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Abstract

We study stochastic games with an infinite horizon and sequential
moves played by an arbitrary number of players. We assume that social
memory is finite—every player, except possibly one, is finitely lived
and cannot observe events that are sufficiently far back in the past.
This class of games includes games between a long-run player and a
sequence of short-run players and games with overlapping generations
of players. Indeed, any stochastic game with infinitely lived players
can be reinterpreted as one with finitely lived players: Each finitely-
lived player is replaced by a successor, and receives the value of the
successor’s payoff. This value may arise from altruism, but the player
also receives such a value if he can “sell” his position in a competitive
market. In both cases, his objective will be to maximize infinite horizon
payoffs, though his information on past events will be limited.

An equilibrium is purifiable if close-by behavior is consistent with
equilibrium when agents’ payoffs in each period are perturbed addi-
tively and independently. We show that only Markov equilibria are
purifiable when social memory is finite. Thus if a game has at most
one long-run player, all purifiable equilibria are Markov.
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1 Introduction

Repeated game theory has shown that punishment strategies, strategies con-
tingent on payoff irrelevant histories, greatly expand the set of equilibrium
outcomes. Yet in much applied analysis of dynamic games, researchers re-
strict attention to Markov equilibria, equilibria in which behavior does not
depend on payoff irrelevant histories. Arguments for focussing on Markov
equilibria include (i) their simplicity; (ii) their sharp predictions; (iii) their
role in highlighting the key payoff relevant dynamic incentives; and (iv) their
descriptive accuracy in settings where the coordination implicit in payoff ir-
relevant history dependence does not seem to occur. However, principled
reasons for restricting attention to Markov equilibria, based on strategic
considerations, are limited.1

This paper provides a foundation for Markov strategies for dynamic
games that rests on three assumptions. First, we assume that social mem-
ory is bounded – every player, except possibly one, cannot observe events
that are sufficiently far back in the past. Second, we assume that moves
are sequential – the game is such that only one player moves at any point
of time. Finally, we require equilibrium strategies to be “purifiable,” i.e.,
nearby strategies must constitute an equilibrium of a perturbed game with
independent private payoff shocks in the sense of Harsanyi (1973). Our main
result is that Markov equilibria are the only purifiable equilibria in games
with sequential moves when social memory is bounded.

The purifiability requirement reflects the view that models are only an
approximation of reality, and so there is always some private payoff informa-
tion. We make the modest requirement that there must be some continuous
shock under which the equilibrium survives.

The boundedness of social memory is natural in many contexts, such as
games between a long-run player and a sequence of short-run players or in
games with overlapping generations of players. Indeed, any stochastic game
with infinitely lived players can be reinterpreted as one with finitely lived
players: Each finitely-lived player is replaced by a successor, and receives the
value of the successor’s payoff. This value may arise from altruism, but the
player also receives such a value if he can “sell” his position in a competitive

1For asynchronous choice games, Jehiel (1995) and Bhaskar and Vega-Redondo (2002)
provide a rationale for Markov equilibria based on complexity costs. Maskin and Tirole
(2001) discuss the notion of payoff relevance and the continuity properties of Markov
equilibria; we discuss Maskin and Tirole (2001) in Section 5.5. Harsanyi and Selten (1988)
provide a justification for Markov equilibrium that has a more axiomatic flavor, based on
the notion of subgame consistency.
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market. In both cases, his objective will be to maximize infinite horizon
payoffs, though his information on past events will be limited. Our results
also apply if we have long run players who are perfectly informed on past
events but are restricted to using bounded memory strategies.2

Our argument exploits the special feature of the games we study, whereby
only one player moves at a time. Purifying payoff shocks imply that if a
player conditions upon a past (payoff irrelevant) event at date t, then some
future player must also condition upon this event. Such conditioning is
possible in equilibrium only if the strategy profile exhibits infinite history
dependence. We thus give the most general version of an argument first
laid out by Bhaskar (1998) in the context of a particular (social security)
overlapping generations game. This argument does not apply with simulta-
neous moves since two players may mutually reinforce such conditioning at
the same instant, as we discuss in Section 5.3.

2 A Long-Run Player/Short-Run Player Example

Consider the chain store game, played between a long-run player and an
infinite sequence of short-run players. In each period, an entrant (the short-
run player) decides whether to enter or stay out. If the entrant stays out,
the stage game ends; if he enters, then the incumbent (the long-run player)
decides whether to accommodate (A) or fight (F). The stage game is depicted
in Figure 1.

Each entrant maximizes his stage game payoff, only observing and thus
only conditioning on what happened in the previous period. The incumbent
maximizes the discounted sum of payoffs, observing the entire history. The
incumbent’s discount factor δ is between c/(1 + c) and 1. We require equi-
libria to satisfy sequential rationality—each player is choosing optimally at
every possible history.

Ahn (1997, Chapter 3) shows that there is no pure strategy equilibrium
where entry is deterred (for generic values of the discount factor). To provide
some intuition, restrict attention to stationary strategies. Since the entrant
only observes the outcome of the previous period, the entrant’s history is an

2The previous version of this paper (Bhaskar, Mailath, and Morris, 2009) assumed
perfectly informed players who were constrained to use finite recall strategies. Strategies
that depend on what happens in the arbitrarily distant past do not seem robust to noisy
information. In a different context (repeated games with imperfect public monitoring),
Mailath and Morris (2002, 2006) show that strategies based on infinite recall are not
“robust to private monitoring,” i.e, they cease to constitute equilibrium with even an
arbitrarily small amount of private noise added to public signals.
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Figure 1: The stage game for the chain store. The top payoff is the payoff
to the Entrant.

element of O = {Out,A,F}. Consider a trigger strategy equilibrium where
the entrant enters after accommodation in the previous period, and stays
out otherwise. For this to be optimal, the incumbent must play a strategy
of the form: F as long as he has not played A in the previous period; A
otherwise. Such a strategy is not sequentially rational, because it is not
optimal to play A when A had been played in the previous period. In this
case, playing A secures a payoff of zero, while a one step deviation to F earns
−(1− δ)c+ δ, which is strictly positive for δ > c/(1 + c).

There is however a class of mixed strategy equilibria in which entry is
deterred with positive probability in each period. In any equilibrium in this
class, the incumbent plays F with probability 1

2 , independent of history. The
entrant is indifferent between In and Out at any information set, given the
incumbent’s strategy. He plays In with probability p at t = 1. At t > 1 he
plays In with probability p after ot−1 ∈ {Out,F}; after ot−1 = A, he plays
In with probability q, where q = p + c/[δ(1 + c)]. That is, the difference in
entry probabilities across histories, q − p, is chosen to make the incumbent
indifferent between accommodating and fighting. If we choose p = 0, then
no entry takes place on the equilibrium path. Note that we have a one-
dimensional manifold of equilibria in this class. In any such equilibrium, the
entrant’s beliefs about the incumbent’s response is identical after the two
one-period histories ot−1 = A and ot−1 ∈ {Out,F}. Nevertheless, the entrant
plays differently.
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We now establish that none of these mixed strategy equilibria can be
purified if we add small shocks to the game’s payoffs. Suppose that the
entrant gets a payoff shock εz̃t1 from choosing Out while the incumbent gets a
payoff shock εz̃t2 from choosing F. We suppose each z̃ti is drawn independently
across players and across time according to some known density with support
[0, 1]. The shocks are observed only by the player making the choice at the
time he is about to make it. A strategy for the period t entrant is

