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Abstract

Theoretical formulations of dynamic heterogeneous-agent economies typically include a distribu-

tion as an aggregate state variable. This paper introduces a method for computing equilibrium of

these models by including a distribution directly as a state variable if it is finite-dimensional or a fine

approximation of it if infinite-dimensional. The method accurately computes equilibrium in an ex-

treme calibration of Huffman’s (1987) overlapping-generations economy where quasi-aggregation, the

accurate forecasting of prices using a small state space, fails to obtain. The method also accurately

solves for equilibrium in a version of Krusell and Smith’s (1998) economy wherein quasi-aggregation

obtains but households face occasionally binding constraints. The method is demonstrated to be

not only accurate but also feasible with equilibria for both economies being computed in under ten

minutes in Matlab. Feasibility is achieved by using Smolyak’s (1963) sparse-grid interpolation algo-

rithm to limit the necessary number of gridpoints by many orders of magnitude relative to linear

interpolation. Accuracy is achieved by using Smolyak’s algorithm, which relies on smoothness, only

for representing the distribution and not for other state variables such as individual asset holdings.

Keywords: Numerical Solutions, Heterogeneous Agents, Projection Methods

JEL Codes: C63, C68, E21

1 Introduction

The evolution of prices in dynamic heterogeneous-agent economies typically depends on the state of

every agent thereby requiring that a distribution be a state variable. The contribution of this paper is

to introduce a method for computing equilibrium in these models by including an entire distribution, if

finite-dimensional, or a fine approximation of it, if infinite-dimensional, as a state variable. The insight of

Krusell and Smith (1997, 1998) is that this approach is not necessary if a model features quasi-aggregation,

the condition where prices can be accurately forecasted using just a few state variables. However, not

all economies feature quasi-aggregation and I show that the method presented in this paper is capable

of accurately computing equilibrium in at least one of these: Huffman’s (1987) overlapping-generations

(OLG) economy paired with an extreme calibration used in Krueger and Kubler (2004). Even when quasi-

aggregation obtains, including a distribution as a state variable may be desirable from a conceptual or

purely pragmatic perspective. I show that the method accurately computes equilibrium in an economy of

∗I would like to thank Dirk Krueger for many helpful conversations on this project. Also thanks to Jesús Fernández-
Villaverde and Aaron Hedlund for helpful comments. Comments and questions should be sent to greygordon@gmail.com.
Computer code for this paper can be found at sites.google.com/site/greygordon.
†University of Pennsylvania.
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this type also: a version of Krusell and Smith’s (1998) (KS) economy where households face occasionally-

binding constraints. The method is feasible for these two economies with equilibrium for both computed

in just a few minutes in Matlab.1 As discussed momentarily, Smolyak’s (1963) sparse-grid interpolation

algorithm introduced to economics by Krueger and Kubler (2004) makes this possible.

Smolyak’s algorithm is a projection method that uses collocation on a very sparse grid.2 The algo-

rithm approximates a function by interpolating its value at a set of predefined gridpoints (collocation

points) using weighted sums of polynomials. The fineness of the approximation is controlled by using

different “levels of approximation.” For the lowest level of approximation, which is the only one used in

this paper, the number of gridpoints grows only linearly in dimension. More specifically, given a function

of dimension d, Smolyak’s algorithm gives 2d+ 1 points that the function must be evaluated at in order

to approximate it. In contrast, linear interpolation or any tensor-product interpolation method would

require at least 2d points. To see the difference this makes, consider that the distributions (and hence

state spaces) used in this paper have up to 200 elements: to approximate a function of this dimension

using linear interpolation would require more than 1048 trillion function evaluations compared to only

401 for Smolyak interpolation. Not only is the Smolyak algorithm computationally efficient, but Barthel-

mann, Novack, and Ritter (2000) prove the approximation has nearly optimal error bounds for smooth

functions.3 The disadvantage of Smolyak’s algorithm is that approximations to non-smooth functions

may be quite poor.

The application of Smolyak’s algorithm presented in this paper leverages the strengths of the Smolyak

algorithm, computational efficiency and accuracy for smooth functions, while avoiding its main weakness,

poor approximation of non-smooth functions. While many heterogeneous-agent models feature policy

functions that are kinked in individual wealth or income and hence are not smooth, as long as they

are smooth in the aggregate state, they can be approximated well by the Smolyak algorithm. This

is accomplished through indexing policy functions by individual states and constructing a Smolyak

approximation to each indexed policy function. For example, given a capital policy function k′(k, µ)

where k is a household’s current capital holdings and µ is a distribution of holdings across households,

the Smolyak approximation to k′(k, µ) would likely be poor if k′ were kinked in k. However, if k′ is fairly

smooth in µ for fixed k, then the indexed policy function k′k(µ) could be accurately approximated using

Smolyak interpolation.4 By indexing policies in this way, the resulting Smolyak approximations may be

accurate even if the policies are “not smooth.” I refer to this approach as the Smolyak method.

Recognizing the computational challenge posed by solving a model where the distribution was part of

the state space, Krusell and Smith (1997, 1998) found a clever way of circumventing it. By replacing the

distribution with a few aggregate statistics and assuming that households perceive prices to be functions

of only these statistics (and the aggregate shocks), a law of motion for them enables households to

predict current and future prices and hence optimize. Given the optimal household policies, it is then

possible to check the accuracy of the perceived prices and law of motion through simulation. If a small

set of statistics can be found that results in an accurate law of motion and accurate price forecasts, then

quasi-aggregation is said to obtain, in which case it is hoped that the computed bounded-rationality

1Carroll’s (2006) endogenous gridpoints method is used to solve the household problem. Value function iteration is also
feasible, just slower and less accurate than Carroll’s Euler-equation based method.

2For an excellent introduction to projection methods, including projection methods that use collocation, the reader is
referred to Judd (1998). For an accessible exposition of the Smolyak algorithm, the reader is referred to Krueger, Kubler,
and Malin (2011). Section 2 of this paper also discusses the algorithm.

3The error bounds depend not only on the number of times a function is continuously differentiable but also on how
little curvature a function has. The term “smooth” is used atypically here to cover both of these properties.

4Of course approximating each function requires that the number of values k takes on is finite. Section 3 discusses how
to apply the Smolyak algorithm even if k takes on an infinite number of values.
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equilibrium is close to the equilibrium of the full-rationality model. Equilibrium has typically been

computed by guessing on a law of motion, solving the household problem, simulating the economy, and

updating the law of motion using data from the simulation. I refer to this approach as the KS method.

The Smolyak method has three advantages over the KS method. First, the method does not rely

on quasi-aggregation, an equilibrium property which is not known a priori. Second, there is no need to

simulate the economy in order to compute the solution. Not only can this result in substantial time-

savings, but it also means the computed solution is not a random variable. Third, for certain classes of

models, namely those where the distribution is finite-dimensional, the solution can be regarded as a full

rational-expectations equilibrium.5

While the Smolyak method has several advantages over the KS method, this paper is in no way

a critique of it. When the KS method works, that is when quasi-aggregation obtains, it is extremely

powerful. Indeed, whereas the Smolyak method has gridpoints growing linearly in the dimension of the

underlying state space, the KS method’s gridpoints need not grow at all! Moreover, quasi-aggregation

has obtained in a wide variety of models. The KS method is robust, conceptually simple, and easy to

program, and so is a powerful tool.

