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Abstract

This paper proposes and studies a tractable subset of Nash equilibria, belief-

free review-strategy equilibria, in repeated games with private monitoring. The

payoff set of this class of equilibria is characterized in the limit as the discount

factor converges to one for games where players observe statistically indepen-

dent signals. As an application, we develop a simple sufficient condition for the

existence of asymptotically efficient equilibria, and establish a folk theorem for

N-player prisoner’s dilemma. All these results are robust to a perturbation of the

signal distribution, and hence remain true even under almost-independent moni-

toring.
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1 Introduction

Consider an oligopolistic market where firms sell to industrial buyers and interact re-

peatedly. Price and volume of transaction in such a market are typically determined

by bilateral negotiation between a seller and a buyer. Therefore, both price and sales

are private information. This is so-called “secret price-cutting” game of Stigler (1964)

and is a typical example ofrepeated games with imperfect private monitoring, where

players cannot observe the opponents’ action directly but instead receive noisy private

information. In fact, a firm’s sales level can be viewed as a noisy information channel

of price of the opponents, as it tends to be low if the opponents (secretly) undercut their

price. Harrington and Skrzypacz (2011) point out that lysine and vitamin markets are

recent examples of secret price-cutting games.1

The theory of repeated games with private monitoring has been an active research

area for recent years, and many positive results have been obtained for the case where

observations are nearly perfect or nearly public: Hörner and Olszewski (2006) and

Hörner and Olszewski (2009) establish general folk theorems for these environments.

On the other hand, for the case where observations are neither almost-perfect nor

almost-public, attention has been restricted to games that have a simple structure. For

example, assuming that players receive statistically independent signals conditional on

an action profile, Matsushima (2004) establishes a folk theorem, but only for two-player

prisoner’s dilemma. Ely, Ḧorner, and Olszewski (2005, hereafter EHO) and Yamamoto

(2007) consider a similar equilibrium construction, but their analyses are still confined

to two-by-two games or to symmetricN-player prisoner’s dilemma. The restriction

to these simple games leaves out many potential applications; for example, none of

these results apply to secret price-cutting games with more than two firms and with

asymmetric payoff functions.

The present paper extends the key idea of Matsushima (2004), EHO, and Yamamoto

(2007) to generalN-player games, and shows that there often exist asymptotically ef-

ficient equilibria. For this, we first introduce the concept ofbelief-free review-strategy

equilibria, which captures and generalizes the equilibrium strategies of these papers.

Specifically, a strategy profile is a belief-free review-strategy equilibrium if (i) the infi-

nite horizon is regarded as a sequence ofreview phasessuch that each player chooses

a constant action throughout a review phase, and (ii) at the beginning of each review

phase, a player’s continuation strategy is a best replyregardless of the history up to the

present action, i.e., regardless of the history in the past review phases and regardless

of what pure action the opponents choose in the current phase. While the set of belief-

free review-strategy equilibria is a subset of sequential equilibria, it has the following

1They characterize a stable collusive agreement in secret price-cutting games when players can com-
municate.
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nice properties. First, it follows from condition (i) that if the length of each review

phase is long enough, then players can make (almost) precise inferences about what

the opponents did, using cumulative information within the review phase. This infor-

mation aggregation allows players to punish the opponents efficiently, and as a result

we can construct asymptotically efficient equilibria for some games. Also, condition

(ii), which is calledstrongly belief-free propertyin this paper, ensures that a player’s

best reply does not depend on her beliefs about the opponents’ history in the past re-

view phases or about what action the opponents choose in the current review phase.

Therefore, we do not need to track evolution of these beliefs when verifying incentive

compatibility of a given strategy profile, which greatly simplifies our analysis.2

An important consequence of the strong belief-free property is that given a review

phase, the set of optimal actions is independent of the history in the past review phase.

This set of optimal actions is called aregime, and given a belief-free review-strategy

equilibrium, let p be a probability distribution of regimes which measures how often

each regime appears in the infinite horizon. Belief-free review-strategy equilibria can

be classified in terms of a regime distributionp.

The main result of this paper is to precisely characterize the set of belief-free review-

strategy equilibrium payoffs in the limit as the discount factor converges to one, assum-

ing that players’ signals are statistically independent conditional on an action profile.

Specifically, we first find bounds on the payoff set of belief-free review-strategy equi-

libria given a regime distributionp. The lower bound of playeri’s equilibrium payoff is

her minimax payoff when the opponents are restricted to choose actions from a regime

which is randomly picked according to the distributionp. The upper bound of playeri’s

equilibrium payoff is her “secured” payoff, that is, the payoff playeri can obtain when

the opponents maximize playeri’s worst payoffs (payoffs when playeri take the worst

action) and players are restricted to choose actions from a regime which is randomly

picked according to the distributionp. Second, we show that these bounds are tight in

the sense that given ap, the limit payoff set of belief-free review-strategy equilibrium

is equal to (a feasible subset of) the product of the intervals between these upper and

lower bounds.

The characterized payoff set is often a subset of the feasible and individually ratio-

nal payoff set, but these two sets coincide inN-player prisoner’s dilemma games, for

which the folk theorem is established with arbitrary noise. Also, as an application of

the main theorem, we develop a simple sufficient condition for the existence of asymp-

totically efficient equilibria. This sufficient condition is often satisfied in asymmetric

2Note that the strongly belief-free condition here is similar to but stronger than a requirement for
being belief-free equilibria of EHO. In belief-free equilibria, a player’s best reply is independent of the
history up to the previous periods but can depend on the opponents’ action today. On the other hand, the
strong belief-free condition requires that a best reply be independent of the opponents’ current action.
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secret price-cutting games, so that cartel can be enforced even if a firm’s price and sales

are private information.

The interpretation of the bounds on the equilibrium payoff set is as follows. By

definition, in each review phase of a belief-free review-strategy equilibrium, playing

any action within the corresponding regime is optimal. Therefore, choosing the worst

action within the regime in each review phase is optimal in the entire game. Since a

player’s equilibrium payoff cannot exceed the payoff yielded by this “worst” strategy,

we obtain the upper bound stated above. An argument for the lower bound is stan-

dard; a player’s equilibrium payoff must be at least her minimax payoff, as she plays

an optimal action in a belief-free review-strategy equilibrium. Here, the opponents’

actions in determining the minimax value are constrained by regimes, because in each

review phase, actions not in the regime are suboptimal and should not be played on the

equilibrium path. This gives the lower bound of equilibrium payoffs.

To prove that these bounds are tight, we substantially extend the equilibrium con-

struction of Matsushima (2004), EHO, and Yamamoto (2007). In their analysis, atten-

tion is restricted to a simple class of belief-free review-strategy equilibria where each

player independently chooses either “reward the opponent” or “punish the opponent”

in each review phase; their main result is that this “bang-bang” strategy can often ap-

proximate efficiency in two-player games. However, if there are more than two players,

this bang-bang strategy does not function well, because players−i need to coordinate

their play in order to reward or punish playeri.3 To deal with this problem, we borrow

the idea of “informal communication” of Ḧorner and Olszewski (2006) and Yamamoto

(2009), and constructs an equilibrium strategy such that some review phases are re-

garded as “communication stages” where players communicate through a choice of

actions to coordinate a future play.

A main difference from the equilibrium construction of Hörner and Olszewski

(2006) and Yamamoto (2009) is that we incorporate additional communication stages

where players try to make a consensus about what happened in a previous communi-

cation stage. The role of this additional communication is roughly as follows. In our

model, private signals are fully noisy, so that playersi and j often make different in-

ferences about what playerl did in the previous communication stage, when playerl

deviated and did not choose a constant action. Then playersi and j fail to coordinate

a continuation play, which might yield better payoffs to the deviatorl . The additional

communication stages are useful to deter such a deviation; in the additional communi-

cation stage, playersi and j communicate to make a consensus about playerl ’s play so

that they can avoid a miscoordination in a future play. Note that such a problem is not

3Yamamoto (2007) shows that the bang-bang strategy can approximate an efficient outcome in sym-
metric N-player prisoner’s dilemma games, but this result rests on a strong assumption on the payoff
function.
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present in Ḧorner and Olszewski (2006) and Yamamoto (2009), because they assume

almost-perfect monitoring so that playersi and j have the same inference about player

l ’s action with high probability.

One criticism of the past papers on belief-free review-strategy equilibria is that they

assume conditional independence of signals, which is non-generic in the space of signal

distributions. This paper addresses such a criticism by showing that a payoff vector

in the limit equilibrium payoff set under conditionally-independent monitoring is also

achievable under any nearby monitoring structure. In this sense, belief-free review-

strategy equilibria work well as long as the signal distribution is almost (but not exactly)

conditionally independent.

This robustness result is further extended by a subsequent work by Sugaya (2010).

He modifies the equilibrium construction of this paper, and shows that the main the-

orem remains true for generic monitoring structure, if there are at least four players.

That is, he shows that the limit set of belief-free review-strategy equilibrium payoffs

is characterized by the formula identified by this paper, for any monitoring structure

that satisfies a certain rank condition. His result gives a strong foundation to consid-

eration of belief-free review-strategy equilibria. For example, in prisoner’s dilemma

games with more than three players, a folk theorem is obtained for generic monitoring

structures, and hence patient players have less reason to play other sorts of equilibria,

as far as equilibrium payoffs are concerned.

1.1 Literature Review

There is an extensive literature which studies repeated games with private monitoring.

A pioneering work in this area is Sekiguchi (1997), who constructs a sort of trigger

strategies to approximate an efficient outcome in prisoner’s dilemma when monitoring

approximates perfection. His equilibrium strategies arebelief-basedin that a player’s

best reply depends on her belief about the opponent’s past history. Bhaskar and Obara

(2002) extend this equilibrium construction toN-player prisoner’s dilemma, and show

that Pareto-efficiency can be approximated when observations are near perfect.

Meanwhile, Piccione (2002), Ely and Välimäki (2002), and EHO propose an alter-

native approach to the problem. They considerbelief-free strategies, where a player’s

best reply is always independent of the past history and hence a player’s belief about

the past history is irrelevant to the incentive compatibility constraint. They show that

these strategies often approximate Pareto-efficient outcomes in two-player games with

almost-perfect monitoring. Yamamoto (2007) and Yamamoto (2009) extend their anal-

ysis toN-player games. Ḧorner and Olszewski (2006) further extend this approach,

and show that the folk theorem holds for general games with almost-perfect monitor-

ing. The analysis of this paper is close to this belief-free approach, since the concept of
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belief-free review-strategy equilibria is a combination of the idea of belief-free equilib-

ria with review strategies of Radner (1985).

Recently, Fong, Gossner, Hörner, and Sannikov (2011) show an efficiency result in

a repeated two-player prisoner’s dilemma with fully-noisy and fully-private monitoring.

They do not assume that players observe statistically independent signals, so that our

folk theorem does not apply to their model. On the other hand, their analysis does not

include ours either, since they do not have a full folk theorem and their equilibrium

strategies cannot achieve some feasible and individually rational payoff vectors. Also,

they assume the minimal informativeness, which requires that there be a signal that has

a sufficiently high likelihood ratio to test the opponent’s deviation. Such an assumption

is not imposed in this paper.

For games where observations are almost public, Mailath and Morris (2002) and

Mailath and Morris (2006) show that strict perfect public equilibria with bounded recall

is robust to a perturbation of the monitoring structure. Also, Hörner and Olszewski

(2009) show that a folk theorem obtains for games with almost-public monitoring.

Once outside cheap-talk communication is allowed, a folk theorem is restored for

very general environments (Compte (1998), Kandori and Matsushima (1998), Fuden-

berg and Levine (2007), and Obara (2009)). Likewise, a folk theorem holds if players

can acquire perfect information at a cost (Miyagawa, Miyahara, and Sekiguchi (2008)).

For more detailed surveys, see Kandori (2002) and Mailath and Samuelson (2006).

Also, see Lehrer (1990) for the case of no discounting, and Fudenberg and Levine

(1991) for approximate equilibria with discounting.

2 Setup

2.1 The Model

The stage game is{I ,(Ai ,Ωi ,gi)i∈I ,q}; I = {1,2, · · · ,N} is the set of players,Ai is

the finite set of playeri’s pure actions,Ωi is the finite set of playeri’s private signals,

gi : Ai×Ωi → R is playeri’s profit function, andq is the probability distribution of the

signals. LetA =×i∈IAi andΩ =×i∈I Ωi .

In every stage game, players move simultaneously, and playeri ∈ I chooses an

actionai ∈ Ai and then observes a noisy private signalωi ∈Ωi . The distribution of the

signal profileω = (ω1, · · · ,ωN)∈Ω depends on the action profilea= (a1, · · · ,aN)∈A,

and is denoted byq(·|a) ∈ 4Ω. Given an actionai and a private signalωi , player

i obtains payoffgi(ai ,ωi); note that in this setup, the payoff is not dependent on the

opponents’ actions and signals, and hence does not provide any extra information about

6



the the opponents’ private history.4 Given an action profilea∈ A, playeri’s expected

payoff isπi(a) = ∑ω∈Ω q(ω|a)gi(ai ,ωi). For eacha∈ A, let π(a) = (πi(a))i∈I .

Consider the infinitely repeated game with the discount factorδ ∈ (0,1). Let

(aτ
i ,ωτ

i ) be the performed action and the observed signal in periodτ, and letht
i =

(aτ
i ,ωτ

i )t
τ=1 be playeri’s private history up to periodt ≥ 1. Let h0

i = /0, and for each

t ≥ 0, let Ht
i be the set of allht

i . A strategy for playeri is defined to be a mapping

si :
⋃∞

t=0Ht
i →4Ai . Let Si be the set of all strategies of playeri, and letS= ×i∈ISi.

Let wi(s) denote playeri’s expected average payoff when players play a strategy profile

s∈ S, that is,wi(s) = (1− δ )E[∑∞
t=1δ t−1πi(at)|s]. For each strategysi ∈ Si and his-

tory ht
i ∈ Ht

i , let si |ht
i
be playeri’s continuation strategy afterht

i . Also, for eachsi ∈ Si ,

ht
i ∈ Ht

i andai ∈ Ai , let si |(ht
i ,ai) be playeri’s strategys̃i ∈ Si such thats̃i(h0

i ) = ai and

such that for anyh1
i ∈ H1

i , s̃i |h1
i
= si |ht+1

i
whereht+1

i = (ht
i ,h

1
i ). In words,si |(ht

i ,ai) de-

notes the continuation strategy after historyht
i but the play in the first period is replaced

with the pure actionai .

As in Section 5 of EHO, we consider games with conditionally-independent mon-

itoring, where players observe statistically independent signals conditional on actions

played. Formally, we impose the following assumption:

Condition CI. There isqi : A→4Ωi for eachi such that the following properties hold.

(i) For eacha∈ A andω ∈Ω,

q(ω|a) = ∏
i∈I

qi(ωi |a,ω0).

(ii) For eachi ∈ I andai ∈ Ai , rankQi(ai) = |A−i | whereQi(ai) is a matrix with rows

(qi(ωi |ai ,a−i))ωi∈Ωi for all a−i ∈ A−i .

Clause (i) says that given an action profilea, players observe statistically indepen-

dent signals. Clause (ii) is a version of individual full-rank condition of Fudenberg,

Levine, and Maskin (1994); it requires that a player can statistically distinguish the

opponents’ actions. Clause (ii) is satisfied for generic monitoring structures, provided

that the set of private signals is sufficiently rich so that|Ωi | ≥ |A−i | for all i.

In addition to (CI), we assume the signal distribution to be full support:

Condition FS. The signal distributionq hasfull supportin thatq(ω|a) > 0 for all a∈A

andω ∈Ω.

As Sekiguchi (1997) shows, (FS) assures that for any Nash equilibriums∈ S, there

is a sequential equilibrium̃s∈ S that generates the same outcome distribution as for
4Here we follow the existing works and assume that payoffs are observable. However, this assumption

is not necessary; all our results are valid even if payoffs are not observable and directly dependent on the
opponents’ private history.
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s. Therefore, under (FS), the set of Nash equilibrium payoffs is identical with that of

sequential equilibrium payoffs.

Remark 1. (CI) is a simple sufficient condition to obtain our main result, Theorem

1, but it is stronger than necessary and can be replaced with a weaker condition. In

Appendix G, we show that Theorem 1 remains valid even if private signals are corre-

lated through an unobservable common shock as in Matsushima (2004) and Yamamoto

(2007).

2.2 Belief-Free Review-Strategy Equilibrium

This section introduces a notion of belief-free review-strategy equilibria, which cap-

tures and generalizes the idea of the equilibrium construction of Matsushima (2004),

EHO, and Yamamoto (2007). In their equilibrium strategies, the infinite horizon is re-

garded as a sequence ofreview phaseswith lengthT, and players play constant actions

in every review phase, i.e., once playeri chooses an actionai in the initial period of

a review phase (say, periodnT + 1), then she continues to choose the same actionai

up to the end of the review phase (period(n+1)T). At the end of each review phase,

players makes a statistical inference about the opponents’ actions using the information

pooled within the review phase. WhenT is sufficiently large, this statistical test has an

arbitrarily high power so that players can obtain very precise information about what

actions the opponents played.

The present paper considers a slightly broader class of review strategies where each

review phase may have different length.

Definition 1. Let (tl )∞
l=0 be a sequence of integers satisfyingt0 = 0 andtl > tl−1 for

all l ≥ 1. A strategy profiles∈ S is a review strategy profile with sequence(tl )∞
l=0 if

si(ht
i)[a

t
i ] = 1 for eacht < {tl |∀l ≥ 0}, for eachi ∈ I , and for eachht

i = (aτ
i ,ωτ

i )t
τ=1∈Ht

i .

Intuitively, tl denotes the last period of thel th review phase. For example, the above

definition asserts that for each periodt ∈ {2, · · · , t1}, a player has to choose the same

action as in period one; thus the collection of the firstt1 periods is regarded as the first

review phase. Likewise, the collection of the nextt2− t1 periods is the second review

phase, and so forth. From the law of large numbers, players can obtain almost perfect

information about the opponents’ action in each review phase, iftl − tl−1 is sufficiently

large for alll ≥ 1.

A belief-free review-strategy equilibrium, which we focus on in this paper, is a

subset of review strategy profiles. For eachi ands−i , letBR(s−i) denote the set of player

i’s best replies in the infinitely repeated game againsts−i . Also, let supp{s−i(ht
−i)}

denote the support ofs(ht
−i); that is, supp{s−i(ht

−i)} is the set of actionsa−i played
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with positive probability in periodt + 1 when players−i follow the strategys−i and

their past private history isht
−i .

Definition 2. A strategy profiles∈ S is strongly belief-free in thel th review phaseif it

is a review strategy profile with some sequence(tl )∞
l=0, and if for all i ∈ I , htl−1 ∈ Htl−1,

anda−i ∈ supp{s−i(h
tl−1
−i )},

si |htl−1
i

∈ BR(s−i |(htl−1
−i ,a−i)

). (1)

A strategy profiles is a belief-free review-strategy equilibrium with(tl )∞
l=0 if it is a

review strategy profile with(tl )∞
l=0 and is strongly belief-free in every review phase.

In words, a review strategy profile is strongly belief-free in thel th review phase if

a player’s continuation strategy from thel th review phase is a best reply independently

of the past history and of what constant action the opponents pick in thel th review

phase. By definition, playing a pure-strategy Nash equilibrium of the stage game in

every period is a belief-free review-strategy equilibrium where each review phase has

length one. On the other hand, playing a mixed-strategy equilibrium of the stage game

in every period needs not be a belief-free review-strategy equilibrium, as it may not

satisfy (1).

Note that the equilibrium strategies of Matsushima (2004), EHO, and Yamamoto

(2007) are belief-free review-strategy equilibria. Note also that a belief-free review-

strategy equilibrium needs not be a belief-free equilibrium of EHO; the reason is that

in belief-free review-strategy equilibria, the belief-free condition is imposed only at the

beginning of each review phase, while a belief-free equilibrium requires that a player’s

continuation strategy is a best reply independently of the past historyin every period.

Conversely, a belief-free equilibrium needs not be a belief-free review-strategy equilib-

rium, as a player’s best reply might depend on the present action of the opponents in a

belief-free equilibrium.

A study of belief-free review-strategy equilibria is motivated by its tractability. By

definition, in this class of equilibria, a player’s best reply does not depend on her be-

liefs about the opponents’ history in the past review phases or about what action the

opponents choose in the current review phase. Therefore, we do not need to calculate

these beliefs at all when verifying incentive compatibility of a given strategy profile,

which greatly simplifies our analysis. (As argued in the last paragraph, a belief-free

review-strategy equilibrium is not a belief-free equilibrium of EHO; indeed, in a belief-

free review-strategy equilibrium, a player’s belief about what signals the opponents

observed in the current review phase is relevant to her best reply. Under (CI), we can

easily compute this belief, so that it does not cause a serious problem in our analysis.)
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3 Characterizing the Limit Equilibrium Payoff Set

3.1 Main Theorem

This section presents the main result of this paper: The set of belief-free review-strategy

equilibrium payoffs is characterized in the limit as the discount factor approaches one.

To state the result, the following notation is useful. A non-empty subsetA of A is a

regime generated fromA if A has a product structure, i.e.,A = ×i∈IAi andAi ⊆ Ai

for all i. Let J be the set of all regimes generated fromA, and for each probability

distributionp∈4J , let

V(p)≡ co

{
∑

A ∈J

p(A )π(a(A ))

∣∣∣∣∣ a(A ) ∈A , ∀A ∈J

}

where coB stands for the convex hull ofB. Intuitively, V(p) is theconstrained feasible

payoff set, i.e., the set of feasible payoffs when a regime (or a “recommended action

set”) A ⊆ A is randomly picked according to the public randomizationp∈4J , and

players choose actions from this set. LettingpA ∈ 4J be such thatpA(A ) = 1 for

A = A, the setV(pA) corresponds to thefeasible payoff setof the repeated game. The

feasible payoff set isfull dimensionalif dimV(pA) = |I |.
For eachi andA , let

vi(A )≡ min
a−i∈A−i

max
ai∈Ai

πi(a) and vi(A )≡ max
a−i∈A−i

min
ai∈Ai

πi(a).

Also, for eachi and A , let ai(A ) ∈ A and ai(A ) ∈ A be such thatai
−i(A ) and

ai
−i(A ) solve the above problems, that is,

vi(A ) = max
ai∈Ai

πi(ai ,a
i
−i(A )) and vi(A ) = min

ai∈Ai

πi(ai ,a
i
−i(A )).

Note that this definition does not pose any constraint on the specification ofai
i(A ) and

ai
i(A ); these actions can be arbitrarily chosen from the setAi . Intuitively, vi(A ) is the

minimax payoff for playeri when the opponents are restricted to play pure actions from

the recommended setA−i ⊆ A−i . In fact, playeri cannot earn more thanvi(A ) against

ai
−i(A ). Likewise,vi(A ) is the secured payoff for playeri when players are restricted

to choose pure actions from the recommended setA ⊆ A. Indeed, playeri’s payoff is

at leastvi(A ) againstai
−i(A ) as long as she chooses an action fromAi .

For eachi, letvi be a column vector with the componentsvi(A ) for all A ∈J , that

is, vi = >(vi(A ))A ∈J . Also, letvi = >(vi(A ))A ∈J . Note that, for each distribution

p ∈ 4J , the productpvi is equal to the weighted average of the minimax payoffs,

∑A ∈J p(A )vi(A ). Likewise,pvi equals the weighted average of the secured payoffs,

∑A ∈J p(A )vi(A ).
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The stage games are classified into four groups in the following way. Note that this

classification depends only on the (expected) payoff function of the stage game.

• (positive case) For somep∈4J , the setV(p)
⋂×i∈I [pvi , pvi ] isN-dimensional.

• (empty case) For anyp∈4J , the setV(p)
⋂×i∈I [pvi , pvi ] is empty.

• (negative case) The setV(p)
⋂×i∈I [pvi , pvi ] is a singleton or empty for allp∈

4J , and there isp∈4J such that the intersection ofV(p) and×i∈I [pvi , pvi ]
is a singleton.

• (abnormal case) The setV(p)
⋂×i∈I [pvi , pvi ] is not N-dimensional for allp ∈

4J , and there isp ∈ 4J such that the setV(p)
⋂×i∈I [pvi , pvi ] is neither

empty nor a singleton.

Given a stage game and given aδ ∈ (0,1), let E(δ ) be the set of belief-free review-

strategy equilibrium payoffs. That is, for any payoff vectorv∈ E(δ ), there is a belief-

free review-strategy equilibrium with some sequence(tl )∞
l=0 and with payoffv. The

following is the main result of the paper, which characterizes the limit equilibrium

payoff set for the positive, empty, and negative cases.

