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Abstract

We develop a dynamic model of opinion formation in social networks when the infor-
mation required for learning a payoff-relevant parameter may not be at the disposal of any
single agent. Individuals engage in communication with their neighbors in order to learn
from their experiences. However, instead of incorporating the views of their neighbors in
a fully Bayesian manner, agents use a simple updating rule which linearly combines their
personal experience and the views of their neighbors (even though the neighbors’ views
may be quite inaccurate). This non-Bayesian learning rule is motivated by the formidable
complexity required to fully implement Bayesian updating in networks. We show that, as
long as individuals take their personal signals into account in a Bayesian way, repeated in-
teractions lead them to successfully aggregate information and learn the true underlying
state of the world. This result holds in spite of the apparent naı̈veté of agents’ updating
rule, the agents’ need for information from sources the existence of which they may not
be aware of, the possibility that the most persuasive agents in the network are precisely
those least informed and with worst prior views, and the assumption that no agent can
tell whether her own views or those of her neighbors are more accurate.
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1 Introduction

In everyday life, people form opinions over various economic, political, and social issues — such as
how to educate their children or whether to vote for a certain candidate — which do not have an
obvious solution. These issues allow for a great variety of opinions because even if a satisfactory
solution exists, it is not easily recognizable. In addition, the relevant information for such problems
is often not concentrated in any source or body of sufficient knowledge. Instead, the data are dis-
persed throughout a vast network, where each individual observes only a small fraction, consisting
of his/her personal experience. This motivates an individual to engage in communication with others
in order to learn from other people’s experiences. For example, Hagerstrand (1969) and Rogers (1983)
document such a phenomenon in the choice of new agricultural techniques by various farmers, while
Kotler (1986) shows the importance of learning from others in the purchase of consumer products.

In many scenarios, however, the information available to an individual is not directly observable
by others. At most, each individual only knows the opinions of few individuals (such as colleagues,
family members, and maybe a few news organizations), will never know the opinions of everyone in
the society, and might not even know the full personal experience of anyone but herself. This limited
observability, coupled with the complex interactions of opinions arising from dispersed information
over the network, makes it highly impractical for agents to incorporate other people’s views in a
Bayesian fashion.

The difficulties with Bayesian updating are further intensified if agents do not have complete in-
formation about the structure of the social network or the probability distribution of signals observed
by other individuals. Such incomplete information means that they would need to form and update
opinions not only on the states of the world, but also on the network topology as well as other individ-
uals’ signal structures. This significantly complicates the required calculations for Bayesian updating
of beliefs, well beyond agents’ regular computational capabilities. Nevertheless, the complications
with Bayesian learning persist even when individuals have complete information about the network
structure, as they still need to perform deductions about the information of every other individual
in the network, while only observing the evolution of opinions of their neighbors.1 The necessary
information and the computational burden of these calculations are simply prohibitive for adopting
Bayesian learning, even in relatively simple networks.2

In this paper, we study the evolution of opinions in a society where agents, instead of using
Bayesian updates, apply a simple learning rule to incorporate the views of individuals in their social
clique. We assume that at every time period, each individual receives a private signal, and observes
the opinions (i.e., the beliefs) held by her neighbors at the previous period. The individual updates
her belief as a convex combination of: (i) the Bayesian posterior belief conditioned on her private

1Gale and Kariv (2003) illustrate the complications that can arise due to repeated Bayesian deductions in a simple net-
work. Also, as DeMarzo, Vayanos, and Zwiebel (2003) point out, in order to disentangle old information from new, a
Bayesian agent needs to recall the information she received from her neighbors in the previous communication rounds, and
therefore, “[w]ith multiple communication rounds, such calculations would become quite laborious, even if the agent knew
the entire social network.”

2An exception, as shown recently by Mossel and Tamuz (2010), is the case in which agents’ signal structures, their prior
beliefs, and the social network are common knowledge and all signals and priors are normally distributed.
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signal; and (ii) the opinions of her neighbors. The weight an individual assigns to the opinion of a
neighbor represents the influence (or persuasion power) of that neighbor on her. At the end of the
period, agents report their opinions truthfully to their neighbors. The influence that agents exert on
one another can be large or small, and may depend on each pair of agents. Moreover, this persuasion
power may be independent of the informativeness of their signals. In particular, more persuasive
agents may not be better informed or hold more accurate views. In such cases, in initial periods,
agents’ views may move towards the views of the most persuasive agents and, hence, away from the
data generating process.

We analyze the flow of opinions as new observations accumulate. First, we show that agents
eventually make correct forecasts, provided that the social network is strongly connected; that is, there
exists either a direct or an indirect information path between any two agents. Hence, the seemingly
naı̈ve updating rule will eventually transform the existing data into a near perfect guide for the future
even though the truth is not recognizable, agents do not know if their views are more or less accurate
than the views of their neighbors, and the most persuasive agents may have the least accurate views.
By the means of an example we show that the assumption of strong connectivity cannot be disposed
of.

We further show that in strongly connected networks, the non-Bayesian learning rule also en-
ables agents to successfully aggregate dispersed information. Each agent eventually learns the truth
even though no agent and her neighbors, by themselves, may have enough information to infer the
underlying parameter. Eventually, each agent learns as if she were completely informed of all ob-
servations of all agents and updated her beliefs according to Bayes’ rule. This aggregation of infor-
mation is achieved while agents avoid the computational complexity involved in Bayesian updating.
Thus, with a constant flow of new information, a sufficient condition for social learning in strongly
connected networks is that individuals simply take their personal signals into account in a Bayesian
manner. If such a condition is satisfied, then repeated interactions over the social network guarantee
that the viewpoints of different individuals will eventually coincide, leading to complete aggregation
of information.

Our results also highlight the role of social networks in information propagation and aggregation.
An agent can learn from individuals with whom she is not in direct contact, and even from the ones
of whose existence she is unaware. In other words, the indirect communication path in the social
network guarantees that she will eventually incorporate the information initially revealed to agents
in distant corners of the network into her beliefs. Thus, agents can learn the true state of the world
even if they all face an identification problem.3

Our basic learning results hold in a wide spectrum of networks and under conditions that are
seemingly not conducive to learning. For example, assume that one agent receives uninformative
signals and have strong persuasive powers over all agents including the only agent in the network
that has informative signals (but who may not know that her signals are more informative than the
signals of others). The agent with informative signals cannot directly influence the persuasive agents

3It is important that not all agents face the same identification problem. We formalize this statement in the following
sections.
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and only has a small, direct persuasive power over a few other agents. Even so, all agents’ views
will eventually be as if they were based on informative signals although most agents will have never
seen these informative signals and will not know where they come from. Thus, the paper also estab-
lishes that whenever agents take their own information into account in a Bayesian way, neither the
fine details of the network structure (beyond strong connectivity) nor the prior beliefs can prevent
them from learning, as the effects of both are eventually “washed away” by the constant flow of new
information.

The paper is organized as follows. The next section discusses the related literature. Section 3
contains our model. Our main results are presented in Section 4 and Section 5 concludes. All proofs
can be found in the Appendix.

