamamoto (2007) allow that players’ signals
are correlated through a common shock. Our Theorem 1 extends to such a setting, as
argued in Remark 1 and formally proved in Appendix G.)

As noted, a sufficient condition for the existence of belief-free review-strategy equi-
libria is that the stage game has a pure-strategy Nash equilibrium; indeed, playing a
pure-strategy Nash equilibrium of the stage game in every period is a belief-free review-
strategy equilibrium where each review phase has length one. On the other hand, if
the stage game has only a mixed-strategy equilibrium, then belief-free review-strategy
equilibria need not exist. For example, consider the following game:

H T
H|1l-2|-11
T|-211-1
Playerl chooses a row and play2rchooses a column. Note that this stage game has
no pure-strategy Nash equilibrium. In this game, it is easy to checkvihat) = 1
for all i and <7 so thatpv = 1 for all i and p. Since any feasible payoff vector is
Pareto-dominated bipv;, pv,) = (1,1), the seV (p)( Xiel [PV, PVi] is empty for all
p. Therefore, the game is classified to the empty case, and from Theorem 1, belief-free
review-strategy equilibria do not exist for any discount factor

Theorem 1 is a corollary of the next two propositions. Note that the statement of
Proposition 1 is stronger than needed, as it does not assume (CI) or (FS). The proof of
Proposition 1 is similar to that of Proposition 1 of Yamamoto (2009), and is provided
in Appendix A for completeness. The proof of Proposition 2 is found in the following
subsections.

Proposition 1. In the positive casez(0) is a subset of the right-hand side of (2) for
anyd € (0,1). In the empty cas& (d) = 0. In the negative caséim_., E(9) is equal
to the convex hull of the set of pure-strategy Nash equilibrium payoffs of the stage game.
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Proposition 2. Suppose that (Cl) and (FS) hold. Then, in the positive dasg, ., E(9d)
includes the right-hand side of (2).

Theorem 1 gives a precise characterization of the limit equilibrium payoffs for the
positive, empty, and negative cases, but it does not consider the abnormal case. In
Appendix F, we show that for the abnormal case with generic payoff functions, the
equilibrium payoff set is either empty or the convex hull of the set of pure-strategy
Nash equilibrium payoffs of the stage game.

3.2 Proof of Proposition 2 with Two Players
3.2.1 Overview

To prove the proposition, it suffices to show that for any payoff veetor the right-

hand side of (2) and for a sufficiently large discount fadiorthere is a belief-free
review-strategy equilibrium with payoff. In this subsection, we explicitly construct
such an equilibrium for two-player games. The analysis for three-or-more player games
is more complex and will be presented in the next subsection.

Our equilibrium construction is based on EHO'’s for two-by-two games, so it will be
helpful to explain how EHO'’s equilibrium strategies look like. The infinitely repeated
game is regarded as a sequence qiferiod review phases, and in each review phase, a
player is either irgood stateG or in bad stateB. When player—i is in good statés,
she chooses the acti@ (=) for some throughout the review phase to “reward”
playeri. (Recall that player obtains at least the “secured” payoff' againsﬁi_i(ﬂ)
if she chooses an action from the sgt) On the other hand, when player is in bad
stateB, she chooses the acti@h (<) for some.« throughout the review phase to
“punish” playeri. (Again, recall that player's payoff against_aLi(ﬂ) is at mosl\_/f{.)

After a T-period play, each player makes a statistical inference about the opponent’s
play using the private signals pooled within the review phase, and then decides which
state to go to (either sta@or B) for the next review phase. This transition rule between
statesG andB is judiciously chosen so that in every review phase, plaigindifferent
between being in good state (i.e., playiﬁigi («7) for T periods) and being in bad
state (i.e., playin@i_i(sz%) for T periods), and is not willing to do other sorts of play.
Therefore players’ incentive compatibility is satisfied.

A difference between EHO’s equilibrium and ours is a construction of statistical
tests about actions. In EHO, the analysis is limited to two-by-two games, so that each
player needs to distinguish only two actions of the opponent. For this, it is sufficient to
consider a simple statistical test such that playecounts the number of observations
of a particular signadv_; during aT-period play.
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On the other hand, here we consider general two-player games, so that a player may
have more than two possible actions. In such a case, a player’s statistical inference must
be based on two or more signalsahich often complicates the verification of a player’s
incentive compatibility. The contribution of this paper is to find an elaborate method of
statistical inference which makes the verification of incentive compatibility constraints
simple.

It may be noteworthy that (Cl) plays an important role here. Under (Cl), a player’s
signal has no information about the opponent’s signal and hence no information about
whether she is likely to pass the opponent’s statistical test. Therefore, a player has no
incentive to play a history-dependent strategy in a review phase, so that when verify-
ing the incentive compatibility constraint of a given strategy profile, we can restrict
attention to deviations to history-independent strategies.

3.2.2 Random Events

Here we introduce a notion ohndom eventswhich is used for statistical tests in
our equilibrium construction. A random evetpt is defined as a function from; x
Qi to [0,1], and ¢ is counted in period if yi(al,w!) > Z, where(al,w') denotes
playeri’s action and signal in periodandZ is randomly chosen by playéeat the end
of periodt according to the uniform distribution 0i0,1]. Put differently, s (af, &)
denotes the probability that the random evgints counted in period conditional on
(&, ). A player may count multiple random events in a given period; for example,
given an outcoméal, of,Z), both random eventg; and i are counted in periotlif
Wi(al, o) > 2 and if @i (al, ') > Z. With an abuse of notation, & denote player
i's private information up to periot i.e.,hf = (af, @,z )t _,. LetH! be the set of all
= (af, o, 7 )ty

For eachls : Aj x Qi — [0, 1], letP(¢s|a) be the probability that the random evet
is counted given an action profiec A, that is,P(ji|a) = ¥ weq d(w|a) Yi(ai, w ). Let
_7i be the set of non-empty subsetsff For eachi € | and.«_j € #_j, let ()(o7_)
be as in the following lemma.

Lemma 1. Suppose that (Cl) holds. Then, for soqaeand g satisfying0 < g1 < gz <
1, there is a random evemi; (o7_) : Aj x Q; — [0,1] for all i and.er_j € _#_; such that
forallae A,

if a e

P(yi (o i)|a) = { g - 3)

g1 otherwise

5To see this, suppose that player observes a signab_; with 0.8 againsta;, with 0.5 againsta/,
and with0.2 agains&’. If player —i tries to infer playef’s action only frome_;, she cannot distinguish
whether player playsa; or mixesa; anda]” with fifty-fifty.
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Proof. Analogous to Lemma 1 of Yamamoto (2007). Q.E.D.

The condition (3) implies that a player can statistically distinguish the opponent’s
action using these random events. For example, the randomuvéat ; } ) is counted
with high probabilityqy if and only if player—i chooses the actiom_;. Hence, player
i can conjecture that the actian; is played ifys({a_i}) is counted many times within
areview phase.

Let F(7,T,r) denote the probability thap;({a_i}) is counted exactly times out
of T periods when playeri chooses somé&_; # a_; in the firstt periods and then_;
in the remainingl’ — 1 periods. As Matsushima (2004) shows, there is a sequence of
integers(Zt )T_, such that

lim F(O,T,r)=1, (4)
T—>oor> .
lim F(T,T,r)=0, (5)
T_>°°I’> T
and
TIim TF(O,T—1,Z7) = co. (6)

3.2.3 Equilibrium Construction with Two Players

Let v= (v1,v2) be a payoff vector in the interior of the right-hand side of (2). In
what follows, we construct a belief-free review-strategy equilibrium with pay&dir
sufficiently larged. To simplify the notation, we writ@” anda?, for a (/) and

a (&), respectively.

As Yamamoto (2009) shows, given suclv,ahere isp € A_¢# such thatv is an
element of the interior of the s¥t p) N xic|[pv, PVi]. Assume that players can observe
a public signaly from the set # according to the distributiop in every period. This
assumption greatly simplifies the equilibrium construction, and does not cause loss of
generality; indeed, such a public randomization device is dispensable, as EHO argue in
the online appendix.

For eachi and <7, let (aiB”‘Z{")l@1 be an ordering of all elements & such that
m(qB’”"’l,g‘jﬁ) > m(a?’”",gfﬁ) for eachl > 2; that is,,(aiB"‘Z“)l"i'1 is an ordering of
actions in terms of payoffs againat/. Then, for eachez andl € {1,---,|Aj|}, let
121 HT.  {0,1} be an indicator function such that“'(hT.) = 1if and only if
the random everw_i({aiB%"H <T < |A|}) is counted more tha#r times within a
T-period historyh™ ;.

To see how this indicator function works, fixc {1,---,|A|}, and consider the
random event/J_i({aiB"‘y" Il <T<|Aj|}). From (3), this random event is counted with
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high probabilityqy if playeri chooses an actiog from the set{aiB’“‘Z{’I I<i<|Al}
againstgﬁ“i, and is counted with low probability, if playeri chooses other actions.
Then it follows from (4) and (5) that the indicator functidﬁ’“"(h[i) almost surely
takesl in the former case, while it almost surely takeis the latter case. This property
implies that player-i can test whether playétook an action from the se{a?’”‘a{ 1<

I < |Ai|} or not, by referring to the indicator functioﬂ?"%". Thus, by checking all the
indicator functions(l?’”")lﬁ'l, player—i can obtain almost perfect information about
playeri’s action in aT -period interval.

Likewise, for each and.e/, let (qe’d")lfil‘ be an ordering of all elements of;

such thatrg (a7 a%) > m(a™“",a%) for eachl > 2. Then, for eachs andl €
{1,---, ||}, let1>? ! :HT. — {0,1} be an indicator function such thy AT =
1if and only if the random everlp_i({aiG’”’I | <1 <||}) is counted more thaf
times duringT periods, according to &-period historyh ;. Again, using this indicator
function 1?’“‘2{", player—i can test whether playerchooses her action from the set
(&N <T< |}

Letn be suchthad < n < pv;—v; for alli, and letC be such tha > max, ca; m(ai,affi) —
Vi(«7) for all i and.<. For notational convenience, let

0 if =1
B.«| o | — AN
A= m@T et o w@ e o e @
Zr>Z-|- F(O7T> r) - Zr>Z-|- F(T7T7 r) ’ ’
foreachs € 7. Also, let
(_CHu@)-m@ah)

ZI’>ZT F (07T7 r) - ZF>ZT F<T7T7 r)
/\iG,tQi,I _ (8)

G.,|-1 G, | /
m(a™” " a%) —m(a™”a%)
\ Zr>ZT F (O>T7 r) - Zr>ZT F(T?T7 r)

for eache” € ¢#. For each, let

if 1€{2,---,||}

W = dgf p(<) [\_/i<e527) + 5 FOT.NS )\iB’"‘Z{"]

r>Zt I>1
and
V_Vi:} p(<) [\_/i(ﬂ)_n—i- F(T,T,r)ZAiG*‘Z{*'].
s

r>Z1 1>1

It follows from (4) and (5) that for ali,

lim w = pv, < pvi—n :TIianv_vi. 9)

T—oo
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In what follows, we show that any interior poiwit of the setxic| [p\, pvi — ] can
be achieved by belief-free review-strategy equilibria for sufficiently |argedd. This
completes the proof, gsv < Vvi < pvi — 1.

In our equilibrium strategies, players play a strategy profile in which the infinite
horizon is regarded as a sequence of review phases with [En@pecifically, for each
i, player—i’s strategy is described by the following automaton with initial stite

Statew; € [w;,W;] : Go to phaseB with probability a_j, and go to phas& with
probabilityl — a_; wherea_; solvesw; = a_jw; + (1 — a_;)W;.

PhaseB : Play the actior_aﬁfi for T periods, where#' is the outcome of the public
randomizatiorp in the initial period of the phase (say, period + 1). After that, go to
statew; = w; + (1 o)V, U2 W(hT ), whereh'; is the recenT -period private history and
the functionU® : HT, — Ris defined to be

PhaseG : Play the actiorz;*ri“i for T periods, where is the outcome of the public
randomizatiorp in the initial period of the phase (say, perio@ + 1). After that, go to
statew; =W, + (1—-9)U, u® Q/(hT ), whereh', is the recenT -period private history, and
the functionu® : HT, — Ris defined to be

1-87 pl

UGQ/(hT) m _C— n+zlG5zf|hT)AG52f|

The idea of this automaton is as follows. In each review phase, playsreither
in stateG or in stateB. Player—i in stateG choosesﬁffi to reward the opponent,
while in stateB, she choosegﬁ"{i to punish the opponent. The functioU?’“% and
UiG’” determine the transition probability between stateand B at the end of each
review phase; roughly, the Iarg@;B’"‘Z{(hL) (or UiG’”‘M(hL)) is, the more likely player
—i moves to “reward stateG. In this sense, the functiortiiB’” (and UiG’”‘Z{ ) can be
viewed as a reward function to playgri.e., an increase thiB’”Q{(hL) means more
continuation payoffs of playar

The reward functionSJiB"Q/ andU-G“‘a{ are defined in such a way that playere-
ceives a“bonus?\iB"Q’{’I (or)\iG’M I) if player —i counts the random evegt ; ({3; B, 1 I <
['<|Ai|}) (or the random evenp_i({a G/ [ < |4|})) more tharZt times during
theT-period review phase so that the corresponding indicator function takes one. Here
the values?\iB"Qf’I and)\iG"Z{’I are carefully chosen so that playés indifferent among
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all constant actiong; € <. To see this, suppose that player is in stateB so that
she chooseg{fi in the current review phase. By definition, pIayiaE;”Q"f"_l against
g‘j{i yields more stage-game payoffs to playe¢han playingaiB’”“{ 3 However, play-

ing aiB’” 1=1 decreases the expected value of the reward funuj%ﬁ{ , as player—i

counts the everw_i({aiB"Q{’I Il <1< |Al}) less likely; thus player receives the bonus
/\iB’”" less likely if she choosqu’”"_l. The value/\iB"Q{’I is chosen to offset these

two effects, and as a consequence, playsindifferent between playing™ "'~ for

T periods andaiB’M’I for T periods. In this way, we can make playendifferent over
all constant actiong; € .

In addition, as in Matsushima (2004), the threshold vaties carefully chosen so
that mixing two or more actions in B-period review phase is suboptimal. Therefore,
the above automaton constitutes a belief-free review-strategy equilibrium with payoff
v* for sufficiently largeT andd, as desired. The formal proof is found in Appendix B.

3.3 Proof of Proposition 2 with Three or More Players
3.3.1 Notation and Overview

If there are more than two players, the equilibrium construction presented in Section
3.2 does not work. The reason is as follows. In the equilibrium strategies of Section
3.2, player—i transits between stat8sandG to punish or reward playeéyand provides
appropriate incentives. However, if there are more than two players, playéis/e to
coordinate their play in order to punish or reward playéerhis poses a new difficulty,

as players do not share any common information under private monitoring, and it is not
obvious whether playersi can coordinate their play to reward or punish player

Taking this problem into account, we will provide an alternative equilibrium con-
struction for games with three or more players. The key is to extend the idea of “co-
ordination through informal communication” ofdther and Olszewski (2006) and Ya-
mamoto (2009) to our setting.

Throughout the proof, let “playeér 1" refer to player — 1 for eachi € {2,--- N},
and to playem for i = 1. Likewise, let “playeri + 1" refer to playeri + 1 for each
ie{l---,N—1}, and to player for i = N. Let X; = {G,B}, andX = Xj¢ X. As
explained laterX; will be interpreted as playdis message spacé& is calledgood
messageandB is bad messagd-or each, pick two elements of; arbitrarily, and call
each of thena® andaP, respectively.

In the equilibrium construction below, the infinite repeated game is regarded as a
sequence oblock gameswith length T,. In each block game, a player is either in
stateG or in stateB. Playeri with stateG plays aTy-period repeated game strategy
gG during a block game, while playémwith stateB plays a strategg®. These block-
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game strategies® ands? are chosen in such a way that playsrblock-game payoff
is high if playeri — 1 is in stateG, and is low if playen — 1 is in stateB. At the end
of each block game, a player transits over two st@esdB. Here players’ transition
rule is carefully chosen so that (i) in each block game, the stratesﬁiee?fnd51B are
best replies for player, regardless of playersi’s current state; (ii) for each# i — 1,
player j’s current state (eithe® or B) is irrelevant to player’s continuation payoff;
and (iii) playeri’s continuation payoff is high if playefi — 1)’s current state i€ and
it is low if player (i — 1)’'s current state i8. From (i), the constructed strategy profile
is an equilibrium. Also, (ii) and (iii) imply that player— 1 can solely control playais
continuation payoff through a choice of states; that is, playetsneeds not coordinate
a choice of states with other players to reward or punish play8pecifically, player
I — 1 chooses staté if she wants to reward playérand chooses staRif she wants to
punish.

So far the idea is very similar todiner and Olszewski (2006) and in particular
Yamamoto (2009). However, the block game considered here has a more complex
structure than theirs. A block game with lengfihis divided intorounds and each
round is further divided into review phases. Specifically, each block game consists of
a signaling round a confirmation roungK pairs of amain roundand asupplemental
round, and areport round See Figure 1.

| signalling round |

{

| confirmation round | | kth maln round |

| ! | kth supplemental round|
: I

i

Kth main round |

| 1st main round

| 1st supplemental round | |

| Kth supplemental round |

| report round |

Figure 1: Block Game

Signaling, confirmation, supplemental, and report rounds are regarded as “com-
munication stages,” where players disclose their private information via a choice of
actions. Unlike cheap-talk games, actions in these communication stages are payoff-
relevant. However, the length of the communication stages is much shorter than that
of the main rounds, so that payoffs in the communication stages are almost negligible.
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The following is a brief explanation of the role of each round.

