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Coordination and Social Learning

Abstract

This paper studies the interaction between coordination and social learning in a
dynamic regime change game. Social learning provides public information to which
players overreact due to the coordination motive. So coordination affects the aggre-
gation of private signals through players’ optimal choices. Such endogenous provision
of public information results in inefficient herds with positive probability, even though
private signals have an unbounded likelihood ratio property. Therefore, social learning
is a source of coordination failure. An extension shows that if players could individually
learn, inefficient herding disappears, and thus coordination is successful almost surely.
This paper also demonstrates that along the same history, the belief convergence differs
in different equilibria. Finally, social learning can lead to higher social welfare when
the fundamentals are bad.
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1 Introduction

In many economic and social environments featuring coordination motives, such as invest-

ments, currency attacks, bank runs and political revolutions, agents are often uncertain

about the coordination results. So can coordination outcomes be implemented in these envi-

ronments if coordination is socially optimal? Learning about the fundamentals is a potential

way to resolve this problem: the more information agents possess, no matter whether the

incremental information is public or private, the more likely there exists an equilibrium

in which agents choose to coordinate. But is this argument true, especially in a dynamic

environment?

Imagine a dynamic world in which each individual has a noisy signal about the funda-

mentals. The public information is the behavior of previous players. If the public history

successfully aggregates private signals, the public history conveys arbitrarily accurate infor-

mation about the fundamentals, and thus coordination outcomes can be reached. Conversely,

if a herd forms, that is, if players choose “not coordinate” as most previous players did, ig-

noring their own private signals (see Banerjee (1992) and Bikhchandani, Hirshleifer, and

Welch (1992)), the information aggregation will be unsuccessful. In this case, learning from

the public history, or social learning, may result in coordination failure. To the extent that

any decision maker’s payoff is independent of other players’ choices, Smith and Sørensen

(2000) show that the public history will successfully aggregate private signals, if and only if

the strength of private signals is unbounded.1 However, does this conclusion hold when the

economy features a coordination motive?

The above questions can be formulated as the investigation of the interaction between

coordination and social learning. In this paper, I study this interaction in a dynamic regime

change game. There are two possible regimes: the status quo and an alternative. The game

continues as long as the status quo is in place. In each period, there are two new short-

lived (one-period-lived) players. They commonly observe previous plays, and each of them

receives one piece of private information about the status quo.2 Based on this information,

they update their beliefs about the true state of the status quo, which is unknown but fixed.

Because any individual can observe only one piece of private information, perfect individual

learning is impossible. These two new short-lived players then simultaneously choose to

attack or not to attack the status quo. (Attacking the status quo is the coordination action,

1Lee (1993) analyzes a social learning model with continuous action space and binary signal space. Inef-
ficient herding does not appear, because no information goes unused. Bikhchandani, Hirshleifer, and Welch
(1998) and Chamley (2004) provide surveys of this literature.

2As in the social learning literature, I assume players are short-lived. First, this assumption makes the
model tractable and naturally rules out perfect individual learning. Second, finite long-lived players can
coordinate to experiment as their discount factor becomes arbitrarily close to 1, further complicating the
analysis.
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which favors the regime change.) A player choosing to attack receives a positive payoff if

the regime changes; she receives a negative payoff otherwise. Not attacking is a safe action,

giving zero payoff whether the regime changes or not. The true state of the status quo is

drawn at the beginning of the game from a set consisting of three elements: weak, medium,

and strong. If the status quo is weak, an attack by at least one player changes the regime;

if the status quo is medium, then synchronous coordination (i.e., both players choose to

attack) is required to trigger the regime change; if the status quo is strong, the status quo

can never be beaten.

The main result in this paper is shown by comparing equilibrium outcomes in the

medium state with those in the weak state. As a benchmark, in the weak state, coordination

is not necessary, so the status quo is in place only if there is no attack. But as the probability

of attacking decreases, the “no attack” history tells players less and less. This slow social

learning is eventually dominated by players’ extremely informative private signals. As a

result, in any equilibrium, if the status quo is weak, inefficient herds never form, and the

regime changes almost surely. Different from the weak state, in the medium state, when

coordination is commonly known to be necessary from a previous failing attack by one

player, in order to attack, players must form high “common beliefs” about the medium

state. Therefore, the information from the public history may dominate any private signal.

That is, if the public history makes a player pessimistic ex-ante, then, even if she receives an

extremely informative private signal favoring the medium state, she cannot be confident that

her opponent receives an “attacking” signal. So, in any equilibrium, in the medium state,

inefficient herds emerge with positive probability, and the regime may not change. Therefore,

in the medium state, the informational cascades result in the impossibility of coordination,

so social learning is a source of coordination failure.

In a herd, public beliefs converge because players stop learning from the public history.

So what is the asymptotic public belief along the outcomes in which players never stop

learning from the public history? In particular, will social learning be complete if public

beliefs keep changing over time? I show that the public belief convergence differs in different

equilibria of this model. Take the outcome with an attack by one player in every period

as an example. Along this outcome, the weak status quo is ruled out by the failing attack

in the first period. Then, in the most aggressive equilibrium, in which players’ strategies

specify the highest possible probability of attacking in every period, the public belief about

the medium state converges to a point strictly between 0 and 1. Therefore, social learning

is incomplete in this equilibrium. In another equilibrium, in which players adopt strategies

specifying the smallest positive probabilities of attacking (if there are any), the public belief

about the medium state converges to 1, so social learning is complete in this case. In this

equilibrium, in the limit, the strategy profile purifies the mixed strategy equilibrium of the
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complete information normal form game at the medium state.

Social learning not only drives the dynamics of attacking and partly determines the

eventual fate of the regime, but it also causes social welfare to differ depending on the status

quo. Considering the discounted social welfare, under a weak status quo, social learning

delays the regime change, resulting in inefficiency. Under the medium status quo, social

learning results in the probability of the regime change being less than 1. Consequently,

when the discount factor is sufficiently close to 1, social learning leads to lower social welfare,

which is inefficient. For a strong status quo, social learning prevents attacking infinitely often

with probability 1, which leads to higher social welfare – provided that the discount factor

is sufficiently close to 1.

The dynamic regime change game rules out the possibility of perfect individual learning

and focuses on a two-player three-state case. I extend the core model in two directions. In

the first extension, the economy consists of two types of players – – any player i in period

t is of type i (i = 1, 2). Suppose in any period t, the player of type i collects all previous

private signals of type i players (but not previous private signals of type j players (i 6= j)).

So, the precision of the private signal is strictly increasing over time, and it goes to∞ in the

limit. That is, I allow perfect individual learning. In this extended model, in all nontrivial

equilibria, if the status quo is in the medium state, inefficient herds do not form, and the

regime changes almost surely. In the second extension, I analyze the dynamic regime change

game with N + 1 possible states of the status quo and N new short-lived players in each

period. At state n, at least n attacks are needed to trigger the regime change. So the first

state is like the weak status quo in the core model, while the (N+1)th state is like the strong

status quo in the core model. In this second extended model, in any monotone equilibrium

of this game, the dynamics of attacking and the eventual outcomes of the regime change are

similar to those in the core model.

1.1 Related Literature

The social value of public information has been discussed in a vast literature, pioneered by

Hirshleifer (1971). Morris and Shin (2002, 2003) analyze the effects of public information

in a model with payoff complementarities. They show that increased provision of public

information is more likely to lower social welfare when players have more precise private

signals. Angeletos and Pavan (2007) prove that when the degree of coordination in the

equilibrium is higher than the socially optimal one, public information can reduce equilibrium

welfare. In this literature, the public information is exogenous. In my paper, the public

information evolves endogenously as a result of agents’ decisions. Therefore, coordination

directly affects the provision of the public information. Consequently, the public history may

fail to aggregate private signals and thus provide biased public information, which results in
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coordination failure.

There is a strand of social learning models that discuss herding behaviors and asyn-

chronous coordination. In Dasgupta (2000), first movers and late movers can coordinate, so

first movers have incentives to signal their private signals by choosing the coordination ac-

tion. Under private signal structures with an unbounded likelihood ratio property, there are

“weak herd behaviors”, in which players do not ignore their private signals. In Choi (1997),

coordination is also asynchronous, payoff complementarity is only from network effects, and

learning is complete once an option is taken. Asynchronous coordination imposes a weaker

belief requirement than synchronous coordination, which is the key ingredient of my paper.

In addition, it is easy to show that if coordination is asynchronous, inefficient herds never

form in my model.

This paper contributes to the global game literature, initiated by Carlsson and Van

Damme (1993). Absent the dynamic aspect, static regime change games have been applied

to currency attacks (Morris and Shin, 1998), bank runs (Goldstein and Pauzner, 2005),

debt crises (Morris and Shin, 2004), and political changes (Edmond, 2008). These static

regime change games are solvable by iterated elimination of strictly dominated strategies for

fixed prior beliefs and arbitrarily informative private signal structures (see Morris and Shin,

2003). In my model, if no attack has happened yet, players are in a static global game. But

in this static global game, multiple Bayesian Nash equilibria may exist. Such multiplicity

follows two characterizations of the model. First, because the state space is discrete, there

are some prior beliefs resulting in multiple Bayesian Nash equilibria, no matter how large

the precision of private signals is. The necessity of the connectedness of the state space for

the equilibrium uniqueness is discussed in Carlsson and Van Damme (1993), and my model

provides a counter example. Second, the precision of private signals is fixed, while public

beliefs evolve endogenously over time.

