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Abstract

We consider the problem of two agents bargaining over the relative price of two goods they

are endowed with. They alternatingly exchange price offers and the utilities are discounted. The

recipient of an offer can either accept it and choose the quantities to be traded, or reject and counter-

offer a different relative price. We study the set of equilibria as discounting frictions vanish and

find that: (1) any generic economy has bargaining equilibria that are inefficient even as discounting

frictions vanish; and (2) a bargaining equilibrium converging to a Walrasian outcome exists for some

robust types of convergence of the discount factors, but it does not exist for other equally robust

convergences. Moreover, in case there exists a bargaining equilibrium converging to a Walrasian

outcome, then there is necessarily a multiplicity of them. As a consequence, unlike in Rubinstein’s

(1982) alternating-offer bargaining, the equilibrium outcome of this set-up is not generically unique

and efficient.

Keywords. Alternating-offer bargaining, Bargaining over prices.

JEL. C78.

1 Introduction

In the alternating-offer bargaining game (Rubinstein (1982), St̊ahl (1972)), the subgame perfect equilib-

rium exists, and is unique and efficient. This is, arguably, one of the most important results in economic

theory in recent history. In that bargaining game, two players are bargaining over the partition of a pie,

say of size 1. The pie will be partitioned only after players reach an agreement. Each player in turn

offers a certain partition: player 1 offers the share 1 − x to the opponent, and keeps x. The opponent
can either accept or reject. If she accepts, the game ends and she consumes 1− x and the other player
consumes x. If she rejects, the same procedure is repeated in the next period, where the opponent can

now make a counter-offer x. Discounting frictions make delay costly. The main result in Rubinstein

(1982) is that agents will reach an agreement in the first period, and that there only exists one subgame

∗We are grateful for valuable comments from Ken Burdett, Pierre-André Chiappori, George Mailath, Andy Postlewaite,

Paolo Siconolfi, and Randall Wright.
†davilaj@ssc.upenn.edu
‡eeckhout@ssc.upenn.edu
§Department of Economics, 3718 Locust Walk, Philadelphia PA 19104.
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perfect equilibrium division of the surplus. This unique equilibrium is efficient because there is no delay.

Moreover, the uniqueness and efficiency result is robust to the use non-stationary strategies (Rubinstein

1982) and general preferences over bundles of goods (Binmore 1987).

In this paper, we consider the following generalization of the standard alternating-offer bargaining

game to exchange economies. First, players now hold general preferences over bundles of two goods (say

x1 and x2) and have a given initial endowment of resources. Since, typically, the initial allocation of

resources is not efficient, the agents will be interested in trading goods in order to benefit from the gains

from trade and, if possible, attain an efficient one. Obviously, they have conflicting interests about the

final allocation of resources and hence, in the absence of a vector of equilibrium prices announced by a

Walrasian auctioneer to which they would react as price-takers and that would lead them to an efficient

allocation, they will be led to bargain between them in order to improve their welfare with respect

to their initial endowments. The second generalization of the alternating-offer bargaining game is to

assume that players bargain over prices. The player who makes an offer announces a price p (specifically,

a price of good x1 in terms of good x2) that he is bound to honor, and the player who receives the price

offer p now can accept the offer and choose the quantities to be traded given p, or reject the offer. If an

offer is rejected, the roles are switched and the bargaining continues until an agreement is reached.

Intuition may lead to expect that, as the frictions from discounting vanish, bargaining over prices will

lead to a Walrasian outcome and hence to efficiency. In effect, consider first a unilateral monopoly in a

two-person exchange economy. The monopolist (say agent A) announces a take-it-or-leave-it price offer,

and the customer (agent B) chooses the quantity that maximizes her utility given the monopoly price

(i.e. chooses an allocation on her offer curve). In this two-stage game, a subgame perfect equilibrium

then requires the monopolist to announce a price that maximizes his utility, taking into account agent

B will choose an allocation on her offer curve, i.e. the monopolist chooses a price that allows him to

attain an indifference curve that is tangent to B’s offer curve. Note that a take-it-or-leave-it offer is a

particular instance of the alternating-offers protocol with myopia, i.e. extreme discount factors equal to

0: there is no point in rejecting an offer because it is as if there is no second stage in the negotiation

and, as a consequence, the proposer has all the market power. As discount factors are made positive,

there appears room for true negotiation, and as they converge to 1, the market power becomes evenly

distributed between the two agents (given their endowments and preferences). In such negotiation,

every agent knows that any outcome, upon acceptance of an offer, will be on the offer curve of the

agent accepting the offer. In effect, in Figure 1 below,1 the take-it-or-leave-it offer pA of a monopolist