Signaling Round This round is used for communication, and each player re-
veals whether she is in sta or in stateB. Specifically, playei’'s message space
is X = {G, B}, and we say thatlayeri sends message < X; if she chooses actioaii‘i
constantly in the signaling round. The length of the signaling round is of drdand
hence for sufficiently larg@&, communication is almost perfect; that is, each player can
receive her opponents’ messages correctly with very high probability.

Confirmation Round This round is also used for communication, and players try
to make sure what happened in the signaling round. Specifically, each plaperts
(i) what she did and (ii) what her neighbors (playersl andi + 1) did in the signaling
round. The length of the confirmation round is of orderso that for sufficiently large
T, the communication here is almost perfect.

Main Rounds and Supplemental Round3layers’ play in the main rounds is de-
pendent on communication in the confirmation round. Roughly, if players agreed in the
confirmation round that the message profile in the signaling rounckwas )ic| € X,
then in the main rounds, they play actions such that (i) for eadgth x;_1 = G, player
i's payoff is high and (ii) for eachwith x;_1 = B, playeri’s payoff is low. This ensures
that playeri’'s expected block-game payoff is high if play@r 1)’s current state i,
and is low if player(i — 1)’s state isB.

In each supplemental round, every player reports whether or not her neighbors
deviated in the previous main round. That is, in #ie supplemental round (here
ke {1,---,K}), each player reports whether or not playéer 1 or playeri + 1 devi-
ated in theékth main round. If both players— 1 andj + 1 report in thekth supplemental
round that playelj has deviated, then players regard playes a deviator and change
their continuation play accordingly.

Report Round This round is also used for communication, and each player reports
her private history in the confirmation and supplemental rounds. The information re-
vealed in the report round is utilized to determine the transition probability between
statess andB for the next block game.

As described above, in the confirmation and supplemental rounds, players commu-
nicate to make a consensus about what happened in previous rounds. This is a new
feature compared to Yamamoto (2009); in the block game of Yamamoto (2009) there
is no confirmation round or supplemental round.

Communicating in the confirmation round plays an important role to deter devia-
tions in the signaling round. In the signaling round, players are asked to send message
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G or B on the equilibrium path, and if they take any other sort of play, it must be pun-
ished. However, under private monitoring, players may have different inferences about
what actions were played in the signaling round, and may fail to coordinate to punish a
deviator. For example, suppose that play@eviated in the signaling round by playing

aC almost all the time bué? in a few periods. Since this play is almost the same as
sending messags, it is hard to distinguish these two, and as a result, it is often the
case that some of the opponents notice plaigedeviation while others do not. To
resolve such a conflict, we ask players to communicate again in the confirmation round
to make a consensus about what happened in the signaling round. This enables players
to coordinate their continuation play, and ensures that deviating in the signaling round
does not deliver big gains to the deviator.

Likewise, communicating in the supplemental rounds is important for punishing a
player who deviated in the main rounds. As in the signaling round, often times players
have different inferences about what actions were played ittheain round, which
may cause a coordination failure in later periods. To avoid such a miscoordination,
players communicate in thieh supplemental round and to make a consensus about
what happened in thigh main round.

The confirmation and supplemental rounds are dispensable in Yamamoto (2009),
because almost-perfect monitoring is assumed there. Under almost-perfect monitoring,
players’ inferences about past play within a block game are (almost) common informa-
tion, so that players can almost surely coordinate their play without communication.
More discussions on the confirmation and supplemental rounds are given in Section
3.3.6.

3.3.2 Actions, Regimes, and Payoffs

Letv=(vq,---,VN) be an interior point of the right-hand side of (2). We will construct
a belief-free review-strategy equilibrium with payeffor sufficiently larged.

The following notation is used throughout the proof. Ipet A ¢ be such thav
is included in the interior o¥ (p) N Xic| [PV, PVi]. Let (wW;)ier and(W;)ic) be such that
w; <V; <W; foralli €, and such that the hyper-rectanglg [w;, Wi] is included in the
interior of V(p) N Xjel [p¥, pVi]. Then, as Yamamoto (2009) shows, there is a natural
numberk, a sequencéa?, - .-, «7K) of regimes, an@\ sequence&a®?, -, a*K),
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of action profiles such that

1 K 1 K .

Z Y () <w<v<wi< 2 S Uk, viel (10)
k=1 =1

ake X wxeXvke{l,--- K}, (11)

1 K % K < W if Xi_1=0DB .

- a) = - , Viel. 12

Kk:lni< ) {>V_Vi if x_1=0G (12)

To interpret (10), recall that;(<7) is playeri’s minimax payoff when players-i are
restricted to play pure actions fromi ;. The first inequality of (10) implies that player

i’s time-average minimax payoff fak periods is less thaw; given the regime se-
quence(.a/t, - ,%K). Likewise, the last inequality of (10) says that playsrtime-
average reward payoff is greater thagn (11) says that for eack the action sequence
(@t ,ax-"z) is consistent with the regime sequerfeg’, - -- ,%K), in the sense that

each component of the action sequence is an element of the corresponding regime. (12)
implies that playei’s time-average payoff of the sequen@?!, .- ,aXvK) Is high if

xi_1 = G and low ifx;_; = B. Figure 2 shows how to picw;, W;, and (a*?,- -- ,aXvR)

for two player games.

Player2's

payoffs
| ={1,2}

x € X = {GG,GB,BG, BB}

T T T W= (W, wg)

Wi = kl' 25=1 5 (k)

Playerl’s payoffs
Figure 2: Actions

Given a natural numbeg, let (72, - - - , «7%) be a cyclic sequence 671, - - - , .o7X)
with lengthK, that is,o7*™ = ¢7* for allk € {1,--- ,K} andn > 0. Likewise, for each
x e X, let(a%l,---,a¥K) be a cyclic sequence 681, .. a*K).

3.3.3 Blocks and Rounds

Given integers andK, let T, = NT 4+ 6NT +K?T + 2KNT + 2N?(3+K)T. In what
follows, the infinite periods are regarded as a serieblotk gameswith length Ty,
IntegersT andK are to be specified.
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Each block game is further divided into seven@linds The collection of the first
NT periods of a block game is calledsggnaling round and the collection of the next
6NT periods is aonfirmation round Then, a pair of anain round(KT periods) and a
supplemental roun(2NT periods) appeats times, and the collection of the remaining
2N?(3+K)T periods is aeport round See Figure 1 in Section 3.3.1.

The confirmation, supplemental, and report rounds are regarded as a series of review
phases with length. The signaling and main rounds themselves are regarded as review
phases. Left|)” , be the sequence of integers such that 0 andt; denotes the last
period of thelth review phase for eadn> 1. For examplet; = NT (because the first
review phase of the infinite horizon game is the signaling round of the first block game,
which consists oNT periods) and, = NT 4T, (because the second review phase of
the infinite horizon game is the first review phase of the confirmation round, which
consists ofT periods).

The following is a detailed description of each round.

Signaling Round This round is used for communication, and each playeveals
her current stated or B) by choosing messagefrom X; = {G,B}. We say thaplayer
i sends messageec X; if she chooses the actlaaﬁ' constantly (i.e., playlng1 in every
period of the signaling round).

Confirmation Round In this round, each playerreports what she did and what
playersi — 1 andi + 1 did in the signaling round. Specifically, playerchooses a
messager? = (m,_;,n{;, ;) from the message spabt = {G, B,E}°, where the
componenm‘fj denotes playeifs inference about what playédid. Roughly speaking,
playeri choosesmcfj = G if she believes that playgrsent messagé, mﬁj = B if she
believes that playey sent messagg, andnﬁj = E if she is uncertain about what player
j did. LetM? denote the set of all message profiles, thati$= xc MP.

In the confirmation round, players send their messages sequentially, i.e., player
sends her messa@@ first, then does playe2, and so forth. Each player spen#b
periods sending each component of her message; that is, plsgadsno,j using her
actions in thg6(i — 1) +2(j —i+2) — 1)st review phase and tHé(i — 1) +2(j —i +

))nd review phase of the confirmation round. Pla'yeendsmi ;=6 by choosing
aI constantly in both of these phases; she sen\‘qs_ B by choosinga? constantly
in both of these phase; and she semﬁ§ E by choosmga1 constantly in the first
review phase and thea,‘? constantly in the second review phase.

Given a message profite® € M?, we say thax; = G is confirmed by playeri§either
(@) (mf_y;,m2 ) = (G, G), (i) (MP_y;,mf.y;) = (G,E) or (M) 5,1,y ) = (E, G), or
(i) (mP_y;,nP,15,m0) = (G,B,G) or (M, ;,mP ; ;,mY) = (B,G,G). That s, players
confirm that player's message in the signaling round w@sf either (i) both players
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i —1 andi + 1 claim that playei’s message was; (ii) one of these two players claims
that playeli’s message was and the other player says that she is uncertain about player
I's message; or (iii) one of these players claims that pldgenessage was, the other
player claims that playais message waB, and playei claims that her message was
G. On the other hand, givenre® € M, x; = B is confirmed by player x; = G is not
confirmed. Note that playeis report about her own plamqi, is relevant only when
playersi — 1 andi + 1 have different inferences about play&rplay (i.e., only when
(mP_y;,mP ;) = (G,B) or (M, ;,m ;) = (B,G)). Otherwise, playef's reportmy;
isignored, anci =Borx =G is confirmed contingently on the reports from players
i — 1 andi+1 only. Given a message profité®, x = (Xi)iel € X'is confirmed by players

if each component of is confirmed. LeM©(x) denote the set of ait® € M such that

X is confirmed.

Main Rounds Players’ behavior in the main rounds is contingent on what happened
in the confirmation round. Roughly, ¥ € X is confirmed in the confirmation round,
then players follow the sequen¢a®!, .- ,a%X) of action profiles in the main rounds,

i.e., the action profile@*X is played in thekth main round for eack € {1,--- K},
However, if someone unilaterally deviates from this prescribed rule and if the deviation
is reported in the subsequent supplemental round, then they switch their play. Details
are stated later.

Supplemental Roundg hekth supplemental round is used for communication, and
each player reports whether or not her neighbors deviated from the prescribed action
profile @ in the kth main round. Specifically, in thkth supplemental round, player
chooses a messag# from the message spaw = {i—1,i+1,0}. Roughly, player
i choosesn’qk — i — 1if she believes that playér 1 deviated froma*X in the kth main
round,mk =i + 1 if she believes that playért- 1 deviated, andnf = 0 otherwise. Let
MK be the set of all message profiles = (mk, .- mk).

Foreactke {1,--- ,K} andi €1, letMX(i) be the set of all message profilgsc MK

such tham ; =, ; =i and such that for eache {1,---,i— 1}, eithern¥_, # j or
m<,; # j. In words,MX(i) is the set of message profile# such that both playeis- 1
andi + 1 report playei’s deviation, and for eache {1,---,i — 1}, playerj’s deviation

is not reported by playejr— 1 or playerj + 1. LetM¥(0) be the set of alink € M¥ such
thatm¥ ¢ MX(i) for alli e 1.

As in the confirmation round, players send their messages sequentially in each sup-
plemental round. Specifically, playesends a messagn#‘ € Mi" using her actions in
the (2i — 1)st andZ2ith review phases of thkth supplemental round. Playesends
m}< =i—1hby choosingaiG constantly in both of these phases; she serfds i+ 1 by
choosinga,-B constantly in both of these phases; and she serﬁds 0 by choosingaiG
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constantly in the first review phase and tt&constantly in the second review phase.

Report Round This round is also regarded as a communication stage, and each
player reports what message profiles were sent in the confirmation round and the sup-
plemental rounds. Thus the message space for plagev® x M! x --- x MK, As in
the confirmation and supplemental rounds, players report their messages sequentially;
player1 sends her message in the fig(3 4 K) review phases of the report round,
then does playe?, and so forth. How to send a message is analogous to that in the
confirmation and supplemental rounds.

Observe that the ratio of the total length of the main rounds to that of the block
game is%, which approaches one &s— «. Therefore, for sufficiently larg&, a
player’s average payoff in the block game is approximated by that in the main rounds.
In other words, payoffs during the communication stages are almost negligible.

3.3.4 Block Strategies under Perfect Monitoring

Let STb be the set of playars strategies in th&,-period block game. Also, Ie;t%Tb be

the set of all strategiearé,rb € ST” such that playerplays a constant action (i.e., she does
not mix two or more actions) in each review phase and such that fokea¢h, - - - ,K},
playeri chooses an action from the sﬁ,f‘ in thekth main round. Intuitively,afik is the

set of “recommended actions” for tikéh main round, achin is the set of strategies
which follow this recommendation; so we will call it the set of recommended strategies.
Given a strategy profile™ € S, let w”(s™) denote playei's average payoff in the
block game with perfect monitoring where payoffs in the periods other than the main
rounds are replaced with zero. Note tluﬁt(sTb) approximates the average payoff in
the block game with perfect monitoring, as payoffs in the communication stages are
almost negligible.

In our equilibrium, player with stateG plays a “good” block strategsf € STb, and
playeri with stateB plays a “bad” block strateg§qB € $Tb. In this section, we specify
these two block strategies under perfect monitoring, and then specifies the patameter
which determines the number of main and supplemental rounds within a block game.
As mentioned earlier, these strategies will be constructed in such a way thatigayer
payoff is high if player(i — 1)’s current state i§ (so that she pIays,G), and itis low if
player(i — 1)’s current state i® (so that she plays?).

To definesF‘ andsP, the following notation is useful. For eaéhj € 1,t > NT,
andh! = (a")t_, € H! (hereh! is represented by a sequence of action profiles, since
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monitoring is perfect), let
t G if (ajl,...,a'j\‘T):(ajG,...@G)
Ki(h)=4¢ B if (af,---,al'T)=(&F, - af)
E otherwise

Intuitively, %;(ht) denotes playeifs inference on playej's message; in the signaling
round, given her private history: Note thatx;(ht) = G if and only if playerj sent
messagés, andkj(ht) = B if and only if playerj sent messag. Otherwisex;(ht) =

E, which means that the history &roneous Given a historyht € H!, let X(hf) =
(xj(h))jer, that is, k() is playeri’s inference on the message profile in the signaling
round.

Likewise, given a historyy, let mP(hf) = (/P (h), M0, (hf), /P, (h)) denote
playeri’s inference on playej’s messagen? in the confirmation round. Specifically,
for eachl = j—1,j,j+1, let r?l(j{I (h) = G if player | sentm‘iI =G; rﬁ?}l (ht) = B if
player j sentm?| = B; andri®| (hf) = E otherwise. Leti’(hf) denote player's infer-
ence on the message profile in the confirmation round, thafigy) = (M0(h})) jei.

Also, for eactk andht, Ietrﬂj((h}) denote players inference on playej’'s message
m'j< in the kth supplemental round. Specifically, Iéf]?(h}) = ] —1if player j sent
mk = j— 1; Ak(h{) = j + 1if player j sentm = j + 1; andr(h) = 0 otherwise. Let
rﬁk(h}) denote players inference on the message profile in kile supplemental round,
that is, T (h}) = (RK(H)) 1.

Under perfect monitoring, the block strateg'ﬂ%andgB are defined as follows.

In the signaling roundgG sends messagé andqB sends messadgeé In the confir-
mation round and in the report round, bafh ands® tell the truth; i.e., both strate-
gies send the messagd = X(h!) in the confirmation round and send the message
(RP(hE),--- MK (M) in the report round. (See the previous section for how to send
these messages.) Both strategies play the aaﬁdn periods where playeyr# i sends

a message.

Players’ play in the main rounds are contingent on the outcome in the past com-
munication; that is, for eack € {1,--- ,K}, playeri’s action in thekth main round
is dependent ogfO(ht), .- ML), If (RP(h),--- ,mk=L(h)) is an element of
MO(x) x M1(0) x --- x Mk~1(0) for somex € X, then both strategies say to play the
actiona®® constantly in theth main round. If(f@(ht), - ,m‘?(h})) is an element of
MO(x) x ML(0) x --- x MK=1(0) x MK(j) for somej €I, ke {1,--- ,k— 1}, andx € X
satisfyingx;_1 = B, then both strategies say to play the act_ié(xﬁ k) constantly in the
kth main round. Likewise, ifP(ht), .- mk(hi)) is an element oMO(x) x M1(0) x
s X MR—l(O) X MR(j) for somej eI, ke {1,--- ,k—1}, andx € X satisfyingx;_1 = G,
then both strategies say to play the acﬁuﬁhsz%k) constantly in thekth main round. In
words, ifx was confirmed by players in the confirmation round, and if no deviation was
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reported in the past supplemental rounds, then playersgdtain the kth main round.
On the other hand, if playgrs deviation is reported in some supplemental round, then
players change their behavior thereafter, depending on the pxafid@firmed in the
confirmation round; they plag («7¥) if x;_1 = B, and playal («¥) if x;_1 = G.