ρt : O × [0, 1]→ ∆(A1),

while a strategy for the incumbent is

σt : Ot × {In} × [0, 1]→ ∆(A2)

(in principle, it could condition on the history of past payoff shocks, but
this turns out not to matter). Note that ρt+1 does not condition on what
happened at t−1. Fix a history ht = (o1, o2, . . . , ot) ∈ Ot with ot = In (entry
at date t) and zt2 (payoff realization for incumbent). For almost all zt2, the
incumbent has a unique pure best response. Since ρt+1 does not condition
on ht−1,

σt((ht−1, In), zt2) = σt((ĥt−1, In), zt2)

for almost all zt2 and any ĥt−1 ∈ At−1. So the incumbent does not condition
on ht−1. Since the entrant at t also has a payoff shock, it has a unique pure
best response for almost all payoff shock realizations, and so

ρt(h
t−1, zt1) = ρt(h̃

t−1, zt1)

for almost all zt1. In particular, the entrant’s behavior after F or A in the
previous period must be the same.

We conclude that for any ε > 0, only equilibria in Markov strategies exist
in the perturbed game. If ε is sufficiently small, the incumbent accommo-
dates for all realizations of his payoff shock, and therefore, with probability
one. So the entrant enters with probability one. Thus, in any purifiable equi-
librium of the unperturbed game, the backwards induction outcome of the
stage game must be played in every period, and an equilibrium is purifiable
if and only if it is Markov.

3 The Benchmark Game

We consider a potentially infinite dynamic game, Γ. The game has a recursive
structure and may also have moves by nature. The set of players is denoted
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by N and the set of states by S, both of which are countable. Only one
player can move at any state, and we denote the assignment of players to
states by ι : S → N . This assignment induces a partition {S(i) | i ∈ N} of
S, where S(i) = {s ∈ S | ι(s) = i} is the set of states at which i moves. Let
A denote the countable set of actions available at any state; since payoffs
are state dependent, it is without loss of generality to assume that the set
of actions is state independent.

While states are observed by players, actions need not be. There is mon-
itoring of the actions via signals y drawn from a countable set, Y . The tran-
sition function q : S × A→ ∆(Y × S) specifies the probability q(y, s′ | s, a)
of the signal y and next period’s state s′ as a function of this period’s state
s and action a.3 The initial distribution over states is given by q0 ∈ ∆(S).
Our notational convention is that period t begins in state st, an action at is
taken (by player ι(st)), resulting in the realized signal-state pair (yt, st+1).

The assumption that the sets of actions, states, and signals are count-
able is made for expositional convenience. The model and results naturally
extend to continuum spaces; see Section 5.1.

All but perhaps one of the players are finitely-lived. Denote by T̃ (s) the
set of dates at which state s arises with positive probability under q and some
specification of actions, T̃ (s) := {t : Pr{st = s | a0, a1, . . . , at−1} > 0 for
some a0, a1, . . . , at−1}. The long-lived player, if present, is player i∗. Player
i 6= i∗ has a finite life described by a first and last date, 0 ≤ ti ≤ Ti < ∞.
Consistency with the process determining state transitions requires that

ι (s) = i⇒ T̃ (s) ⊆ {ti, ..., Ti} .

(We take ti∗ = 0 and Ti∗ =∞, so that the long-lived player is also covered.)
For i 6= i∗, let t̃i = mins∈S(i) T̃ (s) denote the earliest possible date that

player i moves and let T̃i = maxs∈S(i) T̃ (s) denote the latest possible date.
Since we would like to allow for the possibility that a player has information
regarding events that take place before he moves, t̃i can be greater than ti,
the player’s birth date.

We assume players only know the period t states and signals while they
are alive. Since younger players know only a strict subset of current older
players’ histories, we say the histories of states and signals are semi-public.
Denote by hiτ a player i semi-public history at date τ , ti ≤ τ ≤ Ti, i.e.,

hiτ := (sti , yti , sti+1, yti+1, . . . , sτ ) ∈ (S × Y )τ−ti × S.
3If the game has perfect monitoring, then we take Y = A, with y = a receiving

probability 1 when a is taken.
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Note that the period-τ signal is not in the period-τ history; in particular,
hiti = (sti) so that if player i chooses an action in his or her first period,
the only information that player has is the current state. In addition, each
player knows his or her own past actions; these histories constitute player
i’s private histories.

If player i moves at date τ , ti ≤ τ ≤ Ti, after a semi-public history hiτ ,
then sτ ∈ S(i). The set of all feasible player i period-τ semi-public histories
at which i moves is denoted Hiτ . Thus, player i moves in period τ if, and
only if, Hiτ 6= ∅. This set is a strict subset of (S×Y )τ−ti×S. In addition to
the requirement sτ ∈ S(i), some signals may have zero probability at some
states, and some state transitions have zero probability (such as to a state
of a player who is not alive in that period). Given hiτ , Piτ (hiτ ) is the set of
player i private histories at date τ , i.e., Piτ (hiτ ) := {(at){t:i=ι(st),t<τ} : at ∈
A}, with typical element piτ . At player i’s initial move, Piτ is (as usual)
the singleton set consisting of the null history. A period-τ history hiτ or
(hiτ , piτ ) is relevant if player i moves after the history.

We require that there is a uniform bound on the life span of the finitely-
lived players:

Assumption 1 There exists K such that Ti − ti ≤ K for all i 6= i∗.

Player i’s flow payoffs are described by a bounded function

ui : S × Y ×A→ R.

There is only an apparent tension between our definition of payoffs and
our assumption that the signal yτ and the transition from sτ to sτ+1 are
the only information that players i 6= ι(sτ ) have about the action taken by
player ι(sτ ) in period τ . If the game has imperfect monitoring and the ex
post flow payoff of a player i 6= ι(sτ ) depends nontrivially on the action
chosen, then our modeling is consistent with two interpretations: (1) the
signal y conveys the same information (for example, part of the signal may
be player i’s payoff at sτ ); and (2) player i only observes the payoff at Ti.
(For the long-lived player, the second interpretation is less natural than the
first.)

This formulation allows for both deterministic and stochastic finite hori-
zons: one (or more) of the states may be absorbing, and gives all players a
zero payoff. Player i’s discount factor is given by δi.

One important special case is where a short run player, i 6= i∗, receives
payoffs only between dates ti and Ti, so that ui is identically zero in periods
before ti or after Ti. A second important special case is where players are
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short-lived but maximize infinite horizon payoffs. This occurs in a dynastic
model, where each short-run player is replaced at the end of her life by her
descendent, towards whom she has altruistic preferences. If altruism is per-
fect, then this corresponds to a model with constant discounting. This also
arises if the player is the owner of a firm, who is able to sell it on in a com-
petitive capital market, thus capitalizing the present value of his expected
profits. In all these cases, a short run player maximizes infinite horizon
payoffs, but his information is limited, since he only observes public signals
that are realized during his lifetime. Thus any infinite horizon stochastic
game with finitely many long lived players can be re-interpreted as a model
of short-lived players, and our results will also apply to these.