A (similarly for pB when B is the monopolist), corresponds to the extreme case in which the discount

factors are equal to 0. It may seem intuitive that as the discount factors approach 1, the extreme

imbalance of market power that makes the outcome to be on one offer curve but not on the other

vanishes and, therefore, the outcome be an allocation on both offer curves xA and xB .In other words, as

the agents become infinitely patient, the outcome of the bargaining seems to have to be an intersection

point of the offer curves, i.e. a Walrasian allocation. Thus, constraining the agents to play stationary

strategies in the alternating-price-offers bargaining game points to a Walrasian allocation as a natural

candidate equilibrium when discounting frictions disappear.

1In Figure 1 the point e represents the initial endowments in this exchange economy, the dotted curves are A’s and B’s

offer curves, and the solid curves are indifference curves of A and B. The price supporting the Walrasian allocation is p∗.
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We show nonetheless that the existence of inefficient stationary subgame perfect equilibria (SSPE hence-

forth) that remain bounded away from efficiency even as the discounting frictions vanish, is a robust

phenomenon for this bargaining problem2 (see Theorem 4 in Section 4). These equilibria are not in-

efficient because there is delay, but rather because prices are offered that result in one of the agents

accepting an offer and choosing an inefficient allocation. This turns out to be an equilibrium because

the agent making the offer is indifferent between, on the one hand, consuming an allocation on the oppo-

nent’s offer curve, and on the other hand, accepting an offer next period and consuming an allocation on

his own offer curve. We show that for a generic economy there exist equilibrium prices that correspond

to allocations off the contract curve, even as the discount factors approach one. The interesting feature

of these inefficient SSPE is that on the stationary equilibrium path, both agents offer different terms of

trade (i.e. the price) when called to offer, but accept the other agent’s (less favorable) terms of trade

when called to accept. Still, both agents are indifferent because for either of the different terms of trade,

different quantities are traded. More generally, we show in Theorem 5 in Section 5 that the existence of

SSPE that remain bounded away from efficiency is in fact a generic property for vanishing discounting

frictions.

Still, the existence of inefficient SSPE in the limit does not a priori prevent the existence of other

SSPE converging to a Walrasian allocation. We investigate this possibility in Section 6, and we find that

either there is no equilibrium converging to a Walrasian allocation as the discounting frictions vanish,

or else there is an even number of them. As a result, the uniqueness and efficiency result from the

Rubinstein alternating-offer bargaining cannot be replicated when bargaining is over prices. In effect, if

a unique equilibrium does exist, then it must be inefficient in the limit as discounting frictions disappear.

This is because the equilibrium is unique only if there exists no equilibrium converging to the Walrasian

allocation. Finally, unlike the Rubinstein alternating-offer bargaining game, even existence of an SSPE is

in general not guaranteed, although generically it is (an example of non-existence is provided in Section

7).

Negotiation over prices seems to be a natural bargaining protocol to consider in a simple set-up with

more than one good and perfect information about each other’s characteristics. In effect, although what

2In the sense that there is a non-empty open set of economies with such SSPE.
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really matters to each agent is the actual trade eventually carried out, with common knowledge of each

other’s preferences this can be equivalently summarized by the terms of trade agreed upon. Moreover,

negotiations similar to bargaining over prices in a bilateral monopoly are frequently observed in reality.

For example, negotiation over labor contracts between employers and unions are typically conducted over

wages, i.e. the terms of trade, and not over both wages and employment. Although one can reasonably

claim that upon acceptance of a wage offer made by the firm, unions do not choose the number of workers

to be employed, nonetheless unions can reasonably well guess the level of employment that a wage rate

will lead to, and hence take that into account in making their decision about whether to accept the offer

or not. As a matter of fact, firm-union wage-bargaining corresponds rather to a set-up in which two

agents bargain over prices making alternating offers while only one of the agents is entitled to choose

the quantities to be traded upon an agreement over terms of trade. This problem is more naturally

addressed in the framework of axiomatic bargaining and it is considered in Section 8.2 below. There we

actually show the existence of bargaining powers leading to the same outcome of the alternating-offers

bargain over prices considered here. There is an extensive literature in labor economics (see, among

others, Solow and MacDonald (1981), Farber (1986)) documenting the prevalence of such bargaining

over wages. Moreover, the early bargaining models pre-dating Nash’s axiomatic bargaining solution

all consider bargaining over wages in the context of firm-union relations (see Harsanyi (1956)). Those

models of axiomatic bargaining point to an outcome on the Pareto frontier. The model we consider in

this paper can be interpreted as a formalization of such bargaining over wages by means of a particular

extensive form bargaining game (i.e. alternating-offer bargaining), as an alternative to an axiomatic

bargaining approach.

