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Abstract

We study the optimal provision of unemployment insurance (UI) over the business cycle. We use

an equilibrium search and matching model with aggregate shocks to labor productivity, incorporating

risk-averse workers, endogenous worker search effort decisions, and unemployment benefit expiration.

We characterize the optimal UI policy, allowing both the benefit level and benefit duration to depend

on the history of past aggregate shocks. We find that the optimal benefit is decreasing in current

productivity and decreasing in current unemployment. Following a drop in productivity, benefits

initially rise in order to provide short-run relief to the unemployed and stabilize wages, but then fall

significantly below their pre-recession level, in order to speed up the subsequent recovery. Under

the optimal policy, the path of benefits is pro-cyclical overall. As compared to the existing US UI

system, the optimal history-dependent benefits smooth cyclical fluctuations in unemployment and

deliver substantial welfare gains.
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1 Introduction

The unemployment insurance (UI) systems in the US and many other countries contain provisions for

extending unemployment benefits in response to economic downturns. The optimality of such extensions

is the subject of an ongoing debate. The recent recession has further intensified the discussion of

this important policy issue. Unemployment benefits provide insurance to workers against heightened

unemployment risk. However, they may distort worker search decisions as well as firms’ hiring decisions,

possibly exacerbating the negative effects of an adverse economic shock. In this paper, we use a general

equilibrium search model to characterize optimal UI policy over the business cycle.

We study UI provision in a Pissarides model with risk-averse workers and aggregate shocks to labor

productivity. Our approach has three key features. First, we use a general equilibrium model, which

enables us to capture the effects of policy changes on both firms’ vacancy creation and worker search

behavior. Second, we allow unemployment benefits to expire. This enables us to study the optimal

choice of benefit duration as well as benefit level and to characterize the optimal behavior of both

policy dimensions over the business cycle. Third, we allow the benefit policy to depend not only on the

current aggregate state but also on its past history. This is important, since the social costs and benefits

of providing job creation incentives in the current period depend on both current and past economic

conditions.

Formally, we consider the optimal policy choice of a benevolent, utilitarian government that can

choose both the level and the duration of unemployment benefits. The government can change the

benefit level and duration in response to aggregate conditions and run deficits in some states of nature,

as long as it balances its budget on average. We solve for the optimal state-contingent UI policy and find

that it prescribes for the benefit level and duration to rise immediately following a drop in productivity.

Subsequently, however, it prescribes a persistent decline in benefit levels and duration below their pre-

recession values. The optimal response of benefits to a negative shock is thus non-monotonic. Right

after a negative productivity shock hits, the social returns to job creation are low, so the government is
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more concerned with providing short-term relief for the unemployed and slowing the decline of wages

than with inducing high job finding. Therefore, it temporarily raises the generosity of benefits - both

level and duration - triggering a decrease in both vacancy creation and worker search effort. However,

since the shock is mean-reverting, the government expects an economic recovery and subsequently lowers

benefits and shortens their duration to stimulate job finding.

Central to this result is our finding that, all else equal, the optimal benefit level and duration are

decreasing in current productivity and decreasing in current unemployment. In low-productivity states,

the social benefits of creating additional worker-firm matches are relatively low, and so the government

optimally raises the generosity of UI benefits. In high-unemployment states, however, the social benefits

of raising employment are relatively high, and so the government optimally lowers the generosity of UI

benefits. This suggests that, in a recession, there are two opposing forces - low productivity and high

unemployment - which give opposite prescriptions for the behavior of optimal benefits. We find that

the first effect is stronger at the very beginning of a recession, but the second effect dominates as the

recession progresses, and inducing a recovery becomes desirable. As a consequence, we find that the

time path of optimal benefit levels and benefit duration is pro-cyclical overall.

1.1 Relationship to the previous literature on unemployment insurance

The literature on the design of optimal UI policy has emphasized two key tradeoffs. The first is the

tradeoff between providing insurance against unemployment risk and providing job search incentives to

unemployed workers. This tradeoff has been extensively analyzed in principal-agent models of optimal

UI, starting with Baily (1978), Shavell and Weiss (1979), Hopenhayn and Nicolini (1997), and Shimer

and Werning (2008). The second tradeoff is the tradeoff between insurance and providing firms with

incentives for vacancy creation. This tradeoff has been emphasized by Fredriksson and Holmlund (2001),

Cahuc and Lehmann (2000), Coles and Masters (2006), and Lehmann and van der Linden (2007), who

study optimal UI design in equilibrium models with endogenous job creation and wage bargaining. Our

framework incorporates the tradeoffs from both literatures. Moreover, it introduces aggregate shocks
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into such optimal policy analysis and quantitatively characterizes the optimal policy.

The paper closest to ours is Landais, Michaillat, and Saez (2010), who also examine optimal UI policy

over the business cycle. Unlike our paper, they find that optimal UI benefits should be countercyclical.

There are important differences between the assumptions of their paper and ours. The key difference is

that, while we assume that wages are determined by bargaining, Landais, Michaillat, and Saez (2010)

assume an extreme form of wage rigidity, namely that wages are a reduced-form function of labor

productivity. In section 6.1 we elaborate on this difference in assumptions and discuss its importance

for the difference in results.

Several other recent studies (Kiley (2003) , Sanchez (2008), Andersen and Svarer (2010, 2011), Kroft

and Notowidigdo (2010)) have examined the optimal design of a state-contingent policy.1 Our results

that optimal benefits respond non-monotonically to a productivity shock, and that the optimal path of

benefits is pro-cyclical, are new to this literature. Furthermore, introducing optimal benefit duration

into this literature is particularly important, since the current debate on the optimality of UI benefit

extensions has focused almost entirely on the duration of benefits. To our knowledge, our paper is the

first to incorporate both policy dimensions in the context of optimal UI provision over the business

cycle.

The paper is organized as follows. We present the model in section 2. Section 3 describes the

optimal policy. We describe how we calibrate the model to US data in section 4. We report our results

in section 5. In section 6, we discuss our results and conduct sensitivity analysis. Finally, we conclude

in section 7.

2 Model Description

2.1 Economic Environment

We consider an infinite-horizon discrete-time model. The economy is populated by a unit measure of

workers and a larger continuum of firms.

1Another strand of the recent literature examines the effect of the recent unemployment benefit extensions on the
unemployment rate. See e.g. Fujita (2010), Nakajima (2011), Valletta and Kuang (2010).
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Agents. In any given period, a worker can be either employed (matched with a firm) or unemployed.

Workers are risk-averse expected utility maximizers and have expected lifetime utility

U = E0

∞∑
t=0

βt [u (xt)− c (st)] ,

where E0 is the period-0 expectation operator, β ∈ (0, 1) is the discount factor, xt denotes consumption

in period t, and st denotes search effort exerted in period t if unemployed. Only unemployed workers can

supply search effort: there is no on-the-job search. The within-period utility of consumption u : R+ → R

is twice differentiable, strictly increasing, strictly concave, and satisfies u′(0) = ∞. The cost of search

effort for unemployed workers c : [0, 1] → R is twice differentiable, strictly increasing, strictly convex,

and satisfies c′ (0) = 0, c′ (1) = ∞. An unemployed worker produces h units of the consumption good

via home production. There do not exist private insurance markets and workers cannot save or borrow.