A play in thekth supplemental round is dependent on the outcome in the past com-
munication and on what happened in #ig main round. If(iF0(h), - A1(h)) is
an element oMO(x) x M1(0) x --- x Mk=1(0) and if all players but player— 1 play
the action profile*K constantly in théth main round, then both strategies say to send
m¢ =i — 1 in the kth supplemental round. Likewise, {fi°(ht),--- mk-1(h)) is an
element oM?(x) x MY(0) x --- x M*~1(0) and if all players but player+ 1 play the
action profilea*, then both strategies say to semﬁ: i+ 1. Otherwise, both strate-
gies say to send‘gk = 0. In words, playei reports a deviation by player1ori+1
only when it is the first deviation in the current block game. For periods during which
playerj # i sends a message, both strategies say to play the zaftion

Figure 3 is a flowchart of the block-game strategjyNote that botmG ands? are
in the sei;%TID of recommended strategies, since (11) holds.

Confirmation Round Players confirnx € X.

First Main Round Play action profilea®?.

NO YES
if Xi—lzB if Xi_]_:G

Second Main Round a“? a(«?) a(?)
I———l ———————— - vEs
Second Supplemental RoundReported?  H——>
o /\
Third Main Round a3 al(%) a ()
R - vEs
l B_ep9£t99"i__f—/\

Figure 3: Block-Game Strategy Profi&

The following lemma gives bound on playés block-game payoffs when players
—i follow s*' = (s]') . It shows that if playei — 1 chooses the bad strategfy, , then
playeri’s block-game payoff is less tham no matter what playdardoes. On the other
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hand, if player — 1 chooses the good strateg‘"sz1 and if player chooses her strategy
from the recommended séﬁ-Tb, then playei’s block-game payoff is greater thaw.

Lemma 2. There isK such that for allk > K and for all T, there isd € (0,1) such
that for all & € (3,1),i €1,x i € X_j withx_1 =B, % j € X_j with%_1; =G, s € S,
andg® ¢ 7™,

wh(s®,85) <w < W < wP(§P, ).

Proof. The statement here is very similar to (9) of Yamamoto (2009); a difference is
that the block game of this paper contains the confirmation and supplemental rounds,
which are not present in the block game of Yamamoto (2009). To prove the lemma,
note that players messages in the confirmation and supplemental rounds are irrelevant
under perfect monitoring, in the sense that these messages never affect the opponents
continuation play, as long as players follow s’fi‘. Thus, players’ play in the block
game becomes very similar to that of Yamamoto (2009), and hence the result follows.
Q.E.D.

This lemma guarantees that there is a natural nurkbguch that for any natural
numberT, there isd € (0,1) such that

T X K2T
w; — max wi'(§",85) > (1- — ) 30 (13)
forall 6 € (8,1],i €, andx_; € X_j with x_; = B, and

2
min_ wi(s®, ) —w > (1— KT—T> (|A]+2)u (14)
§°es P b
forall § € (8,1],i €1, andx_j € X_; with x,_1 = G. Indeed, both (13) and (14) are
satisfied for sufficiently larg&, as the left-hand sides of these inequalities are positive
from Lemma 2, while the ternﬁ%, which denotes the ratio of the length of the main
rounds to that of the block game, approaches or¢ asco.

The specification oK here will be maintained in the following sections.

3.3.5 Block Strategies under Private Monitoring

Now, consider the case with private monitoring. As in the two player games, play-
ers use random evengs(.e7j) andyji(ai+1,a-1), to perform statistical tests about the
opponents’ actions. Specifically, we consider the random events specified in the next
lemma. (See Section 3.2 for the interpretation of random events).
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Lemma 3. Suppose that (Cl) holds. Then, for soqieqr, andqgs satisfying0 < g1 <
Op < 3 < 1, there are random eventgi(<7j) : A x Qi — [0,1] and ¢ (aj+1,8-1) :
A xQj —[0,1] foralli, j,ac A and./j € #; such that for alld € A,

gs if aj EJMJ'
g2 otherwise

P(¢i(«))[8) = {

qr if a_1=4&_1andaj 1 # &1
P(Wi(a11,8-1)[8) =4 gz if ap1=8&1anda_1#8&_1 .
g2 otherwise

Proof. Analogous to that of Lemma 1 of Yamamoto (2007). Q.E.D.

Let Fy(7,T,r) be the probability thati ({a;}) is counted times out ofT periods
when playerj chooses somé&; # a; in the firstt periods and then choosas in the
remainingT — 1 periods. Lef (1, T,r) be the probability that (g +1,8—1) is counted
r times out of T periods when player+ 1 choosesi 11 # g1 in the firstt periods
and then chooses. 1 in the remainingl — 1 periods, while player— 1 chooses;_1
constantly. Le(Zr)T_,, (Z1)T_4, and(Zf)T_, be sequences of integers such that

77 < QT < 71, (15)
ZT S q3T7 (16)
Z; z

lim Fi (T, T,r) = lim F(0,T,r) = lim F1(0,T,r)=1, @an

T_>°°r_ZZT+1 T_“°°r_ZZT+1 T S,

) v .| Z .| ZT
_T — — _T J— = _— =
im |2 g = i | 2T Tnan] T a0, (18)
and

TIim THR(0,T—1,Z7) = . (29)

Note that the specification @ here is the same as in the two player case, and that the
existence oZ; andZ{ is guaranteed because of the law of large numbers.

As in the perfect monitoring case, we denoteddly}) = (Xj(ht)) e playeri’s infer-
ence on the message profile in the signaling round. The specificatithpfhere is
the same as in the perfect monitoring case, as plialgeows what she did in the sig-
naling round. However, playercannot observe the opponents’ action directly, so that
for eachj #1i, the specification of;(h!) must be modified in the following way. Given
any real number, let [r] denote the integer part of Let Xj(h!) = G if the random
eventy, ({ajG}) is counted more thaﬁ%z%ﬂ times in thejth T-period interval of the
signaling round (i.e., th&-period interval from periodj — 1)T + 1 to periodjT of the
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block game); lek;(h!) = B if L,Ui({a?}) is counted at mos{lzqz—quf‘T] times during this
T-period interval; and let;(ht) = E for otherh{.

Note that playei’s inferenceg;(ht) is almost perfect information about playgs
play in the signaling round for sufficiently large Indeed, if playerj sends message
by choosinga?, then the random eveuﬂi({a?}) is counted aroundsT times during
the T-period interval, which means thag(h!) = G. Likewise, if she sends messaBe
by choosinga‘f, then the random evem'({a?}) is likely to be counted roungp T times
during theT-period interval, which means th&j(h{) = B. Note that the probability of
the erroneous histories;(h!) = E) approximates zero unless playgdeviates and
mixesa® andaP in the T-period interval.

Similarly, for eachj # i, the specification of playeis inference on what playgrre-
ported in the confirmation round, which is denotedifyhf) = (0, (hi), 0, (hf), /), (D)),
must be modified in the following way. Recall that, for edch j — 1, j, j + 1, player]
sendsm?I € {G,B,E} using actions inthé6(j —1)+2(I — j+2) —1)stand(6(j — 1)+
2(I — j+2))nd review phases of the confirmation round. I:?#t‘ (ht) = G if the ran-
dom evenu,ui({a?}) is counted at leagf25® T times in each of these review phases;
let 10 (hi) = B if yi({a}) is counted less thaff2;®T] times in each of these re-
view phases; and Iemﬁ{I (ht) = E otherwise. Again, this statistical inference is almost
perfect, in the sense that the probability tﬁa?(h}) coincides with playelj’s message
approximates one for lardge.

For eachk € {1,--- K} andj # i, the specification of playeis inference on what
playerj reported in théth supplemental round, which is denoted‘dyh}), is modified
as follows. Recall that playgrsends her messag# € M}‘ using actions in thé2(j —

1) + 1)st and2jth T-period review phase of thgh supplemental round. L«ém'j((h}) =

j — 1if the random eventpi({a?}) is counted at leagf25®T] times in each of these
review phases; lef(hf) = j+ 1 if gi({a®}) is counted less thaff23%=T] times in
each of these review phases; and‘nﬁ-’;@h}) = 0 otherwise. Once again, these statistical
inferences are almost perfect.

Now we are ready to define the block strategq%smdsiB under private monitoring.

A play in the signaling round, the confirmation round, the main rounds, and the report
round is almost the same as in the perfect monitoring case; the difference is only that
the specification of%, ii°, - - - . MK) is modified as stated above.

So what remains is to specify a play in the supplemental rounds. The idea is very
similar to the perfect monitoring case; in tkth supplemental round, each player
reports whether or not her neighbors deviated in kttemain round. To test what
the neighbors did in thkth main round, playeruses the random evem(aixfl,q-x’_kl).
(Recall that the random eveapt(aﬁ‘l, a;(’_kl) is counted with probabilitg; if playeri+ 1
deviated, with probabilitg if playeri — 1 deviated, and with probabilitg, if nobody
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deviated froma*K. Therefore, player can statistically distinguish whether or not her
neighbors deviated from this random event.) Specificallyif(h),---,m1(n))

is an element oM°(x) x M1(0) x --- x Mk~1(0) for somex € X and if the random
eventy (a5, &™) is counted more thad; times in thekth main round, then both
strategies send¥ = i — 1 in the kth supplemental round. [F°(h), - /m1(h)) is

an element oMO(x) x M1(0) x --- x Mk~%(0) for somex € X and if g4 (&%, &) is
counted at mosZ}/; times in thekth main round, then both strategies senfd= i + 1.
Otherwise, both strategies semblz 0. For periods where playgr# i sends a message,
both strategies play the actitaﬁ.

3.3.6 Comments on the Role of Additional Communication Stages

As mentioned, the block game considered here is different from that of Yamamoto
(2009), since there are additional communication stages, the confirmation and supple-
mental rounds. Hence it will be useful to see how these additional communication
stages work in our setting.

The purpose of communication in the confirmation round is to let players make a
consensus about what happened in the signaling round, which allows players to coor-
dinate their continuation play. That is, players can make an agreement about what the
state profilex is, so that they can choose the appropriate action prafitén the first
main round. In particular, the majority rule in the confirmation round is carefully con-
structed so that players can make such a consensus with high probability even if player
i unilaterally deviates in the signaling round or in the confirmation round.

To see this, suppose first that player1 sent messageg_; in the signaling round.

Then in the confirmation round, both playérs2 andi — 1 report that player— 1 sent
message;_1; thus other players confirm that play@ér 1)’'s message wag_; without
referring to what playersays in the confirmation round. A similar argument shows that
no matter what playersays in the confirmation round, players can make a consensus
about what playeyf reported in the signaling round for eagk i.

Also, the same is true for the consensus about what plagpprted in the signaling
round, no matter what playedoes in the signaling and confirmation rounds. To check
this, recall that playeircan become a pivotal voter in the confirmation round only when
playersi — 1 andi + 1 have opposite opinions about playi&r play in the signaling
round and send messages such thgt ,;,m’, ;;) = (G,B) or (B,G); in other cases,
players make a consensus without referring to what plageays in the confirmation
round. But, from the law of large numbers, the event {indt , ;,m?,; ;) = (G,B) or
(B,G) is less likely, no matter what playedoes in the signaling round (in particular,
even if playen mixesa,-G and aiB in the signaling round). Therefore we can conclude
that player can make a consensus about pleyetay in the signaling round no matter
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what player does in the signaling and confirmation rounds.

In sum, players can make a consensus in the confirmation round with high probabil-
ity and can coordinate a continuation play, no matter what plagees in the signaling
and confirmation rounds. This implies that playbas less reason to deviate in the sig-
naling and confirmation rounds, since stage-game payoffs of these rounds are almost
negligible. This property plays a key role in the proofs of Lemmas 4 and 5.

Likewise, communication in thith supplemental round enables players to make
a consensus about whether someone unilaterally deviated kihtheain round with
high probability, no matter what playersays. This allows players to coordinate to
switch their behavior in thék + 1)st main rounds. (Recall that players stop playing
a*k and switch to choosing' (<) or @ (/) once someone’s deviation is reported in
the supplemental round.) Again, this property implies that playas less reason to
deviate in theékth supplemental round, which is a key in the proof of Lemmas 4 and 5.

3.3.7 Block Game with Transfers

Before going to the analysis of infinitely repeated games, it is convenient to consider the
following Ty-period repeated game with transfers, as in Fudenberg and Levine (1994)
and Horner and Olszewski (2006). Let : HiT_b1 — R, and suppose that playeteceives

a transfenUi(hiTEl) after theTy-period block game. Note that is a function ofhiTEl,

that is, the value of the transfer depends only on pldyerl)’s block history. Let
wA(s’™,U;) denote playei’s average payoff in thiswuxiliary scenariogiven a block
strategy profiles™ € S, that is,

WA(sT U 1-6 | & t—1 t\1<Th T (hTb \(eTh
AP L) = = t;a E [r5(a")|s™] + & E[u.(h,_l)ys} .

Let sin]h} denote playei’s continuation strategy after histohy € H! induced bygTb €
STb. Also, let BR“(sIbi|ht_i,Ui) be the set of players best replies in the auxiliary-
scenario continuation game after history, given that the opponentsTﬁl&ySTb in the
block game and their past history wits;.

The following lemma shows that there is a transs which can be regarded as
a subsidy to offset the difference between playgiactual payoff of the block game
and the target payoff; and to give right incentives to playerThis is an extension of
Lemma 4(a) of Wrner and Olszewski (2006) and Lemma 1 of Yamamoto (2009).

Lemma 4. Suppose that (Cl) and (FS) hold. Then, ther& isuch that for allT > T,
there is3 € (0,1) such that for alld € (3,1) and for alli € I, there isUB : H™®
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such that for all > 0, hi € HY, thl € HI 1 andx e X withx_; = B,

§Q|ht| € BRA | h' ) | ), (20)
Wio\(sxaui ):_i7 (21)

and
0<UB(h®,) < "__:L'%ng' 22)

Proof. The outline of the proof is similar to that of Lemma 1 of Yamamoto (2009), and
what is new here is how to provide the truth-telling incentives for the confirmation and
supplemental rounds, which are not present in the block game of Yamamoto (2009). As
explained in 3.3.6, the event that playdsecomes a pivotal voter in the confirmation
and supplemental rounds is less likely. This, together with the fact that the stage-game
payoffs for these rounds are almost negligible, implies that plaigealmost indiffer-

ent over all messages in these rounds. Therefore, by giving plaayemall transfer
depending on her message, one can make piayectly indifferent over all messages.
The formal proof is found in Appendix C. Q.E.D.

Likewise, the next lemma shows that there is a traridféwhich can be regarded
as a fine to offset the difference between plajgeactual payoff of the block game and
the target payoftv; and to give right incentives to player

Lemma 5. Suppose that (Cl) and (FS) hold. Then, ther& isuch that for allT > T,
there isd € (0,1) such that for alld € (3 1) and for alli € I, there isUC : H®, — R
such that for all > 0, hi € HY, thl € HI 1 andxe Xwithx_, =G,

q"hﬁ € BRA | hl 7 )7 (23)
wi(s,U) = w, (24)
and
Wi — W,
——5 <UChty <o. (25)
Proof. See Appendix D. The basic idea is similar to Lemma 4. Q.E.D.

Note that the information transmitted in the report round plays a crucial role in the
construction oUiB andUiG. To see this, note that (20) and (23) require that plager
continuation play be optimal independently of the opponents’ past hib'tqr)For this
to be the case, the amount of the transte?sandUiG should be adjusted contingent on
the realization ofi" ;. However the transfetg® andU® cannot directly depend dm _,
as they are functions of playér— 1)’s private history only. To overcome this problem,
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playeri — 1 adjust the amount of the transfey$ andUiG contingent on information
obtained in the report round; in the report round, each player reports what happened in
the past communication stages, so that playef can get precise information about

ht'_i. This idea is very similar to Yamamoto (2009).

3.3.8 Equilibrium Construction

Now we consider the infinitely repeated game, and show that for any payoff vector
V' € Xiel [W;, W], there is a belief-free review-strategy equilibrium with paysff This
completes the proof of Proposition 2,\as included inx ¢ [w;, W;].

Fix a target payoff vectov* = (v)ic| from the setxic| [wi, W] arbitrarily. LetU®B
andUiG be as in Lemmas 4 and 5. For eacplayer(i — 1)’s strategy in the infinitely
repeated game is specified by the following automaton with initial sfa¢ew;, W;|.

Statew; (for wi € [w:,W;]) : Go to phasd with probabilityaj_1, and go to phasé
with probability 1 — aj_1 wherea;_; satisfiesn; = aj_1W; + (1 — aj_1)W;.

PhaseB : Play the block strategsf , for T, periods. After that, go to state given
bywi =w, + (1— 5)UiB(hiTEl) wherehiTE1 is her recent,-period history.

PhaseG : Play the block strategsﬁ 1 for Ty periods. After that, go to statg given
by wi = Wi + (1— 8)US(h™ ).

It follows from (22) and (25) that for any historlyiTE1 € HiT_bl, both w; + (1 —
5)UiB(hiTEl) andw; + (1— 5)UiG(hiTEl) lie in the intervallw;,wi], and hence the above
automaton is well-defined. Also, from (20), (21), (23), (24), and the one-shot deviation
principle, the constructed strategy profile is a Nash equilibrium with pagofiMore-
over, this strategy profile is a belief-free review-strategy equilibrium since (20) and (23)
hold and the block game strateg‘j/ never mixes actions after every history.