The issue addressed in this paper is also addressed in an interesting and appealing paper by Yildiz

(2001). In that paper, a unique SSPE of the bargaining problem considered here is shown to converge,

under some conditions, towards a Walrasian allocation as the agents become infinitely patient. Our

work differs from Yildiz (2001) in two fundamental ways. First, our approach to the issue is different

in that we work mostly in the space of allocations of resources, rather than only in the space of profiles

of utilities attained by the agents. Second, and most importantly, this approach allows us to obtain

the generic existence of SSPE that remain inefficient as the agents’ discount factors converge to one.

The explanation for the apparent contradiction of our results with those of Yildiz (2001) is that the

assumptions under which the convergence to the Walrasian outcome was obtained in Yildiz (2001) turn

out to characterize a degenerate set of economies.3 A perturbation of those economies results in the

existence of stationary subgame perfect equilibrium that stay bounded away from efficiency. A detailed

account of this fact can be found in the discussion in Section 8.3.

The indeterminacy results reported here refers back to Edgeworth’s (1881) conjecture that all allo-

cations in the core are equilibrium outcomes of a two person bargaining problem. He attributes this to

the nature of the bilateral monopoly. Like Edgeworth, we find indeterminacy, but unlike Edgeworth, we

do not find that all allocations in the core are equilibrium outcomes. On the contrary, there exist equi-

librium allocations that are outside the core, and hence Pareto inefficient. Our results seem to confirm

that for a Walrasian outcome to obtain with certainty, it is not sufficient to allow a small number of

individuals to compete intertemporally.4 A large number of agents seems to be essential, as established

3In the sense of being closed and nowhere dense.
4Even if players can bargain over allocations (instead of over terms of trade), the outcome does not coincide with the
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in Gale (1986) where with a continuum of randomly matched agents, the Walrasian outcome through

pairwise alternating-offer bargaining can be achieved in the limit as agents become impatient.

The remainder of the paper is as follows. In the Section 2 we illustrate, in a simple Cobb-Douglas

setup, an example of a SSPE that remains bounded away from efficiency as the discount factors converge

to 1. We present the general model in Section 3. We show in Section 4, Theorem 4, a sufficient condition

for the existence of an inefficient SSPE, and in Section 5, Theorem 5, we show the generic existence of

such SSPE. In Section 6, Theorem 6, we derive conditions for the existence of SSPE converging to a

Walrasian allocation. Section 7 provides further examples, and Sections 8 and 9 conclude with a general

discussion and some concluding remarks.

2 A Simple Example

In this section we illustrate the existence of a stationary subgame perfect equilibrium (SSPE) of bar-

gaining over prices within a simple Cobb-Douglas setup. In effect, consider an economy with two agents

A and B with preferences over bundles of two goods x = (x1, x2) that are represented by the Cobb-

Douglas utility functions uA =
p
xA1 x

A
2 and u

B =
p
xB1 x

B
2 .
5 The total resources are e = (1, 1) and the

distribution of initial endowments between A and B is eA = (0.9, 0.3) and eB = (0.1, 0.7). Since the

initial allocation of resources is not efficient,6 there are gains from trade.

Consider an extensive form bargaining game that consists of letting one agent i offer terms of trade

between the two goods, represented by the vector of prices (pi, 1), good 2 acting as the numeraire. Given

the terms pi offered by agent i, the other agent −i reacts either announcing a desired quantity traded at
the proposed terms of trade (that the proposer is bound to honor), or making a counter-offer of terms of

trade, and so on until a trade takes place. As a measure of the costly nature of the bargaining process

itself, the utility obtained from the consumption of the two goods decreases by factors δA, δB ∈ (0, 1)
for each iteration in the sequence of offers and counteroffers made until the trade takes place.

Whenever an agent i decides to accept an offer at terms of trade p−i by agent −i, individual
rationality guarantees that he will choose to demand quantities xi(p−i) on his offer curve (i..e. that
maximize his utility given p−i). The resulting instantaneous utilities are u−i(e− xi(p−i)) to the agent
−i who makes the offer, and ui(xi(p−i)) to the agent i that receives it. Our objective is to solve for the
SSPE of this bargaining game, denoted by (pA, pB). Necessary conditions for an SSPE of this bargaining

game are given by7

uA(xA(pB)) = δAuA(e− xB(pA)) (1)

uB(xB(pA)) = δBuB(e− xA(pB)).

