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Abstract

This paper studies the aggregate consequences of individual learning in the labor market.

Specifically, I examine this issue in a model of directed search on the job. Once matched,

a firm-worker pair gradually learns the match-specific quality, taking the history of realized

production as signals. Heterogeneity in beliefs about the match quality and in the job

search behavior of workers naturally occurs, resulting from a variety of individual histories. I

describe the efficient learning and searching strategy and implement the efficient allocations

through a market mechanism in which the labor contract depends deterministically on tenure.

Consistent with the stylized facts, the model successfully predicts the tenure effect on both

the job separation rate and the probability of on-the-job search, and when search frictions

are small, the model generates a dispersed wage distribution with a flat tail, along the lines

of observations.
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1 Introduction

It is well established that learning about the match quality of firm-worker pairs plays an

important role in explaining job turnover at the individual level.1 However, few studies have

shed light on the aggregate consequences resulting from individual learning. This paper analyzes

the impact of individual learning on wage dispersion, the interplay between learning and search

frictions, and how the socially efficient learning allocation can be implemented through a market

mechanism.

I develop a directed on-the-job search model to address the aforementioned issues. In particular,

I introduce the learning behavior of matched firm-worker pairs into a frictional labor market. A

firm and a worker may meet in the labor market. Their pair-specific match quality is initially

unknown (with the same prior on both sides) and revealed gradually over time. Employed workers

can search for a new job and so can unemployed workers, and the optimal search strategy depends

on a worker’s subjective evaluation of his current job status. Over time, a worker adjusts his

evaluation of current job match quality based on his past job performance. The diversity of

individual histories results in ex post heterogeneity in subjective evaluation and therefore in the

job search behavior among workers. Optimistic workers are attracted by well-paying jobs only.

Pessimistic workers, who are or will be unemployed, are less selective and are willing to take offers

with lower pay. This job status contingent search strategy can generate interesting empirical

implications for both job turnover and wage dispersion.

In general, the equilibrium is hard to characterize. In a standard search model, as Burdett

and Mortenson (1998) and Shi (2009) show, firms may post different wage schemes, which induces

two dimensions of ex post heterogeneity among employed workers: (1) their subjective evaluation

of the current match quality, and (2) the wage scheme promised by their current employer. A

worker’s job search behavior depends on both of them, and therefore it is hard to analyze, especially

in an equilibrium model. To avoid the curse of dimensionality, I follow Menzio and Shi (2011)

and consider an environment in which the employment contract is complete and the allocation is

socially efficient. Focusing on this particular environment not only simplifies the analysis but also

generates interesting and economically relevant dynamics.

To characterize the socially efficient allocation, I start with the social planner’s problem. A

social planner decides (1) the separation rule of existing matches and (2) search strategy for

each worker. The efficient separation rule is given as a cutoff belief about match quality. When

the belief about match quality is higher than the cutoff level, the planner keeps the underlying

1For example, Bergemann and Valimaki (1994), Eeckhout and Weng (2010), Felli and Harris (1996), Jovanovic

(1979), Miller (1984), Nagypal (2007).
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match. Otherwise, the planner destroys the match and naturally stops learning about its quality.

Following the literature of directed search (Acemoglu and Shimer 1999, Moen 1997), I assume

there are numerous locations in the economy. A match forms only if a worker meets a firm at the

same location. To workers, locations differ from each other in the probability of finding a new

job and promised pay. The efficient choice of a searching location is determined by the current

state of a worker. If an employed worker is in a good match, he does not search for a new job.

If an employed worker’s current match quality is uncertain, he is sent to a specific location to

find a new job, and the probability of getting a new job is non-increasing in the belief about his

current match quality. An unemployed worker searches for a job at the location with the highest

job-finding probability. Thanks to the block recursive structure of the model, the social planner’s

solution does not depend on the distribution of workers’ states, and therefore, the analysis works

whether it is at the steady state or not.

Next, for tractability, I take the original discrete time model to its continuous time limit to

characterize its approximated empirical implication. The discrete time model has a well-defined

continuous time limit, the solution of which is uniquely characterized by a set of equations. The

dynamics of the continuous time limit of the social planner’s problem is governed by an ordinary

differential equation. This implies that when the time interval is small, the solution to a social

planner’s problem in discrete time can be approximated by the solution to a simple ODE.

I then turn to the decentralization of the planner’s solution in both discrete time and continuous

time settings and suggest possible empirical implications of the market equilibrium. The planner’s

solution can be implemented if a firm and a worker sign a bilaterally efficient contract upon forming

their match. In particular, a bilaterally efficient contract may consist of a contractible tenure

contingent on-the-job search strategy, a tenure independent wage agenda and a probationary

period. Under this specific contract, the market equilibrium can implement the socially efficient

allocation.

The main results are equilibrium predictions at both the individual and aggregate levels. First,

this model can preserve the qualitative correlations between tenure, separation rates, and on-the-

job search probability that are observed in the individual-level data. The separation rate as a

function of tenure first increases at low tenure levels, then decreases, and eventually becomes

constant. The on-the-job search probability as a function of tenure is decreasing first and constant

in the end. Second, at the aggregate level, this model generates a stationary wage distribution

whose curvature depends on learning speed and search frictions. With small search frictions, one

can expect a wage distribution with a flat tail. Intuitively, when search frictions are small, it is easy

to find a job quickly, and therefore it is socially inefficient to create many vacancies for workers

whose match quality is believed to be not low enough. Since those workers are aiming for a high
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wage, the new match formation with a high wage has low mass. Hence, the probability densities

of high wage offers are small in the stationary wage distribution. Finally, a simple comparative

statics of this model reveals that the wage dispersion increases as a result of an improvement in

aggregate productivity. These empirical implications illustrate that the coexistence of individual

learning and search frictions has important aggregate consequences.

These theoretical results are roughly consistent with a variety of stylized facts emerging from

the data at both the micro and macro levels. For example, Farber (1994) and Nagypal (2007)

find that the separation rate increases early in tenure and decreases later, but in the end, the

separation rate becomes constant. In addition, Pissarides and Wadsworth (1994) show that on-

the-job search intensity is decreasing in tenure. Finally, many empirical papers, such as Postel-

Vinay and Robin (2002), and Mortenson (2005), find that within-group wage dispersion has a flat

tail, and its inequality rises from the 1970s to the 1990s as productivity improves. See Kambourov

and Manovskii (2009) for details.

My paper is closely related to Moscarini (2005), who also studies the aggregate consequences

of pair-specific match quality learning in a Mortenson-Pissarides model. In his paper, search is

random, and a matched worker and firm keep bargaining over wages over time. His model implies

that a low-quality match bears a higher probability of being destroyed than a high-quality match

does, and therefore, the longer a worker stays, the higher are the match quality he expects to

have. This ex post selection mechanism generates a tenure-wage effect and a wage dispersion with

a flat tail. Although learning is the common driving force of both Moscarini’ model and mine, the

mechanisms are very different and lead to different implications. In my paper, search is directed

and wage is determined by a contract posting mechanism instead of Nash bargaining. Moreover,

in Moscarini’s model, the shape of the wage distribution results from the combination of an ex

post selection mechanism and a tenure effect; in my model, the wage dispersion is generated by

the combination of learning and on-the-job search. Burdett and Vishwanath (1988) consider a

random search model in which workers learn about the unknown distribution of wages from the

random arrival of wage offers and showed that learning from search can induce reservation wages

to decline with the duration of unemployment. Gonzalez and Shi (2010) also employ a directed

search framework to study learning issues. Yet, they focus on the learning of workers’ job search

ability.

The rest of this paper is organized as follows. Section 2 presents the basic environment,

individual payoff and learning process. The social planner’s problem is characterized in Section 3.

Section 4 considers a simple contract to implement the social planner’s allocation in a frictional

labor market and discusses the empirical implications. A number of extensions are discussed in

Section 5. Section 6 concludes. All technical proofs can be found in the Appendices.
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2 The Model

2.1 Physical Environment

Time is discrete and lasts forever with a time interval of ∆ > 0. Denote T = 0,∆, 2∆, ...

as the calender time of the economy. The economy is populated by a continuum of workers of

measure one and by a continuum of firms of measure greater than 1. Each worker has the utility

function
∑∞

T=0 e
−rTCT∆, where CT∆ ∈ R is the worker’s consumption in [T, T + ∆) and r is his

discount rate. Each firm has the payoff function
∑∞

T=0 e
−rTΠT∆, where ΠT∆ ∈ R is the firm’s

profit in [T, T + ∆). Each firm has one vacancy and can hire at most one worker. Vacant firms or

unemployed workers are unproductive.

The match between a firm and a worker is either good or bad. If the match is good, a matched

firm receives 1 unit of payoff in each period with probability λ∆; if the match is bad, a matched firm

receives nothing. Initially, a matched worker-firm pair shares symmetric information about the

match quality with a common prior α0 ∈ (0, 1) that the current match is good. They observe the

outcomes and hold common posterior beliefs αt throughout time, where αt denotes the subjective

probability that they assign to the match being good at t, where t denotes the worker’s tenure

in his current job with t = 0,∆, 2∆, 3∆.... For simplicity, no extra flow payoff is generated by

a match. A match is destroyed exogenously with probability δ∆ in each period. Unemployed

workers enjoy a flow payoff of b∆ > 0, which can be interpreted as his home production. To avoid

a trivial case, assume α0λ > b > 0, that is, a new match is better than no match, but no match

is better than a bad match.

There is a continuum of locations indexed by a real number l ∈ [0, 1]. A vacant firm and a

worker can match only if they are searching in the same location. In each period, both firms and

workers decide which location to enter. A location is interpreted as a submarket if there are firms

and workers there. Different submarkets can be indexed by the promised value to the worker,

x ∈ R, posted by firms in that market. I denote mapping Γ : [0, 1] → R∪∅ as the submarket

assignment function. In other words, x = Γ(l) is the promised value to the worker specified by

the contract offered at location l, while Γ(l) = ∅ means there is no submarket at location l. At

location l with Γ(l) 6= ∅, the ratio between the number of jobs that are vacant and the number

of searching workers is denoted by θ̃(l) ∈ R+. I refer to θ(x) as the tightness of the submarket at

location l such that x = Γ(l). In other words, I do not distinguish between the two markets l 6= l′

with the same x.

All submarkets are frictional. In particular, workers and firms that are searching in the same

location are brought into contact by a meeting technology with constant returns to scale that

can be described in terms of the market tightness θ ∈ R+. In particular, each period a worker
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finds a vacant job with probability p(θ(l))∆ at location l, where θ(l) is the market tightness at

location l and function p : R+ → [0, 1] is twice continuously differentiable, strictly increasing,

strictly concave, which satisfies (i) p(0) = 0, (ii) lim
θ→0

p′(θ) = ∞, and (iii) limθ→∞ p(θ) is bounded

by a finite number. Similarly, a vacancy meets a worker with probability q(θ(l))∆ in location l

where q : R+ → [0, 1] is a twice continuously differentiable, strictly decreasing function such that

q(θ) = p(θ)/θ, q(0) = 1 and limθ→∞ q(θ) = 0. When a firm and a worker meet, a new match is

formed, and the worker’s old match, if any, is destroyed.

Each firm chooses to enter at most one submarket by paying a maintaining cost k∆ in each

period and posts an employment contract x, which is the promised value to the worker. All

workers, whether employed or unemployed, observe all available offers in the labor market and

choose one submarket to enter and search for a new job. Different wage dynamics are allowed

given the identical initial expected promise. In general, a worker’s individual wage dynamics can

depend on both the aggregate market variables and the match-specific payoff history.

2.2 Timing

Each period is divided into three stages: 1) separation, 2) search and matching, and 3) pro-

duction. At the separation stage, an existing match is destroyed with probability z ∈ [δ∆, 1]2,

which is chosen by the matched firm, where δ > 0 measures the exogenous separation rate.3

At the search and matching stage, each potential vacant firm chooses whether to create a

vacancy and which submarket it enters. While the workers who lose their jobs in the separation

stage are not allowed to search immediately, the rest, both employed and unemployed, can search.

They observe all available offers in every submarket and choose whether and where to search for

a new job. When a worker and a vacancy meet, they match and sign the contract proposed by

the firm.

At the production stage, an unemployed worker produces b∆ units of output. An employed

worker with a good match produces the reward 1 with probability λ∆, and those with a bad match

produce zero. Put differently, no news is bad news. A matched firm and a worker learn the quality

of their match commonly by observing their past production outcome.