Remark 2. In the above equilibrium construction, each review phase has different
length; the signaling and main rounds have longer review phases than those in the other
rounds. However, considering review phases with different length is not essential, and
one can construct an equilibrium with the same payoff such that each review phase has
lengthT. (For this, it suffices to show that there &€ andUC® that satisfies incentive
compatibility condition (20) and (23) for evefly-period interval of the block game.

The proof is omitted, as it requires a longer and more complex argument.) Therefore,
Theorem 1 remains true even if we restrict attention to review strategies where each
review phase has equal length.
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4  Sufficient Conditions for Efficient Equilibria

Theorem 1 in the previous section characterizes the limit set of belief-free review-
strategy equilibrium payoffs for general games. In this section, we apply this result
and show that efficiency is often approximated by belief-free review-strategy equilib-
ria. Specifically, we obtain the following proposition:

Proposition 3. Suppose that the feasible payoff set is full dimensional, and that there
are action profilesa* anda™* such thatmaxg ca, 7 (8, a™) < m(a*) < m(a™,a*;) for

all i € I. Then the stage game is classified to the positive case and the payoff vector
ri(a*) is an element of the right-hand side of (2). Therefore, if (Cl) and (FS) hold, then
n(a*) € lims_1E(J).

The proof of the proposition is provided in Appendix E. Lettisgbe an efficient
action profile, this proposition gives a sufficient condition for the existence of asymp-
totically efficient equilibria; that is, the efficient payoff vectafa*) can be achieved in
the limit if there isa*™ € A such thamaxgca, T (&, a™) < m(a*) < (&, a”;) for all
i € I. An example that satisfies this sufficient condition is prisoner’s dilemma. Also,
this sufficient condition is often satisfied in price-setting oligopoly markets. To see this,
leta be cartel price and’* be “cheating” price. The above condition is satisfied if (i)

a firm’s profit from cartel is higher than its profit when all the opponents cheat, and
(i) a firm can earn more profits by cheating than by choosing cartel price when the
opponents choose cartel price. Proposition 3 asserts that under this condition, cartel is
self-enforced even if firms cannot communicate each other.

It may be noteworthy that the sufficient condition here is much weaker than the one
provided by Yamamoto (2007). Theorem 1 of Yamamoto (2007) assumes the payoff
function to be almost symmetric, that is, players who choose the same action obtain
similar stage-game payoffs. Proposition 3 does not impose such a symmetry assump-
tion, so that it can apply to oligopoly markets where firms have different market shares
and/or different production functions. Also, Yamamoto (2007) imposes several as-
sumptions on a player's stage-game payoffs when some of the opponents eahoose
and others choos&™*; Proposition 3 show that these assumptions are not necessary to
approximate efficienc.

The next proposition shows that even the folk theorem is established if more as-
sumptions are imposed on the payoff function. This is a generalization of Theorem
2 of Matsushima (2004) tdN-player games. The stage game isNuplayer pris-
oner’s dilemmaif |I| = N; Ai = {C;,D;} for all i € I; 5(Dj,a_;) > 15(Ci,a_;) for all
ielandajc A, i5(Cj,a_j) > m(Dj,a_j) foralliel, j#ianda_j € A_j; and

6Note also that the sufficient condition provided by Proposition 3 is weaker than that of Theorem 1
of Matsushima (2004).
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15(Cq, -+ ,CN) > 15(Dg,---,Dn) for all i € 1. In words, defection weakly dominates
cooperation, cooperation weakly increases opponents’ profits, and mutual cooperation
yields higher payoffs than mutual defection.

Proposition 4. Suppose that the stage game isNuplayer prisoner’s dilemma, and
the feasible payoff set is full dimensional. Suppose also that (Cl) and (FS) hold. Then,
lims_,1 E(d) exactly equals the feasible and individually rational payoff set.

The proof is similar to Proposition 3 of Yamamoto (2009), and hence omitted.

5 Almost-Independent Monitoring

This section demonstrates that the limit characterization result is robust to a pertur-
bation of the monitoring structure, i.e., Theorem 1 remains valid even under almost-
independent monitoring.

To formalize the concept of “almost-independent monitoring,” we introduce a mea-
sure of closeness between distinct signal distributions. The following notion is at-
tributed to Mailath and Morris (2006): For a fixg¢t (A, 75, Qi)ic ), the signal distri-
butiong: A— AQ is e-closeto a conditionally-independent signal distributi@m);c
if

<€

‘Q(w!a)— |_|qi(0ﬂa> 2

for all aandw. The following proposition shows that if there is a belief-free review
strategy equilibrium with payof# under (Cl), therv can be achieved even if the moni-
toring structure is slightly perturbed so that the monitoring is almost independent.

Proposition 5. Suppose that a stage garfle(A;, Q;i, 75, ;)< ) satisfies (ClI) and (FS).
Suppose also that this game is classified to the positive case. Then, for any payoff vector
v in the interior of the right-hand side of (2), there adec (0,1) and & > 0 such that

for anyd € (8,1) and for any signal distributios-close to(qj )ic|, there is a belief-free
review-strategy equilibrium with payoff

The intuition behind this result is as follows. As shown in Section 3.2, under (Cl),
a player’s private signal has no information about the opponents’ signals. and thus no
feedback on what the opponents will do in a continuation play. Therefore, players have
no incentive to deviate to a history-dependent strategy within a review phase, which
is a key element in the proof of Theorem 1. When (CIl) is violated, a player’s pri-
vate signal contains some information about the opponents’ signals so that players may
want to play history-dependent strategies; however, if the signal distribution is almost
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independent (i.e., taking close to zero), then a player’s private signal has almost no
information about the opponents’ signals. Therefore, givénahen we takee suffi-

ciently close to zero, playing a history-dependent strategy becomes suboptimal and we
can construct an equilibrium as in the case of conditionally-independent monitoring.
The formal proof is omitted, as it is straightforward.

37



Appendix A: Proof of Lemma 4

Consider the positive case, and &t S be a belief-free review-strategy equilibrium
with sequencét) );> . Let.o7(l) denote the set of play&s actions taken with positive
probability in the initial period of théth review phase for some history. That.ig/l)

is the union of the support af(h' ) over allh’~* € H{' .

Sincesis strongly belief-free in th&h review phase, playeis continuation payoff
after historyh'-1 € H'"-1 is independent of her own private histdni'rl. So let us
denote this continuation payoff b (h':"). Likewise, for eact"-* € H':* anda_; €
supp[s_i(ht';il)}, let Wi(ht';il,a_i) denote playei’s continuation payoff from théth
review phase when the opponents’ history in the past review phaé;ntf;;1 iand they
play the constant actioa_; in thelth review phase. Then

wiht) =3 s(htasw(htan) (26)

- a_icA_j
for all ht';il € Htji‘l. Also, sincesis strongly belief-free in théth review phase,

wi(h'=t a ) > (1— & -1)g(a) + &4 > P (h Rt apwi () (27)
h EH

forallh"-* e H'*, a_; e supp{s_i(h';")}, anda; € A; with equality ifa; € (1). Here,
the termPr(ht' I\ht' !.a) denotes the probability of the realizationhﬂ_fi given that the
history up to the end of th@ — 1)th review phase iht';il and players choose the action
profile a € A constantly in theéth review phase.

For eachl > 1, Ietv_v} be playeri’s best continuation payoff from thih review
phase, i.eW is the maximum ofwi(ht'_*il) over all ht'_}l € Ht_'i*. Using (27) and
wi(hty) <w*,

wi(h"-ta ) < (1-34"1) min m(a)+ ol 1wt
ac(l)
for all ht':il € Htji‘l anda_j € supp[&i(ht';il)}. Then, from (26) and the definition of
vi(),
wi(h'?) < (1- 8" U-2)wi(ar (1)) + 81w 2

for all h*;* € H"*. This implies that
W< (1-8"U1)wi(e (1)) 4 o Ui L (28)

Likewise, letw! be the minimum ofw; (h'*) over allh’;* € H'-*. It follows from
(27) andw;(h".) > w ' that

wi(h',a) > (1 8%~ 1) maxm(a) + &4 4 twf ™
aeA
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for all ht'_*il € Ht_';l anda_;j € sup[{s,i(ht'_*il)}. Then, as in the above argument,
v_v% > (1- Sl _tlfl)\_/i(%(l» + ot —t|,1v_vli+1' (29)

Iterating (28) and (29) and using (26), it turns out th@(tht'_*il) is in the interval
[p'v;, p'vi] forall | > 1andh®;* € H';*, wherep! € A_¢# is defined to be

p' (o) = Z 5tk71*tl—1(1 _ 5tk*tkfl) (30)
{k=I | o (k)=«/}
forall & € #. Therefore the equilibrium payoff vectow;(s))ic is in the product set
Xic1 [ptVi, pvi]. On the other hand, from the feasibility constraii(s))ic; € V(p?).
Taken together(w;(s))ic; is in the intersection o¥ (p') and xi¢ [p'v, p*vi]. This
proves that the right-hand side of (2) includ&®) in the positive case.

Next, consider the empty case. Suppose that there is a belief-free review-strategy
equilibriums e S Then as in the positive case, the equilibrium payg{s) must be in
the interval[p'v;, p'vi] for all i € I. However, since this is the empty case, therieds
such thatplv, > p'v;, that is, the intervalp’v;, p'vi] is empty. This is a contradiction,
and hence there is no belief-free review-strategy equilibrium.

Finally, consider the negative case. Since playing pure-strategy Nash equilibria
in every period is a belief-free review-strategy equilibridims_., E(J) includes the
convex hull of the set of pure-strategy Nash equilibrium payoffs of the stage game.
Hence, it suffices to show th&k(d) is included in the convex hull of the set of pure-
strategy Nash equilibrium payoffs for evedyc (0,1).

Let s€ Sbe a belief-free review-strategy equilibrium. As in the positive case, for
eachi € | andl > 1, Wi(ht'_*il) is included in the intervalp'vi, p'vi], which must be a
singleton in the negative case. This implies that no dynamic incentive is provided in
this equilibrium, and hence in every review phase, plageaction must be a static best
reply to any outcome of the opponents’ mixture (here, the optimafigr the mixture
is required, sincsis strongly belief-free in every review phase). Thus a pure-strategy
Nash equilibrium is played in every period, which completes the proof.

Appendix B: Incentive Compatibility for Two-Player Games

In this appendix, we show that the strategy profile presented in Section 3.2.3 constitutes
a belief-free review-strategy equilibrium with payeff.

The following lemma asserts that the automaton is well-defin€dsflarge enough
and?d is close to one.

Lemma 6. There isT such that for allT > T, there isd € (0,1) such that for all§ €
(3,1), (i) v is in the state spadev;, W] for all i € I, and (ii) bothw; + (1— 8)U> (hT)
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andw; + (1-9)U G”‘Zf(hT ) are in the state spacpv,, W] forallicl, & € ¢, and
hT. cHT.

Proof. Part (i). Sincev* is an interior point ofxic| [pV;, pvi — n] and (9) holdsy: is in
the state spacy;, W] if T is large enough. This proves (i).

Part (ii). Using (4) and (5), it follows thailmT_,oo)\iB’”" > Ofor all &7 andl. Like-
wise, from (4), (5), andﬁ(aIG” Al ,a%) =vi(«), one can checkthdimTewAiG’%" >
0 andlimt_e z}”‘)\e <l Z C. These observations, together with (9), completes the

proof. Q.E.D.

The next step is to show that the specified strategy profile constitutes an equilibrium
and achieves*, assuming that players are constrained to a constant action inEvery
period review phase. Suppose that playerchoosesa in the current review phase.
Suppose also that playes continuation payoff from the next review phasevst (1 —
6)UiB7”(hL) whereh'; is the history in the current review phase. (Note that this is
the same as assuming that playeicontinuation payoff isv; when the opponent is in
phaseB, and her continuation payoff 8 when the opponent is in pha&e) Then, for

eachl > 1, playeri’s payoff to playingalB S

1-3")m@E>"",a%)

+o7

_ 5T
\’_Vi‘i‘%(Z F(OTr)/\W'+2 FTTr)/\W'>]
I<Ir>Zr i>| >4t

Using (7) andx(als”ﬂ’l,gi"]) = vi(«7), this payoff is rewritten as

(1-07) [\_/i (@)+3 3 F(T,T0A> NoTw,

(>1r>2r

which does not depend onTherefore we can conclude that playes indifferent over
all actions agains Also multiplying byp() and summing over aliZ € _# show
that when playeH is in phaseB, playen s expected payoff is indeed.

Suppose next that playeti choose&”: i in the current review phase, and that player
i's continuation payoff from the next review phase is givenipy- (1 — 5)UiG ”‘Z{(hf,).

Using (8), playei’s payoff to playinga1G S

(1-38") [Vi(ﬂf)—n+2 F(TTr)}\G”‘Z{I +0'wW,

|21I’>

while the payoff to playing ¢ < is

1-8") |m@a%) -C-n+3y 3 FTTNAS | 6w,

[>1r>47
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Note that the payoff fronat,-G’”‘Z{’I does not depend dnand hence playaeris indifferent
over all actionsg; € o7 Also, sinceC > maxgca, m(a;,affi) —Vi(«7), the payoff from
a ¢ < is less than that frora?’”". Hence, playingy; € <7 is a best reply againﬁfﬁ.
Also, multiplying the payoff byp(.7) and summing over alt/ € _# show that when
player—i is in phaseG, playeri’s expected payoff igv;. Therefore, the strategy profile
specified by the above automaton with the initial s{atgv;) is an equilibrium in the
constrained game, and yields the target payaff

What remains is to establish that this strategy profile is an equilibrium even if play-
ers are not restricted to a constant action. Recall that under (Cl), plaganalw has
no information about the opponent’ signal, so that playsmnot be better off by con-
ditioning her play on observed signals. Hence, it suffices to show that plaganot
profit by deviating to any sequence of actions with lenfth

First, consider the case where playeirchoosesg% in the current review phase.
As mentioned, for ang" € Aj anda™ # &/, playeri is indifferent between playing;
for T periods and playing™* for T periods. In what follows, we show that player
prefers playingg’ for T periods to mixing two actiong anda™ (i.e., playinga for
T periods and playing™ for T — 1 periods). For notational convenience, f&t; =
mi(a*,a%) — m(ar,a%). Letl* be the integet satisfyinga®”"' = & and letl** be
the integet satisWinga,-B’”‘Z{ | = a™. Without loss of generality, assurtie> 1**, so that
Atg > 0. For eachr € {0,---, T}, letW(1) denote player's (unnormalized) payoff to
playinga™ in the firstt periods and" in the remainindl’ — 1 periods. Then,

Wi (1) —W(0) 1_6TA71+ 1-07 (F(t,T,r)—F(0,T,r)) : 2B
! S - M- y Il ) s by ; .
1-9 1-9 L2, |:;+1 [
Arranging,
1-8" (167
WH(T) —WH(0) = A7 —5 (1_5T —g(T)) (31)
where

_ Zr>ZT F(07T7r) B ZI’>ZT F(T7T7r)
zI’>ZT F(O7T7r> - ZI’>ZT F<T7T7r)

Lemma7. Leth(T) :Iim5_>1(i_;gf-)—g(r). Then, there i such that foreverf§ > T,

h(t) is negative for allr € {1,--- , T —1}.

(1)

Proof. This directly follows from (28) of Ely, Hrner, and Olszewski (2005). Note that
(6) is used here. Q.E.D.

Suppose first thakrg > 0. Applying this lemma to (31), it follows that in the limit
asd — 1, playeri strictly prefers playinga constantly to mixinga® and a. By
continuity, she strictly prefers a constant actajneven if o is slightly less than one.
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Suppose next thatrg = 0. Then (31) implies that playerweakly prefers playing
constantly to mixingg" anda; for anyd € (0,1). Thus, in both cases, playeprefers
playing a constant action to mixing two actions.

By a similar argument, playérprefers mixingn actions to mixingn+ 1 actions’
Hence, playing an actio®y € A; for T periods is a best reply again_asﬁﬁ. Likewise, one
can show that playing an acti@y < <% constantly is a best reply agairﬁfi.

In summary, ifT is sufficiently large so that the conditions in Lemmas 6 and 7 are
satisfied, then there &< (0,1) such that for alb € (8, 1), the strategy profile specified
by the automaton constitutes a belief-free review-strategy equilibrium, and actieves
This completes the proof.

Appendix C: Proof of Lemma 4

Let ui : Ai_1 x Qi_1 — R be such thatg(a) + E[uij(a_1,w-1)|a] = 0 for all a € A.
The existence of sucty is guaranteed from the full rank condition. L@®tdenote the
maximum of|u;(aj_1,w_1)| over alla;_; € Ai_1 andw_1 € Qj_1.

Foreactke {1,--- K}, let hi[k] denote players private history up to the end of the
kth supplemental round. Also, Iefk’m] be playeri’s history up to the end of thkth
main round. Lehi[O] be player’s history up to the end of the confirmation round, and
hi[_l] be playeri’s history up to the end of the signaling round. For elclet Hi[k} be
the set of alhl®, andH*™ be the set of al"™.