The interpretation of these equations is that, in each subgame, the agent accepting the offer should be

no worse off than waiting one period and having his counter-offer accepted. For expositional clarity, let

Walrasian allocation as the discount factor approaches 1 (see Binmore, Rubinstein and Wolinsky (1986) and Binmore

(1987)).
5As it will become apparent later on, the kind of returns to scale plays no role and hence this particular choice is of no

consequence.
6In this example, the contract curve is the diagonal of the Edgeworth box, while the initial endowments are off the

diagonal.
7In the next section, the complete optimization program will be presented and solved.
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us first consider the case in which δA and δB are arbitrarily close to one.8 In the limit, when δA and

δB become equal to 1, there is a convenient graphical interpretation of equations (1). In effect, the first

equation requires that the bundles of agent A resulting from accepting an offer xA(pB), and from having

an offer accepted e−xB(pA), are on the same indifference curve for agent A. The second equation has a
similar interpretation for agent B. Moreover, note that individual rationality implies that xA(pB) and

xB(pA) are on the offer curves of A and B respectively.

There are two obvious solutions to the previous system of equations when δA = δB = 1, which

are (i) the Walrasian allocation x∗ (with x∗A = (0.6, 0.6), x∗B = (0.4, 0.4) and supported by the price
pA = pB = 1), and (ii) the initial endowment allocation e (supported by prices equal to the marginal

rates of substitution at this point).9 Figure 2 below exhibits a third solution this system, with prices

(pA, pB) = (1.750, 1.333) (2)

and two points x̄, x̂ corresponding to two allocations on A’s and B’s offer curve respectively, more

specifically

x̄A : (x̄A1 (p
B), x̄A2 (p

B)) = (0.5625, 0.75) (3)

x̂A : (e− x̂B1 (pA), e− x̂B2 (pA)) = (0.75, 0.5625)

and the complementary bundles for agent B. Note that unlike the Walrasian solution, the latter solution

is not Pareto-efficient.
Figure 2
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By a simple continuity argument, there exists a solution (pA(δ), pB(δ)) to the system of equations

(1) close to the third solution (1.750, 1.333), and hence bounded away from efficiency, for every δA, δB

8Of course, discounting is crucial for the previous equations to be necessary. Without discounting, many other SSPE

exist that are no solutions to this system of equations.
9Though the initial endowment is a solution to this system of equations, below we show that it will never generate

a SSPE for discounting frictions vanishing, because it will never satisfy the conditions for subgame perfection of the

equilibrium.
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sufficiently close to one. Moreover, as (δA, δB)→ (1, 1), there may also exist an even number (possibly

zero) of SSPE converging to the Walrasian equilibrium. In Section 7 we return to this example and

verify the conditions of existence of these equilibria. For now, this standard Cobb-Douglas example

suffices to illustrate the possible inefficiency, even in the limit, of the SSPE of this bargaining game. In

the next sections we consider the general set-up and show that the existence of such SSPE inefficient in

the limit is actually the typical situation.

3 The Model

Consider an exchange economy with two agents i ∈ {A,B} with standard preferences over nonnegative
consumptions of two goods given by the utility functions uA, uB satisfying

Assumption 1 For all i ∈ {A,B}, ui is R+-valued,10 continuous in R2+, differentiable in R2++, mono-
tone,11 differentiably strictly concave,12 well-behaved at the boundary,13 and such that i’s demand is

never simultaneously upward-sloped for both goods.14

The agents are endowed with the nonnegative amounts eA = (eA1 , e
A
2 ) and e

B = (eB1 , e
B
2 ) of the goods

respectively. The total resources of the economy are e = eA + eB . Let us denote by xi = (xi1, x
i
2) the

vector of goods consumed by i ∈ {A,B}, and an exchange economy by {ui, ei}i∈{A,B}.
In the absence of a Walrasian auctioneer, the agents bargain over the terms of trade letting one

agent make and offer of terms of trade by means of a price p of good 1 in terms of good 2, to which

the other agent reacts either announcing a desired trade at the proposed terms of trade, or making a

counter-offer of terms of trade, and so on until a trade takes place. The cost of the bargaining process

itself is captured by the discount of the utility obtained from consumption by a factor δA, δB = (0, 1)

for each offer rejected by A and B respectively. Not reaching an agreement amounts to consuming the

initial endowments.