Firms are risk-neutral and maximize profits. Workers and firms have the same discount factor β. A

firm can be either matched to a worker or vacant. A firm posting a vacancy incurs a flow cost k.

Production. The economy is subject to aggregate shocks to labor productivity. Specifically, a

matched worker-firm pair produces output zt, where zt is stochastic. We assume that ln zt follows

an AR(1) process

ln zt = ρ ln zt−1 + σεεt,

where 0 ≤ ρ < 1, σε > 0, and εt are independent and identically distributed standard normal random

variables. We will write zt = {z0, z1, ..., zt} to denote the history of shocks up to period t.

Matching. Job creation occurs through a matching function. The number of new matches in period

t equals

M (St (1− Lt−1) , vt) ,

where 1 − Lt−1 is the unemployment level in period t − 1, St is the average search effort exerted by

unemployed workers in period t, and vt is the measure of vacancies posted in period t. The quantity
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Nt = St (1− Lt−1) represents the measure of efficiency units of worker search.

The matching functionM exhibits constant returns to scale, is strictly increasing and strictly concave

in both arguments, and has the property that the number of new matches cannot exceed the number

of potential matches: M (N , v) ≤ min{N , v} ∀N , v. We define

θt =
vt

St (1− Lt−1)

to be the market tightness in period t. We define the functions

f (θ) =
M (S (1− L) , v)

S (1− L)
= M (1, θ) and

q (θ) =
M (S (1− L) , v)

v
= M

(
1

θ
, 1

)

where f (θ) is the job-finding probability per efficiency unit of search and q (θ) is the probability of

filling a vacancy. By the assumptions on M made above, the function f (θ) is increasing in θ and q (θ)

is decreasing in θ. For an individual worker exerting search effort s, the probability of finding a job is

sf (θ). When workers choose the amount of search effort s, they take as given the aggregate job-finding

probability f (θ).

Existing matches are exogenously destroyed with a constant job separation probability δ. Thus, any

of the Lt−1 workers employed in period t− 1 has a probability δ of becoming unemployed.

2.2 Government Policy

The US UI system is financed by payroll taxes on firms and is administered at the state level. However,

under the provisions of the Social Security Act, each state can borrow from a federal unemployment

insurance trust fund, provided it meets certain federal requirements. Motivated by these features of the

UI system, we assume that the government in the model economy can insure against aggregate shocks

by buying and selling claims contingent on the aggregate state and is required to balance its budget

only in expectation. Further, we assume that the price of a claim to one unit of consumption in state

zt+1 after a history zt is equal to the probability of zt+1 conditional on zt; this would be the case, e.g.,
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in the presence of a large number of out-of state risk-neutral investors with the same discount factor.

Government policies are restricted to take the following form. The government levies a constant

lump sum tax τ on firm profits and uses its tax revenues to finance unemployment benefits. The

government is allowed to choose both the level of benefits and the rate at which they expire. We assume

stochastic benefit expiration. A benefit policy at time t thus consists of a pair (bt, et), where bt ≥ 0 is

the level of benefits provided to those workers who are eligible for benefits at time t, and et ∈ [0, 1] is

the probability that an unemployed worker eligible for benefits becomes ineligible the following period.

The eligibility status of a worker evolves as follows. A worker employed in period t is automatically

eligible for benefits in case of job separation. An unemployed worker eligible for benefits in period t

becomes ineligible the following period with probability et, and an ineligible worker does not regain

eligibility until he finds a job. All eligible workers receive the same benefits bt; ineligible workers receive

no unemployment benefits, but instead receive an exogenously given welfare payment p.

We allow the benefit policy to depend on the entire history of past aggregate shocks; thus the

policy bt = bt
(
zt
)
, et = et

(
zt
)

must be measurable with respect to zt. Benefits are constrained to be

non-negative: the government cannot tax home production.

2.3 Timing

The government commits to a policy (τ, bt (·) , et (·)) once and for all before the period-0 shock realizes.

Within each period t, the timing is as follows.

1. The economy enters period t with a level of employment Lt−1. Of the 1 − Lt−1 unemployed

workers, a measure Dt−1 ≤ 1 − Lt−1 are eligible for benefits, i.e. will receive benefits in period t

if they do not find a job.

2. The aggregate shock zt then realizes. Firms observe the aggregate shock and decide how many

vacancies to post, at cost k per vacancy. At the same time, workers choose their search effort st

at the cost of c (st). Letting SEt and SIt be the search effort exerted by an eligible unemployed

worker and an ineligible unemployed worker, respectively, the aggregate search effort is then equal
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to SEt Dt−1 + SIt (1− Lt−1 −Dt−1), and the market tightness is therefore equal to

θt =
vt

SEt Dt−1 + SIt (1− Lt−1 −Dt−1)
(1)

3. f (θ)
(
SEt Dt−1 + SIt (1− Lt−1 −Dt−1)

)
unemployed workers find jobs. At the same time, a fraction

δ of the existing Lt−1 matches are exogenously destroyed.

4. All the workers who are now employed produce zt and receive a bargained wage wt (below we

describe wage determination in detail). Workers who (i) were employed and lost a job, or (ii) were

eligible unemployed workers and did not find a job, consume home production plus unemploy-

ment benefits, h + bt and lose their eligibility for the next period with probability et. Ineligible

unemployed workers who have not found a job consume home production plus public assistance,

h+ p, and remain ineligible for the following period.

This determines the law of motion for employment

Lt
(
zt
)

= (1− δ)Lt−1
(
zt−1

)
+ f

(
θt
(
zt
)) [

SEt
(
zt
)
Dt−1

(
zt−1

)
+ SIt

(
zt
) (

1− Lt−1
(
zt−1

)
−Dt−1

(
zt−1

))]
(2)

and the law of motion for the measure of eligible unemployed workers:

Dt

(
zt
)

=
(
1− et

(
zt
)) [

δLt−1
(
zt−1

)
+
(
1− st

(
zt
)
f
(
θt
(
zt
)))

Dt−1
(
zt−1

)]
(3)

Thus, the measure of workers receiving benefits in period t is δLt−1 + (1− stf (θt))Dt−1 = Dt
1−et .

Since we assume that the government has access to financial markets in which a full set of state-

contingent claims is traded, its budget constraint is a present-value budget constraint

E0

∞∑
t=0

βt

{
Lt
(
zt
)
τ −

(
Dt

(
zt
)

1− et (zt)

)
bt
(
zt
)}
≥ 0 (4)
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2.4 Worker Value Functions

A worker entering period t employed retains his job with probability 1− δ and loses it with probability

δ. If he retains his job, he consumes his wage wt
(
zt
)

and proceeds as employed to period t + 1. If he

loses his job, he consumes his home production plus benefits, h + bt
(
zt
)

and proceeds as unemployed

to period t + 1. With probability 1 − et
(
zt
)

he then retains his eligibility for benefits in period t + 1,

and with probability et
(
zt
)

he loses his eligibility. Denote by Wt

(
zt
)

the value after a history zt for a

worker who enters period t employed.