Theorem 1. Suppose that (CI) and (FS) hold. Then,

lim
δ→1

E(δ ) =
⋃

p∈4J

(V(p)∩×i∈I [pvi , pvi ]) (2)

in the positive case;E(δ ) = /0 for everyδ ∈ (0,1) in the empty case; andlimδ→1E(δ )
equals the convex hull of the set of pure-strategy Nash equilibrium payoffs of the stage

game in the negative case.

To interpret the statement of this theorem, we classify belief-free review-strategy

equilibria in terms of a regime distributionp, where given a belief-free review-strategy

equilibrium, p is a parameter which measures how often each regime appears in the

infinite horizon. In the positive case, the theorem asserts that for a givenp, the limit

equilibrium payoff set equals (the feasible subset of) the product set×i∈I [pvi , pvi ].
That is, the lower bound of the equilibrium payoffs is equal to the minimax payoff

pvi while the upper bound is the secured payoffpvi . Yamamoto (2009) shows that the

limit set of belief-free equilibrium payoffs is computed by a formula similar to (2); but

note that players are allowed to choose mixed actions when determining the upper and

lower bounds of the payoff set in Yamamoto (2009), while here players are constrained

to play pure actions when calculatingvi andvi . This difference comes from the fact

that belief-free review-strategy equilibria impose the strongly belief-free condition (1),
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while belief-free equilibria do not. Since (1) requires playeri’s continuation strategy to

be optimalafter mixture by players−i, her equilibrium payoff is at least the minimax

payoff when players are restricted to pure actions. A similar argument applies to the

upper bound.

As Yamamoto (2009) argues, if there are only two players, then the set×i∈I [pvi , pvi ]
is a subset ofV(p) for eachp, so that (2) reduces to

lim
δ→1

E(δ ) =
⋃

p∈4J

×i∈I [pvi , pvi ].

This formula is exactly the same as that of Proposition 10 of EHO for two-by-two

games, which means that Theorem 1 subsumes their result as a special case. Note also

that our Theorem 1 encompasses Theorems 1 and 2 of Matsushima (2004) and Theorem

1 of Yamamoto (2007) as well; See Section 4 for more discussions. (Theorem 2 of

Matsushima (2004) and Theorem 1 of Yamamoto (2007) allow that players’ signals

are correlated through a common shock. Our Theorem 1 extends to such a setting, as

argued in Remark 1 and formally proved in Appendix G.)

As noted, a sufficient condition for the existence of belief-free review-strategy equi-

libria is that the stage game has a pure-strategy Nash equilibrium; indeed, playing a

pure-strategy Nash equilibrium of the stage game in every period is a belief-free review-

strategy equilibrium where each review phase has length one. On the other hand, if

the stage game has only a mixed-strategy equilibrium, then belief-free review-strategy

equilibria need not exist. For example, consider the following game:

H T

H 1,−2 −1, 1

T −2, 1 1,−1

Player1 chooses a row and player2 chooses a column. Note that this stage game has

no pure-strategy Nash equilibrium. In this game, it is easy to check thatvi(A ) = 1

for all i andA so thatpvi = 1 for all i and p. Since any feasible payoff vector is

Pareto-dominated by(pv1, pv2) = (1,1), the setV(p)
⋂×i∈I [pvi , pvi ] is empty for all

p. Therefore, the game is classified to the empty case, and from Theorem 1, belief-free

review-strategy equilibria do not exist for any discount factorδ .

Theorem 1 is a corollary of the next two propositions. Note that the statement of

Proposition 1 is stronger than needed, as it does not assume (CI) or (FS). The proof of

Proposition 1 is similar to that of Proposition 1 of Yamamoto (2009), and is provided

in Appendix A for completeness. The proof of Proposition 2 is found in the following

subsections.

Proposition 1. In the positive case,E(δ ) is a subset of the right-hand side of (2) for

anyδ ∈ (0,1). In the empty case,E(δ ) = /0. In the negative case,limδ→1E(δ ) is equal

to the convex hull of the set of pure-strategy Nash equilibrium payoffs of the stage game.

12



Proposition 2. Suppose that (CI) and (FS) hold. Then, in the positive case,limδ→1E(δ )
includes the right-hand side of (2).

Theorem 1 gives a precise characterization of the limit equilibrium payoffs for the

positive, empty, and negative cases, but it does not consider the abnormal case. In

Appendix F, we show that for the abnormal case with generic payoff functions, the

equilibrium payoff set is either empty or the convex hull of the set of pure-strategy

Nash equilibrium payoffs of the stage game.

3.2 Proof of Proposition 2 with Two Players

3.2.1 Overview

To prove the proposition, it suffices to show that for any payoff vectorv in the right-

hand side of (2) and for a sufficiently large discount factorδ , there is a belief-free

review-strategy equilibrium with payoffv. In this subsection, we explicitly construct

such an equilibrium for two-player games. The analysis for three-or-more player games

is more complex and will be presented in the next subsection.

Our equilibrium construction is based on EHO’s for two-by-two games, so it will be

helpful to explain how EHO’s equilibrium strategies look like. The infinitely repeated

game is regarded as a sequence ofT-period review phases, and in each review phase, a

player is either ingood stateG or in bad stateB. When player−i is in good stateG,

she chooses the actionai
−i(A ) for someA throughout the review phase to “reward”

playeri. (Recall that playeri obtains at least the “secured” payoffvA
i againstai

−i(A )
if she chooses an action from the setAi .) On the other hand, when player−i is in bad

stateB, she chooses the actionai
−i(A ) for someA throughout the review phase to

“punish” playeri. (Again, recall that playeri’s payoff againstai
−i(A ) is at mostvA

i .)

After a T-period play, each player makes a statistical inference about the opponent’s

play using the private signals pooled within the review phase, and then decides which

state to go to (either stateG or B) for the next review phase. This transition rule between

statesG andB is judiciously chosen so that in every review phase, playeri is indifferent

between being in good state (i.e., playingai
−i(A ) for T periods) and being in bad

state (i.e., playingai
−i(A ) for T periods), and is not willing to do other sorts of play.

Therefore players’ incentive compatibility is satisfied.

A difference between EHO’s equilibrium and ours is a construction of statistical

tests about actions. In EHO, the analysis is limited to two-by-two games, so that each

player needs to distinguish only two actions of the opponent. For this, it is sufficient to

consider a simple statistical test such that player−i counts the number of observations

of a particular signalω−i during aT-period play.
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On the other hand, here we consider general two-player games, so that a player may

have more than two possible actions. In such a case, a player’s statistical inference must

be based on two or more signals,5 which often complicates the verification of a player’s

incentive compatibility. The contribution of this paper is to find an elaborate method of

statistical inference which makes the verification of incentive compatibility constraints

simple.

It may be noteworthy that (CI) plays an important role here. Under (CI), a player’s

signal has no information about the opponent’s signal and hence no information about

whether she is likely to pass the opponent’s statistical test. Therefore, a player has no

incentive to play a history-dependent strategy in a review phase, so that when verify-

ing the incentive compatibility constraint of a given strategy profile, we can restrict

attention to deviations to history-independent strategies.

3.2.2 Random Events

Here we introduce a notion ofrandom events, which is used for statistical tests in

our equilibrium construction. A random eventψi is defined as a function fromAi ×
Ωi to [0,1], andψi is counted in periodt if ψi(at

i ,ω t
i ) ≥ zt

i , where(at
i ,ω t

i ) denotes

playeri’s action and signal in periodt andzt
i is randomly chosen by playeri at the end

of period t according to the uniform distribution on[0,1]. Put differently,ψi(at
i ,ω t

i )
denotes the probability that the random eventψi is counted in periodt conditional on

(at
i ,ω t

i ). A player may count multiple random events in a given period; for example,

given an outcome(at
i ,ω t

i ,z
t
i), both random eventsψi andψ̃i are counted in periodt if

ψi(at
i ,ω t

i ) ≥ zt
i and if ψ̃i(at

i ,ω t
i ) ≥ zt

i . With an abuse of notation, letht
i denote player

i’s private information up to periodt, i.e.,ht
i = (aτ

i ,ωτ
i ,zτ

i )
t
τ=1. Let Ht

i be the set of all

ht
i = (aτ

i ,ωτ
i ,zτ

i )
t
τ=1.

For eachψi : Ai×Ωi → [0,1], letP(ψi |a) be the probability that the random eventψi

is counted given an action profilea∈ A, that is,P(ψi |a) = ∑ω∈Ω q(ω|a)ψi(ai ,ωi). Let

Ji be the set of non-empty subsets ofAi . For eachi ∈ I andA−i ∈J−i , let ψi(A−i)
be as in the following lemma.

Lemma 1. Suppose that (CI) holds. Then, for someq1 andq2 satisfying0< q1 < q2 <

1, there is a random eventψi(A−i) : Ai×Ωi → [0,1] for all i andA−i ∈J−i such that

for all a∈ A,

P(ψi(A−i)|a) =

{
q2 if a−i ∈A−i

q1 otherwise
. (3)

5To see this, suppose that player−i observes a signalω−i with 0.8 againstai , with 0.5 againsta′i ,
and with0.2 againsta′′i . If player−i tries to infer playeri’s action only fromω−i , she cannot distinguish

whether playeri playsa′i or mixesai anda′′i with fifty-fifty.
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Proof. Analogous to Lemma 1 of Yamamoto (2007). Q.E.D.

The condition (3) implies that a player can statistically distinguish the opponent’s

action using these random events. For example, the random eventψi({a−i}) is counted

with high probabilityq2 if and only if player−i chooses the actiona−i . Hence, player

i can conjecture that the actiona−i is played ifψi({a−i}) is counted many times within

a review phase.

Let F(τ,T, r) denote the probability thatψi({a−i}) is counted exactlyr times out

of T periods when player−i chooses somẽa−i , a−i in the firstτ periods and thena−i

in the remainingT− τ periods. As Matsushima (2004) shows, there is a sequence of

integers(ZT)∞
T=1 such that

lim
T→∞ ∑

r>ZT

F(0,T, r) = 1, (4)

lim
T→∞ ∑

r>ZT

F(T,T, r) = 0, (5)

and

lim
T→∞

TF(0,T−1,ZT) = ∞. (6)

3.2.3 Equilibrium Construction with Two Players

Let v = (v1,v2) be a payoff vector in the interior of the right-hand side of (2). In

what follows, we construct a belief-free review-strategy equilibrium with payoffv for

sufficiently largeδ . To simplify the notation, we writeaA
−i andaA

−i for ai
−i(A ) and

ai
−i(A ), respectively.

As Yamamoto (2009) shows, given such av, there isp ∈ 4J such thatv is an

element of the interior of the setV(p)∩×i∈I [pvi , pvi ]. Assume that players can observe

a public signaly from the setJ according to the distributionp in every period. This

assumption greatly simplifies the equilibrium construction, and does not cause loss of

generality; indeed, such a public randomization device is dispensable, as EHO argue in

the online appendix.

For eachi andA , let (aB,A ,l
i )|Ai |

l=1 be an ordering of all elements ofAi such that

πi(a
B,A ,l−1
i ,aA

−i) ≥ πi(a
B,A ,l
i ,aA

−i) for eachl ≥ 2; that is,(aB,A ,l
i )|Ai |

l=1 is an ordering of

actions in terms of payoffs againstaA
−i . Then, for eachA and l ∈ {1, · · · , |Ai |}, let

1B,A ,l
i : HT

−i → {0,1} be an indicator function such that1B,A ,l
i (hT

−i) = 1 if and only if

the random eventψ−i({aB,A ,l̃
i |l ≤ l̃ ≤ |Ai |}) is counted more thanZT times within a

T-period historyhT
−i .

To see how this indicator function works, fixl ∈ {1, · · · , |Ai |}, and consider the

random eventψ−i({aB,A ,l̃
i |l ≤ l̃ ≤ |Ai |}). From (3), this random event is counted with
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high probabilityq2 if player i chooses an actionai from the set{aB,A ,l̃
i |l ≤ l̃ ≤ |Ai |}

againstaA
−i , and is counted with low probabilityq1 if player i chooses other actions.

Then it follows from (4) and (5) that the indicator function1B,A ,l
i (hT

−i) almost surely

takes1 in the former case, while it almost surely takes0 in the latter case. This property

implies that player−i can test whether playeri took an action from the set{aB,A ,l̃
i |l ≤

l̃ ≤ |Ai |} or not, by referring to the indicator function1B,A ,l
i . Thus, by checking all the

indicator functions(1B,A ,l
i )|Ai |

l=1, player−i can obtain almost perfect information about

playeri’s action in aT-period interval.

Likewise, for eachi andA , let (aG,A ,l
i )|Ai |

l=1 be an ordering of all elements ofAi

such thatπi(a
G,A ,l−1
i ,aA

−i) ≥ πi(a
G,A ,l
i ,aA

−i) for eachl ≥ 2. Then, for eachA andl ∈
{1, · · · , |Ai |}, let 1G,A ,l

i : HT
−i →{0,1} be an indicator function such that1G,A ,l

i (hT
−i) =

1 if and only if the random eventψ−i({aG,A ,l̃
i |l ≤ l̃ ≤ |Ai |}) is counted more thanZT

times duringT periods, according to aT-period historyhT
−i . Again, using this indicator

function 1G,A ,l
i , player−i can test whether playeri chooses her action from the set

{aG,A ,l̃
i |l ≤ l̃ ≤ |Ai |}.
Let η be such that0< η < pvi−vi for all i, and letC be such thatC> maxai∈Ai πi(ai ,aA

−i)−
vi(A ) for all i andA . For notational convenience, let

λ B,A ,l
i =





0 if l = 1

πi(a
B,A ,l−1
i ,aA

−i)−πi(a
B,A ,l
i ,aA

−i)
∑r>ZT

F(0,T, r)−∑r>ZT
F(T,T, r)

if l ∈ {2, · · · , |Ai |}
(7)

for eachA ∈J . Also, let

λ G,A ,l
i =





C+vi(A )−πi(a
G,A ,1
i ,aA

−i)
∑r>ZT

F(0,T, r)−∑r>ZT
F(T,T, r)

if l = 1

πi(a
G,A ,l−1
i ,aA

−i)−πi(a
G,A ,l
i ,aA

−i)
∑r>ZT

F(0,T, r)−∑r>ZT
F(T,T, r)

if l ∈ {2, · · · , |Ai |}

(8)

for eachA ∈J . For eachi, let

wi = ∑
A ∈J

p(A )

[
vi(A )+ ∑

r>ZT

F(T,T, r) ∑
l≥1

λ B,A ,l
i

]

and

wi = ∑
A ∈J

p(A )

[
vi(A )−η + ∑

r>ZT

F(T,T, r) ∑
l≥1

λ G,A ,l
i

]
.

It follows from (4) and (5) that for alli,

lim
T→∞

wi = pvi < pvi−η = lim
T→∞

wi . (9)
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In what follows, we show that any interior pointv∗ of the set×i∈I [pvi , pvi−η ] can

be achieved by belief-free review-strategy equilibria for sufficiently largeT andδ . This

completes the proof, aspvi < vi < pvi−η .

In our equilibrium strategies, players play a strategy profile in which the infinite

horizon is regarded as a sequence of review phases with lengthT. Specifically, for each

i, player−i’s strategy is described by the following automaton with initial statev∗i .

Statewi ∈ [wi ,wi ] : Go to phaseB with probability α−i , and go to phaseG with

probability1−α−i whereα−i solveswi = α−iwi +(1−α−i)wi .

PhaseB : Play the actionaA
−i for T periods, whereA is the outcome of the public

randomizationp in the initial period of the phase (say, periodnT+1). After that, go to

statewi = wi +(1−δ )UB,A
i (hT

−i), wherehT
−i is the recentT-period private history and

the functionUB,A
i : HT

−i → R is defined to be

UB,A
i (hT

−i) =
1−δ T

δ T(1−δ )

|Ai |
∑
l=1

1B,A ,l
i (hT

−i)λ
B,A ,l
i .

PhaseG : Play the actionaA
−i for T periods, whereA is the outcome of the public

randomizationp in the initial period of the phase (say, periodnT+1). After that, go to

statewi = wi +(1−δ )UG,A
i (hT

−i), wherehT
−i is the recentT-period private history, and

the functionUG,A
i : HT

−i → R is defined to be

UG,A
i (hT

−i) =
1−δ T

δ T(1−δ )

[
−C−η +

|Ai |
∑
l=1

1G,A ,l
i (hT

−i)λ
G,A ,l
i

]
.

The idea of this automaton is as follows. In each review phase, player−i is either

in stateG or in stateB. Player−i in stateG choosesaA
−i to reward the opponent,

while in stateB, she choosesaA
−i to punish the opponent. The functionsUB,A

i and

UG,A
i determine the transition probability between statesG andB at the end of each

review phase; roughly, the largerUB,A
i (hT

−i) (or UG,A
i (hT

−i)) is, the more likely player

−i moves to “reward state”G. In this sense, the functionsUB,A
i (andUG,A

i ) can be

viewed as a reward function to playeri, i.e., an increase inUB,A
i (hT

−i) means more

continuation payoffs of playeri.

The reward functionsUB,A
i andUG,A

i are defined in such a way that playeri re-

ceives a “bonus”λ B,A ,l
i (or λ G,A ,l

i ) if player−i counts the random eventψ−i({aB,A ,l̃
i |l ≤

l̃ ≤ |Ai |}) (or the random eventψ−i({aG,A ,l̃
i |l ≤ l̃ ≤ |Ai |})) more thanZT times during

theT-period review phase so that the corresponding indicator function takes one. Here

the valuesλ B,A ,l
i andλ G,A ,l

i are carefully chosen so that playeri is indifferent among
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all constant actionsai ∈ A . To see this, suppose that player−i is in stateB so that

she choosesaA
−i in the current review phase. By definition, playingaB,A ,l−1

i against

aA
−i yields more stage-game payoffs to playeri than playingaB,A ,l

i . However, play-

ing aB,A ,l−1
i decreases the expected value of the reward functionUB,A

i , as player−i

counts the eventψ−i({aB,A ,l̃
i |l ≤ l̃ ≤ |Ai |}) less likely; thus playeri receives the bonus

λ B,A ,l
i less likely if she choosesaB,A ,l−1

i . The valueλ B,A ,l
i is chosen to offset these

two effects, and as a consequence, playeri is indifferent between playingaB,A ,l−1
i for

T periods andaB,A ,l
i for T periods. In this way, we can make playeri indifferent over

all constant actionsai ∈Ai .

In addition, as in Matsushima (2004), the threshold valueZT is carefully chosen so

that mixing two or more actions in aT-period review phase is suboptimal. Therefore,

the above automaton constitutes a belief-free review-strategy equilibrium with payoff

v∗ for sufficiently largeT andδ , as desired. The formal proof is found in Appendix B.

3.3 Proof of Proposition 2 with Three or More Players

3.3.1 Notation and Overview

If there are more than two players, the equilibrium construction presented in Section

3.2 does not work. The reason is as follows. In the equilibrium strategies of Section

3.2, player−i transits between statesB andG to punish or reward playeri, and provides

appropriate incentives. However, if there are more than two players, players−i have to

coordinate their play in order to punish or reward playeri. This poses a new difficulty,

as players do not share any common information under private monitoring, and it is not

obvious whether players−i can coordinate their play to reward or punish playeri.

Taking this problem into account, we will provide an alternative equilibrium con-

struction for games with three or more players. The key is to extend the idea of “co-

ordination through informal communication” of Hörner and Olszewski (2006) and Ya-

mamoto (2009) to our setting.

Throughout the proof, let “playeri−1” refer to playeri−1 for eachi ∈ {2, · · · ,N},
and to playerN for i = 1. Likewise, let “playeri + 1” refer to playeri + 1 for each

i ∈ {1, · · · ,N− 1}, and to player1 for i = N. Let Xi = {G,B}, andX = ×i∈IXi . As

explained later,Xi will be interpreted as playeri’s message space;G is calledgood

message, andB is bad message. For eachi, pick two elements ofAi arbitrarily, and call

each of themaG
i andaB

i , respectively.

In the equilibrium construction below, the infinite repeated game is regarded as a

sequence ofblock gameswith length Tb. In each block game, a player is either in

stateG or in stateB. Playeri with stateG plays aTb-period repeated game strategy

sG
i during a block game, while playeri with stateB plays a strategysB

i . These block-

18



game strategiessG
i andsB

i are chosen in such a way that playeri’s block-game payoff

is high if playeri−1 is in stateG, and is low if playeri−1 is in stateB. At the end

of each block game, a player transits over two statesG andB. Here players’ transition

rule is carefully chosen so that (i) in each block game, the strategiessG
i and sB

i are

best replies for playeri, regardless of players−i’s current state; (ii) for eachj , i−1,

player j ’s current state (eitherG or B) is irrelevant to playeri’s continuation payoff;

and (iii) playeri’s continuation payoff is high if player(i−1)’s current state isG and

it is low if player (i−1)’s current state isB. From (i), the constructed strategy profile

is an equilibrium. Also, (ii) and (iii) imply that playeri−1 can solely control playeri’s

continuation payoff through a choice of states; that is, playersi−1 needs not coordinate

a choice of states with other players to reward or punish playeri. Specifically, player

i−1 chooses stateG if she wants to reward playeri, and chooses stateB if she wants to

punish.

So far the idea is very similar to Ḧorner and Olszewski (2006) and in particular

Yamamoto (2009). However, the block game considered here has a more complex

structure than theirs. A block game with lengthTb is divided intorounds, and each

round is further divided into review phases. Specifically, each block game consists of

a signaling round, a confirmation round, K pairs of amain roundand asupplemental

round, and areport round. See Figure 1.

signalling round

confirmation round

1st main round

1st supplemental round

kth main round

kth supplemental round

Kth supplemental round

report round

...

...

Kth main round

Figure 1: Block Game

Signaling, confirmation, supplemental, and report rounds are regarded as “com-

munication stages,” where players disclose their private information via a choice of

actions. Unlike cheap-talk games, actions in these communication stages are payoff-

relevant. However, the length of the communication stages is much shorter than that

of the main rounds, so that payoffs in the communication stages are almost negligible.
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The following is a brief explanation of the role of each round.

Signaling Round: This round is used for communication, and each player re-

veals whether she is in stateG or in stateB. Specifically, playeri’s message space

is Xi = {G,B}, and we say thatplayeri sends messagexi ∈ Xi if she chooses actionaxi
i

constantly in the signaling round. The length of the signaling round is of orderT, and

hence for sufficiently largeT, communication is almost perfect; that is, each player can

receive her opponents’ messages correctly with very high probability.

Confirmation Round: This round is also used for communication, and players try

to make sure what happened in the signaling round. Specifically, each playeri reports

(i) what she did and (ii) what her neighbors (playersi−1 andi +1) did in the signaling

round. The length of the confirmation round is of orderT, so that for sufficiently large

T, the communication here is almost perfect.

Main Rounds and Supplemental Rounds: Players’ play in the main rounds is de-

pendent on communication in the confirmation round. Roughly, if players agreed in the

confirmation round that the message profile in the signaling round wasx = (xi)i∈I ∈ X,

then in the main rounds, they play actions such that (i) for eachi with xi−1 = G, player

i’s payoff is high and (ii) for eachi with xi−1 = B, playeri’s payoff is low. This ensures

that playeri’s expected block-game payoff is high if player(i−1)’s current state isG,

and is low if player(i−1)’s state isB.

In each supplemental round, every player reports whether or not her neighbors

deviated in the previous main round. That is, in thekth supplemental round (here

k ∈ {1, · · · ,K}), each playeri reports whether or not playeri−1 or playeri + 1 devi-

ated in thekth main round. If both playersj−1 and j +1 report in thekth supplemental

round that playerj has deviated, then players regard playerj as a deviator and change

their continuation play accordingly.

Report Round: This round is also used for communication, and each player reports

her private history in the confirmation and supplemental rounds. The information re-

vealed in the report round is utilized to determine the transition probability between

statesG andB for the next block game.

As described above, in the confirmation and supplemental rounds, players commu-

nicate to make a consensus about what happened in previous rounds. This is a new

feature compared to Yamamoto (2009); in the block game of Yamamoto (2009) there

is no confirmation round or supplemental round.

Communicating in the confirmation round plays an important role to deter devia-

tions in the signaling round. In the signaling round, players are asked to send message
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G or B on the equilibrium path, and if they take any other sort of play, it must be pun-

ished. However, under private monitoring, players may have different inferences about

what actions were played in the signaling round, and may fail to coordinate to punish a

deviator. For example, suppose that playeri deviated in the signaling round by playing

aG
i almost all the time butaB

i in a few periods. Since this play is almost the same as

sending messageG, it is hard to distinguish these two, and as a result, it is often the

case that some of the opponents notice playeri’s deviation while others do not. To

resolve such a conflict, we ask players to communicate again in the confirmation round

to make a consensus about what happened in the signaling round. This enables players

to coordinate their continuation play, and ensures that deviating in the signaling round

does not deliver big gains to the deviator.