2 Related Literature

There exists a large body of works on learning over social networks, both boundedly and fully ratio-
nal. The Bayesian social learning literature focuses on formulating the problem as a dynamic game
with incomplete information and characterizing its equilibria. However, since characterizing the
equilibria in complex networks is generally intractable, the literature studies relatively simple and
stylized environments. More specifically, rather than considering repeated interactions over the net-
work, it focuses on models where agents interact sequentially and communicate with their neighbors
only once. Examples include Banerjee (1992), Bikchandani, Hirshleifer, and Welch (1992), Smith and
Sørensen (2000), Banerjee and Fudenberg (2004), and more recently, Acemoglu, Dahleh, Lobel, and
Ozdaglar (Forthcoming). In contrast, in our model, there are repeated social interactions and infor-
mation exchange among individuals. Moreover, the network is quite flexible and can accommodate
general structures.

Our work is also related to the social learning literature that focuses on non-Bayesian learning
models, such as Ellison and Fudenberg (1993, 1995) and Bala and Goyal (1998, 2001), in which agents
use simple rule-of-thumb methods to update their beliefs. In the same spirit are DeMarzo, Vayanos,
and Zwiebel (2003), Golub and Jackson (2010), and Acemoglu, Ozdaglar, and Parandeh-Gheibi (2010),
which are based on the opinion formation model of DeGroot (1974). In DeGroot-style models, each in-
dividual initially receives one signal about the state of the world and the focus is on conditions under
which individuals in the connected components of the social network converge to similar opinions.
Golub and Jackson further show that if the size of the network grows unboundedly, this asymptotic
consensus opinion converges to the true state of the world, provided that there are not overly influ-
ential agents in the society.

A feature that distinguishes our model from the works that are based on DeGroot’s model, such as
Golub and Jackson (2010), is the constant arrival of new information over time. Whereas in DeGroot’s
model each agent has only a single observation, the individuals in our model receive information in
small bits over time. This feature of our model can potentially lead to learning in finite networks, a
feature absent in DeGroot-style models, where learning can only occur when the number of agents
increases unboundedly.
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The crucial difference in results between Golub and Jackson (2010) and Acemoglu, Ozdaglar, and
Parandeh-Gheibi (2010), on the one hand, and our model, on the other, is the role played by the so-
cial network in successful information aggregation. These papers show that presence of “influential”
individuals — those who are connected to a large number of people or affect their opinions dispropor-
tionally — may lead to disagreements or spread of misinformation. In contrast, in our environment,
strong connectivity is the only requirement on the network for successful learning, and neither the
network topology nor the influence level of different agents can prevent learning. In fact, social learn-
ing is achieved even if the most influential agents (both in terms of their persuasion power and in
terms of their location in the network) are the ones with the least informative signals.

Finally, our work is also related to Epstein, Noor, and Sandroni (2008), who provide choice-
theoretic foundations for non-Bayesian opinion formation dynamics of a single agent. However, the
focus of our analysis is on the process of information aggregation over a network comprising of many
agents.

3 The Model

3.1 Agents and Observations

Let Θ denote a finite set of possible states of the world and let θ∗ ∈ Θ denote the underlying state of
the world. We consider a setN = {1, 2, . . . , n} of agents interacting over a social network. Each agent
i starts with a prior belief µi,0 ∈ ∆Θ which is a probability distribution over the set Θ. More generally,
we denote the opinion of agent i at time period t ∈ {0, 1, 2 . . . } by µi,t ∈ ∆Θ.

Conditional on the state of the world θ, at each time period t ≥ 1, an observation profile ωt =
(ω1,t, . . . , ωn,t) ∈ S1 × · · · × Sn ≡ S is generated by the likelihood function `(·|θ). We let ωi,t ∈ Si

denote the signal privately observed by agent i at period t and Si denote agent i’s signal space, which
we assume to be finite. The privately observed signals are independent over time, but might be
correlated among agents at the same time period. We assume that `(s|θ) > 0 for all (s, θ) ∈ S × Θ
and use `i(·|θ) to denote the i-th marginal of `(·|θ). We further assume that every agent i knows the
conditional likelihood function `i(·|θ), known as her signal structure.

We do not require the observations to be informative about the state. In fact, each agent may
face an identification problem, in the sense that she might not be able to distinguish between two
states. We say two states are observationally equivalent from the point of view of an agent if the conditional
distributions of her signals under the two states coincide. More specifically, the elements of the set
Θ̄i = {θ ∈ Θ : `i(si|θ) = `i(si|θ∗) for all si ∈ Si} are observationally equivalent to the true state θ∗

from the point of view of agent i.
Finally, for a fixed θ ∈ Θ, we define a probability triple (Ω,F ,Pθ), where Ω is the space containing

sequences of realizations of the signals ωt ∈ S over time, and Pθ is the probability measure induced
over sample paths in Ω. In other words, Pθ = ⊗∞t=1`(·|θ). We use Eθ[·] to denote the expectation
operator associated with measure Pθ. Define Fi,t as the σ-field generated by the past history of agent
i’s observations up to time period t, and let Ft be the smallest σ-field containing all Fi,t for 1 ≤ i ≤ n.
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3.2 Social Structure

We assume that when updating their views about the underlying state of the world, agents commu-
nicate their beliefs with individuals in their social clique. An advantage of communicating beliefs
over signals is that all agents share the same space of beliefs, whereas their signal spaces may differ,
making it difficult for them to interpret the signals observed by others. Moreover, in many scenar-
ios private signals of an individual are in the form of personal experiences which may not be easily
communicable to other agents.

We capture the social interaction structure between agents by a directed graph G = (V,E), where
each vertex in V corresponds to an agent, and an edge connecting vertex i to vertex j, denoted by the
ordered pair (i, j) ∈ E, captures the fact that agent j has access to the opinion held by agent i. Note
that opinion of agent i might be accessible to agent j, but not the other way around.

For each agent i, define Ni = {j ∈ V : (j, i) ∈ E}, called the set of neighbors of agent i. The
elements of this set are agents whose opinions are available to agent i at each time period. We assume
that individuals report their opinions truthfully to their neighbors.

A directed path in G = (V,E) from vertex i to vertex j, is a sequence of vertices starting with i

and ending with j such that each vertex is a neighbor of the next vertex in the sequence. We say the
social network is strongly connected if there exists a directed path from each vertex to any other vertex.