Recall that a player's message space in the report roumPis M® x - x MK,

i.e., a player reports what happened in the past communication stages. Given player
(i—1)'s block historyh®, € H™., letl_j € (M?x --- x MK)N-1 denote playefi —1)'s
inference on the messages from playerdn the report round. Notice that playgs
actions in the report round cannot affect the realizatioh gfsince player — 1 makes

her inference on playgrs message using the random th-;mll({a?}) and Lemma 3
asserts that playercannot manipulate the realizations of this random event. For each
ke {0,---,K}, letI¥; be the projection of_j onto (M% x M x .. x MK)N=1, That is,

IEi denotes playefi — 1)’'s inference on the messages from playeiscorresponding

to the history up to th&th supplemental round.

"The formal proof is as follows. With an abuse of notation,\Me(tr) denote playei’s payoff to
playinga™ for 1 periods, playingy for T — 1 periods, and playing &' — T)-length sequence of actions
consisting of(a®" 1 ... ,aiB"Q/’W}, where0< 7 <T < T. Then,

_ 5T _ 5T
W) -W(O) = a5 (15 —am).

Using Lemma 7, one can confirm that playes (weakly) better off by playingy" for T periods rather
than playinga™ for T periods andy" for T — 1 periods.
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Without loss of generality, consider a particulaz |. We considet® which is
decomposable into real-valued functidigs ™, - - -, 8K+1) as follows;

+ 3l OMNTHHKF2NT gk (R, 1) 4 aTogK T2 ()
Intuitively, playeri receives a transfe® ! after the signaling rouncg® after the con-
firmation round 8* after thekth supplemental round for eakte {1, --- ,K}, andgX+1
after the report round.

In this transfer scheme, the transfers for the past rounds are irrelevant to ifdayer
incentive compatibility. For example, consider the report round. Note that the transfer
61 is a function of(hi[j]), and hence does not depend on the history in the report
round. Likewise, the transfeé#® does not depend on the history in the report round.
Moreover, for eactk € {1,--- ,K}, 8 depends on the history in the report round only
throughIEi, and playeri’s action in the report round cannot affect the realization of
IEi. Therefore, the transfet®1,--- | 6X) are irrelevant to playéts incentive compat-
ibility in the report round, i.e., playarmaximizes the sum of the stage game payoffs
and the transfe6X*1 in the report round. Likewise, one can check that the transfers
(871,...,6%1) are irrelevant to playeifs incentive compatibility in the continuation
game from thekth main round.

In what follows, we show that there are transfégs?®, .- , 65+1) satisfying (20)
through (22). To simplify the notation, I&? denote the set of alt € X satisfying
xi_1 = B. Likewise, letX5, be the set of akk_; € X_; satisfyingx,_1 = B.

C.1 Constructing 6K¥+1

Note first that the transfe# ! is a function of(hi[:l}), and hence does not depend on

the history in the report round. Likewise, the trand#€idoes not depend on the history
in the report round. Moreover, for eaghe {1,---,K}, 68X depends on the history in
the report round only througi‘ji, and player’s action in the report round cannot affect
the realization of¥;. Therefore, the transfer®~1,- .-, 6X) are irrelevant to players
incentive compatibility in the report round, i.e., playenaximizes the sum of the stage
game payoffs and the transféf+.

Let

2N?T (3+K) uial ;o
) = Zl (&_1, 0 4)

O2N2T (3+K)+1-t

K+1 Tt
6%+ (h°,

where(a_;,af ;) is player(i — 1)'s action and signal in theth period of the report
round. Recall thatg(a) + 3, q(wla)ui(ai—1,w-1) = 0 for all ae A. Thus the term
u(a ,,af ) offsets the stage game payoff in ttth period of the report round, and
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hence playei is indifferent among all actions in every period of the report round,
regardless of the past history. This shows that (20) holds fopall + 6N+ K (14 2N),
h' € HY, andx € XB,

Also, since the tern?% goes to infinity a® — 1, it follows that

Wi — W
(K+3)(1-9)

—2N?T(3+K)u < 851 (h™ ) < (32)

for all hiTEl P 1, provided tha is close to one.

C.2 Constructing 8% for all ke {1,...,K}
In this step, the following notation is useful. For each X, let H[f)i] (x) be the set of
h[o] € H[ % such that for each#i andh[ 0 HJ-[O},

(15 (h), AP (R)) € MO(x)

wherer?, (hgo}) = (rﬁo(hgo}))m, In Words,HLOi] (x) is the set of all histories up to the end

of the confirmation round such that playps i will play a]-"l in the first main round
(recall thats®(h [0]) sB(h[O]) = a’j"l if rﬁo(hgo}) € M2(x)) even if her inference on the
message from playeiin the confirmation round is replaced with any other information
n}O(h[o]) Thush[o] H! ]( x) implies that playei’'s message in the confirmation round
is irrelevant to players-i’'s continuation play.

Note thath[O] H! }(x) is a “regular history” when nobody deviates from the block
strategy profiles’. For example, when players pl&y under perfect monitoring, one
can check thaﬁﬁi(hgo]) = (x,---,x) forall j #i, so thath[f)}i € H[_Oi] (x). Also, when
players plays® under imperfect private monitoring, one can check that the probability
of h[ﬂ € HB} (x) approximates one & — . (See the discussion in Section 3.3.6.)

Likewise, for eactk € {1,--- ,K —1} andx € X, IetHL'(;(x) be the set oh[l‘]i € H[_ki]

such that for each # i andh € H¥,

(fRO(), (), - A 2(h)) € MO(x) x MY(0) x -+ x M¥X(0),
and
(i (n%). /ER))) € M)

whererf¥, (h [-k]) = (MK(h [-k]))hti That is,H™ () is the set of all histories up to theh
supplemental round such that playet i will play a; a*Lin the (k+ 1)st main round
even if the inference on play&s message in thkth supplemental round is replaced
with any other information. Thuls[l(]i € HLKi] (x) implies that playei's message in the
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kth supplemental round is irrelevant to players continuation play. Again, one can
check that these are “regular histories” when nobody deviates from the block strategy
profile s*.

Also, for eachk € {1,--- K} let H[_ki}(x, i) be the set oh[f]i

ne {1,---,k} such that for each # i andﬁgk} € Hj[k],

€ H[_k; such that there is

(RO(h), /it (hl0), - A=2(h)) € MO(x) x ML(0) x - x MML(0),
and
(A0 (). AR ) € MG,

Note that ifM°(x) x M%(0) x --- x M"~1(0) andm”(hgk]) € M"(i) for somen < k, then

playerj choosesjj («7*t1) in the (k+ 1)st main round, irrespective of the history after
the nth supplemental round. ThLH;L'? (x,1) is the set of histories up to tHe&h sup-
plemental round such that playgs message in th&th supplemental round cannot
affect the opponents’ continuation play and they will pife7) or @ (7). Roughly
speaking, these are histories reachable by pldyemilateral deviation. To see this,
suppose that monitoring is perfect and that players foldwut playeri unilaterally
deviates froma*" in the nth main round. Then both players- 1 andi + 1 detect this
deviation and send the messag#s, =i andm!_; = i in the nth supplemental round,
while playerj #i—1,i,i+1 sendsm'j1 = 0. In this case, playei's action in thenth
supplemental round cannot affect playais continuation play, so that the history is an

element 01H[_”i] (X,1).
For notational convenience, IHI[P}i denote a union dHE)ﬂ (x) over allx € XB. Also,
K

foreachk € {1,--- ,K}, Ietﬁ[l(]i be the union o(H[_ki](x) UH[_i (x,i)) over allx € XB,

In what follows, the transfer@?, - - -, 8K) are specified by backward induction. To
definedX, assume thg9**1, ..., 85+1) have already been determined so that plager
continuation payoff after historig)llqi € H[_ki], augmented bygk*1 ... 6%+1) isequalto
Vi(h), and that (20) holds for all> 1+ 6N +k(1+2N), h € Ht, andx € XB. Here,
for eachk € {1,--- K} andh¥ € A, the valuev;(h) is defined to be the maximum
of playeri’s actual continuation payoff (i.e., the discounted sum of stage game payoffs)
after historyh!qi over all her continuation strategies, subject to the constraints that mon-
itoring is perfect and that payoffs in the communication stages are replaced with zero.

For eacrh[ﬂ € ﬁ[f)]i, the valuevi(h[ﬂ) is defined to be the maximum of playiés actual

continuation payoff after histoﬂ}@i over all allﬁ[ﬂ € ﬁ[f)]i and over all her continuation
strategies, subject to the constraints that monitoring is perfect and that payoffs in the
communication stages are replaced with zero. For &aehO0,--- K} andh[lqi ¢ ﬁ[f],

the value\/i(h[k]

) is defined to be playéfs actual continuation payoff when she earns
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maxeca T6(a) in periods of the main rounds and zero in other periods. Notice that the
transfers(8?,-- -, 8K) are specified in such a way that playlsrcontinuation payoff

Vi(h [k]) from thekth main round is high and is the same for all hlstohg(lg,gé H . As
explained later, this “constant continuation payoff” property is used to show that player
i has a truth-telling incentive in théd — 1)th supplemental round, even whle[ﬂ ¢ ﬁ!(],
so that player's message in that round can affect the opponents’ continuation play.

In what follows, we show that there 8% such that playet’s continuation payoff
afternY € HX™ augmented by6k, - | 6¥+1) is equal tov;(h ), and such that
(20) holds for alll > 1+6N + (k—1)(1+ 2N), ht € HY, andx € XB. Iterating this
argument determines the transf¢@, - -- , 8X) so that playei’s continuation payoff
afterh[k Ue H[k Uis equal td/i(h[fi_l}) forallk e {1,---,K}, and such that (20) holds
for all | > 1+ 6N. (Recall that9® ! has been specified so that playsrcontinuation
payoff afterh[_Ki} € H[_f] is equal to\/i(h[_'?) = 0 and such that (20) holds for dll>
1+6N+K(1+2N).)

We conside®® which has the following form:

2NT ui(af_p, ) 4)

Kk k,
BK (11 = BT IS + Y ot

(33)

Here,(al_;,af ;) is player(i — 1)’s action and signal in thtth period of thekth sup-
plemental round, an@X is a real-valued function dii}’ andI¥; 1. Although 8% has
not been specified yet, the following lemma is established.

Lemma 8. Playeri is indifferent over all actions in every period of tkil supplemental
round regardless of the past history, and hence (20) holds for all2+ 6N + (k —
1)(142N).

Proof. As in the report round, the second term in the right-hand side of (33) off-
sets the stage game payoffs in tktb supplemental round. Note also that the term
é"(h,[k T},Ik 1) does not depend on the outcome in kkiiesupplemental round. Thus, it
suffices to show that play&s action in thekth supplemental round does not affect the
continuation payoff after thkth supplemental round witfp**1, ... gK+1),

Recall that this continuation payoff is assumed to be equa(ték]- ). By definition,
the valuev, (h[ ]) Is independent of playersi’s inferences on playeis message in the
kth supplemental round. Therefore, playsractions in the2i — 1)st and2ith review
phases cannot affect the continuation payoff. Also, play@mnot manipulate player
j’s inference on messages from the other players, since playation cannot affect
the realization of the corresponding random events. Hence, playastions in other
periods cannot affect the continuation payoff as well. Q.E.D.

To specify the real-valued functioB¥, the following notation is useful. For each
h[k Ue H[ Y anda € A, IetVN\/.(h[l(i_ll,a;) denote player’s continuation payoff from
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the kth main round, augmented k"2 ... 65+1) and by the second term of the
right-hand side of (33), when playemplaysa; constantly in thekth main round and
plays a best reply thereafter. That\iﬁ.(h[l‘i_l] ,8;) denotes the value

k 1 K | pak—1 K
;& i S5 (W) + 8T 5 pr(h L anvi ()
h erl
K | pak—1 o K . .
WherePr(hUi|hEi ],a;) denotes the probability thdani realizes when playarplaysa;

constantly in thécth main round and senahsf = 0in thekth supplemental round while
the opponents’ playx\h[k 1. Note that the first term is the stage game payoff inkiine
main round, and the second is the continuation payoff aftekttheupplemental round
augmented byg*+1 ... 8K+1) The stage game payoffs in tkéh supplemental round
does not appear here, as the second term of the right-hand side of (33) offset them.
For eachj #i and hgk_l] € Hj[k_ll, Iet\]"‘1 denote the history in the confirmation

round and the past supplemental rounds,ﬂjﬁe T— (mP(h Ek 1]), . ,mk(hgk_l])). Let
G = (I Y € (MO x MK1)N-L Note thathf (W'Y &) does not depend on
the entire information oh[ U but onJ*L. Hence, one can writdf (31, a) instead
of W (' a).

For eachi®; 1 € (MO x - x MK"1)N-1 et (al(Jk: 1), -+ @Ml (31)) be an order-
ing of all actionsg; € A such that

lim lim >...> lim lim W ™ (3 )).

For eachJE-‘1 andl € {1,---,|Ail}, let Ly H[k m_, {0, 1} be the indicator function

such thatl y 1 I}(h[k ™) = 1if the random eventyi_y({a (3 1),---,.a™ (3K 1)} is
counted more thaBkT times in thekth main round (according to the h|std1&r1n]), and
km] — {0,1} be the

indicator function such thaty, (h = 1if and only if the random eveng;_1({a;})
is counted more thabkT times in thekth main round.
From (13), there is a positive number> 0 satisfying

[Jk 1”( h }) O otherwise. Likewise, for each) € A;, let 1, : H[
km])

K2T
(1— T—b> 30, < 3n < W —JslinlﬁTrpeax WP (s, 85 (34)

for all x_; € XB,. Then, letd¥ be such that

Al
Qk Ikr1n7|k ' ;]a. KTn+zl|k 1| hl[k7 ])/\k(liTlﬂl)v (35)
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where the valuegA*(1%7%,1)) 1, solve
—i >

Vi(h[l(i_l]) (h[k 1] a)+ 4 OKT+2NT Z\Prl |h[k 1] a)KTn

+ gKT+2NT Z Pr(I*ni ) z Lycay [N a)AkakLn) - (36)

for all h[ Y € H[k Y anda; € A,. Here,Pr(lH |h[l‘f1],a4) denotes the probability that the

indicator functlonlu(hl[k’T}) takes one given that playechooses the constant action
a; while players—i play the actiors’; (h[k 1])
Pr(lk 1|hk 1]) denotes the probability thdlfi realizes given that the history at the

beginning of thekth main round iéﬂfi—l}. In words, the valuegA k(lEi_l,l))lb—ll are

constantly in thekth main round; and

determined so that play&s unnormalized continuation payoff aftbufi_l} augmented
by (6%, ---,0K+1) equals\/i(h[fi_l}), no matter what constant action playehooses in
thekth main round. Indeed, the right-hand side of (36) denotes pi&yeontinuation

payoff afterh[k U when playei chooses; constantly in the&kth main round and plays
a best reply thereatfter.

Lemma 9. There isT such that for allT > T, there isd € (0,1) such that for all
5 € (8,1), system (36) has a unique solution, and it satisfies

Wi — W,
(K+3)(1-9)

—ONToO — 2KTn < 5hl 1% 1) < (37)
for all hi“ﬂl and ;1. Also, using this transfer scheme, (20) holds forlall 1+ 6N +
(k—1)(1+2N), ht € HY, andx € XB, and playeri’s continuation payoff after history
h[k Ve H{ 1 equals\/i(h[l‘f”).

Proof. See Appendix C.5.1. Q.E.D.

C.3 Constructing 6°
Let

6NT Ui (a;_[_l7 a)lt—l>

0nlol \ _
6 (hifl) - O6NT+1-t

where(al_;,af ;) is player(i — 1)’s action and signal in thith period of the confir-
mation round. As in the report round, t#8 offsets the stage game payoffs in tiie
period of the confirmation round. In addition, as in the proof of Lemma 8, one can show
that playelti’s actions in the confirmation round cannot affect the expected continuation
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payoffs from the first main round augmented (8, - - -, 8X+1). Therefore, playeris

indifferent among all actions in every period of the confirmation round regardless of

the past history, and hence (20) holds forlaHl 1, ht € H', andx € XB.
Also, as in step 1,

Wi — W,

—6NTo; < 6%(h?,) < K131

(38)

for all hi[(ill € Hi[f]l, provided thab is close to one.

C.4 Constructing 61

Foreachx e X, let Hi[:ll} (x) denote the set of ami[:i} € Hi[:ll} such thak_; (hi[j]) =X_j
andyi_1({&"}) is counted more thaZir times during thd -period interval from period
(i—1)T + 1 to periodiT. Then, for eachx € X, let 1y : HI[_l1 — {0,1} denote the
indicator function 01Hi[__ }( X). Thatis 1X(h,[ 1]) = 1lifand only if h[ 1] [ 1 1 ().