Yet there are cases where the KS method does not work well. As already mentioned, I present one

such OLG economy that has a known solution due to Huffman (1987) and calibration due to Krueger

and Kubler (2004) (KK).6 In the most extreme case where there are only three generations, a linear

forecasting rule for the aggregate capital stock results in an R2 statistic of .676 and a maximum percent

error of 3.17. In contrast the Smolyak method’s forecast performs very well resulting in an R2 statistic of

.999 and a maximum percent error of 0.07. While the performance of the KS method could be improved

by adding more moments, here that would mean the distribution could be completely summarized as

only the oldest two generations have positive capital holdings. Moreover, the Smolyak method is already

faster in this case than the KS method. The Euler-equation errors, a measure of household optimization

error, are similar across the two models with the KS method better in terms of maximum errors and the

Smolyak method better in terms of average errors.

Even when the KS method does work well, the Smolyak method may achieve a similar level of

accuracy and possibly be even faster to run. As for accuracy, in the modified Krusell and Smith (1998)

economy studied, I find the computed equilibria are virtually identical across methods both in terms of

optimization errors and simulated aggregate moments: Euler-equation errors for the Smolyak method

(-2.22 maximum and -4.97 average) are slightly smaller than those of the KS method (-1.89 maximum

and -4.79 average) and the simulated capital series are at most .28% apart. As for speed, the KS method

will typically be faster. However, this depends on the cost of household optimization relative to the cost

of simulation. In the KS economy, the former cost dominates and the Smolyak method takes 6.4 minutes

compared to 3.3 minutes for the KS method. However in the OLG economy, the latter cost dominates

when the number of generations is less than 50 making the Smolyak method faster.7

The Smolyak method may also be more intuitive than the KS method for certain classes of models. For

instance, dynamic models of voting do not typically have a natural “sufficient statistic” representation.8

5Even if the distribution has infinite dimension but is represented by a finite number of elements, as is the case when using
the method of Ŕıos-Rull (1997), the solution may be regarded as an approximate full rational-expectations equilibrium.

6A more realistic example where quasi-aggregation does not obtain comes from the equity premium literature. Chien,
Cole, and Lustig (2009) find that including even five moments of the distribution results in an R2 of only .50 to .75 when
forecasting the pricing kernel (cf. Table 2 of their paper).

7Parallelization of the household problem, which was not used, could shift this balance substantially in favor of the
Smolyak method. Value function iteration in particular is known to parallelize well (see Aldrich et al. 2011).

8An exception to this is Azzimonti, de Francisco, and Krusell (2006) where the mean and median of wealth are proven
to be sufficient statistics.
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Instead, researchers have typically used coarse histograms to summarize the distribution, as is done in

Krusell and Ŕıos-Rull (1999). While there is usually some way of approximating the aggregate state

space with just a few statistics, the Smolyak method provides an alternative that may be both feasible

and accurate, as it is in two non-trivial economies.

Since the seminal papers of Krusell and Smith (1997, 1998), many methods have been developed

to solve dynamic heterogeneous-agent models. For a thorough review of current methods the reader is

referred to the January 2010 special issue of the Journal of Economic Dynamics and Control “Compu-

tational Suite of Models with Heterogeneous Agents: Incomplete Markets and Aggregate Uncertainty.”9

I highlight a few of these that are most closely related to the Smolyak method. The first approach is

the “backward induction” method of Reiter (2010). As in the KS method, the aggregate state space is a

small set of statistics. A distinguishing aspect of his approach is that these statistics map into a specific

“proxy” distribution which agents use to make forecasts. A qualitatively similar approach is due to

Algan, Allais, and den Haan (2010): like Reiter (2010) they link a few moments to a specific distribution

but do so in a different way. A third approach is due to den Haan and Rendahl (2010). Roughly speaking,

they construct an approximation to the true policy function that results in exact aggregation. While

these methods have many merits, they place special structure on either the distribution (in the case of

Reiter 2010 and Algan et al. 2010) or on the policy functions (in the case of den Haan and Rendahl

2010) to construct a law of motion. The Smolyak method does neither of these.

In the same OLG economy studied here Krueger and Kubler (2004) use Smolyak interpolation to solve

for a full rational-expectations equilibrium with a large state space. Their approach differs from the one

I present because they make no distinction between individual and aggregate states.10 This means that

the same approximation must be used for both and so a higher-order Smolyak approximation (one that

grows quadratically or cubically in dimension) is required to achieve sufficient accuracy. Consequently,

their method can only handle economies with relatively small state-space dimensions.11

Smolyak interpolation is not the only method that could be used to include the distribution as a state

variable. In particular, the recently developed cluster-grid projection method of Judd, Maliar, and Maliar

(2010) is capable of handling problems of very large dimension. Relative to Smolyak interpolation, their

method provides greater flexibility in terms of where gridpoints are placed and which basis functions are

used. This comes at the cost of using weakly more gridpoints else equal.12 Whether the cluster-grid

projection method provides a feasible and accurate alternative to Smolyak interpolation in this context

is left as a question for future research.

This paper is organized as follows. Section 2 describes the Smolyak algorithm. Section 3 discusses

the the Smolyak method, i.e. the application of the Smolyak algorithm used to approximate equilibrium.

Section 4 presents the OLG and KS models and their calibrations. Section 5 discusses implementation

details specific to the models. Section 6 analyzes the performance of the Smolyak and KS methods.

9Volume 34 issue 1.
10For KK, the state space is a distribution of capital holdings k and a particular generation’s capital holdings is just

“read off” this distribution. However, by expanding the state space to (k,k) where k is a particular generation’s capital
holdings, it is possible to use a fine approximation for the individual state k and a coarse approximation for the aggregate
state k. Essentially this separates the role of prices, which are determined from k, from the role of individual wealth, which
is proportional to k. While in equilibrium k must be consistent with k, this only matters when simulating the economy
and is trivial to enforce.

11KK report that the Euler-equation errors and computation times increase rapidly in the number of generations. They
conclude their algorithm can only be applied if the number of generations is less than 30 (p. 19). The Smolyak method
presented in this paper can easily handle 100 generations and the maximum errors appear to asymptotically approach
−2.46 (roughly a 1 dollar mistake for every 300 dollars spent). See Table 4 of this paper.

12Judd et al. (2010) find the method works best (both in terms of accuracy and numerical stability) when the number
of gridpoints is larger than the number of basis functions. The authors argue that a 20% increase in the number of points
(relative to collocation which has the fewest possible number) has a “sizable effect on accuracy” (p. 30).
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Section 7 concludes. The appendix examines alternative implementations of the Smolyak method.

2 The Smolyak Algorithm

This section describes how functions can be approximated using the Smolyak algorithm. To distinguish

the algorithm from its application to approximating equilibrium, the latter is referred to as the Smolyak

method.