3.3 Belief Updates

Before the beginning of each period, agents observe the opinions of their neighbors. At the beginning
of period t, signal profile ωt = (ω1,t, . . . , ωn,t) is realized according to the probability law `(·|θ∗) and
signal ωi,t is privately observed by agent i. Following the realization of the private signals, each agent
computes her Bayesian posterior belief conditional on the signal observed, and then sets her final
belief to be a linear combination of the Bayesian posterior and the opinions of her neighbors, observed
right before the beginning of the period. At the end of the period, agents report their opinions to their
neighbors. More precisely, if we denote the belief that agent i assigns to state θ ∈ Θ at time period t

by µi,t(θ), then
µi,t+1 = aii BU(µi,t;ωi,t+1) +

∑
j∈Ni

aijµj,t, (1)

where aij ∈ R+ captures the weight that agent i assigns to the opinion of agent j in her neighborhood,
BU(µi,t;ωi,t+1)(·) is the Bayesian update of µi,t when signal ωi,t+1 is observed, and aii is the weight
that the agent assigns to her Bayesian posterior conditional on her private signal, which we refer to as
the measure of self-reliance of agent i.4 Note that weights aij must satisfy

∑
j∈Ni∪{i} aij = 1, in order

for the period t+ 1 beliefs to form a well-defined probability distribution.
Even though agents incorporate their private signals into their beliefs using Bayes’ rule, their

belief updating is non-Bayesian: rather than conditioning their beliefs on all the information available

4One can generalize this belief update model and assume that agent i’s belief update also depends on his own beliefs at
the previous time period, µi,t. Such an assumption is equivalent to adding a prior-bias to the model, as stated in Epstein,
Noor, and Sandroni (2010). Since this added generality does not change the results or the economic intuitions, we assume
that agents have no prior bias.
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to them, agents treat the beliefs generated through linear interactions with their neighbors as Bayesian
priors when incorporating their private signals.

The beliefs of agent i on Θ at any time period induce forecasts about the future events. We de-
fine the k-step-ahead forecasts of agent i at a given time period as the probability measure induced by
her beliefs over the realizations of her private signals in the next k consecutive time periods. More
specifically, we denote the period t beliefs of agent i that signals si,1, . . . , si,k ∈ Si will be realized in
time periods t + 1 through t + k, respectively, by m(k)

i,t (si,1, . . . , si,k). Thus, the k-step-ahead forecasts
of agent i at time t are given by

m
(k)
i,t (si,1, . . . , si,k) =

∫
Θ

[
`i(si,1|θ)`i(si,2|θ) . . . `i(si,k|θ)

]
dµi,t(θ), (2)

and therefore, the law of motion for the beliefs about the parameters can be written as

µi,t+1(θ) = aiiµi,t(θ)
`i(ωi,t+1|θ)
mi,t(ωi,t+1)

+
∑
j∈Ni

aijµj,t(θ), (3)

for all θ ∈ Θ.5 The dynamics for belief updating in our model are local, in the sense that each indi-
vidual only uses the beliefs of her immediate neighbors to form her opinions, ignores the structure
of the network, and does not make any inferences about the beliefs of other individuals. The above
dynamics for opinion formation, compared to the Bayesian case, imposes a significantly smaller com-
putational burden on the individuals. Moreover, individuals do not need to keep track of the iden-
tities of their neighbors and the exact information provided by them. They only need to know the
“average belief” held in their neighborhood, given by the term

∑
j∈Ni

aijµj,t(·). In the special case
that the signals observed by an agent are uninformative (or equivalently, there are no signals) after
time t = 0, equation (3) reduces to the belief update model of DeGroot (1974), used by Golub and
Jackson (2010).

When analyzing the asymptotic behavior of the beliefs, sometimes it is more convenient to use a
matrix notation. Define A to be a real n× n matrix which captures the social interaction of the agents
as well as the weight that each agent assigns to her neighbors. More specifically, we let the ij element
of the matrix A be aij when agent j is a neighbor of agent i, and zero otherwise. Thus, equation (3)
can be rewritten as

µt+1(θ) = Aµt(θ) + diag
(
a11

[
`1(ω1,t+1|θ)
m1,t(ω1,t+1)

− 1
]
, . . . , ann

[
`n(ωn,t+1|θ)
mn,t(ωn,t+1)

− 1
])

µt(θ) (4)

where µt(·) = [µ1,t, . . . , µn,t]′(·), and diag of a vector is a diagonal matrix which has the entries of
the vector as its diagonal. In the special case that A is the identity matrix, our model reduces to the
standard Bayesian case, in which the society consists of n Bayesian agents who do not have access to
the beliefs of other members of the society, and only observe their own private signals.

5To simplify notation and where no confusion arises, we denote the one-step-ahead forecasts of agent i by mi,t(·) rather
than m(1)

i,t (·).
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4 Social Learning

Given the model described above, we are interested in the evolution of opinions in the network, and
whether this evolution can lead to learning in the long run. Learning may either signify uncovering
the true parameter or learning to forecast future outcomes. These two notions of learning are distinct
and might not occur simultaneously. We start this section by specifying the exact meaning of both
types of learning. Recall that θ∗ ∈ Θ is the underlying state of the world and thus, the measure
P∗ = ⊗∞t=1`(·|θ∗) is the probability law generating the signals (ω1, ω2, . . . ) ∈ Ω.

Definition 1. The k-step-ahead forecasts of agent i are eventually correct on a path ω = (ω1, ω2, . . . ) if,
along that path,

m
(k)
i,t (si,1, si,2, . . . , si,k) −→ `i(si,1|θ∗)`i(si,2|θ∗) . . . `i(si,k|θ∗) as t→∞

for all (si,1, . . . , si,k) ∈ Ski . Moreover, we say the beliefs of agent i weakly merge to the truth on some
path if, along that path, her k-step-ahead forecasts are eventually correct for all natural numbers k.

This notion of learning, used by Kalai and Lehrer (1994), captures the ability of agents to correctly
forecast events in the near future. It is well-known that, under suitable assumption, repeated appli-
cations of Bayes’ rule leads to eventually correct forecasts with probability 1 under the truth. The key
condition is absolute continuity of the true measure with respect to initial beliefs.6 In the presence
of absolute continuity, the mere repetition of Bayes’ rule eventually transforms the historical record
into a near perfect guide for the future. However, predicting events in near future accurately is not
the same as learning the underlying state of the world. In fact, depending on the signal structure of
each agent, there might be an “identification problem” which can potentially prevent the agent from
learning the true parameter θ∗. We define an alternative notion of asymptotic learning where agents
uncover the underlying parameter:

Definition 2. Agent i ∈ N asymptotically learns the true parameter θ∗ on a path ω = (ω1, ω2, . . . ) if,
along that path,

µi,t(θ∗) −→ 1 as t→∞.

Asymptotic learning occurs when agent assigns probability one to the true parameter. As men-
tioned earlier, making correct forecasts about future events does not necessarily guarantee learning
the true state. In general, the converse is not true either.7 However, it is straightforward to show that
in our model, asymptotically learning θ∗ implies eventually correct forecasts.

4.1 Correct One-Step-Ahead Forecasts

We now turn to the main question of this paper: under what circumstances does learning occur over
the social network?

6Lehrer and Smorodinsky (1996) show that an assumption weaker than absolute continuity, known as accommodation, is
sufficient for weak merging of the opinion.

7See Lehrer and Smorodinsky (1996), for an example of the case that learning the true parameter does not generally
guarantee weak merging.

8



Our first result shows that under mild assumptions, in spite of local interactions, limited observ-
ability, and the non-Bayesian belief update, agents will eventually have correct one-step-ahead fore-
casts. The proof is provided in the Appendix.