In any subgame agent A’s best response to an offer pB from agent B, will in general depend on

A’s beliefs about B’s strategy. We will restrict ourselves to stationary strategies profiles and hence

stationary beliefs. Then A’s best response to B’s offer pB is

1. to accept B’s offer, if the discounted utility A can obtain from making an optimal counter-offer

pA is, if accepted, not more than what A would obtain accepting B’s offer immediately, i.e.

10For a given set of preferences, there is no reason to assume positive utility. However, in the bargaining game, negative

utility would render delay desirable, rather than costly.
11In the sense that Dui(x) ∈ R2++ for all x ∈ R2++.
12As a matter of fact, differentiably strictly quasi-concave (in the sense that D2ui(x) is definite negative on the space

orthogonal to Dui(x) for all x ∈ R2++) suffices. The strict concavity will only be needed for Theorem 6.
13In the sense that every indifference curve going through a point in R2++ is completely contained in R2++.
14That is to say, there is no vector of prices (p̄, 1) such that

dxi1
dp
(p̄) > 0 and

dxi2
dp−1 (p̄) > 0. Note that this assumption

does allow for backward-bending offer curves, and hence for any good being inferior for some range of prices. It only makes

sure that the income effect is not so strong as to offset the substitution effect on the demand for both goods simultaneously.
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δAuA(e− xB(pA)) ≤ uA(xA(pB)). This counter-offer pA is the solution to the problem

max
pA

uA(e− xB(pA)) (4)

uB(xB(pA)) ≥ δBuB(e− xA(pB))

where the constraint is a necessary condition for B to accept A’s counter-offer,

2. to reject B’s offer otherwise, and make the optimal counter-offer pA described above.

Similar conditions characterizes B’s optimal behavior.

A Stationary Subgame Perfect Equilibrium (SSPE) of the bargaining problem described above con-

sists of a pair of two prices (pA, pB), corresponding to each player’s price offer, such that both B and A

respectively would accept in any subgame if confronted with these or better offers. If confronted with

worse offers, B and A reject and offer pB and pA respectively in the next period. Since at an SSPE

(pA, pB), the offers are accepted, they must satisfy δAuA(e− xB(pA)) ≤ uA(xA(pB)), and similarly for
B. Moreover, sequential rationality requires pA and pB to be solutions to the maximization problems

above for A and B. The definition of a Stationary Subgame Perfect Equilibrium follows.

Definition 2 A Stationary Subgame Perfect Equilibrium (SSPE) of the bargaining problem above is a

pair pA, pB such that

pA ∈ argmax
p̃A

uA(e− xB(p̃A)) (5)

uB(xB(p̃A)) ≥ δBuB(e− xA(pB)),

pB ∈ argmax
p̃B

uB(e− xA(p̃B)) (6)

uA(xA(p̃B)) ≥ δAuA(e− xB(pA)),

and15

δAuA(e− xB(pA)) ≤ uA(xA(pB)) (7)

δBuB(e− xA(pB)) ≤ uB(xB(pA)).

The first-order conditions the problem of agent A above

DuA(e− xB(pA))DxB(pA)− λADuB(xB(pA))DxB(pA) = 0 (8)

uB(xB(pA))− δBuB(e− xA(pB)) = 0

characterize its solution, for some λA > 0, and similarly for agent B

DuB(e− xA(pB))DxA(pB)− λBDuA(xA(pB))DxA(pB) = 0 (9)

uA(xA(pB))− δAuA(e− xB(pA)) = 0

15Note that the conditions (7) are redundant with (5) and (6).
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for some λB > 0 also. Therefore, necessary and sufficient16 conditions for (pA, pB) to be an SSPE are

DuA(e− xB(pA))DxB(pA)− λADuB(xB(pA))DxB(pA) = 0

DuB(e− xA(pB))DxA(pB)− λBDuA(xA(pB))DxA(pB) = 0 (10)

uA(xA(pB))− δAuA(e− xB(pA)) = 0

uB(xB(pA))− δBuB(e− xA(pB)) = 0.

Note that the last two inequalities (7) in the definition of a SSPE are trivially satisfied by any solution

to this system of equations, and therefore need not be added.