In a recent paper, Angeletos, Hellwig, and Pavan (2007) incorporate both individual

learning and social learning into a dynamic regime change game.3 They consider a continuum

of long-lived agents, each learning the true state eventually by collecting one piece of private

information in every period. Players also learn from the publicly observable fact that the

regime has not changed. Furthermore, in an extension, all players observe public and private

signals about the previous attacking sizes. My model differs from Angeletos, Hellwig, and

Pavan (2007) mainly in that individual learning is impossible. As shown in my first extended

model, individual learning overturns the social learning effect, so inefficient herding does not

emerge, even when coordination is commonly known to be necessary. Hence, to analyze the

3Dynamic regime change games are studied as examples of dynamic global games. Dasgupta (2007)
studies a two-period model dynamic global game, which allows asynchronous coordination. Other papers
contributing to this growing literature include Giannitsarou and Toxvaerd (2007) and Heidhues and Melissas
(2006).
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interaction between coordination and social learning, one needs to go one step back to a

model without individual learning. Related to the interaction between individual learning

and coordination is the paper by Cripps, Ely, Mailath, and Samuelson (2008). They show

that with a finite state space and conditional independent private signals, individual learning

implies common learning. Therefore, since common learning is exogenous, and social learning

may be suspended endogenously, high common beliefs about the medium state are formed

infinitely often. As a result, inefficient herds disappear, and thus, the regime changes almost

surely if the status quo is medium.

The rest of this paper is organized as follows. In section 2, I introduce a dynamic

regime change game and provide an algorithm to characterize all equilibria. In section 3,

I study the effects of social learning on the dynamics of attacking, the eventual fate of the

status quo, and the social welfare. Section 4 is devoted to two extensions of the core model.

Section 5 concludes. All omitted proofs are presented in the Appendix.

2 A Dynamic Regime Change Game

2.1 The Model

Time is discrete and indexed by t ∈ {1, 2, . . . }. There are two possible regimes: the status

quo and an alternative. Denote the state of the regime at the end of period t by Rt ∈ {0, 1}:
Rt = 0 means the status quo, and Rt = 1 means the alternative. Assume the regime is in

the status quo at the beginning of the game, so R0 = 0; if Rt = 1 for some t, then Rτ = 1 for

all τ > t; that is, once the regime changes, it stays in the alternative forever. The strength

of the status quo is described by θ ∈ Θ ≡ {w,m, s}, where w,m, s ∈ R with the order

w < m < s.4 At the beginning of the game, θ is chosen by nature according to a commonly

known distribution µ1, where µ1(θ) > 0, ∀θ ∈ Θ. Once picked, θ is fixed forever.

In each period t, there are two new short-lived players. Each player i chooses ait ∈
{0, 1}, where ait = 1 means “attack,” and ait = 0 means “not attack.” Player i’s ex-post

payoff depends on both her choice and the state of the regime: uit = (1−Rt−1)ait(Rt− c) +

Rt−1(1 − c). Hence, suppose the regime is in the status quo at the beginning of period t

and the regime changes in that period. If player i chooses to attack, she receives the payoff

1− c (c ∈ (1/2, 1)); if in such a period, player i chooses not to attack, she receives the payoff

0. If the regime is in the alternative state at the beginning of period t, then no matter

what player i chooses, she receives payoff 1 − c.5 Thus, once the regime changes, the game

essentially ends. Conditional on Rt−1 = 0, whether the regime changes or not in period t

4Notations w,m and s refer to “weak,” “medium” and “strong,” respectively.
5Assuming players receive payoff 1−c after the regime changes to the alternative is equivalent to assuming

that the game ends once the regime changes, in terms of the strategic analysis. But this assumption makes
the welfare analysis in subsection 3.3 much easier.
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depends on both the strength of the status quo θ and the number of attacks a1t + a2t. For

the weak status quo, the attack by one player is sufficient for the regime change; for the

medium status quo, the attack by one player is not enough, but the attack by two players

can trigger the regime change; if the status quo is strong, the regime never changes. The

following table summarizes the regime change outcomes conditional on Rt−1 = 0:

a1t + a2t θ = w θ = m θ = s

0 Rt = 0 Rt = 0 Rt = 0

1 Rt = 1 Rt = 0 Rt = 0

2 Rt = 1 Rt = 1 Rt = 0

Before making the decision, period t player i observes a private signal xit = θ + ξit.

ξit ∼ N (0, 1/β), where β ∈ R++ is the common precision of players’ private signals.6 ξit is

independent of θ and independent across i and across t. Thus, all players’ private signals

are conditionally independent. Besides private signals, at the beginning of any period t ≥ 2,

players are aware of the public history about the number of players choosing to attack (τ < t).

Denote a typical public history by ht = (b1, . . . , bt−1), where bτ ∈ {0, 1, 2} is the number of

players attacking in period τ for all τ < t. Let H t be the set of all possible public histories

at the beginning of period t. I define a period t player i’s strategy by sit : H t ×R→ {0, 1}.
So sit(h

t, xit) is the action player i chooses, given the public history ht and private signal

xit. Let µt(h
t) be period t players’ common prior belief about θ, conditional on the public

history ht. Call µt the public belief in period t.

Definition 1 An assessment
{

(sit)
i=1,2
t=1,..., (µt)t=1,...

}
is an equilibrium if

1. For any t, given µt, (s1t, s2t) forms a Bayesian Nash equilibrium in the static game;

2. µt is calculated by Bayes’ rule on the equilibrium path.

The first part of the definition is a natural requirement of the assumption that players

are short-lived. Because period t players have no intertemporal incentive when making

decisions, their strategies need to form a Bayesian Nash equilibrium in a static game given

their public belief µt. The second part of the definition only specifies how to calculate public

6By the Gaussian assumption, it is easy to calculate players’ belief updates. In addition, the Gaussian
assumption has a very clear description about the precision of players’ signals. However, this assumption is
not necessary. The distribution of the signal can be fairly general, and the assumptions I have to make are
the following: (1) conditional on θ, the players’ private signals are independent and identically distributed;
(2) the support of xit is an open interval (X, X̄) ⊂ R; and the conditional density f(x|θ) of the signal is
strictly positive for all x ∈ (X, X̄) and all θ ∈ Θ; (3) unbounded likelihood ratio: lim

x→X
f(x|θ)/f(x|θ′) = +∞

and lim
x→X̄

f(x|θ)/f(x|θ′) = 0, whenever θ < θ′; and (4) monotone likelihood ratio: if θ < θ′, f(x|θ)/f(x|θ′) is

strictly decreasing in x.
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beliefs on the equilibrium path. In fact, as in the definition of a sequential equilibrium,

the consistency requirement should be imposed on the off-equilibrium path. However, since

players’ strategies must form a static game Bayesian Nash equilibrium, their equilibrium

strategies are not affected by plays on the off-equilibrium path. Therefore, to simplify the

analysis, I only require public beliefs on the equilibrium path be calculated by Bayes’ rule.

2.2 Equilibrium Characterization

From the definition, an equilibrium can be characterized in two steps: first, given any µt,

calculate (s1t, s2t), which constitutes a Bayesian Nash equilibrium in period t; second, given

µ1, ht and (siτ )
i=1,2
τ=1,t−1, employ Bayes’ rule to calculate µt. To simplify, if the environment is

understood clearly, I use the term “equilibrium” for both the Bayesian Nash equilibrium in

the static game and the equilibrium in the dynamic game.

Three facts should be noted before detailed analysis. First, since µ1(θ) > 0 for all

θ ∈ Θ, and the regime does not change with probability 1 if there is no attack, µt(θ) > 0

for all θ ∈ Θ after the public history without any attack. Second, if one player attacks in

period t and Rt = 0, players in the subsequent periods learn immediately that θ 6= w, that

is, µτ (w) = 0 for all τ > t. Third, if both players attack in period t and Rt = 0, players

learn immediately that θ = s. Therefore, as for the analysis of a static game, only three

possible public beliefs are relevant: (i) µt(θ) > 0 for all θ ∈ Θ; (ii) µt(w) = 0, µt(m) > 0

and µt(s) > 0; (iii) µt(s) = 1. Note, since µ1(θ) > 0 for all θ ∈ Θ, in any period t,

µt(θ) > 0 implies µt(θ
′) > 0 for θ < θ′. Among these three cases, the one with µt(s) = 1 is

trivial. Because “not attack” is the dominant action in this case, the unique Bayesian Nash

equilibrium is that both players choose not to attack for all their private signals.

Now, suppose µt(θ) > 0 for all θ ∈ Θ. Let ρ(·|xit) denote period t player i’s posterior

belief over Θ after receiving signal xit. Then from Bayes’ rule, the posterior belief about θ

is:

ρ(θ|xit) =
µt(θ)φ(

√
β(xit − θ))∑

θ′∈Θ

µt(θ′)φ(
√
β(xit − θ′))

,

where φ(·) is the standard normal pdf. Player i’s interim payoff from attacking given signal

xit and player j’s strategy sjt is:

Exjtuit(1, xit, sjt)

= ρ(w|xit) + Pr(sjt = 1,m|xit)− c (1)

= ρ(w|xit) + ρ(m|xit) Pr(sjt = 1|m)− c (2)

=
µt(w)φ(

√
β(xit − w))∑

θ′∈Θ

µt(θ′)φ(
√
β(xit − θ′))

+
µt(m)φ(

√
β(xit −m))∑

θ′∈Θ

µt(θ′)φ(
√
β(xit − θ′))

Pr(sjt = 1|m)− c. (3)
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The fact that (1) implies (2) is because players’ private signals are independent conditional

on θ. Note ρ(w|xit)→ 1 as xit → −∞; hence, from the regime change rule, attacking is the

dominant action for player i, when xit is extremely negative. By continuity of the interim

payoff function, there exists an xt ∈ R such that Exjtuit(1, xit, sjt) > Exjtuit(0, xit, sjt), ∀xit ≤
xt and ∀sjt. I call the set (−∞, xt] the dominant region of attacking. Similarly, there is an

x̄t ∈ R such that Exjtuit(1, xit, sjt) < Exjtuit(0, xit, sjt),∀xit ≥ x̄t and ∀sjt, so the set [x̄t,+∞)

is called the dominant region of not attacking. Therefore, in the case µt(θ) > 0 for all θ ∈ Θ,

players in period t play a static global game. Proposition 1 below not only proves the

existence of a Bayesian Nash equilibrium but also provides the equation to characterize the

equilibrium in this case.