Proposition 1. Suppose that the social network is strongly connected, all agents have strictly positive self-
reliances, and there exists an agent with positive prior belief on the true parameter θ∗. Then, the one-step-ahead
forecasts of all agents are eventually correct with P∗-probability one.

This proposition states that, when agents use non-Bayesian updating rule (3) to form and update
their opinions, they will eventually make accurate predictions about the realization of their private
signals in the next period. Note that as long as the social network remains strongly connected, neither
the topology of the network nor the influence levels of different individuals prevent agents from
making correct predictions.

One of the features of Proposition 1 is the absence of absolute continuity of the true measure with
respect to the prior beliefs of all agents in the society: as long as some agent assigns a positive prior
belief to the true parameter θ∗ all agents will eventually be able to correctly predict the next period
realizations of their private signals in the sense of Definition 1. In fact, eventually correct one-step-
ahead forecasts arises even if the only agent for whom absolute continuity holds is located at the
fringe of the society, has very small persuasive power over her neighbors, and almost everyone in the
network is unaware of her existence. The main reason for this phenomenon is that, due to the naı̈ve
part of the updating, there is a “contagion” of beliefs to all agents, which eventually leads to absolute
continuity of their beliefs with respect to the truth.

Besides the existence of an agent with a positive prior belief on the true state, the above proposi-
tion requires the existence of positive self-reliances to guarantee correct forecasts. This requirement is
intuitive: it prohibits agents from completely discarding information provided to them through their
observations. Clearly, if all agents discard their private signals, no new information is incorporated
into their opinions, and (3) simply turns into a diffusion of prior beliefs.

The final requirement for accurate predictions is strong connectivity of the social network. The
following example illustrates that this assumption cannot be disposed of.

Example 1. Consider a society consisting of two agents, N = {1, 2}, and assume that Θ = {θ1, θ2}
with the true state being θ∗ = θ1. Both agents have non-degenerate prior beliefs over Θ. Assume
that signals observed by the agents are conditionally independent, and belong to the set S1 = S2 =
{H,T}. We further assume that Agent 2’s signals are non-informative, while Agent 1’s observations
are perfectly informative about the state; that is, `1(H|θ1) = `1(T |θ2) = 1, and `2(s|θ1) = `2(s|θ2) for
s ∈ {H,T}. As for the social structure, we assume that Agent 1 has access to the opinion of Agent
2, while Agent 2 cannot observe the opinion of Agent 1. Clearly, the social network is not strongly
connected. We let the social interaction matrix be

A =
[
1− α α

0 1

]
,

where α ∈ (0, 1) is the weight that Agent 1 assigns to the opinion of Agent 2, when updating her
beliefs using equation (3). Since the private signals observed by the latter are non-informative, her be-
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liefs, at all times, remain equal to her prior. Clearly, she makes correct forecasts at all times. Agent 1’s
forecasts, on the other hand, will always remain incorrect. Notice that since her signals are perfectly
informative, Agent 1’s one-step-ahead predictions are eventually correct if and only if she eventually
assigns probability 1 to the true state, θ1. However, the belief she assigns to θ2 follows the law of
motion

µ1,t+1(θ2) = (1− α)µ1,t(θ2)
`1(ω1,t+1|θ2)
m1,t(ω1,t+1)

+ αµ2,t(θ2)

which cannot converge to zero, as µ2,t(θ2) = µ2,0(θ2) is strictly positive.
The intuition for failure of learning in this example is simple. Given the same observations, the

two agents make different interpretations about the state, even if they have equal prior beliefs. More-
over, Agent 1 follows the beliefs of the less informed Agent 2 but is unable to influence her back. This
one-way persuasion and non-identical interpretations of signals (due to non-identical signal struc-
tures) result in incorrect one-step-ahead forecasts on the part of Agent 1. Finally, note that had Agent
1 discarded the opinions of Agent 2 and updated her beliefs according to Bayes’ rule, she would have
learned the truth after a single observation.

4.2 Weak Merging to the Truth

The key implication of Proposition 1 is that as long as the social network is strongly connected, the
one-step-ahead forecasts of all agents will eventually be correct. Our next result establishes that not
only agents make accurate predictions about their private observations in the next period, but also,
under the same set of assumptions, make correct predictions about any finite time horizon in the
future.

Proposition 2. Suppose that the social network is strongly connected, all agents have strictly positive self-
reliances, and there exists an agent with positive prior belief on the true parameter θ∗. Then, the beliefs of all
agents weakly merge to the truth with P∗-probability one.

The above proposition states that in strongly connected societies, having eventually correct one-
step-ahead forecasts is equivalent to weak merging of agents’ opinions to the truth. This equivalence
has already been established by Kalai and Lehrer (1994) for Bayesian agents. Note that in the purely
Bayesian case, an agent’s k-step-ahead forecasts are simply products of her one-step-ahead forecasts,
making the equivalence between one-step-ahead correct forecasts and weak merging of opinions im-
mediate. However, due to the non-Bayesian updating of the beliefs, the k-step-ahead forecasts of
agents in our model do not have such a multiplicative decomposition, making this implication signif-
icantly less straightforward.

4.3 Social Learning

Proposition 2 shows that in strongly connected social networks, the predictions of all individuals
about the realizations of their signals in any finite time horizon will eventually be correct, implying
that their asymptotic opinions cannot be arbitrary. The following proposition, which is our main
result, establishes that strong connectivity of the social network not only leads to correct forecasts,
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but also guarantees successful aggregation of information: all individuals eventually learn the true
state.

Proposition 3. Suppose that:

(a) The social network is strongly connected.

(b) All agents have strictly positive self-reliances.

(c) There exists an agent with positive prior belief on the true parameter θ∗.

(d) There is no state θ 6= θ∗ that is observationally equivalent to θ∗ from the point of view of all agents in the
network.

Then, all agents in the social network learn the true state of the world P∗-almost surely; that is, µi,t(θ∗) −→ 1
with P∗-probability one for all i ∈ N , as t→∞.

Proposition 3 states that under regularity assumptions on the social network’s topology and the
individuals’ signal structures, all agents will eventually learn the true underlying state of the world.
Notice that agents only interact with their neighbors and perform no deductions about the world
beyond their immediate neighbors. Nonetheless, the non-Bayesian updating rule eventually enables
them to obtain relevant information from others, without exactly knowing where it comes from. In
fact, they can be completely oblivious to important features of the social network — such as the
number of individuals in the society, the topology of the network, other people’s signal structures,
the existence of some agent who considers the truth plausible, or the influence level of any agent
in the network — and still learn the true parameter as if they were informed of all observations
and updated their beliefs according to Bayes’ rule. Moreover, all these results are achieved with a
significantly smaller computational burden than what is required for Bayesian learning.

The other significant feature of Proposition 3 is that neither network’s topology, the signal struc-
tures, nor the influence levels of different agents prevent learning. For instance, even if the agents
with the least informative signals are the most persuasive ones and are located at the bottlenecks of
the network, everyone will eventually learn the true state. Social learning is achieved despite the fact
that the truth is not recognizable to any individual, and she would not have learned it by herself in
isolation.