Let f be an arbitrary function mapping Rd to R with typical element x. The Smolyak algorithm is

best described in three steps which I present as a “black box.” See Krueger, Kubler, and Malin (2011)

(KKM) for a careful exposition of all the necessary steps. The code provided is organized similarly to

the description given here.13 Attention is restricted to the lowest level of approximation.14

Step 1 – Setup

Fix bounds x and x̄ in Rd on the state space such that x < x̄. These bounds define a hypercube. The

Smolyak algorithm then provides n := 2d + 1 collocation points {xi}ni=1 within this hypercube. The

advantage of the Smolyak algorithm lies in the construction of these points whose number grows only

linearly in dimension.

Step 2 – Polynomial Construction

Evaluate f at each of the n collocation points. The Smolyak algorithm then provides polynomial coeffi-

cients θ. The coefficients θ implicitly define an approximating polynomial f̂ .

Step 3 – Polynomial Evaluation

Given coefficients θ, the Smolyak algorithm provides a way to evaluate f̂ at arbitrary x (inside or outside

of the hypercube).

The collocation points and interpolating polynomial are constructed in such a way that the following

conditions are guaranteed:

1. f̂ agrees with f at each collocation point, i.e. f̂(xi) = f(xi) for all i ∈ {1, . . . , n}.

2. If f is a linear combination of the polynomials x2
j , xj , and 1 for j ∈ {1, . . . , d}, then f̂ agrees with

f everywhere in the hypercube.15

3. If f is not perfectly reproduced but is at least continuous then the polynomial f̂ is an almost

optimal approximation in a certain sense.16 In general, the less curvature f has, the better f̂ will

13The code is available at sites.google.com/site/greygordon. There are several alternatives to my code. In particular
“spinterp” is a free Matlab sparse-grid interpolation toolbox available at www.ians.uni-stuttgart.de/spinterp/. This
toolbox has more features than what I provide. Additionally, KKM provide Fortran routines.

14This is the only one that’s feasible for very large distributions. However for small to medium-sized distributions a
higher level of approximation may be feasible. It is easy to try a higher level of approximation when using the provided
code.

15Unfortunately there are no cross terms for this level of approximation. However, this does not prevent obtaining an
accurate solution for the two non-trivial economies considered in this paper.

16Barthelmann et al. (2000) show it is not the best (in the sense of minimizing the sup norm) interpolating polynomial,
but it is close to it in that it’s error bounds are the same up to a logarithmic factor in the number of collocation points.
See Theorem 2 and Remark 4 in their paper.
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be as an approximation.

For additional details on the algorithm and its properties, the interested reader is referred to KKM and

Barthelmann et al. (2000).

3 The Smolyak Method

This section describes the Smolyak method, that is the application of the Smolyak algorithm to approx-

imating equilibrium. First, a typical definition of equilibrium is redefined as a set of functions of only

the aggregate state. Second, the algorithm is used to approximate these functions.

3.1 Redefining Equilibrium

Let f represent a typical policy function, value function, price function, or law of motion. Without loss

of generality assume that f is a function of some “individual” state x ∈ X and an “aggregate” state

ω ∈ Ω that is common across functions.17 For notational convenience also assume X is shared by all

functions and is non-empty. A typical definition of equilibrium is then a possibly uncountable collection

of functions

{f(x;ω)} (1)

that satisfy conditions which are not explicitly stated such as optimality, budget balance, market clearing,

and consistency of a law of motion. Consider a new definition of equilibrium comprised of indexed

functions

F := {fx(ω)|fx(ω) = f(x;ω)∀x ∈ X,ω ∈ Ω} (2)

that satisfy implicitly the same conditions as before. Now the original equilibrium has been represented

as a (large) collection of functions of only the aggregate state.

3.2 Applying the Smolyak Algorithm

With equilibrium redefined, it is now straightforward to approximate it using the Smolyak algorithm.

First consider the easiest case where Ω is a subset of Rd for some d <∞ and X is a finite set.

1. Fix bounds ω and ω̄ on the the aggregate state space such that ω < ω̄.

2. Use the Smolyak algorithm to generate collocation points Ωc := {ωi}ni=1 where n = 2d+ 1.

3. Make a guess on fx(ω) for all x ∈ X and for each ω ∈ Ωc for each fx ∈ F . Alternatively, make

a guess on only a subset of F , but a subset that is sufficient to construct all the other functions

through equilibrium conditions.18

4. Use the Smolyak algorithm to construct approximations f̂x(ω). If the guesses were made for a

subset of F , then approximations will only be explicitly constructed for this subset with the other

functions approximated implicitly.

17Note that correspondences can be treated as a possibly uncountable collection of functions. Also note that if a function
does noes not depend on the aggregate state, it can just be regarded as a trivial function of the aggregate state.

18For instance, one could explicitly approximate consumption and price functions with the savings function be given
implicitly through the budget constraint.
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5. Determine whether the approximated functions nearly satisfy all the equilibrium conditions. If

they do, stop. If they do not, proceed from step (3) with new guesses. Alternatively change the

bounds and proceed from (1), explicitly approximate other functions in (3) and (4), or pursue

different definitions of equilibrium functions or the aggregate state space (e.g. using logs instead

of levels).19

While in abstract this is complicated, the process is simple. Basically, guess on function values at the

collocation points, construct Smolyak approximations, and check whether the approximated functions

constitute an approximate equilibrium.

The preceding algorithm assumed that X was a finite set and that Ω had finite dimension. If X is

not a finite set, then f(x;ω) for fixed ω must be approximated by its values in a finite set X̃. This set

will typically just be the nodes used for an interpolation, projection, or quadrature method. If ω ∈ Ω has

infinite dimension, then it must be approximated using a vector ω̃ in a subset Ω̃ of Rd for some d <∞.

If ω is a distribution, then a natural way to accomplish this is with the method of either Ŕıos-Rull (1997)

or Young (2010).20 If ω is not a distribution, then some other method must be used which will depend

on the application. Using X̃ and Ω̃ in place of X and Ω, the algorithm above can then be applied.

4 Models and Calibrations

This section describes the OLG and KS models and calibrations. In the case of the OLG economy, an

analytic solution is also given. The OLG model is setup to be qualitatively similar to the KS model so

that both feature capital, inelastic labor supply, production, total factor productivity shocks, and log

utility. The model calibrations are similar in several respects but differ drastically with respect to time

discounting and depreciation.

4.1 OLG economy

The OLG economy is very similar to Kubler and Krueger (2004) and based on Huffman (1987). The

model is setup in sequential rather than recursive form to simplify notation.

A neoclassical production firm operates a production technology ztF (Kt, Nt) = ztK
α
t N

1−α
t with

α ∈ (0, 1) that uses as inputs capital Kt rented at rate rt and labor Nt hired at wage wt and is subject to

a productivity shock zt that evolves according to a Markov chain. Capital depreciates at a stochastic rate

δt that also evolves according to a Markov chain. The firm takes prices as given and so the equilibrium

rental and wage rates are rt = ztα(Kt/Nt)
α−1 and wt = zt(1− α)(Kt/Nt)

α respectively.