Proposition 1 In a static game with µt(θ) > 0 for all θ ∈ Θ, a Bayesian Nash equilibrium

exists. In any Bayesian Nash equilibrium, players follow a symmetric cutoff strategy with

threshold point x∗t ∈ R:7

s∗t =

{
1, if x ≤ x∗t ,

0, if x > x∗t .

In addition, x∗t is the solution to the equation

G(x, µt) =
µt(w)φ(

√
β(x− w))∑

θ′∈Θ

µt(θ′)φ(
√
β(x− θ′))

+
µt(m)φ(

√
β(x−m))∑

θ′∈Θ

µt(θ′)φ(
√
β(x− θ′))

Φ(
√
β(x−m))− c = 0, (4)

where Φ(·) is the standard normal cdf.

Now consider the boundary public belief case: µt(w) = 0, µt(m) > 0 and µt(s) >

0. Because µt(w) = 0, there is no dominant region of attacking ; since µt(s) > 0, the

dominant region of not attacking still exists; µt(m) > 0 implies that the regime may change

if both players choose to attack. Hence, players in this case are playing a coordination game.

Obviously, the strategy profile with coordination failure, that is, both players choose not to

attack, is an equilibrium. So is no attack the unique Bayesian Nash equilibrium in period t?

That is, are there any equilibria with positive probability of attacking?

The only state for which the regime can change is θ = m, so players choose to attack

only if both their beliefs about θ = m and their beliefs about their opponents choosing to

attack are sufficiently high. Therefore, if players’ public belief about θ = m is high (players

are optimistic), cooperation is possible; conversely, when players’ public belief about θ = m

is low (players are pessimistic), even if one player observes an extremely negative signal and

is convinced that θ = m, she won’t attack. This is because she believes that the probability

7To simplify notation, I denote a strategy by x∗t when there is no confusion. In particular, x∗t = −∞
represents the strategy not attacking for all signals, and x∗t = +∞ represents the strategy attacking for all
signals.

8



of her opponent observing a signal favoring θ = m is very low. With the sufficiently informa-

tive signals assumption given below (I maintain this assumption throughout), Proposition 2

formally shows the above intuition.

Assumption 1 Private signals are sufficiently informative: Φ(
√
β

2
(s−m)) > c.

Proposition 2 In the static game with µt(w) = 0, µt(m) > 0 and µt(s) > 0, ∃µ̃(m) ∈ (0, 1)

such that

1. If µt(m) < µ̃(m), there is no equilibrium with attack;

2. If µt(m) > µ̃(m), there are two equilibria with attack, which are symmetric and in

cutoff strategies. The threshold point for any equilibrium is in (m,+∞);

3. If µt(m) = µ̃(m), there exists a unique x̃ ∈ (m,+∞) such that (x̃, x̃) is the unique

equilibrium with attack.

The key step to prove Proposition 2 is to analyze the solution to equation (4), with

the parameter µt(w) = 0, µt(m) > 0 and µt(s) > 0: if G(x, µt) = 0 does not have a solution,

then the no attack strategy profile is the unique equilibrium; if G(x, µt) = 0 has a solution

x∗t , then there exists an equilibrium in which players employ a symmetric cutoff strategy

with threshold point x∗t . The parameter µ̃(m) is determined by the following equation

max
x∈R

G(x, µ̃) = 0, (5)

and x̃ is the solution to the equation G(x, µ̃) = 0.

Since when µ(w) = 0, it is hard to analyze solutions to G(x, µ) = 0, I define

g(x, µ) =
(

Φ(
√
β(x−m))− c

)
− c( 1

µ(m)
− 1) exp[

β

2
(s−m)(2x− s−m)].

Then when µ(w) = 0, G(x, µ) = ρ(m|x)g(x, µ). Because ρ(m|x) > 0 for all x ∈ R, when

µ(w) = 0, G(x, µ) = 0 if and only if g(x, µ) = 0. And since g(x, µ) has nice properties,

whenever µ(w) = 0, instead of G(x, µ) = 0, I analyze solutions to the equation g(x, µ) = 0.

With Proposition 1 and Proposition 2, the following algorithm characterizes all equi-

libria:

1. In any period t, given µt, compute all solutions to G(x;µt) = 0 and pick any solution

x∗t to be the threshold point in period t. If G(x;µt) = 0 does not have a solution, then

let x∗t = −∞;

2. On the equilibrium path, conditional on Rt = 0, given µt, x
∗
t and bt, employ Bayes’

rule to calculate µt+1.
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2.3 Multiple Equilibria

From the above equilibrium characterization algorithm, multiple equilibria exist. The mul-

tiplicity is not due to plays on the off-equilibrium path but stems from the structure of the

dynamic regime change game.

From Proposition 2, when θ = w is ruled out (after observing a failing attack by one

player in some period), if µt(m) ≥ µ̃(m), G(x, µt) = 0 has at least one solution; so there

are multiple Bayesian Nash equilibria in period t. Thus, there must be multiple equilibria

in the dynamic regime change game. This kind of multiplicity is driven by the coordination

property when µ(w) = 0, as in Angeletos, Hellwig, and Pavan (2007).8

However, in the dynamic regime change game, there is another source for multiplicity.

After a history ht without any attack, period t players are still in a global game. In the static

global game literature, the state space is usually assumed to be connected. Then, for a given

prior belief, as the precision of private signals becomes arbitrarily large, a unique equilibrium

of the static regime change game can be established by interim iterated elimination of strictly

dominated strategies (Morris and Shin (2003)). But in my model, two features lead to

multiple Bayesian Nash equilibria in the stage game after the no attack history. First, as

discussed by Carlsson and Van Damme (1993), with a finite state space, multiple Bayesian

Nash equilibria exist when players’ common prior beliefs put a sufficiently high weight on the

medium state (no matter how large β is). Second, the precision of private signals is fixed,

while players’ public beliefs evolve endogenously. Since there exist public beliefs in period

t with µt(θ) > 0 for all θ ∈ Θ, such that multiple Bayes Nash equilibria exist in period t

(see the discussion in the proof of Proposition 1 in the Appendix for details), the dynamic

regime change game has multiple equilibria.

The equilibrium definition requires that all players commonly know the strategies

adopted by previous players, that is, x∗t is common knowledge to all players arriving af-

ter period t. The emergence of multiple equilibria makes this assumption even stronger. For

example, when state w is ruled out and µt(m) > µ̃t(m), no attack in period t is consistent

with both the strategy profile (−∞,−∞) (the pure no attack strategy profile) and the strat-

egy profile (x∗t , x
∗
t ) with x∗t > m (when both players’ private signals land above x∗t ). However,

the belief consistency is part of an equilibrium in the dynamic regime change game, so this

common knowledge assumption is natural when an equilibrium is fixed. Therefore, in all

the analysis in section 3, the strategy profile is fixed. In addition, I will show that attacking

dynamics in different equilibria are driven by different social learning processes and, thus,

have dramatically different properties.

Two classes of equilibria have nice properties and are easy to analyze, which I define

8In their model, after the first period, players lose the dominant region of attacking, so players are in a
coordination game from the second period on.
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as follows:

Definition 2 Emax = {(x∗t , x∗t )t=1,..., (µ
∗
t )t=1,...} is the equilibrium in which, given µ∗t , for any

(x′t, x
′
t) forming a static equilibrium in period t with prior belief µ∗t , x

′
t ≤ x∗t .

Definition 3 Emin = {(x∗t , x∗t )t=1,..., (µ
∗
t )t=1,...} is the equilibrium in which, given µ∗t , for any

(x′t, x
′
t) forming an equilibrium in period t with prior belief µ∗t and x′t ∈ R (if exists), x∗t ∈ R

and x∗t ≤ x′t; if there is no such x′t, x
∗
t = −∞.

So Emax is the equilibrium in which players choose the most aggressive strategy in their own

period, and Emin is the equilibrium in which players choose the lowest possible cooperation

strategy in their own period. Figure 1 shows how the cutoff points in Emax and Emin are

determined, when µ(w) = 0 and µ(m) > µ̃(m).

Figure 1: Function G(x;µ) with µ3(m) > µ2(m) > µ̃(m) > µ1(m).

3 Dynamics of Attacking, Regime Change, and Social

Learning

In this section, I describe the equilibrium dynamics of attacking, and, based on these dynam-

ics, I analyze the eventual outcome of the regime change conditional on the strength of the

status quo. Because social learning is the driving force behind the dynamics of attacking, I

investigate how social learning plays a role in the dynamics of attacking and in determining

regime change outcomes. Additionally, as shown in subsection 3.3, in different states, social

learning has different effects on social welfare.
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3.1 Dynamics of Attacking and Regime Change

Let ĥt ≡ (0, . . . , 0) denote the history without any attack. When θ = w, conditional on

Rt−1 = 0, ĥt is the only history period t players can observe. So the dynamics of attacking

along ĥt determine the eventual outcome of the regime change, conditional on θ = w. Hence,

I first study the dynamics of attacking along ĥt.