The intuition behind Proposition 3 is simple. Recall that Proposition 2 implies that the vector
of beliefs of individual i, i.e., µi,t(·), cannot vary arbitrarily forever, and instead, will eventually be
restricted to the subspace that guarantees correct forecasts. Asymptotic convergence to such a sub-
space requires that she assigns an asymptotic belief of zero to any state θ which is not observationally
equivalent to the truth from her point of view; otherwise, she would not be able to form correct fore-
casts about future realizations of her signals. However, due to the non-Bayesian part of the update
corresponding to the social interactions of agent i with her neighbors, an asymptotic belief of zero is
possible only if all her neighbors also consider θ asymptotically unlikely. This means that the infor-
mation available to agent i must be eventually incorporated into every other individuals’ beliefs.
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The role of assumptions of Proposition 3 can be summarized as follows: the strong connectiv-
ity assumption creates the possibility of information flow between any pair of agents in the social
network. The assumption on positive self-reliances guarantees that agents do not discard the infor-
mation provided to them through their private observations. The third assumption states that some
agent assigns a positive prior belief to the truth. This agent may be at the fringe of the society, may
have a very small influence on her neighbors, and almost no one may be aware of her existence.
Hence, the ultimate source of learning may remain unknown to almost everyone. Clearly, if the prior
beliefs of all agents assigned to the truth is equal to zero, then they will never learn.

The last assumption indicates that the collection of observations of all agents is informative enough
about the true state; that is, Θ̄1 ∩ · · · ∩ Θ̄n = {θ∗}.8 This assumption guarantees that it is possible to
learn the truth if one has access to the observations of all agents. In the absence of this assumption,
even highly sophisticated Bayesian agents with access to all relevant information (such as the topol-
ogy of the network and the signal structures), would not be able to completely learn the state, due to
an identification problem. Finally, note that when agents have identical signal structures (and there-
fore, Θ̄i = Θ̄j for all i and j), they do not benefit from the information provided by their neighbors as
they would be able to asymptotically learn just as much through their private observations.

The next examples show the power and limitations of Proposition 3.

Example 2. Consider the collection of agents N = {1, 2, . . . , 7} who are located in a social network
as depicted in Figure 1: at every time period, agent i ≤ 6 can observe the opinion of agent i + 1 and
agent 7 has access to the opinion held by agent 1. Clearly, this is a strongly connected social network.

Assume that the set of possible states of the world is given by Θ = {θ∗, θ1, θ2, . . . , θ7}, where θ∗ is
the true underlying state of the world. We also assume that the signals observed by the agents belong

Figure 1: A strongly connected social network of 7 agents.

8This is a stronger restriction than requiring `(·|θ) 6= `(·|θ∗) for all θ 6= θ∗. See also Example 4.
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to the set Si = {H,T} for all i, are conditionally independent, and have conditional distributions
given by

`i(H|θ) =


i
i+1 if θ = θi

1
(i+1)2

otherwise

for all i ∈ N .
The signal structures are such that each agent suffers from some identification problem; i.e., the

information in the observations of any agent is not sufficient for learning the true state of the world
in isolation. More precisely, Θ̄i = Θ/{θi} for all i, which means that from the point of view of agent
i, all states except for θi are observationally equivalent to the true state θ∗. Nevertheless, for any
given state θ 6= θ∗, there exists an agent whose signals are informative enough to distinguish the two;
that is, ∩7

i=1Θ̄i = {θ∗}. Therefore, Proposition 3 implies that as long as one agent assigns a positive
prior belief on the true state θ∗ and all agents have strictly positive self-reliances, then µi,t(θ∗)→ 1, as
t → ∞ for all agents i, with P∗-probability one. In other words, all agents will asymptotically learn
the true underlying state of the world. Clearly, if agents discard the information provided to them by
their neighbors, they have no means of learning the true state.

Example 3. Consider a collection of agents who are connected to one another according to the social
network depicted in Figure 2. The values on the edges depict the persuasion power of different agents
on each other, where ε > 0 is some arbitrarily small number. As the figure suggests, Agent M is the
most influential agent in the network, both in terms of persuasion power and connectivity: she can
highly influence almost everyone in the society, while being only marginally influenced by the public
opinion herself. One can think of M representing a far reaching news media.

Even though highly influential, agent M is not well-informed about the true underlying state of
the world θ∗ ∈ Θ. More specifically, we assume that her signals are completely non-informative and
that she does not consider θ∗ a possible candidate for the truth, i.e., she assigns a zero prior belief
to that state. In fact, we assume that agent A — who is neither highly persuasive nor can broadcast
her opinions beyond her immediate neighbors — is the only agent in the society who assigns some
positive prior belief to θ∗. In addition, we assume that agent S is the only agent in the social network
with access to informative signals, enabling her to distinguish different states from one another.

Since the social network is strongly connected, Proposition 3 implies that all agents will asymp-
totically learn the truth. This is despite the fact that in initial periods, due to the high persuasion
power of agent M and her far reach, the views of all agents (including agents A and S) will move to-
wards the initial views of agent M . However, such effects are only transient and will not last forever.
As time progresses, due to the possibility of reciprocal persuasion in the network (although highly
asymmetric), the views of agents A and S about the true parameter spread throughout the network.
Since such views are consistent with the personal experience of all agents, they are eventually consol-
idated all across the social network. Thus, in the tension between high persuasion power and global
reach of M versus the grain of truth of the beliefs and identification ability of the “obscure” agents A
and S, eventually, the latter prevail. These results hold even though at no point in time the truth is
recognizable to any of the agents, including agents A and S themselves.
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Figure 2: “The power of truth”: Agents A and S, with absolutely continuous priors and informative
signals respectively, eventually lead every other agent to learn the truth, even though agent M (with
access to neither good priors nor informative signals) is much more persuasive than any other agent.

Example 4. Consider a strongly connected social network consisting of two individuals N = {1, 2}.
Assume that Θ = {θ1, θ2}, and S1 = S2 = {H,T}. Also assume that the distribution function describ-
ing the random private observations of the agents conditional on the underlying state of the world is
given by the following tables:

H T

`(s1s2|θ1) :
H 1/2 0
T 0 1/2

H T

`(s1s2|θ2) :
H 0 1/2
T 1/2 0

In other words, under state θ1, the private observations of the two agents are perfectly correlated,
while when the underlying state of the world is θ2, their observations are perfectly negatively cor-
related. Even though the joint distributions of the signals generated by θ1 and θ2 are different, we
have `i(H|θ1) = `i(H|θ2) = 1

2 for i = 1, 2; i.e., the local signal structure of each agent is the same
under either state. As a result, despite the fact that agents will eventually agree on their opinions
and make correct forecasts, they do not uncover the underlying parameter, as θ1 and θ2 are observa-
tionally equivalent from the point of view of both agents. That is, in this example, assumption (d) of
Proposition 3 does not hold.