2Since I focus on the case where ∆ is small, [δ∆, 1] is nonempty. Similarly, p(θ)∆, q(θ)∆ and λα∆ are strictly

less than 1 for any θ and α.
3Alternatively, one can denote ze ∈ [0, 1] as the probability that a match is endogenously destroyed conditional

on its not being destroyed by Nature, and define the ex ante probability of being destroyed as z = δ∆ + (1− δ∆)ze.
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2.3 Learning Process

The learning process is summarized as follows. Denote H as the collection of all signal histories

for an existing match. {Ft}∞t=0 is the filtration generated by all possible individual histories. The

subjective belief αt is a Ft−adapted stochastic process. As stated before, each new match starts

with the same initial belief α0.

For a match with α = 1, no belief adjustment happens regardless of its current period output.

For a match with α ≤ α0, if the unit of payoff is received in tenure period t, αt+∆ jumps to 1;

otherwise, by standard Bayes’ rule updating, the evolvement of αt in each period follows

αt+∆ − αt =
−λαt(1− αt)∆

αt(1− λ∆) + (1− αt)
.

When ∆ goes to zero, one obtains the well-known limit α̇t = −λ(1−αt)αt, which is 0 if αt equals

either 0 or 1.

Denote B∆ as the set of all possible values αt based on the production history. For any α ∈ B∆,

define α− such that α = α−+ −λα−(1−α−)∆
α−(1−λ∆)+(1−α−)

, and α+ such that α+ = α+ −λα(1−α)∆
α(1−λ∆)+(1−α)

. In other

words, α− (α+) is the last (next) period belief about the match with current belief α. When ∆

goes to zero, the Hausdorff distance between B∆ and [0, α0] ∪ {1} goes to zero.

3 Efficient Allocation

To characterize the efficient allocation, I solve the social planner’s problem first. The social

planner’s search strategy and separation strategy depend both on the aggregate employment state

and on a worker’s individual employment status. The former includes the unemployment rate

and the distribution of the current match quality. The latter includes: (1) whether the worker is

employed, and (2) the belief about the worker’s match quality if he is employed. Formally, define

Ω = [0, α0] ∪ {u} ∪ {1} as a worker’s state space. A worker’s state ω ∈ Ω can be interpreted

as follows. For an uncertain matched worker, his type ω ∈ [0, α0] is the belief about the current

match quality. For a matched worker who has sent a good signal before, ω = 1. For an unemployed

worker, ω = u. Denote the probability measure µT as the state of the economy. Let Ξ = ∆(Ω)

denote the set to which µT belongs for all T .

3.1 Formulation of the Planner’s Problem

At each stage, the social planner decides on job creation, match formation and separation,

and workers’ job search strategy. Formally, at the beginning of a period, the planner observes the
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aggregate state µ. At the separation stage, the planner chooses the probability z : [0, α0]∪ {1} →
[δ∆, 1] of destroying a match for each belief α. At the search and matching stage, the planner

observes the adjusted aggregate state and chooses how many vacancies to open at each location

and which location a worker should visit, and therefore he can determine θ(ω), the tightness at the

location where workers with state ω look for new matches, θ : Ω→ R+. As is standard in models

of directed search, the planner will find it optimal to send workers with different states to different

locations but will have no incentive to send workers with the same states to different locations.

Thus, there is no loss in generality in indexing the active location by the state of workers ω who

are searching for new jobs there.

After the first two stages, the economy’s state change to µ̃ due to the job reallocations. To

compute the updated state of the economy µ̃, it is useful to derive the transition probabilities for an

individual worker in the first two stages. Suppose the planner’s optimal separation probability is z

in the separation stage, then a matched worker with state α becomes unemployed with probability

z(α); thus the increment of the measure of unemployed workers is
∫
α∈[0,α0]∪{1} zdµ, and the measure

of a match that survives with state α is µ(α)(1 − z(α)), assuming that the law of large numbers

holds in this environment.

At the search and matching stage, workers’ state may change due to both unemployment-to-

employment and employment-to-employment transition. Suppose the planner’s optimal search

policy is θ(ω). In other words, he sends workers with state ω to a location where the tightness is

θ(ω). First, consider a worker who enters this period unemployed. With probability 1−p(θ(u))∆,

the worker does not meet a firm at this stage. In this case, the worker remains unemployed. With

probability p(θ(u))∆, the worker meets a firm and becomes employed. Next, consider an employed

worker who enters this period with state α and survives the separation stage. With probability

1 − p(θ(α))∆, the worker does not meet a firm at this stage and remains α. With probability

p(θ(α))∆, the worker meets a firm and forms a new match. In this case, his state changes to α0.

After aggregating the transition probabilities of individual workers, the measure of workers

who are unemployed at the production stage is given by

µ̃(u) = µ(u)(1− p(θ(u))∆) +

∫
α∈[0,α0]∪{1}

zdµ, (1)

while the measure of workers who are employed with state ω ∈ B∆/{α0} is given by

µ̃(α) = µ(α)[1− z(α)](1− p(θ(α))∆). (2)

Similarly, the measure of workers with state α0 is given by

µ̃(α0) = µ(α0)[1− z(α0)] + p(θ(u))∆µ(u) (3)

+

∫
α∈[0,α0]∪{1}

p(θ(α))∆[1− z(α)]dµ,
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where the first term of the right-hand side is the measure of workers who enter this period with

state α0 and survive the separation stage, the second term is the measure of workers who enter

this period unemployed and find a job in the search stage, and the last term is the measure of

workers who enter this period employed, survive the separation stage and change their job in the

search stage.

Clearly, there is no reason to separate a good match or replace it with another one, since there

is no way to generate a strictly positive surplus by replacing a good match; hence, the separation

and search policies for good matches are z(1, µ) = δ∆ and θ(1, µ) = 0 in any state of the economy

µ. Therefore, one can focus on the choice of (z(α), θ(α), θ(u)). Given the state of the economy µ

and a choice function (z(α), θ(ω)), the social planner’s ex ante flow payoff at the production stage

is given by

F (z, θ|µ) =

∫
α∈[0,α0]

λα∆dµ̃+ µ̃(u)b∆ + µ̃(1)λ∆ (4)

−k∆[

∫
α∈[0,α0]

θ(α)[1− z(α)]dµ+ µ(u)θ(u)],

where the first and third terms are the expected flow payoff created by existing matches, the

second term is unemployed workers’ benefits, the last term is the sum of new contract posting

costs in all locations, and µ̃ can be calculated by (1,2,3).

At the production stage, the economy’s state changes to µ̂ due to learning of uncertain matches.

For a worker whose state is ω ∈ {1, u}, there is nothing to learn; thus his state will be unchanged

regardless of his output in the production stage. For a worker whose state is α ∈ B∆/{1}, his

state will change at the production stage for sure. With probability λα∆, his state becomes ω = 1

if a breakthrough is realized; with complementary probability, his state becomes ω = α+ if no

breakthrough is realized. After aggregating the transition probabilities of individual workers at

the production stage, the economy’s state becomes

µ̂(α) = µ̃(α−)(1− λα−∆) when α− ∈ B∆,

µ̂(u) = µ̃(u), µ̂(α0) = 0, and

µ̂(1) = µ̃(1) +

∫
α∈[0,α0]

λα∆dµ′,

where µ̃ is given by (1,2,3). In sum, the planner’s decisions imply that next period’s distribution

of workers’ state µ̂(α) is given by
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µ̂(u) = µ(u)(1− p(θ(u))∆) +

∫
α∈[0,α0]∪{1}

zdµ, (5)

µ̂(α) =


µ(α)[1− z(α)](1− p(θ(α))∆) if α− ∈ B∆/({1} ∪ {α0}),

(1− λα0∆){µ(α0)[1− z(α0)] + p(θ(u))∆µ(u)

+
∫
α∈[0,α0]

p(θ(α))∆[1− z(α)]dµ} if α− = α0,

(6)

µ̂(α0) = 0, and (7)

µ̂(1) = µ(1)[1− δ∆] +

∫
α∈[0,α0)

λα∆[1− z(α)](1− p(θ(α))∆)dµ(α) (8)

+λα0∆{µ(α0)[1− z(α0)] + p(θ(u))∆µ(u) +

∫
α∈[0,α0]

p(θ(α))∆[1− z(α)]dµ}.

Notice that µ(Ω/(B∆ ∪ {u})) = 0 in any period.

The planner maximizes the sum of the present value of the discounted flow payoff at rate r.

Hence, the planner’s society problem is formulated as

U∆(µ) = max
θ,z

F (z, θ|µ) + e−r∆U∆(µ̂), (9)

subject to (5-8), and z : Ω→ [δ∆, 1], θ : Ω→ R+.

In general, the optimal policies depend on both µ and ω. Following Menzio and Shi (2011),

Lemma 1 shows that the social planner’s society problem is separable, that is, the search and

learning strategy of a worker depend only on his own state instead of the distribution µ.

Lemma 1. The planner’s value function U∆ is the unique solution to (9) such that (5-8), and

satisfies the following properties:

1. U∆ is linear in µ. That is, U∆(µ) = µ(u)S∆ (u) +µ(1)S∆(1) +
∫
α∈[0,α0]

S∆(α)dµ, where the

component value function S∆ (u) is given by

S∆ (u) = max
θ
{−kθ∆ + [1− p(θ)∆][b∆ + e−r∆S∆ (u)] (10)

+p(θ)∆{λα0∆[1 + e−r∆S∆(1)] + (1− λα0∆)e−r∆S∆(α+
0 )}}.

The component value function S∆(α) for α ∈ [0, α0] is given by

S∆(α) = max
z,θ

z[b∆ + e−r∆S∆ (u)] + (1− z){[1− p(θ)∆]λα∆[1 + e−r∆S∆(1)] (11)

+[1− p(θ)∆](1− λα∆)e−r∆S∆(α+)]

+p(θ)∆λα0∆[1 + e−r∆S∆(1)] + p(θ)∆(1− λα0∆)e−r∆S∆(α+
0 )}.

The component value function S∆(1) is given by

S∆(1) = δ∆[b∆ + e−r∆S∆ (u)] + (1− δ∆){λ∆ + e−r∆S∆(1)}. (12)
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2. The policy functions θ∆
∗ , z∆

∗ do not depend on the distribution µ.

3. S∆(α) is strictly increasing in α.

Thanks to Lemma 1, one can solve the planner’s society problem (9) by finding the solution

of the planner’s individual worker problem, S∆(ω) for ω ∈ B∆ ∪ {u}, with U∆ (µ) being given by

their µ-weighted sum. In the planner’s individual worker problem associated with an unemployed

worker, the planner chooses θ(u) to maximize the present value of the output generated by this

worker, net of the cost of vacancies assigned to him. Similarly, in the planner’s individual worker

problem associated with a worker with state α, the planner chooses z(α), θ(α) to maximize the

present value of the output generated by this worker, net of the cost of the vacancies assigned to

him. That the planner’s society problem can be decomposed into countablely many individual

worker problems results from the fact that the search process is directed rather than random.

Under random search, the planner has to choose the same tightness for workers with different

states because all workers search in the same location; thus, the planner’s society problem cannot

be decomposed into worker-state-specific individual problems, and the solution will depend on the

current state of the economy, µ.

3.2 Solution to the Planner’s Problem

As I argued, it is suboptimal to separate a good match, and the efficient choice of z∆
∗ (1) = δ∆,

θ∆
∗ (1) = 0. The efficient search choice for an unemployed worker is θ∆

∗ (u) such that

k = p′(θ∆
∗ (u)){λα0∆[1 + e−r∆S∆(1)] + (1− λα0∆)e−r∆S∆(α+

0 )− b∆− e−r∆S∆(u)}. (13)

The left-hand side of (13) is the marginal cost of increasing the tightness at the location for

unemployed workers. The right-hand side is the marginal benefit, which is given by the product

of two terms. The first term is the marginal increase in the probability of workers’ state transition

from unemployed to α0. The second term is the state transition surplus, which is given by the

expected value difference between the new state and the current state. The existence of an interior

solution depends on (1) the Inada conditions of p(·), and (2) the second term of the right-hand

side is strictly positive. Hence θ∆
∗ (u) > 0.

Similarly, the efficient search choice for employed workers with state α ∈ B∆/{1} is θ∆
∗ (α) such

that

k = p′(θ∆
∗ (α)){λα0∆[1 + e−r∆S∆(1)] + (1− λα0∆)e−r∆S∆(α+

0 ) (14)

−λα∆[1 + e−r∆S∆(1)]− (1− λα∆)e−r∆S∆(α+)}.