The two last equations in (10) have a convenient interpretation when δA, δB = 1. In effect (see

Figure 3), xA(pB) and xB(pA) must be points on the offer curves (short-dashed curves) of A and B

respectively, and leading to allocations of resources within the Edgeworth box between which both A

and B are indifferent (the indifferent curves are represented in solid lines)

Figure 3
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The first two equations in (10) can also be interpreted in this figure as follows. Consider, for instance,

the second equation. Its equivalent rewriting in (11) below amounts to requiring that the tangent to

A’s offer curve at x(pB) – whose direction is given by DxA(pB) – be normal to a positive linear

combination of the gradients of uA and uB at that point¡
DuB(e− xA(pB))− λBDuA(xA(pB))

¢
DxA(pB) = 0. (11)

As illustrated in Figure 4, this is equivalent to saying that the slope of the offer curve of A at x(pB) is

not simultaneously smaller that A’s marginal rate of substitution (with its negative sign) at that point,

and bigger than B’s. In more graphical terms: A’s offer curve does not enter at x(pB) into the lens

formed by the agents’ indifference curves going through this point.17 The first equation has a similar

interpretation about the behavior of B’s offer curve at x(pA).

16 By the local nature of these conditions, we will assume that conditions guaranteeing that a local maximum is a global

maximum hold.
17Obviously, in general the conditions above are not sufficient (see footnote 16) since the equation 1 may be satisfied

locally, but the offer curve may still re-enter the lens away from this point. The same caveat of footnote 16 then applies

here.
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Figure 4
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4 A sufficient condition for the existence of SSPE

The conditions for the existence of SSPE of the bargaining problem can be studied in the following

way. Instead of looking for two prices pA and pB offered by the agents and satisfying (10) for some

λA,λB > 0, we can equivalently look for two allocations (x̄A, x̄B) and (x̂A, x̂B) playing the roles of

(xA(pB), e − xA(pB)) and (e − xB(pA), xB(pA)) respectively, and satisfying the equations (10). The
prices pA and pB will then be determined unambiguously by the offer curves.

Let us focus first on the last two equations of the system (10). Note that they can equivalently be

written in terms of allocations (x̄A, x̄B) and (x̂A, x̂B) as

δAuA(x̂A)− uA(x̄A) = 0

uB(eA + eB − x̂A)− δBuB(eA + eB − x̄A) = 0 (12)

DuA(x̄A)(x̄A − eA) = 0

DuB(eA + eB − x̂A)(eA − x̂A) = 0

The system of equations (12) consists respectively of the following conditions: (i) x̂ gives to A a utility

equal to δA times the utility that x̄ gives him, (ii) x̄ gives to B a utility equal to δB times the utility

that x̂ gives him, (iii) x̄ is on the offer curve of A, and (iv) x̂ is on the offer curve of B, everything

written in terms of A’s variables, i.e. substituting out the feasibility conditions.

In order to find a solution to this system consider the following modified system instead

δAuA(x̂A)− uA(x̄A) = 0

uB(eA + eB − x̂A)− δBuB(eA + eB − x̄A) = 0 (13)

DuA(x̄A)(x̄A − eA) = 0

(p, 1)(x̄A − eA) = 0

where (iv) has been substituted by: (iv’) x̄ is affordable to A if the price of good 1 in terms of good

2 is p. That is to say, we have substituted a budget constraint to the condition that x̂ be on B’s offer

10



curve. Intuitively, this modified system (13) defines x̄A and x̂A as a differentiable functions of p. As

a consequence, (x̂A, x̂B) follows a continuous path within the Edgeworth box as p varies (see Figure 5,

where the auxiliary curve is represented by the dashed-dotted line).

Figure 5
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An intersection of the curve followed by (x̂A, x̂B) with the offer curve of B corresponds then to a solution

to the original system of equations (12) and hence is a candidate to be an SSPE of the economy. The

next lemma establishes the generic existence of inefficient allocations x̄ and x̂ solution to the original

system of equations (12).

Lemma 3 For any generic18 exchange economy {ui, ei}i∈{A,B} satisfying Assumption 1, and discount
factors δA, δB close enough to 1, there exist inefficient allocations x̄, x̂ solution to the system of equations

(12).

Proof. Note that, if δA = δB = 1, a Walrasian allocation of the economy x∗ is a solution to the
modified system (13) when p is the corresponding Walrasian equilibrium price p∗ for good 1. Given
this value for the discount factors, we will be interested in the slope of the curve followed by x̂ at the

Walrasian equilibrium allocation x∗. In effect, if x̂ approaches the Walrasian allocation following a
path with slope slightly smaller than that of B’s offer curve at x∗, then there will necessarily exist an
intersection –distinct from this Walrasian equilibrium and hence bounded away from it– of the path

followed by x̂ with B’s offer curve. By continuity, that intersection will still exist for δA, δB < 1 but

close enough to 1. Finally, it suffices to note that, for discount factors smaller than 1, x̂ cannot be equal

to x̄, and hence none of them can be efficient allocations.