The game starts in a state s0 at period 0 determined by q0. Denote by
H∞ ⊂ (S × Y ×A)∞ the set of feasible outcomes with typical element h∞;
an initial t-period history is denoted ht. Player i’s payoff as a function of
outcome, Ui : H∞ → R, is

Ui (h∞) = Ui ((st, yt, at)
∞
t=0) =

∞∑
t=0

δtiui(st, yt, at).

A period-τ behavior strategy for player i is a mapping

biτ :
⋃

hiτ∈Hiτ
{{hiτ} × Piτ (hiτ )} → ∆(A),

and we write bi = (biτ )Tiτ=ti,Hiτ 6=∅ and Bi for the set of strategies of player i.
Many games fit into our general setting:

1. Perfect information games played between overlapping generations
of short-lived players. These include the classical consumption-loan
model of Samuelson (1958), models of organizations with finitely lived
managers (Cremer, 1986) or of legislatures with overlapping terms
(Muthoo and Shepsle, 2006). Kandori (1992) and Smith (1992) prove
folk theorems for these games, under the assumption that the short-
lived players are fully informed about all past events. Bhaskar (1998)
and Muthoo and Shepsle (2006) consider the implications of informa-
tional restrictions.

2. Extensive form games between a long-lived and a sequence of short-
lived players. Such games arise naturally in the reputation literature
(e.g., Fudenberg and Levine (1989)). Ahn (1997, Chapter 3) examines
the implications of the short lived players having a bounded observa-
tion of past histories.
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3. Any stochastic game or repeated game with long lived players can be
interpreted as one with short-lived players who either have altruistic
preferences towards their descendants or who sell their “position” in
a competitive market. Our analysis applies to any stochastic game
where only one player moves at a time—the asynchronous choice mod-
els of oligopoly due to Maskin and Tirole (1987, 1988a,b) are a leading
example.

Our next step is to define equilibrium. Player i’s expected continuation
value from strategy profile b at (hiτ , piτ ) is defined recursively as follows. If
ι(sτ ) = i, then player i’s period-τ value function satisfies

Vi(b | hiτ , piτ ) =
∑
a∈A

bi(a | hiτ , piτ )
∑

y∈Y,s′∈S

{
ui(sτ , y, a)

+ δiVi(b | (hiτ , y, s′), (piτ , a)
}
q(y, s′ | sτ , a)

=
∑
a∈A

bi(a | hiτ , piτ )
{∑

y
ui(sτ , y, a)qY (y | sτ , a)

+δi
∑

y,s′
Vi(b | (hiτ , y, s′), (piτ , a))q(y, s′ | sτ , a)

}
,

where qY is the marginal distribution on Y .
An almost identical equation holds when ι(sτ ) 6= i, with two changes.

First, in the specification of the period-(τ + 1) value function, the private
history piτ is not augmented by the period-τ action of player ι(sτ ) 6= i.
Second, the distribution over the period τ action, bi(a | hiτ , piτ ) is replaced
by player i’s belief over the behavior of player ι(sτ ):

bι(sτ )(a | hiτ , piτ ) = E[bι(sτ )(a | hι(sτ )τ , pι(sτ )τ ) | hiτ , pi,τ ].

This conditional expectation is well defined for histories (hiτ , piτ ) on the
path of play.

For other histories, we assume the player has some beliefs over the his-
tories observed by the other players. While it is natural to require player
i’s beliefs over player ι(sτ )’s history to respect Bayes’ rule when possible,
we do not impose this requirement. Instead, we simply require that players
have well-defined beliefs at every feasible history, and so the value function
is well defined at all feasible histories.

Definition 1 A strategy profile b is a perfect Bayes equilibrium (PBE) if,
for all i ∈ N , hiτ ∈ Hiτ , piτ ∈ Piτ (hiτ ), and b′i ∈ Bi,

Vi((bi, b−i) | hiτ , piτ ) ≥ Vi((b′i, b−i) | hiτ , piτ ). (1)
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A strategy profile is a sequentially strict PBE if for all for all i ∈ N , hiτ ∈
Hiτ , piτ ∈ Piτ (hiτ ), bi(hiτ , piτ ) is a strict best reply in period τ : that is, for
all b′i ∈ Bi satisfying b′i(hiτ , piτ ) 6= bi(hiτ , piτ ),

Vi((bi, b−i) | hiτ , piτ ) > Vi((b′i, b−i) | hiτ , piτ ).

Definition 2 A strategy bi is Markov if for any two relevant histories (hiτ , piτ )
and (h′iτ , p

′
iτ ) ending in the same state (i.e., sτ = s′τ ),

bi(hiτ , piτ ) = bi(h′iτ , p
′
iτ ).

If b is both Markov and a PBE, it is a Markov perfect equilibrium.

Note that (hiτ , piτ ) and (h′iτ , p
′
iτ ) are both of length τ − ti.

Lemma 1 Every sequentially strict PBE is Markov perfect.

Proof. Fix a t period history ht. By Assumption 1, it is common
knowledge that from period t + K + 1 onwards, the behavior of players
i 6= i∗ does not depend on ht.4 This implies that long-lived player’s value
function from t+K + 1 onwards does not depend on ht. Thus, if the long-
lived player’s strategy satisfies sequential strictness, it does not depend on
ht after date t+K + 1.

We consider first the last player whose behavior could potentially depend
on elements of ht, namely the player choosing an action in period t+K.

For any K-period continuation of ht, ht+K , this player is j = ι (st+K),
with associated semi-public and private histories (hj,t+K , pj,t+K). We now
argue that

bj,t+K

(
(hjt, hj,(t+1,t+K)), pj,t+K

)
= bj,t+K

(
(h̃jt, hj,(t+1,t+K)), p̃j,t+K

)
(2)

for all h̃jt and p̃j,t+K , where hj,t+K =: (hjt, hj,(t+1,T+K)).
We have two cases:

1. Player j is born after period t (i.e., tj > t). In this case, (2) for all h̃jt
is immediately implied by feasibility;

4As Example 1 below illustrates, our assumption that the signal yt is a signal of at
only, and not of earlier actions, is important in this deduction. The Markovian nature of
the process determining states is also important.
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2. Player j is born at or before period t (i.e., tj ≤ t). Nonetheless,
the decision problem facing player j is independent of h̃jt. Moreover,
the decision problem is also independent of player j’s private history
pj,t+K , and so the set of maximizing actions is independent of h̃jt and
pj,t+K . Finally, sequential strictness implies the set of maximizing
choices is a singleton, implying (2).

This argument now applies to show that the choice of the player making
a choice in period t + K − 1 is also independent of the semi-public as well
as the complete private history. Proceeding recursively yields the result.

We are not the first to observe this implication of sequential strictness.
In the context of repeated games where players move asynchronously, Jehiel
(1995) and Bhaskar and Vega-Redondo (2002) have used this logic to con-
clude that if players have a motivation to reduce the memory requirements
of their strategies, even if lexicographically, then they must play Markov
strategies. However, sequential strictness is a demanding requirement, and
any equilibrium in mixed strategies fails it. For example in the Maskin
and Tirole (1988b) model of dynamic price competition where firms move
asynchronously, collusive pricing can be sustained via Markov strategies,
but this requires randomization off the equilibrium path. Similarly, in the
repeated prisoner’s dilemma with asynchronous moves, there exists a co-
operative Markov perfect equilibrium where any breakdown of cooperation
requires a randomized reversion to cooperation. In the following section, we
will argue that payoff perturbations and purification yield the appropriate
notion of sequential strictness, by eliminating non-Markov equilibria, while
retaining mixed Markov equilibria.