11



Notice that the second term of the RHS of (14) is strictly increasing in α; thus θ∆
∗ (α) is strictly

decreasing in α. Since p(·) satisfies the Inada conditions, θ∆
∗ (α) > 0 when α < α0, and θ∆

∗ (α) = 0

when α ∈ {α0, 1}.
Finally, since the social planner’s α-specific problem is linear in z, the efficient choice for the

separation probability is z∆
∗ (α) = 1 if

b∆ + e−r∆S∆(u) ≥ [1− p(θ)∆]λα∆[1 + e−r∆S∆(1)] (15)

+[1− p(θ)∆](1− λα∆)e−r∆S∆(α+)]p(θ)∆λα0∆[1 + e−r∆S∆(1)]

+p(θ)∆(1− λα0∆)e−r∆S∆(α+
0 ),

and z∆
∗ (α) = δ∆ otherwise. The left-hand side of (15) is the value induced by separating the

current match. The worker becomes unemployed but does not have the opportunity to search

for a new match in the current period. The right-hand side is the value induced by keeping the

current match. When the left-hand side is greater than the right-hand side, the planner destroys

the current match for sure. Otherwise, Nature destroys the match with probability δ∆. Notice

that the left-hand side does not depend on α, but the right-hand side is strictly increasing in α;

thus the solution can be summarized by a stopping belief α∆
∗ ∈ B∆ such that

z∆
∗ (α) =

{
1 if α ≤ α∆

∗ ,

δ∆ if α > α∆
∗ ,

for all α ∈ B∆. Combining (13), (14) and S∆ (u) ≤ S∆(α) for any α ∈ [α∆
∗ , α0] ∪ {1} yields that

θ∆
∗ (u) ≥ θ∆

∗ (α) for all α ∈ (α∆
∗ , α0].

The properties of the socially efficient search and separation rule are summarized as follows.

Lemma 2. The policy correspondences (z∆
∗ , θ

∆
∗ ) satisfy the following properties:

1. They are singleton valued, i.e., they are functions.

2. There is α∆
∗ such that, for any α ∈ B∆, z∆

∗ (α) = 1 if α ≤ α∆
∗ and z∆

∗ (α) = δ∆ if α > α∆
∗ .

3. S∆ (u) ≤ S∆(α) for any α ∈ [α∆
∗ , α0] ∪ {1}.

4. The search strategy θ∆
∗ (1) = θ∆

∗ (α0) = 0, θ∆
∗ (u) > 0, θ∆

∗ (α) > 0 for any α ∈ B∆/({1}∪{α0}),

and θ∆
∗ (α) is decreasing and smaller than θ∆

∗ (u) for all α ∈ (α∆
∗ , α0].

It is worth noting that the block recursivity of the planner’s problem does not imply that the

social planner’s value is irrelevant to the distribution. First, it is clear that the social planner’s

choice affects the workers’ state transition and therefore µ̂. Second, the measure of job creation

depends on µ. For example, the measure of vacancy created for unemployed workers is v(µ) =

θ∆
∗ (u)µ(u). When the unemployment rate µ(u) is high, the measure of vacancy in the submarket

for unemployed workers v(µ) would also be high even though θ∆
∗ (u) does not depend on µ(u).

12



3.3 Continuous Time Limit

The problem (10,11,12) has no closed-form solution, and therefore, its empirical implications

are difficult to characterize. I examine a continuous time limit of the model obtained by taking

the length of each period to zero. In the limit, for an unemployed worker, a new job arrives as a

Poisson process whose rate depends on the tightness in the market where the worker is searching.

For an existing match, a good signal arrives with a rate either λ or 0, which depends on the match

quality, and the exogenous separation arrives with a rate δ. The planner chooses an optimal

stopping belief such that an existing match is destroyed when its match quality is lower than this

cutoff belief. For each ω ∈ Ω, one can solve the associated value S(ω) and policy function θ(ω),

which is the analogue of S∆(ω) and θ∆
∗ (ω) in the discrete time model, and solve the planner’s

aggregate payoff by simply calculating an integral,
∫
ω∈Ω

S(ω)dµ. As I will show, both S(α) and

θ(α) are differentiable; thus, the empirical implications of the continuous time model can be easily

derived.

Note that the value and strategy, S (ω) and θ (ω), are the solution of the continuous time

planner’s individual worker problem, whose formal expression is relegated to Appendix A. The

continuous time version of planner’s society problem involves consideration of infinite-dimensional

states, µT , and complicated resulting dynamics. The proof of the separability of the planner’s

problem is difficult to work with, which is different from that in the discrete time model in Menzio

and Shi (2011). The goal of taking the limit is to approximate the equilibrium dynamics in the

original discrete time model when ∆ is small and to obtain tractability of the equilibrium strategy,

θ (ω), and its implications. I characterize the solution of the planner’s individual worker problem

in continuous time in the following Lemma.

Lemma 3. The solution of the planner’s problem in continuous time satisfies the following Hamilton-

Jacobi-Bellman (HJB) equations:

rS (u) = b+ p(θ (u))[S(α0)− S (u)]− kθ (u) , (16)

where

k = p′(θ (u))[S(α0)− S (u)], (17)

when ω = u,

rS(1) = λ+ δ[S (u)− S(1)], (18)

when ω = 1,

S(α) = S (u) , (19)
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when ω ∈ [0, α∗),

rS(α) = αλ+ λα(S(1)− S(α))− λα(1− α)S ′(α) (20)

+δ(S (u)− S(α)) + p(θ(α))[S(α0)− S(α)]− kθ(α),

where

k = p′(θ(α))[S(α0)− S(α)] for ω ∈ (α∗, α0), and θ(α0) = 0, (21)

with boundary conditions

S (u) = S(α∗), S
′(α∗) = 0 , (22)

when ω ∈ [α∗, α0].

The proof is omitted since it follows the standard verification argument, which can be found

in chapter 4 of Oksendal and Sulem (2005). The following Proposition shows that the solution of

the social planner’s discrete time problem can be approximated by equations (16–21) when the

time interval between consecutive periods is small enough.

Proposition 1. As ∆ goes to zero, the planner’s value function S∆(ω) in the discrete time model

converges uniformly to S(ω) on Ω, where S(ω) is the solution of (16–21). The policy function

θ∆
∗ (ω) converges uniformly to the policy function θ(ω) when ω 6= 1, and 0 when ω = 1, the optimal

stopping belief α∆
∗ converges uniformly to α∗.

I present an intuitive argument here, and relegate the proof to the Appendix A. To show that

S∆(ω)→ S(ω), one needs to ensure the existence and uniqueness of the limit solution, S(ω). The

following Lemma characterizes the properties of the solution of problem (16–21).

Lemma 4. The solution of (16–21) exists and satisfies the following properties:

1. It is unique.

2. S(α) is increasing for all α ∈ [α∗, α0], θ(α) is decreasing for all α ∈ [α∗, α0].

3. S(α) is convex for all α ∈ [α∗, α0].

After characterizing the properties of the limit S(ω), one can show the convergence step by

step.

Policy function. First, look at the policy function θ∆
∗ (ω) associated with S∆(ω) for ω ∈

(α∆
∗ , α0] ∪ {u}. For an unemployed worker, notice that the second term of the right-hand side of

(13) can be represented as

S∆(α+
0 )− S∆ (u)− λα0∆[1 + e−r∆S∆(1)]− (λα0∆ + r∆)S∆(α+

0 )− b∆ + r∆S∆ (u)︸ ︷︷ ︸
O(∆)

,
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where the summation of the last four terms is O(∆). The Taylor expansion implies that S∆(α+
0 ) =

S∆(α0) +
S∆(α+

0 )−S∆(α0)

α+
0 −α0

(α+
0 − α0) where α+

0 − α0 is O(∆). Suppose lim∆→0
S∆(α+

0 )−S∆(α0)

α+
0 −α0

is finite,

when ∆ goes to zero, the right-hand side of (13) goes to p′(θ∆
∗ (u))[S∆(α0) − S∆ (u)]. Since the

left-hand side of (13) does not depend on ∆, (13) can be approximated by

k = p′(θ0
∗(u))[S∆(α0)− S∆ (u)], (23)

when ∆ is close to zero.

Similarly, for an employed worker with belief α ∈ (α∆
∗ , α0), (14) can be approximated by

k = p′(θ0
∗(α))[S∆(α0)− S∆(α)], (24)

when ∆ is close to zero. For α0-worker, θ∆
∗ (α0) = 0, since there is no surplus from job replacement.

Value function. Then consider the value function S∆(ω). For an unemployed worker, (10) can

be reformulated as

S∆ (u) = b∆ + e−r∆S∆ (u) + e−r∆∆ max
θ
{p(θ)[S∆(α0)− S∆ (u) +O(∆)]− kθ},

where the optimal θ∆
∗ (u) can be approximated by θ0

∗(u), which satisfies (23). Hence, together with

1− r∆ as an approximation to e−r∆, S∆ (u) can be approximated by

b∆− kθ∆ + (1− r∆)S∆ (u) + (1− r∆)p(θ0
∗(u))∆[S∆(α0)− S∆ (u)] +O(∆2).

By taking ∆ to zero and ignoring the O(∆) term, one obtains

rS0 (u) = b− kθ0
∗(u) + p(θ0

∗(u))[S0(α0)− S0 (u)].

Similarly, for an employed worker with belief α ∈ (α∆
∗ , α0], S∆(α) can be approximated by

δb∆2 + δ∆(1− r∆)S∆ (u) + (1− δ∆){λα∆ + λα∆(1− r∆)S∆(1)

+(1− λα∆)(1− r∆)S∆(α+) + (1− r∆){p(θ0
∗(α))∆[S∆(α0)− S∆ (u)]− kθ0

∗(α)∆}}+O(∆2),

and lim∆→0 S(α+) = S(α)+lim∆→0
S(α+)−S(α)

α+−α (α+−α) = S(α)−λα(1−α)S ′(α). Hence, by taking

∆ to zero, one obtains

rS0(α) = αλ+ λα(S0(1)− S0(α))− λα(1− α)
dS0(α)

dα
+δ(S0 (u)− S0(α)) + p(θ0

∗)[S
0(α0)− S0(α)]− kθ0

∗.

By the same logic, rS0(1) = λ+δ[S0 (u)−S0(1)]. It is clear that S0(ω) for any ω ∈ Ω satisfying

(16,18,19,20) and θ0
∗(ω) for any ω ∈ [α∗, α0] ∪ {u} satisfying (17,21).
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Boundary condition. Finally, consider the limit of the optimal stopping belief. α∆
∗ such that

S∆(α) ≥ S∆ (u) when α ≥ α∆
∗ and S∆(α) < S∆ (u) when α < α∆

∗ . Hence, S∆(α∆
∗ ) = S∆ (u) due

to the continuity of the value function. By taking ∆ to zero, one obtains S0(α0
∗) = S0 (u), where α0

∗

is the accumulated point of α∆
∗ . In the optimal stopping literature, it is called the value-matching

condition.

Another boundary condition, smooth-pasting conditions, is also necessary to determine the

optimal stopping belief when ∆ goes to zero. To see why, consider a deviation by stopping at

α∆+
∗ instead of α∆

∗ . Let S(α|α∗) be the value at α by adopting stopping belief α∗. Then the value

difference induced by two stopping beliefs, α∆+
∗ and α∆

∗ is

S(α∆+
∗ |α∆+

∗ )− S(α∆+
∗ |α∆

∗ )

= (1− δ∆)λ(α∆+
∗ − α∆

∗ )∆[1 + e−r∆S∆(1)− e−r∆S∆ (u)]

+(1− δ∆)e−r∆{[p(θ∆
∗ (α∆+

∗ ))− p(θ∆
∗ (α∆

∗ ))]∆[S∆(α0)− S∆ (u)]

−k[θ∆
∗ (α∆+

∗ )− θ∆
∗ (α∆

∗ )]∆}+O(∆2),

which is O(∆2), and therefore S ′(α0+
∗ ) = lim∆→0

S(α∆+
∗ |α∆+

∗ )−S(α∆+
∗ |α∆

∗ )

α∆+
∗ −α∆

∗
= 0. Similarly, one can

verify that S ′(α0−
∗ ) = 0 by considering the value difference induced by stopping at α∆−

∗ and α∆
∗ .

Hence, when ∆ goes to zero, the value-matching and smooth-pasting conditions hold at α = α0
∗.