Given µ1 and a fixed strategy profile, conditional on Rt−1 = 0, period t players’ public

belief µt after ĥt can be calculated as

µt(θ) =

µ1(θ)
t−1∏
τ=1

[Φ(
√
β(θ − x∗τ ))]2∑

θ′∈Θ

µ1(θ′)
t−1∏
τ=1

[Φ(
√
β(θ′ − x∗τ ))]2

, ∀θ ∈ Θ, (6)

where [Φ(
√
β(θ − x∗τ ))]2 is the conditional (on θ) probability that both players in period τ

observe signals landing above the cutoff point x∗τ . Because µ1(θ) > 0 for all θ ∈ Θ, x∗1 ∈ R
from Proposition 1, which in turn implies that µ2(θ) > 0 for all θ ∈ Θ. Then, by induction,

along the history ĥt, µt(θ) > 0 for all θ ∈ Θ, and x∗t ∈ R. Because of the monotone

likelihood ratio property of private signals, in any particular period t, attacks happen with

the highest probability in the weak state. Thus, the no attack outcome in period t lowers

period t + 1 players’ belief about θ = w. As a result, along ĥt, {µt(w)}t is a bounded and

strictly decreasing sequence, which converges to µ∞(w) ≥ 0. If µ∞(w) > 0, the dominant

region of attacking has a positive measure in the limit; so the probability of attacking is

bounded away from 0, then µt(w)→ 0 from the belief updating equation (6). Hence, µt(w)

must converge to 0. For the probability of attacking along ĥt, suppose there is an infinite

subsequence of attacking probabilities that are bounded away from 0; that is, there exists

ε > 0 such that all terms in this subsequence are greater than ε. Therefore, there exists

T such that after the history ĥT , players’ public beliefs about θ < s are so low that the

cutoff points after period T should be arbitrarily negative. But in the subsequence, that

the probability of attacking is bounded away from 0 implies that the corresponding cutoff

points are bounded below. This contradiction implies that the probability of attacking is

converging to 0. These arguments are formally stated in the following proposition:

Proposition 3 Fix any equilibrium. Along ĥt, µt(w)→ 0 and Pr(bt > 0|ĥt)→ 0.

When the status quo is weak, the attack by one player can trigger the regime change.

But because of the dominant region of not attacking, in any equilibrium, players choose not

to attack with positive probability in any period. Also, because the probability of attacking

converges to 0, the asymptotic probability of the regime change when θ = w depends on

the speed at which the probability of attacking converges to 0. If it is too fast, the status
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quo may not fall. But while players continue to learn, they learn slowly after some period

T , because the probability of attacking is arbitrarily small for all t > T . This slow social

learning process implies that the probability of attacking cannot converge to 0 too fast. As

a result, the regime changes eventually if the status quo is weak.

Proposition 4 If θ = w, in any equilibrium, the regime changes almost surely.

Proof. Fix an equilibrium, the strategy profile and the prior belief induce a probability

measure P on the outcome space Θ×{0, 1, 2}∞. Suppose Pw and P̂ are probability measures

induced on Θ×{0, 1, 2}∞ by P, conditioning on the state w and the set {m, s}, respectively.

Hence, P = µ0(w)Pw + (1− µ0(w))P̂.

The sequence {µt(w)}t is a bounded martingale adapted to the filtration F t, which is

generated by the history H t under the measure P. So {µt(w)}t converges P− almost surely

to µ∞(w). Since Pw is absolutely continuous with respect to P, µt(w) → µ∞(w),Pw −
almost surely.

Now suppose there is a set A ⊂ {0, 1, 2}∞ such that µ∞(w)[a] = 0,∀a ∈ A, and

Pw(A) > 0. Bayes’ rule implies that the odds ratio {(1−µt(w))/µt(w)}t is a Pw−martingale,

so E[1−µt(w)
µt(w)

] = 1−µ0(w)
µ0(w)

for all t. However, E[1−µt(w)
µt(w)

] = E[1−µt(w)
µt(w)

χ(A)]+E[1−µt(w)
µt(w)

(1−χ(A))],

where χ is the indicator function. Obviously, the second term is nonnegative, while the first

term is bigger than 1−µ0(w)
µ0(w)

for very big t since µ∞(w)(a) = 0, ∀a ∈ A, which leads to a

contradiction. Therefore, µ∞(w) > 0,Pw − almost surely.

Since, along ĥt, µt(w)→ µ∞(w) = 0, ĥt is a 0 measure event under Pw. As a result, the

regime changes almost surely when the status quo is weak (because ĥ∞ is the only outcome

in which the weak status quo never falls).

The conclusion that the weak status quo falls almost surely is due to the assumptions

about private signals. In my model, private signals are normally distributed, so they have

continuous support and an unbounded likelihood ratio property. In particular, the existence

of a dominant region of attacking implies that there are always private signals that can

overturn the public beliefs.

Now let me turn to the analysis of the medium status quo. In the first period, because

µ1(θ) > 0 for all θ ∈ Θ, Proposition 1 implies that the probability of attacking in the

first period is positive. Hence, the medium status quo falls with positive probability. So

does the medium status quo fall almost surely? Because each player’s private signal has

the unbounded likelihood ratio property, for any prior beliefs, there are signals making her

posterior belief about θ < s arbitrarily close to 1. Therefore, it seems that in a nontrivial

equilibrium (in which players choose to attack with positive probability whenever possible),
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with probability 1, there is one period in which both players in that period receive signals

informing them that θ < s. As a result, the medium status quo should fall almost surely.

But is this argument right?

Consider the outcome h̄∞ ≡ (1, 0, . . . ), in which there is an attack by one player in

the first period but no attacks afterward. If this outcome is reached, the medium status quo

does not fall. This outcome may be consistent with many equilibria: for any given subset

Q ⊂ N \ {1}, only period t ∈ Q players attack the status quo with positive probability, and

players in all other periods adopt the pure no attack strategy. In the strategy profile with

finite Q, the outcome h̄∞ is reached with strictly positive probability. Hence, unless there is

an equilibrium in which Q is infinite, in any equilibrium, the regime dose not change with

positive probability if the status quo is medium.

From the failing attack in the first period, players rule out the weak state. By Propo-

sition 2, in any t ∈ Q, the probability of attacking is bounded away from 0. Then the ob-

servation of “no attack” in period t ∈ Q makes subsequent players increasingly pessimistic.

Also, the necessary condition for period t ∈ Q players to attack with positive probability is

µt(m) ≥ µ̃(m). So if Q is infinite, after a period T ∈ Q, players’ public beliefs about θ = m

drop below µ̃(m), which contradicts the assumption that Q is infinite.

Proposition 5 There exists Q ∈ N, such that in any equilibrium, along the outcome h̄∞,

there are at most Q periods in which players’ strategies specify positive probabilities of at-

tacking.

Corollary 1 In any equilibrium, Pm(h̄∞) > 0, so the regime does not change with positive

probability when the status quo is medium.

The outcome h̄∞ is just an example of all outcomes, which result in the survival of

the status quo and are realized with positive probabilities in any equilibrium, conditional on

the medium state. All these outcomes share three features: (1) there is no period in which

both players choose to attack; (2) there are finite (at least one) periods in which one player

chooses to attack; and (3) after the last period in which one player chooses to attack, no

attack happens ever again. These are herding outcomes; that is, players in later periods

join the “not attack” herds, ignoring their own private signals no matter how informative

such signals are. These herding outcomes are inefficient, because conditional on the medium

status quo, the (attacking, attacking) strategy profile Pareto dominates the no attacking

strategy profile. I will analyze the social welfare due to these herding outcomes in more

detail in subsection 3.3.

Comparing the equilibrium outcomes in the weak state with those in the medium state,

we can see the interaction between coordination and social learning. “Not attack” herds do
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not appear in the weak state, as in Smith and Sørensen (2000). But in any equilibrium,

players join the “not attack” herds with positive probability when the status quo is medium.

The difference stems from the coordination requirement in the medium state and the signal

structure of global games. Consider an equilibrium in which whenever strategies inducing

positive probability of attacking can form a Bayesian Nash equilibrium in any period t,

period t players adopt such strategies. When the belief about the weak status quo is positive,

extreme negative signals lead players to attack, no matter what their opponents choose. This

is the reason why “not attack” herds never start in the weak state. In the medium state,

once the weak status quo is ruled out, it is common knowledge that coordination is necessary

for their attacks to succeed. Therefore, in order to coordinate, players in the same period

must form high common beliefs about θ = m. That is, fix any q ∈ (0, 1), players must

believe θ = m with probability at least q, must believe with probability at least q that

their opponents believe θ = m with probability at least q, and so on (see, e.g., Monderer

and Samet (1989) and Morris and Shin (2007)). When the public belief about θ = m is

sufficiently low, to form high common belief about θ = m, the precision of private signals

must be big enough. However, in the model, the precision of private signals is fixed, and

along the outcome h̄∞ players’ public beliefs about θ = m decrease. Therefore, players

cannot form high common beliefs about θ = m eventually, and thus the “not attack” herds

start.

The herding outcome is due to the informational externality, which is different from

the pure coordination failure. In some equilibria, after the weak status quo is ruled out,

players simply choose not to attack. This “no attack” outcome is purely because of coordi-

nation failure. Proposition 5 shows, however, that the informational externality causes the

impossibility of coordination in all equilibria.

3.2 Belief Convergence in Different Equilibria

After the weak status quo is ruled out, Proposition 5 implies that, in all equilibria, along the

outcome h̄∞, public beliefs about the medium status quo converge to µ∞(m) ∈ (0, 1). This

convergence is just because players stop learning from the public history after some period.

Now, let’s consider an outcome, along which players never stop learning from the public

history after the weak status quo is ruled out, that is, public beliefs about the medium state

change over time. Then, will µt(m) necessarily converge to 1, if the status quo is medium?

This subsection shows that the answer to this belief convergence question differs in different

equilibria.

Fix an equilibrium. Suppose the weak status quo has been ruled out by period t, and

there is an attack by one player in period t. Then given µt, how period t + 1 players form

their public beliefs about the medium status quo depends on the threshold point of period
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t players’ strategies.

Lemma 1 Given µt, and suppose the attack by one player in period t fails. Then |µt+1(m)− µt(m)|
is strictly increasing in

∣∣x∗t − m+s
2

∣∣. Moreover, µt+1(m) ≥ µt(m) if and only if x∗t ≤ m+s
2

.

Because only the medium state and the strong state are in the support of period t+1 players’

public beliefs, if x∗t = m+s
2

, then bt = 1 is neutral in terms of belief updating. Hence, the

further x∗t is away from m+s
2

, the more informative the attack by one player in period t is.