Likewise, communicating in the supplemental rounds is important for punishing a

player who deviated in the main rounds. As in the signaling round, often times players

have different inferences about what actions were played in thekth main round, which

may cause a coordination failure in later periods. To avoid such a miscoordination,

players communicate in thekth supplemental round and to make a consensus about

what happened in thekth main round.

The confirmation and supplemental rounds are dispensable in Yamamoto (2009),

because almost-perfect monitoring is assumed there. Under almost-perfect monitoring,

players’ inferences about past play within a block game are (almost) common informa-

tion, so that players can almost surely coordinate their play without communication.

More discussions on the confirmation and supplemental rounds are given in Section

3.3.6.

3.3.2 Actions, Regimes, and Payoffs

Let v = (v1, · · · ,vN) be an interior point of the right-hand side of (2). We will construct

a belief-free review-strategy equilibrium with payoffv for sufficiently largeδ .

The following notation is used throughout the proof. Letp∈ 4J be such thatv

is included in the interior ofV(p)∩×i∈I [pvi , pvi ]. Let (wi)i∈I and(wi)i∈I be such that

wi < vi < wi for all i ∈ I , and such that the hyper-rectangle×i∈I [wi , wi ] is included in the

interior ofV(p)∩×i∈I [pvi , pvi ]. Then, as Yamamoto (2009) shows, there is a natural

numberK̃, a sequence(A 1, · · · ,A K̃) of regimes, and2N sequences(ax,1, · · · ,ax,K̃)x∈X
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of action profiles such that

1

K̃

K̃

∑
k=1

vi(A
k) < wi < vi < wi <

1

K̃

K̃

∑
k=1

vi(A k), ∀i ∈ I (10)

ax,k ∈A k, ∀x∈ X∀k∈ {1, · · · , K̃}, (11)

1

K̃

K̃

∑
k=1

πi(ax,k) =

{
< wi if xi−1 = B

> wi if xi−1 = G
, ∀i ∈ I . (12)

To interpret (10), recall thatvi(A ) is playeri’s minimax payoff when players−i are

restricted to play pure actions fromA−i . The first inequality of (10) implies that player

i’s time-average minimax payoff for̃K periods is less thanwi given the regime se-

quence(A 1, · · · ,A K̃). Likewise, the last inequality of (10) says that playeri’s time-

average reward payoff is greater thanwi . (11) says that for eachx, the action sequence

(ax,1, · · · ,ax,K̃) is consistent with the regime sequence(A 1, · · · ,A K̃), in the sense that

each component of the action sequence is an element of the corresponding regime. (12)

implies that playeri’s time-average payoff of the sequence(ax,1, · · · ,ax,K̃) is high if

xi−1 = G and low if xi−1 = B. Figure 2 shows how to pickwi , wi , and(ax,1, · · · ,ax,K̃)
for two player games.

w1w1

w2

w2

v

Player2’s
payoffs

Player1’s payoffs

V(p)

wGB

wBB
wBG

wGG

I = {1,2}

wx = (wx
1,w

x
2)

x∈ X = {GG,GB,BG,BB}

wx
i = 1

K̃ ∑K̃
k=1πi(ax,k)

Figure 2: Actions

Given a natural numberK, let (A 1, · · · ,A K) be a cyclic sequence of(A 1, · · · ,A K̃)
with lengthK, that is,A k+nK̃ = A k for all k∈ {1, · · · , K̃} andn≥ 0. Likewise, for each

x∈ X, let (ax,1, · · · ,ax,K) be a cyclic sequence of(ax,1, · · · ,ax,K̃).

3.3.3 Blocks and Rounds

Given integersT andK, let Tb = NT +6NT +K2T +2KNT +2N2(3+K)T. In what

follows, the infinite periods are regarded as a series ofblock gameswith length Tb.

IntegersT andK are to be specified.
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Each block game is further divided into severalrounds. The collection of the first

NT periods of a block game is called asignaling round, and the collection of the next

6NT periods is aconfirmation round. Then, a pair of amain round(KT periods) and a

supplemental round(2NT periods) appearsK times, and the collection of the remaining

2N2(3+K)T periods is areport round. See Figure 1 in Section 3.3.1.

The confirmation, supplemental, and report rounds are regarded as a series of review

phases with lengthT. The signaling and main rounds themselves are regarded as review

phases. Let(tl )∞
l=0 be the sequence of integers such thatt0 = 0 andtl denotes the last

period of thel th review phase for eachl ≥ 1. For example,t1 = NT (because the first

review phase of the infinite horizon game is the signaling round of the first block game,

which consists ofNT periods) andt2 = NT +T, (because the second review phase of

the infinite horizon game is the first review phase of the confirmation round, which

consists ofT periods).

The following is a detailed description of each round.

Signaling Round: This round is used for communication, and each playeri reveals

her current state (G or B) by choosing messagexi from Xi = {G,B}. We say thatplayer

i sends messagexi ∈Xi if she chooses the actionaxi
i constantly (i.e., playingaxi

i in every

period of the signaling round).

Confirmation Round: In this round, each playeri reports what she did and what

playersi − 1 and i + 1 did in the signaling round. Specifically, playeri chooses a

messagem0
i = (m0

i,i−1,m
0
i,i ,m

0
i,i+1) from the message spaceM0

i ≡ {G,B,E}3, where the

componentm0
i, j denotes playeri’s inference about what playerj did. Roughly speaking,

playeri choosesm0
i, j = G if she believes that playerj sent messageG, m0

i, j = B if she

believes that playerj sent messageB, andm0
i, j = E if she is uncertain about what player

j did. LetM0 denote the set of all message profiles, that is,M0≡×i∈IM0
i .

In the confirmation round, players send their messages sequentially, i.e., player1

sends her messagem0
1 first, then does player2, and so forth. Each player spends2T

periods sending each component of her message; that is, playeri sendsm0
i, j using her

actions in the(6(i−1)+2( j− i +2)−1)st review phase and the(6(i−1)+2( j− i +
2))nd review phase of the confirmation round. Playeri sendsm0

i, j = G by choosing

aG
i constantly in both of these phases; she sendsm0

i, j = B by choosingaB
i constantly

in both of these phase; and she sendsm0
i, j = E by choosingaG

i constantly in the first

review phase and thenaB
i constantly in the second review phase.

Given a message profilem0∈M0, we say thatxi = Gis confirmed by playersif either

(i) (m0
i−1,i ,m

0
i+1,i) = (G,G), (ii) (m0

i−1,i ,m
0
i+1,i) = (G,E) or (m0

i−1,i ,m
0
i+1,i) = (E,G), or

(iii) (m0
i−1,i ,m

0
i+1,i ,m

0
i,i) = (G,B,G) or (m0

i−1,i ,m
0
i+1,i ,m

0
i,i) = (B,G,G). That is, players

confirm that playeri’s message in the signaling round wasG if either (i) both players
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i−1 andi +1 claim that playeri’s message wasG; (ii) one of these two players claims

that playeri’s message wasG and the other player says that she is uncertain about player

i’s message; or (iii) one of these players claims that playeri’s message wasG, the other

player claims that playeri’s message wasB, and playeri claims that her message was

G. On the other hand, given am0 ∈M0, xi = B is confirmed by playersif xi = G is not

confirmed. Note that playeri’s report about her own play,m0
i,i , is relevant only when

playersi−1 and i + 1 have different inferences about playeri’s play (i.e., only when

(m0
i−1,i ,m

0
i+1,i) = (G,B) or (m0

i−1,i ,m
0
i+1,i) = (B,G)). Otherwise, playeri’s reportm0

i,i

is ignored, andxi = B or xi = G is confirmed contingently on the reports from players

i−1 andi +1 only. Given a message profilem0, x= (xi)i∈I ∈X is confirmed by players

if each component ofx is confirmed. LetM0(x) denote the set of allm0 ∈M0 such that

x is confirmed.

Main Rounds: Players’ behavior in the main rounds is contingent on what happened

in the confirmation round. Roughly, ifx ∈ X is confirmed in the confirmation round,

then players follow the sequence(ax,1, · · · ,ax,K) of action profiles in the main rounds,

i.e., the action profileax,k is played in thekth main round for eachk ∈ {1, · · · ,K}.
However, if someone unilaterally deviates from this prescribed rule and if the deviation

is reported in the subsequent supplemental round, then they switch their play. Details

are stated later.

Supplemental Rounds: Thekth supplemental round is used for communication, and

each player reports whether or not her neighbors deviated from the prescribed action

profile ax,k in thekth main round. Specifically, in thekth supplemental round, playeri

chooses a messagemk
i from the message spaceMk

i = {i−1, i +1,0}. Roughly, player

i choosesmk
i = i−1 if she believes that playeri−1 deviated fromax,k in thekth main

round,mk
i = i +1 if she believes that playeri +1 deviated, andmk

i = 0 otherwise. Let

Mk be the set of all message profilesmk = (mk
1, · · · ,mk

N).
For eachk∈{1, · · · ,K} andi ∈ I , letMk(i) be the set of all message profilesmk∈Mk

such thatmk
i−1 = mk

i+1 = i and such that for eachj ∈ {1, · · · , i−1}, eithermk
j−1 , j or

mk
j+1 , j. In words,Mk(i) is the set of message profilesmk such that both playersi−1

andi +1 report playeri’s deviation, and for eachj ∈ {1, · · · , i−1}, player j ’s deviation

is not reported by playerj−1 or player j +1. Let Mk(0) be the set of allmk ∈Mk such

thatmk <Mk(i) for all i ∈ I .

As in the confirmation round, players send their messages sequentially in each sup-

plemental round. Specifically, playeri sends a messagemk
i ∈ Mk

i using her actions in

the (2i − 1)st and2ith review phases of thekth supplemental round. Playeri sends

mk
i = i−1 by choosingaG

i constantly in both of these phases; she sendsmk
i = i +1 by

choosingaB
i constantly in both of these phases; and she sendsmk

i = 0 by choosingaG
i
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constantly in the first review phase and thenaB
i constantly in the second review phase.

Report Round: This round is also regarded as a communication stage, and each

player reports what message profiles were sent in the confirmation round and the sup-

plemental rounds. Thus the message space for playeri is M0×M1×·· ·×MK. As in

the confirmation and supplemental rounds, players report their messages sequentially;

player1 sends her message in the first2N(3+ K) review phases of the report round,

then does player2, and so forth. How to send a message is analogous to that in the

confirmation and supplemental rounds.

Observe that the ratio of the total length of the main rounds to that of the block

game isK2T
Tb

, which approaches one asK → ∞. Therefore, for sufficiently largeK, a

player’s average payoff in the block game is approximated by that in the main rounds.

In other words, payoffs during the communication stages are almost negligible.

3.3.4 Block Strategies under Perfect Monitoring

Let STb
i be the set of playeri’s strategies in theTb-period block game. Also, letS Tb

i be

the set of all strategiessTb
i ∈ STb

i such that playeri plays a constant action (i.e., she does

not mix two or more actions) in each review phase and such that for eachk∈{1, · · · ,K},
playeri chooses an action from the setA k

i in thekth main round. Intuitively,A k
i is the

set of “recommended actions” for thekth main round, andS Tb
i is the set of strategies

which follow this recommendation; so we will call it the set of recommended strategies.

Given a strategy profilesTb ∈ STb, let wP
i (sTb) denote playeri’s average payoff in the

block game with perfect monitoring where payoffs in the periods other than the main

rounds are replaced with zero. Note thatwP
i (sTb) approximates the average payoff in

the block game with perfect monitoring, as payoffs in the communication stages are

almost negligible.

In our equilibrium, playeri with stateG plays a “good” block strategysG
i ∈STb

i , and

playeri with stateB plays a “bad” block strategysB
i ∈ STb

i . In this section, we specify

these two block strategies under perfect monitoring, and then specifies the parameterK,

which determines the number of main and supplemental rounds within a block game.

As mentioned earlier, these strategies will be constructed in such a way that playeri’s

payoff is high if player(i−1)’s current state isG (so that she playssG
i ), and it is low if

player(i−1)’s current state isB (so that she playssB
i ).

To definesG
i andsB

i , the following notation is useful. For eachi, j ∈ I , t ≥ NT,

andht
i = (aτ)t

τ=1 ∈ Ht
i (hereht

i is represented by a sequence of action profiles, since
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monitoring is perfect), let

x̂ j(ht
i) =





G if (a1
j , · · · ,aNT

j ) = (aG
j , · · · ,aG

j )
B if (a1

j , · · · ,aNT
j ) = (aB

j , · · · ,aB
j )

E otherwise

.

Intuitively, x̂ j(ht
i) denotes playeri’s inference on playerj ’s messagex j in the signaling

round, given her private historyht
i : Note thatx̂ j(ht

i) = G if and only if player j sent

messageG, andx̂ j(ht
i) = B if and only if player j sent messageB. Otherwisex̂ j(ht

i) =
E, which means that the history iserroneous. Given a historyht

i ∈ Ht
i , let x̂(ht

i) =
(x j(ht

i)) j∈I , that is,x̂(ht
i) is playeri’s inference on the message profile in the signaling

round.

Likewise, given a historyht
i , let m̂0

j (h
t
i) = (m̂0

j, j−1(h
t
i),m̂

0
j, j(h

t
i),m̂

0
j, j+1(h

t
i)) denote

player i’s inference on playerj ’s messagem0
j in the confirmation round. Specifically,

for eachl = j −1, j, j + 1, let m̂0
j,l (h

t
i) = G if player j sentm0

j,l = G; m̂0
j,l (h

t
i) = B if

player j sentm0
j,l = B; andm̂0

j,l (h
t
i) = E otherwise. Letm̂0(ht

i) denote playeri’s infer-

ence on the message profile in the confirmation round, that is,m̂0(ht
i) = (m̂0

j (h
t
i)) j∈I .

Also, for eachk andht
i , let m̂k

j(h
t
i) denote playeri’s inference on playerj ’s message

mk
j in the kth supplemental round. Specifically, letm̂k

j(h
t
i) = j − 1 if player j sent

mk
j = j−1; m̂k

j(h
t
i) = j +1 if player j sentmk

j = j +1; andm̂k
j(h

t
i) = 0 otherwise. Let

m̂k(ht
i) denote playeri’s inference on the message profile in thekth supplemental round,

that is,m̂k(ht
i) = (m̂k

j(h
t
i)) j∈I .

Under perfect monitoring, the block strategiessG
i and sB

i are defined as follows.

In the signaling round,sG
i sends messageG andsB

i sends messageB. In the confir-

mation round and in the report round, bothsG
i andsB

i tell the truth; i.e., both strate-

gies send the messagem0
i = x̂(ht

i) in the confirmation round and send the message

(m̂0(ht
i), · · · ,m̂K(ht

i)) in the report round. (See the previous section for how to send

these messages.) Both strategies play the actionaG
i in periods where playerj , i sends

a message.

Players’ play in the main rounds are contingent on the outcome in the past com-

munication; that is, for eachk ∈ {1, · · · ,K}, player i’s action in thekth main round

is dependent on(m̂0(ht
i), · · · ,m̂k−1(ht

i)). If (m̂0(ht
i), · · · ,m̂k−1(ht

i)) is an element of

M0(x)×M1(0)× ·· · ×Mk−1(0) for somex ∈ X, then both strategies say to play the

actionax,k
i constantly in thekth main round. If(m̂0(ht

i), · · · ,m̂k̃(ht
i)) is an element of

M0(x)×M1(0)×·· ·×Mk̃−1(0)×Mk̃( j) for some j ∈ I , k̃∈ {1, · · · ,k−1}, andx∈ X

satisfyingx j−1 = B, then both strategies say to play the actiona j
i (A

k) constantly in the

kth main round. Likewise, if(m̂0(ht
i), · · · ,m̂k̃(ht

i)) is an element ofM0(x)×M1(0)×
·· ·×Mk̃−1(0)×Mk̃( j) for somej ∈ I , k̃∈ {1, · · · ,k−1}, andx∈X satisfyingx j−1 = G,

then both strategies say to play the actiona j
i (A

k) constantly in thekth main round. In

words, ifx was confirmed by players in the confirmation round, and if no deviation was

26



reported in the past supplemental rounds, then players playax,k in thekth main round.

On the other hand, if playerj ’s deviation is reported in some supplemental round, then

players change their behavior thereafter, depending on the profilex confirmed in the

confirmation round; they playa j(A k) if x j−1 = B, and playa j(A k) if x j−1 = G.

A play in thekth supplemental round is dependent on the outcome in the past com-

munication and on what happened in thekth main round. If(m̂0(ht
i), · · · ,m̂k−1(ht

i)) is

an element ofM0(x)×M1(0)× ·· ·×Mk−1(0) and if all players but playeri−1 play

the action profileax,k constantly in thekth main round, then both strategies say to send

mk
i = i − 1 in the kth supplemental round. Likewise, if(m̂0(ht

i), · · · ,m̂k−1(ht
i)) is an

element ofM0(x)×M1(0)×·· ·×Mk−1(0) and if all players but playeri + 1 play the

action profileax,k, then both strategies say to sendmk
i = i +1. Otherwise, both strate-

gies say to sendmk
i = 0. In words, playeri reports a deviation by playeri−1 or i +1

only when it is the first deviation in the current block game. For periods during which

player j , i sends a message, both strategies say to play the actionaG
i .

Figure 3 is a flowchart of the block-game strategysx. Note that bothsG
i andsB

i are

in the setS Tb
i of recommended strategies, since (11) holds.

Players confirmx∈ X.

Play action profileax,1.

Confirmation Round

First Main Round

ax,2 ai(A 2) ai(A 2)

if xi−1 = B if xi−1 = G

ax,3 ai(A 3) ai(A 3)

Second Main Round

Third Main Round

...

Is playeri’s deviation reported?

Reported?

YESNO

NO

YES

Reported?
YES

First Supplemental Round

Second Supplemental Round

Figure 3: Block-Game Strategy Profilesx

The following lemma gives bound on playeri’s block-game payoffs when players

−i follow sx−i
−i = (sx j

j ) j,i . It shows that if playeri−1 chooses the bad strategysB
i−1, then

playeri’s block-game payoff is less thanwi no matter what playeri does. On the other
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hand, if playeri−1 chooses the good strategysG
i−1 and if playeri chooses her strategy

from the recommended setS Tb
i , then playeri’s block-game payoff is greater thanwi .

Lemma 2. There isK such that for allK > K and for all T, there isδ ∈ (0,1) such

that for all δ ∈ (δ ,1), i ∈ I , x−i ∈X−i with xi−1 = B, x̃−i ∈ X−i with x̃i−1 = G, sTb
i ∈ STb

i ,

ands̃Tb
i ∈S Tb

i ,

wP
i (sTb

i ,sx−i
−i ) < wi < wi < wP

i (s̃Tb
i ,sx̃−i

−i ).

Proof. The statement here is very similar to (9) of Yamamoto (2009); a difference is

that the block game of this paper contains the confirmation and supplemental rounds,

which are not present in the block game of Yamamoto (2009). To prove the lemma,

note that playeri’s messages in the confirmation and supplemental rounds are irrelevant

under perfect monitoring, in the sense that these messages never affect the opponents’

continuation play, as long as players−i follow sx−i
−i . Thus, players’ play in the block

game becomes very similar to that of Yamamoto (2009), and hence the result follows.

Q.E.D.

This lemma guarantees that there is a natural numberK such that for any natural

numberT, there isδ ∈ (0,1) such that

wi− max
s
Tb
i ∈S

Tb
i

wP
i (sTb

i ,sx−i
−i ) >

(
1− K2T

Tb

)
3ui (13)

for all δ ∈ (δ ,1], i ∈ I , andx−i ∈ X−i with xi−1 = B, and

min
s
Tb
i ∈S

Tb
i

wP
i (sTb

i ,sx−i
−i )−wi >

(
1− K2T

Tb

)
(|Ai |+2)ui (14)

for all δ ∈ (δ ,1], i ∈ I , andx−i ∈ X−i with xi−1 = G. Indeed, both (13) and (14) are

satisfied for sufficiently largeK, as the left-hand sides of these inequalities are positive

from Lemma 2, while the termK2T
Tb

, which denotes the ratio of the length of the main

rounds to that of the block game, approaches one asK → ∞.

The specification ofK here will be maintained in the following sections.

3.3.5 Block Strategies under Private Monitoring

Now, consider the case with private monitoring. As in the two player games, play-

ers use random eventsψi(A j) andψi(ai+1,ai−1), to perform statistical tests about the

opponents’ actions. Specifically, we consider the random events specified in the next

lemma. (See Section 3.2 for the interpretation of random events).
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Lemma 3. Suppose that (CI) holds. Then, for someq1, q2, andq3 satisfying0 < q1 <

q2 < q3 < 1, there are random eventsψi(A j) : Ai ×Ωi → [0,1] and ψi(ai+1,ai−1) :

Ai×Ωi → [0,1] for all i, j , a∈ A, andA j ∈J j such that for allã∈ A,

P(ψi(A j)|ã) =

{
q3 if a j ∈A j

q2 otherwise
,

P(ψi(ai+1,ai−1)|ã) =





q1 if ai−1 = ãi−1 andai+1 , ãi+1

q3 if ai+1 = ãi+1 andai−1 , ãi−1

q2 otherwise

.

Proof. Analogous to that of Lemma 1 of Yamamoto (2007). Q.E.D.

Let F1(τ,T, r) be the probability thatψi({a j}) is countedr times out ofT periods

when playerj chooses somẽa j , a j in the firstτ periods and then choosesa j in the

remainingT−τ periods. LetF2(τ,T, r) be the probability thatψi(ai+1,ai−1) is counted

r times out ofT periods when playeri + 1 choosesãi+1 , ai+1 in the firstτ periods

and then choosesai+1 in the remainingT− τ periods, while playeri−1 choosesai−1

constantly. Let(ZT)∞
T=1, (Z′T)∞

T=1, and(Z′′T)∞
T=1 be sequences of integers such that

Z′′T < q2T < Z′T , (15)

ZT ≤ q3T, (16)

lim
T→∞

Z′T
∑

r=Z′′T+1

F1(T,T, r) = lim
T→∞

Z′T
∑

r=Z′′T+1

F2(0,T, r) = lim
T→∞ ∑

r>ZT

F1(0,T, r) = 1, (17)

lim
T→∞

∣∣∣∣
Z′′T
T
−q2

∣∣∣∣ = lim
T→∞

∣∣∣∣
Z′T
T
−q2

∣∣∣∣ = lim
T→∞

∣∣∣∣
ZT

T
−q3

∣∣∣∣ = 0, (18)

and

lim
T→∞

TF1(0,T−1,ZT) = ∞. (19)

Note that the specification ofZT here is the same as in the two player case, and that the

existence ofZ′T andZ′′T is guaranteed because of the law of large numbers.

As in the perfect monitoring case, we denote byx̂(ht
i) = (x̂ j(ht

i)) j∈I playeri’s infer-

ence on the message profile in the signaling round. The specification ofx̂i(ht
i) here is

the same as in the perfect monitoring case, as playeri knows what she did in the sig-

naling round. However, playeri cannot observe the opponents’ action directly, so that

for eachj , i, the specification of̂x j(ht
i) must be modified in the following way. Given

any real numberr, let [r] denote the integer part ofr. Let x̂ j(ht
i) = G if the random

eventψi({aG
j }) is counted more than[q2+2q3

3 T] times in thejth T-period interval of the

signaling round (i.e., theT-period interval from period( j−1)T +1 to period jT of the
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block game); let̂x j(ht
i) = B if ψi({aG

j }) is counted at most[2q2+q3
3 T] times during this

T-period interval; and let̂x j(ht
i) = E for otherht

i .

Note that playeri’s inferencex̂ j(ht
i) is almost perfect information about playerj ’s

play in the signaling round for sufficiently largeT. Indeed, if playerj sends messageG

by choosingaG
j , then the random eventψi({aG

j }) is counted aroundq3T times during

theT-period interval, which means thatx̂ j(ht
i) = G. Likewise, if she sends messageB

by choosingaB
j , then the random eventψi({aG

j }) is likely to be counted roundq2T times

during theT-period interval, which means thatx̂ j(ht
i) = B. Note that the probability of

the erroneous histories (x̂ j(ht
i) = E) approximates zero unless playerj deviates and

mixesaG
i andaB

i in theT-period interval.