Let

1 a1 9 ) -1 _
6~ (hu[ 1]> 3Ton + Z\W + Z 1X(hi[—1])A (%)
xeXB
where(al_;,w ) is player(i —1)’s private history in theth period of the block game,
and the value$A ~1(x)),.xs solve

Tp
o w=oT|Shn+ 5 5 PN R
t= KeXB hi[:i]GHi[:J%]( %)
+6™T 5 PrhOIsIv(h%) (39)
h9en©

for all x_; € XB. Here,Pr(hi[:f]sX) denotes the probability thaﬁf realizes when
players perform the block strategy prof#e and Pr(h[ﬂ |S*) denotes the probability of

h[ﬂ. Intuitively, the valuegA ~1(x)),.xs are determined so that (21) holds. Indeed,
the right-hand side of (39) denotes playsrauxiliary scenario payoff from the block
strategy profiles*. (Precisely, the first term denotes the expectation of the payéient
other than the term;, and the second term denotes the expectation of the continuation
payoff after the confirmation round. The stage game payoffs in the signaling round and
the confirmation round do not appear here, since these payoffs and the; tier 1
and6P cancel out.)
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Lemma 10. There isT such that for allT > T, there isd € (0,1) such that for all
5 € (8,1), system (39) has a unique solution, and it satisfies
Wi — W,

3Tpn —NTh < 6~ L(h 7)< (ST

(40)

for all h,[ 1} € H[ ] . Also, under this transfer scheme, (20) and (21) hold fot &0,
h' € HY, andx € XB.

Proof. See Appendix C.5.3. Q.E.D.

This lemma asserts that the specifigfisatisfies (20) and (21). Finally, (22) follows
from (13), (14), (32), (37), (38), and (40).

C.5 Remaining Proofs

C.5.1 Proof of Lemma 9

Part1l. Proof of Uniqueness. Observe that the VaMl(élk 1]) does not depend on

the entire information thi U put onJEi 1 since the continuation strategy of players
—i from the kth main round depends only aif; 1. Thus writeVi(J%;1) instead of
Vi(h[fi_l]). Likewise, one can repladeg‘i_l} with J;1 in each term of the right-hand
side of (36). Therefore, solving (36) is equivalent to considering the following system:

\/I(JEI—].) :W(Jk 1’a|) 5KT+2NT %Pr 1a,’Jk|_173|)KTrI
+ OKTH2NT leraii—lpii—l) IzlPr(l[lki17”|J5i_1,ai))\k(lﬁi_l,l) (41)

for all %1 anda € A,

Note that (41) is represented by the matrix form
QAk=h. (42)

Here,AX is a column vector with element(1¥-2 1) for all 12 andl € {1,- -,
Qis a coefficient matrix, each entry of which denotes the produr@f; |J% 1) and
Pr(l[IEi_lJ]]JEi‘l,a;); andb is a column vector denoting the remaining terms, i.e., each
entry ofb is denoted by

1 .
b(I%L &) = m[ (3K (3L a) Z\Pr (1513572 &)K.

Without loss of generality, assume that for eaghthere isI*;? such that for each
| € {1,---,|Al}, the (n|A| +1)th coordinate o X is AK(1%711) and the(n|A| +1)th
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coordinate obis b(J%; 1, a (3¢ 1)) whered*; ! satisfied *; 1 = J; 1. (This assumption
is indeed satisfied by exchanging rows\dfandb in an appropriate way.)

It follows from (17) and (18) that, a§ — o, Pr(1*;1/3%1) converges to one if
11 = g1, and to zero otherwise. LikewisBr(Lk 1, 3% &) converges to one if

aj is in the set{a (1%;1), - 7a1IA\

converges to

(Ik 1)1, and to zero otherwise. Hence, the mafgix

0 D
whereD is the|Aj| x |Aj] matrix such that it$j-element equals oneiif> j and zero if
i < J. Since the above matrix is invertible, there is an invers® @ir sufficiently large
T, and (42) has a unique soluti@r b.

Part2. Proof of (37). From (17) and (18Rr(15 ]ijl,a;) converges a§ — o to
one if§ = a;, and to zero otherwise. Therefore,

b La) V(3 H —WH(I L a)
lim | — lim | —K
TILnoo 5|Ln 1 T Tanoo 5@ 1 T n
for all J*~! anda; € A. Plugging this into\k = Q1b,
( V(K D) W31l
lim lim ) WIS )—Kn if =1
/\k(Jk-_l,|> T—ood—1 T
TIim clslm _I_' =
— o WES L - Wkt
lim lim if 1>2
T—oowd—1 T

\

L : ViKW (a1 W (IR — 1) W (3L
By construction|imt_c lims_,; — o) T ( )>OandI|mTHooI|m5H1 ( T) W ) >

0 for eachl > 2. Thus, from (35)JimT_elims_; & T is at least-Kn. Substituting this
into (33) and using continuity, it follows that thereTissuch that for alll > T, there is
d € (0,1) such that for alb € (8, 1), (37) still holds.

Part3. Proof of (20). Since\X solves (36), playei’s continuation payoff after
h[ffl} € H{_kfl} equals\/i(h[l(fl]) if she chooses a constant action in ktle main round
and plays a best reply thereafter. This implies that plaigndifferent over all constant
actions. Hence, it suffices to show that playes worse off if she does not take a
constant action in thkth main round.

For eachh Y e H* ¥ and(a)XT, e (A)KT, letwi(h~ (ah)KT,) denote player
i's continuation payoff afteh[ Y augmented byoK, ... ,8K+1), when playeii per-
forms aKT-length sequence of actlorﬁal) in the kth main round and plays a best
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reply thereafter. That isM(h~ ", (a))XT,) denotes the value

;6‘ RCE(aa)

+OTAT 5 PGS L @)
hﬁeHﬁ

EDY Pr(Ls I, (&) T)K T

+ KTHaNT Z Pr(1* 2 nt ZPr e I @RTARAN LY 49)

wherePr(- %™ (@)KT)) is defined a®r(-|n* Y a) but playeri plays the sequence
(aH)KT,, rather than the constant actien in thekth main round.

Lemma 11. Suppose thad = 1. Then, there isT such that for allT > T, h[k Ue
H% Y and(ah)KT, e (A)KT satisfyingal # a for somet andf,

Vi) > win @b, (44)
Proof. See Appendix C.5.2. Q.E.D.

This lemma asserts that in the casedof 1, playeri is worse off by playing a
sequenceéa )T, in thekth main round, provided tha + af for somet andf. Also, it
follows from Lemma 3 that playdarcannot earn profit even if she conditions the play
on private signals. Hence, & = 1, (20) holds for alll > 146N + (k— 1)(1+ 2N),
hi € HY, andx e XB.

SinceV; andW are continuous with respect & (44) is still satisfied after perturb-
ing 4. Hence, (20) holds, provided thatis large enough.

C.5.2 Proof of Lemma 11

Without loss of generality, consider a particular histh(y_l] € Hﬁ_l]. Pick arbitrary
actionsa’ € Aj anda™ # a'. For eachtr € {0,--- ,KT}, let W(71) denote the value
('Y, (a)T,) when

(a})thTl = (a|*7 aai*vai**v 7a|**)
T KT-t1

Also, letPr(-|n*"Y 1) denotePr(- %Y (al)KT ) for such a(a)T,. In what follows, it
is shown thatM (1) < Vi (h[l(i_l]) foreachr € {1,--- KT —1}, thatis, playing a constant
action is better than mixing two actiora, anda;"™.
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For each ¥ 1, letI*(1%1) be the integef such thatl (1%;1) = &, andI**(1%;1) be
the integerl such thawl (1X;1) = a7*. Let .#X 1 denote the set of all;! satisfying
I*(15:1) > 1#+(1% 1), It follows from Lemma 3 that

—p)F(KT—1) if §=a"

[k— 1] [k— 1] _ (65— G2)F ( ) . ?' a,**
Pr(l5 % =, 1) —Pr(l5[h5 =, 1—1) = ¢ (2—0gg)F(1—1) if & =&~ , (49)

0 otherwise

whereF; (1) denoted (T,KT — 1, ZkT). Likewise,
Pr(1[|5f17|]|h!‘i‘1}, T)—Pr(1 sh) |h [k— 1] ~1)

) (e—w)F(r—1) if I5te st
| (-@)F(KT—1) if 15t st 7

Substituting these into (43),

W (T) —Wi(T — 1)
—m(ar, S5 (M) — (e, s (W Y))

+ 3 PR v -y P r - pvin)

gl il
— (Q3 — qZ)F]_(T — 1)KTI] + (q3 — qz)Fl(KT — T)KTI’]
()
-y PO Y (@ g)R(r-DAKIS)
Ik le gkl |=14+1% (1571
105
+ Y PO Y (G- @R(KT DA, (46)
|klg gl I=1+17(1%Y)

Let A;(7) be the terms in the second line of the right-hand side, &4(d) be the
remaining terms. The following lemma is useful to evalusgér).

Lemma 12. There isT > 0 such that for allT > T, there isT such thatA,(1) is
negative forr = 1; non-positive for allt < T; non-negative for allr > T; and positive
for T =KT.

Proof. Observe that-Ax(7) is identified asTW (1) in (48) of Yamamoto (2007). In-
deed, the terms in the first line of the right-hand side of (46) corresponds to the term
71, the first term in the third line and the term in the fifth line correspond to the term
Yicle KjTT F(t —1), and the second term in the third line and the term in the fifth line
correspond to the terfi¢, KJ-TTF(T —T). Thus, there exists the desireéds shown

by (54) of Yamamoto (2007). Q.E.D.
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The next two lemmas show thag(7) = 0 for some cases.

Lemma 13. Suppose thdn[fi_l] ¢ ﬁ[fi_l} or h[fi_l] € H[_ki_l] (x,i) for somex € XB. Then
A1(T) =0forall 1.

Proof. Suppose that® Y ¢ H". Then, by definitions, . prh¥nkt 1) =1,

This shows that\; (1) = 0, since\/i(h[lqi) is constant over alh[l(]i ¢ ﬁ[ﬂ Likewise, if

h[k 1 ¢ H[k 1 (x,i) for somex € XB, then by definitiorgh[kleH[.q (xi) Pr(h!‘]i |h[l(i_l], T) =

1. Hence A (1) =0as forh!‘i_l] ¢ ﬁ[l(fl]. Q.E.D.

Lemma 14. Suppose that ' € H™ (x) for somex € XB, af # a*¥, andaj* # a*¥.
ThenA1(t) = Ofor all .

Proof. Observe that players action in thekth main round affects the realization of
h[ﬂ only through the random eventg_1(x,k) and ¢i+1(x,K). The probability that
Yi—1(x,K) is counted against the action proffk, a’f'i‘) is the same as agairnst™, a’ﬁ'i‘).
Likewise, the probability thail;  1(x, k) occurs agains(ta,—*,a)ﬁ'i‘) is the same as against
(&, an). Therefore,Pr(h[lqi|h[l‘i_l},r) = Pr(h[mh[fi_l},r — 1) for all 7, and hence
Ai(T) =0. Q.E.D.

Lemma 13 shows that if[ 1 H[k . orh[l‘fl] € H[_kfl} (x,i) for somex € XB, then
W(T) —WH(T — 1) = Ay(T )+A2( ) = Dy(1). Thus, from Lemma 12 and (h* ) =
WH(0) =W(KT), Vi(h"™) > Wi(r) for all T € {1,--- KT — 1}, as desired.

Likewise, using Lemmas 12 and 14, one can show W fi_l]) > W(T) for all
re L, KT —1}if WY e H Y (x) for somex € XB, & = &, andaj* = a**.

Therefore it remains to consider the casé 5T eHk 1}( x) for somex € XB and
a = a1 (the case of™ = Xk is analogous).

Lemma 15. Suppose thaln[l(fl] € H{_kfl} (x) for somex € XB and af = aix’k. If T is
large enough, theA; (1) is non-negative for alf.

Proof. It follows from Lemma 3 that playing the actiaj exactly r times instead of
T — 1 times in thekth main round decreases the probability that playef sends the
messagen’tik_1 =i and the probability that player+ 1 sends the messagpeﬁﬁrl =1,
while it increases the probability that playier 1 sends the message#‘_1 =i—2and
the probability that player+ 1 sends the messagd,‘+1 =i+2. Then,

P¥R Y < Y PhSRY T
< er™ (xi) hen ¥ (x,i)
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and

PrXY 0> Y Prh Tt T —),
h g™ hi g™

These inequalities show thaf(T) is non-negative, smdé( )takes the highest value
when hH ¢ Al ]I the second highest value whbpf e H! ( X), and the lowest value
whenh” e HM(x ). Q.E.D.

Lemma 16. Suppose thd’n[k_l} H [ki_l} (x) for somex € XB anda; = aix’k. Then, for
anypc (0,1)andn>1,35.~ pKT A1 (1) =0o(T~"). Here,[pKT] denotes the integer part
of pKT.

Proof. Let APr(mK | = i|T) denote the decrease in the probabilityndf ;, = i when
playeri chooses the actioa& 1 times rather tham — 1 times in thekth main round.
Likewise, letAPr(n¥_; =i|T) be the decrease in the probabilityrff, ; =i, APr(mK_; =
i —2|17) be the increase in the probability of | =i —2, andA Pr(ni(+1 =i42|1) be
the increase in the probability af, ; =i+ 2.

Following the proof of Lemma 1%\ (1) is represented by

A1(T) = Co(T)APH(ME | = i|1) +Co(T)APHME, ; = i[T)
+C3(T)API(ME =i —2|T) +Cy(T)APH(MF 4 =i +2[1). (47)

Here, C1(7) measures how much the expected value/icbh[f]i) increases when the
probability of mf ; = i decreases, while the probability of, ; = i, the probability
of m¢ ; =i—2, and the probability ofr¥, ; =i + 2 are fixed (these probabilities are
calculated as i&" is choserr — 1 times in thekth main round)C,(7) denotes how much
the expected value Oﬂ(h[ﬂ) increases when the probability of,; = i decreases,
while the probabilities ofrk ;, = i, the probability ofm¥ ; =i — 2, and the probability
of m¢ ; =i+ 2 are fixed (the probability off ; = i is calculated as i is chosen
T times, and the others are calculated ag'ifs chosent — 1 times); and so on. By
definition,

0<GCn(T) <&M (48)

whereAV; :mamk cHk V.(h[ ]) minh[f1€H£|q\4(h[l<]i)-

For notational convenience, IBf(7) = Fn(7,KT —1,Z 1) andR)/ (1) = Ry (7, KT —
1,Z¢+). Then, from Lemma 3

APH(ME | =i|7) = (g2 — qu)FJ (KT — 1),
AP(mE; =i|T) = (gg — Qo) F{(T — 1),
AP =i —2|T) = (Go — qu)F5 (KT — 1),
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and
AP,y =i +2|T) = (g3 — ) F{'(T - 1).
Substituting these and (48) into (47),
Aq1(T) < AViAQ (FZ”(KT —T)+F(1—-1)+F(KT -1)+F/(1- 1)) (49)

whereAq = max{d, — q1, g3 — 02}. To complete the proof, one needs to find a bound
on the right-hand side. The following claims are useful to obtain such a bound. See
Appendix C.5.5 for the proofs.

Claim 1. Foranyp € [0,1) andn > 1, Fi([pT] —1,T—1,Z;) =0o(T ") asT — .
Also, foranyp € (0,1] andn> 1, F(T — [pT], T —1,Zf) =o(T ") asT — co.

Claim 2. For anyp € (0,1), there exist§ such that for anyT > T and anyt < [pKT],
F/(KT —1) <F/(KT — [pKT]), F{(T—1) < F([pKT] —-1), F}(KT — 1) < F5(KT —
[pKT]), andF(t — 1) < F/'([pKT] - 1).

Claim 3. Foranyp € [0,1), F1([pT] -1, T—-1,Z7) <F([pT]—-1,T-21,Z;)if Tis
large enough. Also, for anp € (0,1], R(T — [pT],T —1,Z;) < F(T — [pT|, T —
1,z7) if T is large enough.

Applying Claims 2 and 3 to (49),

[PKT]
Zl Dq(T) < AVIAG2[PKT] (F3 (KT — [pKT]) + F{([oKT] - 1)).

Notice thatAV; = O(T), since\/i(h[lqi) = O(T). On the other hand, Claim 1 implies that

F)/ (KT — [pKT]) = o(T ") andF/([pKT] —1) = o(T~"). Therefore,z[f:Klﬂ N (1) =
o(T™"). Q.E.D.

Lemma 17. There arep € (0,1) and T such that for anyT > T and t > pKT, the
values KT Ay(T) is positive.

Proof. Let Arg denote the first line of the right-hand side of (46). Ibet (1+ &, 1)
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if Ar; < —2n, and letp = $ otherwise. Note that

Z?lr Az(f)
e

_KT- [pTKT] 1.

KT KT
+ ; (03 — 92)F1 (KT —1)Kn — ; (03— G)F1(T—1Kn
T=[pKT] T=[pKT]

|*(|Ei_1) KT Ak |kfl |
-y P Y) > @R S
Ikle gkl |=1+1% (1% 1) T=[PKT]
(1) KT ARk
oy PISTEY Y Y (mmRKT i
1K lg okt I=1+1+(1%5 1) T=[PKT]

From (45) and the law of large numbers,

KT

lim (3 —a2)F(1—1)
T r=[pKT]

L k=1 = - k—1]

=lim Pr(1g- [, [0KT]) - lim Pr(1g: |5~ KT
=0-0

=0.