4 The Game with Payoff Shocks

We now allow for the payoffs in the underlying game to be perturbed, as
in Harsanyi (1973). Unfortunately, the description of the perturbed game
is notationally cumbersome. Moreover, the definition of sequential rational-
ity in the perturbed game requires specifying beliefs over histories of both
past private actions as well as past private payoff shocks. Fortunately, the
structure of the model allows us to finesse many of the details. Section 4.1
gives the formalism of the perturbed model, including beliefs, and ends with
Lemma 2, which shows that optimal behavior is independent of the pri-
vate history of actions and payoff shocks. Section 4.2 shows that all perfect
Bayesian equilibria of the perturbed game are Markov.
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4.1 The General Structure of the Perturbed Game

We require that the payoff shocks respect the recursive payoff structure of the
infinite horizon game, i.e., to not depend upon history except via the state:
Let Z be a full dimensional compact subset of R|A| and write ∆∗ (Z) for
the set of measures with support Z generated by strictly positive densities.
At each history ht ∈ (S × Y × A)t × S, a payoff shock zi ∈ Z is drawn
according to µsti ∈ ∆∗(Z) for each i.5 The payoff shocks are independently
distributed across players and histories. We write µst := ×iµsti for the
product measure on ZN . The complete history, including payoff shocks is
denoted h̃t ∈ (S×Y ×A×ZN )t×S×ZN . We emphasize that the period-t
state and payoff shock profile are in h̃t. If player ι(s) chooses action a, i’s
payoff is augmented by εzai , where ε > 0 is a positive constant and zai is
player i’s private payoff shock under action a. Thus, players’ stage payoffs
in the perturbed game depend only on the current state, signal, action, and
payoff shock (s, y, a, z), and are given by

ũi (s, y, a, zi) = ui (s, y, a) + εzai .

Each player i only observes his/her private payoff shock in the periods t
when i is alive, i.e., ti ≤ t ≤ Ti.6 We denote the perturbed game by Γ (ε, µ).

To describe strategies, we first describe players’ information more pre-
cisely. Write zi(h̃t) =: zti for the sequence of payoff shocks realized for player
i along h̃t, zit(h̃t) for player i’s current shock (thus zit(h̃t) is the last element
of the sequence zi(h̃t)), and z(h̃t) for the sequence of payoff shock profiles
realized for all players in h̃t.

At the semi-public history hit, a player i period-t private history is p̃it :=
(pit, (ziτ )tτ=ti) ∈ Pit(hit)×Z

t−ti+1. A behavior strategy for player i, b̃i, in the
perturbed game specifies player i’s mixed action b̃i(hit, p̃it), at every relevant
history (hit, p̃it), i.e., with st ∈ S(i) and for every specification of player i’s
actions and realization of i’s payoff shocks. The set of all behavior strategies
for player i is denoted B̃i.

Each player i will maximize expected payoffs given beliefs over the un-
known aspects of history. A belief assessment for player i specifies, for every
relevant history (hit, p̃it), a belief π(hit,p̃it)

i over histories h̃t, that is,

π
(hit,p̃it)
i ∈ ∆

(
(S × Y ×A× ZN )t × S × ZN

)
.

5Our analysis only requires that the shock distributions have densities with full di-
mensional compact supports. The assumption of common support is made to simplify
notation.

6Our assumption, made to simplify notation, that all players receive payoff shocks in
all periods (and not just in the periods they are alive) is without loss of generality.
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Since the distribution of a player’s private payoff shock after the history
ht is completely determined by the state st and players’ private payoff shocks
are independent, player i’s beliefs over the unknown aspects of history are
independent of the realization of these private payoff shocks. In addition,
a player’s past actions should not affect player i’s own beliefs (Fudenberg
and Tirole (1991) refer to this type of condition as “no-signaling-what-you-
don’t-know”).

We are thus led to the following maintained assumption on belief assess-
ments:

Assumption 2 Every player i’s belief assessment satisfies

1. the implied beliefs over other players’ semi-public and private histories
are independent of player i’s private payoff shocks and past actions pit;
and

2. player i’s beliefs assign probability zero to the event that the history h̃t

is inconsistent with (hit, p̃it).

Beyond Assumption 2, we impose no further restrictions (such as consis-
tency with Bayes’ rule on the equilibrium path and independence of payoff
shocks across other players or periods); we return to this issue after we
introduce the notion of a sequential best response.

Player i’s ex post value is recursively given by, for a given strategy profile
b̃,

Ṽi(b̃ | h̃t) =
∑
a∈A

b̃ι(st)(a | hι(st)t, p̃ι(st)t)
∑

y∈Y,s′∈S

{
ũi(st, y, a, zit)

+δi
∫
Ṽi(b̃ | h̃t, y, s′, a, z′) dµs

′
(z′)
}
q(y, s′ | s, a).

Player i’s expected payoff from the profile b̃ is given by∫
Ṽi(b̃ | h̃t) dπ(hit,p̃it)

i (h̃t). (3)

Definition 3 Strategy b̃i is a sequential best response to (b̃−i, πi), if for
each hit ∈ Hit, p̃it = (pit, (ziτ )tτ=ti) ∈ Pit(hit)× Z

t−ti+1, and b̃′i ∈ B̃i,∫
Ṽi((b̃i, b̃−i) | h̃t) dπ(hit,p̃it)

i (h̃t) ≥
∫
Ṽi((b̃′i, b̃−i) | h̃t) dπ

(hit,p̃it)
i (h̃t).

Strategy b̃i is a sequential best response to b̃−i if strategy b̃i is a sequential
best response to (b̃−i, πi) for some πi.

12



Because the perturbed game has a continuum of possible payoff shocks
in each period, and players may have sequences of unreached information
sets, there is no standard solution concept to which we may appeal. Our
notion of sequential best response is very weak (not even requiring that
beliefs respect Bayes’ rule on the path of play). Assumption 2 does require
each player’s beliefs over other players’ payoff shocks be independent of his
own shocks. For information sets on the path of play, this requirement is
implied by Bayes’ rule. Tremble-based refinements imply such a requirement
at all information sets, though they may imply additional restrictions across
information sets. Assumption 2 is not implied by the notion of “weak perfect
Bayesian equilibrium” from Mas-Colell, Whinston, and Green (1995), where
no restrictions are placed on beliefs off the equilibrium path (which would
allow players to have different beliefs about past payoff shocks depending
on their realized current payoff realization).

In principle, a strategy for a player i depends on the fine details of the
private histories that the player observes, i.e. his past payoff shocks and his
past actions. Lemma 2 shows that any sequential best response must ignore
such fine details, although it may depend upon the player’s current payoff
shock.

Definition 4 A strategy b̃i is a current shock strategy if for all hit ∈ Hit,
and private histories (pit, (ziτ )tτ=ti), (p′it, (z

′
iτ )tτ=ti) ∈ Pit(hit) × Zt−ti+1, if

zit = z′it = z, then for almost all z ∈ Z,

b̃i(hit, (pit, (ziτ )tτ=ti)) = b̃i(hit, (p′it, (z
′
iτ )tτ=ti)).