A worker entering period t unemployed and eligible for benefits chooses search effort sEt and suffers

the disutility c
(
sEt
)
. He finds a job with probability sEt f

(
θt
(
zt
))

and remains unemployed with the

complementary probability. If he finds a job, he earns the wage wt
(
zt
)

and proceeds as employed to

period t + 1. If he remains unemployed, he consumes his home production plus benefits, h + bt
(
zt
)
,

and proceeds as unemployed to the next period. With probability 1 − et
(
zt
)

he retains his eligibility

for benefits in period t + 1, and with probability et
(
zt
)

he loses his eligibility. Denote by UEt
(
zt
)

the

value after a history zt for a worker who enters period t as eligible unemployed.

Finally, a worker entering period t unemployed and ineligible for benefits chooses search effort sIt and

suffers the disutility c
(
sIt
)
. He finds a job with probability sIt f

(
θt
(
zt
))

and remains unemployed with

the complementary probability. If he finds a job, he earns the wage wt
(
zt
)

and proceeds as employed

to period t + 1. If he remains unemployed, he consumes his home production plus welfare payments,

h + p, and proceeds as ineligible unemployed to the next period. Denote by U It
(
zt
)

the value after a

history zt for a worker who enters period t as ineligible unemployed.
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The Bellman equations for the three types of workers are then:

Wt

(
zt
)

= (1− δ)
[
u
(
wt
(
zt
))

+ βEWt+1

(
zt+1

)]
+ δ

[
u
(
h+ bt

(
zt
))

+ β (1− et)EUEt+1

(
zt+1

)
+ βetEU It+1

(
zt+1

)]
(5)

UEt
(
zt
)

= max
sEt

−c
(
sEt
)

+ sEt f
(
θt
(
zt
)) [

u
(
wt
(
zt
))

+ βEWt+1

(
zt+1

)]
+
(
1− sEt f

(
θt
(
zt
))) [

u
(
h+ bt

(
zt
))

+ β
(
1− et

(
zt
))

EUEt+1

(
zt+1

)
+ βetEU It+1

(
zt+1

)]
(6)

U It
(
zt
)

= max
sIt

−c
(
sIt
)

+ sIt f
(
θt
(
zt
)) [

u
(
wt
(
zt
))

+ βEWt+1

(
zt+1

)]
+
(
1− sIt f

(
θt
(
zt
))) [

u (h+ p) + βEU It+1

(
zt+1

)]
(7)

It will be useful to define the worker’s surplus from being employed. The surplus utility from being

employed, as compared to eligible unemployed, in period t is

∆t

(
zt
)

=
[
u
(
wt
(
zt
))

+ βEtWt+1

(
zt+1

)]
−
[
u
(
h+ bt

(
zt
))

+ β (1− et)EUEt+1

(
zt+1

)
+ βetEU It+1

(
zt+1

)]
(8)

Similarly, we define the surplus utility from being employed as compared to being unemployed and

ineligible for benefits:

Ξt
(
zt
)

=
[
u
(
wt
(
zt
))

+ βEtWt+1

(
zt+1

)]
−
[
u (h+ p)) + βEU It+1

(
zt+1

)]
(9)

2.5 Firm Value Functions

A matched firm retains its worker with probability 1−δ. In this case, the firm receives the output net of

wages and taxes, zt−wt
(
zt
)
− τ , and then proceeds into the next period as a matched firm. If the firm

loses its worker, it gains nothing in the current period and proceeds into the next period unmatched.

A firm that posts a vacancy incurs a flow cost k and finds a worker with probability q
(
θt
(
zt
))

. If the

firm finds a worker, it gets flow profits zt −wt
(
zt
)
− τ and proceeds into the next period as a matched

firm. Otherwise, it proceeds unmatched into the next period.

Denote by Jt
(
zt
)

the value of a firm that enters period t matched to a worker, and denote by Vt
(
zt
)
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the value of an unmatched firm posting a vacancy. These value functions satisfy the following Bellman

equations:

Jt
(
zt
)

= (1− δ)
[
zt − wt

(
zt
)
− τ + βEtJt+1

(
zt+1

)]
+ δβEtVt+1

(
zt+1

)
(10)

Vt
(
zt
)

= −k + q
(
θt
(
zt
)) [

zt − wt
(
zt
)
− τ + βEtJt+1

(
zt+1

)]
+
(
1− q

(
θt
(
zt
)))

βEtVt+1

(
zt+1

)
(11)

The firm’s surplus from employing a worker in period t is denoted

Γt
(
zt
)

= zt − wt
(
zt
)
− τ + βEtJt+1

(
zt+1

)
− βEtVt+1

(
zt+1

)
(12)

2.6 Wage Bargaining

We assume that wages are determined according to Nash bargaining: the wage is chosen to maximize

a weighted product of the worker’s surplus and the firm’s surplus. Further, the worker’s outside option

is being unemployed and eligible for benefits, since he becomes eligible upon locating an employer and

retains eligibility if negotiations with the employer break down. The worker-firm pair therefore chooses

the wage wt
(
zt
)

to maximize

∆t

(
zt
)ξ

Γt
(
zt
)1−ξ

, (13)

where ξ ∈ (0, 1) is the worker’s bargaining weight.

2.7 Equilibrium Given Policy

In this section, we define the equilibrium of the model, taking as given a government policy (τ, bt (·) , et (·))

and characterize it.

2.7.1 Equilibrium Definition

Taking as given an initial condition (z−1, L−1), we define an equilibrium given policy:

Definition 1 Given a policy (τ, bt (·) , et (·)) and an initial condition (z−1, L−1) an equilibrium is a

sequence of zt-measurable functions for wages wt
(
zt
)
, search effort SEt

(
zt
)
, SIt

(
zt
)
, market tightness
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θt
(
zt
)
, employment Lt

(
zt
)
, measures of eligible workers Dt

(
zt
)
, and value functions

{
Wt

(
zt
)
, UEt

(
zt
)
, U It

(
zt
)
, Jt
(
zt
)
, Vt
(
zt
)
,∆t

(
zt
)
,Ξt

(
zt
)
,Γt
(
zt
)}

such that:

1. The value functions satisfy the worker and firm Bellman equations (5), (6), (7), (8), (9), (10),

(11), (12)

2. Optimal search: The search effort SEt solves the maximization problem in (6) for sEt , and the

search effort SIt solves the maximization problem in (7) for sIt

3. Free entry: The value Vt
(
zt
)

of a vacant firm is zero for all zt

4. Nash bargaining: The wage maximizes equation (13)

5. Law of motion for employment and eligibility status: Employment and the measure of eligible

unemployed workers satisfy (2) , (3)

6. Budget balance: Tax revenue and benefits satisfy (4)

2.7.2 Characterization of Equilibrium

We characterize the equilibrium given policy via a system of equations that involves allocations only,

and does not involve the value functions. This will be helpful in computing the optimal policy.