To simplify the analysis, I assume x̃ < m+s
2

. (Recall that x̃ is the solution to the

equation G(x, µ̃) = 0, where µ̃(w) = 0 and max
x

G(x, µ̃) = 0.) Also, denote by µ′ the public

belief that µ′(w) = 0 and m+s
2

is the largest solution to the equation G(x, µ′) = 0. Consider

the outcome h̃∞ ≡ (1, 1, . . . ) (exactly one player chooses to attack in every period).

Proposition 6 Suppose x̃ < m+s
2

. Along the outcome h̃∞.

1. In Emax, µt(m) monotonically converges to µ′(m) ∈ (0, 1). So conditional on θ = m,

the probability of attacking converges to Φ[
√
β

2
(s−m)].

2. In Emin, µt(m) converges to 1. The probability of attacking is strictly decreasing over

time; and conditional on θ = m, the probability of attacking converges to c, the cost of

attacking.

The detailed proof is in the Appendix, but the intuition is illustrated in the following figures.

Figure 2 and Figure 3 present µt+1(m) as a function of µt(m) along the outcome h̃∞ in Emax

and Emin respectively. In Figure 2, µ′(m) is the unique fixed point in (µ̃(m), 1). Therefore,

in Emax, along h̃∞, µt(m) → µ′(m), which implies that the cutoff point converges to m+s
2

and that the probability of attacking converges to Φ[
√
β

2
(s − m)]. In Figure 3, the unique

fixed point greater than µ̃(m) is 1, and it is stable. This means along h̃∞, µt(m) → 1.

Hence, the probability of attacking converges to c. So the equilibrium strategy profile in

the limit purifies the mixed strategy Nash equilibrium of the complete information normal

form game when θ = m. (In fact, in the complete information normal form game when

θ = m, the mixed strategy equilibrium is the lowest possible coordination equilibrium.)

The monotonicity stated in Proposition 6 can be seen in Figure 1: if µt+1(m) > µt(m),

g(x, µt+1) > g(x, µt),∀x > m, so x∗t+1 > x∗t in Emax and x∗t+1 < x∗t in Emax.

Proposition 6 shows that along the outcome h̃∞, the convergence of µt(m) differs in

Emax and Emin. In Emax, the failing attack by one player in period t results in µt+1(m)

strictly between µt(m) and µ′(m), which in turn implies that x∗t+1 is strictly between x∗t and
m+s

2
(see Figure 1). Then bt+1 = 1 is less informative than bt = 1 by Lemma 1. Because the

attack by one player is less informative over time, the public belief about the medium status

quo converges to µ′(m) ∈ (0, 1). Conversely in Emin, the attack by one player is increasingly
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Figure 2: Evolution of Public Beliefs in Emax.

Figure 3: Evolution of Public Beliefs in Emin.

informative over time, because the threshold points of players’ strategies are decreasing over

time (from Figure 1, all threshold points in Emin are smaller than s+m
2

). As a result, in Emin,

along h̃∞, µt(m) converges to 1. Put differently, along the same outcome h̃∞, in Emax, the

public history provides decreasingly informative evidence over time, so the social learning is

incomplete. But in Emin, the public history provides increasingly informative evidence over

time, so the social learning is complete.

3.3 Social Welfare

In this section, I analyze the effect of social learning on social welfare. Imagine the scenario

that all players believe they are in a static regime change game, so that there is no social

learning. From Proposition 1, in any equilibrium, players attack the status quo with positive

probability (bounded away from 0) in each period. Consider the ex-post social welfare

W = (1 − δ)
∞∑
t=1

δt−1(u1t + u2t), where δ ∈ (0, 1) is the discount factor. By comparing the

social welfare functions of the regime change game with and without social learning, the
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effect of social learning can be seen from the following proposition:

Proposition 7 Compare with the scenario without social learning,

1. if θ = w, in both Emax and Emin, for any δ ∈ (0, 1), social learning leads to inefficiency;

as δ goes to 1, this inefficiency disappears;

2. if θ = m, in any equilibrium, there exists δm ∈ (0, 1), such that social learning is

inefficient for any δ ∈ (δm, 1);

3. if θ = s, in any equilibrium, there exists δs ∈ (0, 1), such that social learning leads to

a higher social welfare value for all δ ∈ (δs, 1).

The intuition behind the first part of this proposition comes from the delayed regime

change due to social learning. Because the delay is only finitely long, when the discount

factor is sufficiently large, such inefficiency disappears. In the second part, when θ = m,

social learning leads players to stop attacking with positive probability, so the regime does

not change with positive probability, which is inefficient because positive utilities after the

regime change cannot be collected. In the third case, the smaller the number of attacks, the

higher the social welfare, because the regime cannot be beaten. Since social learning can

prevent infinitely many attacks, it is more efficient.

Consider the ex-ante social welfare. Part 1 of Proposition 7 implies that social welfare

with and without social learning are almost the same when δ is sufficiently close to 1. As a

result, whether social learning leads to inefficiency depends only on the comparison between

µ1(m) and µ1(s). In particular, as δ → 1, the higher µ1(m)/(µ1(m) + µ1(s)), the lower the

ex-ante social welfare with social learning.

4 Extensions

In this section, I consider two extensions of the dynamic regime change game. In the first

extension, I assume period t player i is of type i (i = 1, 2). Then suppose period t player

i collects all previous private signals of type i players (but not previous private signals

of type j players (i 6= j)). Hence, the precision of private signals increases to +∞. This

extension captures the idea of inter-generational information transmissions and demonstrates

the effect of individual learning in the dynamic regime change game. The second extension

models an N -player (N+1)-state dynamic regime change game. Restricted to the monotone

equilibrium, I get results very similar to those in the core model.
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4.1 Individual Learning

In the dynamic regime change game, because players are short-lived, they can observe only

one piece of private information. Hence, no one can individually learn the true state, given

that the precision of private signals, β, is a constant. Consequently, when θ = w is ruled

out, the critical belief µ̃(m) is constant over time. (Recall that, if the weak status quo has

been ruled out and players’ public beliefs about the medium status quo are below µ̃(m),

they choose not to attack, ignoring their private signals.) As a result, in any equilibrium,

along the history h̄t ≡ (1, 0, . . . , 0), there is a finite subset Q ⊂ N \ {1} such that after the

first period attack, only in period t ∈ Q, do players adopt strategies inducing a positive

probability of attacking. Since after period max{Q}, players choose not to attack for all

their own private signals, no subsequent player updates her public belief about θ = m from

the no attack outcome after period max{Q}. So µt(m) = µmax{Q}+1(m) < µ̃(m) for all

t ≥ max{Q}+ 1, and period t players will choose not to attack for any private signals. This

analysis leads to Proposition 5.

So what happens if individual learning is allowed? In particular, does the “not attack”

herd in Proposition 5 start in a dynamic regime change game with individual learning?

Furthermore, can players with private learning change the regime when the status quo is

medium? To answer these questions, I incorporate individual learning into the dynamic

regime change game in this extension. A straightforward way to model individual learning

is to assume that period t player i is of type i, and any player i collects private signals of

previous type i players. But period t player i could not observe previous private signals of

type j players. Because of the normal distribution, define recursively zit = t−1
t
zit−1 + 1

t
xit,

where zi1 = xi1. Then in terms of belief updating, period t player i’s private signals could

be summarized by the sufficient statistic zit ∼ N (θ, 1/(tβ)). Hence, the precision of private

signals increases over time and goes to ∞.

The most interesting case is when θ = m. Consider the history h̄t. A failing attack

by one player in the first period rules out θ = w, so players lose the dominant region of

attacking. While the public belief about θ = m keeps decreasing over time, the critical belief

µ̃t(m) changes over time. From Proposition 2, in any equilibrium, attacks can occur with

positive probability in period t, if and only if µt(m) ≥ µ̃t(m). Since µ̃t(m) goes to 0 (by

Lemma 5 in the Appendix), unless the status quo is abandoned, attacks occur in infinitely

many periods. Therefore, there are equilibria in which, when θ = m, the regime changes

almost surely.

There are some equilibria in which the herding result in Proposition 5 disappears

because the precision of private signals increases without bound. As the precision of players’

private signals goes to +∞ (and this is common knowledge), the correlation of players’

private signals (in the same period) is arbitrarily close to 1. Therefore, when one player gets

19



the private signal indicating that θ = m, she assigns an arbitrarily high probability that

her opponent’s private signal also indicates θ = m. As a result, for a fixed public belief (if,

in an equilibrium, period t players’ strategies are not to attack for all signals, then period

t + 1 players’ prior beliefs are the same as period t players’), there is a sufficiently large

precision of private signals such that attacking with positive probability is consistent with

an equilibrium.

This result is an example in the common learning literature. Modify the common

learning definition of Cripps, Ely, Mailath and Samuelson (2008) as follows:

Definition 4 θ ∈ Θ is commonly learned, if conditional on θ, for any fixed q ∈ (0, 1), a

common q-belief about θ is formed infinitely often.

Then for any β, conditional on θ, players commonly learn θ in any equilibrium, because

the precision of private signals increases to +∞. Since conditional on θ = m, a common

q-belief about θ = m is formed infinitely often, there exist equilibria in which the status quo

is attacked infinitely many times. As a result, the medium status quo falls almost surely.

This extended model with individual learning is a modified model of Angeletos, Hellwig,

and Pavan (2007). It shows that an economy can move back and forth between “tranquility”

phases (when no attack is the unique rationalizable action) and “distress” phases (when

attack is also rationalizable for a positive measure of private signals). Proposition 5 shows

that this transition cannot happen in the dynamic regime change game without individual

learning.

4.2 N-Player (N + 1)-State Dynamic Regime Change Game

The core model has three possible levels of the strength of the status quo (|Θ| = 3) and two

new short-lived players in each period. I now extend the core model to a dynamic regime

change game with N new short-lived players in each period and N + 1 possible levels of the

strength of the status quo.