Lemma 2 If b̃i is a sequential best response to b̃−i, then b̃i is a current
shock strategy.

Proof. Fix a player i, hit ∈ Hit, and private history , p̃it = (pit, (ziτ )tτ=ti).
Denote i’s beliefs by πi. Player i’s next period expected continuation payoff
under b̃ from choosing action a this period, Vi(a, b̃−i, πi | (hit, p̃it)), is given
by∑
y,s′

q(y, s′ | s, a)
∫∫

max
b̂i

Ṽi(b̂i, b̃−i | h̃t, y, s′, a, z′) dµs
′
(z′) dπ(hit,p̃it)

i (h̃t ).

Since b̃−i and the beliefs implied by π(hit,p̃it)
i over other players’ semi-public

and private histories are independent of p̃it, the maximization implies that
Vi(a, b̃−i, πi | (hit, p̃it)) also does not depend on player i’s private history.
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Thus, player i’s total utility from the action a,

ui(s, y, a) + εz̃ai + δiVi(a, b̃−i, πi | (hit, p̃it)),

is independent of player i’s private history. Since µs is absolutely continuous,
player i can only be indifferent between two actions a and a′ on a zero
measure set of z ∈ Z. For other z, there is a unique best response, and so
it is independent of the private history before the current shock.

4.2 Mutual Sequential Best Responses are Markov

A current shock strategy (ignoring realizations of z of measure 0) can be
written as

b̃i : ∪ti≤t≤TiHit × Z → ∆ (A) .

If all players are following current shock strategies, we can recursively define
value functions for a given strategy profile b̃ that do not depend on any payoff
shock realizations:

V ∗i (b̃|hit) =
∫ ∑

a∈A
b̃ι(st)(a|hit, zι(st))

∑
y∈Y,s′∈S

[
ũi(st, y, a, zi)

+δiV ∗i (b̃|hit, y, s′)
]
q(y, s′|st, a) dµst(z), (4)

where
b̃ι(st)(a|hit, zι(st)) = E[b̃ι(st)(a|hι(st)t, zι(st))|hit, z] (5)

is i’s prediction of player ι(st)’s behavior given i’s semi-public history and
the period t payoff shock. As suggested by (5), V ∗i does depend, in general,
on non-payoff-shock aspects of i’s belief assessments. As will be clear, this
dependence does not arise in equilibrium, and so we economize on notation
by suppressing the potential dependence of V ∗i on beliefs. For future ref-
erence, player i’s ex post value from the action a given the payoff shock zi
(the value of the second summation) is denoted by

Ṽ ∗i (a, zi; b̃|hit) :=
∑

y∈Y,s′∈S

[
ũi(st, y, a, zi) + δiV

∗
i (b̃|hit, y, s′)

]
q(y, s′|st, a).

It is straightforward to verify that Ṽ ∗i is the expectation of Ṽi, conditional
on hit, when all players are following current shock strategies.

Lemma 2 implies that beliefs over private histories are essentially irrele-
vant in the notion of sequential best responses, because, while behavior can
in principle depend upon private histories, optimal behavior does not. We
restate Lemma 2 in a more convenient form using the V ∗i notation:
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Lemma 3 A profile b̃ is a profile of mutual sequential best responses if, and
only if, for all i, b̃i is a current shock strategy, and for each hit ∈ Hit, and
b̃′i ∈ B̃i,

V ∗i ((b̃i, b̃−i) | hit) ≥ V ∗i ((b̃′i, b̃−i) | hit). (6)

Given Lemma 3 and the discussion in Section 4.1, the following defini-
tions are natural:

Definition 5 A perfect Bayesian equilibrium ( PBE) is a profile of mu-
tual sequential best responses (which is necessarily a profile of current shock
strategies).

A profile b̃ of current shock strategies is an essentially sequentially strict
equilibrium if, for all i ∈ N , hit ∈ Hit, for almost all payoff shocks zi ∈ Z,
the action b̃i(hit, zi) is pure and is the unique maximizer of player i’s ex post
value from the action a given the payoff shock zi, Ṽ ∗i (a, zi; b̃|hit).

A current shock strategy b̃i is Markov if for for almost all zi ∈ Z, feasible
histories hit, h′it ∈ Hit satisfying st = s′t,

b̃i(hit, zi) = b̃i(h′it, zi).

If b̃ is both Markov and a PBE, it is a Markov perfect equilibrium.

After this considerable notational journey, we are led to a key result of
the paper (with a gratifyingly short proof).

Proposition 1 Every PBE of the perturbed game is essentially sequentially
strict, and so is Markov perfect.

Proof. Since flow payoffs are given by

ũi (s, y, a, zi) = ui (s, y, a) + εzai ,

the equality Ṽ ∗i (â, zi; b̃|hit) = Ṽ ∗i (ã, zi; b̃|hit) implies

ε(zâi − zãi ) =
∑

y∈Y,s′∈S
[ui(st, y, ã)− ui(st, y, â)]

+ δiV
∗
i (b̃|hit, y, s′)

[
q(y, s′|st, ã)− q(y, s′|st, â)

]
.

Since the set of actions is countable, the set of values of zi for which
player i can be indifferent between any two actions is of Lebesgue measure
zero. Thus, for almost all zi, the set of maximizers must be a singleton, and
the profile is essentially sequentially strict.

The proof that every essentially strict equilibrium is Markov perfect is
almost identical to that of Lemma 1, and so is omitted.
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4.3 Purification

We now consider the purifiability of equilibria in the unperturbed game.
Purification has several meanings in the literature (see Morris (2008)). One
question asked in the literature is when can we guarantee that every equilib-
rium is essentially pure by adding noise to payoffs (e.g., Radner and Rosen-
thal (1982))? As we have seen in Proposition 1, our shocks ensure that in
the perturbed game, any equilibrium must be essentially pure.

We follow Harsanyi (1973) in being interested in the relation between
equilibria of the unperturbed game and equilibria of the perturbed game.
But the definition of purifiability that we require for our main result is very
weak: we require only that there exists a sequence of equilibria of a sequence
of perturbed games that converge to the desired behavior.

Fix a strategy profile b of the unperturbed game. We say that a sequence
of current shock strategies b̃ki in the perturbed game converges to a strategy
bi in the unperturbed game if expected behavior (taking expectations over
shocks) converges, i.e., for each hit ∈ Hit and a ∈ A,∫

b̃ki (a | hit, zi) dµs(z)→ bi(a | hit). (7)

Definition 6 The strategy profile b is weakly purifiable if there exists a
sequence {(µk, εk)}∞k=1, with µk : S → ∆∗(Z) and εk → 0, such that there
is a sequence of profiles {b̃k}∞k=1 converging to b, with b̃k a perfect Bayesian
equilibrium of the perturbed game Γ(µk, εk) for each k.

Since the supporting sequence of private payoff shocks is allowed to de-
pend on the strategy profile b, and the distribution µk is itself indexed by k,
this notion of purifiability is almost the weakest possible.7 Our notion cru-
cially maintains the recursive payoff structure of the infinite horizon game
(in particular, we require that the payoff shocks are intertemporally inde-
pendent). Allowing for intertemporally dependent payoff shocks violates the
spirit of our analysis.