Similarly, for eachj , i, the specification of playeri’s inference on what playerj re-

ported in the confirmation round, which is denoted bym̂0
j (h

t
i)= (m̂0

j, j−1(h
t
i),m̂

0
j, j(h

t
i),m̂

0
j, j+1(h

t
i)),

must be modified in the following way. Recall that, for eachl = j−1, j, j +1, player j

sendsm0
j,l ∈{G,B,E} using actions in the(6( j−1)+2(l− j +2)−1)st and(6( j−1)+

2(l − j + 2))nd review phases of the confirmation round. Letm̂0
j,l (h

t
i) = G if the ran-

dom eventψi({aG
j }) is counted at least[q2+q3

2 T] times in each of these review phases;

let m̂0
j,l (h

t
i) = B if ψi({aG

j }) is counted less than[q2+q3
2 T] times in each of these re-

view phases; and let̂m0
j,l (h

t
i) = E otherwise. Again, this statistical inference is almost

perfect, in the sense that the probability thatm̂0
j (h

t
i) coincides with playerj ’s message

approximates one for largeT.

For eachk∈ {1, · · · ,K} and j , i, the specification of playeri’s inference on what

player j reported in thekth supplemental round, which is denoted bym̂k
j(h

t
i), is modified

as follows. Recall that playerj sends her messagemk
j ∈Mk

j using actions in the(2( j−
1)+1)st and2 jth T-period review phase of thekth supplemental round. Let̂mk

j(h
t
i) =

j−1 if the random eventψi({aG
j }) is counted at least[q2+q3

2 T] times in each of these

review phases; let̂mk
j(h

t
i) = j + 1 if ψi({aG

j }) is counted less than[q2+q3
2 T] times in

each of these review phases; and letm̂k
j(h

t
i) = 0 otherwise. Once again, these statistical

inferences are almost perfect.

Now we are ready to define the block strategiessG
i andsB

i under private monitoring.

A play in the signaling round, the confirmation round, the main rounds, and the report

round is almost the same as in the perfect monitoring case; the difference is only that

the specification of(x̂,m̂0, · · · ,m̂K) is modified as stated above.

So what remains is to specify a play in the supplemental rounds. The idea is very

similar to the perfect monitoring case; in thekth supplemental round, each playeri

reports whether or not her neighbors deviated in thekth main round. To test what

the neighbors did in thekth main round, playeri uses the random eventψi(a
x,k
i+1,a

x,k
i−1).

(Recall that the random eventψi(a
x,k
i+1,a

x,k
i−1) is counted with probabilityq1 if player i+1

deviated, with probabilityq3 if player i−1 deviated, and with probabilityq2 if nobody
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deviated fromax,k. Therefore, playeri can statistically distinguish whether or not her

neighbors deviated from this random event.) Specifically, if(m̂0(ht
i), · · · ,m̂k−1(ht

i))
is an element ofM0(x)×M1(0)× ·· · ×Mk−1(0) for somex ∈ X and if the random

eventψi(a
x,k
i+1,a

x,k
i−1) is counted more thanZ′KT times in thekth main round, then both

strategies sendmk
i = i−1 in thekth supplemental round. If(m̂0(ht

i), · · · ,m̂k−1(ht
i)) is

an element ofM0(x)×M1(0)×·· ·×Mk−1(0) for somex∈ X and if ψi(a
x,k
i+1,a

x,k
i−1) is

counted at mostZ′′KT times in thekth main round, then both strategies sendmk
i = i +1.

Otherwise, both strategies sendmk
i = 0. For periods where playerj , i sends a message,

both strategies play the actionaG
i .

3.3.6 Comments on the Role of Additional Communication Stages

As mentioned, the block game considered here is different from that of Yamamoto

(2009), since there are additional communication stages, the confirmation and supple-

mental rounds. Hence it will be useful to see how these additional communication

stages work in our setting.

The purpose of communication in the confirmation round is to let players make a

consensus about what happened in the signaling round, which allows players to coor-

dinate their continuation play. That is, players can make an agreement about what the

state profilex is, so that they can choose the appropriate action profileax,1 in the first

main round. In particular, the majority rule in the confirmation round is carefully con-

structed so that players can make such a consensus with high probability even if player

i unilaterally deviates in the signaling round or in the confirmation round.

To see this, suppose first that playeri−1 sent messagexi−1 in the signaling round.

Then in the confirmation round, both playersi−2 andi−1 report that playeri−1 sent

messagexi−1; thus other players confirm that player(i−1)’s message wasxi−1 without

referring to what playeri says in the confirmation round. A similar argument shows that

no matter what playeri says in the confirmation round, players can make a consensus

about what playerj reported in the signaling round for eachj , i.

Also, the same is true for the consensus about what playeri reported in the signaling

round, no matter what playeri does in the signaling and confirmation rounds. To check

this, recall that playeri can become a pivotal voter in the confirmation round only when

playersi − 1 and i + 1 have opposite opinions about playeri’s play in the signaling

round and send messages such that(m0
i−1,i ,m

0
i+1,i) = (G,B) or (B,G); in other cases,

players make a consensus without referring to what playeri says in the confirmation

round. But, from the law of large numbers, the event that(m0
i−1,i ,m

0
i+1,i) = (G,B) or

(B,G) is less likely, no matter what playeri does in the signaling round (in particular,

even if playeri mixesaG
i andaB

i in the signaling round). Therefore we can conclude

that player can make a consensus about playeri’s play in the signaling round no matter
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what playeri does in the signaling and confirmation rounds.

In sum, players can make a consensus in the confirmation round with high probabil-

ity and can coordinate a continuation play, no matter what playeri does in the signaling

and confirmation rounds. This implies that playeri has less reason to deviate in the sig-

naling and confirmation rounds, since stage-game payoffs of these rounds are almost

negligible. This property plays a key role in the proofs of Lemmas 4 and 5.

Likewise, communication in thekth supplemental round enables players to make

a consensus about whether someone unilaterally deviated in thekth main round with

high probability, no matter what playeri says. This allows players to coordinate to

switch their behavior in the(k+ 1)st main rounds. (Recall that players stop playing

ax,k and switch to choosingai(A ) or ai(A ) once someone’s deviation is reported in

the supplemental round.) Again, this property implies that playeri has less reason to

deviate in thekth supplemental round, which is a key in the proof of Lemmas 4 and 5.

3.3.7 Block Game with Transfers

Before going to the analysis of infinitely repeated games, it is convenient to consider the

following Tb-period repeated game with transfers, as in Fudenberg and Levine (1994)

and Ḧorner and Olszewski (2006). LetUi : HTb
i−1→ R, and suppose that playeri receives

a transferUi(h
Tb
i−1) after theTb-period block game. Note thatUi is a function ofhTb

i−1,

that is, the value of the transfer depends only on player(i − 1)’s block history. Let

wA
i (sTb,Ui) denote playeri’s average payoff in thisauxiliary scenariogiven a block

strategy profilesTb ∈ STb, that is,

wA
i (sTb,Ui)≡ 1−δ

1−δ Tb

[
Tb

∑
t=1

δ t−1E
[
πi(at)|sTb

]
+δ TbE

[
Ui(h

Tb
i−1)|sTb

]]
.

Let sTb
i |ht

i
denote playeri’s continuation strategy after historyht

i ∈ Ht
i induced bysTb

i ∈
STb

i . Also, let BRA(sTb
−i |ht

−i
,Ui) be the set of playeri’s best replies in the auxiliary-

scenario continuation game after history, given that the opponents playsTb
−i ∈ STb

i in the

block game and their past history washt
−i .

The following lemma shows that there is a transferUB
i which can be regarded as

a subsidy to offset the difference between playeri’s actual payoff of the block game

and the target payoffwi and to give right incentives to playeri. This is an extension of

Lemma 4(a) of Ḧorner and Olszewski (2006) and Lemma 1 of Yamamoto (2009).

Lemma 4. Suppose that (CI) and (FS) hold. Then, there isT such that for allT > T,

there isδ ∈ (0,1) such that for allδ ∈ (δ ,1) and for all i ∈ I , there isUB
i : HTb

i−1 → R
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such that for alll ≥ 0, htl ∈ Htl , hTb
i−1 ∈ HTb

i−1, andx∈ X with xi−1 = B,

sxi
i |htl

i
∈ BRA(sx−i

−i |htl
−i

,UB
i ), (20)

wA
i (sx,UB

i ) = wi , (21)

and

0 < UB
i (hTb

i−1) <
wi−wi

1−δ
. (22)

Proof. The outline of the proof is similar to that of Lemma 1 of Yamamoto (2009), and

what is new here is how to provide the truth-telling incentives for the confirmation and

supplemental rounds, which are not present in the block game of Yamamoto (2009). As

explained in 3.3.6, the event that playeri becomes a pivotal voter in the confirmation

and supplemental rounds is less likely. This, together with the fact that the stage-game

payoffs for these rounds are almost negligible, implies that playeri is almost indiffer-

ent over all messages in these rounds. Therefore, by giving playeri a small transfer

depending on her message, one can make playeri exactly indifferent over all messages.

The formal proof is found in Appendix C. Q.E.D.

Likewise, the next lemma shows that there is a transferUG
i which can be regarded

as a fine to offset the difference between playeri’s actual payoff of the block game and

the target payoffwi and to give right incentives to playeri.

Lemma 5. Suppose that (CI) and (FS) hold. Then, there isT such that for allT > T,

there isδ ∈ (0,1) such that for allδ ∈ (δ ,1) and for all i ∈ I , there isUG
i : HTb

i−1 → R

such that for alll ≥ 0, htl ∈ Htl , hTb
i−1 ∈ HTb

i−1, andx∈ X with xi−1 = G,

sxi
i |htl

i
∈ BRA(sx−i

−i |htl
−i

,UG
i ), (23)

wA
i (sx,UG

i ) = wi , (24)

and

−wi−wi

1−δ
< UG

i (hTb
i−1) < 0. (25)

Proof. See Appendix D. The basic idea is similar to Lemma 4. Q.E.D.

Note that the information transmitted in the report round plays a crucial role in the

construction ofUB
i andUG

i . To see this, note that (20) and (23) require that playeri’s

continuation play be optimal independently of the opponents’ past historyhtl
−i . For this

to be the case, the amount of the transfersUB
i andUG

i should be adjusted contingent on

the realization ofhtl
−i . However the transfersUB

i andUG
i cannot directly depend onhtl

−i ,

as they are functions of player(i−1)’s private history only. To overcome this problem,
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player i−1 adjust the amount of the transfersUB
i andUG

i contingent on information

obtained in the report round; in the report round, each player reports what happened in

the past communication stages, so that playeri−1 can get precise information about

htl
−i . This idea is very similar to Yamamoto (2009).

3.3.8 Equilibrium Construction

Now we consider the infinitely repeated game, and show that for any payoff vector

v∗ ∈×i∈I [wi ,wi ], there is a belief-free review-strategy equilibrium with payoffv∗. This

completes the proof of Proposition 2, asv is included in×i∈I [wi ,wi ].
Fix a target payoff vectorv∗ = (v∗i )i∈I from the set×i∈I [wi ,wi ] arbitrarily. LetUB

i

andUG
i be as in Lemmas 4 and 5. For eachi, player(i−1)’s strategy in the infinitely

repeated game is specified by the following automaton with initial statev∗i ∈ [wi ,wi ].

Statewi (for wi ∈ [wi ,wi ]) : Go to phaseB with probabilityαi−1, and go to phaseG

with probability1−αi−1 whereαi−1 satisfieswi = αi−1wi +(1−αi−1)wi .

PhaseB : Play the block strategysB
i−1 for Tb periods. After that, go to statewi given

by wi = wi +(1−δ )UB
i (hTb

i−1) wherehTb
i−1 is her recentTb-period history.

PhaseG : Play the block strategysG
i−1 for Tb periods. After that, go to statewi given

by wi = wi +(1−δ )UG
i (hTb

i−1).

It follows from (22) and (25) that for any historyhTb
i−1 ∈ HTb

i−1, both wi + (1−
δ )UB

i (hTb
i−1) andwi +(1− δ )UG

i (hTb
i−1) lie in the interval[wi ,wi ], and hence the above

automaton is well-defined. Also, from (20), (21), (23), (24), and the one-shot deviation

principle, the constructed strategy profile is a Nash equilibrium with payoffv∗. More-

over, this strategy profile is a belief-free review-strategy equilibrium since (20) and (23)

hold and the block game strategysxi
i never mixes actions after every history.

Remark 2. In the above equilibrium construction, each review phase has different

length; the signaling and main rounds have longer review phases than those in the other

rounds. However, considering review phases with different length is not essential, and

one can construct an equilibrium with the same payoff such that each review phase has

lengthT. (For this, it suffices to show that there areUB
i andUG

i that satisfies incentive

compatibility condition (20) and (23) for everyT-period interval of the block game.

The proof is omitted, as it requires a longer and more complex argument.) Therefore,

Theorem 1 remains true even if we restrict attention to review strategies where each

review phase has equal length.

34



4 Sufficient Conditions for Efficient Equilibria

Theorem 1 in the previous section characterizes the limit set of belief-free review-

strategy equilibrium payoffs for general games. In this section, we apply this result

and show that efficiency is often approximated by belief-free review-strategy equilib-

ria. Specifically, we obtain the following proposition:

Proposition 3. Suppose that the feasible payoff set is full dimensional, and that there

are action profilesa∗ anda∗∗ such thatmaxai∈Ai πi(ai ,a∗∗−i) < πi(a∗)≤ πi(a∗∗i ,a∗−i) for

all i ∈ I . Then the stage game is classified to the positive case and the payoff vector

π(a∗) is an element of the right-hand side of (2). Therefore, if (CI) and (FS) hold, then

π(a∗) ∈ limδ→1E(δ ).

The proof of the proposition is provided in Appendix E. Lettinga∗ be an efficient

action profile, this proposition gives a sufficient condition for the existence of asymp-

totically efficient equilibria; that is, the efficient payoff vectorπ(a∗) can be achieved in

the limit if there isa∗∗ ∈ A such thatmaxai∈Ai πi(ai ,a∗∗−i) < πi(a∗)≤ πi(a∗∗i ,a∗−i) for all

i ∈ I . An example that satisfies this sufficient condition is prisoner’s dilemma. Also,

this sufficient condition is often satisfied in price-setting oligopoly markets. To see this,

let a∗i be cartel price anda∗∗i be “cheating” price. The above condition is satisfied if (i)

a firm’s profit from cartel is higher than its profit when all the opponents cheat, and

(ii) a firm can earn more profits by cheating than by choosing cartel price when the

opponents choose cartel price. Proposition 3 asserts that under this condition, cartel is

self-enforced even if firms cannot communicate each other.

It may be noteworthy that the sufficient condition here is much weaker than the one

provided by Yamamoto (2007). Theorem 1 of Yamamoto (2007) assumes the payoff

function to be almost symmetric, that is, players who choose the same action obtain

similar stage-game payoffs. Proposition 3 does not impose such a symmetry assump-

tion, so that it can apply to oligopoly markets where firms have different market shares

and/or different production functions. Also, Yamamoto (2007) imposes several as-

sumptions on a player’s stage-game payoffs when some of the opponents choosea∗

and others choosea∗∗; Proposition 3 show that these assumptions are not necessary to

approximate efficiency.6

The next proposition shows that even the folk theorem is established if more as-

sumptions are imposed on the payoff function. This is a generalization of Theorem

2 of Matsushima (2004) toN-player games. The stage game is anN-player pris-

oner’s dilemmaif |I | = N; Ai = {Ci ,Di} for all i ∈ I ; πi(Di ,a−i) ≥ πi(Ci ,a−i) for all

i ∈ I anda−i ∈ A−i ; πi(Cj ,a− j) ≥ πi(D j ,a− j) for all i ∈ I , j , i anda− j ∈ A− j ; and

6Note also that the sufficient condition provided by Proposition 3 is weaker than that of Theorem 1
of Matsushima (2004).
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πi(C1, · · · ,CN) > πi(D1, · · · ,DN) for all i ∈ I . In words, defection weakly dominates

cooperation, cooperation weakly increases opponents’ profits, and mutual cooperation

yields higher payoffs than mutual defection.

Proposition 4. Suppose that the stage game is anN-player prisoner’s dilemma, and

the feasible payoff set is full dimensional. Suppose also that (CI) and (FS) hold. Then,

limδ→1E(δ ) exactly equals the feasible and individually rational payoff set.

The proof is similar to Proposition 3 of Yamamoto (2009), and hence omitted.

5 Almost-Independent Monitoring

This section demonstrates that the limit characterization result is robust to a pertur-

bation of the monitoring structure, i.e., Theorem 1 remains valid even under almost-

independent monitoring.

To formalize the concept of “almost-independent monitoring,” we introduce a mea-

sure of closeness between distinct signal distributions. The following notion is at-

tributed to Mailath and Morris (2006): For a fixed(I ,(Ai ,πi ,Ωi)i∈I ), the signal distri-

butionq : A→4Ω is ε-closeto a conditionally-independent signal distribution(qi)i∈I

if
∣∣∣∣∣q(ω|a)−∏

i∈I
qi(ωi |a,ω0)

∣∣∣∣∣ < ε

for all a andω. The following proposition shows that if there is a belief-free review

strategy equilibrium with payoffv under (CI), thenv can be achieved even if the moni-

toring structure is slightly perturbed so that the monitoring is almost independent.

Proposition 5. Suppose that a stage game(I ,(Ai ,Ωi ,πi ,qi)i∈I ) satisfies (CI) and (FS).

Suppose also that this game is classified to the positive case. Then, for any payoff vector

v in the interior of the right-hand side of (2), there areδ ∈ (0,1) andε > 0 such that

for anyδ ∈ (δ ,1) and for any signal distributionε-close to(qi)i∈I , there is a belief-free

review-strategy equilibrium with payoffv.

The intuition behind this result is as follows. As shown in Section 3.2, under (CI),

a player’s private signal has no information about the opponents’ signals. and thus no

feedback on what the opponents will do in a continuation play. Therefore, players have

no incentive to deviate to a history-dependent strategy within a review phase, which

is a key element in the proof of Theorem 1. When (CI) is violated, a player’s pri-

vate signal contains some information about the opponents’ signals so that players may

want to play history-dependent strategies; however, if the signal distribution is almost
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independent (i.e., takingε close to zero), then a player’s private signal has almost no

information about the opponents’ signals. Therefore, given aT, when we takeε suffi-

ciently close to zero, playing a history-dependent strategy becomes suboptimal and we

can construct an equilibrium as in the case of conditionally-independent monitoring.

The formal proof is omitted, as it is straightforward.
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Appendix A: Proof of Lemma 4

Consider the positive case, and lets∈ S be a belief-free review-strategy equilibrium

with sequence(tl )∞
l=0. Let Ai(l) denote the set of playeri’s actions taken with positive

probability in the initial period of thel th review phase for some history. That is,Ai(l)
is the union of the support ofsi(h

tl−1
i ) over allhtl−1

i ∈ Htl−1
i .

Sinces is strongly belief-free in thel th review phase, playeri’s continuation payoff

after historyhtl−1 ∈ Htl−1 is independent of her own private historyhtl−1
i . So let us

denote this continuation payoff bywi(h
tl−1
−i ). Likewise, for eachhtl−1

−i ∈ Htl−1
−i anda−i ∈

supp{s−i(h
tl−1
−i )}, let wi(h

tl−1
−i ,a−i) denote playeri’s continuation payoff from thel th

review phase when the opponents’ history in the past review phases ishtl−1
−i and they

play the constant actiona−i in the l th review phase. Then

wi(h
tl−1
−i ) = ∑

a−i∈A−i

s−i(h
tl−1
−i )[a−i ]wi(h

tl−1
−i ,a−i) (26)

for all htl−1
−i ∈ Htl−1

−i . Also, sinces is strongly belief-free in thel th review phase,

wi(h
tl−1
−i ,a−i)≥ (1−δ tl−tl−1)πi(a)+δ tl−tl−1 ∑

h
tl
−i∈H

tl
−i

Pr(htl
−i |htl−1

−i ,a)wi(h
tl
−i) (27)

for all htl−1
−i ∈Htl−1

−i , a−i ∈ supp{s−i(h
tl−1
−i )}, andai ∈Ai with equality ifai ∈Ai(l). Here,

the termPr(htl
−i |htl−1

−i ,a) denotes the probability of the realization ofhtl
−i given that the

history up to the end of the(l −1)th review phase ishtl−1
−i and players choose the action

profilea∈ A constantly in thel th review phase.

For eachl ≥ 1, let wl
i be playeri’s best continuation payoff from thel th review

phase, i.e,wl
i is the maximum ofwi(h

tl−1
−i ) over all htl−1

−i ∈ Htl−1
−i . Using (27) and

wi(h
tl
−i)≤ wl+1

i ,

wi(h
tl−1
−i ,a−i)≤ (1−δ tl−tl−1) min

ai∈Ai(l)
πi(a)+δ tl−tl−1wl+1

i

for all htl−1
−i ∈ Htl−1

−i anda−i ∈ supp{s−i(h
tl−1
−i )}. Then, from (26) and the definition of

vi(A ),
wi(h

tl−1
−i )≤ (1−δ tl−tl−1)vi(A (l))+δ tl−tl−1wl+1

i

for all htl−1
−i ∈ Htl−1

−i . This implies that

wl
i ≤ (1−δ tl−tl−1)vi(A (l))+δ tl−tl−1wl+1

i . (28)

Likewise, letwl
i be the minimum ofwi(h

tl−1
−i ) over allhtl−1

−i ∈ Htl−1
−i . It follows from

(27) andwi(h
tl
−i)≥ wl+1

i that

wi(h
tl−1
−i ,a−i)≥ (1−δ tl−tl−1)max

ai∈Ai

πi(a)+δ tl−tl−1wl+1
i
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for all htl−1
−i ∈ Htl−1

−i anda−i ∈ supp{s−i(h
tl−1
−i )}. Then, as in the above argument,

wl
i ≥ (1−δ tl−tl−1)vi(A (l))+δ tl−tl−1wl+1

i . (29)

Iterating (28) and (29) and using (26), it turns out thatwi(h
tl−1
−i ) is in the interval

[plvi , pl vi ] for all l ≥ 1 andhtl−1
−i ∈ Htl−1

−i , wherepl ∈4J is defined to be

pl (A ) = ∑
{k≥l |A (k)=A }

δ tk−1−tl−1(1−δ tk−tk−1) (30)

for all A ∈J . Therefore the equilibrium payoff vector(wi(s))i∈I is in the product set

×i∈I [p1vi , p1vi ]. On the other hand, from the feasibility constraint,(wi(s))i∈I ∈V(p1).
Taken together,(wi(s))i∈I is in the intersection ofV(p1) and×i∈I [p1vi , p1vi ]. This

proves that the right-hand side of (2) includesE(δ ) in the positive case.

Next, consider the empty case. Suppose that there is a belief-free review-strategy

equilibriums∈ S. Then as in the positive case, the equilibrium payoffwi(s) must be in

the interval[p1vi , p1vi ] for all i ∈ I . However, since this is the empty case, there isi ∈ I

such thatp1vi > p1vi , that is, the interval[p1vi , p1vi ] is empty. This is a contradiction,

and hence there is no belief-free review-strategy equilibrium.

Finally, consider the negative case. Since playing pure-strategy Nash equilibria

in every period is a belief-free review-strategy equilibrium,limδ→1E(δ ) includes the

convex hull of the set of pure-strategy Nash equilibrium payoffs of the stage game.

Hence, it suffices to show thatE(δ ) is included in the convex hull of the set of pure-

strategy Nash equilibrium payoffs for everyδ ∈ (0,1).
Let s∈ S be a belief-free review-strategy equilibrium. As in the positive case, for

eachi ∈ I and l ≥ 1, wi(h
tl−1
−i ) is included in the interval[plvi , pl vi ], which must be a

singleton in the negative case. This implies that no dynamic incentive is provided in

this equilibrium, and hence in every review phase, playeri’s action must be a static best

reply to any outcome of the opponents’ mixture (here, the optimalityafter the mixture

is required, sinces is strongly belief-free in every review phase). Thus a pure-strategy

Nash equilibrium is played in every period, which completes the proof.

Appendix B: Incentive Compatibility for Two-Player Games

In this appendix, we show that the strategy profile presented in Section 3.2.3 constitutes

a belief-free review-strategy equilibrium with payoffv∗.
The following lemma asserts that the automaton is well-defined ifT is large enough

andδ is close to one.

Lemma 6. There isT such that for allT > T, there isδ ∈ (0,1) such that for allδ ∈
(δ ,1), (i) v∗i is in the state space[wi ,wi ] for all i ∈ I , and (ii) bothwi +(1−δ )UB,A

i (hT
−i)
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and wi +(1− δ )UG,A
i (hT

−i) are in the state space[wi ,wi ] for all i ∈ I , A ∈ J , and

hT
−i ∈ HT

−i .

Proof. Part (i). Sincev∗ is an interior point of×i∈I [pvi , pvi−η ] and (9) holds,v∗i is in

the state space[wi ,wi ] if T is large enough. This proves (i).