In sum, S0(ω) satisfies (16,18,19,20), θ0
∗(ω) satisfies (17,21), and α0

∗ satisfies (22). It is worth

mentioning here the possibility that on-the-job search improves the social value of learning because

θ(α) = 0 is always a (suboptimal) choice for any ω ∈ Ω.

Remark 1. When p(θ) = min{θ, 1}, there are no search frictions in the market, and the on-the-

job search decision problem is a linear programming problem with a corner solution: θ(α) = 1 if

S(α0)− S(α) > k, θ = 0 otherwise.

Remark 2. When the match quality is known, α0 = 1,4 theabsence of learning implies that

matched workers’ and firms’ values are constant over time and on-the-job search is not efficient.

Hence, there is only one active submarket in the social planner’s solution.

The intuition of the two remarks above is straightforward. The social planner’s fundamental

trade-off is between the replacement premium of an existing match and cost of creating a vacancy.

When match quality is common knowledge, neither learning nor on-the-job search has value;

hence, the optimal allocation is a corner solution. When the market is non-linearly frictionless,

the fundamental trade-off becomes a linear programming problem, and distinguishing a match

with a different belief is not necessary. Hence, the optimal allocation is a corner solution as well.

4In order to avoid a trivial result, assume the publicly known match quality is greater than b.
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4 Decentralization

In this section, I consider the implementation of the social planer’s solution. I first describe

the structure of the labor market and the nature of the employment contracts. I then derive the

conditions on the firms and workers’ value and policy functions that need to be satisfied in the

market equilibrium. I also establish that there exists a unique equilibrium for the market economy

and that this equilibrium is efficient, in the sense that it decentralizes the solution to the planners’

problem, and block recursive, in the sense that the individual’s value and policy functions depend

only on his own state. Finally, I derive some empirical implications of the market economy.

I assume that the contracts offered by firms to workers are bilaterally efficient in the sense that

they maximize the joint value of the match, that is, the sum of the worker’s expected lifetime utility

and the firm’s expected lifetime profits. I make this assumption because there are a variety of

specifications of the contract space under which the contracts that maximize the firm’s profits are,

in fact, bilaterally efficient. As I will show, the profit-maximizing contracts are bilaterally efficient

if the contract space is complete in the sense that a contract can specify the tenure independent

wage, w, the separation probability z and the worker’s on-the-job search strategy. This result is

intuitive. The firm maximizes its profits by choosing the contingencies z, x so as to maximize the

joint value of the match and by choosing the contingencies for w so as to deliver the promised

value x.5

4.1 Market Equilibrium

In order to decentralize the social planner’s optimal allocation, I first define the joint surplus

of an existing match M(ω, µ) for ω ∈ B∆ ∪ {u}. Note that M(ω, µ) is not the social surplus

generated by the match since the matched worker and firm do not take into account the wage

posting cost paid by the worker’s potential new employer.

Labor market supply side. First, consider an employed worker at the beginning of the search and

matching stage. Since the contract is bilaterally efficient, given the equilibrium market tightness

function θ(x, µ), the worker chooses to search in the submarket with promised value x to maximize

5Moreover, one can prove that the profit-maximizing contracts are bilaterally efficient if they can specify the

wage only as a function of tenure and productivity (while the separation and search decisions are made by the

worker). This result is also intuitive. The firm maximizes its profits by choosing the wage when it meets a worker

so as to deliver the promised value x and by choosing the wage as a function of the belief about the match so as

to induce the worker to maximize the joint value of the match (by setting the wage equal to the product of the

match). Alternatively, profit-maximizing contracts are bilaterally efficient if they can specify severance transfers

that induce the worker to internalize the effect of his separation and search decisions on the profits of the firm. See

Moen and Rosen (2004), and Menzio and Shi (2009, 2011) for more examples.
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the continuation value of his current match, which is given by

p(θ(x, µ))∆x+ [1− p((x, µ))∆]{λα∆[1 + e−r∆M∆(1, µ)] + (1− λα∆)e−r∆M∆(α+, µ)]}.

With probability p(θ)∆, the worker may find a new job and obtains a value x and the firm obtain

zero, while with a complementary probability the current match survives and it may send a good

signal with a subjective probability λα∆.

At the separation stage, the employer predicts the worker’s choice and chooses the separation

probability zd ∈ [δ∆, 1] to maximize the value of their match. Hence, their joint value is given by

M∆(α, µ) = max
z,x

z[b∆ + e−r∆M∆(u, µ)] (25)

+(1− z){[1− p(θ(x, µ))∆]λα∆[1 + e−r∆M∆(1, µ)]

+[1− p(θ(x, µ))∆](1− λα∆)e−r∆M∆(α+, µ)] + p(θ(x, µ))∆x}.

If the match is separated following the contract, the firm obtains zero and the worker becomes

unemployed. Otherwise, the worker follows the contract to search and maximize the continuation

value of his current match.

By the same logic, an unemployed worker chooses to search in the submarket with promised

value x to maximize his value, which is given by

M∆(u, µ) = max
x
{[1− p(θ(x, µ))∆][b∆ + e−r∆M∆(u, µ)] + p(θ(x, µ))∆x}, (26)

where the interpretation of the Bellman equation is similar to the one above.

Clearly, given a bilaterally efficient contract, an employed worker with state 1 will choose not

to search in any submarket; thus his value is given by

M∆(1, µ) = δ∆[b∆ + e−r∆M∆(u, µ)] + (1− δ∆){λ∆ + e−r∆M∆(1, µ)}, (27)

and x(1, µ) = ∅ and z(1, µ) = δ∆.

Labor market demand side. Firms without a match are on the demand side of the labor market.

They choose whether to enter the labor market and which submarket to enter. The competition in

the labor market implies that firms’ expected discounted profit is zero, and there is no difference

between any of the submarkets for any firm. A firm may form a new match with probability

q(θ)∆, which depends on the tightness of the market the firm is in, and its expected profit is given

by

λα0∆(1 + e−r∆M∆(1, µ)) + (1− λα0∆)e−r∆M∆(α+
0 , µ)− x.

By posting a new job, a firm needs to pay a flow cost k∆ in each period. Hence, firms’ free-entry

condition implies that

λα0∆(1 + e−r∆M∆(1, µ)) + (1− λα0∆)e−r∆M∆(α+
0 , µ)− x = k/q(θ) = kθ/p(θ), (28)
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which pins down the equilibrium market tightness function θ(x, µ).

The solution concept I used is the bilaterally efficient recursive competitive equilibrium (RCE)

in which a matched firm and worker maximize their joint value.

Definition 1. A (bilaterally efficient) recursive competitive equilibrium (RCE, henceforth) consists

of a market tightness function θ∆
d : R × Ξ → R+, where θ∆

d (x, µ) is the market tightness of a

submarket with promised value x in aggregate state µ, a value for the unemployed worker M∆(u, µ),

and an optimal submarket choice x∆
d (u, µ) ∈ R ∪∅, a joint value for the firm-worker match

M∆ : B∆ × Ξ → R+, and policy functions for the firm-worker match z∆
d : B∆ × Ξ → [δ∆, 1]

and x∆
d : B∆ × Ξ → R ∪∅. These functions satisfy the following conditions: (i) θ∆

d satisfies

(28) for all (x, µ) ∈ R × Ξ; (ii) M∆(u, µ) satisfies (26) for all µ ∈ Ξ, and x∆
d (u, µ) ∈ R is the

associated policy function, (iii) M∆(1, µ) satisfies (27) for all µ, and M∆(α, µ) satisfies (25) for

all (α, µ) ∈ (0, α0]× Ξ, and z∆
d (ω, µ) and x∆

d (ω, µ) are the associated policy functions.

Condition (i) guarantees that the market tightness function θ is consistent with the firm’s in-

centives to create vacancies. Condition (ii) guarantees that the search strategy of an unemployed

worker maximizes his lifetime utility, given the market tightness function. Condition (iii) guar-

antees that the matched firms and workers maximize their joint value. In general, workers’ and

firms’ equilibrium strategies depend on both their individual states and the state of the economy,

which is a distribution over Ω. Fortunately, following Menzio and Shi (2011), it can be shown that

all bilaterally efficient recursive competitive equilibria satisfy the block recursive property in the

sense that all firms’ and workers’ equilibrium strategy depend on their individual states only.

Definition 2. A (bilaterally efficient) block recursive equilibrium (BRE, henceforth) consists of

a market tightness function θ∆
d : R → R+, where θ∆

d (x) is the market tightness of a submarket

with promised value x, a value for the unemployed worker M∆
u , and an optimal submarket choice

x∆
d (u) ∈ R ∪∅, a joint value for the firm-worker match M∆ : B∆ → R+, and policy functions

for the firm-worker match z∆
d : B∆ → [δ∆, 1] and x∆

d : B∆ → R ∪∅. These functions satisfy the

following conditions: (i) θ∆
d satisfies (28) for all (x, µ) ∈ R×Ξ; (ii) M∆(u) satisfies (26) for all

µ ∈ Ξ, and x∆
d (u) ∈ R is the associate policy. (iii) M∆(1) satisfies (27) for all µ, and M∆(α)

satisfies (25) for all (α, µ) ∈ (0, α0]×Ξ, and z∆
d (α) and x∆

d (α) are the associated policy functions.

The interpretation of three equilibrium conditions are similar to those in RCE. Taken together,

they ensure that in a BRE, the strategies of each agent are optimal given the strategies of the

other agents. The only difference between a BRE and a standard RCE is that the individual

decision does not depend on market distribution µ.

Proposition 2. Suppose firms and workers can sign bilaterally efficient contracts. Then
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1. All bilaterally efficient RCEs are block recursive.

2. There exists a unique BRE.

3. The BRE is socially efficient.

The proof of the first statement is omitted since it is similar to the argument of theorem 2 in

Menzio and Shi (2011). Since the problems (25,26,27,28) are equivalent to the problems (10,11,12),

the existence, uniqueness and efficiency of the equilibrium can be ensured. Since M∆(ω) = S∆(ω)

for any ∆ > 0, M∆(ω) converges to M(ω) = S(ω) as S∆(ω) does.

Corollary 1. As ∆ goes to zero,

1. The value function M∆(ω) converges uniformly to the unique solution S(ω) on Ω, where

S(ω) is given by (16-20).

2. The equilibrium θ∆
d ◦ x∆

d (ω) uniformly converges to θ(ω) defined in Lemma 3 for ω ∈ Ω.

3. The equilibrium θ∆
d (x) uniformly converges to a strictly decreasing and differentiable function

θd(x) such that

k = q(θd(x))[S(α0)− x]

4. The equilibrium x∆
d (ω) uniformly converges to a strictly decreasing and differentiable function

x∗(ω) such that

x∗(ω) = arg max
x

p(θ(x))[S(α0)− S(ω)]− kθ(x)

5. The equilibrium stopping belief α∆
d induced by z∆

d uniformly converges to α∗.

The block recursivity of the competitive equilibrium crucially depends on the fact that search

is directed. If one replaced the assumption of directed search with random search, the equilibrium

could not be block recursive. Under random search, workers with different beliefs all have to

search in the same market. When this is the case, the firms’ expected value from meeting a worker

depends on how employed workers are distributed across different beliefs about their current match

quality, as this distribution determines the probability that the employment contract offered by

the firm will be accepted by a randomly selected worker. In turn, the free-entry condition implies

that the probability that a firm meets a worker must also depend on the distribution of workers.

Since the meeting probability between firms and workers depends on the distribution, so do all

the agents’ value and policy functions.
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4.2 Empirical Implications of Continuous Time Limit

In section 4.1, I show that when matched workers and firms make the decision to maximize

their joint value M(α), the market equilibrium is equivalent to the social planner’s problem.

However, how can the allocation above be implemented by a contract? In this section, I will

provide one contract that can induce the bilateral efficient allocation and characterize its empirical

implications.

Consider that workers and firms can contract C = (wc, αc, xc) ∈ R × [0, α0] × (R ∪ ∅), where

there is (1) a tenure independent flow wage wc, (2) the separation cutoff belief αc, (3) and the

worker’s on-the-job search strategy xc(α). Denote J(α|C), V (α|C) as the matched firm’s and

worker’s value when the belief about their match is α, and the wage is wc.

Since utility is perfectly transferable between firm and worker, the firm’s optimal contract in

market (θ, x) maximizes its expected life time profit such that the worker’s expected life time

utility is not less than x.