Households consist of generations 1 through T < ∞ with no intra-generational heterogeneity. The

measure of households is constant across generations with the total measure of households normalized

to T . It is assumed, and this is key for tractability, that households have log utility, a strictly positive

labor endowment in their first period of life, and no labor endowment for the rest of their life. The time

t labor endowment of the youngest generation denoted l1t and normalized to T is supplied inelastically

resulting in total labor supply Nt = 1(= l1t /T ). The time t labor endowment for generation i in 2, . . . , T

is denoted lit and is equal to zero. At time t = 0, households are endowed with capital holdings denoted

by a vector k0 = (k1
0, k

2
0, . . . , k

T
0 ) where kit denotes the capital holdings of generation i at time t. The

19One could also check whether a higher level of approximation is feasible.
20These methods handle distributions of the type µ(a, s) where a ∈ [a, ā] and s ∈ S where S is a finite set. If S is infinite,

it must be discretized.
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resulting time 0 aggregate capital endowment is K0 =
∑

k0/T . Assume that newborn households have

zero capital holdings.

Households maximize expected discounted lifetime utility subject to a budget constraint, nonnegative

consumption, and a natural borrowing limit (equal to zero). The budget constraint at time t is given by

cit + ki+1
t+1 = (1 + rt − δt)kit + wtl

i
t (3)

for generations i ∈ {1, . . . , T − 1} and

cit = (1 + rt − δt)kit + wtl
i
t (4)

for generation i = T . Utility of a household beginning life in period t is given by

Et
T∑
j=1

βj−1 log(cjt+j−1) (5)

where β ∈ (0, 1) is the time discount factor.

The necessary and sufficient first-order condition of an age i < T household at time t is given by

1/cit = βEt(1 + rt+1 − δt+1)/ci+1
t+1. (6)

Using backward induction, the solution to the household problem is shown to be

ki+1
t+1 = γi(1 + rt − δt)kit

k2
t+1 = γ1wtl

1
t

γi =
β
∑T−1−i
j=0 βj∑T−i
j=0 β

j

(7)

for all i in {1, . . . , T − 1} and for all t. Note that γi is the marginal propensity of generation i to save

and is constant.

With this solution to the household problem, it is straightforward to calculate the law of motion. Let

the time t distribution of capital holdings across generations be given by the vector kt = (0, k2
t , . . . , k

T
t ).

Then the time t capital stock is Kt =
∑

kt/T , and since total labor supply equals one, the marginal

product of capital is rt = ztαK
α−1
t and the marginal product of labor is wt = zt(1 − α)Kα

t . Using (7),

the time t+ 1 distribution of capital holdings is shown to be

kt+1 = (0, γ1wtl
1
t , γ

2k2
t (1 + rt − δt), . . . , γT−1kT−1

t (1 + rt − δt)) (8)

which is a correspondence of only the time t aggregate shocks (δt, zt) and distribution kt. This law of

motion will be used to check the forecast accuracy of both the KS and Smolyak methods. Equilibrium

is given by the capital policies in (7), the law of motion in (8), and competitive factor prices. Goods

market clearing is ensured by Walras’ law.

4.2 KS economy

The KS economy used is a slightly modified version of the original KS (1998) model and is laid out in den

Haan, Judd, and Juillard (2010) (dHJJ). The only difference between the two is dHJJ add unemployment
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insurance so that the zero-borrowing constraint is sometimes binding. The model is setup in recursive

form to save on notation.

A neoclassical production firm operates a production technology zF (K,N) = zKαN1−α with α ∈
(0, 1) that uses as input capital K rented at rate r and labor N hired at wage w and is subject to

a productivity shock z. The productivity shock z takes on one of two values z ∈ {g, b} and evolves

according to a Markov chain Πzz′ . Capital depreciates at a constant rate δ. Perfect competition ensures

r = zα(K/N)α−1 and w = z(1− α)(K/N)α.

Households have stochastic employment status s taking on one of two values s ∈ {1, 0} with s = 1

representing employment and s = 0 representing unemployment. Employed workers receive a labor

endowment ē that they supply inelastically to the firm for labor income wē. Unemployed workers receive

unemployment insurance equal to wū from the government. Unemployment insurance is funded by the

government which levies labor income tax τ on employed workers and runs a balanced budget.

Employment status evolves with the productivity shock according to a Markov chain Πss′,zz′ . The

(exogenous) stock of unemployed workers U is assumed to be a function of only the current shock and

so is denoted Uz.
21 The employment process implies total labor supply is known as a function of z with

Nz = (1 − Uz)ē. For the government budget to balance, τ must be a function of z with τz = ū
ē

Uz

(1−Uz) .

Households seek to maximize the expected discounted lifetime log-utility of consumption discounted at

rate β.

The problem of the household is

V (k, s; z, µ) = max
c,k′

log(c) + β
∑
s′z′

Πss′,zz′V (k′, s′; z′, µ′) (9)

subject to

c+ k′ = (1 + r − δ)k + swē(1− τz) + (1− s)wū

c ≥ 0

k′ ∈ [0, k̄]

µ′ = Γzz′(µ)

(10)

where r = r(z, µ) and w = w(z, µ), µ is a joint distribution of capital holdings and employment status

across households (giving K and N), and k̄ is an exogenous upper bound on possible capital choices

(chosen large enough so as to not be binding in equilibrium). Equilibrium is a collection of policy, value,

and price functions c, k′, V, r, w, together with a law of motion Γzz′ (for each z, z′) such that V , c and k′

solve the household problem taking r, w and Γzz′ as given, factor prices r and w are competitive, and the

law of motion Γzz′ is consistent with individual policies and exogenous transition probabilities. Goods

market clearing is ensured by Walras’ law. Unfortunately, there is no known solution for this model.22

4.3 Calibration

For the OLG economy, I focus on the extreme calibration presented by KK in which quasi-aggregation

fails for small T . Depreciation takes on one of two values δ ∈ {0.9, 0.5} and the productivity shock

takes on one of two values z ∈ {1.05, 0.95}. Both of these are iid and the four combinations of δ and z

21For ease of exposition I setup the model as being “initialized” from a long-run distribution. In general U and as well
as N and τ must be determined from the distribution.

22Interestingly though, there is a solution for a “nearby” economy. If all households are unemployed, there is no
unemployment insurance, and the production technology is zKα, then the equilibrium capital policy function is k′ =
β(1 + r − δ)k. This is the limiting case of the Huffman (1987) example.
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occur with equal probability Πδz = 1/4. The discount factor β is taken to be .7. The parameters are

summarized in Table 1.

Parameter Value
β .70
α .36
δ [.9,.5,.9,.5]
z [1.05,1.05,.95,.95]

Πδz 1/4

Table 1: OLG Calibration

For the KS economy, the calibration is the same as in dHJJ which is only a slight modification of the

original KS calibration. The calibration matches select business-cycle statistics at a quarterly frequency.

Relative to the OLG calibration, households are much more patient with a discount factor of .99, capital

depreciates much more slowly at .025, the productivity shocks are somewhat smaller at 1.01 and .99,

and the productivity shock is not iid but has persistence Πgg = Πbb = 7/8. All the parameters including

the employment process parameters are listed in Table 2.