Lemma 1 Fix an initial condition and a policy (τ, bt (·) , et (·)). Suppose that the sequence

Υt

(
zt
)

= {wt
(
zt
)
, SEt

(
zt
)
, SIt

(
zt
)
, θt
(
zt
)
, Lt

(
zt
)
, Dt

(
zt
)
,

Wt

(
zt
)
, UEt

(
zt
)
, U It

(
zt
)
, Jt
(
zt
)
, Vt
(
zt
)
,∆t

(
zt
)
,Ξt

(
zt
)
,Γt
(
zt
)
}

is an equilibrium. Then the sequences {wt
(
zt
)
, SEt

(
zt
)
, SIt

(
zt
)
, θt
(
zt
)
, Lt

(
zt
)
, Dt

(
zt
)
} satisfy:

1. The laws of motion (2) , (3)
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2. The budget equation (4)

3. Modified worker Bellman equations (dependence on zt is understood throughout)

c′
(
SEt
)

f (θt)
= u (wt)− u (h+ bt) + (1− et)βEt

(
c
(
SEt+1

)
+
(
1− δ − SEt+1f (θt+1)

) c′ (SEt+1

)
f (θt+1)

)

+ etβEt

(
c
(
SIt+1

)
+
(
1− SIt+1f (θt+1)

) c′ (SIt+1

)
f (θt+1)

− δ
c′
(
SEt+1

)
f (θt+1)

)
(14)

c′
(
SIt
)

f (θt)
= u (wt)− u (h+ p) + βEt

(
c
(
SIt+1

)
+
(
1− SIt+1f (θt+1)

) c′ (SIt+1

)
f (θt+1)

− δ
c′
(
SEt+1

)
f (θt+1)

)
(15)

4. Modified firm Bellman equation

k

q (θt)
= zt − wt − τ + β (1− δ)Et

k

q (θt+1)
(16)

5. Nash bargaining condition

ξu′ (wt) kθt = (1− ξ) c′
(
SEt
)

(17)

Conversely, if {wt
(
zt
)
, SEt

(
zt
)
, SIt

(
zt
)
, θt
(
zt
)
, Lt

(
zt
)
, Dt

(
zt
)
} satisfy (2)-(4) and (14)-(17), then

there exist value functions such that Υt

(
zt
)

is an equilibrium.

Proof. First, observe that the necessary first-order conditions for optimal search effort are

∆t =
c′
(
SEt
)

f (θt)
(18)

Ξt =
c′
(
SIt
)

f (θt)
(19)
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Next, taking the differences of the workers’ value functions from equations (5), (6), (7), we have

Wt − UEt = c
(
SEt
)

+
(
1− δ − SEt f (θt)

)
∆t

= c
(
SEt
)

+
(
1− δ − SEt f (θt)

) c′ (SEt )
f (θt)

(20)

Wt − U It = c
(
SIt
)

+
(
1− SIt f (θt)

)
Ξt
(
zt
)
− δ∆t

= c
(
SIt
)

+
(
1− SIt

(
zt
)
f (θt)

) c′ (SIt )
f (θt)

− δ
c′
(
SEt
)

f (θt (zt))
(21)

Next, we rearrange the expressions for worker surpluses (8), (9) to get

∆t =u (wt)− u (h+ bt)

+ β (1− et)Et
(
Wt+1 − UEt+1

)
+ βetEt

(
Wt+1 − U It+1

)
(22)

Ξt =u (wt)− u (h+ p) + βEt
(
Wt+1 − U It+1

)
(23)

Now, substituting (18) and (20) into the left and right hand sides of (22) gives (14); similarly, substituting

(19) and (21) into the left and right hand sides of (23) gives (15).

Next, we derive the law of motion for the firm’s surplus from hiring. By the free-entry condition, the

value Vt
(
zt
)

of a firm posting a vacancy must be zero. Equations (10) and (11) then simplify to:

Jt = (1− δ) [zt − wt − τ + βEtJt+1] (24)

0 = −k + q (θt) [zt − wt − τ + βEtJt+1] (25)

which together imply

Jt = (1− δ) k

q (θt)
(26)

Γt =
k

q (θt)
(27)

Equations (24) and (26) imply that Γt follows the law of motion Γt = zt − wt − τ + β (1− δ)EtΓt+1,

which, by (27), is precisely (16).
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Finally, the first-order condition with respect to wt for the Nash bargaining problem (13) is

ξu′ (wt) Γt = (1− ξ) ∆t (28)

Substituting (27) and (18) into (28) and using the fact that f (θ) = θq (θ) yields (17).

The converse of the result holds since the value functions can be recovered via the corresponding Bellman

equations.

The conditions (14)-(17) are straightforward to interpret. Equations (14) and (15) state that the

marginal cost of increasing the job finding probability for the eligible and ineligible workers, respectively,

equals the marginal benefit. The marginal cost (left-hand side of each equation) of increasing the job

finding probability is the marginal disutility of search for that worker weighted by the aggregate job

finding rate. The marginal benefit (right-hand side of each equation) equals the current consumption

gain from becoming employed plus the benefit of economizing on search costs in the future. Equation

(16) gives a similar optimality condition for firms: it equates the marginal cost of creating a vacancy,

weighted by the probability of filling that vacancy, to the benefit of employing a worker. Finally, (17) is

a restatement of the first-order condition of the bargaining problem. It will be clear in section 3 that the

conditions (14)-(17) will play the role of incentive constraints in the optimal policy problem, analogous

to incentive constraints in principal-agent models of unemployment insurance, e.g. Hopenhayn and

Nicolini (1997).

3 Optimal Policy

We assume that the government is utilitarian: it chooses a policy to maximize the period-0 expected

value of worker utility, taking the equilibrium conditions as constraints.

Definition 2 A policy τ, bt
(
zt
)
, et
(
zt
)

is feasible if there exists a sequence of zt-measurable functions

{wt
(
zt
)
, SEt

(
zt
)
, SIt

(
zt
)
, θt
(
zt
)
, Lt

(
zt
)
, Dt

(
zt
)
} such that (2), (3), (14)-(17) hold for all zt, and the

government budget constraint (4) is satisfied.
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Definition 3 The optimal policy is a policy τ, bt
(
zt
)
, et
(
zt
)

that maximizes

E0

∞∑
t=0

βt

 Lt
(
zt
)
u
(
wt
(
zt
))

+

(
Dt(zt)
1−et(zt)

)
u
(
h+ bt

(
zt
))

+

(
1− Lt

(
zt
)
− Dt(zt)

1−et(zt)

)
u (h+ p)

−Dt−1
(
zt−1

)
c
(
SEt
(
zt
))
−
(
1− Lt−1

(
zt−1

)
−Dt−1

(
zt−1

))
c
(
SIt
(
zt
))


(29)

over the set of all feasible policies.