Proposition 3. In equilibrium, the profit-maximizing contract C∗ is given by (w, α∗, x
∗(α)), where

1. the wage clause, w = W (x), specifies the worker’s flow wage during the current match, where

W is strictly increasing in the promised value x and such that V (α0,W (x)) = x.

2. the stopping belief clause, α∗, specifies the match separation criteria, which satisfies the

requirement in Proposition 1, and

3. the on-job-search clause, x∗(α), specifies the submarket the α-worker should target, and sat-

isfies θd ◦ x∗(α) = θ(α) where θd(x) and θ(α) are given by Corollary 1 and Proposition

1.

A tenure-contingent on-the-job search strategy will internalize the externality of on-the-job

search costs and firing decisions at each belief level; thus, it is not surprising that the contract

implemented is bilaterally efficient. Since utility is transferable, the different constant wage dis-

tributes the joint value between matched firms and workers differently. Since there is a one-to-one

map between x and wage, multiple wages appear in equilibrium in the discrete time model. In

the continuous time limit, the belief updates continuously and so does the target submarket wage.

Hence, the equilibrium wage set is connected.

Corollary 2. There exists a strictly increasing and differentiable function wnew : (α∗, α0)∪{u} →
R such that

wnew = W ◦ x∗.
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This result is immediate given Corollary 1 and Proposition 3, and the strictly monotonicity

and differentiability of wnew (·) results from those of W and x∗. It says that if a worker with state

ω forms a new match, he gets a unique wnew (ω) as his new wage level. In particular, consider an

employed worker with a wage w and an employment state, ω = α ∈ (α∗, α0), it must be that he

actively searches for other jobs. If this worker with (w, α) gets a new job, then his new wage level

will be given by wnew (α), which depends solely on α, but not on his previous wage level w. This

will be useful when examining the stationary wage distribution.

4.2.1 Job Turnover

At the micro-level, it has been well established that (1) on-the-job search probability is de-

creasing in tenure, and (2) the separation rate is a function of tenure, which is increasing at first,

then decreasing, and eventually becomes constant. The relevant literature can be traced back to

Parsons (1972), who finds a negative correlation between match quality and the separation rate.

Later, Farber (1994) finds the initially positive and soon negative relation between a worker’s

tenure and the separation rate. Parsons (1991) and Pissarides and Wadsworth (1994) find a neg-

ative relation between tenure and the propensity to search on the job. See a survey by Farber

(1999) for more details. A more recent work, Nagypal (2007), finds that learning on match quality

is the main driving force of the dynamics of separation rates. My model has predictions that are in

line with these stylized facts at the individual level, especially the on-the-job search (OJS) prob-

ability, the employment-to-employment transition (EE) rate, the employment to unemployment

transition rate (EU) and sthe eparation rate. The macro-level predictions on wage distribution

will be derived in section 4.2.2.

The driving force of the employment dynamics in this mechanism is learning and updating

beliefs about match qualities. A specific match is either good for sure or still has unknown quality.

For a good match, there is no on-the-job search, and job destruction happens only exogenously. If

the match quality is uncertain, the belief is less favorable as t increases, and consequently, search

intensity while on the job is higher, as well as the EE rate. Endogenous job destruction finally

takes place when the belief becomes ”unbearable.”

OJS Probability. Consider a randomly picked worker with tenure t. Without knowing his

signal history, one does not know for sure whether this match is good or whether this worker is

searching on the job. Nonetheless, it is possible to find the ex ante probability that a randomly

chosen worker is searching on the job, as a function of t, which is

σt ≡

{
α0 Pr(τ > t) + (1− α0)

0

t ≤ t∗,

t > t∗,
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where τ is a random variable representing the time at which the good signal occurs, so the

probability that it has not happened by t is Pr(τ > t) = exp(−λt), which is decreasing in t. The

critical time cutoff is defined as t∗ = inf{t > 0|α0 − α∗ =
∫ t∗

0
λαs(1 − αs)ds}, at which point

the belief hits α∗ and the firm optimally destroys the current uncertain match, so the worker

becomes unemployed. Before this point, a match is bad with ex ante probability 1− α0, and the

worker always searches for a new job. With complementary probability a0, the match is good,

and the worker searches only when a good signal has not arrived; hence, the quality remains

uncertain. Therefore, the model predicts that the on-the-job search intensity measured as the ex

ante probability is at first decreasing in workers’ tenure but eventually becomes constant.

EE Transition. The employment-to-employment transition rate is defined as the probability

that an employed worker actively searches for and gets a new job, which is a function of tenure t

given by

ξeet ≡ σtp (θ (αt)) .

The EE transition happens only if a worker is looking for another job. Conditional on that, the

probability that he actually finds a new job is p(θ(αt)). The tenure effect on ξeet is driven by two

forces in opposite directions,

ξ̇eet = p′θ′α̇σt︸ ︷︷ ︸
(+)

− α0λ exp(−λt)p(θ(α))︸ ︷︷ ︸
(+)

.

The first one is that conditional on the match not having sent a good signal before, the matched

worker becomes more pessimistic over time, and therefore, his on-the-job search becomes more

aggressive. Thus the probability of getting a new job becomes greater, and this raises the EE

rate. The second one that lowers the EE rate is simply the decreasing probability of a good match

not having sent a good signal. When t is small, by assumption of the matching function, p′(θ)

is large, so the first force dominates the second. As t approaches t∗, α goes to α∗, and θ′ goes

to zero because of the convexity of S(α), which implies that the effect of the first force goes to

zero. Hence, the second one becomes dominant. Yet, if a random match’s tenure is greater than

t∗, only the good match can survive, in which case the EE transition rate is zero. To summarize,

the expected EE transition rate is initially increasing, then decreasing, and becomes negligible in

the long run.

EU Transition. The employment-to-unemployment transition rate as a function of tenure is

ξeut = δ for any t 6= t∗, when the EU transition happens only as a result of exogenous separation.

At t = t∗, in addition to exogenous separations, all matches that did not send a good signal will be

endogenously destroyed, the measure of which is positive. The atom of EU rate results from the

assumption of a precise and uniform learning process. If the learning process is heterogeneous as a
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consequence of either different priors or noisy observations, such an atom can be eliminated. The

mass point in EU hazard showing at a particular tenure point is considered empirically irrelevant.

However, it fits the observation in the academic job market, where learning is based on relatively

uniform and precise information on the quality and quantity of research publications.

Separation Rate. Separation of an existing match may result from either EE or EU transi-

tion, hence the separation rate of an existing match with tenure t, ξt must be ξt = ξeet +ξeut . When

t < t∗, it is given by

ξt ≡ α0{Pr(τ > t)[p(θ(αt)) + δ] + Pr(τ ≤ t)δ}+ (1− α0)[p(θ(αt)) + δ].

For a match with tenure t < t∗, the quality can be either good or bad, and tenure has two opposing

effects on the separation probability, which are,

ξ̇t = p′θ′α̇σt︸ ︷︷ ︸
(+)

− α0λ exp(−λt)p(θ(α))︸ ︷︷ ︸
(+)

.

Generically, ξt = ξeet + δ, the economic intuition behind ξ̇t is almost identical to that of the EE

rate.

Consider a match with t > t∗, then this match must be good for sure and separation occurs

only as exogenous destruction at rate δ. Accordingly, the tenure effect ξ̇t is zero. At t = t∗, as

discussed before, a positive measure of matches will be separated. Just as that of EU hazard, this

mass point of separation hazard at t∗ is also empirically irrelevant. In summary, the expected

separation rate has a shape similar to that of the EE rate, which is also increasing at first, then

decreasing, and eventually becomes constant.

4.2.2 Stationary Wage Distribution

Now I turn to the model’s macro-level predictions on employment dynamics, which are in

line with another set of empirical findings. Specifically, I look at the wage dispersion. The

equilibrium search and learning strategy, (θ, α∗), implies that a worker’s state ω (T ) follows a

continuous time Markov process, which is right continuous with respect to calendar time. Let

Ω∗ = {u} ∪ {1} ∪ [α∗, α0] denote the state space of ω (T ) in the equilibrium. It is clear that the

process is aperiodic, strongly recurrent, and ergodic. In a large labor market with a continuum

population of workers, by assuming ”the law of large number” holds, the invariant distribution,

if it exists, can be interpreted as the stationary cross-sectional distribution of workers’ state. In

particular, the following Proposition shows that the market equilibrium has the unique stationary

wage distribution µ∗ : There are two mass points at ω = 1 and ω = u. For ω ∈ [α∗, α0], the

probability density function is well defined. Denote the p.d.f. of stationary belief distribution as

24



φ(α) for α ∈ [α∗, α0], β = µ∗(1) the probability mass at ω = 1, and υ = µ∗(u) at ω = u. Since

the policy functions of matched workers and firms do not depend on wages, the evolution and

hence the stationary distribution of beliefs are identical for different wages. These findings can be

summarized in the following Proposition.

Proposition 4. The stationary distribution of workers’ state, µ∗, is characterized by (υ, β, φ)

where

υ = µ∗(u), β = µ∗(1), φ(α) =
dµ∗(α)

dα
for α ∈ [α∗, α0],

the probability density function φ(α) is given by

φ(α) = κ(α)/A for α ∈ (α∗, α0], (29)

φ(α∗) = 0, (30)

and β, υ such that

β =
1

δA

∫ α0

α∗

λακ(α)dα, and υ =

∫ α0

α∗
λακ(α)dα +

∫ α0

α∗
δκ(α)dα + 1

Ap(θ (u))
, (31)

where

A =

∫ α0

α∗

κ(α)dα +

∫ α0

α∗
(λα + δ)κ(α) + 1

δp(θ (u))

∫ α0

α∗

λακ(α),

and

κ(α) = exp

[∫ α

α∗

λs+ δ + p(θ(s))

λs(1− s)
ds

]
.

In equilibrium, all matched pairs with the same α exhibit the same behavior in job searching,

separation and new match formation, regardless of different current wages. At each time, the inflow

at each w is the rate at which new matches are formed with contracted wage w = wnew (ω), ω ∈ Ω,

and with the same prior belief α0. By Corollary 2, new matches formed with w come from two

sources, the unemployed workers if w = wnew (u), and employed workers with α = (wnew)−1 (w).

Meanwhile, the outflow is determined by integrating all rates at which matches with wage w and

different beliefs α ∈ (α∗, α0) ∪ {1} are destroyed. Stationarity requires inflow and outflow to be

equal at all wages w. And because of an identical belief distribution for every w, the outflow rates

are in fact the same for all wages. Consequently, the shape of the stationary wage distribution can

be captured by the wage distribution of newly formed matches with (w, α0) as there is a one-to-one

mapping between the new wage and the belief about the quality of the previous match, again by

Corollary 2. The measure of new matches is φ(α)p(θ(α)), where α is the belief about the quality

of the previous match, the denominator is the total measure of new matches, and the numerator

is the probability that a worker with α gets a new job. The following Proposition summarizes the

intuition above.
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Proposition 5. The stationary wage measure, G∗w(w), satisfies the following properties

1. It has a bounded and connected support [w, w̄), where w = wnew(u) = limα↘α∗ w
new(α), and

w̄ = limα↗α0 w
new(α),

2. G∗w(w) = guw > 0, and G∗w(w) = 0 for all w ∈ (w, w̄),and

3. For w ∈ (w, w̄), the p.d.f. gw(w) = dG∗w(w)
dw

is well defined and given by

gw(w) =
φ((wnew)−1(w))p(θ(wnew)−1(w))∫ α0

α∗
φ(s)[p(θ(s)) + δ]ds+ 1/A

.

For w = w, there is a mass point with measure guw > 0, such that

guw =
υp(θ (u))∫ α0

α∗
φ(s)[p(θ(s)) + δ]ds+ 1/A

.

The first part directly results from Proposition 4 and Corollary 2. The second part is obtained

by making inflow equal outflow for all w ∈ [w, w̄).

Since
∫ α0

α∗
φ(s)[p(θ(s)) + δ]ds + 1/A is a constant number in the steady state, I focus on the

curvature of φ(α)p(θ(α)),
d

dα
[φ(α)p(θ(α))] = φ′p

(+)

+ φp′θ′(α),
(−)

with φ′ > 0 and θ′ < 0. The first term φ′p is the separation effect due to both endogenous

and exogenous separation of current matches. When α → α0, the separation rate is small, and

therefore the separation effect is bounded. The second term φp′θ′(α) is the search effect due to

the change in search behavior. In particular, employed workers adjust their target submarkets of

on-the-job search according to the change in α: the smaller an α, the bigger a probability of EE

transition. Hence, the second term is non-increasing in α. When α → α0, we have θ(α) → 0,

and p′ → ∞, and therefore the second term goes to infinity, while the first effect remains finite.