Part (ii). Using (4) and (5), it follows thatlimT→∞ λ B,A ,l
i ≥ 0 for all A andl . Like-

wise, from (4), (5), andπi(a
G,A ,|Ai |
i ,aA

−i) = vi(A ), one can check thatlimT→∞ λ G,A ,l
i ≥

0 andlimT→∞ ∑|Ai |
l=1 λ G,A ,l

i = C. These observations, together with (9), completes the

proof. Q.E.D.

The next step is to show that the specified strategy profile constitutes an equilibrium

and achievesv∗, assuming that players are constrained to a constant action in everyT-

period review phase. Suppose that player−i choosesaA
−i in the current review phase.

Suppose also that playeri’s continuation payoff from the next review phase iswi +(1−
δ )UB,A

i (hT
−i) wherehT

−i is the history in the current review phase. (Note that this is

the same as assuming that playeri’s continuation payoff iswi when the opponent is in

phaseB, and her continuation payoff iswi when the opponent is in phaseG.) Then, for

eachl ≥ 1, playeri’s payoff to playingaB,A ,l
i is

(1−δ T)πi(a
B,A ,l
i ,aA

−i)

+δ T

[
wi +

1−δ T

δ T

(
∑̃
l≤l

∑
r>ZT

F(0,T, r)λ B,A ,l̃
i + ∑̃

l>l
∑

r>ZT

F(T,T, r)λ B,A ,l̃
i

)]
.

Using (7) andπi(a
B,A ,1
i ,aA

−i) = vi(A ), this payoff is rewritten as

(1−δ T)

[
vi(A )+ ∑̃

l≥1
∑

r>ZT

F(T,T, r)λ B,A ,l̃
i

]
+δ Twi ,

which does not depend onl . Therefore we can conclude that playeri is indifferent over

all actions againstaA
−i . Also, multiplying byp(A ) and summing over allA ∈J show

that when player−i is in phaseB, playeri’s expected payoff is indeedwi .

Suppose next that player−i choosesaA
−i in the current review phase, and that player

i’s continuation payoff from the next review phase is given bywi +(1−δ )UG,A
i (hT

−i).
Using (8), playeri’s payoff to playingaG,A ,l

i is

(1−δ T)

[
vi(A )−η + ∑̃

l≥1
∑

r>ZT

F(T,T, r)λ G,A ,l̃
i

]
+δ Twi ,

while the payoff to playingai <Ai is

(1−δ T)

[
πi(ai ,a

A
−i)−C−η + ∑̃

l≥1
∑

r>ZT

F(T,T, r)λ G,A ,l̃
i

]
+δ Twi .
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Note that the payoff fromaG,A ,l
i does not depend onl , and hence playeri is indifferent

over all actionsai ∈ Ai Also, sinceC > maxai∈Ai πi(ai ,aA
−i)− vi(A ), the payoff from

ai <Ai is less than that fromaG,A ,l
i . Hence, playingai ∈Ai is a best reply againstaA

−i .

Also, multiplying the payoff byp(A ) and summing over allA ∈J show that when

player−i is in phaseG, playeri’s expected payoff iswi . Therefore, the strategy profile

specified by the above automaton with the initial state(v∗2,v
∗
1) is an equilibrium in the

constrained game, and yields the target payoffv∗.
What remains is to establish that this strategy profile is an equilibrium even if play-

ers are not restricted to a constant action. Recall that under (CI), playeri’s signalωi has

no information about the opponent’ signal, so that playeri cannot be better off by con-

ditioning her play on observed signals. Hence, it suffices to show that playeri cannot

profit by deviating to any sequence of actions with lengthT.

First, consider the case where player−i choosesaA
−i in the current review phase.

As mentioned, for anya∗i ∈ Ai anda∗∗i , a∗i , playeri is indifferent between playinga∗i
for T periods and playinga∗∗i for T periods. In what follows, we show that playeri

prefers playinga∗i for T periods to mixing two actionsa∗i anda∗∗i (i.e., playinga∗i for

τ periods and playinga∗∗i for T − τ periods). For notational convenience, let∆πi =
πi(a∗∗i ,aA

−i)− πi(a∗i ,a
A
−i). Let l∗ be the integerl satisfyingaB,A ,l

i = a∗i and letl∗∗ be

the integerl satisfyingaB,A ,l
i = a∗∗i . Without loss of generality, assumel∗ > l∗∗, so that

∆πi ≥ 0. For eachτ ∈ {0, · · · ,T}, letWi(τ) denote playeri’s (unnormalized) payoff to

playinga∗∗i in the firstτ periods anda∗i in the remainingT− τ periods. Then,

Wi(τ)−Wi(0) =
1−δ τ

1−δ
∆πi +

1−δ T

1−δ ∑
r>ZT

(F(τ,T, r)−F(0,T, r))
l∗

∑
l=l∗∗+1

λ B,A ,l
i .

Arranging,

Wi(τ)−Wi(0) = ∆πi
1−δ T

1−δ

(
1−δ τ

1−δ T −g(τ)
)

(31)

where

g(τ) =
∑r>ZT

F(0,T, r)−∑r>ZT
F(τ,T, r)

∑r>ZT
F(0,T, r)−∑r>ZT

F(T,T, r)
.

Lemma 7. Leth(τ) = limδ→1( 1−δ τ

1−δ T )−g(τ). Then, there isT such that for everyT > T,

h(τ) is negative for allτ ∈ {1, · · · ,T−1}.

Proof. This directly follows from (28) of Ely, Ḧorner, and Olszewski (2005). Note that

(6) is used here. Q.E.D.

Suppose first that∆πi > 0. Applying this lemma to (31), it follows that in the limit

as δ → 1, player i strictly prefers playinga∗i constantly to mixinga∗i and a∗∗i . By

continuity, she strictly prefers a constant actiona∗i even if δ is slightly less than one.
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Suppose next that∆πi = 0. Then (31) implies that playeri weakly prefers playinga∗i
constantly to mixinga∗i anda∗∗i for anyδ ∈ (0,1). Thus, in both cases, playeri prefers

playing a constant action to mixing two actions.

By a similar argument, playeri prefers mixingn actions to mixingn+ 1 actions.7

Hence, playing an actionai ∈Ai for T periods is a best reply againstaA
−i . Likewise, one

can show that playing an actionai ∈Ai constantly is a best reply againstaA
−i .

In summary, ifT is sufficiently large so that the conditions in Lemmas 6 and 7 are

satisfied, then there isδ ∈ (0,1) such that for allδ ∈ (δ ,1), the strategy profile specified

by the automaton constitutes a belief-free review-strategy equilibrium, and achievesv∗.
This completes the proof.

Appendix C: Proof of Lemma 4

Let ui : Ai−1×Ωi−1 → R be such thatπi(a) + E[ui(ai−1,ωi−1)|a] = 0 for all a ∈ A.

The existence of suchui is guaranteed from the full rank condition. Letui denote the

maximum of|ui(ai−1,ωi−1)| over allai−1 ∈ Ai−1 andωi−1 ∈Ωi−1.

For eachk∈ {1, · · · ,K}, let h[k]
i denote playeri’s private history up to the end of the

kth supplemental round. Also, leth[k,m]
i be playeri’s history up to the end of thekth

main round. Leth[0]
i be playeri’s history up to the end of the confirmation round, and

h[−1]
i be playeri’s history up to the end of the signaling round. For eachk, let H [k]

i be

the set of allh[k]
i , andH [k,m]

i be the set of allh[k,m]
i .

Recall that a player’s message space in the report round isM0×M1× ·· · ×MK,

i.e., a player reports what happened in the past communication stages. Given player

(i−1)’s block historyhTb
i−1∈HTb

i−1, let I−i ∈ (M0×·· ·×MK)N−1 denote player(i−1)’s
inference on the messages from players−i in the report round. Notice that playeri’s

actions in the report round cannot affect the realization ofI−i , since playeri−1 makes

her inference on playerj ’s message using the random eventψi−1({aG
j }) and Lemma 3

asserts that playeri cannot manipulate the realizations of this random event. For each

k∈ {0, · · · ,K}, let Ik
−i be the projection ofI−i onto(M0×M1×·· ·×Mk)N−1. That is,

Ik
−i denotes player(i−1)’s inference on the messages from players−i corresponding

to the history up to thekth supplemental round.

7The formal proof is as follows. With an abuse of notation, letWi(τ) denote playeri’s payoff to
playinga∗∗i for τ periods, playinga∗i for T̃−τ periods, and playing a(T− T̃)-length sequence of actions

consisting of{aB,A ,l∗+1
i , · · · ,aB,A ,|Ai |

i }, where0≤ τ ≤ T̃ < T. Then,

Wi(τ)−Wi(0) = ∆πi
1−δ T

1−δ

(
1−δ τ

1−δ T −g(τ)
)

.

Using Lemma 7, one can confirm that playeri is (weakly) better off by playinga∗i for T̃ periods rather
than playinga∗∗i for τ periods anda∗i for T̃− τ periods.
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Without loss of generality, consider a particulari ∈ I . We considerUB
i which is

decomposable into real-valued functions(θ−1, · · · ,θ K+1) as follows;

UB
i (hTb

i−1) =
1

δ Tb

[
δ NTθ−1(h[−1]

i−1 )+δ 7NTθ 0(h[0]
i−1)

+∑K
k=1δ 7NT+k(K+2N)Tθ k(h[k]

i−1, I
k−1
−i )+δ Tbθ K+1(hTb

i−1)

]
.

Intuitively, playeri receives a transferθ−1 after the signaling round,θ 0 after the con-

firmation round,θ k after thekth supplemental round for eachk∈ {1, · · · ,K}, andθ K+1

after the report round.

In this transfer scheme, the transfers for the past rounds are irrelevant to playeri’s

incentive compatibility. For example, consider the report round. Note that the transfer

θ−1 is a function of(h[−1]
i−1 ), and hence does not depend on the history in the report

round. Likewise, the transferθ 0 does not depend on the history in the report round.

Moreover, for eachk∈ {1, · · · ,K}, θ k depends on the history in the report round only

throughIk
−i , and playeri’s action in the report round cannot affect the realization of

Ik
−i . Therefore, the transfers(θ−1, · · · ,θ K) are irrelevant to playeri’s incentive compat-

ibility in the report round, i.e., playeri maximizes the sum of the stage game payoffs

and the transferθ K+1 in the report round. Likewise, one can check that the transfers

(θ−1, · · · ,θ k−1) are irrelevant to playeri’s incentive compatibility in the continuation

game from thekth main round.

In what follows, we show that there are transfers(θ−1, · · · ,θ K+1) satisfying (20)

through (22). To simplify the notation, letXB denote the set of allx ∈ X satisfying

xi−1 = B. Likewise, letXB
−i be the set of allx−i ∈ X−i satisfyingxi−1 = B.

C.1 Constructing θK+1

Note first that the transferθ−1 is a function of(h[−1]
i−1 ), and hence does not depend on

the history in the report round. Likewise, the transferθ 0 does not depend on the history

in the report round. Moreover, for eachk ∈ {1, · · · ,K}, θ k depends on the history in

the report round only throughIk
−i , and playeri’s action in the report round cannot affect

the realization ofIk
−i . Therefore, the transfers(θ−1, · · · ,θ K) are irrelevant to playeri’s

incentive compatibility in the report round, i.e., playeri maximizes the sum of the stage

game payoffs and the transferθ K+1.

Let

θ K+1(hTb
i−1) =

2N2T(3+K)

∑
t=1

ui(at
i−1,ω

t
i−1)

δ 2N2T(3+K)+1−t

where(at
i−1,ω

t
i−1) is player(i−1)’s action and signal in thetth period of the report

round. Recall thatπi(a) + ∑ω q(ω|a)ui(ai−1,ωi−1) = 0 for all a ∈ A. Thus the term

ui(at
i−1,ω

t
i−1) offsets the stage game payoff in thetth period of the report round, and
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hence playeri is indifferent among all actions in every period of the report round,

regardless of the past history. This shows that (20) holds for alll ≥ 1+6N+K(1+2N),
htl ∈ Htl , andx∈ XB.

Also, since the term wi−wi
(K+3)(1−δ ) goes to infinity asδ → 1, it follows that

−2N2T(3+K)ui < θ K+1(hTb
i−1) <

wi−wi

(K +3)(1−δ )
(32)

for all hTb
i−1 ∈ HTb

i−1, provided thatδ is close to one.

C.2 Constructing θ k for all k∈ {1, . . . ,K}
In this step, the following notation is useful. For eachx∈ X, let H [0]

−i (x) be the set of

h[0]
−i ∈ H [0]

−i such that for eachj , i andh̃[0]
j ∈ H [0]

j ,

(m̂0
−i(h

[0]
j ),m̂0

i (h̃
[0]
j )) ∈M0(x)

wherem̂0
−i(h

[0]
j ) = (m̂0

l (h
[0]
j ))l,i , In words,H [0]

−i (x) is the set of all histories up to the end

of the confirmation round such that playerj , i will play ax,1
j in the first main round

(recall thatsG
j (h[0]

j ) = sB
j (h

[0]
j ) = ax,1

j if m̂0(h[0]
j ) ∈ M0(x)) even if her inference on the

message from playeri in the confirmation round is replaced with any other information

m̂0
i (h̃

[0]
j ). Thush[0]

−i ∈ H [0]
−i (x) implies that playeri’s message in the confirmation round

is irrelevant to players−i’s continuation play.

Note thath[0]
−i ∈ H [0]

−i (x) is a “regular history” when nobody deviates from the block

strategy profilesx. For example, when players playsx under perfect monitoring, one

can check that̂m0
−i(h

[0]
j ) = (x, · · · ,x) for all j , i, so thath[0]

−i ∈ H [0]
−i (x). Also, when

players playsx under imperfect private monitoring, one can check that the probability

of h[0]
−i ∈ H [0]

−i (x) approximates one asT → ∞. (See the discussion in Section 3.3.6.)

Likewise, for eachk∈ {1, · · · ,K−1} andx∈ X, let H [k]
−i (x) be the set ofh[k]

−i ∈ H [k]
−i

such that for eachj , i andh̃[k]
j ∈ H [k]

j ,

(m̂0(h[k]
j ),m̂1(h[k]

j ), · · · ,m̂k−1(h[k]
j )) ∈M0(x)×M1(0)×·· ·×Mk−1(0),

and
(

m̂k
−i(h

[k]
j ),m̂k

i (h̃
[k]
j )

)
∈Mk(0)

wherem̂k
−i(h

[k]
j ) = (m̂k

l (h
[k]
j ))l,i . That is,H [k]

−i (x) is the set of all histories up to thekth

supplemental round such that playerj , i will play ax,k+1
j in the (k+ 1)st main round

even if the inference on playeri’s message in thekth supplemental round is replaced

with any other information. Thush[k]
−i ∈ H [k]

−i (x) implies that playeri’s message in the
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kth supplemental round is irrelevant to players−i’s continuation play. Again, one can

check that these are “regular histories” when nobody deviates from the block strategy

profilesx.

Also, for eachk∈ {1, · · · ,K} let H [k]
−i (x, i) be the set ofh[k]

−i ∈ H [k]
−i such that there is

n∈ {1, · · · ,k} such that for eachj , i andh̃[k]
j ∈ H [k]

j ,

(m̂0(h[k]
j ),m̂1(h[k]

j ), · · · ,m̂n−1(h[k]
j )) ∈M0(x)×M1(0)×·· ·×Mn−1(0),

and
(

m̂n
−i(h

[k]
j ),m̂n

i (h̃
[k]
j )

)
∈Mn(i).

Note that ifM0(x)×M1(0)×·· ·×Mn−1(0) andm̂n(h[k]
j ) ∈Mn(i) for somen≤ k, then

player j choosesai
j(A

k+1) in the(k+1)st main round, irrespective of the history after

the nth supplemental round. ThusH [k]
−i (x, i) is the set of histories up to thekth sup-

plemental round such that playeri’s message in thekth supplemental round cannot

affect the opponents’ continuation play and they will playai(A ) or ai(A ). Roughly

speaking, these are histories reachable by playeri’s unilateral deviation. To see this,

suppose that monitoring is perfect and that players followsx but playeri unilaterally

deviates fromax,n in thenth main round. Then both playersi−1 andi +1 detect this

deviation and send the messagesmn
i−1 = i andmn

i+1 = i in thenth supplemental round,

while player j , i− 1, i, i + 1 sendsmn
j = 0. In this case, playeri’s action in thenth

supplemental round cannot affect player−i’s continuation play, so that the history is an

element ofH [n]
−i (x, i).

For notational convenience, letH
[0]
−i denote a union ofH [0]

−i (x) over allx∈ XB. Also,

for eachk∈ {1, · · · ,K}, let H
[k]
−i be the union of(H [k]

−i (x)∪H [k]
−i (x, i)) over allx∈ XB.

In what follows, the transfers(θ 1, · · · ,θ K) are specified by backward induction. To

defineθ k, assume that(θ k+1, · · · ,θ K+1) have already been determined so that playeri’s

continuation payoff after historyh[k]
−i ∈H [k]

−i , augmented by(θ k+1, · · · ,θ K+1), is equal to

Vi(h
[k]
−i), and that (20) holds for alll ≥ 1+6N+k(1+2N), htl ∈Htl , andx∈ XB. Here,

for eachk∈ {1, · · · ,K} andh[k]
−i ∈ H

[k]
−i , the valueVi(h

[k]
−i) is defined to be the maximum

of playeri’s actual continuation payoff (i.e., the discounted sum of stage game payoffs)

after historyh[k]
−i over all her continuation strategies, subject to the constraints that mon-

itoring is perfect and that payoffs in the communication stages are replaced with zero.

For eachh[0]
−i ∈H

[0]
−i , the valueVi(h

[0]
−i) is defined to be the maximum of playeri’s actual

continuation payoff after historỹh[0]
−i over all allh̃[0]

−i ∈H
[0]
−i and over all her continuation

strategies, subject to the constraints that monitoring is perfect and that payoffs in the

communication stages are replaced with zero. For eachk∈ {0, · · · ,K} andh[k]
−i < H

[k]
−i ,

the valueVi(h
[k]
−i) is defined to be playeri’s actual continuation payoff when she earns
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maxa∈Aπi(a) in periods of the main rounds and zero in other periods. Notice that the

transfers(θ 1, · · · ,θ K) are specified in such a way that playeri’s continuation payoff

Vi(h
[k]
−i) from thekth main round is high and is the same for all historiesh[k]

−i < H
[k]
−i . As

explained later, this “constant continuation payoff” property is used to show that player

i has a truth-telling incentive in the(k−1)th supplemental round, even whenh[k]
−i <H

[k]
−i

so that playeri’s message in that round can affect the opponents’ continuation play.

In what follows, we show that there isθ k such that playeri’s continuation payoff

afterh[k−1]
−i ∈ H [k−1]

−i augmented by(θ k, · · · ,θ K+1) is equal toVi(h
[k−1]
−i ), and such that

(20) holds for alll ≥ 1+ 6N + (k− 1)(1+ 2N), htl ∈ Htl , andx ∈ XB. Iterating this

argument determines the transfers(θ 1, · · · ,θ K) so that playeri’s continuation payoff

afterh[k−1]
−i ∈H [k−1]

−i is equal toVi(h
[k−1]
−i ) for all k∈ {1, · · · ,K}, and such that (20) holds

for all l ≥ 1+6N. (Recall thatθ K+1 has been specified so that playeri’s continuation

payoff afterh[K]
−i ∈ H [K]

−i is equal toVi(h
[K]
−i ) = 0 and such that (20) holds for alll ≥

1+6N+K(1+2N).)
We considerθ k which has the following form:

θ k(h[k]
i−1, I

k−1
−i ) = θ̃ k(h[k,m]

i−1 , Ik−1
−i )+

2NT

∑
t=1

ui(at
i−1,ω

t
i−1)

δ 2NT+1−t . (33)

Here,(at
i−1,ω

t
i−1) is player(i−1)’s action and signal in thetth period of thekth sup-

plemental round, and̃θ k is a real-valued function ofh[k,m]
i−1 andIk−1

−i . Although θ̃ k has

not been specified yet, the following lemma is established.

Lemma 8. Playeri is indifferent over all actions in every period of thekth supplemental

round regardless of the past history, and hence (20) holds for alll ≥ 2+ 6N + (k−
1)(1+2N).

Proof. As in the report round, the second term in the right-hand side of (33) off-

sets the stage game payoffs in thekth supplemental round. Note also that the term

θ̃ k(h[k,m]
i−1 , Ik−1

−i ) does not depend on the outcome in thekth supplemental round. Thus, it

suffices to show that playeri’s action in thekth supplemental round does not affect the

continuation payoff after thekth supplemental round with(θ k+1, · · · ,θ K+1).
Recall that this continuation payoff is assumed to be equal toVi(h

[k]
−i). By definition,

the valueVi(h
[k]
−i) is independent of players−i’s inferences on playeri’s message in the

kth supplemental round. Therefore, playeri’s actions in the(2i−1)st and2ith review

phases cannot affect the continuation payoff. Also, playeri cannot manipulate player

j ’s inference on messages from the other players, since playeri’s action cannot affect

the realization of the corresponding random events. Hence, playeri’s actions in other

periods cannot affect the continuation payoff as well. Q.E.D.

To specify the real-valued functioñθ k, the following notation is useful. For each

h[k−1]
−i ∈ H [k−1]

−i andai ∈ Ai , letW̃i(h
[k−1]
−i ,ai) denote playeri’s continuation payoff from
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the kth main round, augmented by(θ k+1, · · · ,θ K+1) and by the second term of the

right-hand side of (33), when playeri playsai constantly in thekth main round and

plays a best reply thereafter. That is,W̃i(h
[k−1]
−i ,ai) denotes the value

KT

∑
t=1

δ t−1πi(ai ,s
x−i
−i (h

[k−1]
−i ))+δ KT+2NT ∑

h[k]
−i∈H [k]

−i

Pr(h[k]
−i|h[k−1]

−i ,ai)Vi(h
[k]
−i)

wherePr(h[k]
−i |h[k−1]

−i ,ai) denotes the probability thath[k]
−i realizes when playeri playsai

constantly in thekth main round and sendsmk
i = 0 in thekth supplemental round while

the opponents’ playsx|
h[k−1]
−i

. Note that the first term is the stage game payoff in thekth

main round, and the second is the continuation payoff after thekth supplemental round

augmented by(θ k+1, · · · ,θ K+1). The stage game payoffs in thekth supplemental round

does not appear here, as the second term of the right-hand side of (33) offset them.

For eachj , i andh[k−1]
j ∈ H [k−1]

j , let Jk−1
j denote the history in the confirmation

round and the past supplemental rounds, i.e.,Jk−1
j = (m0(h[k−1]

j ), · · · ,mk(h[k−1]
j )). Let

Jk−1
−i = (Jk−1

j ) j,i ∈ (M0×·· ·×Mk−1)N−1. Note thatW̃i(h
[k−1]
−i ,ai) does not depend on

the entire information ofh[k−1]
−i but onJk−1

−i . Hence, one can writẽWi(Jk−1
−i ,ai) instead

of W̃i(h
[k−1]
−i ,ai).

For eachJk−1
−i ∈ (M0×·· ·×Mk−1)N−1, let (a1

i (J
k−1
−i ), · · · ,a|Ai |

i (Jk−1
−i )) be an order-

ing of all actionsai ∈ Ai such that

lim
T→∞

lim
δ→1

W̃i(Jk−1
−i ,a1

i (J
k−1
−i ))

T
≥ ·· · ≥ lim

T→∞
lim
δ→1

W̃i(Jk−1
−i ,a|Ai |

i (Jk−1
−i ))

T
.

For eachJk−1
−i andl ∈{1, · · · , |Ai |}, let1[Jk−1

−i ,l ] : H [k,m]
i−1 →{0,1} be the indicator function

such that1[Jk−1
−i ,l ](h

[k,m]
i−1 ) = 1 if the random eventψi−1({al

i (J
k−1
−i ), · · · ,a|Ai |

i (Jk−1
−i )}) is

counted more thanZKT times in thekth main round (according to the historyh[k,m]
i−1 ), and

1[Jk−1
−i ,l ](h

[k,m]
i−1 ) = 0 otherwise. Likewise, for eachai ∈ Ai , let 1ai : H [k,m]

i−1 →{0,1} be the

indicator function such that1ai(h
[k,m]
i−1 ) = 1 if and only if the random eventψi−1({ai})

is counted more thanZKT times in thekth main round.