As a final remark, note that Proposition 3 is silent on the rate at which information is aggregated.
In particular, even though agents learn the truth as if they have access to all relevant signals and
update their beliefs according to Bayes’ rule, this aggregation of information may not happen at the
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same rate that Bayesian agents would learn. Moreover, the rate of learning may depend on the fine
details of the structure of the social network as well as agents’ signal structures.

5 Conclusions

In this paper, we develop a model of dynamic opinion formation in social networks, bridging the gap
between the Bayesian and the DeGroot-style non-Bayesian models of social learning. Agents fail to
incorporate the views of their neighbors in a fully Bayesian manner, and instead, use a local updating
rule. More specifically, at every time period, the belief of each individual is a convex combination
of her Bayesian posterior belief and her neighbors’ expressed beliefs. Our results show that agents
eventually make correct forecasts, as long as the social network is strongly connected. In addition,
agents successfully aggregate all information over the entire social network: they eventually learn the
true underlying state of the world as if they were completely informed of all signals and updated their
beliefs according to Bayes’ rule.

The main insight suggested by our results is that, with a constant flow of new information, the key
condition for social learning is that individuals take their personal signals into account in a Bayesian
way. Repeated interactions over the social network guarantee that the differences of opinions eventu-
ally vanish and learning is obtained. The aggregation of information is achieved even if individuals
are unaware of important features of the environment. In particular, agents do not need to have any
information (or form beliefs) about the structure of the social network nor the views or characteristics
of most agents, as they only update their opinions locally and do not make any deductions about the
world beyond their immediate neighbors. Moreover, the individuals do not need to know the signal
structure of any other agent in the network, besides their own. Thus, individuals eventually achieve
full learning through a simple local updating rule and avoid the highly complex computations that
are essential for full Bayesian updating over the network.

Even though our results establish that asymptotic learning is achieved in all strongly connected
social networks, the rate at which information is aggregated depends on the topology of the network
as well as agents’ signal structures. Relatedly, the fine details of the social network structure would
also affect asymptotic learning if agents’ influences vary over time. In particular, if the influences of
individuals on their neighbors vanish over time, disagreements may persist even if the social network
is strongly connected. Characterizing the relationship between the structure of the social network
and the rate of learning is an important direction for future research. Another feature of the model
studied in this paper is the assumption that agents can communicate their beliefs with their neighbors;
a potentially unrealistic assumption when the size of the state space is large. This leads to the open
questions of whether there are more efficient modes of communication and whether asymptotic social
learning can be sustained when agents communicate some sufficient statistics of their beliefs with one
another. We intend to investigate these questions in future work.

15



Appendix: Proofs

A.1 Two Auxiliary Lemmas

Before presenting the proofs of the results in the paper, we state and prove two lemmas, both of which
are consequences of the martingale convergence theorem.

Lemma 1. Let A denote the matrix of social interactions. The sequence
∑n

i=1 viµi,t(θ
∗) converges P∗-almost

surely as t→∞, where v is any non-negative left eigenvector of A corresponding to its unit eigenvalue.

Proof: First, note that sinceA is stochastic,9 it always has at least one eigenvalue equal to 1. Moreover,
there exists a non-negative left eigenvector corresponding to this eigenvalue.10 We denote such a
vector by v.

Evaluate equation (4) at the true parameter θ∗ and multiply both sides by v′ from left

v′µt+1(θ∗) = v′Aµt(θ∗) +
n∑
i=1

viµi,t(θ∗)aii

[
`i(ωi,t+1|θ∗)
mi,t(ωi,t+1)

− 1
]
.

Thus,

E∗
[

n∑
i=1

viµi,t+1(θ∗)|Ft

]
=

n∑
i=1

viµi,t(θ∗) +
n∑
i=1

viaiiµi,t(θ∗)E∗
[
`i(ωi,t+1|θ∗)
mi,t(ωi,t+1)

− 1|Ft
]
, (5)

where E∗ denotes the expectation operator associated with measure P∗. Since f(x) = 1/x is a convex
function, Jensen’s inequality implies that

E∗
[
`i(ωi,t+1|θ∗)
mi,t(ωi,t+1)

|Ft
]
≥
(

E∗
[
mi,t(ωi,t+1)
`i(ωi,t+1|θ∗)

|Ft
])−1

= 1,

and therefore,

E∗
[

n∑
i=1

viµi,t+1(θ∗)|Ft

]
≥

n∑
i=1

viµi,t(θ∗).

The last inequality is due to the fact that v is element-wise non-negative. As a result,
∑n

i=1 viµi,t(θ
∗)

is a submartingale with respect to the filtration Ft, which is also bounded above by ‖v‖1. Hence, it
converges P∗-almost surely.

Lemma 2. Suppose that there exists an agent i such that µi,0(θ∗) > 0. Also suppose that the social network is
strongly connected. Then, the sequence

∑n
i=1 vi logµi,t(θ∗) converges P∗-almost surely as t → ∞, where v is

any non-negative left eigenvector of A corresponding to its unit eigenvalue.

Proof: Similar to the proof of the previous lemma, we show that
∑n

i=1 vi logµi,t(θ∗) is a bounded
submartingale and invoke the martingale convergence theorem to obtain almost sure convergence.

9A matrix is said to be stochastic if it is entry-wise non-negative and all its row sums are equal to one.
10This is a consequence of the Perron-Frobenius theorem. For more on the properties of non-negative and stochastic

matrices, see Berman and Plemmons (1979).
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By evaluating the law of motion at θ∗, taking log from both sides, and using the fact that the row
sums of A are equal to one, we obtain

logµi,t+1(θ∗) ≥ aii logµi,t(θ∗) + aii log
(
`i(ωi,t+1|θ∗)
mi,t(ωi,t+1)

)
+
∑
j∈Ni

aij logµj,t(θ∗),

where we have used the concavity of the logarithm function. Note that since the social network is
strongly connected, the existence of one agent with a positive prior on θ∗ guarantees that after at
most n periods all agents assign a strictly positive probability to the true parameter, which means
that logµi,t(θ∗) is well-defined for large enough t and all i.

Our next step is to show that E∗
[
log `i(ωi,t+1|θ∗)

mi,t(ωi,t+1) |Ft
]
≥ 0. To obtain this,

E∗
[
log

`i(ωi,t+1|θ∗)
mi,t(ωi,t+1)

|Ft
]

= −E∗
[
log

mi,t(ωi,t+1)
`i(ωi,t+1|θ∗)

|Ft
]

≥ − log
(

E∗
[
mi,t(ωi,t+1)
`i(ωi,t+1|θ∗)

|Ft
])

= 0.

Thus,
E∗ [logµi,t+1(θ∗)|Ft] ≥ aii logµi,t(θ∗) +

∑
j∈Ni

aij logµj,t(θ∗),

which can be rewritten in matrix form as E∗ [logµt+1(θ∗)|Ft] ≥ A logµt(θ∗), where by the logarithm
of a vector, we mean its entry-wise logarithm. Multiplying both sides by A’s non-negative left eigen-
vector v′ leads to

E∗
[

n∑
i=1

vi logµi,t+1(θ∗)|Ft

]
≥

n∑
i=1

vi logµi,t(θ∗).