Therefore, the search effect may dominate the separation effect when α is close to α0, and the

whole term becomes negative.

When the friction in the labor market is small enough, one can obtain a wage distribution

with a flat tail, which is consistent with robust empirical findings in the literature.6 For intuition,

consider a labor market with a Cobb-Douglas matching function p(θ) = θγ where γ ∈ [0, 1]. The

planner maximizes the social gain from on-the-job search of employed workers, maxθ θ
γ[S(α0) −

S(α)]−kθ. The marginal cost of job creation is k, and the marginal benefit is γθγ−1[S(α0)−S(α)]

6See Mortensen (2005).
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which depends on both γ and S(α0) − S(α). Higher α leads to a smaller surplus of replacement

S(α0) − S(α), and therefore, fewer vacancies are created. Smaller search frictions (large γ) also

lead to fewer vacancies being created. In the decentralized labor market, a low job-finding rate for

high α workers implies a small measure of high wage offers, and therefore, the mass of high-wage

jobs is relatively small in the stationary wage distribution. When search frictions are small (γ

close to 1), the planner does not create many vacancies unless α is small enough, θ(α) is small for

large α. By Proposition 4 and Corollary 2, w = wnew (θ(α)) has a small mass when α is large, but

a large mass when α is small. Hence, the stationary wage distribution has a flat tail.

Related stylized facts in the macro-labor literature are summarized in Mortenson (2005). On

the theoretical side, this flat tail has been attributed to multiple-job applications (Galenianos and

Kircher, 2009), on-the-job training (Fu, 2011), a combination of ex post selection and tenure effect

(Moscarini, 2005), etc. However, in this paper, it is the coexistence of match quality learning and

on-the-job search frictions that generates the wage dispersion. On the one hand, without search

frictions, there is only one submarket; hence, the market wage distribution is degenerated even

though there is a non-trivial learning process about match quality. On the other hand, if the match

quality is deterministic, then there is no need for learning, and naturally no ex post heterogeneity

among workers, so the wage dispersion disappears as well. Therefore, it is the interaction between

the two attributes that leads to the difference in wages. It would be interesting to empirically

decompose the effect of search frictions and the effect of learning in a directed search framework,

which is left to future work.

4.2.3 Distribution Convergence

A natural question is whether the stationary distribution µ∗ is also the limit distribution of

the process. In other words, from an arbitrary initial state distribution µ0 ∈ Ξ, whether µT will

eventually converge to the unique stationary distribution µ∗ on the path of equilibrium. In a

discrete time model with time length ∆, since a worker’s state ω (T ) follows a Markov process

with finite state space Ω∗∆, µT converges to its invariant distribution µ∗∆ by theorem 11.4 in Stokey,

Lucas and Prescott (1989). Yet in the continuous time model, the state space Ω∗ is a continuum

and the Markov process can not be described by a transition matrix. Hence, the contraction

mapping argument in Stokey, Lucas and Prescott (1989) can not be directly applied here. The

following Proposition shows that from any initial distribution µ0 ∈ Ξ, the market equilibrium

leads µT to the unique stationary wage distribution µ∗.

Proposition 6. For any ∆ > 0, let k ∈ N and T = k∆, then µT converge to µ∗ in the total

variation norm as k goes to infinity.
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Since the Proposition 5 holds for any µT ∈ ∆(Ω∗), the wage distribution Gk∆
w also converges

to the stationary wage distribution G∗w in the total variation norm.

5 Extensions

Additional Flow Payoff. If a match can produce a small and quality-independent flow payoff

y > 0 as well as the quality-contingent reward, the logic of our model still works. The positive flow

payoff reduces firms’ experimentation cost and therefore extends the duration of experimentation.

This observation implies that the equilibrium within the group wage dispersion may be enhanced as

productivity grows, which is consistent with empirical observations about wage inequality trends.7

Furthermore, one can allow the flow payoff y(t) to be a stochastic process. The block recursive

properties still hold, but the solution of the social planner’s learning problem is described as

a partial differential equation. One can choose a particular y process such as a deterministic

increasing trend to study the effect of technology improvement on the labor market, and an Itô

process to study the relation between real business cycles and unemployment dynamics.

Bad News Cases. Assume the match quality independent flow payoff is y > 0, and y − (1−
α0)λ > b > y − λ to avoid a trivial case. Suppose the payoff structure and learning process are

given as follows: if a match is good, it never generates a negative one payoff; if it is bad, it may

generate a unit of loss at a random time with a Poisson arrival rate λ. In this case, when bad

news is realized, the firm learns that the match is bad and therefore fires the worker immediately.

By observing a history with no bad news, a matched firm and worker become more and more

optimistic about their match quality. In this economy, any existing match has a belief α higher

than α0 in equilibrium; thus on-the-job search is not valuable. The equilibrium has only one labor

market with market tightness θ (u). In the decentralized market, there is only one equilibrium

wage.

Poisson Bandit Cases. In the benchmark model, I assume that a bad match can not generate

any profit, which seems restrictive. What if it can generate one unit of reward with a lower rate

λb ∈ (0, λ)? To avoid a trivial case, I assume λb < b < α0λ + (1 − α0)λb. In other words, a new

match is better than no match, but no match is better than a bad match. Then, given no reward

arriving in [t, t+ ∆), the belief at the end of that time period is αt+∆ = αt exp(−λ∆)
αt exp(−λ∆)+(1−αt) exp(−λb∆)

by Bayes’ rule. Yet, if one reward is realized in [t, t+∆), the belief about the match quality jumps

up from αt to

αt+∆ =
αt[1− exp(−λ∆)]

αt[1− exp(−λ∆)] + (1− αt)[1− exp(−λb∆)]
,

7Such as Bound and Johnson (1992), Autor, Katz and Kearney (2009), Kambourov and Manovskii (2009), etc.
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by Bayes’ rule. When ∆ goes to zero, the updating can be approximated by

lim
∆→0

αt+∆ − αt
∆

=

{
−(λ− λb)αt(1− αt)

λαt
λαt+λb(1−αt)

no reward at t,

one reward at t,

and the probability that more than one reward is realized is O(∆2), which is negligible when ∆ is

small. By the same logic, one can solve the social planner’s optimal stopping belief, and on-the-job

search strategy. Over time, good matches can survive with higher probability than bad ones due

to the dynamics of endogenous separation driven by learning; thus the empirical implications for

job transitions still hold qualitively. When the search friction is small, the wage distribution has

a flat tail as well. However, the implications are slightly different from those in the benchmark

model in the following sense: (1) No match is believed to be good for sure, and therefore the

endogenous separation will not disappear even for the match with long tenure. (2) The arrival of

a reward can increase the belief about match quality; thus it is possible that a belief αt ∈ (α0, 1)

appears in equilibrium. Clearly, it is inefficient to destroy a match with belief higher than α0,

and therefore, employed workers with belief α > α0 will not search on-the-job under a bilaterally

efficient contract.

Informative Signal. In the benchmark model, the match is modeled as an experience good

whose quality needs to be slowly learned over time. Yet, in some situations, the employer can

extract non-trivial information about the match quality through an interview. Suppose a firm can

draw an informative signal of the match quality and update its belief about the match quality

through an interview before the match is formed. The signal is drawn from a match quality

dependent distribution that satisfies monotone likelihood ratio property (MLRP), and the updated

posterior α̃0 ∈ [α0, ᾱ0], where 0 < α0 < ᾱ0 < 1. In this extension, the social planner will form

a new match only if the updated posterior α̃0 is higher than a cutoff level that depends on the

worker’s current state. For an unemployed worker, this cutoff is the stopping time belief α∗. For

an employed worker, this cutoff is the belief αt about the worker’s current match quality. Let

Pr(α̃0 > αt) be the ex ante probability that the posterior is larger than the worker’s current belief.

Hence, the on-the-job search policy is determined by

max
θ
p(θ) Pr(α̃0 > αt){E[S(α̃0)|α̃0 > αt]− S(αt)} − kθ.

It is clear that both Pr(α̃0 > αt) and E[S(α̃0)|α̃0 > αt]− S(αt) are non-increasing in αt; thus the

optimal policy θ(α) is non-increasing in α, which is similar to that in the benchmark model. Hence

the empirical implications for workers’ turnover and the stationary wage distribution predicted by

the benchmark model are qualitively preserved.

Costly On-the-Job Search. Suppose workers’ on-the-job search requires a flow cost ε∆. To

avoid a trivial case where on-the-job search is always suboptimal, I assume ε is small enough. Since
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the gain from on-the-job search maxθ{p(θ)[S(α0)−S(α)]−kθ} is increasing in the job replacement

premium, [S(α0)− S(α)], for small enough ε, there exists a cut-off belief αε such that

max
θ
p(θ)[S(α0)− S(α)]− kθ ≤ ε if α ≥ αε,

max
θ
p(θ)[S(α0)− S(α)]− kθ > ε if α < αε.

In other words, matched workers would search on-the-job only if they believed the match quality is

low enough. When α < αε, the social planner’s problem is unchanged, and therefore it is obvious

that introducing costly on-the-job search does not change the main result but reduces the social

surplus S(α) for each α and therefore shortens the duration of experimentation.

6 Conclusion

This paper presents a model of learning in a frictional labor market and studies the macroe-

conomic consequences of individual learning behavior between matched firms and workers. The

match quality of a worker-firm pair is ex ante homogeneous but unknown. Over time, a matched

worker gradually learns the match quality of his current job. Because of the diversity of individual

histories, a heterogeneity arises among employed workers, which results in different on-the-job

search behavior. I show that this learning can produce (1) interesting dynamics of workers’ job

transition and (2) wage dispersion among seemingly identical workers.

The implications are consistent with the stylized empirical evidence. The analysis shows that

(1) the separation rate as a function of tenure is increasing first, decreasing later, and constant

in the end; (2) the on-the-job search probability as a function of tenure is decreasing first and

constant in the end; (3) when search frictions are small, the wage distribution has a flat tail as

predicted by the empirical literature; and (4) in an extension, the model can generate a rise in

wage inequality with an improvement in aggregate productivity. The contribution of this paper

is to shed light on the aggregate consequences of individual learning in a tractable model and

identify another source of wage dispersion with a flat tail. For future research, I believe it would

be interesting to empirically evaluate the impact of learning on wage dispersion.
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A Appendix: Proofs of Results on the Planner’s Problem

A.1 Separability of Planner’s Problem

Proof of Lemma 1

The proof is basically similar to that of theorem 1 in Menzio and Shi (2011). First, given

∆ > 0, let C(Ξ) be the space of bounded continuous functions R : Ξ → R with the sup norm,

||R|| = supµ∈Ξ R(µ). Define bounded function f : Ω×R+×[δ∆, 1]→ R, where given θ, z, f(θ, z, ω)

is the expected flow output produced by a worker with state ω. Hence

f(θ, z, ω) =


(1− p(θ)∆)b∆ + p(θ)∆λα0∆

(1− z)λ∆ + zb∆

(1− z)[(1− p(θ)∆)λα∆ + p(θ)∆λα0∆] + zb∆

if ω = u,

if ω = 1,

if ω ∈ B∆/{1}.

For ω ∈ Ω/(B∆ ∪{u}), f(θ, z, ω) = 0 for any (θ, z). Then the aggregated flow output F (θ, z, µ) =∫
ω∈Ω

f(θ, z, ω)dµ.

Define the operator T∆ on C(Ξ). The planner’s problem is reformulated as

T∆R(µ) = max
z,θ

[∫
ω∈Ω

f(θ, z, ω)dµ+ e−r∆R(µ̂)

]
(A.1)

s.t. (5− 8.) and z : Ω→ [δ∆, 1], θ : Ω→ R+.

Since the maximand is bounded in [0, λ/r)], T∆R is bounded; Define θ̄ such that k = p′(θ̄)λ/r.

The job replacement benefit is bounded by λ/r. Then (13) and ((14) imply that the optimal

θ(ω) ≤ θ̄ for any ω, and therefore one can replace the constraint that θ : Ω → R+ in (A.1) by

θ : Ω→ [0, θ̄] without loss of any generality.