From (13), there is a positive numberη > 0 satisfying
(

1− K2T
Tb

)
3ui < 3η < wi− lim

δ→1
max

s
Tb
i ∈S

Tb
i

wP
i (sTb

i ,sx−i
−i ) (34)

for all x−i ∈ XB
−i . Then, letθ̃ k be such that

θ̃ k(h[k,m]
i−1 , Ik−1

−i ) = ∑
ai∈Ai

1ai(h
[k,m]
i−1 )KTη +

|Ai |
∑
l=1

1[Ik−1
−i ,l ](h

[k,m]
i−1 )λ k(Ik−1

−i , l), (35)
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where the values(λ k(Ik−1
−i , l))Ik−1

−i ,l solve

Vi(h
[k−1]
−i ) = W̃i(h

[k−1]
−i ,ai)+δ KT+2NT ∑

ãi∈Ai

Pr(1ãi |h[k−1]
−i ,ai)KTη

+δ KT+2NT ∑
Ik−1
−i

Pr(Ik−1
−i |h[k−1]

−i )
|Ai |
∑
l=1

Pr(1[Ik−1
−i ,l ]|h

[k−1]
−i ,ai)λ k(Ik−1

−i , l) (36)

for all h[k−1]
−i ∈H [k−1]

−i andai ∈Ai . Here,Pr(1[·]|h[k−1]
−i ,ai) denotes the probability that the

indicator function1[·](h
[k,m]
i−1 ) takes one given that playeri chooses the constant action

ai while players−i play the actionsx−i
−i (h

[k−1]
−i ) constantly in thekth main round; and

Pr(Ik−1
−i |h[k−1]

−i ) denotes the probability thatIk−1
−i realizes given that the history at the

beginning of thekth main round ish[k−1]
−i . In words, the values(λ k(Ik−1

−i , l))Ik−1
−i ,l are

determined so that playeri’s unnormalized continuation payoff afterh[k−1]
−i augmented

by (θ k, · · · ,θ K+1) equalsVi(h
[k−1]
−i ), no matter what constant action playeri chooses in

thekth main round. Indeed, the right-hand side of (36) denotes playeri’s continuation

payoff afterh[k−1]
−i when playeri choosesai constantly in thekth main round and plays

a best reply thereafter.

Lemma 9. There isT such that for allT > T, there isδ ∈ (0,1) such that for all

δ ∈ (δ ,1), system (36) has a unique solution, and it satisfies

−2NTui−2KTη < θ k(h[k]
i−1, I

k−1
−i ) <

wi−wi

(K +3)(1−δ )
(37)

for all h[k]
i−1 andIk−1

−i . Also, using this transfer scheme, (20) holds for alll ≥ 1+6N+
(k−1)(1+2N), htl ∈ Htl , andx∈ XB, and playeri’s continuation payoff after history

h[k−1]
−i ∈ H [k−1]

−i equalsVi(h
[k−1]
−i ).

Proof. See Appendix C.5.1. Q.E.D.

C.3 Constructing θ0

Let

θ 0(h[0]
i−1) =

6NT

∑
t=1

ui(at
i−1,ω

t
i−1)

δ 6NT+1−t

where(at
i−1,ω

t
i−1) is player(i−1)’s action and signal in thetth period of the confir-

mation round. As in the report round, thisθ 0 offsets the stage game payoffs in thetth

period of the confirmation round. In addition, as in the proof of Lemma 8, one can show

that playeri’s actions in the confirmation round cannot affect the expected continuation
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payoffs from the first main round augmented by(θ 1, · · · ,θ K+1). Therefore, playeri is

indifferent among all actions in every period of the confirmation round regardless of

the past history, and hence (20) holds for alll ≥ 1, htl ∈ Htl , andx∈ XB.

Also, as in step 1,

−6NTui < θ 0(h[0]
i−1) <

wi−wi

(K +3)(1−δ )
(38)

for all h[0]
i−1 ∈ H [0]

i−1, provided thatδ is close to one.

C.4 Constructing θ−1

For eachx∈X, letH [−1]
i−1 (x) denote the set of allh[−1]

i−1 ∈H [−1]
i−1 such that̂x−i(h

[−1]
i−1 ) = x−i

andψi−1({axi
i }) is counted more thanZT times during theT-period interval from period

(i − 1)T + 1 to period iT . Then, for eachx ∈ X, let 1x : H [−1]
i−1 → {0,1} denote the

indicator function ofH [−1]
i−1 (x). That is,1x(h

[−1]
i−1 ) = 1 if and only if h[−1]

i−1 ∈ H [−1]
i−1 (x).

Let

θ−1(h[−1]
i−1 ) = 3Tbη +

NT

∑
t=1

ui(at
i−1,ω

t
i−1)

δ NT−t + ∑
x∈XB

1x(h
[−1]
i−1 )λ−1(x)

where(at
i−1,ω

t
i−1) is player(i−1)’s private history in thetth period of the block game,

and the values(λ−1(x))x∈XB solve

Tb

∑
t=1

δ t−1wi = δ NT


3Tbη + ∑

x̃∈XB
∑

h[−1]
i−1 ∈H [−1]

i−1 (x̃)

Pr(h[−1]
i−1 |sx)λ−1(x̃)




+δ 7NT ∑
h[0]
−i∈H [0]

−i

Pr(h[0]
−i |sx)Vi(h

[0]
−i) (39)

for all x−i ∈ XB
−i . Here,Pr(h[−1]

i−1 |sx) denotes the probability thath[−1]
i−1 realizes when

players perform the block strategy profilesx, andPr(h[0]
−i |sx) denotes the probability of

h[0]
−i . Intuitively, the values(λ−1(x))x∈XB are determined so that (21) holds. Indeed,

the right-hand side of (39) denotes playeri’s auxiliary scenario payoff from the block

strategy profilesx. (Precisely, the first term denotes the expectation of the paymentθ−1

other than the termui , and the second term denotes the expectation of the continuation

payoff after the confirmation round. The stage game payoffs in the signaling round and

the confirmation round do not appear here, since these payoffs and the termui in θ−1

andθ 0 cancel out.)
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Lemma 10. There isT such that for allT > T, there isδ ∈ (0,1) such that for all

δ ∈ (δ ,1), system (39) has a unique solution, and it satisfies

3Tbη−NTui < θ−1(h[−1]
i−1 ) <

wi−wi

(K +3)(1−δ )
. (40)

for all h[−1]
i−1 ∈ H [−1]

i−1 . Also, under this transfer scheme, (20) and (21) hold for alll ≥ 0,

htl ∈ Htl , andx∈ XB.

Proof. See Appendix C.5.3. Q.E.D.

This lemma asserts that the specifiedUB
i satisfies (20) and (21). Finally, (22) follows

from (13), (14), (32), (37), (38), and (40).

C.5 Remaining Proofs

C.5.1 Proof of Lemma 9

Part 1. Proof of Uniqueness. Observe that the valueVi(h
[k−1]
−i ) does not depend on

the entire information ofh[k−1]
−i but onJk−1

−i , since the continuation strategy of players

−i from the kth main round depends only onJk−1
−i . Thus writeVi(Jk−1

−i ) instead of

Vi(h
[k−1]
−i ). Likewise, one can replaceh[k−1]

−i with Jk−1
−i in each term of the right-hand

side of (36). Therefore, solving (36) is equivalent to considering the following system:

Vi(Jk−1
−i ) = W̃i(Jk−1

−i ,ai)+δ KT+2NT ∑
ãi∈Ai

Pr(1ãi |Jk−1
−i ,ai)KTη

+δ KT+2NT ∑
Ik−1
−i

Pr(Ik−1
−i |Jk−1

−i )
|Ai |
∑
l=1

Pr(1[Ik−1
−i ,l ]|Jk−1

−i ,ai)λ k(Ik−1
−i , l) (41)

for all Jk−1
−i andai ∈ Ai .

Note that (41) is represented by the matrix form

Qλ k = b. (42)

Here,λ k is a column vector with elementsλ k(Ik−1
−i , l) for all Ik−1

−i andl ∈ {1, · · · , |Ai |};
Q is a coefficient matrix, each entry of which denotes the product ofPr(Ik−1

−i |Jk−1
−i ) and

Pr(1[Ik−1
−i ,l ]|Jk−1

−i ,ai); andb is a column vector denoting the remaining terms, i.e., each

entry ofb is denoted by

b(Jk−1
−i ,ai) =

1
δ KT+2NT

[
Vi(Jk−1

−i )−W̃i(Jk−1
−i ,ai)

]
− ∑

ãi∈Ai

Pr(1ãi |Jk−1
−i ,ai)KTη .

Without loss of generality, assume that for eachn, there isIk−1
−i such that for each

l ∈ {1, · · · , |Ai |}, the (n|Ai |+ l)th coordinate ofλ k is λ k(Ik−1
−i , l) and the(n|Ai |+ l)th
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coordinate ofb is b(Jk−1
−i ,al

i (J
k−1
−i )) whereJk−1

−i satisfiesIk−1
−i = Jk−1

−i . (This assumption

is indeed satisfied by exchanging rows ofλ k andb in an appropriate way.)

It follows from (17) and (18) that, asT → ∞, Pr(Ik−1
−i |Jk−1

−i ) converges to one if

Ik−1
−i = Jk−1

−i , and to zero otherwise. Likewise,Pr(1[Ik−1
−i ,l ]|Jk−1

−i ,ai) converges to one if

ai is in the set{al
i (I

k−1
−i ), · · · ,a|Ai |

i (Ik−1
−i )}, and to zero otherwise. Hence, the matrixQ

converges to




D 0
. . .

0 D




whereD is the|Ai |× |Ai | matrix such that itsi j -element equals one ifi ≥ j and zero if

i < j. Since the above matrix is invertible, there is an inverse ofQ for sufficiently large

T, and (42) has a unique solutionQ−1b.

Part2. Proof of (37). From (17) and (18),Pr(1ãi |Jk−1
−i ,ai) converges asT → ∞ to

one if ãi = ai , and to zero otherwise. Therefore,

lim
T→∞

lim
δ→1

b(Jk−1
−i ,ai)
T

= lim
T→∞

lim
δ→1

Vi(Jk−1
−i )−W̃i(Jk−1

−i ,ai)
T

−Kη

for all Jk−1
−i andai ∈ Ai . Plugging this intoλ k = Q−1b,

lim
T→∞

lim
δ→1

λ k(Jk−1
−i , l)
T

=





lim
T→∞

lim
δ→1

Vi(Jk−1
−i )−W̃i(Jk−1

−i , l)
T

−Kη if l = 1

lim
T→∞

lim
δ→1

W̃i(Jk−1
−i , l −1)−W̃i(Jk−1

−i , l)
T

if l ≥ 2

By construction,limT→∞ limδ→1
Vi(Jk−1

−i )−W̃i(Jk−1
−i ,1)

T ≥0andlimT→∞ limδ→1
W̃i(Jk−1

−i ,l−1)−W̃i(Jk−1
−i ,l)

T ≥
0 for eachl ≥ 2. Thus, from (35),limT→∞ limδ→1

θ̃k

T is at least−Kη . Substituting this

into (33) and using continuity, it follows that there isT such that for allT > T, there is

δ ∈ (0,1) such that for allδ ∈ (δ ,1), (37) still holds.

Part 3. Proof of (20). Sinceλ k solves (36), playeri’s continuation payoff after

h[k−1]
−i ∈ H [k−1]

−i equalsVi(h
[k−1]
−i ) if she chooses a constant action in thekth main round

and plays a best reply thereafter. This implies that playeri is indifferent over all constant

actions. Hence, it suffices to show that playeri is worse off if she does not take a

constant action in thekth main round.

For eachh[k−1]
−i ∈ H [k−1]

−i and(at
i)

KT
t=1 ∈ (Ai)KT , let Wi(h

[k−1]
−i ,(at

i)
KT
t=1) denote player

i’s continuation payoff afterh[k−1]
−i , augmented by(θ k, · · · ,θ K+1), when playeri per-

forms aKT-length sequence of actions(at
i)

KT
t=1 in thekth main round and plays a best
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reply thereafter. That is,Wi(h
[k−1]
−i ,(at

i)
KT
t=1) denotes the value

KT

∑
t=1

δ t−1πi(at
i ,s

x−i
−i (h

[k−1]
−i ))

+δ KT+2NT ∑
h[k]
−i∈H [k]

−i

Pr(h[k]
−i|h[k−1]

−i ,(at
i)

KT
t=1)Vi(h

[k]
−i)

+δ KT+2NT ∑
ãi∈Ai

Pr(1ãi |h[k−1]
−i ,(at

i)
KT
t=1)KTη

+δ KT+2NT ∑
Ik−1
−i

Pr(Ik−1
−i |h[k−1]

−i )
|Ai |
∑
l=1

Pr(1[Ik−1
−i ,l ]|h

[k−1]
−i ,(at

i)
KT
t=1)λ

k(Ik−1
−i , l) (43)

wherePr(·|h[k−1]
−i ,(at

i)
KT
t=1) is defined asPr(·|h[k−1]

−i ,ai) but playeri plays the sequence

(at
i)

KT
t=1, rather than the constant actionai , in thekth main round.

Lemma 11. Suppose thatδ = 1. Then, there isT such that for allT > T, h[k−1]
−i ∈

H [k−1]
−i , and(at

i)
KT
t=1 ∈ (Ai)KT satisfyingat

i , at̃
i for somet andt̃,

Vi(h
[k−1]
−i ) > Wi(h

[k−1]
−i ,(at

i)
KT
t=1). (44)

Proof. See Appendix C.5.2. Q.E.D.

This lemma asserts that in the case ofδ = 1, player i is worse off by playing a

sequence(at
i)

KT
t=1 in thekth main round, provided thatat

i , at̃
i for somet andt̃. Also, it

follows from Lemma 3 that playeri cannot earn profit even if she conditions the play

on private signals. Hence, ifδ = 1, (20) holds for alll ≥ 1+ 6N +(k−1)(1+ 2N),
htl ∈ Htl , andx∈ XB.

SinceVi andWi are continuous with respect toδ , (44) is still satisfied after perturb-

ing δ . Hence, (20) holds, provided thatδ is large enough.

C.5.2 Proof of Lemma 11

Without loss of generality, consider a particular historyh[k−1]
−i ∈ H [k−1]

−i . Pick arbitrary

actionsa∗i ∈ Ai anda∗∗i , a∗i . For eachτ ∈ {0, · · · ,KT}, let Wi(τ) denote the value

Wi(h
[k−1]
−i ,(at

i)
KT
t=1) when

(at
i)

KT
t=1 = (a∗i , · · · ,a∗i︸       ︷︷       ︸

τ

,a∗∗i , · · · ,a∗∗i︸          ︷︷          ︸
KT−τ

).

Also, letPr(·|h[k−1]
−i ,τ) denotePr(·|h[k−1]

−i ,(at
i)

KT
t=1) for such a(at

i)
KT
t=1. In what follows, it

is shown thatWi(τ) <Vi(h
[k−1]
−i ) for eachτ ∈ {1, · · · ,KT−1}, that is, playing a constant

action is better than mixing two actions,a∗i anda∗∗i .
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For eachIk−1
−i , let l∗(Ik−1

−i ) be the integerl such thatal
i (I

k−1
−i ) = a∗i , andl∗∗(Ik−1

−i ) be

the integerl such thatal
i (I

k−1
−i ) = a∗∗i . Let I k−1

−i denote the set of allIk−1
−i satisfying

l∗(Ik−1
−i ) > l∗∗(Ik−1

−i ). It follows from Lemma 3 that

Pr(1ãi |h[k−1]
−i ,τ)−Pr(1ãi |h[k−1]

−i ,τ−1) =





(q3−q2)F(KT− τ) if ãi = a∗i
(q2−q3)F(τ−1) if ãi = a∗∗i
0 otherwise

, (45)

whereF1(τ) denotesF1(τ,KT−1,ZKT). Likewise,

Pr(1[Ik−1
−i ,l ]|h

[k−1]
−i ,τ)−Pr(1[Ik−1

−i ,l ]|h
[k−1]
−i ,τ−1)

=

{
(q2−q3)F(τ−1) if Ik−1

−i ∈I k−1
−i

(q3−q2)F(KT− τ) if Ik−1
−i <I k−1

−i

,

Substituting these into (43),

Wi(τ)−Wi(τ−1)

=πi(a∗i ,s
x−i
−i (h

[k−1]
−i ))−πi(a∗∗i ,sx−i

−i (h
[k−1]
−i ))

+ ∑
h[k]
−i∈H [k]

−i

Pr(h[k]
−i |h[k−1]

−i ,τ)Vi(h
[k]
−i)− ∑

h[k]
−i∈H [k]

−i

Pr(h[k]
−i |h[k−1]

−i ,τ−1)Vi(h
[k]
−i)

− (q3−q2)F1(τ−1)KTη +(q3−q2)F1(KT− τ)KTη

− ∑
Ik−1
−i ∈I k−1

−i

Pr(Ik−1
−i |h[k−1]

−i )
l∗(Ik−1

−i )

∑
l=1+l∗∗(Ik−1

−i )

(q3−q2)F1(τ−1)λ k(Ik−1
−i , l)

+ ∑
Ik−1
−i <I k−1

−i

Pr(Ik−1
−i |h[k−1]

−i )
l∗∗(Ik−1

−i )

∑
l=1+l∗(Ik−1

−i )

(q3−q2)F1(KT− τ)λ k(Ik−1
−i , l). (46)

Let ∆1(τ) be the terms in the second line of the right-hand side, and∆2(τ) be the

remaining terms. The following lemma is useful to evaluate∆2(τ).

Lemma 12. There isT > 0 such that for allT > T, there isτ such that∆2(τ) is

negative forτ = 1; non-positive for allτ ≤ τ; non-negative for allτ > τ; and positive

for τ = KT.

Proof. Observe that−∆2(τ) is identified asTW̃i(τ) in (48) of Yamamoto (2007). In-

deed, the terms in the first line of the right-hand side of (46) corresponds to the term

π i , the first term in the third line and the term in the fifth line correspond to the term

∑ j∈IC KT
j TF(τ−1), and the second term in the third line and the term in the fifth line

correspond to the term∑ j∈ID KT
j TF(T− τ). Thus, there exists the desiredτ as shown

by (54) of Yamamoto (2007). Q.E.D.
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The next two lemmas show that∆1(τ) = 0 for some cases.

Lemma 13. Suppose thath[k−1]
−i <H

[k−1]
−i or h[k−1]

−i ∈H [k−1]
−i (x, i) for somex∈ XB. Then

∆1(τ) = 0 for all τ.

Proof. Suppose thath[k−1]
−i <H

[k−1]
−i . Then, by definition,∑

h[k]
−i<H [k]

−i
Pr(h[k]

−i |h[k−1]
−i ,τ) = 1.

This shows that∆1(τ) = 0, sinceVi(h
[k]
−i) is constant over allh[k]

−i < H
[k]
−i . Likewise, if

h[k−1]
−i ∈H [k−1]

−i (x, i) for somex∈ XB, then by definition∑
h[k]
−i∈H [k]

−i (x,i)
Pr(h[k]

−i |h[k−1]
−i ,τ) =

1. Hence,∆1(τ) = 0 as forh[k−1]
−i < H

[k−1]
−i . Q.E.D.

Lemma 14. Suppose thath[k−1]
−i ∈ H [k−1]

−i (x) for somex∈ XB, a∗i , ax,k
i , anda∗∗i , ax,k

i .

Then∆1(τ) = 0 for all τ.

Proof. Observe that playeri’s action in thekth main round affects the realization of

h[k]
−i only through the random eventsψi−1(x,k) and ψi+1(x,k). The probability that

ψi−1(x,k) is counted against the action profile(a∗i ,a
x,k
−i ) is the same as against(a∗∗i ,ax,k

−i ).
Likewise, the probability thatψi+1(x,k) occurs against(a∗i ,a

x,k
−i ) is the same as against

(a∗∗i ,ax,k
−i ). Therefore,Pr(h[k]

−i |h[k−1]
−i ,τ) = Pr(h[k]

−i |h[k−1]
−i ,τ − 1) for all τ, and hence

∆1(τ) = 0. Q.E.D.

Lemma 13 shows that ifh[k−1]
−i <H

[k−1]
−i or h[k−1]

−i ∈H [k−1]
−i (x, i) for somex∈XB, then

Wi(τ)−Wi(τ −1) = ∆1(τ)+ ∆2(τ) = ∆2(τ). Thus, from Lemma 12 andVi(h
[k−1]
−i ) =

Wi(0) = Wi(KT), Vi(h
[k−1]
−i ) > Wi(τ) for all τ ∈ {1, · · · ,KT−1}, as desired.

Likewise, using Lemmas 12 and 14, one can show thatVi(h
[k−1]
−i ) > Wi(τ) for all

τ ∈ {1, · · · ,KT−1} if h[k−1]
−i ∈ H [k−1]

−i (x) for somex∈ XB, a∗i , ax,k
i , anda∗∗i , ax,k

i .

Therefore, it remains to consider the case ofh[k−1]
−i ∈H [k−1]

−i (x) for somex∈ XB and

a∗i = ax,k
i (the case ofa∗∗i = ax,k

i is analogous).

Lemma 15. Suppose thath[k−1]
−i ∈ H [k−1]

−i (x) for somex ∈ XB and a∗i = ax,k
i . If T is

large enough, then∆1(τ) is non-negative for allτ.

Proof. It follows from Lemma 3 that playing the actiona∗i exactlyτ times instead of

τ −1 times in thekth main round decreases the probability that playeri−1 sends the

messagemk
i−1 = i and the probability that playeri + 1 sends the messagemk

i+1 = i,

while it increases the probability that playeri−1 sends the messagemk
i−1 = i−2 and

the probability that playeri +1 sends the messagemk
i+1 = i +2. Then,

∑
h[k]
−i∈H [k]

−i (x,i)

Pr(h[k]
−i |h[k−1]

−i ,τ) < ∑
h[k]
−i∈H [k]

−i (x,i)

Pr(h[k]
−i |h[k−1]

−i ,τ−1)
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and

∑
h[k]
−i<H [k]

−i

Pr(h[k]
−i |h[k−1]

−i ,τ) > ∑
h[k]
−i<H [k]

−i

Pr(h[k]
−i |h[k−1]

−i ,τ−1).

These inequalities show that∆1(τ) is non-negative, sinceVi(h
[k]
−i) takes the highest value

whenh[k]
−i < H

[k]
−i , the second highest value whenh[k]

−i ∈ H [k]
−i (x), and the lowest value

whenh[k]
−i ∈ H [k]

−i (x, i). Q.E.D.

Lemma 16. Suppose thath[k−1]
−i ∈ H [k−1]

−i (x) for somex∈ XB anda∗i = ax,k
i . Then, for

anyρ ∈ (0,1) andn≥ 1, ∑[ρKT]
τ=1 ∆1(τ) = o(T−n). Here,[ρKT] denotes the integer part

of ρKT.

Proof. Let ∆Pr(mk
i−1 = i|τ) denote the decrease in the probability ofmk

i−1 = i when

player i chooses the actiona∗i τ times rather thanτ − 1 times in thekth main round.

Likewise, let∆Pr(mk
i+1 = i|τ) be the decrease in the probability ofmk

i+1 = i, ∆Pr(mk
i−1 =

i−2|τ) be the increase in the probability ofmk
i−1 = i−2, and∆Pr(mk

i+1 = i +2|τ) be

the increase in the probability ofmk
i+1 = i +2.

Following the proof of Lemma 15,∆1(τ) is represented by

∆1(τ) = C1(τ)∆Pr(mk
i−1 = i|τ)+C2(τ)∆Pr(mk

i+1 = i|τ)

+C3(τ)∆Pr(mk
i−1 = i−2|τ)+C4(τ)∆Pr(mk

i+1 = i +2|τ). (47)

Here,C1(τ) measures how much the expected value ofVi(h
[k]
−i) increases when the

probability of mk
i−1 = i decreases, while the probability ofmk

i+1 = i, the probability

of mk
i−1 = i−2, and the probability ofmk

i+1 = i + 2 are fixed (these probabilities are

calculated as ifa∗i is chosenτ−1 times in thekth main round);C2(τ) denotes how much

the expected value ofVi(h
[k]
−i) increases when the probability ofmk

i+1 = i decreases,

while the probabilities ofmk
i−1 = i, the probability ofmk

i−1 = i−2, and the probability

of mk
i+1 = i + 2 are fixed (the probability ofmk

i−1 = i is calculated as ifa∗i is chosen

τ times, and the others are calculated as ifa∗i is chosenτ − 1 times); and so on. By

definition,

0≤Cn(τ)≤ ∆Vi (48)

where∆Vi = max
h[k]
−i∈H [k]

−i
Vi(h

[k]
−i)−min

h[k]
−i∈H [k]

−i
Vi(h

[k]
−i).