Parameter Value Parameter Value
β .99 Π00,gg

1
3Πgg

α .36 Π00,bb
3
5Πbb

δ .025 Π00,gb
5
4

Π00,bb

Πbb
Πgb

ē, ū 10/9, .15 Π00,bg
3
4

Π00,gg

Πgg
Πbg

Ug, Ub .04, .1 Π10,zz′ (Uz′ − Uz
Π00,zz′

Πzz′
)/(1− Uz)Πzz′

g, b 1.01, .99 Π01,zz′ Πzz′ −Π00,zz′

Πgg,Πbb 7/8, 7/8 Π11,zz′ Πzz′ −Π10,zz′

Table 2: KS Calibration

5 Implementation

This section discusses implementation issues specific to solving the OLG and KS economies using both

the Smolyak and KS methods. In abstract, the procedure for computing equilibrium is the same across

both economies and both methods. Fixing a law of motion, backward induction along with Carroll’s

(2006) endogenous gridpoints method is used to solve the household problem. The household capital

policies are then used to update the law of motion. This procedure is repeated until the change in the

consumption policy and law of motion is less than 10−7 in levels. The rest of this section discusses the

solution procedures in more detail.

5.1 Specific Implementation for OLG

There are several implementation choices to be made when using the Smolyak method to compute the

OLG economy. One pertains to representing the distribution of capital holdings. In particular, the

distribution can be represented as in the theoretical model by using the levels of capital holdings across

agents, k = (0, k2, . . . , kT ). However, one can instead use (K, s) where s represents the capital holding

shares s = k/
∑

k. Of course it is possible to switch between the state spaces using k = sKT , but the

10



two state spaces will result in different numerical solutions. It was found that using (K, s) produced

less error in both the forecasted capital stock and in the Euler equations, and so this is adopted as the

benchmark method. The appendix presents accuracy numbers for the other state space representation.

The state space bounds were taken to be ±20% of the (non-stochastic) steady-state capital stock and

±40% of the steady-state share distribution. In general, it is a good idea to place state space bounds as

±X% of the steady-state values as this will cluster the collocation points around the steady-state values.

Another implementation choice applies only if using shares in the state space and regards handling

of the restriction
∑

s = 1. The Smolyak algorithm is not designed to handle this case because it gives

collocation points {(K, s)} ⊂ RT+1 that in general will not satisfy this restriction. The method I adopt

is to use a mapping from the hypercube [0, 1]T into the unit-simplex ∆(T − 1) ⊂ [0, 1]T . In particular,

given a collocation point (K, s̃) with
∑

s̃ 6= 1, the mapping s = s̃/
∑

s̃ is used to recover (K, s) with∑
s = 1. For the reverse mapping, s̃ = s is used. The appendix explores a different mapping that is

more uniform in a probabilistic sense but produces a worse approximation.

A final implementation choice regards simulating the economy. One can construct an approximation

to the law of motion and use it to find the distribution of capital next period. Alternatively, one can

construct approximations to the capital policy functions and use these to find the distribution. In

solving the model, this is a non-issue because the two agree at the collocation points. It was found that

approximating the capital policies produced less error, and so this is adopted in the benchmark. The

appendix presents accuracy numbers for the other method.

To solve for equilibrium using the KS method, the law was updated by non-stochastically simulating

the economy for 5000 periods, discarding the first 1000 periods, and using least squares regression to

obtain a new law of motion (no relaxation was used).23 The grid for aggregate capital was set to cover

±60% of the steady-state capital stock with 11 evenly-spaced points. A linear rather than log-linear

functional form for the law of motion was assumed but the two result in nearly identical approximations.24

5.2 Specific Implementation for KS

To solve for equilibrium in the KS economy using the Smolyak method, the following implementation

was used. After choosing a set K of capital gridpoints, the infinite-dimensional distribution µ(k, s)

over k ∈ [0, k̄], s ∈ {0, 1} was approximated by a discrete distribution µ̃(k, s) over k ∈ K, s ∈ {0, 1}
using the method of Young (2010). The capital grid was constructed using 100 gridpoints resulting

in a distribution of dimension 200. Typically the population would be normalized to unity implying

the restriction
∑
µ̃(k, s) = 1 in which case the collocation points would not all satisfy this restriction.

However, all that matters for prices is the capital-labor ratio, and so I did not impose this.25 The bounds

on the state space were taken to be ±100% of the steady state-distribution.26 Instead of iterating to

convergence on the household problem every time before updating the law, it was found that iterating

only ten times converged to arbitrary precision, did not require relaxation, and was fast (this process

was repeated until both the law of motion and policies fully converged).

To solve for equilibrium using the KS method, the law was updated by non-stochastically simulating

the economy for 5000 periods, discarding the first 1000 periods, and obtaining new coefficients through

23No relaxation was used for the Smolyak method either.
24The Smolyak method’s law of motion was also represented using levels so this makes for a straightforward comparison.

In section 6 I argue no functional form will result in quasi-aggregation for small T .
25Originally the collocation points {µ̂} were mapped into the simplex using the transformation µ̃ = µ̂/

∑
µ̂. However, it

was found that not using this mapping resulted in smaller Euler-equation errors and a more stable solution.
26This isn’t entirely true as a small constant 10−6 was added to the upper bound to ensure the hypercube had positive

volume. Also, in general a lower bound of zero could cause problems, but this won’t be the case when the level of
approximation is one as it is here.
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least squares regression. The law was only updated after iterating to convergence on the household

problem. When updating the law, a relaxation parameter of .5 was used as a looser value of .25 did not

converge. The grid for aggregate capital was set to cover ±30% of the steady-state capital stock using

11 evenly-spaced points. A linear functional form for the law of motion was assumed.

6 Performance

This section analyzes the performance of the Smolyak and KS methods in computing the OLG and KS

economies.

6.1 OLG economy

To evaluate the accuracy of the Smolyak and KS solution methods for the OLG economy, I focus on

capital-stock forecast errors and Euler-equation errors along a long simulated path. The path is simulated

using the true law of motion. The simulation length is set to 15000 periods and the first 1000 periods

are discarded.

To assess the accuracy of the approximate law of motion, the one-step ahead capital-stock forecasts

are compared with the realized values in several ways. One measure of the accuracy is given by the

largest forecast error |K̂ ′ −K ′|/K ′ observed during the simulation where K̂ ′ is the forecasted value and

K ′ the actual. Another measure is the R2 statistic which indicates how much of the variation in K ′ is

explained by K̂ ′.27 As there is a separate approximate law of motion for each (δ, z) pair, there are four

R2 statistics and the worst of these is referred to as “minimal R2.” For the KS method, an upper bound

on the minimal R2 value is found by running a linear regression ex post on the simulated data. As a

robustness check, a log-linear regression is also run to calculate the best minimal R2 were a log-linear

law of motion to be assumed for the KS method. The maximum error, minimal R2, and best-possible

minimal R2 values are reported in Table 3.

Max % Error Minimal R2 Best Minimal R2

T KS Smolyak KS Smolyak Linear Log-Lin
3 3.17 0.07 .67568 .99940 .67587 .67635
6 1.03 0.27 .99505 .99987 .99520 .99766
10 1.05 0.65 .99784 .99982 .99792 .99982
25 1.04 0.85 .99807 .99981 .99816 .99984
50 1.04 0.85 .99807 .99980 .99816 .99984
100 1.04 0.85 .99807 .99980 .99816 .99984

Table 3: Error in the Law of Motion

When the number of generations is small, the Smolyak method performs much better than the KS

method. The KS method produces maximum errors as large as 3.17% and an R2 value as low as .676.