For each R ∈ C(Ξ) and µ ∈ Ξ, the maximand in (A.1) is continuous in (z, θ) and the set of

feasible choices for (z, θ) ∈ [δ∆, 1]× [0, θ̄] is compact. Hence, the maximum is attained. Since the

maximand is continuous, it follows from the Theorem of Maximum that T∆R is continuous. Hence,

T∆ : C(Ξ)→ C(Ξ). By Blackwell sufficient conditions for a contraction mapping, the solution of

(A.1) is essentially unique. Since lim
n→∞

e−n(r∆)R∗ = 0, R = U∆ solves the social planner’s problem

for each ∆ > 0.

Given a particular µ ∈ Ξ, let C ′(Ξ) ⊂ C(Ξ) be the set of functions R : Ξ → R that are

bounded, continuous and linear in the measure of unemployed workers, µ(u), the measure of

successful matches, µ(1), and the pdf of existing uncertain matches µ(α). In other words, if

R ∈ C ′(Ξ), there exists Ru, R1 ∈ R and Re : (0, α0]→ R such that

R(µ) = µ(u)Ru + µ(1)R1 +

∫
α∈[0,α0]

Re(α)dµ.
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Consider an arbitrary function R ∈ C ′(Ξ). After substituting the constraints into the maxi-

mand of (A.1) and changing the order of integrals and maximization,8 I have

(T∆R)(Ξ) = µ(u)R̃u + µ(1)R̃1 +

∫
α∈[0,α0]

R̃e(α)dµ, (A.2)

where

R̃e(α) = max
(θ,z)∈[0,θ̄]×[δ∆,1]

z[b∆ + e−r∆Ru] + (1− z){[1− p(θ)∆]λα∆[1 + e−r∆R1] (A.3)

+[1− p(θ)∆](1− λα∆)e−r∆R(α+)]

+p(θ)∆λα0∆[1 + e−r∆R1] + p(θ)∆(1− λα0∆)e−r∆R(α+
0 )},

R̃u = max
θ∈[0,θ̄]

{−kθ∆ + [1− p(θ)∆][b∆ + e−r∆Ru] (A.4)

+p(θ)∆{λα0∆[1 + e−r∆R1] + (1− λα0∆)e−r∆R(α+
0 )}}, and

R̃1 = max
(θ,z)∈[0,θ̄]×[δ∆,1]

z[b∆ + e−r∆Ru] + (1− z){[1− p(θ)∆]λ∆[1 + e−r∆R1] (A.5)

+[1− p(θ)∆](1− λ∆)e−r∆R1] (A.6)

+p(θ)∆λα0∆[1 + e−r∆R1] + p(θ)∆(1− λα0∆)e−r∆R(α+
0 )}. (A.7)

The definition of R and (A.2) imply that T∆ : C ′(Ξ)→ C ′(Ξ). Moreover, C ′(Ξ) is a closed subset

of C(Ξ), thus U∆ ∈ C ′(Ξ).

Let C ′′(Ξ) ⊂ C ′(Ξ) be the set of functions R : Ξ→ R such that Re is non-decreasing in α. Since

TR ∈ C ′(Ξ), the maximand in (A.4) is non-decreasing in α. Hence T : C ′′(Ξ) → C ′′(Ξ). Since

C ′′ (Ξ) is a closed subset of C ′(Ξ), U∆ ∈ C ′′(Ξ). Let C ′′′(Ξ) be the set of functions R : Ξ → R
such that Re is strictly increasing in α. I need to show that Re(α) is strictly increasing in α.

The difficulty is that it is hard to apply a fixed point theorem in C ′′′(Ξ) which is not a closed

set. Yet, I will show that any fixed point in C ′′(Ξ) must belong to C ′′′(Ξ) in this problem. Let

Re be non-decreasing in α, then the maximand in (A.4) is strictly increasing due to the fact that

λ∆[1 + e−r∆R(1)−R(α+)] > 0. Hence, if U∆ ∈ C ′′(Ξ), it must be the case that U∆ ∈ C ′′′(Ξ).

It follows that the policy correspondences (z∆
∗ , θ

∆
∗ ) solve the maximization problem (A.3-A.5)

for (Re, Ru, R1) = (S(α), S (u) , S(1)). Since the maximand and the constraints in (A.3-A.5) do

not depend on the economy state µ, (θ∆
∗ , z

∆
∗ ) depend on the individual state ω only.

Hence, I have

U∆(µ) =

∫
α∈B∆/{1}

S∆(α)dµ(α) + µ(u)S∆ (u) + µ(1)S∆
1 , (A.8)

where S∆(α), S∆ (u) , S∆
1 are given by (10-12). �

8A pointwise optimization result solves the intergration optimization with measure 1.
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A.2 The Planner’s Individual Problem in Continuous Time Limit

The Planner’s Individual Control Problem in Continuous Time

A history for a particular worker is defined as {(yT ,mT )}T≥0 ∈ ({0, 1, b}R+ × R+), where the

stochastic process {yT} documents the history of realized production signal, where yT ∈ {b, 1, 0}
for any T ∈ N, and mT denotes the starting time of the current match to trace both EE and UE

transitions. Denote {FT}T≥0 as the filtration generated by {(yT ,mT )}T≥0. Let θT , τ
d denote the

control, and stopping time, which are both FT−adapted. Let hT = (yT ′ ,mT ′)}TT ′=0 be a possible

history of a particular worker until calendar time T .

Given a control {θT} and a stopping time τ d, the performance function is given by

S({hT , θT , τ d) = E
[∫ T+τ

T

e−rs(yT+s − kθT+s)ds+ e−rτS(hT+τ , θ, τ d)

]
,

where τ = τ1 ∧ τ2 ∧ τ3 ∧ τ d, τ1 stands for the stopping time at which a good signal of the current

match is sent, τ2 is the stopping time when the worker finds a new job, τ3 is the stopping time of

exogenous separation, and τ d stands for the stopping time when the current match is destroyed

endogenously.

Without loss of any generality, we can focus on Markov control, where the state variable ω (T )

is FT−adapted. And ω (T ) evolves as follows: (1) ω (T ) ∈ Ω, (2) ω jumps to α0 with rate p(θT ),

(3) it jumps to 1 with rate λ only if y 6= b and the current match is good, (4) it jumps to u with

rate δ when yT 6= b, and (5) if yT 6= b, dω (T ) = −λω (T ) (1− ω (T ))dT . Since θT is FT−adapted,

ω (T ) is a well-defined stochastic process, and FT−adapted.

Given a control θ(ω) and a cutoff belief to destroy the current match αd ∈ [0, 1] such that

θT = θ(ω (T )), αd = sup{αs|s = τ d}, the performance function conditional on ω is

S(ω|θ, τ d) = Eω
[∫ τ

0

e−rs(ys − kθs)ds+ e−rτS(τ, ωτ |θ, τ d)
]
.

The problem is, for each ω ∈ Ω, to find the value function S(ω), an optimal separation belief

α∗ ∈ [0, 1], and an optimal control θ∗ ∈ A such that

S(ω) ≡ sup
θ(ω),αd

S(ω|θ, αd), (A.9)

where A denotes all admissible controls such that FT -adapted processes, positive value and θ(ω) ∈
L2(Ω,R+). �
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Proof of Proposition 1

For each ∆ > 0, Lemma 1 implies that one can define an operator T̂
∆

on C(Ω), the space

of bounded continuous functions S : Ω → R with the sup norm, as (A.3,A.4,A.5), and it is

equivalent to an optimal control combined stopping time problem (A.9). By definition of a fixed

point, (T̂
∆
S∆)(ω) = S∆(ω).

I want to show that [θ∆(α), θ∆ (u) , α∆
∗ ] → [θ(α), θ (u) , α∗] and S∆(ω) uniformly converge to

S(ω) as ∆ goes to zero, where S(ω),θ(α), θ (u) , α∗ satisfying Proposition 1. In particular,

||S∆ − S|| = ||T̂∆
S∆ − T̂

∆
S + T̂

∆
S − S||

≤ (1− r∆)||S∆ − S||+ ||T̂∆
S − S||,

where ||.|| is the sup-norm on B∆ ∪ {u}, and the inequality comes from the Blackwell discount

theorem and triangle inequality. Hence

||S∆(ω)− S(ω)|| ≤ 1

r∆
||T̂∆

S − S||.

I want to show that

lim
∆→0

1

r∆
||T̂∆

S − S|| = 0,

where

(T̂
∆
S)(u) = max

θ
{−kθ∆ + [1− p(θ)∆][b∆ + e−r∆S (u)]

+p(θ)∆{λα0∆[1 + e−r∆S(1)] + (1− λα0∆)e−r∆S(α+
0 )}},

(T̂
∆
S)(α) = max

z,θ
z[b∆ + e−r∆S (u)] + (1− z){−kθ∆ + [1− p(θ)∆]λα∆[1 + e−r∆S(1)]

+[1− p(θ)∆](1− λα∆)e−r∆S(α+)]

+p(θ)∆λα0∆[1 + e−r∆S(1)] + p(θ)∆(1− λα0∆)e−r∆S(α+
0 )},

and

(T̂
∆
S)(1) = δ∆[b∆ + e−r∆S (u)] + (1− δ∆){λ∆ + e−r∆S(1)},

with optimal control (ẑ∆, θ̂∆) such that

ẑ∆ =

{
1

δ∆

if α ∈ B∆, and α < α̂∆
∗ ,

if α ∈ B∆, and α ≥ α̂∆
∗ ,

where α̂∆ ∈ (0, α0], and θ̂∆ such that

k = p′(θ̂∆ (u)){λα0∆[1 + e−r∆S(1)] + (1− λα0∆)e−r∆S(α+
0 )− b∆− e−r∆S(u)}, (A.10)
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k = p′(θ̂∆(α)){λα0∆[1 + e−r∆S(1)] + (1− λα0∆)e−r∆S(α+
0 ) (A.11)

−λα∆[1 + e−r∆S(1)]− (1− λα∆)e−r∆S(α+)},

when α ∈ B∆/{1}, and θ̂∆(1) = 0.

The differentiability of S(α) implies that S(α+) = S(α) + S ′(α)[α+ − α] + O(∆2) for all

α ∈ [α∗, α0]. Multiplying both sides of equations (16,18,19,20) by ∆, and adding (1− r∆)S(ω) for

each ω ∈ B∆ ∪ u, one obtains

S (u) = b∆ + p(θ (u))∆[S(α0)− S (u)]− kθ (u) ∆ + (1− r∆)S (u) ,

S(α) = αλ∆ + λα∆(S(1)− S(α))− λα∆(1− α)S ′

+δ∆(S (u)− S(α)) + p(θ(α))∆[S(α0)− S(α)]− kθ(α)∆

(1− r∆)S(α),

S(1) = λ∆ + δ∆[S (u)− S(1)] + (1− r∆)S(1).

Hence, on B∆ ∪ {u}, T̂
∆
S − S is well-defined.

Since (A.10,A.11) are continuous in ∆, e−r∆ − (1 − r∆) = O(∆), and p(·) is single-value and

continuous, lim∆→0 ||θ̂∆ − θ|| = 0. And therefore

[1− p(θ)∆]λα∆[1 + e−r∆S(1)] + [1− p(θ)∆](1− λα∆)e−r∆S(α+)]

+p(θ)∆λα0∆[1 + e−r∆S(1)] + p(θ)∆(1− λα0∆)e−r∆S(α+
0 ),

goes to S(α), and b∆+e−r∆S (u) goes to S (u) when ∆ goes to zero. Hence lim∆→0 ||α̂∆
∗ −α∗|| = 0,

and therefore for ω ∈ (α∆
∗ , α0] ∪ {u}

(T̂
∆
S)(ω)− S(ω)

∆
= [p(θ̂∆ (ω))− p(θ)][S(α0)− S(ω)]− k(θ̂∆ (ω)− θ (ω)) +O(∆)

= p′(θ (ω))[S(α0)− S(ω)− k](θ̂∆ (ω)− θ (ω)) +O(∆).

For ω = 1, (T̂
∆
S)(1)−S(1)

∆
= 0.

Hence, T̂
∆
S(ω)−S(ω)

∆
= O(∆) for ω ∈ Ω. Since the convergence is independent of the path, the

S∆ uniformly converges to S, and therefore (θ∆, z∆
∗ ) uniformly converges to (θ, z∗). �
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A.3 Solution Characterization of Planner’s Problem in Continuous

Time Limit

Proof of Lemma 4

Existence and Uniqueness. Given any S (u) ∈ [ b
r
, λ
r
], from (16,18,19,20), there exists a unique

solution S(α) such that

S(α) = S (u) +

∫ α

α∗

h(x, S(x))dx, (A.12)

where h(α, S(α)) is the right-hand side of (20) divided by r.