Likewise, from (18), (45), and the law of large numbers,
KT
lim (g3 —d2)F (KT —71)

T

T=[pKT]
. k-1 : k-1 -
:TllnmPr(laﬂhEi ],KT)—TnanPr(laﬂhEi | [pKT))
—1-0
=1
Substituting these and usind(1%71,1) = O(T),

lim eri[p}(ﬂ AZ(T)
T—o0 T

=(1-p)KAm+Kn

. l**(IETl) )\k(lk.—l |)
+ Y dm PRt Y im ==
et kot T I—piqieyy T
. _ . Ak . L "
Since(1—-p)KAT +Kn > 0andlimt_., —<—= > 0, the right-hand side is positive.
Therefore,z*g[m(ﬂ No(1) > 0 for sufficiently largeT. This, together with Lemma 12,
completes the proof. Q.E.D.
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Lemma 18. lim7_,, Az(1) = —co.

Proof. Lemma 7 of Yamamoto (2007) asserts thatKT —1) = o(T 1) asT — o.

On the other hand),\k(lfi_l,l) = O(T) asT — «. Hence, the term in the last line

of the right-hand side of (46) and the second term in the third line converge to zero.
Meanwhile, the first term in the third line goes to infinity and the limit of the term
in the fourth line is non-negative, since (19) holds &ndr_ . M > 0. Hence,
IimT_mAz(l) = —00, Q.E.D.

Let T be as in Lemma 12, and be as in Lemma 17. From Lemmas 12, 15, and
17, if T is sufficiently large, then the valugi™, (A1 (t) + Aa(t)) is positive for allt >
min{T,pKT }, and hencéM (KT) > W(t) for all T > min{T,pKT} —1. Also, using
Lemmas 12, 16, and 18, one can show thal iis sufficiently large, then the value
Si_1(A1(t) +Az(t)) is negative for allr < min{T,pKT }, implying W (0) > W(t) for
all T < min{T,pKT}. Using\/i(h[fi_l}) =W (0) = W/(KT), it follows that\/i(h[fi_l]) >
Wi(t) forall T € {1,--- ,KT — 1}, as desired.

So far it has been shown that playgurefers playing a constant action to mixing
two actions. Since a similar argument shows that mixiagtions is better than mixing
n-+ 1 actions, player is worse off by deviating from a constant action. This completes
the proof.

C.5.3 Proof of Lemma 10

Part 1. Proof of Unigueness. Notice that (39) is represented by the matrix form
QA l=b (50)

whereA ~1is a column vector with elements () for all x € XB, Q is the coefficient

matrix, the entry of which iih[fl]eH[*l](i) Pr(hi[j} |s¥) for x € XB and% € XB, andb is
i—1 S

a column vector representingI the rlemaining terms, i.e., each elemierg of

To
b(x) = Zlat—l—NTv_vi —3Tpn —8NT 5 Pr(h%sOvi(h). (51)
= h%enl

From (17), (18), and the law of large numbers, the tgtr epyl-2 g Pr(hi{:ﬂsx)
i—1 i—1

converges to one ¥ = x and to zero otherwise, 8s— . This implies that the matrix

Q converges to the identity matrix 85— . Hence, for sufficiently largd&, there is

the inverse of), and (50) has a unique solutidm ! = Q~1b.
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Part 2. Proof of (40). From (17) and (18})@@@ Pr(h[fhsx) converges to one as

T — oo for eachx € X. By construction, this implies that

T 0], s (RO _ 1 Prh K
'I!ILnoo <|S|Ln1 Ty h[0]§—| 0 Pr(h7i|sx)\/l(hfi) B cISILnl XTS()EBi ggqeaé(bwr(% S )

for all x € XB. Then, from (51),

.. b(x . %
lim lim Q =w, —3n—lim | max max WiP(qu,s’i‘i') .
T—o0d-1 Tb o—1 X,ieX§i S1Tb€ Th

Plugging this intoA ~1 = Qb and using (34),

. oAl ) . b i .
lim lim & = lim lim ﬁ =w —3n —lim max WiF)(ﬁTb,S)fi') >0
Towd—1 Tp T—-wd-1 Tp 5-1gbegh

for eachx € XB. Hence, (40) holds.

Part 3. Proof of (20). From (39), playgs average payoff in the auxiliary scenario
from s<is w; for all x € XB. Therefore, it suffices to show that playi@ is a best
reply againsisf‘i‘. The next lemma shows that deviating to other actions in period
te{(j—1)T+1,---,jT} for j #iis not profitable.

Lemma 19. Foreachj#iandt € {(j—1)T+1,---,jT}, playeri is indifferent among
all actions in period of the block game regardless of the past history.

Proof. In periodt € {(j—1)T +1,---,jT}, players attempt to receive the message

from playerj through the random eventg) ({a?}))htj. Since player’s action cannot

affect whether these random events are counted, she is indifferent among all actions.
Q.E.D.

It remains to consider deviations in peribd {(i—1)T +1,---,iT }. As shown in
the following lemma, playeiris indifferent betweea®? anda; # a®, af in these periods.

Lemma 20. For eacht € {(i—1)T +1,---,iT} anda € A\ {af,aP}, playeri is
indifferent betweem; and af in periodt of the block game independently of the past
history.

Proof. In periodt € {(i—1)T +1,---,iT}, playerj attempts to receive a message
from playeri throughy;({a€}), and botha € A \ {a®,af} andaB induce the same
distribution ofy;({a®}). Q.E.D.

Thus it suffices to show that miximgG andaP in the T-period interval from period
(i—1)T + 1 to periodiT is not profitable. For eack ; € XB andt € {0,---,T}, let
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W.’(s’fi‘ ,T) denote player's (unnormalized) payoff in the auxiliary scenario agabﬁig,'“[
when playeii follow a sequence

(387... 7ai87§in"' 735)
T

T—1

from period(i —1)T + 1 to periodiT, and chooses a best reply in other periods. That
is, W (s}, 1) is defined as

W, 1) =8™T 5 Prhss v(h)
h%en!

MRS I Pr(h_1[s4, DA (®) | (52)
X Y Y

wherePr(h Y181 1) andPr(h%|$' 1) denote the probability dii 2 andh?.
i—1 | | | 1 |

| —
Lemma 21. Whend = 1, there isT > 0 such that for allT > T, x_; € XE‘i, andt e
{]_7... 7T_1}’

Tb

o twy > WS T). 53
t; w; >W(s, 1) (53)

Proof. See Appendix C.5.4. Q.E.D.

This lemma asserts that playeis worse off by mixinga® anda in the ith T-
period interval of the signaling round (and by taking a best reply in other periods),
whend equals one. By continuity, the result remains true as lonjjiaslose to one.

C.5.4 Proof of Lemma 21

Use (52) to get
WSS, T) —W(SS, T—1)

= 3 wh9 [Pr(h[j’hsi-ii,r)—Pr<h[°]|si-ii,r—1)]

h[ﬂeH[j]

1/~ -1 i -1 —i
£35S AP - Ph s T 1)
XXEnJen ix)

Without loss of generality, consider a particukas € XB,, and letAz(1) denote the
first term of the right-hand side add (1) the second term.

Lemma 22. For anyn > 1, maxcyy.... 7y [A3(T)| =0o(T™") asT — oo,
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Proof. Observe tha‘t/i(h[_o}i) is constant for alh[ﬂ € ﬁ[_o%, and takes a higher value for
o

h[ﬂ ¢ ﬁ[_i. Also,\/i(h[ﬂ) = O(T) asT — . Hence, it suffices to show that

max Pr(h%|1) — Prhl%r—1)| = o(T ™) (54)

te{l,.T
{ .

0] [0
fe

The following claims are useful. The proofs are found in Appendix C.5.5.

Claim 4. Foranyn > 1, j € 1, andx; € X|, if player j € | sendsx; in the signaling
round, then the probability of; (hf) # x; for somel # jiso(T ") asT — co.

Claim5. Foranyn>1, j €1, andm? € MJ‘-’, if playerj €1 sendsm‘j) in the confirmation
round, then the probability aﬁ‘j’(h}) # m? for somd # jiso(T ") asT — oco.

Claim 6. LetP(1) denote the probability thai;(htj) = G and%(h!) = B for somej # i
andl # i, j when playei chooses® 1 times andaiG T — 1 times during theéth T-period
interval. Then, forany > 1, maxcg; .. 1y P(7) =0o(T ") asT — .

By definition, if players—i make correct inferences on each other's message in
the signaling round and the confirmation round, and if there is no(pdiy such that
%(ht) = G and%i(h)) = B, thenh[ﬂ € W[ﬂ. Thus it follows from Claims 4 through 6
that the probability oh[ﬂ € ﬁ[ﬂ is 1—o(T ") irrespective of players play in theith
T-period interval. This proves (54). Q.E.D.

Lemma 23. There isT such that for anyT > T, there isT such thatA,(1) is negative
forall Tt < T and is positive for allr > T.

Proof. Analogous to the proof of Lemma 12. Q.E.D.

Lemma 24. lim1_,c A4(1) = —oo, andlimy_,c Ag(T) = co.

Proof. Analogous to the proof of Lemma 18. Q.E.D.
Lemmas 22 through 24, together with(s',0) = W(S7, T) = 5, 8" w;, es-

tablish (53).

C.5.5 Proofs of Claims

The following two claims are useful to prove other claims.

Claim 7. Fi(1,T,r) is single-peaked with respect taandr. Also,F (T, T,r) is single-
peaked with respect tbandr. Here, a functiorh(1) is single-peaked with respect to
if h(t) > h(t+1) impliesh(t+1) > h(t+2).

Proof. Follows from Lemma 5 of Yamamoto (2007). Q.E.D.
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Claim 8. For any p € (0,1) satisfyingp # gz andn> 1, F(0, T —1,[p(T —1)]) =
o(T ") asT — 0.

Proof. This is a trivial extension of Lemma 6 of Yamamoto (2007). To get the result,
just replacer 2 with T". Q.E.D.

Proof of Claim 1.Using Claim 8, one can show thef([oT] -1, T —1,Z;) =o(T ")
for any p € [gz,1), as in the proof of Lemma 7 of Yamamoto (2007). However, the
proof of Yamamoto (2007) does not work fpre [0,0), sinceT (T -1, T —1,Z7)
may not go to infinity. An alternative proof is as follows.

Let fr(1) = [ga(T+1)] + [gs(T — 1)]. Since fr(T —1) =0, fr(0) = gzT, and
fr(1)+1> fr(t—1) for all 7, and (18) holds, there is a sequence of integef$r_,
such thatfy(tr) = Z; whenT is large enough. By definition,

[G2(tr +1)] +[03(T — 17)] = Z1 (55)
for sufficiently largeT . Dividing both sides byl and applying (18),
lim — =1 (56)

It follows from (18) and (56) that for sufficiently larde, [gz(T — 77)] < Z7. Then.

%
T2F (17, T—1,2%) =T? Z)Fl(o,T —1—1r,0)Fu(t7, 17,25 1)
r=

> T2F(0,T —1— 17, [a(T — 1)) Fu(tr, 71, Z1 — [03(T — 7))
=T2%F1(0,T — 117, [ds(T — t7)])Fu(Tr, Tr, [G(T7 + 1))

for sufficiently largeT . Here, the last equality comes from (55). Observeféd, T,r)
is maximized byr = [g3(T + 1)], sinceF1(0,T,r) > Fy (0, T,r — 1) if and only if r <
az3(T +1). Likewise,Fi(T,T,r) is maximized byr = [g2(T + 1)]. Therefore[gs(T —
I7)] and[gz(1T + 1)] are the maximizers df (0, T —1— tr,r) andFy (1T, T7,1), re-
spectively. Thug(0,T —1—t7,[03(T — 17)]) > % andFy(tr, 17, [O2(TT + 1)]) > 'Il'
Plugging these into the above inequality,

T2F(tr, T-1,27) > 1. (57)

Recallthaf([pT]—1,T—1,Z;) =0o(T ") foranyp € [gz, 1), and henc&, ([0 T] —
1,T—1,Z7) =o(T~"). Noting that (56) and (57) hold, it follows that for sufficiently
largeT, Fi([qeT] —1,T —1,Z7) < Fi(77, T — 1,Z;) and[geT] — 1 < 7. Then, from
Claim 7,F([pT] — 1, T —1,Z7) < F([o2T] — 1, T — 1,Z%) for eachp € [0,02). This
establishes thef, ([pT] — 1, T —1,Z;) = o(T™ "), sinceF([g2(T —1)], T —1,Z7) =
o(T~"). The proof of /(T — [pT], T —1,Z{) = o(T ") is analogous. Q.E.D.
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Proof of Claim 2. As shown in the proof of Claim 1, there exigtsr)T_; such that
Fi([pT]—1,T —1,Z;) < Fi(17,T —1,Z7) andtr > [pT| — 1, provided thafl is large
enough. Then, it follows from Claim 7 that whénis large enoughF; (1 — 1) <
F{([pKT] —1) for all T < [pKT]. The remaining inequalities follow from a similar
argument. Q.E.D.

Proof of Claim 3.Let rr = [g3(T — 1 — [pT])] + [az[pT]]. Then, from (18)r1 > Z;
for sufficiently largeT. Also, one can show thak?F;([pT] —1,T — 1,r1) > 1 for
sufficiently largeT. (The proof is omitted, since this follows from a similar reason for
T2Fy(tr,T —1,2%) > 1in the proof of Claim 1.) Then, (15) and Claims 7 and 1 give
the desired inequalitys ([pT] -1, T —1,Z{) < F([pT]—1,T —1,Z%), for sufficiently
largeT. A similar argument applies 6. Q.E.D.

Proof of Claim 4. For eachj #i andl #1i, j, letPr(X;(h!) # B|x; = B) be the probability
of X;j(ht) # B when playerj sends<j = B. In what follows, it is shown tha®r(%; (h) #
Blxj =B) =0o(T™").
From Claim 8,
202+ 03
3
for n> 1. Since Claim 7 asserts thiat(0, T, r) is single-peaked with respecttpeither
F1(0,T,r) <Fu(0,T,[22%T]) forall r > [227%BT], orFy(0,T,r) < Fy (0, T,[2% %T])
for all r < [22FBT]. If Fy(0,T,r) < Fy(0,T,[22I%BT)) for all r < [22F%T], then
from (58),5, _ a0 FL(O.T.1) S TR(O.T, [2%21%T)) = o(T "), but the law of large
numbers and Lemma 3 assures limat _.« zr<[zq2¥ﬂ F1(0,T,r) = 1; a contradiction.

Therefore,F1(0,T,r) < F1(0,T,[22%T]) for all r > [22/%T]. This, together with
(58), shows that

Fl(O’Tv [ T]) = O(T_n) (58)

Prixj(h) #Blxj;=B)= 5  F(0,T,r)

r>[72q2;q3T]

< (T — [227=T))Fy (0, T, [22/%ET]) = o(T ).
A similar argument applies & = G. Q.E.D.
Proof of Claim 5. Analogous to the proof of Claim 4. Q.E.D.

Proof of Claim 6. Let Pr(fq(htj) = G|T1) be the probability oRi(h‘j) = G when playei
chooses? 7 times anda® T — 1 times. Also, letPr(%i(hf) = B|7) denote the proba-
bility of % (h{) = B. It suffices to show thamax, . 11, Pr(%(h) = G|t) = o(T~") and
max (17 Pr(% (ht) =B|T) =o(T™").

As in the proof of Claim 1, one can show tHa([3T], T, [®2*2%5T]) = o(T"), and
that there exists a sequence of integ@rs)T_; such that wherT is large enough,
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Fo([3T),T, [®32BT)) < Fy(tr, T, [22%5T)) and 17 < [3T]. Then, it follows from
Claim 7 thatFy([3T],T,[%2%8T]) > Fy(z,T,[%32%T)) for all T > [3T], provided
that T is large enough. Meanwhile, as in the proof of Claim 1, one can show that
T2F1(1,T,[02(T +1)] + [o3(T — 1+ 1)]) > 1 for eachr > [%T]. Then, from Claim 7,

Fu[3T) T, [B5ET)) = Fu(r, T, [#5%8T)) > Fy(. Tr)
forall T > [%T] andr > [M\f‘hT], provided thafl is large enough. Therefore,

max Pr(% (h}) = G|T) = max Z Fo(T,T,r)
TZ[%T] TZ[%T]r>[q22 CI3-|—]

2 2 _
< (T — [BFET)F([3T], T, [B52T]) =o(T™")
for all n > 1. A similar argument shows that

max Pr(%(h) = B|T) = o(T ")
T<[3T]

foralln> 1. Q.E.D.

Appendix D: Proof of Lemma 5

Letu; : Ai_1 x Qj_1 — Randu; be as in the proof of Lemma 4. Without loss of gener-
ality, consider a particuldre |. To simplify the notation, IeK® be the set of alk € X
satisfyingx,_1 = G, andXE*i be the set of alk_; € X_; satisfyingx,_; = G. Letﬁ@i be

a union ofH[_oi} (x) over allx € X© (see the proof of Lemma 4 for the specification of
H{_Oi} (x)). Also, for eactk e {1,--- ,K—1}, Ietﬁ[ﬂ be the union o(H[_ki] (x)u H[_ki}(x, i)
over allx € X© (again, see the proof of Lemma 4 for the specificatiorHB‘i‘(x) and
H[—ki] (Xv I))

Suppose thadtl® is decomposable into real-valued functigés?, .-, 6X+1) asin
the proof of Lemma 4. In what follows, the transfégs ™2, - - -, 85+1) are specified so
that (23) through (25) hold.