In contrast, the Smolyak method’s maximum error is only .07% and its minimal R2 statistic is .999.

That the Smolyak method performs better in this case is confirmed visually in Figure 1 which plots

the capital-stock forecasts made by both the Smolyak and KS methods with the true values. While the

Smolyak forecasts and true values are virtually indistinguishable, the KS forecasts deviate noticeably.

The reason quasi-aggregation fails to obtain for small T is clear. When there are only three gen-

erations, marginal propensities to save (which are roughly .54, .41 and 0 for generations 1, 2, and 3

27Formally this is computed as R2 = 1−
∑

(K̂′ −K′)2/
∑

(K′ − K̄′)2 where the summation is over a particular sample
and K̄′ is the sample mean of next period’s capital stock.
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Figure 1: Capital Stock Forecasts for T = 3

respectively) differ substantially. Moreover a generation’s share of total capital and labor income fluc-

tuates greatly because of large depreciation shocks that only affect capital-rich generations. When the

youngest generation holds most of the income, the aggregate propensity to save is roughly .54. If instead

the middle-aged or oldest generation holds most of the income, the aggregate propensity to save is closer

to .41 or 0 respectively. Hence what matters here is not just aggregate income (given by the capital

stock), but also the share of income held by each generation which varies substantially with the history

of aggregate shocks. As argued in KK, if either the marginal propensities to save were similar or the

distribution did not vary much, quasi-aggregation would obtain.

Furthermore, this failure of quasi-aggregation for small T is not due to the chosen functional form of

the law of motion. This is made clear in Figure 2 where a scatter plot of today vs tomorrow’s capital

stock is contrasted against the best linear rules (one for each pair of shocks) one could have. While a

linear rule does not work well, this figure also demonstrates that any forecast rule that is a function of

today’s shocks and capital stock will fail to produce a good fit because the capital stock “clouds” are

stacked one on another.

For a larger number of generations, the KS and Smolyak method result in similar performance. For

example, when there are 100 generations, the maximum observed error is 1.04% for the KS method

and 0.85% for the Smolyak method with minimal R2 values of .9981 for the KS method and .9998 for

the Smolyak method. The KS method’s performance noticeably improves as T is increased, while the

Smolyak method’s performance improves by one measure and worsens by another.

The reason for the KS method’s improved performance is clear. In the limiting economy as T goes

large, γi, the marginal propensity to save of generation i, converges to β for any fixed i. Hence nearly

all households have nearly the same marginal propensity to save resulting in quasi-aggregation. Since

quasi-aggregation obtains, the KS method performs well.

While quasi-aggregation obtains for large T , the Smolyak method’s performance does not noticeably

improve, in fact worsening by one measure. However, the advantage of the Smolyak method is that,
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Figure 2: Today vs Tomorrow’s Capital Stock for T = 3

by keeping track of the entire distribution, its performance is not tied to quasi-aggregation. Rather,

the method’s performance hinges on the polynomial structure of the law of motion which does not

fundamentally change as T increases.

To test the accuracy of the household policy functions, both maximum and average Euler-equation

errors are computed along the simulated path. The errors are computed following Judd (1992) as

EEEit(ωt) = log10

∣∣∣∣∣1− u′−1(βEu′(ci+1
t+1(ki+1

t+1(kit;ωt); ω̂t+1))R(ω̂t+1))

cit(k
i
t;ωt)

∣∣∣∣∣ (11)

where R(ω̂t+1) = 1 + zt+1αK̂
α−1
t+1 − δt+1 and u(·) = log(·). For the Smolyak method, ωt = (zt, δt,Kt, st),

ω̂t+1 = (zt+1, δt+1, K̂t+1, ŝt+1), and (K̂t+1, ŝt+1) is the aggregate state next period according to the

perceived law of motion. For the KS method, st and ŝt+1 are simply dropped from the definition of ωt

and ω̂t+1. The interpretation of these errors, derived from Judd and Guu (1997), is that a one-dollar

mistake in optimization is made for every 10−EEE
i
t dollars spent. For example, if EEEit is −3, then a

one-dollar mistake is made for every 1000 dollars spent. Note that as has typically been done in the

literature the Euler errors are measured with respect to the perceived state next period. In this sense

they isolate household optimization error conditional on a law of motion from error in the law of motion.

Table 4 reports the maximum and average errors (across both generations and time). For the most

part, the optimization errors of the two methods are comparable. Whereas the KS method results

in smaller maximum errors, the Smolyak methods results in smaller average errors. For large T , the

maximum percent errors for the Smolyak method are noticeably larger than those for the KS method

and result in a one-dollar mistake for every 290 dollars spent compared to 830 for the KS method. The

performance of both methods tends to decrease as T increases but appears to level off for T ≥ 25.

Despite using a fairly coarse approximation for the aggregate state, the Smolyak method produces

both optimization errors and errors in the law of motion that are quite small. Having an analytic
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Max Euler Errors Avg Euler Errors
T KS Smolyak KS Smolyak
3 -3.15 -3.28 -4.17 -4.42
6 -3.08 -2.99 -3.98 -4.15
10 -2.91 -2.65 -3.81 -4.18
25 -2.92 -2.46 -3.82 -4.14
50 -2.92 -2.46 -3.82 -4.13
100 -2.92 -2.46 -3.82 -4.13

Table 4: Euler-Equation Errors in the OLG Economy

solution makes it possible to see why this is the case. The chosen implementation of the Smolyak

method effectively constructs an approximation of the function

ki+1,ki,z,δ(K, s) = γi(1 + zαKα−1 − δ)ki (12)

for each i > 1, ki in a grid, and (z, δ) combination (i = 1 is similar). Because α is in (0, 1), this function

is not a polynomial. Hence, away from the collocation points the approximation is not perfect. However,

note that this is a function of only one variable, K, and that the polynomial basis used has terms K

and K2. Because of this, the approximation is quite good for any generation and any level of capital

holdings.

It is also possible to see what indexing the policy functions and separating the individual from the

aggregate state accomplishes. If the policy function were not indexed, then the Smolyak approximation

would be applied to

ki+1,z,δ(ki;K, s) = γi(1 + zαKα−1 − δ)ki (13)

which has a term ki and a cross term kiKα−1. To capture the impact of this cross term, one would need

a finer Smolyak approximation. If in addition the aggregate and individual states were combined, the

Smolyak approximation would be applied to

ki+1,z,δ(K, s) = γi(1 + zαKα−1 − δ)siKT (14)

which has cross terms siK and siK
α. This also would require a higher level of approximation. Index-

ing policy functions and separating the individual and aggregate states makes a fairly coarse Smolyak

approximation accurate.