Suppose Θ = {m1, . . . ,mN+1} with N > 2 and m1 < m2 < · · · < mN+1, is the set

of states. When θ = mk, the regime changes if and only if at least k players choose to

attack simultaneously. Hence, when θ = m1, attacking is the dominant action for players,

because one player can trigger the regime change by attacking herself. When θ = mN+1, not

attacking is the dominant action for players, because at least N + 1 attacks are required to

trigger the regime change, but the maximum number of possible attacks is N . In all other

states, players may cooperate at different levels.

Different from Proposition 1 and Proposition 2, given some strategy profile of other

players s−i, the best response of player i may not be a cutoff strategy. For example, when

all other players choose to attack the status quo if and only if their private signals are in
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a small neighborhood of mN , player i’s best response is to attack the status quo when xi

convinces player i that θ = mN . Therefore, in this extension, I focus only on monotone

equilibria in which players’ strategies are decreasing in their own private signals (so attack

for low private signals and not attack for high private signals). Lemma 6 in the Appendix

shows that if all other players are following these kinds of strategies, player i’s best response

is a cutoff strategy with attack for low signals and not attack for high signals. Because of

the strategic complementarity, if a monotone equilibrium exists, it is symmetric. Following

in a similar way the proof of Proposition 1, a monotone equilibrium can be shown to exist

for any interior prior belief. Also, there exists a µ̃(mN+1) ∈ (0, 1) such that when mk is ruled

out (so that all states mk′ , k
′ < k are ruled out) and the public belief about θ = mN+1 is

greater than µ̃(mN+1), not attack is the unique rationalizable action for any private signals.

Hence, restricting attention to monotone equilibria, the static game analysis is similar to

that of the core model.

For any fixed monotone equilibrium, the eventual outcome of regime change in this

extended model is similar to that of the core model. When θ = m1, an N + 1 state version

of Proposition 3 implies that the status quo falls almost surely. When θ = mN+1, by

assumption, the status quo never falls. For any state mk (1 < k < N + 1), inefficient herds

form, and the informational cascades result in coordination failure. This result could be

shown by analyzing the dynamic of attacking along the outcome h̄∞ = (1, 0, 0, . . . ). The

attack in the first period by one player cannot be successful conditional on mk (1 < k <

N + 1), so players lose the dominant region of attacking from the second period on. Then

the fact that no attack happens in a large number of periods promote players’ public beliefs

about θ = mN+1 above µ̃(mN+1). Consequently, inefficient herds emerge, and coordination

is impossible.

5 Conclusion

In this paper, I analyze the interaction between coordination and social learning in a dy-

namic regime change game without individual learning. I show that the inefficient herding

phenomenon and the coordination failure reinforce each other. When a player believes she

can change the regime by choosing to attack herself (so coordination is not necessary), she

does not ignore her private signals. As a result, inefficient herds do not form. If players

commonly know that coordination is necessary to trigger the regime change, they choose not

to attack as the unique rationalizable action for all private signals, when they are sufficiently

pessimistic about the coordination outcome. Consequently, private signals are not aggre-

gated, and inefficient herds form. Such informational cascades result in the impossibility

of coordination, so social learning is a source of coordination failure. However, once the
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individual learning is allowed in the dynamic regime change game, players commonly learn

the true state. Therefore, the inefficient herding phenomenon disappears, and coordination

is successful in some equilibria.

The interaction between social learning and coordination determines the dynamics of

attacking, predicts the eventual regime change outcome, and affects social welfare in the

dynamic regime change game without individual learning. If the status quo is weak, the

regime changes with probability 1, though the probability of attacking converges to 0 along

the no attack outcome. Conditional on the medium state, because “not attack” herds form

with a positive probability after the weak state is ruled out, the regime does not change with

a positive probability. I also show that along the outcome in which exactly one player chooses

to attack in every period, the public belief convergence exhibits very different properties in

different equilibria. In the most aggressive equilibrium, the public belief about the medium

state converges to a point strictly between 0 and 1, so social learning is incomplete. But in

the least coordination equilibrium, the public belief about the medium state converges to 1,

so social learning is complete. As a result, in the least coordination equilibrium, the strategy

profile in the limit purifies the mixed strategy Nash equilibrium in the complete information

normal form game when the status quo is medium. Finally, I show that social welfare in

the dynamic regime change game depends on the true state. In the weak status quo, social

learning delays the regime change and thus leads to inefficiency. But as the discount factor

is close to 1, such inefficiency disappears. In the medium status quo, the interaction between

social learning and coordination results in inefficient herds; so when the discount factor is

sufficiently large, social welfare is strictly lower. But in the strong status quo, because social

learning prevents infinitely many attacks, it leads to higher social welfare.

The dynamic regime change game without individual learning has been applied to

numerous economic and social issues. For instance, the investment problem. A lot of projects

require synchronous coordination, and no investor can individually learn the true economic

fundamentals of the project. The analysis in this paper suggests that if the project is not

invested for a long time, it may never be invested, even though it is profitable and investors’

research data could be arbitrarily informative. The model can also be used to explain herding

phenomena in currency attacks, bank runs, debt crises, and political revolutions, in which

synchronous coordination plays a critical role and players’ private signals are assumed to be

rich and powerful.
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Appendix A Omitted Proofs

This section includes proofs of Propositions and Lemmas, which are stated in the text but

not proved.

Proof of Proposition 1:

Since this Proposition is about the static game, I do not use any time index in

order to simplify notation. I first show that if a Bayesian Nash equilibrium exists, it

is in cutoff strategies. Because signals are conditionally independent, in equation (3),

fix any sj, Pr(sj = 1|m) is a constant number less than or equal to 1. Therefore, for

any fixed sj, player i’s interim payoff Exjui(1, xi, sj) is strictly decreasing in xi. Note

also that since lim
xi→−∞

Exjui(1, xi, sj) = 1 − c > 0 (dominant region of attacking) and

lim
xi→+∞

Exjui(1, xi, sj) = −c < 0 (dominant region of not attacking), the best response to

any sj is a cutoff strategy with threshold point x̂i ∈ R. Therefore, if a Bayesian Nash

equilibrium exists, it is in cutoff strategies. So I represent an equilibrium profile by (x̂1, x̂2).

Second, I show that if a Bayesian Nash equilibrium exists, it is symmetric; that is, x̂1 =

x̂2. Suppose then there is an equilibrium (x̂1, x̂2) with x̂1 > x̂2. Because players are ex-ante

homogeneous, there exists another equilibrium (ˆ̂x1, ˆ̂x2)=(x̂2, x̂1). Because Exjui(1, xi, sj) is

strictly supermodular and Exjui(1, x̂i, x̂j) = 0, x̂i is strictly increasing in x̂j. Thus ˆ̂x2 = x̂1 >

x̂2 implies x̂2 = ˆ̂x1 > x̂1, a contradiction.

Now consider any symmetric cutoff strategy profile (x, x). Fix any public belief µ

(µ(θ) > 0 for all θ ∈ Θ), the interim payoff from attacking given the signal x and the

opponent’s cutoff strategy with threshold point x can be written as:

G(x, µ) =
µ(w)φ(

√
β(x− w))∑

θ′∈Θ

µ(θ′)φ(
√
β(x− θ′))︸ ︷︷ ︸

posterior belief about θ=w

+
µ(m)φ(

√
β(x−m))∑

θ′∈Θ

µ(θ′)φ(
√
β(x− θ′))︸ ︷︷ ︸

posterior belief about θ=m

Φ(
√
β(x−m))︸ ︷︷ ︸

probability j attacks

−c.

Because G(x, µ) is continuous in x, the dominant region of attacking and dominant region

of not attacking imply that there exists x∗ ∈ R such that (x∗, x∗) is an equilibrium.

Finally, I claim that for any fixed β, there exists a µ with µ(θ) > 0 for all θ ∈ Θ, such

that multiple equilibria exist in this static regime change game. To show this claim, I just

need to show that there exists a µ such that there are more than one solution to G(x, µ) = 0.

Note that lim
µ(m)→1

G(w+m
2
, µ) = Φ(

√
β

2
(w − m)) − c < 0 (by c > 1

2
) and lim

µ(m)→1
G(m+s

2
;µ) =

Φ(
√
β

2
(s−m))− c > 0 (by Assumption 1). Therefore, the dominant region of attacking, the

dominant region of not attacking, and the continuity of G(x, µ) in x imply that there are

three solutions to G(x, µ) = 0, one in (−∞, w+m
2

), one in ( w+m
2

, m+s
2

), and one in (m+s
2

,
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+∞). Furthermore, if we fix µ such that µ(w)
µ(w)+µ(m)

< c < µ(m)
µ(m)+µ(s)

, then for any β, there are

three Bayesian Nash equilibria in the static game.

Q.E.D.

Proof of Proposition 2:

This Proposition is also about the static game, so I exclude the time index. In this

proof, the public belief µ satisfies µ(w) = 0, µ(m) > 0 and µ(s) > 0. First when µ(w) = 0,

for a fixed sj, Exjui(1, xi, sj) is strictly decreasing in xi, and the regime change game is

supermodular. So similar to the proof of Proposition 1, if an equilibrium with attacks exists,

it is symmetric and in cutoff strategies. Denote a symmetric cutoff strategy profile by (x, x),

then (x∗, x∗) is a non-trivial equilibrium of the regime change game if and only ifG(x∗, µ) = 0.

Therefore, conditions for the existence of a nontrivial equilibrium are equivalent to those for

the existence of a solution to G(x, µ) = 0. Note G(x, µ) can be equivalently written as

G(x, µ) = ρ(m|x)g(x, µ), where

g(x, µ) = [Φ(
√
β(x−m))− c]− c( 1

µ(m)
− 1) exp[

β

2
(s−m)(2x− s−m)].

For any x ∈ R, ρ(m|x) > 0, therefore x∗ is a solution to G(x, µ) = 0 if and only if it is a

solution to g(x, µ) = 0. The rest of this proof relies on the following sequence of lemmas.