In order to obtain the slope of the path followed by x̂ as p varies at a Walrasian allocation x∗,
note that the function that determines A’s bundle (x̂A1 , x̂

A
2 ) in x̂ for each p in the system (13) is the

composition of the function ξ̄
A
associating (x̄A1 , x̄

A
2 ) to each p implicitly defined by

DuA(x̄A)(x̄A − eA) = 0 (14)

(p, 1)(x̄A − eA) = 0

18With respect to the usual topology in the space of endowments, and the topology of C1 uniform convergence on

compacts in the space of utility functions (actually for any Cn convergence as well).
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and the function ξ̂
A
associating (x̂A1 , x̂

A
2 ) to each (x̄

A
1 , x̄

A
2 ) implicitly defined by

uA(x̂A)− uA(x̄A) = 0 (15)

uB(eA + eB − x̂A)− uB(eA + eB − x̄A) = 0.

Note, on the one hand, that the Jacobian of the left-hand side of (14) isÃ
∇A1 (x̄A) ∇A2 (x̄A) 0

p 1 x̄A1

!
(16)

where ∇A(x̄A) denotes the gradient of the offer curve of A at x̄A. For a utility function uA generic

with respect to the topology of C1 uniform convergence on compacts,19 the first two columns are always

linearly independent, even at a Walrasian equilibrium allocation, and therefore the system (14) defines

indeed (x̄A1 , x̄
A
2 ) as a function ξ̄

A
of p implicitly and

Dξ̄
A
(p) = −

Ã
∇A1 (x̄A) ∇A2 (x̄A)
p 1

!−1Ã
0

x̄A1

!

= −
¯̄̄̄
¯ ∇A1 (x̄A) ∇A2 (x̄A)p 1

¯̄̄̄
¯
−1Ã −∇A2 (x̄A)x̄A1

∇A1 (x̄A)x̄A1

!
. (17)

On the other hand, the Jacobian of the left-hand side of (15) isÃ
D1u

A(x̂A) D2u
A(x̂A) −D1uA(x̄A) −D2uA(x̄A)

−D1uB(x̂B) −D2uB(x̂B) D1u
B(x̄B) D2u

B(x̄B)

!
(18)

and it drops rank only at efficient allocations, and hence at any Walrasian allocation. As a consequence,

the theorem of the implicit function does not apply there. Nonetheless, the two equations (15) clearly

define (x̂A1 , x̂
A
2 ) as a function of (x̄

A
1 , x̄

A
2 ) since, for strictly convex preferences and any given point x̄ of

the Edgeworth box, there exists a unique x̂ where the two indifference curves going through x̄ cross each

other again. If x̄ happens to be efficient, then x̂ actually coincides with x̄. This function is continuous

and differentiable off the contract curve (there the implicit function theorem applies), but also on the

contract curve (where the implicit function theorem cannot be called for). In effect, as x̄ departs

slightly from an efficient allocation x∗ on the contract curve, the lens formed by the two indifference
curves going through x̄ will cross again at (almost) a point across the contract curve in the direction of

19Actually for any such Cn topology also.
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the line supporting x∗ as a Walrasian equilibrium (see Figure 6).

Figure 6
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The linear mapping approximating locally this behavior is

Dξ̂
A
(x∗A) =

Ã
p∗ −1
1 p∗

!Ã
1 0

0 −c∗
!Ã

p∗ −1
1 p∗

!−1
(19)

for some c∗ > 0 that in general will depend on the curvature of A’s and B’s indifference curves at

the Walrasian allocation x∗. In words, Dξ̂
A
(x∗A) consists of the composition of (i) a change to an

orthogonal basis containing the price vector (p∗, 1), (ii) a jump across the first axis of that basis, and
(iii) the undoing of the change of basis.