A stronger notion of purification, closer to the spirit of Harsanyi (1973),
is the following:

Definition 7 The strategy profile b is Harsanyi purifiable if for every se-
quence {(µk, εk)}∞k=1, where µk : S → ∆∗(Z) and εk → 0, there is a sequence

7It is also worth noting that we only require pointwise convergence in (7). For infinite
horizon games, we may ask for uniform (in hit) convergence, as is done in the positive
result (Theorem 3) in Bhaskar, Mailath, and Morris (2008). Negative results are of course
stronger with pointwise convergence.
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of profiles {b̃k}∞k=1 converging to b, with b̃k a perfect Bayesian equilibrium of
the perturbed game Γ(µk, εk) for each k.

Clearly, if a profile is Harsanyi purifiable, then it is weakly purifiable.
The following is immediate from Section 4.2:

Proposition 2 Every weakly purifiable PBE is Markov.

The logic behind this proposition is straight-forward. Proposition 1 im-
plies that in any perturbed game, any PBE is Markov. Thus, if b is not
Markov, given an arbitrary sequence < µk, εk >∞k=1 with εk → 0, we cannot
find a sequence of PBE of the perturbed games converging to b.

5 Extensions and Discussion

5.1 Continuum Action and State Spaces

The assumption that the sets of actions, states, and signals are countable
was made for expositional convenience. The model and results naturally
extend to continuum spaces, as we now describe.

Suppose the set A is a compact subset and Y and S are measurable sub-
sets of finite dimensional Euclidean spaces. Transitions and monitoring are
described by a mapping (probability kernel) q : S × A × F → [0, 1], where
F is the collection of events (measurable subsets) of Y × S, q(s, a, F ) is a
measurable function of (s, a) for each F ∈ F , as well as a probability mea-
sure over F for each (s, a); we write qs,a for this measure. The flow payoffs
are bounded and continuous functions of (s, y, a). The value functions are
as before (with integrals replacing summations in the calculation of expec-
tations), as is the definition of PBE. A profile b in the unperturbed game
is an essentially sequentially strict PBE if (as in Definition 5) bi(hiτ , piτ ) is
a strict best reply for almost all signals. The proof that every essentially
sequentially strict equilibrium is Markov perfect is along the same lines as
the proof of Lemma 1.

To keep things simple in our discussion of the perturbed game, we now
suppose actions, states and signals are all one dimensional (though the fol-
lowing extends in an obvious manner to more dimensions). Each player i’s
payoff perturbations is indexed by the one dimensional variable zi. Flow
payoffs are given by

ui(s, y, a) + εvi(s, y, a, zi),
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where ε > 0 and vi(s, . , . , .) is a parameterization of the payoff perturbation.
In particular, we assume

v̄i(s, a, zi) :=
∫
vi(s, y, a, zi) dqs,a(y, s′) (8)

is either strictly supermodular or strictly submodular in (a, zi). Note that
we do not make any similar assumption on the payoff function ui.

Each player’s payoff shock zi is, for each history ht, distributed according
to µsti with common interval support Z ⊂ R. As for the countable case, we
assume the payoff shocks are continuously and independently distributed
across players and histories, and every player’s belief assessment is assumed
to satisfy Assumption 2. The notions of sequential best response (Definition
3) and current shock strategy (Definition 4) are unchanged, and Lemma 2
continues to hold with essentially the same proof (again, after summations
are replaced by the appropriate integrals). Similarly, Lemma 3 still holds,
and the notions of PBE and Markov perfect equilibrium continue to be given
by Definition 5.

We now argue that Proposition 1 holds , that is, every PBE is essentially
sequentially strict and so is Markov perfect. When players follow a profile
b̃, player i’s ex post payoff from choosing action â at (hit, zi) is given by

Ṽ ∗i (a, zi; b̃|hit) =
∫

(y,s′)∈Y×S

ui(st, y, a) + εvi(st, y, a, zi)

+ δiV
∗
i (b̃|hit, y, s′) dqst,a(y, s′)

= Wi(a; b̃|hit) + εv̄i(st, a, zi),

where

Wi(a; b̃|hit) :=
∫

(y,s′)∈Y×S

ui(st, y, a) + δiV
∗
i (b̃|hit, y, s′) dqst,a(y, s′)

and v̄i is defined in (8). Note that the ex post payoff function Ṽ ∗i inherits
the strict super- or submodularity in (a, zi) of v̄i.

Define φi(zi|hit, b̃) := arg maxa′∈A Ṽ ∗i (a′, zi; b̃|hit), i.e., φi(zi|hit, b̃) is the
correspondence describing the maximizers of Ṽ ∗i . A PBE b̃ will be essentially
sequentially strict if, for all i and hit, the correspondence φi(zi|hit, b̃) is a
singleton for almost all values of zi.
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Suppose Ṽ ∗i is strictly supermodular (a similar argument applies if it
is strictly submodular). It is standard that the correspondence φi(·|hit, b̃)
is strictly increasing in the following sense: for all zi < z′i, and for all
a ∈ φi(zi|hit, b̃) and a′ ∈ φi(z′i|hit, b̃), we have a < a′. This implies that the
convex hulls of φi(zi|hit, b̃) and φi(z′i|hit, b̃) are disjoint for all zi 6= z′i, and
so φi(zi|hit, b̃) must be singleton-valued for all but a countable number of
zi. Hence, every PBE is essentially sequentially strict.

Finally, Proposition 2 holds in the current setting (for any sensible notion
of convergence in the definition of weak purification).

We now consider some applications of this result:

1. In the asynchronous choice oligopoly models of Maskin and Tirole
(1988a, 1987), players choose quantities, so that action sets and states
are subsets of the real line. Suppose now that the payoff perturba-
tions, zi, arise due to cost shocks, that are independently and iden-
tically distributed in every period. Thus vi(a, y, zi ,s) = −azi, so the
submodularity condition is satisfied. Thus our argument justifies the
restriction to Markov perfect equilibria in the context of this model.

2. In Maskin and Tirole (1988b), firms choose prices and the products
are homogeneous. Payoff shocks in this setting do not generate the
required variability in current period output, since when a firm prices
above its competitor (as occurs in some parts of the Edgeworth cycle),
in that period, the firm makes no sales. On the other hand, in the
differentiated products version of Eaton and Engers (1990), a firm’s
quantities are decreasing in the firm’s own price, and thus the payoff
perturbation is strictly supermodular. Our argument therefore applies
in this case.

3. In Samuelson’s (1958) consumption loan model, agents live for two
periods, and a young agent must choose a transfer to the old agent,
a real number. With bounded social memory, there exists a pure
strategy equilibrium that supports efficient transfers. If we perturb
payoffs, so that there are shocks to the marginal rate of substitution of
the young agent, between consumption when young and consumption
when old, then the supermodularity condition is satisfied. Thus only
the Markov perfect equilibrium survive these perturbations.8

8For reasons of space we omit the details of this argument. They are available from
the authors on request.
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More generally, in many economic applications, supermodularity or sub-
modularity of the payoff function in the payoff shock parameter and the ac-
tions is a natural assumption. Thus the purification justification for Markov
equilibrium can be readily applied, to many economic examples of dynamic
games, across a variety of fields in economics.