Lemma 2 There exist µ̄(m), µ(m) ∈ (0, 1) with µ̄(m) > µ(m), such that for all µ(m) ∈
(0, µ(m)], there is no solution to g(x, µ) = 0; and for all µ(m) ∈ [µ̄(m), 1), there is x∗ ∈ R
such that g(x∗, µ) = 0.

Proof.

First consider the case where µ(m) is close to 1. Since Φ(
√
β

2
(s−m)) > c, g( s+m

2
;µ) > 0.

Note that for all µ(m) ∈ (0, 1), g(m,µ) < 0 and lim
x→+∞

g(x, µ) < 0, so by continuity of

g(x;µ) in x, there exist x̂ ∈ (m, s+m
2

) and ˆ̂x ∈ ( s+m
2
,+∞) such that g(x̂, µ) = 0 and

g(ˆ̂x, µ) = 0. Therefore, there exists µ̄(m) ∈ (0, 1) such that solutions to g(x, µ) = 0 exist

for all µ(m) ∈ [µ̄(m), 1). Now consider µ(m) is close to 0. The last term of g(x;µ) is very

negative for any x larger than m, so g(x, µ) < 0 for all x > m. Combined with the fact

that g(x, µ) < 0 for all x ≤ m, there exists µ(m) ∈ (0, 1) such that for all µ(m) ∈ (0, µ(m)],

g(x, µ) < 0,∀x ∈ R. Finally, because µ̄(m) can be picked as a number very close to 1 and

µ(m) can be picked as a number very close to 0, µ̄(m) > µ(m).

Lemma 3 There exists µ̃(m) ∈ (µ̄(m), µ(m)), such that for all µ(m) ∈ (0, µ̃(m)), there is no

solution to g(x, µ) = 0; and for all µ(m) ∈ (µ̃(m), 1), there are two solutions to g(x;µ) = 0.

Therefore, claims (1) and (2) in Proposition 2 are true.
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Proof.

Suppose 1 > µ′(m) > µ′′(m) > 0 and ∃x′′ ∈ (m,+∞) such that g(x′′, µ′′) = 0 (because

all x ≤ m cannot be a solution to g(x, µ′′) = 0). Since g(x, µ) is strictly increasing in

µ(m) for any fixed x ∈ R, g(x′′, µ′) > g(x′′, µ′′) = 0. Then by the continuity of g(x, µ′)

and lim
x→+∞

g(x, µ′) < 0, there exists x′ ∈ (x′′,+∞) such that g(x′, µ′) = 0. Similarly, if

1 > µ′(m) > µ′′(m) > 0 and g(x;µ′) < 0 for all x ∈ R, then g(x, µ′′) < 0 for all x ∈ R.

Define µ̃(m) = inf{µ(m) ∈ (0, 1) : ∃x ∈ R such that g(x, µ) = 0} = sup{µ(m) ∈ (0, 1) :

g(x, µ) < 0 ∀x ∈ R} (since for a given µ, g(x, µ) either has a solution or does not have a

solution). Obviously, µ̃(m) ∈ (µ̄(m), µ(m)).

For all µ(m) ∈ (µ̃(m), 1), note that ∂2g
∂x2 < 0 for all x ≥ m and g(x, µ) has a single peak

in (m,+∞). Therefore, when µ(m) ∈ (µ̃(m), 1), there are two solutions to g(x, µ) = 0.

Lemma 4 There exists a unique x̃ ∈ (m,+∞) such that g(x̃, µ̃) = 0. Therefore, claim (3)

in Proposition 2 is true.

Proof.

Suppose ∀x ∈ R, g(x, µ̃) < 0. Recall that because µ(m) < 1, for any x ∈ (x̄(µ̃(m)),+∞),

g(x, µ̃(m)) < 0 (dominant region of not attacking), where x̄(µ(m)) = inf{x ∈ R : Exjui(1, xi, sj) <

0 for all sj}. Since Exjui(1, xi, sj) is increasing in µ(m), x̄(µ(m)) is an increasing function in

µ(m). As a result, g(x, µ̃(m)) < 0 for all x > x̄(µ̄(m)), because µ̃(m) < µ̄(m). Since c > 1
2
,

for any µ, g(x, µ) < 0 for all x < m. Now consider the compact set [m, x̄(µ̄(m))]. From

the continuity of g(x, µ) in x, ∃x̂ ∈ [m, x̄(µ̄(m))] such that g(x, µ̃) ≤ g(x̂; µ̃) < 0. Pick a

sequence {µk(m)} such that µk(m) ∈ (µ̃(m), µ̄(m)), µk(m) > µk+1(m) and µk(m) → µ̃(m).

Since g(x, µ) is continuous in µ(m) for any x ∈ [m, x̄(µ̄(m))], lim
k→+∞

g(x, µk) = g(x, µ̃). Defin-

ing Mk = sup
x∈[m,x̄(µ̄(m))]

|g(x, µk)− g(x, µ̃)|, it can be calculated that

Mk = sup
x∈[m,x̄(µ̄(m))]

| 1

µk(m)
− 1

µ̃(m)
|c exp[

β

2
(s−m)(2x− s−m)]

= | 1

µk(m)
− 1

µ̃(m)
|c exp[

β

2
(s−m)(2x̄(µ̄(m))− s−m)].

Therefore, ∀ε > 0,∃K such that for all k > K, | 1
µk(m)

− 1
µ̃(m)
| < ε

c exp[β
2

(s−m)(2x̄(µ̄(m))−s−m)]
,

which implies that Mk < ε. So g(x, µk) converges to g(x, µ̃) uniformly, so there exists K ′

such that for all k > K ′, g(x, µk) − g(x, µ̃) < |g(x̂,µ̃(m))|
2

, thus g(x, µk) < − |g(x̂,µ̃(m))|
2

< 0 for

all x ∈ [m, x̄(µ̄(m))]. Note that, for any x < m and x > x̄(µ̄(m)), g(x, µk) < 0, so for all

x ∈ R, g(x, µk) < 0. But by the definition of µ̃(m), there must be some x′ ∈ R such that

g(x′, µk) = 0. Therefore, when µ(m) = µ̃(m), there exists x̃ such that g(x̃, µ̃) = 0.

Now suppose x′ 6= x̃ and g(x′, µ̃) = 0. Because ∂2h
∂x2 < 0 for all x ≥ m, there must be x′′

between x′ and x̃ such that g(x′′, µ̃) > 0. Then because g(x′′, µ) is continuous in µ(m), fix
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any ε ∈ (0, g(x
′′,µ̃)
2

), there exists γ > 0 such that for all µ′(m) ∈ (µ̃(m)− γ, µ̃(m)), g(x′′, µ) >

g(x′′, µ̃) − ε > 0. So there exists x′′′ ∈ (m,x′′) such that g(x′′′;µ) = 0. This contradicts the

definition of µ̃(m). Therefore, there exists a unique x̃ ∈ R, such that g(x̃, µ̃(m)) = 0.

Q.E.D.

Proof of Lemma 1:

Suppose the weak status quo has been ruled out by period t. Given µt, bt = 1 and x∗t ,

Bayes’ rule implies

µt+1(m) =
µt(m)Φ[

√
β(x∗t −m)]Φ[

√
β(m− x∗t )]

µt(m)Φ[
√
β(x∗t −m)]Φ[

√
β(m− x∗t )] + (1− µt(m))Φ[

√
β(x∗t − s)]Φ[

√
β(s− x∗t )]

=
µt(m)

µt(m) + (1− µt(m))
Φ[
√
β(x∗t−s)]Φ[

√
β(s−x∗t )]

Φ[
√
β(x∗t−m)]Φ[

√
β(m−x∗t )]

.

Obviously, if x∗t = m+s
2

, µt+1(m) = µt(m).

Since in the equilibrium, when µt(w) = 0, x∗t > m. Now, consider the case x′ and x,

such that m < x′ < x < m+s
2

. (The case m+s
2

> x > x′ is similar.) Then

Φ[
√
β(x′ − s)] < Φ[

√
β(x− s)] < 1

2
< Φ[

√
β(x′ −m)] < Φ[

√
β(x−m)].

Because the function f(y) = y(1 − y) is strictly concave and has the maximum value at

y = 1
2
,

Φ[
√
β(x− s)]Φ[

√
β(s− x)]

Φ[
√
β(x−m)]Φ[

√
β(m− x)]

>
Φ[
√
β(x′ − s)]Φ[

√
β(s− x′)]

Φ[
√
β(x′ −m)]Φ[

√
β(m− x′)]

,

which implies that given µt and bt = 1, µt+1(m) is strictly decreasing in x∗t . Since Φ[
√
β(x−

s)] < 1
2
< Φ[

√
β(x−m)] for x ∈ (m, m+s

2
),

Φ[
√
β(x− s)]Φ[

√
β(s− x)]

Φ[
√
β(x−m)]Φ[

√
β(m− x)]

< 1.

So µt+1(m) > µt(m) if x∗t <
m+s

2
.

Q.E.D.

Proof of Proposition 6:

Part 1: When the weak status quo is ruled out, µt+1(m) is a function of µt(m). Then

Lemma 1 implies that this function has a unique fixed point in (µ̃(m), 1). Therefore, I
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only need to show that this fixed point is stable, which is equivalent to show that the slope

0 < dµt+1(m)/dµt(m) < 1. Since

µt+1(m) =
µt(m)Φ[

√
β(x∗t −m)]Φ[

√
β(m− x∗t )]

µt(m)Φ[
√
β(x∗t −m)]Φ[

√
β(m− x∗t )] + (1− µt(m))Φ[

√
β(x∗t − s)]Φ[

√
β(s− x∗t )]

,

∂µt+1(m)
∂µt(m)

∣∣∣
µ̃,x̃

= 1, and −1 < ∂µt+1(m)
∂x∗t

∣∣∣
µ̃,x̃

∂x∗t
∂µt(m)

∣∣∣
µ̃,x̃

< 0 when β is large. Therefore, 0 <

dµt+1(m)/dµt(m) < 1.