The government’s problem can be written as one of choosing a policy τ, bt
(
zt
)
, et
(
zt
)

together

with functions {wt
(
zt
)
, SEt

(
zt
)
, SIt

(
zt
)
, θt
(
zt
)
, Lt

(
zt
)
, Dt

(
zt
)
} to maximize (29) subject to (2), (3),

(14)-(17) holding for all zt, and subject to the government budget constraint (4). We find the optimal

policy by solving the system of necessary first-order conditions for this problem. The period-t solution

will naturally be state-dependent: in particular, it will depend on the current productivity zt, as well

as the current unemployment level 1 − Lt−1, and current measure of benefit-eligible workers Dt−1

with which the economy has entered period t. However, in general the triple (zt, 1− Lt−1, Dt−1) is

not a sufficient state variable for pinning down the optimal policy, which may depend on the entire

past history of aggregate shocks. In the appendix, we show that the optimal period t solution is a

function of (zt, 1− Lt−1, Dt−1) as well as (et−1, µt−1, νt−1, γt−1), where et−1 is the previous period’s

benefit expiration rate and µt−1, νt−1, γt−1 are Lagrange multipliers on the constraints (14),(15),(16),

respectively, in the maximization problem (29). The tuple (zt, 1− Lt−1, Dt−1, et−1, µt−1, νt−1, γt−1)

captures the dependence of the optimal bt, et on the history zt. The fact that the zt, 1 − Lt−1 and

Dt−1 are not sufficient reflects the fact that the optimal policy is time-inconsistent: for example, the

optimal benefits after two different histories of shocks may differ even though the two histories result in

the same current productivity and the same current unemployment level. Intuitively, the government

might want to induce firms to post vacancies - and workers to search - by promising low unemployment

benefits, but has an ex post incentive to provide higher benefits, so as to smooth worker consumption,

after employment outcomes have realized. Including the variables et−1, µt−1, νt−1, γt−1 as state variables

in the optimal policy captures exactly this trade-off. Note that we assume throughout the paper that

the government can fully commit to its policy. In the appendix we explain the method used to solve for
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the optimal policy.

4 Calibration

We calibrate the model to verify that it captures salient features of the US labor market, and is thus a

useful one for studying optimal policy design. Unlike previous versions of the Pissarides model calibrated

in the literature, e.g. Shimer (2005) and Hagedorn and Manovskii (2008), our model incorporates

endogenous search intensity choices and stochastic benefit expiration. Moreover, the market tightness

in our model is not equal to the vacancy-unemployment ratio; rather, it is the object defined in (1),

which we do not directly observe in the data. Our calibration strategy will be correspondingly modified

relative to the previous literature. As explained below, we will calibrate the model to ensure that it

is consistent both with aggregate US labor market data and with results from micro studies on the

responsiveness of unemployment duration to benefit generosity.

We normalize mean productivity to one. We assume a benefit scheme that mimics the benefit

extension provisions currently in place within the US policy. The standard benefit duration is 26 weeks;

local and federal employment conditions trigger automatic 20-week and 33-week extensions. In the

model we assume that et = 1/59 when productivity is below two standard deviations below the mean,

et = 1/46 when productivity is between one and two standard deviations below the mean, and et = 1/26

otherwise. We set the welfare payment p = 0.05 to match the amount of Food Stamp payments as a

fraction of average weekly earnings.2 We pick the tax rate τ = 0.023 so that the government balances

its budget if the unemployment rate is 5.5%.

We assume log utility: u (x) = lnx. For the cost of search, we assume the functional form

c (s) =
A

1 + ψ

[
(1− s)−(1+ψ) − 1

]
−As (30)

This functional form satisfies all the assumptions made on the search cost function; in particular, it

implies that the optimal search effort will always be between 0 and 1 for any A > 0.

2See the US Department of Health and Human Services (2008) Annual Report.
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For the matching function, we follow den Haan, Ramey, and Watson (2000) and pick

M (N , v) =
N v

[N χ + vχ]1/χ

This matching technology satisfies all the assumptions made earlier, in particular the assumption that

the implied job-finding rate is always less than one. We have:

f (θ) =
θ

(1 + θχ)1/χ

q (θ) =
1

(1 + θχ)1/χ

The model period is taken to be 1 week. We set the discount factor β = 0.991/12, implying a

yearly discount rate of 4%. Following Shimer (2005), labor productivity zt is taken to mean real

output per person in the non-farm business sector. This measure of productivity is taken from the data

constructed by the BLS and the parameters for the shock process are estimated, at the weekly level, to

be ρ = 0.9895 and σε = 0.0034. The job separation parameter δ is set to 0.0081 to match the average

weekly job separation rate.3 We set k = 0.58 following Hagedorn and Manovskii (2008), who estimate

the costs of vacancy creation to be 58% of weekly labor productivity.

This leaves five parameters to be calibrated: (1) the value h of home production; (2) the worker

bargaining weight ξ; (3) the matching function parameter χ; (4) the level coefficient of the search cost

function A; and (5) the curvature parameter of the search cost function ψ. We jointly calibrate these

five parameters to simultaneously match five data targets: (1) the average vacancy-unemployment

ratio; (2) the standard deviation of vacancy-unemployment ratio; (3) the average weekly job-finding

rate; (4) the average duration of unemployment; and (5) the elasticity of unemployment duration

with respect to benefits. The first four of these targets are directly measured in the data. For the

elasticity of unemployment duration with respect to benefits, Ed,b, we use micro estimates reported by

Meyer (1990) and target an elasticity of 0.9. Intuitively, given the first three parameters, the average

3See Hagedorn and Manovskii (2008) on how to obtain the weekly estimates for the job finding rate and the job
separation rate from monthly data.
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unemployment duration and its elasticity with respect to benefits identify the parameters A and ψ, since

these parameters govern the distortions in search behavior induced by benefits. Table 1 below reports

the calibrated parameters. Our calibrated model is also consistent with non-targeted observations in

the data: for example, the elasticity of unemployment duration with respect to the potential duration

of benefits is 0.167 in the model, consistent with the estimates reported in Moffitt (1985) and close to

other estimates in the literature.

Table 1: Internally Calibrated Parameters

Parameter Value Target Data Model
h Home production 0.580 Mean v/(1− L) 0.634 0.634
ξ Bargaining power 0.114 St. dev of ln(v/(1− L)) 0.259 0.259
χ Matching parameter 0.492 Mean job finding rate 0.139 0.139
A Disutility of search 0.0015 Unemployment duration 13.2 13.2
ψ Search cost curvature 3.786 Ed,b 0.9 0.9

5 Results

In order to illustrate the mechanism behind the optimal policy, in Figure 1 we plot the optimal benefit

policy function bt (z, 1− Lt−1, Dt−1, et−1, µt−1, νt−1, γt−1) as a function of current z and last period’s

1 − L only, keeping Dt−1, et−1, µt−1, νt−1 and γt−1 fixed at their average values. The optimal benefit

level is decreasing in current productivity z and decreasing in unemployment 1−L. The intuition for this

result is that the optimal benefit is lower in states of the world when the marginal social benefit of job

creation is higher, because lower benefits are used to encourage search effort by workers and vacancy

creation by firms. The marginal social benefit of job creation is higher when z is higher, since the

output of an additional worker-firm pair is then higher. The marginal social benefit is also higher when

current employment is lower. As a consequence, optimal benefits are lowest, all else equal, when current

productivity is high and current employment is low, i.e. at the beginning of an economic recovery.