5.2 Alternative Informational Assumptions on Signals

It is critical for our result that the signal in any period, yt, depends on at
only, and not on earlier actions.

Example 1 There are overlapping generations with all players being finitely-
lived and living for two periods. Agents are indexed by τ ∈ N with tτ = τ−1
and Tτ = τ+1. Each player chooses a ∈ {0, 1}. The period-τ player receives
a zero payoff in all periods except period τ + 1, where the payoff u(aτ , aτ+1)
satisfies

u(0, 1) > u(1, 1) > u(0, 0) > u(1, 0).

At the end of period τ − 1, agent τ observes a signal yτ−1 given by

yτ−1 = aτ−2 + aτ−1,

where we initialize the recursion by specifying a−1 = 1.
A pure strategy for players τ ≥ 1 is a function σt : {0, 1, 2} → {0, 1},

while a strategy for player 0 is an action choice from {0, 1} (since player 0
has a null history). A Markov strategy is an action choice (since the state
space is a singleton). The game has a unique Markov perfect equilibrium,
and in this equilibrium all players choose 0.

Consider the following (non-Markov) strategy profile: every player τ ≥ 1
plays the strategy σ given by σ(0) = σ(1) = 0 and σ(2) = 1, and player
0 chooses 1. We argue that this profile is a sequentially strict PBE, even
though there is a uniform bound on players’ life spans and the profile is not
Markov.

The choice of 1 at yτ = 2 is optimal for all players, since u(1, 1) >
u(0, 0). Moreover, choosing 0 at yτ = 0 is optimal since it yields u(0, 0)
while choosing 1 yields u(1, 0).

The critical value of y is y = 1. The value of yτ = 1 arises from two
different private histories: (aτ−2, aτ−1) = (0, 1) and (aτ−2, aτ−1) = (1, 0).
If it is the former, the action choice aτ is pivotal in determining aτ+1 un-
der σ, while under the latter history, it is not (since aτ+1 = 0 indepen-
dent of aτ ). If player τ assigns sufficient probability to the action history
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A F

IN 2, 0 0,−c

OUT 1, 1 + z 1, 1

Figure 2: A simultaneous move version of the Chain Store game.

(aτ−2, aτ−1) = (1, 0), then aτ = 0 is strictly optimal. Finally, beliefs such
that the probability that (aτ−2, aτ−1) = (1, 0) equals one can be derived as
the limit of a sequence of trembles requiring only a single agent to deviate
from the equilibrium path of play. Since this equilibrium is strict, it can
admits a Harsanyi purification – if ε is sufficiently small, in the perturbed
game there exists an equilibrium where each player plays as in the above
equilibrium of unperturbed game, for all realizations of his payoff shock.

F

This example illustrates that cooperation and non-Markovian behavior
can be sustained as an equilibrium when there is less information on past
events, as compared to the case when there is more information.

5.3 Simultaneous Move Games

Propositions 1 and 2 do not extend to games where more than one player
moves at a time, e.g. repeated synchronous move games. It is easy to con-
struct counterexamples, and indeed Mailath and Olszewski (2011) proves a
folk theorem using strict, and hence purifiable, finite recall strategy profiles.
For an illustrative example, consider the modification of the chain store
game, where players move simultaneously, with payoffs given in Figure 2.
We assume that z > 0, so that (OUT,F) is not a Nash equilibrium of the
stage game.

The game is played between an incumbent (the long run player) who
chooses from {A,F} and a sequence of entrants (short run players). The
entrant born at date t−1 observes the action profile played at t−1, and plays
the game at date t. The incumbent observes the entire history. Consider the
strategy profile where actions at date t only depend upon the action profile
played at t−1. The entrant plays OUT at t = 1, and at any date t if (OUT,F)
is played at t − 1; otherwise, he plays IN. The incumbent plays F at t = 1,
and and at any date t if (OUT,F) is played at t− 1; otherwise, he plays IN.
If (1 − δ)z < δ, the incumbent has no incentive to deviate to A along the
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equilibrium path, and this profile is a sequentially strict PBE; more precisely,
for any beliefs over histories that each entrant may have, the strategy profile
satisfies sequential rationality. Since all players have strict incentives at
every information set, it is easy to show that this equilibrium admits a
Harsanyi purification. However, the unique Markov Perfect equilibrium of
this game has players playing the unique Nash equilibrium of the stage game,
(IN,A), at every history.9

The strategy profile just constructed has the property that the actions at
date t depend upon the action profile at t−1, i.e. upon the actions of both the
entrant and the incumbent. This feature prevents the incumbent’s unilateral
manipulation of history that precludes non-Markovian equilibrium play in
the sequential chain store of Section 2. In the simultaneous-move chain store,
the incumbent cannot restore the (OUT,F) continuation path after a play
of (IN,A), because the profile specifies continued play of (IN,A) after (IN,F).
Note that under such a specification in the sequential chain store of Section 2,
sequential rationality would force the incumbent to play A after the first play
of IN, eliminating any incentive for the entrants to play OUT. In contrast,
under simultaneous moves, on the equilibrium path, the current entrant
believes the incumbent will choose F (which is sequentially rational for the
incumbent, since simultaneous moves prevent the incumbent’s current action
from depending on the current action of the entrant).

One can, of course, increase the set of Markov equilibria in the chain
store game by expanding the set of states, by allowing them to depend
upon the previous period’s outcome. However, with sequential moves, such
a “spurious” Markov strategy profile will not be sequentially strict. As we
show in Section 5.5, it may not admit a Harsanyi purification.

Although purifiability clearly has less bite in simultaneous move games,
it is possible that it may allow us to restrict the set of equilibria. For exam-
ple, one conjecture is that it might rule out the “belief-free” strategies re-
cently introduced by Piccione (2002) and Ely and Välimäki (2002). Bhaskar,
Mailath, and Morris (2008) show that the one period recall strategies of Ely
and Välimäki (2002) are not purifiable via one period recall strategies in the
perturbed game; however, they are purifiable via infinite recall strategies.10

9Liu (2011) and Liu and Skrzypacz (2011) consider simultaneous move games played
between a long run player and short run players with finite social memory. They show
that such games can give rise to interesting dynamics in the presence of a reputational
type for the long run player.

10A similar argument shows that in the chain store example of Section 2, if entrants
have unbounded memory, the one-period recall mixed strategy equilibrium is purifiable
(Bhaskar, Mailath, and Morris, 2009, Example 3).
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The purifiability of belief free strategies via finite recall strategies remains
an open question.

Recent work of Peski (2009, 2012) gives conditions under which all re-
peated game equilibria are sequences of stage game equilibria. Peski assumes
a continuum of signals that are sufficiently rich, even though the stage game
has finitely many actions. The result uses a purification argument, and a
requirement that strategies are measurable with respect to a finite partition
of histories. Sequences of stage game equilibria are the only Markov equi-
libria in repeated games, and thus these papers give alternative conditions
under which only Markovian equilibria survive.

5.4 Purification of Stationary Markov Equilibria

Our primary interest in this paper is to explore the extent to which purifica-
tion justifies restricting attention to Markov equilibria. In this section, we
provide a partial converse: for a class of models, every stationary Markov
equilibrium can be purified. Our central Assumption 1 implies that the
game necessarily has a countable infinity of players, and our notion of state
accommodates this infinity. The unperturbed game is a dynamic stochastic
game with a countable set of players, states, signals, and actions, while the
perturbed game adds the further complication of a continuum of private
payoff shocks. We are not aware of any standard theorems on existence and
purification for our perturbed game setting.