Now the running times of the two methods are briefly considered. It is important to remember that

while the Smolyak method’s aggregate state space grows linearly in T , the KS method’s aggregate state

space does not grow at all. Hence, for large T it is guaranteed that the KS method will be faster. However,

for small T , the Smolyak method may be faster because it doesn’t need to simulate the economy in order

to update the law of motion. Table 5 reports the running times. For T < 50, the Smolyak method is

faster than the KS method, for T = 50 the times are roughly even, and for T > 50 the KS method is

faster. Note that while computation time for the KS method grows linearly (roughly) in the number of

generations, it grows quadratically for the Smolyak method.
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T KS Smolyak
3 0.12 .004
6 0.20 0.02
10 0.25 0.05
25 0.59 0.29
50 1.21 1.18
100 2.29 4.97

Table 5: Running Times in Minutes for the OLG Economy

6.2 KS economy

Because the KS economy does not have an analytic solution, it is difficult to assess the accuracy of the

KS and Smolyak methods. This is especially true for the Smolyak method. To test the law of motion,

researchers have typically compared simulated series generated using only household policies with series

generated using an approximate law of motion. This is not really applicable to the Smolyak method:

if the law of motion is not explicitly approximated but rather given implicitly by the policy functions,

then there is no disagreement between the series. In other words, the Smolyak method has an R2 of 1

in this case. However, that does not mean there is no error in the law of motion because interpolating

the policies is not typically an error-free process.

In light of this the accuracy of the Smolyak method is assessed in three ways. The first is to compute

Euler-equation errors with respect to the realized aggregate state next period rather than the perceived

aggregate state. This measure gives an idea of how much error in the law of motion translates into error

in household optimization. The second is to compare the capital-stock series from the Smolyak and

KS simulations. In addition to the convincing argument made by KS that their computed equilibrium

must be close to the true equilibrium, many different solution methods have computed nearly the same

equilibrium as the KS method (cf. den Haan 2010). Hence the KS method’s solution can be used as an

accuracy check. The third and final test is the comparison of a simulated series generated by explicitly

approximating the capital policies with a simulated series generated by explicitly approximating the

law of motion. Because it is possible to simulate the economy with either approximation, this may be

helpful in assessing how well the Smolyak method is working.28 These three tests are conducted using a

simulation length of 5000 periods with the first 1000 periods discarded. The accuracy of the KS method

is assessed with the first test and also the typical comparison of the forecasted and realized capital-stock

sequences.

First, Euler-equation errors are computed along the simulated path and both the maximum and

average errors reported. The Euler errors are calculated analogously to (11) except that the rental rate

and consumption next period are found using the realized next-period moment or distribution and the

errors are only counted if the capital choice is strictly positive.29 The errors for the Smolyak method are

slightly smaller in both maximum and average terms but in this measure the KS and Smolyak methods

are roughly equivalent.

Second, the capital sequence generated by the KS method is compared with that of the Smolyak

method. Table 7 reports the maximum and average differences between the Smolyak and KS aggregate

capital series and Figure 3 plots them. Visually the series are almost indistinguishable although at

28This is not sure to be helpful however because the capital policies and law of motion have different properties. For
instance, typically the law of motion will vary with the distribution even if the capital policy does not. In this case it would
be better to approximate the capital policies and compute the law of motion indirectly.

29When the capital choice equals zero, the no-borrowing constraint is almost certainly binding in which case the Euler-
equation error is not useful.
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Max Euler Errors Avg Euler Errors
KS Smolyak KS Smolyak

-1.89 -2.22 -4.79 -4.97

Table 6: Euler-Equation Errors in the KS Economy

times the Smolyak series lies slightly below the KS one. Over the entire simulation the series exhibit a

maximum difference of only 0.28% and an average difference of 0.14%. However, while this difference

is small, it is systematic with the average non-absolute difference also being 0.14% (measured using the

Smolyak series subtracted from the KS series) confirming what was noticed visually. As the KS method

is likely very close to the truth, the proximity of these two series confirms the accuracy of the Smolyak

method for this economy.
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Figure 3: Simulated Capital Sequence Comparison

Max Abs (%) Mean Abs (%) Mean (%) (KS-Smolyak)
0.278 0.141 0.141

Table 7: Simulated Capital Sequence Comparison

Third and finally, the maximum and average capital-stock “forecast errors” at 1, 25, and 100-steps

ahead are examined. As already mentioned, the errors for the Smolyak method are not forecast errors

in the typical sense, but rather the discrepancy in capital-stock series constructed by two simulation

methods. For the KS method, I proceed as usual comparing the forecasts made by the perceived and

actual law of motion. Table 8 reports the errors, which are clearly small for both methods: even 100-steps

ahead the capital stock forecast is off by at most 0.18% for the Smolyak and 0.15% for the KS method.

The KS method outperforms the Smolyak method in all measures except the R2, but its performance

tends to deteriorate faster as the forecast length increases. Of note is the systematic bias in the Smolyak’s
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1-Step Forecast 25-Step Forecast 100-Step Forecast
KS Smolyak KS Smolyak KS Smolyak

R2 .999999 .999998 .999780 .999918 .999474 .999888
Max Abs (%) .0073 .0204 .1007 .1533 .1530 .1882
Avg Abs (%) .0021 .0026 .0346 .0454 .0554 .0769

Avg (%) -.0013 .0026 -.0211 .0454 -.0349 .0769

Table 8: Law of Motion Forecast Errors in the KS Economy

forecasts as seen in the mean absolute errors being the same as the mean errors. While the KS method is

guaranteed to be correct on average (because it makes unbiased forecasts by construction), the Smolyak

method is guaranteed to be correct only as the level of approximation goes large. It appears however

that the lowest level of approximation produces small errors in the KS economy just as it does in the

OLG economy.

Since the Smolyak method places no restrictions on the functional form of the law of motion and

appears to be accurate, it is interesting to ask whether the Smolyak-approximated economy exhibits

quasi-aggregation. I test this by running linear and log-linear regressions ex post on the simulated capital

stock series from the Smolyak method. As should have been expected, the fit is extremely good with all

the R2 values exceeding .999999. This verifies directly, inasmuch as the Smolyak solution approximates

the truth, that KS’s argument for quasi-aggregation was indeed correct: only the mean matters for this

model.

The running times of the two methods are now briefly considered. While the KS method (paired

with Carroll’s 2006 endogenous gridpoints method) is very fast at 3.25 minutes, the Smolyak method is

also quite fast at 6.37 minutes. The Smolyak method performs quite well in this regard as it has 401

collocation points compared to the KS method’s 11 moment gridpoints. Its comparative advantage lies

in avoiding the simulation step where much of the computation time is spent for the KS method.

7 Conclusion

The Smolyak method is a promising technique for computing equilibrium in dynamic heterogeneous-agent

economies. While including a distribution as a state variable massively increases the dimensionality of

the state space, the Smolyak sparse-grid interpolation algorithm makes this increase manageable. This

technique developed in Smolyak (1963) and Barthelmann et al. (2000) shows great promise for economic

applications as Krueger and Kubler (2004) first illustrated. The application of the Smolyak algorithm

here results not only in tractability, but also in very good accuracy. In the KS economy the Smolyak

method produces errors similar to those of the KS method. In the OLG economy, the Smolyak method

performs much better than the KS method when the number of generations is small because it does

not rely on quasi-aggregation which fails in this case. Moreover, for models where the distribution is

finite dimensional, like in the OLG model, the method can be regarded as solving for a full rational-

expectations equilibrium. In models where the distribution is infinite-dimensional, like in the KS model,

the method comes very close to a full rational-expectations equilibrium.