Figure 2 illustrates the same result for the optimal duration of benefits: optimal benefit duration is

lowest at times of high productivity and high unemployment. This shape of the policy function also

implies that during a recession, there are two opposing forces at work - low productivity and high
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unemployment - which give opposite prescriptions for the response of optimal benefits. This gives an

ambiguous prediction for the overall cyclicality of benefit levels and benefit duration.

In order to understand the overall behavior of the optimal policy, in Figures 3 and 4 we analyze

the response of the economy to a negative productivity shock under the optimal policy and compare it

to the response under the current policy. In Figure 3 we plot the response of the optimal policy when

productivity drops by 2.3% after a long sequence of productivity held at 1. The optimal benefit level

initially jumps up, but then falls for about two quarters following the shock, and slowly reverts to its

pre-shock level. The same is true of optimal benefit duration. Unemployment rises in response to the

drop in productivity and continues rising for about one quarter before it starts to return to its pre-shock

level. Note that the rise in unemployment is significantly lower than under the current benefit policy.

In Figure 4 we plot the response of other key labor market variables. As compared to the current

benefit policy, the optimal policy results in a faster recovery of the vacancy-unemployment ratio, the

search intensity of unemployed workers eligible for benefits, and the job finding rate. Wages also fall

more gradually under the optimal policy than they do under the current policy.

The intuition for this optimal policy response is that the government would like to provide immediate

insurance against the negative shock and, expecting future productivity to rise, would like to induce a

recovery in vacancy creation and search effort. Thus, benefit generosity responds positively to the initial

drop in productivity but negatively to the subsequent rise in unemployment, precisely as implied by

Figures 1 and 2. The initial rise in benefits smooths the fall in wages through an increase in the worker

outside option. The subsequent benefit decline, as well as the increase in the rate of benefit expiration,

ameliorates the rise in unemployment. The government optimally uses a combination of both available

policy instruments - benefit level and benefit duration - to achieve this effect.

We next investigate how the economy behaves over time under the optimal policy. To this end,

we simulated the model both under the current benefit policy and under the optimal policy. Table

2 reports the summary statistics, under the optimal policy, for the behavior of unemployment benefit
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levels b and potential benefit duration 1/e. Benefits are higher and expire faster under the optimal

policy than under the current policy. The optimal tax rate under the optimal policy is τ = 0.018, lower

than under the current policy.

The key observation is that, over a long period of time, the correlation of optimal benefits with

productivity is positive: both benefit levels and potential benfit duration are pro-cyclical in the long

run and, in particular, negatively correlated with the unemployment rate. Moreover, this result is not

driven by any balanced budget requirement, since we allow the government to run deficits in recessions.

Tables 3 and 4 report the moments of key labor market variables when the model is simulated

under the current policy and the optimal policy, respectively. As compared to the optimal policy, the

optimal policy results in lower average unemployment and lower unemployment volatility. These results

corroborate our earlier intuition that the benefit policy serves to smooth the cyclical fluctuations in

unemployment.

Finally, we compute the expected welfare gain from switching from the current policy to the optimal

policy. We find that implementing the optimal policy results in a significant welfare gain: 0.67% as

measured in consumption equivalent variation terms.

6 Discussion

6.1 The importance of the wage setting mechanism

The assumption of Nash bargaining in our model is an important modeling choice. Our wage-setting

mechanism is flexible enough to allow wages to respond to both economic conditions - including pro-

ductivity, labor market tightness, and the worker value of home production - and government policy,

such as benefits and taxes. Empirical evidence indicates that increases in unemployment benefits do not

leave wages unaffected, since they raise workers’ reservation wages (see e.g. Fishe (1982) and Feldstein

and Poterba (1984)). This highlights the importance of a wage setting mechanism in which wages do

react to the worker outside option.

This wage setting mechanism distinguishes our paper from the concurrent work by Landais, Michail-
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lat, and Saez (2010), who assume that wages are a reduced-form function of productivity only, and thus

completely invariant to all policy changes and labor market tightness. As a result of their assumption,

the main driver of unemployment in their model is job rationing, which does not respond to changes

in policy. Consequently, in the model of Landais, Michaillat, and Saez (2010), in recessions the un-

employment rate is high but cannot be affected through UI benefit policy. Not surprisingly, they find

that optimal UI benefits should be countercyclical: in recessions, unemployment benefits do provide

insurance to agents against heightened unemployment risk, but do not have a substantial effect on the

unemployment rate. By contrast, in our paper, the UI benefit policy affects the unemployment rate

significantly and can be used to manipulate both worker search behavior and firm vacancy posting

behavior; in particular, it can be used to stimulate a recovery of employment during recessions. We find

that this use of the UI benefits is an integral part of the optimal policy, and optimal benefits should

therefore be pro-cyclical.

6.2 The Hosios condition and its relationship to our model

An important concern in the Pissarides model with Nash bargaining is that the laissez-faire equilibrium

is not constrained efficient. Even with risk-neutral workers, the Hosios (1990) condition requires that

the worker bargaining weight be equal to the elasticity of the matching function in order to attain

efficiency. If the Hosios condition is violated, there is a role for government intervention - such as

unemployment benefits - even in the absence of insurance considerations. This raises the question to

what extent our optimal policy results are driven by violations of the Hosios condition, as opposed

to insurance-incentives tradeoffs considered in the optimal UI literature. To investigate this question,

we have solved for the optimal policy in a version of the model with risk-neutral workers, in which

the violation of the Hosios condition is the only reason for government intervention. We find that the

cyclicality of optimal benefits depends crucially on whether the worker bargaining weight is too high

or too low: optimal benefits should be pro-cyclical for small values of worker bargaining power, but

countercyclical for large values. However, with risk-averse workers, we find that optimal benefits should
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be pro-cyclical both for extremely low and for extremely high values of worker bargaining power. This

implies that the violation of the Hosios condition is not the driving force of our results.4

6.3 The complementarity of benefit level and benefit duration

An important aspect of our analysis is the simultaneous treatment of optimal benefit level and optimal

benefit duration. Our results indicate that optimal benefit levels and optimal benefit duration move in

the same direction in response to a productivity shock, and therefore operate as complements over the

business cycle. To further emphasize this complementarity, we illustrate how the optimal policy would

change if the government were restricted to change only one of these two policy dimensions. This may

be relevant, for example, because benefit duration may be more flexible in practice than the benefit

level. This also facilitates comparison to the existing policy, in which mostly the duration of benefits,

rather than the level, changes over the business cycle. We conduct three alternative policy experiments.