Our strategy therefore is to show the existence and purifiability of Markov
perfect equilibria in a class of stationary games, with a countable set of play-
ers and states. We do this by showing an equivalence between the equilibria
of this underlying game, Γ, and of a related game Γ̂ that has finitely many
states and players. Thus the existence and purification results for the latter
can be extended to the underlying game, Γ.

As we have already noted, any finite stochastic game can be reinter-
preted as a game with infinitely many short run players who have the same
payoff function as the long run player in the original game. The payoff as-
sumption will be valid either if the short run player can “sell” her position
to a successor, or if the she is altruistic towards her successor. We formalize
this as follows.

An infinite horizon finite (sequential) stochastic game is described by
the collection Γ̂ := {W, N̂, ι̂, A, q̂, (δi, ui)i∈N̂}, where W is the finite set of
states, N̂ is the finite set of long-lived players, ι̂ : W → N̂ identifies the
mover at each state, A is the finite set of actions, q̂ : W × A → ∆(W ) is
a stationary transition function, and finally, player i ∈ N̂ maximizes the
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discounted (by δi) expected value of the infinite sequence of flow payoffs
given by ui : W ×A→ R.

Note that, for simplicity, we assume the game has perfect monitoring,
and so there are no public signals y.

To map the game Γ̂ into a game Γ covered by Section 3, we begin by set-
ting S := W×N0, where N0 := {0, 1, 2, . . . } denotes the set of periods. Tran-
sitions are described by q : S × A → ∆(S), where q(w, t, a) := q̂(w, a)ft+1

and ft+1 is a degenerate distribution on N0 assigning probability one to
t+ 1.

Fix K ≥ 1. For i ∈ N̂ , associate a countably infinite number of short-
lived players, with player j ∈ N0 having flow payoff function ui, birth date
tj = jK, and death date Tj = (j + 1)K − 1.11 Denote the jth short-lived
version of player i by j(i), and the set of such players by ∈ N (i). The
countable collection of short-lived players is then given by N := ∪

i∈N̂N (i).
The assignment of players to states s = (w, t) is ι(w, t) := jt(ι(w)), where jt
satisfies jtK ≤ t < (jt+ 1)K. Finally, all short-lived players associated with
player i in Γ̂ share player i’s discount factor δi (in particular, player j(i) is
altruistic with respect to future generations j′(i), j′ > j). We call the game
Γ an infinite player version of a finite stochastic game.

In both Γ and Γ̂, a stationary Markov strategy profile is a mapping
b̃ : W → ∆(A). It is immediate that the stationary Markov equilibria of Γ
and Γ̂ are identical (the non-Markov equilibria may differ since the players in
Γ̂ have additional information on payoff-irrelevant histories). The existence
of stationary Markov perfect equilibria in the game Γ̂ is well established
in the literature. Thus stationary Markov equilibria exist in the game Γ.
As in Section 4.1, player i’s payoff shocks are described by the continuous
measure µwi ∈ ∆∗(Z), and we denote the perturbed games by Γ̂(ε, µ) and
Γ(ε, µ). As for Γ(ε, µ), sequential best replies in Γ̂(ε, µ) are current shock
strategies (finite memory plays no role in the proof of Lemma 2), and so the
stationary Markov equilibria of Γ̂(ε, µ) and Γ(ε, µ) are identical.

The game Γ̂ is parameterized by the collection of utility functions, ui :
W ×A→ R, i ∈ N̂ , i.e., by a point in R|W×A×N̂ |. By Doraszelski and Esco-
bar (2010, Theorem 2), for almost all payoffs in R|W×A×N̂ |, any stationary
Markov equilibrium of Γ̃ is Harsanyi-purifiable. In view of the equivalence
between the Markov equilibria of Γ and Γ̃, and between the Markov equilib-
ria of the perturbed version of these two games, this implies that for almost
all payoffs in R|W×A×N̄ |, any stationary Markov equilibrium of Γ can be

11More general patterns of birth and death dates, consistent with Assumption 1, can
easily be accommodated, at the cost of more complicated notation.
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purified.

5.5 The Notion of Markov State

One criticism made of the notion of Markov equilibria is that it can be made
arbitrarily permissive by expanding the set of states. In particular, consider
a non-Markov strategy profile that plays differently across different histories
or information sets. Such a profile can be made into a Markov profile by
expanding the set of states, so that distinct information sets induce distinct
states. However, since our Harsanyi-purification result holds only for games
with generic payoffs, there is no guarantee that the resulting equilibria can
be purified. Indeed, it seems likely that genericity will be violated since if
the two “spuriously” distinct states are labelled s and s′, ui(a, s) = ui(a, s′).
The following two examples, that are based on the chain store game, are
illustrative.

Assume, as in Section 2, that the short run player only observes the
outcome in the previous period, which belongs to the set O = {Out,A,F}.
This outcome was assumed to be not payoff relevant in the current period,
while the set of states W has two elements: the initial node, w0 where the
entrant moves and w1, where the incumbent moves. Now suppose that the
state space is W × O, i.e. we augment the state space by also including
the previous period’s outcome. The mixed strategy equilibrium where entry
is deterred is now a Markov equilibrium. However, it cannot be Harsanyi-
purified: It suffices to consider any payoff perturbation µ that does not
depend upon O, i.e. where µwio = µwiõ for any o, õ ∈ O. Since neither state
transitions nor payoffs depend on the current element of O, an equilibrium
that conditions upon O cannot be purified under these perturbations. This
also implies that the mixed strategy equilibrium cannot be weakly purified
when we require the payoff perturbations to not depend on O.

On the other hand, if the state allows a way of encoding the infinite
history, then such Markov equilibria can be purified even if the states do
not directly affect payoffs. To see this, suppose the state space is given by
{w0, w1} × {a, f}, where w0 and w1 are as described in the previous para-
graph. The states a and f encode history, with the current encoding being f
if any entry had been met with F, and a if a single entry had been followed
by A. Consider the Markov strategy profile where the incumbent plays f at F
and A at a, while the entrant enters at a and stays out at f. This is a Markov
equilibrium where each player has strict incentives at each information set,
and it is easy to show that it can be Harsanyi purified. Our justification for
restricting attention to Markov equilibria rests on informational restrictions

25



– in particular, bounded memory. Thus if states allow players to encode in-
finite histories, then mutual conditioning upon these states can be sustained
even if these states do not directly affect payoffs.

These two examples illustrate the difference between our approach, based
on informational considerations and payoff perturbations and that of Maskin
and Tirole (2001), that is based entirely on payoff considerations. Loosely,
Maskin and Tirole (2001) consider stochastic games with perfect information
on histories and use payoff equivalence to induce a partition over histories
of the same length. The set of Markov states is defined to be the coarsest
partition over histories such that for every profile measurable with respect
to that partition, each player has a best response measurable with respect
to that partition. Under the Maskin-Tirole definition, in both the above
examples, in the unique Markov equilibrium the backwards induction out-
come is played in each period. However, if the state allows the encoding of
infinite histories, then a trigger strategy type equilibrium can be purified.
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