And θ (u) = arg max{p(θ)[S(α0)− S(α)]− kθ}. For an unemployed worker,

rS (u) = b+ max
θ
{p(θ)[S(α0)− S (u)]− kθ},

or

S (u) =
b+ p(θ (u))S(α0)− kθ (u)

r + p(θ (u))
. (A.13)

The envelop theorem implies that

dS (u|S(α0))

dS(α0)
=

p(θ (u|S(α0)))

r + p(θ (u|S(α0)))
∈ (0, 1). (A.14)

Combining (A.12) and (A.13) yields

S(α) =
b+ p(θ (u))S(α0)− kθ (u)

r + p(θ (u))
+

∫ α

α∗

h(x, S(x))dx.

Define an operator T p : C[0, α0]→ C[0, α0] where S(α) ∈ C[0, α0] is any bounded continuous

differentiable function and T pS = b−p(θ(u))S(α0)−kθ(u)
r+p(θ(u))

+
∫ α
α∗
h(x, S(x))dx where S such that (A.12)

and (A.13). To prove the uniqueness of S(ω), one needs to verify whether T p is a contraction

mapping. For the second part of T pS, by the standard contraction mapping argument of the

existence and uniqueness of the solution in the problem of an ordinary differential equation with

initial value, T 2
pS =

∫ α
α∗
h(x, S(x))dx satisfies the Blackwell sufficient condition. Moving to the

first part, T 1
p, one needs to check whether the Blackwell sufficient condition holds.

Let S1 > S2, then S (u|S1 (α0)) > S (u|S2(α0) following (A.14); thus the monotonicity of T 1
p

is proved. Move to the discounting property. Let n ∈ R+, and S3 = S1 + n. Following (A.14),
dS(u|S(α0))
dS(α0)

< 1 for all S (α0) ∈ [S1 (α0) , S1 (α0) + n]; thus the discounting property of T 1
p holds.

Hence T p = T 1
p + T 2

p satisfies the Blackwell sufficient condition, and therefore it is a contraction

mapping on a complete functional space, C[0, α0]. There exists a unique solution S(α) such that

S(α) = T pS(α), and S (u) is also determined uniquely!
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Convexity. Consider two α1, α2 such that (1) α1, α2 ∈ B∆ (α0), (2) α∗ < α2 < α1 ≤ α0. Let

αζ = ζα2 + (1 − ζ)α1 where ζ ∈ (0, 1). I want to show that for all α1, α2 and αζ , S(αζ) ≤
ζS(α2) + (1 − ζ)S(α1). Denote θζ(α) as the path of optimal on-the-job search starting from αζ

during the current match. Denote by Sg(θ) the expected surplus from an arbitrary path of on-

the-job search θ conditional on the true match quality being good and similarly for Sb(θ). Then

S(αζ) = αζSg(θζ) + (1− αζ)Sb(θζ). And it holds that

S(α1) ≥ α1S
g(θζ) + (1− α1)Sb(θζ),

S(α2) ≥ α2S
g(θζ) + (1− α2)Sb(θζ),

since θζ is a feasible price path. Hence

ζS(α2) + (1− ζ)S(α1) ≥

{
ζ[α1S

g(θζ) + (1− α1)Sb(θζ)]

+(1− ζ)[α2S
g(θζ) + (1− α2)Sb(θζ)]

}
= (ζα1 + (1− ζ)α2)Sg(θζ)

+(1− ζα1 − (1− ζ)α2)Sb(θζ)

= αSg(θζ) + (1− α)Sb(θζ) = S(α),

which contradicts the fact that the solution of the HJB function maximizes the planner’s individual

worker problem. This proves the claim.

Monotonicity. Since S ′′ ≥ 0, and S ′(α∗) = 0, thus S ′ ≥ 0 for all α ∈ [α∗, α0]. There

are two cases. The first one is S ′ = 0 for all α ∈ [α∗, α0], which implies that α∗ = α0. The

second one is that S ′ > 0 for all α ∈ (α∗, α0]. The optimal on-the-job search decision satisfies

p′(θ(α))[S(α0)− S(α)] = k. Differentiating it yields

p′′(θ(α))[S(α0)− S(α)]θ′(α) = p′(θ)S ′(α),

since S(α0) − S(α) > 0 for any α < α0, p′′ < 0, I have θ′(α) < 0. p′, p′′ and S(α0) − S(α) is

bounded. When α goes to α∗, S
′(α) goes to zero, and therefore θ′ goes to zero. �
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B Appendix: Proofs of Results on the Market Mechanism

B.1 Decentralization

Proof of Proposition 2

Combining (25), (26) and (28) yields

M∆(α, µ) = max
z,θ
{z[b∆ + e−r∆M∆ (u, µ)] + (1− z){[1− p(θ)∆]λα∆[1 + e−r∆M∆(1, µ)](B.1)

+[1− p(θ)∆](1− λα∆)e−r∆M∆(α+, µ)] + p(θ)∆[λα0∆(1 + e−r∆M∆(1.µ))

+(1− λα0∆)e−r∆M∆(α+
0 , µ)]− kθ∆},

M∆ (u, µ) = max
θ
{−kθ∆ + [1− p(θ)∆][b∆ + e−r∆M∆ (u, µ)] (B.2)

+p(θ)∆[λα0∆(1 + e−r∆M∆(1, µ)) + (1− λα0∆)e−r∆M∆(α+
0 , µ)]},

where α+ = α + λα(1− α)∆.

One can find that S∆(α) and S∆ (u) uniquely solves the above problem since (B.1,B.2) are

equivalent to (10,11), and therefore S∆(1) = M∆(1, µ). Hence, the equilibrium joint value

M∆(ω, µ) = S∆(ω), and the equilibrium job search and job separation strategy equals θ∆
∗ and

z∆
∗ , and therefore the equilibrium is efficient.

Proof of Proposition 3

Since the joint value equals J(α|C) + V (α|C), then the firm’s profit maximization problem is

given by

max
wc,xc(α),αc

M(α0|C)− x s.t. V (α0|C) ≥ x,

where M(α|C) is the joint value of the match given the contract C. Given the binding constraint

V (α0|C) = x, the profit-maximizing contract C∗ will achieve the joint value M(α0) = M(α0|C∗),
by setting an optimal separation rule, on-the-job search strategy given by Proposition 1 and wage

w = W (x) such that V (α0|C∗) = x.

The monotonicity of W (x) can be proved by contradiction. Suppose in equilibrium w1 > w2

such that V (α0|w1, α∗, θ) = V (α0|w2, α∗, θ). Since the bilaterally efficient contract ensures both

workers’ on-the-job search and firms’ stopping time decision are socially optimal. Two contracts

induce the same history and stopping time. Yet, the expected cost of experimentation is different

since E
∫ τ

0
e−rtw1dt− E

∫ τ
0
e−rtw2dt > 0. Thus no firm will choose w1. �
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B.2 Stationary Distribution

Proof of Proposition 4

The stationary distribution can be calculated by making the inflow equal outflow at any ω ∈ Ω∗.

The density at α∗ is zero since the Markov process is right continuous with respect to calendar

time. For interior point α, the only inflow comes from match with belief α′ > α that survives but

has not sent an good signal, while the outflow is µ(α). In the steady state, µT1(α) = µT2(α) = φ(α)

for any T1, T2 ≥ 0.

λα(1− α)
d

dα
φ(α) = [λα + δ + p(θ(α))]φ(α), (B.3)

where φ(α) is the probability density at α.

At α0, the inflow comes from matched and unemployed workers who successfully find a new

job; outflow is φ(α0), in the steady state, µT1(α0) = µT2(α0) for any T1, T2 ≥ 0, and thus I have∫ α0

α∗

p(θ(α))φ(α)dα + υp(θ (u)) = φ(α0), (B.4)

where υ is the measure of u-workers. Both the left-hand side and right-hand side of (B.4) are finite,

and therefore there is no mass point at α0.

For unemployed workers, the inflow comes from the separation of an existing match, while the

outflow is the measure of unemployed workers who find a job. Letting inflow equal outflow, I have

νp(θ (u)) = βδ +

∫ α0

α∗

δφ(α)dα + φu, (B.5)

where φu is the density of workers who have just been fired, β is the measure of 1-workers.

Combining (B.4) and (B.5) yields

φ(α0) =

∫ α0

α∗

[p(θ(α) + δ]φ(α)dα + φu + βδ. (B.6)

For a successful match, the inflow comes from a new good signal sent by an existing uncertain

match, and the outflow comes from the exogenous separation. Inflow equals outflow implies that

β =
1

δ

∫ α0

α∗

λαφ(α)dα. (B.7)

Given the equilibrium θ(α), α∗, and matching function p(·), one can obtain a general solution

of the ODE (B.3), which is given by

φÃ(α) =
1

Ã
exp[

∫ α

α∗

λs+ δ + p(θ(s))

λs(1− s)
ds], (B.8)
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where 1/Ã is a constant positive number to ensure φ > 0. To fix A, one needs to use a boundary

condition implied by the fact that φ is a density function and ν, β are the probability. The condition

is given by ∫ α0

α∗

φ(α)dα = 1− υ − β. (B.9)

Plugging (B.5) and (B.7) into (B.9) yields∫ α0

α∗

φ(α)dα = 1−
∫ α0

α∗
(λα + δ)φ(α)dα + φ(α∗)

p(θ (u))
− 1

δ

∫ α0

α∗

λαφ(α)dα.

Let κ(α) = exp[
∫ α
α∗

λs+δ+p(θ(s))
λs(1−s) ds], and φÃ(α) = κ(α)/Ã. Then the Ã = A satisfying the boundary

condition (B.9) is given by

A =

∫ α0

α∗

κ(α)dα +

∫ α0

α∗
(λα + δ)κ(α)dα + 1

δp(θ (u))

∫ α0

α∗

λακ(α)dα.

Given the solution φ(α), φ(α0), φu = limα→α∗ φ(α) = 1/A, and υ, β can be solved by (B.5) and

(B.7). Since (29) and (31) uniquely pin down µ∗, the stationary distribution is unique. �

Proof of Proposition 5

For any w ∈ (w, w̄), suppose the density is gw(w). The outflow is gw(w)[
∫ α0

α∗
φ(s)[p(θ(s)) +

δ]ds+φu], where
∫ α0

α∗
φ(s)p(θ(s))ds is the mass of leaving for a new job,

∫ α0

α∗
φ(s)δds is the mass of

unemployed workers due to a job destruction shock, and φu is the mass of leaving due to firing. The

inflow is the measure of new jobs formed with wage w, which is φ((wnew)−1(w))p(θ(wnew)−1(w)). A

worker with state ω = (wnew)−1(w) is looking for a new job in the submarket where the promised

wage is w and market tightness θ = θ(wnew)−1(w). In the steady state, the inflow equals the

outflow, gw(w)[
∫ α0

α∗
φ(s)[p(θ(s)) + δ]ds + φu] = φ((wnew)−1(w))p(θ(wnew)−1(w)). Since φu = 1/A,

gw(w) = φ((wnew)−1(w))p(θ(wnew)−1(w))∫ α0
α∗ φ(s)[p(θ(s))+δ]ds+1/A

. For w = w, only unemployed workers are looking for a job

with this wage. A similar logic can derive the expression of guw. Since wnew is strictly monotone

and continuous, (w, w̄) is connected. Since S (u) = S(α∗), w
new(u) = limα→α∗ w

new(α).�

Proof of Proposition 6

For a fixed ∆ > 0, an artificial discrete time Markov process is constructed. The equilibrium

strategy implies that, from any initial prior µ0 ∈ Ξ, µT (Ω/Ω∗) = 0 after time t∗, and no mass point

for ω ∈ [α∗, α0]. It is easy to verify that the process satisfies Doeblin’s condition (see Stokey, Lucas

and Prescott, 1989, chapter 11) after time t∗. By Theorem 11.10 in Stokey, Lucas and Prescott

(1989), the invariant distribution µ∆ is unique, and µk∆ converges to µ∆ in the total variation
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norm as k ∈ N goes to infinity. Clearly, the invariant distribution of the continuous time Markov

process, µ∗, is also the invariant distribution of the artificial discrete time Markov process; thus,

µ∗ = µ∆ and therefore µk∆ strongly converges to µ∗ as k ∈ N goes to infinity.�
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