In the first, we fix the benefit level at its current level: b = 0.4, and allow only the duration to change

over the business cycle. The results, reported in Figure 5, show that the optimal policy response is

similar qualitatively to our benchmark: in response to a negative productivity shock, potential duration

of benefits should initially rise, and then fall considerably below its initial level. However, both the

initial rise in the potential duration and its subsequent decline are greater than in the benchmark

optimal policy result. In the second experiment, we fix the benefit expiration rate at its current level

of e = 1/26 and compute the optimal benefit policy. Finally, in the third experiment, we ask how the

benefit level should vary if benefits are not allowed to expire at all, i.e. if we fix e = 0. The results

are shown in Figures 6 and 7 We find that the shape of the policy response is once again similar to

the benchmark: benefits initially rise and then fall. However, both the initial rise and the subsequent

decline are greater in magnitude than in the benchmark optimal policy experiment. In each of these

cases, the government has one policy instrument at its disposal rather than two, and the optimal cyclical

4As an extension, it would be interesting to investigate optimal policy under alternative modeling of the wage process,
in particular directed search. It is well known that, while in a directed search model with risk neutral workers, the laissez-
faire equilibrium is constrained efficient, this is no longer the case in a model with risk-averse workers (see e.g. Acemoglu
and Shimer (1999)) and a role for unemployment benefits therefore exists. We conjecture that our results would still be
valid in a directed search model.
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response of this policy instrument becomes stronger as a result.

6.4 Sensitivity analysis

We examine the robustness of our results to the parameterization of the model. We have calibrated

the model parameters - in particular, the value of home production and the worker bargaining power -

to make the model’s behavior consistent with US labor market volatility data. However, since several

alternative calibrations exist in the literature (see e.g. Shimer (2005)), we conduct sensitivity analysis to

determine whether our optimal policy results remain valid under these alternative calibrations. Figure 8

displays the optimal policy results when home production is set to 0. Because the value of unemployment

is considerably lower under this calibration, the optimal policy prescribes for benefits not to expire at

all, but the optimal response of the benefit level is similar to our benchmark. Figure 9 displays the

results when worker bargaining power is increased to 0.5. Next, we adopt the Shimer (2005) calibration,

in which we set home production to 0 and the bargaining power of the workers to 0.72. The result is

displayed in Figure 10; once again, optimal benefits do not expire, but the optimal response of the

benefit level is the same as in our benchmark. The main qualitative features of our results, including

the result that the optimal benefit scheme is pro-cyclical, do not depend on which calibration is used.

In addition, we have computed the optimal policy for different values of worker risk aversion: specifically,

we have computed it for constant relative risk aversion utility, for values of relative risk aversion equal

to 1/2 and 2. The results are displayed in Figures 11 and 12. Once again, the qualitative features of

our results remain intact.

7 Conclusion

We analyzed the design of an optimal UI system in the presence of aggregate shocks in an equilibrium

search and matching model. Optimal benefits respond non-monotonically to productivity shocks: while

raising benefit generosity may be optimal at the onset of a recession, it becomes suboptimal as the

recession progresses and inducing a recovery is desirable. We find that optimal benefits are pro-cyclical
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overall, counter to previous results in the literature. Adopting the optimal policy would yield significant

welfare gains. Furthermore, we find that the optimal benefit policy, in addition to providing insurance

to workers, results in the smoothing of unemployment over the business cycle.

An important extension for future research is investigating the role of government commitment. The

ability of the government to commit matters because the behavior of agents in our model depends not

only on the current policy, but also on their expectations about future policy. Throughout the paper, we

have assumed that the government can fully commit to its policy. A government without commitment

power might be tempted not to lower benefits when there are a lot of unemployed workers. It would

therefore be interesting to characterize the time-consistent policy and compare it to the optimal policy

in the presence of aggregate shocks.

Our paper has focused on the optimal cyclical behavior of UI benefits and thus serves to inform the

ongoing policy debate on the desirability of benefit extensions in recessions. UI benefits are a worker-

side intervention, as they affect the economy by changing the workers’ value of being unemployed. An

interesting extension would be to consider the optimal behavior of UI benefits in conjunction with firm-

side interventions, such as hiring subsidies. Increasing hiring subsidies in recessions may be desirable as

another instrument for stimulating an employment recovery. A potential concern with hiring subsidies,

frequently articulated in policy debates, is the firm-side moral hazard they generate: firms could, for

example, fire existing employees only to hire them again in order to receive hiring subsidies. A thorough

investigation of the tradeoffs involved with such policies seems a fruitful direction for future research.
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A Solving for the Optimal Policy

The government is maximizing
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subject to the conditions (2), (3), (14). (15),(16),(17) holding for all zt, and subject to the government

budget constraint (4).

Let π
(
zt
)

be the probability of history zt = {z0, z1, ..., zt} given the initial condition z−1. Denote by η

the Lagrange multiplier on (4), and denote the Lagrange multipliers on (2), (3), (14). (15),(16),(17) by
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respectively. In what follows, we suppress the dependence on zt for notational simplicity. The first

order necessary conditions with respect to bt, et, wt, S
E
t , S

I
t , Lt, Dt, θt, respectively, are:

(Dt − (1− et)µt)u′ (h+ bt) = ηDt (32)

Dt [u (h+ bt)− u (h+ p)− ηbt − αt] = µt (1− et)

[
u (h+ bt)− u (h+ p)−

c′
(
SIt
)
− c′

(
SEt
)

f (θt)

]
(33)

γt = (Lt + µt + νt)u
′ (wt)− φtξu′′ (wt) kθt (34)

φt (ξ − 1) c′′
(
SEt
)

=Dt−1
[
(λt − αt) f (θt)− c′

(
SEt
)]

+
c′′
(
SEt
)

f (θt)

[
µt−1

(
(1− et−1)

(
1− SIt f (θt)

)
− δ
)
− µt − δνt−1

]
(35)

(1− Lt−1 −Dt−1)
[
c′ − λtf (θt)

(
SIt
)]

=
c′′
(
SIt
)

f (θt)

[
(µt−1et−1 + νt−1)

(
1− SIt f (θt)

)
− νt

]
(36)

λt = u (wt)− u (h+ p) + ητ + βEt
{
c
(
SIt+1

)
+ λt+1

(
1− δ − SIt+1f (θt+1)

)
+ αt+1δ

}
(37)

αt = u (h+ bt)− u (h+ p)− ηbt

+ β (1− et)Et
{
c
(
SIt+1

)
− c

(
SEt+1

)
+ λt+1f (θt+1)

(
SEt+1 − SIt+1

)
+ αt+1

(
1− SEt+1f (θt+1)

)}
(38)
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φtξu
′ (wt) k − f ′ (θt)

{
λt
[
SEt Dt−1 + SIt (1− Lt−1 −Dt−1)

]
− αtSEt Dt−1

}
− [γt − (1− δ) γt−1]

kq′ (θt)

(q (θt))
2

= [µt − µt−1 (1− et−1 − δ) + νt−1δ]
c′
(
SEt
)
f ′ (θt)

(f (θt))
2 + [νt − νt−1 − µt−1et−1]

c′
(
SIt
)
f ′ (θt)

(f (θt))
2 (39)

The first-order necessary condition for the optimal tax rate τ is

E0

∞∑
t=0

βt{ηLt
(
zt
)
− γt

(
zt
)
} = 0 (40)

To find the optimal policy given η and τ , we solve the above system of difference equations (32)-(39)

and (2), (3), (14). (15),(16),(17) for the optimal policy vector

Ω
(
zt
)

= {bt
(
zt
)
, et
(
zt
)
, wt

(
zt
)
, SEt

(
zt
)
, SIt

(
zt
)
, θt
(
zt
)
, Lt

(
zt
)
, Dt

(
zt
)
,

λt
(
zt
)
, αt
(
zt
)
, µt
(
zt
)
, νt
(
zt
)
, γt
(
zt
)
, φt
(
zt
)
}

We then pick η and τ so that (4) and (40) are satisfied.