Let 8° and 6X*1 be as in the proof of Lemma 4, i.e., these transfers are the dis-
counted sums of;l. Then, player is indifferent among all actions in periods of the
confirmation round and the report round.

The transferg6?,- .-, 8X) are specified by backward induction. To defig as-
sume that the transfefgkt1, ...  8K+1) are determined so that playiés continuation
payoff after histor)h[lqi € H[_ki], augmented byt ... 65+1) is equal to/; (h[ﬂ), and
that (23) holds for all > 1+ 6N +k(1+2N), h' € HY, andx € X®. Here, for each
ke {1,---,K} and h[f], € ﬁ[f], the value\/i(h[f]i) denotes the minimum of playe’s
continuation payoff after historly!(]i over all her continuation strategies consistent with
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%Tb (i.e., continuation strategies that play some= <7K constantly in thekth main
round for eaclk) subject to the constraints that monitoring is perfect and that payoffs
in the communication stages are replaced with zero. For B[&rzﬁ ﬁ[ﬂ, the value
Vi(h[o}) denotes the minimum of play@s continuation payoff after historﬁl[ﬂ over

—i
all H[O% € ﬁ[ﬂ and over all her continuation strategies consistent W’fﬂ‘?, subject to

the constraints that monitoring is perfect and that payoffs in the communication stages
are replaced with zero. For eakte {0,--- ,K} and h[ﬂ ¢ ﬁ[f], the value\/i(h[l‘]i) de-

notes playei’s continuation payoff when she eanménaca 7% (2) in periods of the main
rounds and zero in the other periods.

In what follows, it is shown that there 8¢ such that playei's continuation payoff
afterh" € H* Y is equal tovi ("), and such that (23) holds for al> 1+ 6N +
(k—1)(1+2N), h" € HY, andx € XC. Notice that the transfer@?,---,6%) can be
specified by iterating this argument, as in the proof of Lemma 4.

Suppose thaf is decomposed as in (33). Then, on the analogy of Lemma 8, (23)
holds for alll > 246N+ (k—1)(1+2N).

To specify the real-valued functioB¥, the following notation is useful. For each
h[l(i_l} € Hﬁlﬁ_l] andag; € A, IetV~\/.(h[l‘i_1],a;) denote player’s continuation payoff from
the kth main round, augmented fg+1, ... 8X+1) and by the second term of (33),
when player playsa; constantly in théth main round and plays a best reply thereatfter.
As in the proof of Lemma 4, one can wrifg(J¥7 2, &) instead of\fv.(h[ffl},ai).

For eachl¥ 2, let (al (3% 1), --- ,al’gi‘q(‘]ﬁl)) be a ordering of all elements of
such that

k

V~V Jk-il, 1 Jk-il V~V kal’ ‘Qfl | kal
lim lim [ Ca)) >...> lim lim H(35 e (3 ))
T—o0od—1 T To0d—1 T

For each]fi‘1 andl € {1,---,|<X|}, let 1[ka1 K Hi[ﬂm — {0,1} be the indicator func-

tion such thatl y 1, (h*™) = 1ifthe random eveng_({al (3 1), - ,a!dik‘ 3<H

is counted more thaBkT times in thekth main round (according to histoh?frln]) and

Ly ”(hi“frf}) — 0 otherwise. For each € A, let1, : H ™ — {0, 1} be the indicator

i—
function such that,, (hi“frln]) = 1if and only if the random evenp;_1({a}) is counted
more tharZg T times in thekth main round (according to histoh?frln]).
Since (14) holds, there is a positive numper 0 satisfying
K2T - . . T Xy o
1—— ) (A]+2)u < (IA]+2)n < lim_min_wP(s°,$5) ~w

Tp 5—1ghbe 5T
forallx_j € Xf‘i. LetC be a real number satisfying

C > maxrg(a) —minTg(a),
acA acA
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and let6 be such that
||
BRI =T+ T Lo (WTHKTn + Z Ly sy (BFTARISE ),
ek

where the valuegA*(1¥71,1)),« 1, solve

Vi(h[l(i_l]) (h[k 1] a)— 5KT+2NT-|-C_|_5KT+2NT Z Pl’(lgilh[fi_l],ai)KTn
e
X|

|
+S TS PSS 5 Pl
—1

1yl @Akt (59)
=1

|
for all h[ e H[k 1 andg € @fik. Note that the right-hand side of (59) denotes
playeri’s contlnuatlon payoff afteln!(fll, augmented byoX, ..., 85+1) when playei
chooses; € Mi" constantly in thé&th main round and plays a best reply thereafter. The
next lemma assures that the ab®Vesatisfies the desired property.

Lemma 25. There isT such that for allIT > T, there isd € (0,1) such that for all
5 € (8,1), system (59) has a unique solution, and it satisfies
Wi — W,

(K —1—3)(?_ 5) < ek(hi[lﬂlv 1571 < 2NTO + |44|KTn

for all h[ }1 andl" 1. Also, under this transfer scheme, (23) holds forl al 1+ 6N +
(k—1)(1+2N), htI € HY, andx € X©, and and playeii’s continuation payoff after
hIStOFyh[k Ue H“‘ 1 equaIsV(h[k 1}).

Proof. Analogous to the proof of Lemma 9. Q.E.D.

Let 61 be such that

6L (nY) Tc:+zl A LE) L s i)

NT—t
0 xeXG
where

C= n+llm<m|n min_ WP( S5 — W, >

0—1 \ x |€XG% 65/}

(&, ) is player(i — 1)'s private history in theth period of the block game, and
the valuegA ~1(x)),.xc solve

Th

Zlatlv_vizaNT W+ Y Y P S92 ()
t= S _

+6™T S PrhOIsIv(h%) (60)

0 0
h%en'
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forallx_j € X?i. Note that the right-hand side of (60) denotes plageauxiliary payoff
from the block strategy profils‘.

Lemma 26. There isT such that for allIT > T, there isd € (0,1) such that for all
5 € (8,1), system (60) has a unique solution, and it satisfies

Wi — W

(EEIE 61 (h_1) < NTG — (|A| + 1) Ton.

for all hi[:f € Hi[:ll]. Also, under this transfer scheme, (23) and (24) hold fot &0,

h' € HY, andx € XC.
Proof. Analogous to the proof of Lemma 10. Q.E.D.

This lemma asserts that the speciﬂﬂ;@ satisfies (23) and (24). Finally, (25) fol-
lows as in the proof of Lemma 4.

Appendix E: Proof of Proposition 3

In this appendix, we prove Proposition 3. Let € ¢ be such that = {a", &}
for eachi € I. Then by assumption, one can check at7) < maxgea, T (&, a™) <
rm(a*) <vi(«). Letpe A _# be such thap(«/) = landp(«/) = Ofor o7 # «/. Then
by definition, ri(a*) € V(p). Also, ri(a*) € xici[p-V;, P-Vi], sincey, (&) < m(a*) <
Vi(«7). Thereforeji(a*) is an element of the right-hand side of (2).

It remains to check that the stage game corresponds to the positive cagec Let
A _Z be such thaf(«/) =1—¢, p(A) = ¢, and p(«7) = 0 for other./, wheree > 0.
It suffices to show that for a sufficiently smadl> 0, the intersection oV () and
Xiel [PV, P-Vi] is N-dimensional.

Sincey(«/) < m(a") < Vi(«/) andrg(a™) < rg(a”) for all i € 1, there is a payoff
vectorv such thaw is a convex combination af(a™) andm(a*) andp-v; < Vv, < p-V;
for all i € I. By definition, this payoff vectow is in the feasible payoff set, and is
an element o¥/(p). Thereforey is an element oV (p). Also, sincef-v; and -V
converge top-v, andp-Vv; as€ — 0, v is an interior point ofxic[p-V;, p- V] for a
sufficiently smalle. Fix such as.

Recall that the feasible payoff set is full dimensional, and so is th¥ @@t Let
V be an interior point o¥/ (p), and letv = kv+ (1 —k)V for k € (0,1). Sincev is an
element oV (p) andV is an interior point oV (), V is an interior point oV (p). In
addition,V is an interior pointxic|[p-V;, f- Vi] for k sufficiently close to one, sinceis
an interior point ofxic|[f-V;, P-Vi]. These facts show thdtis an interior point of the
intersection oW (P) and xic|[p- Vi, P- Vi]. Hence, this intersection N-dimensional.

67



Appendix F: Characterizing E(9) for the Abnormal Case

Theorem 1 characterizes the limit set of belief-free review-strategy equilibrium payoffs
for the positive, negative, and empty cases, but it does not apply to the abnormal case.
In this appendix, we show that in the abnormal case, the equilibrium payoff set is either
empty or the convex hull of the set of pure-strategy Nash equilibrium payoffs of the
stage game, for generic payoff functions.

Given a stage game, lef * be the maximal sef’ C ¢ suchthatthereipe A _#
such that

(i) p(«/)=0forall & ¢ 7'
(i) pvi > pv foralliel,

(i) m5(a) > (&, a) foralli € | satisfyingpv, = pv;, forall o7 € _#’,forallae 7,
and for allg; € A; with equality if§ € .«%; and

(iv) m(a) = (&) for all i € | satisfyingpv; = pv;, for all & € ¢', forallaec o,
and for alla € &

Notice that, if #' C # and _¢” C ¢ satisfy the above conditions, then does the
union of ¢’ and #”. Therefore, the maximal set indeed exists. With an abuse
of notation, for eactp € A _#*, let pv; denotey .« - p(«/)Vi(«/) and pv denote
Sae g P()Vi(). Likewise, letV(p) denote the set of feasible payoffs when the
public randomizatiorp € A _¢* determines the recommended actionget

The following proposition characterizes the equilibrium payoff set for the abnormal
case with generic payoff functions.

Proposition 6. Suppose that the stage game is abnormalZIf is empty, thetE(d) =

0 for everyd € (0,1). If _#* is not empty and if5(a) # (&) foralli € l,ac A and

a + a, thenlims_ 1 E(d) is equal to the convex hull of the set of pure-strategy Nash
equilibrium payoffs of the stage game.

To prove this proposition, the following lemma is useful.

Lemma 27.1f _#* is not empty, then

EG)C |J (V(p)Nxic[pY, pui]). (61)
peA _7*

foranyd € (0,1). If _7* is empty, ther(6) = 0 for anyd € (0,1).
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Proof. Suppose that there is a belief-free review-strategy equilibsun®. As in the
proof of Proposition 1, players continuation payoff from théth review phase is in
the interval[p'vi, p'vi], wherep' is as in (30) andz(1) is the union of the support of
s(ht-1) over allht-1 € HY'-1, In particular, together with the feasibility constraint, the
equilibrium payoff vector is in the s&t(p*) N xici [ptV;, p*vi]. Thus, it suffices to show
that #7** C _¢* where_¢** denotes the support @f.

Let I* be the set of all €1 such thatp'\_/i = ply; for all | > 1. Suppose first that
| =1*. Setp = p!. This p satisfies both (i) and (ii) fory' = _7** as_#*"is the
support ofp and the equilibrium payoff of playeris in the interval[pv,, pvi]. Also,
since no dynamic incentive is provided in this equilibrium, @y </ (1) must be a
Nash equilibrium. This shows that (iii) holds fof ' = #7**.

Moreover, sincep'v, = p'v; for all i € | andl > 1, vi(«7 (1)) = vi(<Z (1)) for all
i €1 andl > 1. This, together with (iii), proves that satisfies (iv) for #' = #**.
To see this, suppose not so that theresiss _#** such thatrg(a) < r5(&) for some
a€ o/ andd e «/. Then from (iii), vi(&) < maxycp T(a,a-i) = 1§(a) < 1§(8) =
Mingc .« T (3, a-i) < Vi(«/). But this implies that there is> 1 such that; (< (1)) <
Vi(</(l)), a contradiction.

Overall, thisp satisfies (i) through (iv) for#’ = #**. Since_¢ * is the maximal
set, #** C _#*, as desired.

Next, suppose thdt# | *. By definition, for each ¢ 1*, there is a natural numbgr
satisfyingp'v; < plivi. Letp= \II——l\II Sier- Pi. This p satisfies (i) for 7' = _#**, as
the support ofd' is a subset of the support ot for all | > 1. Also, (ii) follows, since
playeri’s continuation payoff from théth review phase is in the intervid'v;, p'vi] for
all I > 1. Moreover, (iii) and (iv) hold as in the case o 1*, sincepv. = pv; for all
i 1%, andp'v; = p'vi for alli € 1* andl > 1. This proves thay7 ** C _¢#*.  Q.E.D.

Proof of Proposition 6.Lemma 27 asserts that iz * is empty, therE(d) = 0. What
remains is to show thdims_,1 E(J) is equal to the convex hull of the set of pure-
strategy Nash equilibrium payoffs wheg * is not empty. To do so, it suffices to verify
that the right-hand side of (61) is included in the convex hull of the set of pure-strategy
Nash equilibrium payoffs, as the reverse side is obvious.

Since this is the abnormal case, for eqob A _¢ satisfyingpv; > pv, for alli €I,
there isi € | such thatpv; = py;. Then, by definition of #*, there isi € | such that
ri(a) =) forall o € ¢* ac o/, anddc «/. Thisimplies that eachy € _#7* is
a singleton, sinceg(a) # 15(8) wheneved # a.

Notice that if < is a singleton, then, (/) > Vi(«/) for all i € I. This shows that
py, > pv; forall pe A _g* andi € |, and then by definition of7*, 15(a) > 15 (&,a_i)
foralliecl, o € 7% ac «/, and§ € A.. This establishes that for eacht ¢ _7*
anda € <7, ais a pure-strategy Nash equilibrium anda(«?)) = v,(«/) = Vj(«/) for
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alli € I. Therefore, for any? € _¢*, the setxi¢[v,(#7),Vi(«7)] is equal to the set of
pure-strategy Nash equilibrium payoffs, as desired. Q.E.D.

Appendix G: Relaxing Conditional Independence

In Remark 1, we argued that (CI) is stronger than necessary for Theorem 1, and can
be replaced with a weaker condition. In this appendix, we assume that the monitoring
structure isveakly conditionally independeint the sense that players observe statisti-
cally independent signals conditional on an action praiend on a hidden common
shockwy, and show that Theorem 1 is valid under this assumption. Formally, we as-
sume the following:

Condition Weak-Cl. There is a finite se®g, o : A — AQq, andq; : Ax Qo — AQ;
for eachi € | satisfying the following properties.

(") Foreachac Aandw € Q,

q(wla) = 6uoggoflo(wo\f’i) Q Gi(wa, &)

(i) For eachi € | anda € A;, rankQi(a) = |A_i| x |Qo| whereQi(a) is a matrix
with rows (gi(wi|aj,a_i, wn))weq, foralla_j € A_j andwy € Qo.

In words, clause (i) says that given an action prail@a common shocky is ran-
domly chosen following the distributiogy(-|a), and then players observe statistically
independent signals conditional ¢a, «wy). Clause (ii) is a version of individual full-
rank condition.

Under (Weak-Cl), players’ signals are correlated through a common shydo
that a player’s signal has some information about the opponents’ signals. But we can
construct random events such that a player’s private signal has no information about
whether the opponents’ random events are counted, and thus no feedback on what the
opponents will do in a continuation play. Therefore, a player has no incentive to play a
history-dependent strategy within a review phase and hence the equilibrium construc-
tion in Sections 3.2 and 3.3 are valid under (Weak-Cl).

Specifically, we can show the following lemmas under (Weak-Cl) (g |a, w_)
denote the probability that the random eveéhnis counted when the action profieis
played and playersi observew_j. The proofs of the lemmas are similar to Lemma 1
of Yamamoto (2007), and hence omitted.

Lemma 28. Suppose that there are only two players and that (Weak-Cl) holds. Then,
for someq; and g satisfying0 < q; < g2 < 1, there is a random evenpi(<7_;) :
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A x Qi — 0,1 foralli el ande’ € #_jsuch thatforallac Aandw_j € Q_j,

o)) if ajc o
g1 otherwise

P(yi(i)|a) = {
and
P(di(-i)|a w-i) = P(di(-i)|a).

Lemma 29. Suppose that there are three or more players and that (Weak-Cl) holds.
Then, for somey, g, andqgs satisfying0 < g; < gz < gz < 1, there are random events
Yi(j) - A x Qi — [0,1] and ¢i(ai+1,8-1) : A x Qj — [0,1] for all i, j, ac A, and

i € #jsuchthatforallde Aandw_ij € Q_j,

. gz if aj €.
P(yi(«))]a) =
(Wi()13) {qz otherwise
qu if a_1=8&_1anda 1 #3841
P(Wi(aiy1,8-1)[d) =4 oz if ar1=8&1anda_1#8&_1 ,
g2 otherwise
P(¢i(«)|8) = P(di ())&, cw-i),

P(Wi(aiy1,8-1)|8) = P(i(ai41,8-1)|& w_i),

and for eachi and j # i, playeri’'s random event and playeys random event are
statistically independent conditional on aay A.

Note thatP(yi|a, w_i) = P(yi]a) means that playersi’s signal w_j has no in-
formation about whether the random evanis counted, and hence players have no
incentive to use a history-dependent strategy within a review phase. This shows that
Theorem 1 remains valid even if (Cl) is replaced with (Weak-Cl).
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