For notational convenience, letF ′n(τ) = Fn(τ,KT−1,Z′KT) andF ′′n (τ) = Fn(τ,KT−
1,Z′′KT). Then, from Lemma 3

∆Pr(mk
i−1 = i|τ) = (q2−q1)F ′′2 (KT− τ),

∆Pr(mk
i+1 = i|τ) = (q3−q2)F ′1(τ−1),

∆Pr(mk
i−1 = i−2|τ) = (q2−q1)F ′2(KT− τ),
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and

∆Pr(mk
i+1 = i +2|τ) = (q3−q2)F ′′1 (τ−1).

Substituting these and (48) into (47),

∆1(τ)≤ ∆Vi∆q
(
F ′′2 (KT− τ)+F ′1(τ−1)+F ′2(KT− τ)+F ′′1 (τ−1)

)
(49)

where∆q = max{q2−q1, q3−q2}. To complete the proof, one needs to find a bound

on the right-hand side. The following claims are useful to obtain such a bound. See

Appendix C.5.5 for the proofs.

Claim 1. For any ρ ∈ [0,1) andn≥ 1, F1([ρT]−1,T−1,Z′T) = o(T−n) as T → ∞.

Also, for anyρ ∈ (0,1] andn≥ 1, F2(T− [ρT],T−1,Z′′T) = o(T−n) asT → ∞.

Claim 2. For anyρ ∈ (0,1), there existsT such that for anyT > T and anyτ < [ρKT],
F ′′2 (KT− τ)≤ F ′′2 (KT− [ρKT]), F ′1(τ−1)≤ F ′1([ρKT]−1), F ′2(KT− τ)≤ F ′2(KT−
[ρKT]), andF ′′1 (τ−1)≤ F ′′1 ([ρKT]−1).

Claim 3. For anyρ ∈ [0,1), F1([ρT]−1,T−1,Z′′T) ≤ F1([ρT]−1,T−1,Z′T) if T is

large enough. Also, for anyρ ∈ (0,1], F2(T − [ρT],T − 1,Z′T) ≤ F2(T − [ρT],T −
1,Z′′T) if T is large enough.

Applying Claims 2 and 3 to (49),

[ρKT]

∑
τ=1

∆1(τ)≤ ∆Vi∆q2[ρKT]
(
F ′′2 (KT− [ρKT])+F ′1([ρKT]−1)

)
.

Notice that∆Vi = O(T), sinceVi(h
[k]
−i) = O(T). On the other hand, Claim 1 implies that

F ′′2 (KT− [ρKT]) = o(T−n) andF ′1([ρKT]−1) = o(T−n). Therefore,∑[ρKT]
τ=1 ∆1(τ) =

o(T−n). Q.E.D.

Lemma 17. There areρ ∈ (0,1) and T such that for anyT > T and τ > ρKT, the

value∑KT
τ̃=τ ∆2(τ̃) is positive.

Proof. Let ∆πi denote the first line of the right-hand side of (46). Letρ ∈ (1+ η
∆πi

,1)
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if ∆πi <−2η , and letρ = 1
2 otherwise. Note that

∑KT
τ̃=τ ∆2(τ̃)

T

=
KT− [ρKT]+1

T
∆πi

+
KT

∑
τ=[ρKT]

(q3−q2)F1(KT− τ)Kη−
KT

∑
τ=[ρKT]

(q3−q2)F1(τ−1)Kη

− ∑
Ik−1
−i ∈I k−1

−i

Pr(Ik−1
−i |h[k−1]

−i )
l∗(Ik−1

−i )

∑
l=1+l∗∗(Ik−1

−i )

KT

∑
τ=[ρKT]

(q3−q2)F1(τ−1)
λ k(Ik−1

−i , l)
T

+ ∑
Ik−1
−i <I k−1

−i

Pr(Ik−1
−i |h[k−1]

−i )
l∗∗(Ik−1

−i )

∑
l=1+l∗(Ik−1

−i )

KT

∑
τ=[ρKT]

(q3−q2)F1(KT− τ)
λ k(Ik−1

−i , l)
T

.

From (45) and the law of large numbers,

lim
T→∞

KT

∑
τ=[ρKT]

(q3−q2)F(τ−1)

= lim
T→∞

Pr(1a∗∗i |h
[k−1]
−i , [ρKT])− lim

T→∞
Pr(1a∗∗i |h

[k−1]
−i ,KT

=0−0

=0.

Likewise, from (18), (45), and the law of large numbers,

lim
T→∞

KT

∑
τ=[ρKT]

(q3−q2)F(KT− τ)

= lim
T→∞

Pr(1a∗i |h
[k−1]
−i ,KT)− lim

T→∞
Pr(1a∗i |h

[k−1]
−i , [ρKT])

=1−0

=1.

Substituting these and usingλ k(Ik−1
−i , l) = O(T),

lim
T→∞

∑KT
τ=[ρKT] ∆2(τ)

T
=(1−ρ)K∆πi +Kη

+ ∑
Ik−1
−i <I k−1

−i

lim
T→∞

Pr(Ik−1
−i |h[k−1]

−i )
l∗∗(Ik−1

−i )

∑
l=1+l∗(Ik−1

−i )

lim
T→∞

λ k(Ik−1
−i , l)
T

Since(1−ρ)K∆πi +Kη > 0 andlimT→∞
λ k(Ik−1

−i ,l)
T ≥ 0, the right-hand side is positive.

Therefore,∑KT
τ=[ρKT] ∆2(τ) > 0 for sufficiently largeT. This, together with Lemma 12,

completes the proof. Q.E.D.
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Lemma 18. limT→∞ ∆2(1) =−∞.

Proof. Lemma 7 of Yamamoto (2007) asserts thatF1(KT − 1) = o(T−1) asT → ∞.

On the other hand,λ k(Ik−1
−i , l) = O(T) as T → ∞. Hence, the term in the last line

of the right-hand side of (46) and the second term in the third line converge to zero.

Meanwhile, the first term in the third line goes to infinity and the limit of the term

in the fourth line is non-negative, since (19) holds andlimT→∞
λ k(Ik−1

−i ,l)
T ≥ 0. Hence,

limT→∞ ∆2(1) =−∞. Q.E.D.

Let τ be as in Lemma 12, andρ be as in Lemma 17. From Lemmas 12, 15, and

17, if T is sufficiently large, then the value∑KT
t=τ(∆1(t)+ ∆2(t)) is positive for allτ >

min{τ,ρKT}, and henceWi(KT) > Wi(τ) for all τ > min{τ,ρKT}−1. Also, using

Lemmas 12, 16, and 18, one can show that ifT is sufficiently large, then the value

∑τ
t=1(∆1(t)+ ∆2(t)) is negative for allτ ≤min{τ,ρKT}, implying Wi(0) > Wi(τ) for

all τ < min{τ,ρKT}. UsingVi(h
[k−1]
−i ) = Wi(0) = Wi(KT), it follows thatVi(h

[k−1]
−i ) >

Wi(τ) for all τ ∈ {1, · · · ,KT−1}, as desired.

So far it has been shown that playeri prefers playing a constant action to mixing

two actions. Since a similar argument shows that mixingn actions is better than mixing

n+1 actions, playeri is worse off by deviating from a constant action. This completes

the proof.

C.5.3 Proof of Lemma 10

Part 1. Proof of Uniqueness. Notice that (39) is represented by the matrix form

Qλ−1 = b (50)

whereλ−1 is a column vector with elementsλ−1(x) for all x∈ XB, Q is the coefficient

matrix, the entry of which is∑
h[−1]

i−1 ∈H [−1]
i−1 (x̃)

Pr(h[−1]
i−1 |sx) for x∈ XB andx̃∈ XB, andb is

a column vector representing the remaining terms, i.e., each element ofb is

b(x) =
Tb

∑
t=1

δ t−1−NTwi−3Tbη−δ 6NT ∑
h[0]
−i∈H [0]

−i

Pr(h[0]
−i |sx)Vi(h

[0]
−i). (51)

From (17), (18), and the law of large numbers, the term∑
h[−1]

i−1 ∈H [−1]
i−1 (x̃)

Pr(h[−1]
i−1 |sx)

converges to one if̃x = x and to zero otherwise, asT →∞. This implies that the matrix

Q converges to the identity matrix asT → ∞. Hence, for sufficiently largeT, there is

the inverse ofQ, and (50) has a unique solutionλ−1 = Q−1b.
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Part 2. Proof of (40). From (17) and (18),∑
h[0]
−i∈H [0]

−i
Pr(h[0]

−i |sx) converges to one as

T → ∞ for eachx∈ X. By construction, this implies that

lim
T→∞

lim
δ→1

1
Tb

∑
h[0]
−i∈H [0]

−i

Pr(h[0]
−i |sx)Vi(h

[0]
−i) = lim

δ→1

[
max

x̃−i∈XB
−i

max
s
Tb
i ∈S

Tb
i

wP
i (sTb

i ,sx̃−i
−i )

]

for all x∈ XB. Then, from (51),

lim
T→∞

lim
δ→1

b(x)
Tb

= wi−3η− lim
δ→1

[
max

x̃−i∈XB
−i

max
s
Tb
i ∈S

Tb
i

wP
i (sTb

i ,sx̃−i
−i )

]
.

Plugging this intoλ−1 = Q−1b and using (34),

lim
T→∞

lim
δ→1

λ−1(x)
Tb

= lim
T→∞

lim
δ→1

b(x)
Tb

= wi−3η− lim
δ→1

max
s
Tb
i ∈S

Tb
i

wP
i (sTb

i ,sx−i
−i ) > 0

for eachx∈ XB. Hence, (40) holds.

Part 3. Proof of (20). From (39), playeri’s average payoff in the auxiliary scenario

from sx is wi for all x ∈ XB. Therefore, it suffices to show that playingsxi
i is a best

reply againstsx−i
−i . The next lemma shows that deviating to other actions in period

t ∈ {( j−1)T +1, · · · , jT} for j , i is not profitable.

Lemma 19. For eachj , i andt ∈ {( j−1)T +1, · · · , jT}, playeri is indifferent among

all actions in periodt of the block game regardless of the past history.

Proof. In period t ∈ {( j − 1)T + 1, · · · , jT}, players attempt to receive the message

from player j through the random events(ψl ({aG
j }))l, j . Since playeri’s action cannot

affect whether these random events are counted, she is indifferent among all actions.

Q.E.D.

It remains to consider deviations in periodt ∈ {(i−1)T +1, · · · , iT}. As shown in

the following lemma, playeri is indifferent betweenaB
i andai , aG

i ,aB
i in these periods.

Lemma 20. For eacht ∈ {(i − 1)T + 1, · · · , iT} and ai ∈ Ai \ {aG
i ,aB

i }, player i is

indifferent betweenai and aB
i in period t of the block game independently of the past

history.

Proof. In period t ∈ {(i − 1)T + 1, · · · , iT}, player j attempts to receive a message

from playeri throughψ j({aG
i }), and bothai ∈ Ai \ {aG

i ,aB
i } andaB

i induce the same

distribution ofψ j({aG
i }). Q.E.D.

Thus it suffices to show that mixingaG
i andaB

i in theT-period interval from period

(i−1)T + 1 to periodiT is not profitable. For eachx−i ∈ XB
−i andτ ∈ {0, · · · ,T}, let
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Wi(s
x−i
−i ,τ) denote playeri’s (unnormalized) payoff in the auxiliary scenario againstsx−i

−i

when playeri follow a sequence

(aB
i , · · · ,aB

i︸        ︷︷        ︸
τ

,aG
i , · · · ,aG

i︸         ︷︷         ︸
T−τ

)

from period(i−1)T +1 to periodiT , and chooses a best reply in other periods. That

is,Wi(s
x−i
−i ,τ) is defined as

Wi(s
x−i
−i ,τ) = δ 7NT ∑

h[0]
−i∈H [0]

−i

Pr(h[0]
−i |sx−i

−i ,τ)Vi(h
[0]
−i)

+δ NT


3Tbη + ∑

x̃∈XB
∑

h[−1]
i−1 ∈H [−1]

i−1 (x̃)

Pr(h[−1]
i−1 |sx−i

−i ,τ)λ−1(x̃)


 (52)

wherePr(h[−1]
i−1 |sx−i

−i ,τ) andPr(h[0]
−i |sx−i

−i ,τ) denote the probability ofh[−1]
i−1 andh[0]

−i .

Lemma 21. Whenδ = 1, there isT > 0 such that for allT > T, x−i ∈ XB
−i , andτ ∈

{1, · · · ,T−1},
Tb

∑
t=1

δ t−1wi > Wi(s
x−i
−i ,τ). (53)

Proof. See Appendix C.5.4. Q.E.D.

This lemma asserts that playeri is worse off by mixingaG
i andaB

i in the ith T-

period interval of the signaling round (and by taking a best reply in other periods),

whenδ equals one. By continuity, the result remains true as long asδ is close to one.

C.5.4 Proof of Lemma 21

Use (52) to get

Wi(s
x−i
−i ,τ)−Wi(s

x−i
−i ,τ−1)

= ∑
h[0]
−i∈H [0]

−i

Vi(h
[0]
−i)

[
Pr(h[0]

−i |sx−i
−i ,τ)−Pr(h[0]

−i |sx−i
−i ,τ−1)

]

+ ∑
x̃∈XB

∑
h[−1]

i−1 ∈H [−1]
i−1 (x̃)

λ−1(x̃)
[
Pr(h[−1]

i−1 |sx−i
−i ,τ)−Pr(h[−1]

i−1 |sx−i
−i ,τ−1)

]

Without loss of generality, consider a particularx−i ∈ XB
−i , and let∆3(τ) denote the

first term of the right-hand side and∆4(τ) the second term.

Lemma 22. For anyn≥ 1, maxτ∈{1,··· ,T} |∆3(τ)|= o(T−n) asT → ∞.
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Proof. Observe thatVi(h
[0]
−i) is constant for allh[0]

−i ∈ H
[0]
−i , and takes a higher value for

h[0]
−i < H

[0]
−i . Also,Vi(h

[0]
−i) = O(T) asT → ∞. Hence, it suffices to show that

max
τ∈{1,··· ,T} ∑

h[0]
−i<H [0]

−i

∣∣∣Pr(h[0]
−i |τ)−Pr(h[0]

−i |τ−1)
∣∣∣ = o(T−n) (54)

The following claims are useful. The proofs are found in Appendix C.5.5.

Claim 4. For any n≥ 1, j ∈ I , andx j ∈ Xj , if player j ∈ I sendsx j in the signaling

round, then the probability of̂x j(ht
l ) , x j for somel , j is o(T−n) asT → ∞.

Claim 5. For anyn≥ 1, j ∈ I , andm0
j ∈M0

j , if player j ∈ I sendsm0
j in the confirmation

round, then the probability of̂m0
j (h

t
l ) ,m0

j for somel , j is o(T−n) asT → ∞.

Claim 6. LetP(τ) denote the probability that̂xi(ht
j) = G andx̂i(ht

l ) = B for somej , i

andl , i, j when playeri choosesaB
i τ times andaG

i T−τ times during theith T-period

interval. Then, for anyn≥ 1, maxτ∈{1,··· ,T}P(τ) = o(T−n) asT → ∞.

By definition, if players−i make correct inferences on each other’s message in

the signaling round and the confirmation round, and if there is no pair( j, l) such that

x̂i(ht
j) = G and x̂i(ht

l ) = B, thenh[0]
−i ∈ H

[0]
−i . Thus it follows from Claims 4 through 6

that the probability ofh[0]
−i ∈ H

[0]
−i is 1−o(T−n) irrespective of playeri’s play in theith

T-period interval. This proves (54). Q.E.D.

Lemma 23. There isT such that for anyT > T, there isτ such that∆4(τ) is negative

for all τ ≤ τ and is positive for allτ > τ.

Proof. Analogous to the proof of Lemma 12. Q.E.D.

Lemma 24. limT→∞ ∆4(1) =−∞, andlimT→∞ ∆4(T) = ∞.

Proof. Analogous to the proof of Lemma 18. Q.E.D.

Lemmas 22 through 24, together withWi(s
x−i
−i ,0) = Wi(s

x−i
−i ,T) = ∑Tb

t=1δ t−1wi , es-

tablish (53).

C.5.5 Proofs of Claims

The following two claims are useful to prove other claims.

Claim 7. F1(τ,T, r) is single-peaked with respect toτ andr. Also,F2(τ,T, r) is single-

peaked with respect toτ andr. Here, a functionh(τ) is single-peaked with respect toτ
if h(τ)≥ h(τ +1) impliesh(τ +1)≥ h(τ +2).

Proof. Follows from Lemma 5 of Yamamoto (2007). Q.E.D.
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Claim 8. For any ρ ∈ (0,1) satisfyingρ , q3 and n≥ 1, F1(0,T − 1, [ρ(T − 1)]) =
o(T−n) asT → ∞.

Proof. This is a trivial extension of Lemma 6 of Yamamoto (2007). To get the result,

just replaceT2 with Tn. Q.E.D.

Proof of Claim 1.Using Claim 8, one can show thatF1([ρT]−1,T−1,Z′T) = o(T−n)
for any ρ ∈ [q2,1), as in the proof of Lemma 7 of Yamamoto (2007). However, the

proof of Yamamoto (2007) does not work forρ ∈ [0,q2), sinceTF1(T−1,T−1,Z′T)
may not go to infinity. An alternative proof is as follows.

Let fT(τ) = [q2(τ + 1)] + [q3(T − τ)]. Since fT(T − 1) = 0, fT(0) = q3T, and

fT(τ)+1≥ fT(τ−1) for all τ, and (18) holds, there is a sequence of integers(τT)∞
T=1

such thatfT(τT) = Z′T whenT is large enough. By definition,

[q2(τT +1)]+ [q3(T− τT)] = Z′T (55)

for sufficiently largeT. Dividing both sides byT and applying (18),

lim
T→∞

τT

T
= 1. (56)

It follows from (18) and (56) that for sufficiently largeT, [q3(T−τT)] < Z′T . Then.

T2F1(τT ,T−1,Z′T) = T2
Z′T
∑
r=0

F1(0,T−1− τT , r)F1(τT ,τT ,Z′T − r)

≥ T2F1(0,T−1− τT , [q3(T− τT)])F1(τT ,τT ,Z′T − [q3(T− τT)])

= T2F1(0,T−1− τT , [q3(T− τT)])F1(τT ,τT , [q2(τT +1)])

for sufficiently largeT. Here, the last equality comes from (55). Observe thatF1(0,T, r)
is maximized byr = [q3(T + 1)], sinceF1(0,T, r) ≥ F1(0,T, r −1) if and only if r ≤
q3(T +1). Likewise,F1(T,T, r) is maximized byr = [q2(T +1)]. Therefore,[q3(T−
τT)] and [q2(τT + 1)] are the maximizers ofF1(0,T −1− τT , r) andF1(τT ,τT , r), re-

spectively. ThusF1(0,T−1− τT , [q3(T− τT)]) ≥ 1
T andF1(τT ,τT , [q2(τT +1)]) ≥ 1

T .

Plugging these into the above inequality,

T2F1(τT ,T−1,Z′T)≥ 1. (57)

Recall thatF1([ρT]−1,T−1,Z′T)= o(T−n) for anyρ ∈ [q2,1), and henceF1([q2T]−
1,T−1,Z′T) = o(T−n). Noting that (56) and (57) hold, it follows that for sufficiently

largeT, F1([q2T]−1,T−1,Z′T) < F1(τT ,T−1,Z′T) and[q2T]−1 < τT . Then, from

Claim 7,F1([ρT]−1,T−1,Z′T) ≤ F1([q2T]−1,T−1,Z′T) for eachρ ∈ [0,q2). This

establishes thatF1([ρT]− 1,T − 1,Z′T) = o(T−n), sinceF1([q2(T − 1)],T − 1,Z′T) =
o(T−n). The proof ofF2(T− [ρT],T−1,Z′′T) = o(T−n) is analogous. Q.E.D.
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Proof of Claim 2.As shown in the proof of Claim 1, there exists(τT)∞
T=1 such that

F1([ρT]−1,T−1,Z′T) < F1(τT ,T−1,Z′T) andτT > [ρT]−1, provided thatT is large

enough. Then, it follows from Claim 7 that whenT is large enough,F ′1(τ − 1) ≤
F ′1([ρKT]− 1) for all τ < [ρKT]. The remaining inequalities follow from a similar

argument. Q.E.D.

Proof of Claim 3.Let rT = [q3(T −1− [ρT])] + [q2[ρT]]. Then, from (18),rT > Z′T
for sufficiently largeT. Also, one can show thatT2F1([ρT]− 1,T − 1, rT) ≥ 1 for

sufficiently largeT. (The proof is omitted, since this follows from a similar reason for

T2F1(τT ,T−1,Z′T) ≥ 1 in the proof of Claim 1.) Then, (15) and Claims 7 and 1 give

the desired inequality,F1([ρT]−1,T−1,Z′′T)≤ F1([ρT]−1,T−1,Z′T), for sufficiently

largeT. A similar argument applies toF2. Q.E.D.

Proof of Claim 4.For eachj , i andl , i, j, letPr(x̂ j(ht
l ),B|x j = B) be the probability

of x̂ j(ht
l ) , B when playerj sendsx j = B. In what follows, it is shown thatPr(x̂ j(ht

l ) ,
B|x j = B) = o(T−n).

From Claim 8,

F1(0,T, [
2q2 +q3

3
T]) = o(T−n) (58)

for n≥ 1. Since Claim 7 asserts thatF1(0,T, r) is single-peaked with respect tor, either

F1(0,T, r)≤F1(0,T, [2q2+q3
3 T]) for all r > [2q2+q3

3 T], orF1(0,T, r)≤F1(0,T, [2q2+q3
3 T])

for all r < [2q2+q3
3 T]. If F1(0,T, r) ≤ F1(0,T, [2q2+q3

3 T]) for all r < [2q2+q3
3 T], then

from (58),∑r<[ 2q2+q3
3 T]

F1(0,T, r)≤ TF1(0,T, [2q2+q3
3 T]) = o(T−n), but the law of large

numbers and Lemma 3 assures thatlimT→∞ ∑r<[ 2q2+q3
3 T]

F1(0,T, r) = 1; a contradiction.

Therefore,F1(0,T, r) ≤ F1(0,T, [2q2+q3
3 T]) for all r > [2q2+q3

3 T]. This, together with

(58), shows that

Pr(x̂ j(ht
l ) , B|x j = B) = ∑

r>[ 2q2+q3
3 T]

F1(0,T, r)

< (T− [2q2+q3
3 T])F1(0,T, [2q2+q3

3 T]) = o(T−n).

A similar argument applies tox j = G. Q.E.D.

Proof of Claim 5.Analogous to the proof of Claim 4. Q.E.D.

Proof of Claim 6.Let Pr(x̂i(ht
j) = G|τ) be the probability of̂xi(ht

j) = G when playeri

choosesaB
i τ times andaG

i T − τ times. Also, letPr(x̂i(ht
l ) = B|τ) denote the proba-

bility of x̂i(ht
l ) = B. It suffices to show thatmaxτ≥[ 1

2T] Pr(x̂i(ht
j) = G|τ) = o(T−n) and

maxτ≤[ 1
2T] Pr(x̂i(ht

l ) = B|τ) = o(T−n).

As in the proof of Claim 1, one can show thatF1([1
2T],T, [q2+2q3

3 T]) = o(T−n), and

that there exists a sequence of integers(τT)∞
T=1 such that whenT is large enough,
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F1([1
2T],T, [q2+2q3

3 T]) < F1(τT ,T, [q2+2q3
3 T]) and τT < [1

2T]. Then, it follows from

Claim 7 thatF1([1
2T],T, [q2+2q3

3 T]) ≥ F1(τ,T, [q2+2q3
3 T]) for all τ ≥ [1

2T], provided

that T is large enough. Meanwhile, as in the proof of Claim 1, one can show that

T2F1(τ,T, [q2(τ +1)]+ [q3(T− τ +1)])≥ 1 for eachτ ≥ [1
2T]. Then, from Claim 7,

F1([1
2T],T, [q2+2q3

3 T])≥ F1(τ,T, [q2+2q3
3 T])≥ F1(τ,T, r)

for all τ ≥ [1
2T] andr > [q2+2q3

3 T], provided thatT is large enough. Therefore,

max
τ≥[ 1

2T]
Pr(x̂i(ht

j) = G|τ) = max
τ≥[ 1

2T]
∑

r>[ q2+2q3
3 T]

F1(τ,T, r)

< (T− [q2+2q3
3 T])F1([1

2T],T, [q2+2q3
3 T]) = o(T−n)

for all n≥ 1. A similar argument shows that

max
τ≤[ 1

2T]
Pr(x̂i(ht

l ) = B|τ) = o(T−n)

for all n≥ 1. Q.E.D.