Observe that the only period-t− 1 variables that enter the period-t first-order conditions are

Lt−1, Dt−1, et−1, µt−1, νt−1, γt−1,

and no variables from periods prior to t− 1 enter the period-t first-order conditions. This implies that

(zt, Lt−1, Dt−1, et−1, µt−1, νt−1, γt−1) is a sufficient state variable for the history of shocks zt up to and

including period t. Specifically, fix η, τ , and let (−) and (+) denote the previous period’s variable and

the next period’s variable, respectively. Let

Ψ : (z, L−, D−, e−, µ−, ν−γ−) 7→
(
b, e, w, SE , SI , L,D, θ, λ, α, µ, ν, γ, φ

)
be a function that satisfies

(D − (1− e)µ)u′ (h+ b) = ηD (41)

D [u (h+ b)− u (h+ p)− ηb− α] = µ (1− e)

[
u (h+ b)− u (h+ p)−

c′
(
SI
)
− c′

(
SE
)

f (θ)

]
(42)

γ = (L+ µ+ ν)u′ (w)− φξu′′ (w) kθ (43)

φ (ξ − 1) c′′
(
SE
)

=D−
[
(λ− α) f (θ)− c′

(
SE
)]

+
c′′
(
SE
)

f (θ)

[
µ−
(
(1− e−)

(
1− SIf (θ)

)
− δ
)
− µ− δν−

]
(44)
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(1− L− −D−)
[
c′ − λf (θ)

(
SI
)]

=
c′′
(
SI
)

f (θ)

[
(µ−e− + ν−)

(
1− SIf (θ)

)
− ν
]

(45)

λ = u (w)− u (h+ p) + ητ + βE
{
c
(
SI+
)

+ λ+
(
1− δ − SI+f (θ+)

)
+ α+δ

}
(46)

α = u (h+ b)− u (h+ p)− ηb

+ β (1− e)E
{
c
(
SI+
)
− c

(
SE+
)

+ λ+f (θ+)
(
SE+ − SI+

)
+ α+

(
1− SE+f (θ+)

)}
(47)

φξu′ (w) k − f ′ (θ)
{
λ
[
SED− + SI (1− L− −D−)

]
− αSED−

}
− [γ − (1− δ) γ−]

kq′ (θ)

(q (θ))2

= [µ− µ− (1− e− − δ) + ν−δ]
c′
(
SE
)
f ′ (θ)

(f (θ))2
+ [ν − ν− − µ−e−]

c′
(
SI
)
f ′ (θ)

(f (θ))2
(48)

as well as

L = (1− δ)L− + f (θ)
[
SED− + SI (1− L− −D−)

]
D = (1− e) [δL− + (1− sf (θ))D−] (49)

c′
(
SE
)

f (θ)
=u (w)− u (h+ b) + (1− e)βE

(
c
(
SE+
)

+
(
1− δ − SE+f (θ+)

) c′ (SE+)
f (θ+)

)

+ eβE

(
c
(
SI+
)

+
(
1− SI+f (θ+)

) c′ (SI+)
f (θ+)

− δ
c′
(
SI+
)

f (θ+)

)
(50)

c′
(
SI
)

f (θ)
=u (w)− u (h+ p) + βE

(
c
(
SI+
)

+
(
1− SI+f (θ+)

) c′ (SI+)
f (θ)

− δ
c′
(
SE+
)

f (θ+)

)
(51)

k

q (θ)
= z − w − τ + β (1− δ)E k

q (θ+)
(52)

ξu′ (w) kθ = (1− ξ) c′
(
SE
)

(53)

Then the sequence defined by

Ω
(
zt
)

= Ψ
(
zt, Lt−1

(
zt−1

)
, Dt−1

(
zt−1

)
, et−1

(
zt−1

)
, µt−1

(
zt−1

)
, νt−1

(
zt−1

)
, γt−1

(
zt−1

))
satisfies the system (32)-(39) and (2), (3), (14). (15),(16),(17).

To find the optimal policy given η, we therefore solve the system of functional equations (41)-(53).
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B Tables and Figures

Figure 1: Optimal policy: benefit level
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Figure 2: Optimal policy: benefit duration
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Table 2: Optimal benefit behavior

Benefit level Potential duration
b 1/e

Mean 0.472 12.5
Standard deviation 0.010 0.059
Correlation with z 0.758 0.520
Correlation with 1− L -0.420 -0.136
Correlation with b 1 0.950

Table 3: Model statistics simulated under the current US policy

z 1− L v/ (1− L) f̂ w SE SI

Mean 1 0.059 0.634 0.139 0.954 0.505 0.655
Standard Deviation 0.013 0.128 0.259 0.150 0.010 0.040 0.003

z 1 -0.849 0.907 0.945 0.883 0.873 0.943
1− L - 1 -0.902 -0.723 -0.908 -0.916 -0.891
v/ (1− L) - - 1 0.775 0.996 0.987 0.959

Correlation f̂ - - - 1 0.742 0.731 0.861
Matrix w - - - - 1 0.997 0.958

SE - - - - - 1 0.960
SI - - - - - - 1

Note: Means are reported in levels, standard deviations and correlations
are reported in logs as quarterly deviations from an HP-filtered trend with a

smoothing parameter of 1600. f̂ denotes the weekly job finding rate.

Table 4: Model statistics simulated under the optimal US policy

z 1− L v/ (1− L) f̂ w SE SI

Mean 1 0.049 0.742 0.157 0.956 0.520 0.655
Standard Deviation 0.13 0.027 0.062 0.032 0.011 0.008 0.003

z 1 -0.877 0.814 0.775 0.917 0.743 0.995
1− L - 1 -0.934 -0.920 -0.656 -0.904 -0.847
v/ (1− L) - - 1 0.998 0.515 0.993 0.768

Correlation f̂ - - - 1 0.459 0.999 0.726
Matrix w - - - - 1 0.416 0.942

SE - - - - - 1 0.692
SI - - - - - - 1

Note: Means are reported in levels, standard deviations and correlations
are reported in logs as quarterly deviations from an HP-filtered trend with a

smoothing parameter of 1600. f̂ denotes the weekly job finding rate.

33



Figure 3: Responses to 2.3% drop in productivity
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Figure 4: Responses to 2.3% drop in productivity
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Figure 5: Response of duration to a 2.3% shock, fixing benefit level at b = 0.4
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Figure 6: Response of benefit level to a 2.3% shock, fixing expected duration at 26 weeks
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Figure 7: Response of benefit level to a 2.3% shock with no benefit expiration
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Figure 8: Response to a 2.3% shock with h = 0
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Figure 9: Response to a 2.3% shock with ξ = 0.5
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Figure 10: Response to a 2.3% shock under Shimer (2005) calibration
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Figure 11: Response to a 2.3% shock under risk aversion of σ = 1/2
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Figure 12: Response to a 2.3% shock under risk aversion of σ = 2
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