Thus, the non-positive sequence
∑n

i=1 vi logµi,t(θ∗) is a submartingale with respect to filtration Ft,
and therefore, converges with P∗-probability one.

With these lemmas in hand, we can prove Proposition 1.

A.2 Proof of Proposition 1

First, note that since the social network is strongly connected, the social interaction matrix A is an
irreducible stochastic matrix, and therefore its left eigenvector corresponding to the unit eigenvalue
is strictly positive.11

According to Lemma 1,
∑n

i=1 viµi,t(θ
∗) converges with P∗-probability one, where v is the positive

left eigenvector of A corresponding to its unit eigenvalue. Therefore, equation (5) implies that

n∑
i=1

viaiiµi,t(θ∗)
(

E∗
[
`i(ωi,t+1|θ∗)
mi,t(ωi,t+1)

|Ft
]
− 1
)
−→ 0 P∗-a.s.

11An n× n matrix A is said to be reducible, if for some permutation matrix P , the matrix P ′AP is block upper triangular.
If a square matrix is not reducible, it is said to be irreducible. For more on this, see e.g., Berman and Plemmons (1979).
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Since the term viaiiµi,t(θ∗)E∗ [`i(ωi,t+1|θ∗)/mi,t(ωi,t+1)− 1|Ft] is non-negative for all i, each such term
converges to zero with P∗-probability one. Moreover, the assumptions that all diagonal entries of A
are strictly positive and that of its irreducibility (which means that v is entry-wise positive) lead to

µi,t(θ∗)
(

E∗
[
`i(ωi,t+1|θ∗)
mi,t(ωi,t+1)

|Ft
]
− 1
)
−→ 0 for all i P∗-a.s. (6)

Furthermore, Lemma 2 guarantees that
∑n

i=1 vi logµi,t(θ∗) converges almost surely, implying that
µi,t(θ∗) is uniformly bounded away from zero for all i with probability one. Note that, once again

we are using the fact that v is a strictly positive vector. Hence, E∗
[
`i(ωi,t+1|θ∗)
mi,t(ωi,t+1) |Ft

]
→ 1 almost surely.

Thus,

E∗
[
`i(ωi,t+1|θ∗)
mi,t(ωi,t+1)

|Ft
]
− 1 =

∑
si∈Si

`i(si|θ∗)
(
`i(si|θ∗)
mi,t(si)

− 1
)

=
∑
si∈Si

(
`i(si|θ∗)

`i(si|θ∗)−mi,t(si)
mi,t(si)

+mi,t(si)− `i(si|θ∗)
)

=
∑
si∈Si

[`i(si|θ∗)−mi,t(si)]
2

mi,t(si)
−→ 0 P∗-a.s.,

where the second equality is due to the fact that both `i(·|θ∗) and mi,t(·) are probability measures on
Si, and therefore,

∑
si∈Si

`i(si|θ∗) =
∑

si∈Si
mi,t(si) = 1.

In the last expression, the term in the braces and the denominator are always non-negative and
therefore,

mi,t(si) −→ `i(si|θ∗) P∗-a.s.

for all si ∈ Si and all i ∈ N .

A.3 Proof of Proposition 2

We first present and prove a simple lemma which is later used in the proof of the proposition.

Lemma 3. Suppose that the social network is strongly connected, all agents have strictly positive self-reliances,
and there exists an agent i such that µi,t(θ∗) > 0. Then, for all θ ∈ Θ,

E∗ [µt+1(θ)|Ft]−Aµt(θ) −→ 0

with P∗-probability one, as t→∞.

Proof: Taking conditional expectations from both sides of equation (4) implies

E∗ [µt+1(θ)|Ft]−Aµt(θ) = diag
(
a11E∗

[
`1(ω1,t+1|θ)
m1,t(ω1,t+1)

− 1|Ft
]
, . . . , annE∗

[
`n(ωn,t+1|θ)
mn,t(ωn,t+1)

− 1|Ft
])

µt(θ).

On the other hand, we have

E∗
[
`i(ωi,t+1|θ)
mi,t(ωi,t+1)

|Ft
]

=
∑
si∈Si

`i(si|θ)
`i(si|θ∗)
mi,t(si)

−→
∑
si∈Si

`i(si|θ) P∗-a.s.
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where the convergence is a consequence of Proposition 1. The fact that `i(·|θ) is a probability measure
on Si implies

∑
si∈Si

`i(si|θ) = 1, completing the proof.

We now present the proof of Proposition 2.

Proof of Proposition 2:12 We prove this proposition by induction. Note that by definition, agent i’s
beliefs weakly merge to the truth if her k-step-ahead forecasts are eventually correct for all natural
numbers k. In Proposition 1, we established that the claim is true for k = 1. For the rest of the proof,
we assume that the claim is true for k−1 and show thatm(k)

i,t (si,1, . . . , si,k) converges to
∏k
r=1 `i(si,r|θ∗)

for any arbitrary sequence of signals (si,1, . . . , si,k) ∈ Ski .
First, note that Lemma 3 and equation (3) imply that for all θ ∈ Θ,

E∗[µi,t+1(θ)|Ft]− µi,t+1(θ) + aii

[
`i(ωi,t+1|θ)
mi,t(ωi,t+1)

− 1
]
µi,t(θ) −→ 0 P∗-a.s.

On the other hand, we have

∑
θ∈Θ

(
k∏
r=2

`i(si,r|θ)

)(
E∗[µi,t+1(θ)|Ft]− µi,t+1(θ)

)
= E∗

[
m

(k−1)
i,t+1 (si,2, . . . , si,k)|Ft

]
−m(k−1)

i,t+1 (si,2, . . . , si,k)

→ 0 P∗-a.s.

where we have used the induction hypothesis and the dominated convergence theorem for condi-
tional expectations.13 Combining the two equations above implies

∑
θ∈Θ

(
k∏
r=2

`i(si,r|θ)

)[
`i(ωi,t+1|θ)
mi,t(ωi,t+1)

− 1
]
µi,t(θ) −→ 0 P∗-a.s.

which can be rewritten as

1
mi,t(ωi,t+1)

m
(k)
i,t (ωi,t+1, si,2, . . . , si,k)−m

(k−1)
i,t (si,2, . . . , si,k) −→ 0

with P∗-probability one. Thus, by the induction hypothesis,

m
(k)
i,t (ωi,t+1, si,2, . . . , si,k)−mi,t(ωi,t+1)

k∏
r=2

`i(si,r|θ∗) −→ 0

with P∗-probability one. The dominated convergence theorem for conditional expectations implies
that

E∗
[∣∣∣∣m(k)

i,t (ωi,t+1, si,2, . . . , si,k)−mi,t(ωi,t+1)
k∏
r=2

`i(si,r|θ∗)
∣∣∣∣|Ft

]
−→ 0 P∗-a.s.