Appendix D: Proof of Lemma 5

Let ui : Ai−1×Ωi−1→ R andui be as in the proof of Lemma 4. Without loss of gener-

ality, consider a particulari ∈ I . To simplify the notation, letXG be the set of allx∈ X

satisfyingxi−1 = G, andXG
−i be the set of allx−i ∈ X−i satisfyingxi−1 = G. Let H

[0]
−i be

a union ofH [0]
−i (x) over allx ∈ XG (see the proof of Lemma 4 for the specification of

H [0]
−i (x)). Also, for eachk∈ {1, · · · ,K−1}, let H

[k]
−i be the union of(H [k]

−i (x)∪H [k]
−i (x, i))

over all x ∈ XG (again, see the proof of Lemma 4 for the specification ofH [k]
−i (x) and

H [k]
−i (x, i)).

Suppose thatUG
i is decomposable into real-valued functions(θ−1, · · · ,θ K+1) as in

the proof of Lemma 4. In what follows, the transfers(θ−1, · · · ,θ K+1) are specified so

that (23) through (25) hold.

Let θ 0 andθ K+1 be as in the proof of Lemma 4, i.e., these transfers are the dis-

counted sums ofui . Then, playeri is indifferent among all actions in periods of the

confirmation round and the report round.

The transfers(θ 1, · · · ,θ K) are specified by backward induction. To defineθ k, as-

sume that the transfers(θ k+1, · · · ,θ K+1) are determined so that playeri’s continuation

payoff after historyh[k]
−i ∈H [k]

−i , augmented by(θ k+1, · · · ,θ K+1), is equal toVi(h
[k]
−i), and

that (23) holds for alll ≥ 1+ 6N + k(1+ 2N), htl ∈ Htl , andx ∈ XG. Here, for each

k ∈ {1, · · · ,K} and h[k]
−i ∈ H

[k]
−i , the valueVi(h

[k]
−i) denotes the minimum of playeri’s

continuation payoff after historyh[k]
−i over all her continuation strategies consistent with
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S Tb
i (i.e., continuation strategies that play someai ∈ A k constantly in thekth main

round for eachk) subject to the constraints that monitoring is perfect and that payoffs

in the communication stages are replaced with zero. For eachh[0]
−i ∈ H

[0]
−i , the value

Vi(h
[0]
−i) denotes the minimum of playeri’s continuation payoff after historỹh[0]

−i over

all h̃[0]
−i ∈ H

[0]
−i and over all her continuation strategies consistent withS Tb

i , subject to

the constraints that monitoring is perfect and that payoffs in the communication stages

are replaced with zero. For eachk ∈ {0, · · · ,K} andh[k]
−i < H

[k]
−i , the valueVi(h

[k]
−i) de-

notes playeri’s continuation payoff when she earnsmina∈Aπi(a) in periods of the main

rounds and zero in the other periods.

In what follows, it is shown that there isθ k such that playeri’s continuation payoff

afterh[k−1]
−i ∈ H [k−1]

−i is equal toVi(h
[k−1]
−i ), and such that (23) holds for alll ≥ 1+6N+

(k−1)(1+ 2N), htl ∈ Htl , andx ∈ XG. Notice that the transfers(θ 1, · · · ,θ K) can be

specified by iterating this argument, as in the proof of Lemma 4.

Suppose thatθ k is decomposed as in (33). Then, on the analogy of Lemma 8, (23)

holds for alll ≥ 2+6N+(k−1)(1+2N).
To specify the real-valued functioñθ k, the following notation is useful. For each

h[k−1]
−i ∈ H [k−1]

−i andai ∈ Ai , letW̃i(h
[k−1]
−i ,ai) denote playeri’s continuation payoff from

the kth main round, augmented by(θ k+1, · · · ,θ K+1) and by the second term of (33),

when playeri playsai constantly in thekth main round and plays a best reply thereafter.

As in the proof of Lemma 4, one can writẽWi(Jk−1
−i ,ai) instead ofW̃i(h

[k−1]
−i ,ai).

For eachJk−1
−i , let (a1

i (J
k−1
−i ), · · · ,a|A

k
i |

i (Jk−1
−i )) be a ordering of all elements ofA k

i

such that

lim
T→∞

lim
δ→1

W̃i(Jk−1
−i ,a1

i (J
k−1
−i ))

T
≥ ·· · ≥ lim

T→∞
lim
δ→1

W̃i(Jk−1
−i ,a

|A k
i |

i (Jk−1
−i ))

T
.

For eachJk−1
−i andl ∈ {1, · · · , |A k

i |}, let 1[Jk−1
−i ,l ] : H [k,m]

i−1 →{0,1} be the indicator func-

tion such that1[Jk−1
−i ,l ](h

[k,m]
i−1 ) = 1 if the random eventψi−1({al

i (J
k−1
−i ), · · · ,a|A

k
i |

i (Jk−1
−i )})

is counted more thanZKT times in thekth main round (according to historyh[k,m]
i−1 ) and

1[Jk−1
−i ,l ](h

[k,m]
i−1 ) = 0 otherwise. For eachai ∈ Ai , let 1ai : H [k,m]

i−1 →{0,1} be the indicator

function such that1ai(h
[k,m]
i−1 ) = 1 if and only if the random eventψi−1({ai}) is counted

more thanZKT times in thekth main round (according to historyh[k,m]
i−1 ).

Since (14) holds, there is a positive numberη > 0 satisfying
(

1− K2T
Tb

)
(|Ai |+2)ui < (|Ai |+2)η < lim

δ→1
min

s
Tb
i ∈S

Tb
i

wP
i (sTb

i ,sx−i
−i )−wi

for all x−i ∈ XG
−i . LetC be a real number satisfying

C > max
a∈A

πi(a)−min
a∈A

πi(a),
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and letθ̃ k be such that

θ̃ k(h[k,m]
i−1 , Ik−1

−i ) =−TbC+ ∑
ai∈A k

i

1ai(h
[k,m]
i−1 )KTη +

|A k
i |

∑
l=1

1[Ik−1
−i ,l ](h

[k,m]
i−1 )λ k(Ik−1

−i , l),

where the values(λ k(Ik−1
−i , l))Ik−1

−i ,l solve

Vi(h
[k−1]
−i ) = W̃i(h

[k−1]
−i ,ai)−δ KT+2NTTbC+δ KT+2NT ∑

ãi∈A k
i

Pr(1ãi |h[k−1]
−i ,ai)KTη

+δ KT+2NT ∑
Ik−1
−i

Pr(Ik−1
−i |h[k−1]

−i )
|A k

i |
∑
l=1

Pr(1[Ik−1
−i ,l ]|h

[k−1]
−i ,ai)λ k(Ik−1

−i , l) (59)

for all h[k−1]
−i ∈ H [k−1]

−i and ai ∈ A k
i . Note that the right-hand side of (59) denotes

playeri’s continuation payoff afterh[k−1]
−i , augmented by(θ k, · · · ,θ K+1), when playeri

choosesai ∈A k
i constantly in thekth main round and plays a best reply thereafter. The

next lemma assures that the aboveθ k satisfies the desired property.

Lemma 25. There isT such that for allT > T, there isδ ∈ (0,1) such that for all

δ ∈ (δ ,1), system (59) has a unique solution, and it satisfies

− wi−wi

(K +3)(1−δ )
< θ k(h[k]

i−1, I
k−1
−i ) < 2NTui + |A k

i |KTη

for all h[k]
i−1 andIk−1

−i . Also, under this transfer scheme, (23) holds for alll ≥ 1+6N+
(k− 1)(1+ 2N), htl ∈ Htl , and x ∈ XG, and and playeri’s continuation payoff after

historyh[k−1]
−i ∈ H [k−1]

−i equalsVi(h
[k−1]
−i ).

Proof. Analogous to the proof of Lemma 9. Q.E.D.

Let θ−1 be such that

θ−1(h[−1]
i−1 ) =−TbC̃+

NT

∑
t=1

ui(at
i−1,ω

t
i−1)

δ NT−t + ∑
x∈XG

1x(h
[−1]
i−1 )λ−1(x)

where

C̃ = η + lim
δ→1

(
min

x−i∈XG
−i

min
s
Tb
i ∈S

Tb
i

wP
i (sTb

i ,sx−i
−i )−wi

)
,

(at
i−1,ω

t
i−1) is player(i−1)’s private history in thetth period of the block game, and

the values(λ−1(x))x∈XG solve

Tb

∑
t=1

δ t−1wi = δ NT


−TbC̃+ ∑

x̃∈XG
∑

h[−1]
i−1 ∈H [−1]

i−1 (x̃)

Pr(h[−1]
i−1 |sx)λ−1(x̃)




+δ 7NT ∑
h[0]
−i∈H [0]

−i

Pr(h[0]
−i |sx)Vi(h

[0]
−i) (60)
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for all x−i ∈XG
−i . Note that the right-hand side of (60) denotes playeri’s auxiliary payoff

from the block strategy profilesx.

Lemma 26. There isT such that for allT > T, there isδ ∈ (0,1) such that for all

δ ∈ (δ ,1), system (60) has a unique solution, and it satisfies

wi−wi

(K +3)(1−δ )
< θ−1(h[−1]

i−1 ) < NTui− (|Ai |+1)Tbη .

for all h[−1]
i−1 ∈ H [−1]

i−1 . Also, under this transfer scheme, (23) and (24) hold for alll ≥ 0,

htl ∈ Htl , andx∈ XG.

Proof. Analogous to the proof of Lemma 10. Q.E.D.

This lemma asserts that the specifiedUG
i satisfies (23) and (24). Finally, (25) fol-

lows as in the proof of Lemma 4.

Appendix E: Proof of Proposition 3

In this appendix, we prove Proposition 3. LetA ∈ J be such thatAi = {a∗i ,a∗∗i }
for eachi ∈ I . Then by assumption, one can check thatvi(A )≤maxai∈Ai πi(ai ,a∗∗−i) <

πi(a∗)≤ vi(A ). Let p∈4J be such thatp(A ) = 1 andp( ˜A ) = 0 for ˜A ,A . Then

by definition,π(a∗) ∈ V(p). Also, π(a∗) ∈ ×i∈I [p · vi , p · vi ], sincevi(A ) < πi(a∗) ≤
vi(A ). Therefore,π(a∗) is an element of the right-hand side of (2).

It remains to check that the stage game corresponds to the positive case. Letp̃ ∈
4J be such that̃p(A ) = 1− ε, p̃(A) = ε, and p̃( ˜A ) = 0 for other ˜A , whereε > 0.

It suffices to show that for a sufficiently smallε > 0, the intersection ofV(p̃) and

×i∈I [p̃·vi , p̃·vi ] is N-dimensional.

Sincevi(A ) < πi(a∗) ≤ vi(A ) andπi(a∗∗) < πi(a∗) for all i ∈ I , there is a payoff

vectorv such thatv is a convex combination ofπ(a∗∗) andπ(a∗) andp·vi < vi < p·vi

for all i ∈ I . By definition, this payoff vectorv is in the feasible payoff set, and is

an element ofV(p). Therefore,v is an element ofV(p̃). Also, sincep̃ · vi and p̃ · vi

converge top · vi and p · vi asε → 0, v is an interior point of×i∈I [p̃ · vi , p̃ · vi ] for a

sufficiently smallε. Fix such aε.

Recall that the feasible payoff set is full dimensional, and so is the setV(p̃). Let

ṽ be an interior point ofV(p̃), and letv̂ = κv+(1−κ)ṽ for κ ∈ (0,1). Sincev is an

element ofV(p̃) and ṽ is an interior point ofV(p̃), v̂ is an interior point ofV(p̃). In

addition,v̂ is an interior point×i∈I [p̃·vi , p̃·vi ] for κ sufficiently close to one, sincev is

an interior point of×i∈I [p̃ ·vi , p̃ ·vi ]. These facts show thatv̂ is an interior point of the

intersection ofV(p̃) and×i∈I [p̃·vi, p̃·vi ]. Hence, this intersection isN-dimensional.
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Appendix F: Characterizing E(δ ) for the Abnormal Case

Theorem 1 characterizes the limit set of belief-free review-strategy equilibrium payoffs

for the positive, negative, and empty cases, but it does not apply to the abnormal case.

In this appendix, we show that in the abnormal case, the equilibrium payoff set is either

empty or the convex hull of the set of pure-strategy Nash equilibrium payoffs of the

stage game, for generic payoff functions.

Given a stage game, letJ ∗ be the maximal setJ ′⊆J such that there isp∈4J

such that

(i) p(A ) = 0 for all A <J ′;

(ii) pvi ≥ pvi for all i ∈ I ;

(iii) πi(a)≥ πi(ãi ,a−i) for all i ∈ I satisfyingpvi = pvi , for all A ∈J ′, for all a∈A ,

and for allãi ∈ Ai with equality if ãi ∈Ai ; and

(iv) πi(a) = πi(ã) for all i ∈ I satisfyingpvi = pvi , for all A ∈J ′, for all a ∈ A ,

and for allã∈A .

Notice that, ifJ ′ ⊆ J andJ ′′ ⊆ J satisfy the above conditions, then does the

union of J ′ and J ′′. Therefore, the maximal set indeed exists. With an abuse

of notation, for eachp ∈ 4J ∗, let pvi denote∑A ∈J ∗ p(A )vi(A ) and pvi denote

∑A ∈J ∗ p(A )vi(A ). Likewise, letV(p) denote the set of feasible payoffs when the

public randomizationp∈4J ∗ determines the recommended action setA .

The following proposition characterizes the equilibrium payoff set for the abnormal

case with generic payoff functions.

Proposition 6. Suppose that the stage game is abnormal. IfJ ∗ is empty, thenE(δ ) =
/0 for everyδ ∈ (0,1). If J ∗ is not empty and ifπi(a) , πi(ã) for all i ∈ I , a∈ A, and

ã , a, then limδ→1E(δ ) is equal to the convex hull of the set of pure-strategy Nash

equilibrium payoffs of the stage game.

To prove this proposition, the following lemma is useful.

Lemma 27. If J ∗ is not empty, then

E(δ )⊆
⋃

p∈4J ∗
(V(p)∩×i∈I [pvi , pvi ]). (61)

for anyδ ∈ (0,1). If J ∗ is empty, thenE(δ ) = /0 for anyδ ∈ (0,1).
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Proof. Suppose that there is a belief-free review-strategy equilibriums∈ S. As in the

proof of Proposition 1, playeri’s continuation payoff from thel th review phase is in

the interval[pl vi , pl vi ], wherepl is as in (30) andA (l) is the union of the support of

s(htl−1) over allhtl−1 ∈ Htl−1. In particular, together with the feasibility constraint, the

equilibrium payoff vector is in the setV(p1)
⋂×i∈I [p1vi , p1vi ]. Thus, it suffices to show

thatJ ∗∗ ⊆J ∗, whereJ ∗∗ denotes the support ofp1.

Let I∗ be the set of alli ∈ I such thatplvi = plvi for all l ≥ 1. Suppose first that

I = I∗. Set p = p1. This p satisfies both (i) and (ii) forJ ′ = J ∗∗, asJ ∗∗ is the

support ofp and the equilibrium payoff of playeri is in the interval[pvi , pvi ]. Also,

since no dynamic incentive is provided in this equilibrium, anya ∈ A (l) must be a

Nash equilibrium. This shows that (iii) holds forJ ′ = J ∗∗.
Moreover, sincepl vi = pl vi for all i ∈ I and l ≥ 1, vi(A (l)) = vi(A (l)) for all

i ∈ I and l ≥ 1. This, together with (iii), proves thatp satisfies (iv) forJ ′ = J ∗∗.
To see this, suppose not so that there isA ∈ J ∗∗ such thatπi(a) < πi(ã) for some

a ∈ A and ã ∈ A . Then from (iii), vi(A ) ≤ maxa′i∈Ai
πi(a′i ,a−i) = πi(a) < πi(ã) =

mina′′i ∈Ai
πi(a′′i ,a−i)≤ vi(A ). But this implies that there isl ≥ 1 such thatvi(A (l)) <

vi(A (l)), a contradiction.

Overall, thisp satisfies (i) through (iv) forJ ′ = J ∗∗. SinceJ ∗ is the maximal

set,J ∗∗ ⊆J ∗, as desired.

Next, suppose thatI , I∗. By definition, for eachi < I∗, there is a natural numberl i
satisfyingpl i vi < pl i vi . Let p = 1

|I |−|I∗| ∑i<I∗ pl i . This p satisfies (i) forJ ′ = J ∗∗, as

the support ofpl is a subset of the support ofp1 for all l ≥ 1. Also, (ii) follows, since

playeri’s continuation payoff from thel th review phase is in the interval[pl vi , plvi ] for

all l ≥ 1. Moreover, (iii) and (iv) hold as in the case ofI = I∗, sincepvi = pvi for all

i ∈ I∗, andpl vi = plvi for all i ∈ I∗ andl ≥ 1. This proves thatJ ∗∗ ⊆J ∗. Q.E.D.

Proof of Proposition 6.Lemma 27 asserts that ifJ ∗ is empty, thenE(δ ) = /0. What

remains is to show thatlimδ→1E(δ ) is equal to the convex hull of the set of pure-

strategy Nash equilibrium payoffs whenJ ∗ is not empty. To do so, it suffices to verify

that the right-hand side of (61) is included in the convex hull of the set of pure-strategy

Nash equilibrium payoffs, as the reverse side is obvious.

Since this is the abnormal case, for eachp∈4J satisfyingpvi ≥ pvi for all i ∈ I ,

there isi ∈ I such thatpvi = pvi . Then, by definition ofJ ∗, there isi ∈ I such that

πi(a) = πi(ã) for all A ∈J ∗, a∈A , andã∈A . This implies that eachA ∈J ∗ is

a singleton, sinceπi(a) , πi(ã) wheneverã, a.

Notice that ifA is a singleton, thenvi(A ) ≥ vi(A ) for all i ∈ I . This shows that

pvi ≥ pvi for all p∈4J ∗ andi ∈ I , and then by definition ofJ ∗, πi(a)≥ πi(ãi ,a−i)
for all i ∈ I , A ∈ J ∗, a ∈ A , andãi ∈ Ai . This establishes that for eachA ∈ J ∗

anda∈A , a is a pure-strategy Nash equilibrium andπi(a(A )) = vi(A ) = vi(A ) for
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all i ∈ I . Therefore, for anyA ∈J ∗, the set×i∈I [vi(A ),vi(A )] is equal to the set of

pure-strategy Nash equilibrium payoffs, as desired. Q.E.D.

Appendix G: Relaxing Conditional Independence

In Remark 1, we argued that (CI) is stronger than necessary for Theorem 1, and can

be replaced with a weaker condition. In this appendix, we assume that the monitoring

structure isweakly conditionally independentin the sense that players observe statisti-

cally independent signals conditional on an action profilea and on a hidden common

shockω0, and show that Theorem 1 is valid under this assumption. Formally, we as-

sume the following:

Condition Weak-CI. There is a finite setΩ0, q0 : A→4Ω0, andqi : A×Ω0 →4Ωi

for eachi ∈ I satisfying the following properties.

(i′) For eacha∈ A andω ∈Ω,

q(ω|a) = ∑
ω0∈Ω0

q0(ω0|a)∏
i∈I

qi(ωi |a,ω0).

(ii ′) For eachi ∈ I andai ∈ Ai , rankQi(ai) = |A−i | × |Ω0| whereQi(ai) is a matrix

with rows(qi(ωi |ai ,a−i ,ω0))ωi∈Ωi for all a−i ∈ A−i andω0 ∈Ω0.

In words, clause (i) says that given an action profilea, a common shockω0 is ran-

domly chosen following the distributionq0(·|a), and then players observe statistically

independent signals conditional on(a,ω0). Clause (ii) is a version of individual full-

rank condition.

Under (Weak-CI), players’ signals are correlated through a common shockω0, so

that a player’s signal has some information about the opponents’ signals. But we can

construct random events such that a player’s private signal has no information about

whether the opponents’ random events are counted, and thus no feedback on what the

opponents will do in a continuation play. Therefore, a player has no incentive to play a

history-dependent strategy within a review phase and hence the equilibrium construc-

tion in Sections 3.2 and 3.3 are valid under (Weak-CI).

Specifically, we can show the following lemmas under (Weak-CI). LetP(ψi |a,ω−i)
denote the probability that the random eventψi is counted when the action profilea is

played and players−i observeω−i . The proofs of the lemmas are similar to Lemma 1

of Yamamoto (2007), and hence omitted.

Lemma 28. Suppose that there are only two players and that (Weak-CI) holds. Then,

for someq1 and q2 satisfying0 < q1 < q2 < 1, there is a random eventψi(A−i) :
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Ai×Ωi → [0,1] for all i ∈ I andA−i ∈J−i such that for alla∈ A andω−i ∈Ω−i ,

P(ψi(A−i)|a) =

{
q2 if a−i ∈A−i

q1 otherwise

and

P(ψi(A−i)|a,ω−i) = P(ψi(A−i)|a).

Lemma 29. Suppose that there are three or more players and that (Weak-CI) holds.

Then, for someq1, q2, andq3 satisfying0 < q1 < q2 < q3 < 1, there are random events

ψi(A j) : Ai ×Ωi → [0,1] and ψi(ai+1,ai−1) : Ai ×Ωi → [0,1] for all i, j , a ∈ A, and

A j ∈J j such that for allã∈ A andω−i ∈Ω−i ,

P(ψi(A j)|ã) =

{
q3 if a j ∈A j

q2 otherwise
,

P(ψi(ai+1,ai−1)|ã) =





q1 if ai−1 = ãi−1 andai+1 , ãi+1

q3 if ai+1 = ãi+1 andai−1 , ãi−1

q2 otherwise

,

P(ψi(A j)|ã) = P(ψi(A j)|ã,ω−i),

P(ψi(ai+1,ai−1)|ã) = P(ψi(ai+1,ai−1)|ã,ω−i),

and for eachi and j , i, player i’s random event and playerj’s random event are

statistically independent conditional on anya∈ A.

Note thatP(ψi |a,ω−i) = P(ψi |a) means that players−i’s signal ω−i has no in-

formation about whether the random eventψ is counted, and hence players have no

incentive to use a history-dependent strategy within a review phase. This shows that

Theorem 1 remains valid even if (CI) is replaced with (Weak-CI).
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HÖRNER, J.,AND W. OLSZEWSKI (2006): “The Folk Theorem for Games with Private
Almost-Perfect Monitoring,”Econometrica, 74, 1499–1544.

(2009): “How Robust is the Folk Theorem with Imperfect Public Monitor-
ing?,” Quarterly Journal of Economics, 124, 1773–1814.

KANDORI, M. (2002): “Introduction to Repeated Games with Private Monitoring,”
Journal of Economic Theory, 102, 1–15.

KANDORI, M., AND H. MATSUSHIMA (1998): “Private Observation, Communication
and Collusion,”Econometrica, 66, 627–652.

LEHRER, E. (1990): “Nash Equilibria ofn-Player Repeated Games with Semi-
Standard Information,”International Journal of Game Theory, 19, 191–217.

MAILATH , G., AND S. MORRIS (2002): “Repeated Games with Almost-Public Moni-
toring,” Journal of Economic Theory, 102, 189–228.

(2006): “Coordination Failure in Repeated Games with Almost-Public Moni-
toring,” Theoretical Economics, 1, 311–340.

MAILATH , G., AND L. SAMUELSON (2006):Repeated Games and Reputations: Long-
Run Relationships. Oxford University Press, New York, NY.

MATSUSHIMA, H. (2004): “Repeated Games with Private Monitoring: Two Players,”
Econometrica, 72, 823–852.

M IYAGAWA , E., Y. MIYAHARA , AND T. SEKIGUCHI (2008): “The Folk Theorem for
Repeated Games with Observation Costs,”Journal of Economic Theory, 139, 192–
221.

72



OBARA , I. (2009): “Folk Theorem with Communication,”Journal of Economic The-
ory, 144, 120–134.

PICCIONE, M. (2002): “The Repeated Prisoner’s Dilemma with Imperfect Private
Monitoring,” Journal of Economic Theory, 102, 70–83.

RADNER, R. (1985): “Repeated Principal-Agent Games with Discounting,”Econo-
metrica, 53, 1173–1198.

SEKIGUCHI, T. (1997): “Efficiency in Repeated Prisoner’s Dilemma with Private Mon-
itoring,” Journal of Economic Theory, 76, 345–361.

STIGLER, G. (1964): “A Theory of Oligopoly,”Journal of Political Economy, 72, 44–
61.

SUGAYA , T. (2010): “Belief-Free Review-Strategy Equilibrium without Conditional
Independence,”mimeo.

YAMAMOTO , Y. (2007): “Efficiency Results in N Player Games with Imperfect Private
Monitoring,” Journal of Economic Theory, 135, 382–413.

(2009): “A Limit Characterization of Belief-Free Equilibrium Payoffs in Re-
peated Games,”Journal of Economic Theory, 144, 802–824.

73