Part 2: along the history h̃t,

µt+1(m) =
µ1(m)

µ1(m) + (1− µ1(m))
t∏

τ=1

Φ[
√
β(x∗τ−s)]Φ[

√
β(s−x∗τ )]

Φ[
√
β(x∗τ−m)]Φ[

√
β(m−x∗τ )]

.

Because x̃ < m+s
2

, the smallest solution to the equation g(x, µt) = 0 is strictly less than m+s
2

for all t. Together with the fact that x∗t > m, µt(m) → 1. Since g(x∗t , µt) = 0 for all t,

Φ[
√
β(x∗t −m)]→ c.

Q.E.D.

Proof of Proposition 7:

Let WL be the social welfare with social learning and WN be the social welfare

without social learning. Part 1 is due to the decreasing probability of attacking in both

Emax and Emin. When θ = w, let κ be the regime change time. With social learn-

ing, PL(κ ≥ t|θ = w) = 1 −
t−1∑
τ=1

P(κ = τ |θ = w). Define pLt to be the probability

that an attack happens in period t conditional on no attack before with social learning

when θ = w, then PL(κ = 1|θ = w) = pL1 . (So the probability that an attack hap-

pens in period t conditional on no attack before without social learning is pNt = pLt for

all t.) So, by induction, PL(κ ≥ t|θ = w) =
t−1∏
τ=0

(1 − pτ ), where pL0 = pN0 ≡ 0. By

the same way, PN(κ ≥ t|θ = w) = (1 − pL1 )t−1. Because {pLt }t is a decreasing sequence,

PL(κ ≥ t|θ = w) ≤ PN(κ ≥ t|θ = w) for all t = 1, 2, . . . . Therefore, the cumula-

tive distribution function of κ without social learning first order stochastic dominates that

with social learning, which implies that the expected regime change time is longer with

social learning. Let Vt be the discounted value conditional that the regime changes in

period t, then Vt > Vτ if t < τ , given any δ ∈ (0, 1), so social learning leads to ineffi-

ciency when θ = w for any δ ∈ (0, 1). However, for any ε > 0, there is a T such that∣∣∣∣ ∞∑
t=T+1

PL(κ = t|θ = w)Vt −
∞∑

t=T+1

PN(κ = t|θ = w)Vt
∣∣∣∣ < ε

2
for all δ ∈ (0, 1). Fix this T , as

δ → 1,

∣∣∣∣ T∑
t=1

PL(κ = t|θ = w)Vt −
T∑
t=1

PN(κ = t|θ = w)Vt
∣∣∣∣ < ε

2
. Therefore, for any ε > 0, there
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is a δw ∈ (0, 1) such that for all δ ∈ (δw, 1),

∣∣∣∣ ∞∑
t=1

PL(κ = t|θ = w)Vt −
∞∑
t=1

PN(κ = t|θ = w)Vt
∣∣∣∣ <

ε. That is, as the discount factor goes to 1, the inefficiency due to the delay of the regime

change caused by social learning disappears.

Part 2 is a consequence of Corollary 1. On one hand, because PN(regime changes|θ =

m) = 1, as δ goes to 1, WN converges to 2(1 − c). On the other hand, Corollary 1 implies

that PL(regime changes|θ = m) < 1, which in turns implies that WL is strictly less than

2(1 − c). Note that infinitely many attacks are prevented with or without social learning

and that the discounted value of the cost from finitely many attacks goes to 0 as δ goes to

1. Therefore, there is a δm ∈ (0, 1) such that for all δ ∈ (δm, 1), social learning leads to a

lower social welfare value.

For Part 3, while with social learning, PL(attack, i.o.|θ = s) = 0, since either the

probability of attacking is constant at 0 from some finite period onward or the proba-

bility of two attacks in every period is bounded away from 0, without social learning,

PN(attack, i.o.|θ = s) > 0. Because the strong status quo won’t fall, the fewer attacks,

the higher the social welfare. In particular,

WL = (1− δ)
∞∑
t=1

PL(no attack after period t|θ = s)V L
t

WN = (1− δ)
∞∑
t=1

PN(no attack after period t|θ = s)V N
t

where V L
t and V N

t are the expected discounted social welfare (conditional on the event that

no attack occurs after period t) with and without social learning respectively. Note for any

t, both V L
t and V N

t are finite. Because PL(attack, i.o.|θ = s) = 0, for any ε > 0, there is a T

such that

∣∣∣∣ ∞∑
t=T

PL(no attack after period t|θ = s)V L
t

∣∣∣∣ < ε. Because PN(attack, i.o.|θ = s) >

0, for any T ′, there is a ε > 0 such that

∣∣∣∣ ∞∑
t=T

PN(no attack after period t|θ = s)V N
t

∣∣∣∣ > ε′. Fix

such ε′ and T ′,

WL > (1− δ)
T ′∑
t=1

PL(no attack after period t|θ = s)V L
t − ε′,

while

WN < (1− δ)
T ′∑
t=1

PN(no attack after period t|θ = s)V N
t − ε′.

Therefore, there is a δs such that for all δ ∈ (δs, 1), WL >WN .

Q.E.D.
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Appendix B Useful Lemmas

In this section, I state and prove two lemmas, which are used in section 4.

Lemma 5 Suppose θ = w has been ruled out. Given large β, µ̃(m) is decreasing in β. As

β → +∞, µ̃(m) converges to 0.

Proof.

Recall that µ̃(m) is the belief about θ = m, at which there is a unique x̃ ∈ R such

that G(x̃, µ̃) = 0 (where µ̃(w) = 0). Since G(x, µ̃) < 0 for all x 6= x̃, G′(x̃, µ̃) = 0. As

in Proposition 2, instead of studying G(x, µ̃) directly, it is easier to study the function

g(x, µ̃) = [Φ(
√
β(x−m))− c]− c( 1

µ̃(m)
− 1) exp(β

2
(s−m)(2x− s−m)). Since x̃ is also the

unique solution to g(x, µ̃) = 0, g′(x̃, µ̃) = 0. That is,

[Φ(
√
β(x̃−m))− c]− c( 1

µ̃(m)
− 1) exp(

β

2
(s−m)(2x̃− s−m)) = 0

φ(
√
β(x̃−m))−

√
β(s−m)c(

1

µ̃(m)
− 1) exp(

β

2
(s−m)(2x̃− s−m)) = 0

Comparative static analysis shows that, for large β, µ̃(m) is decreasing in β.

A necessary condition for the above system of equations is Φ(
√
β(x̃ − m)) − c =

φ(
√
β(x̃−m))√
β(s−m)

. The right hand side obviously goes to 0, as β goes to +∞. Therefore, as β goes

to +∞, Φ(
√
β(x̃−m)) goes to c, which implies that

√
β(x̃−m) goes to Φ−1(c). Hence, as

β → +∞, exp(β
2
(s−m)(2x̃−s−m)) goes to exp(− (s−m)2

2
β+Φ−1(c)(s−m)

√
β). Suppose µ̃(m)

is bounded away from 0 as β goes to +∞, then ( 1
µ̃(m)
−1) exp(− (s−m)2

2
β+ Φ−1(c)(s−m)

√
β)

and
√
β( 1

µ̃(m)
− 1) exp(− (s−m)2

2
β + Φ−1(c)(s −m)

√
β) both go to 0. So g′(x̃, µ̃) > 0, which

leads to the contradiction. As a result, as β → +∞, µ̃(m)→ 0.

Lemma 6 In an N-players N+1-states static regime change game, if Sj is a cutoff strategy

such that Sj = 1 if xj ≤ x̄j and Sj = 0 if xj > x̄j for all players j 6= i, then player i’s best

response is a cutoff strategy such that Si = 1 if xi ≤ x̄i and Si = 0 if xi > x̄i.

Proof.

I show this lemma with the general private signal structure mentioned in footnote 4.

Let Lk(x) = f(x|mk)
f(x|m1)

to be the likelihood ratio, then Lk(x) is increasing in x for all k and

Lk(x)/Lk′(x) is increasing in x for any k > k′. Given Sj such that Sj = 1 if xj ≤ x̄j and Sj = 0

if xj > x̄j for all players j 6= i, if player i chooses to attack, then conditional on θ = mk, the

probability of the regime change is Zk = Pr(there are at least k − 1 players choosing to attack

besides player i|mk). Note Zk is independent of xi, and Zk+1 ≤ Zk ≤ 1 for all k = 1, 2, . . . , N .
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Then the interim payoff of player i when she observes private signal xi and chooses to attack

is:

ui(xi, S−i) =

N∑
k=1

µkLk(xi)Zk

N+1∑
k=1

µkLk(xi)

.

Now, consider two private signals of player i, x and x′ with x < x′. Denote Lk(x) = Lk and

Lk(x
′) = L′k. Then,

ui(x, S−i)− ui(x′, S−i)

=
1

Q
[(

N∑
k=1

µkLkZk)(
N+1∑
k=1

µkL
′
k)− (

N∑
k=1

µkL
′
kZk)(

N+1∑
k=1

µkLk)]

=
1

Q
{
N∑
k=1

∑
q≤k

µkµq(LkL
′
q − L′kLq)(Zk − Zq) + µN+1

N∑
k=1

(L′N+1Lk − LN+1L
′
k)Zk}.

Each term in the first part is positive because LkL
′
q − L′kLq < 0 and Zk − Zq < 0 for all

q ≤ k. Every term in the second part is also positive because L′N+1Lk − LN+1L
′
k > 0 for

all k ≤ N . Therefore, ui(x, S−i) is decreasing in x. Together with the dominant region of

attacking and the dominant region of not attacking, this monotonicity implies that player

i’s best response is also a cutoff strategy such that Si = 1 if xi ≤ x̄i and Si = 0 if xi > x̄i.
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