12We would like to thank an anonymous referee for bringing a technical mistake in an earlier draft of the paper to our
attention.

13For the statement and a proof of the theorem, see page 262 of Durrett (2005).
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which can be rewritten as∑
s̃i∈Si

`i(s̃i|θ∗)
∣∣∣∣m(k)

i,t (s̃i, si,2, . . . , si,k)−mi,t(s̃i)
k∏
r=2

`i(si,r|θ∗)
∣∣∣∣ −→ 0

P∗-almost surely, and therefore, guaranteeing

m
(k)
i,t (si,1, si,2, . . . , si,k)−mi,t(si,1)

k∏
r=2

`i(si,r|θ∗) −→ 0 P∗-a.s.

Finally, the fact that mi,t(si,1) −→ `i(si,1|θ∗) with P∗-probability one (Proposition 1) completes the
proof.

A.4 Proof of Proposition 3

We first show that for any agent i, there exists a finite sequence of private signals that is more likely to
realize under the true state θ∗ than any other state θ, unless θ is observationally equivalent to θ∗ from
the point of view of agent i.

Lemma 4. For any agent i, there exists a positive integer k̂i, a sequence of signals (ŝi,1, . . . , ŝi,k̂i
) ∈ (Si)k̂i ,

and constant δi ∈ (0, 1) such that

k̂i∏
r=1

`i(ŝi,r|θ)
`i(ŝi,r|θ∗)

≤ δi ∀θ 6∈ Θ̄i (7)

where Θ̄i = {θ ∈ Θ : `i(si|θ) = `i(si|θ∗) for all si ∈ Si}.

Proof: By definition, for any θ 6∈ Θ̄i, the probability measures `i(·|θ) and `i(·|θ∗) are distinct. There-
fore, by the Kullback-Leibler inequality, there exists some constant εi > 0 such that∑

si∈Si

`i(si|θ∗) log
[
`i(si|θ∗)
`i(si|θ)

]
> εi,

for all θ 6∈ Θ̄i, which then implies ∏
si∈Si

[
`i(si|θ)
`i(si|θ∗)

]`i(si|θ∗)
< δ′i.

for δ′i = exp(−εi). On the other hand, given the fact that rational numbers are dense on the real
line, there exist strictly positive rational numbers {q(si)}si∈Si — with q(si) chosen arbitrarily close to
`i(si|θ∗) — satisfying

∑
si∈Si

q(si) = 1, such that14

∏
si∈Si

[
`i(si|θ)
`i(si|θ∗)

]q(si)

< δ′i ∀θ 6∈ Θ̄i. (8)

14The fact that the rationals form a dense subset of the reals means that there are rational numbers {q′(si)}si∈Si arbitrarily
close to {`i(si|θ∗)}si∈Si . Setting q(si) = q′(si)/

P
s̃i∈Si

q′(s̃i) guarantees that one can always find strictly positive rational
numbers {q(si)}si∈Si adding up to one, while at the same time, (8) is satisfied.
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Therefore, the above inequality can be rewritten as

∏
si∈Si

[
`i(si|θ)
`i(si|θ∗)

]k(si)

< (δ′i)
k̂i ∀θ 6∈ Θ̄i

for some positive integers k(si) and k̂i, satisfying k̂i =
∑

si∈Si
k(si). Picking the sequence of signals of

length k̂i, (ŝi,1, . . . , ŝi,k̂i
), such that si appears k(si) many times in the sequence and setting δi = (δ′i)

k̂i

proves the lemma.

The above lemma shows that the sequence of private signals in which any signal si ∈ Si appears
with a frequency close enough to `i(si|θ∗) is more likely under the truth θ∗ than any other state θ
which is distinguishable from θ∗. We now proceed to the proof of Proposition 3.

Proof of the Proposition 3: First, we prove that agent i assigns an asymptotic belief of zero on states
that are not observationally equivalent to θ∗ from her point of view.

Recall that according to Proposition 2, the k-step-ahead forecasts of agent i are eventually correct
for all positive integers k, guaranteeing thatm(k)

i,t (si,1, . . . , si,k) −→
∏k
r=1 `i(si,k|θ∗) with P∗-probability

one for any sequence of signals (si,1, . . . , si,k). In particular, the claim is true for the integer k̂i and the
sequence of signals (ŝi,1, . . . , ŝi,k̂i

) satisfying (7) in Lemma 4:

∑
θ∈Θ

µi,t(θ)
k̂i∏
r=1

`i(ŝi,r|θ)
`i(ŝi,r|θ∗)

−→ 1 P∗-a.s.

Therefore, ∑
θ 6∈Θ̄i

µi,t(θ)
k̂i∏
r=1

`i(ŝi,r|θ)
`i(ŝi,r|θ∗)

+
∑
θ∈Θ̄i

µi,t(θ)− 1 −→ 0 P∗-a.s.

leading to ∑
θ 6∈Θ̄i

µi,t(θ)

1−
k̂i∏
r=1

`i(ŝi,r|θ)
`i(ŝi,r|θ∗)

 −→ 0

with P∗-probability one. The fact that k̂i and (ŝi,1, . . . , ŝi,k̂i
) were chosen to satisfy (7) implies that

1−
k̂i∏
r=1

`i(ŝi,r|θ)
`i(ŝi,r|θ∗)

> 1− δi > 0 ∀θ 6∈ Θ̄i,

and as a consequence, it must be the case that µi,t(θ)→ 0 as t→∞ for any θ 6∈ Θ̄i. Therefore, with P∗-
probability one, agent i assigns an asymptotic belief of zero on any state θ that is not observationally
equivalent to θ∗ from her point of view.

Now consider the belief update rule for agent i given by equation (3), evaluated at some state
θ 6∈ Θ̄i:

µi,t+1(θ) = aiiµi,t(θ)
`i(ωi,t+1|θ)
mi,t(ωi,t+1)

+
∑
j∈Ni

aijµj,t(θ).
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We have already shown that µi,t(θ) −→ 0, P∗-almost surely. However, this is not possible unless∑
j∈Ni

aijµj,t(θ) converges to zero as well, which implies that µj,t(θ)→ 0 with P∗-probability one for
all j ∈ Ni. Note that this happens even if θ is observationally equivalent to θ∗ from the point of view
of agent j; that is, even if θ ∈ Θ̄j . As a result, all neighbors of agent i will assign an asymptotic belief
of zero to parameter θ regardless of their signal structure. We can extend the same argument to the
neighbors of neighbors of agent i, and by induction — since the social network is strongly connected
— to all agents in the network. Thus, with P∗-probability one,

µi,t(θ) −→ 0 ∀i ∈ N , ∀θ 6∈ Θ̄1 ∩ · · · ∩ Θ̄n.

implying that all agents assign an asymptotic belief of zero on states that are not observationally
equivalent to θ∗ from the point of view of all individuals in the society. Therefore, statement (d) in the
assumptions of Proposition 3 implies that µi,t(θ) → 0 for all θ 6= θ∗, with P∗-probability one, guaran-
teeing complete learning by all agents.
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