Keeping track of the distribution does come at a cost: the Smolyak method is not as easy to implement

nor as fast as the KS method in most cases. With regards to implementation, the code provided with

this paper is meant to reduce the programming costs as much as possible. With this code in hand, the

Smolyak algorithm is not much more complicated than any other interpolation scheme: values at a few
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predefined points define an interpolating function. With regards to speed, this paper has shown the

Smolyak method need not be much slower than the KS method. For models with larger aggregate state

spaces or where Carroll’s (2006) efficient solution method cannot be used, parallelization (which has not

been used in this paper) could prove very helpful as the work by Aldrich et al. (2011) has shown.

While the application of the Smolyak algorithm here has been to approximating full-rationality

equilibrium as closely as possible, the Smolyak algorithm could also be useful in solving for bounded-

rationality equilibrium quickly and accurately. While many methods could benefit from the Smolyak

algorithm, of particular promise is the explicit aggregation technique of den Haan and Rendahl (2010).

This method avoids the simulation step of the KS method by explicitly aggregating “auxiliary” policy

functions. In its most basic implementation, the auxiliary policy functions are constructed to be linear

in asset holdings but as close as possible to the original policies. Because the auxiliary policies are lin-

ear, they aggregate perfectly and the minimal aggregate state space is average capital holdings for each

type of agent. Having more types of agents or more curvature in the auxiliary policy functions requires

having more moments, but Smolyak interpolation is well adapted to handling this increase in aggregate

moments. This pairing of den Haan and Rendahl’s (2010) method with the Smolyak algorithm could

achieve some of the benefits of the Smolyak method (no simulation, high accuracy) while being extremely

efficient. The exploration of this idea is left for future research.
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Appendix

This appendix explores alternative implementations of the Smolyak method in the context of the OLG

economy (which has a known solution). Four different implementations are considered and their descrip-

tions are given below.

Sm1 – Benchmark Implementation

The state space uses shares s; the mapping from s̃ in the cube to s in the simplex is s = s̃/
∑

s̃ and the

reverse mapping is s̃ = s; and the distribution is forecasted using an approximated capital policy function

(not an approximate law of motion). Because of the loss in dimension in mapping to the simplex, there

are many reverse mappings into the cube.30

Sm2 – Alternative Mapping

The state space uses shares s; the mapping from s̃ in the cube to s in the simplex is s = − log(s̃)/
∑
− log(s̃)

and the reverse mapping is s̃ = e(10 log(.5)s); and the distribution is forecasted using approximated policy

functions. The mapping is motivated by a method of drawing uniformly from a unit simplex (which

is accomplished by drawing from the Dirichlet distribution with concentration parameter equal to 1).

Several reverse mappings were tried, but the one used worked best.31

Sm3 – Simpler State Space

The state space uses levels of capital stock for each generation k; there is no mapping; and the distribution

is forecasted using an approximated capital policy function.

Sm4 – Simpler State Space, Alternative Simulation Method

The state space uses levels of capital stock for each generation k; there is no mapping; and the distribution

is forecasted using an approximated law of motion.

The accuracy numbers for the laws of motion are displayed in Table 9. For space, the R2 values are

rounded to three decimal places. Alternative implementations of the Smolyak method display similar

characteristics to the benchmark implementation: each outperforms the KS method for small T (which

is when quasi-aggregation breaks down) and the performance of each implementation decreases as the

number of periods increases. Sm1 and Sm2 display similar errors which are less than the errors of Sm3

and Sm4. This suggests that the precise mapping of shares may not matter as much as the choice of

whether or not to use shares. That Sm1 and Sm2 perform better than Sm3 and Sm4 is likely due to the

ability of Smolyak interpolation to achieve high accuracy in one dimension relative to accuracy in several

dimension as discussed in the main text. Because Sm1 and Sm2 include K in the state space directly

rather than indirectly through K =
∑

k/T , Sm1 and Sm2 exploit this feature of the Smolyak algorithm

and so capture more of the general equilibrium effects.

30It’s unclear which of these reverse mappings is optimal, but the identity mapping is a natural choice.
31In some sense, the reverse mapping s̃ = e(T log(.5)s) should be optimal because most of the time,

∑
− log(s̃) is equal

to −T log(.5). Numerically however, raising values to such a large power creates instability. I found s̃ = e(10 log(.5)s) works
fairly well.
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Max % Error Minimal R2

T KS Sm1 Sm2 Sm3 Sm4 KS Sm1 Sm2 Sm3 Sm4
3 3.17 0.07 0.07 0.22 0.37 .676 .999 .999 .997 .996
6 1.03 0.27 0.27 0.84 1.25 .995 1.000 1.000 .996 .992
10 1.05 0.65 0.66 1.42 1.85 .998 1.000 1.000 .995 .989
25 1.04 0.85 0.86 1.66 2.14 .998 1.000 1.000 .994 .987
50 1.04 0.85 0.86 1.66 2.14 .998 1.000 1.000 .994 .987
100 1.04 0.85 0.86 1.66 2.14 .998 1.000 1.000 .994 .987

Table 9: Accuracy of the Law of Motion

The Euler equation errors are reported in Table 10. Again, the alternative implementations display

similar patterns to the benchmark one: the errors are smaller than the KS method errors for T = 3 but

increase in the number of generations. Again, Sm1 and Sm2 fair better than Sm3 and Sm4, with Sm1

outperforming Sm2 most of the time. While the KS method tends to produce less error, the errors of

the Smolyak implementations would not typically be considered large, at least in terms of average errors.

Note that Sm3 and Sm4 have the exact same solution but different simulations (and so result in different

maximum and average errors along the simulation path).

Max Euler Errors Avg Euler Errors
T KS Sm1 Sm2 Sm3 Sm4 KS Sm1 Sm2 Sm3 Sm4
3 -3.15 -3.28 -3.28 -3.27 -3.27 -4.17 -4.42 -4.41 -4.19 -4.16
6 -3.08 -2.99 -3.05 -2.24 -2.14 -3.98 -4.15 -4.11 -3.25 -3.27
10 -2.91 -2.65 -2.24 -1.94 -1.82 -3.81 -4.18 -3.71 -3.06 -3.08
25 -2.92 -2.46 -2.12 -1.86 -1.72 -3.82 -4.14 -3.73 -3.01 -3.03
50 -2.92 -2.46 -2.20 -1.86 -1.72 -3.82 -4.13 -3.82 -3.01 -3.03
100 -2.92 -2.46 -2.28 -1.86 -1.72 -3.82 -4.13 -3.92 -3.01 -3.03

Table 10: Accuracy of the Policy Functions

The running times for the various implementations are reported in Table 11. As running times are

virtually the same for Sm1 as Sm2 and Sm3 as Sm4, I only report joint Sm1/Sm2 and Sm3/Sm4 times.

The Sm3 and Sm4 implementations take slightly longer to run than the Sm1 and Sm2 implementations.

This is not because the actual interpolation takes any longer but because extra iterations required for

the law of motion to converge, which is itself due to larger errors in the law of motion.

T KS Sm1/Sm2 Sm3/Sm4
3 0.12 0.00 0.00
6 0.20 0.02 0.02
10 0.25 0.05 0.05
25 0.59 0.29 0.34
50 1.21 1.18 1.40
100 2.29 4.97 6.00

Table 11: Running Times in Minutes
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