Therefore,Ã
dx̂A1
dp (p

∗)
dx̂A2
dp (p

∗)

!
= Dξ̂

A
(x∗A)Dξ̄A(p∗) (20)

= − x∗A1
p∗2 + 1

¯̄̄̄
¯ ∇A1 (x∗A) ∇A2 (x∗A)p∗ 1

¯̄̄̄
¯
−1Ã

(c∗ − p∗2)∇A2 (x∗A) + (1 + c∗)p∗∇A1 (x∗A)
(1− c∗p∗2)∇A1 (x∗A)− (1 + c∗)p∗∇A2 (x∗A)

!

and as a result,

dx̂A2
dx̂A1

(x∗A1 ) =
dx̂A2
dp (p

∗)
dx̂A1
dp (p

∗)
=
(1− c∗p∗2)∇A1 (x∗A)− (1 + c∗)p∗∇A2 (x∗A)
(c∗ − p∗2)∇A2 (x∗A) + (1 + c∗)p∗∇A1 (x∗A)

. (21)

If this slope is distinct from that of B’s offer curve at the Walrasian allocation x∗, then there
necessarily exists a solution to the system of equations (12) for δA, δB < 1 but close to 1. In effect,

assume that
dx̂A2
dx̂A1

(x∗A1 ) < −
∇B1 (x∗B)
∇B2 (x∗B)

. (22)

This implies that for any given level of utility uA on A’s offer curve and close to the Walrasian equilibrium
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one, B’s utility is not smaller on B’s offer curve than on A’s (see Figure 7).

Figure 7
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As a consequence, around the profile of utilities (uA∗, uB∗) = (uA(x∗A), uB(x∗B)) corresponding to the
Walrasian equilibrium x∗, the profiles of utilities attainable along B’s offer curve provide at least as big
a utility to B than those attainable along A’s offer curve, for any given level of utility for uA. Figure 8

below represents the utility profiles along each of the offer curves: fA (the solid line) associates u
A and

uB for those allocations on A’s offer curve, and similarly fB (the dashed line) for allocations on B ’s

offer curve (a formal definition will be given in Section 6 below).

Figure 8
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The boundary behavior of these curves of profiles of utilities guarantee the existence of at least one

other intersection. On the contrary, assume that

dx̂A2
dx̂A1

(x∗A1 ) > −
∇B1 (x∗B)
∇B2 (x∗B)

. (23)

This implies that for any given level of utility uA on A’s offer curve and close to the Walrasian equilibrium
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one, B’s utility is not bigger on B’s offer curve than on A’s (see Figure 9).

Figure 9
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This means that, around this Walrasian equilibrium profile of utilities, those attainable along B’s offer

curve provide at least as big a utility to A as those attainable along B’s offer curve, for any given level

of utility for uA (see Figure 10).

Figure 10
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Again, the boundary behavior of these curves of profiles of utilities guarantee the existence of one other

intersection.

Note that, generically, not all the intersections of fA and fB can correspond to Walrasian allocations,

since the boundary behavior of these curves would require then that at one of these intersections we

have simultaneously a tangency and a crossing of the two curves fA and fB . While the tangency of

fA and fB at profiles of utilities corresponding to Walrasian equilibria is a property intrinsic to such

allocations (see Proposition 9 in the Appendix), their crossing is not; quite on the contrary, it is actually

a degenerate property. In effect, a crossing of fA and fB at a profile of utilities corresponding to a

Walrasian equilibrium x∗ corresponds to the satisfaction of the equation

(1− c∗p∗2)∇A1 (x∗A)− (1 + c∗)p∗∇A2 (x∗A)
(c∗ − p∗2)∇A2 (x∗A) + (1 + c∗)p∗∇A1 (x∗A)

= −∇
B
1 (x

∗B)
∇B2 (x∗B)

. (24)

15



This equation imposes a constraint on the partial derivatives of order two of the utility functions at this

Walrasian allocation x∗ that is degenerate in the space of utility functions with respect to the topology
of C1 uniform convergence on compacts.20 Equivalently, if preferred, it constrains the profile of slopes

of the offer curves of A and B at every Walrasian allocation x∗,
³
−∇A1 (x∗A)∇A2 (x∗A) ,−

∇B1 (x∗B)
∇B2 (x∗B)

´
, to be on the

graph of the function g∗ below, which is clearly a degenerate requirement too (see its graph in Figure
11 below for the case c∗ = 1 and 1 < p∗2),21

g∗(z) =
(1 + c∗)p∗ + (1− c∗p∗2)z
(1 + c∗)p∗z + (c∗ − p∗2) (25)
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Therefore, at least one intersection of fA and fB is a transversal crossing, i.e. not corresponding

to a Walrasian allocation, and hence corresponding to inefficient allocations x̄, x̂. At this solution x̄, x̂,

δA = δB = 1 of (12) the Implicit Function Theorem applies, making x̂, x̄ a differentiable function of

δA, δB around δA, δB = 1. Therefore, the conclusion follows.

Interestingly enough, the following theorem uses the degenerate condition derived in Lemma 3 that

would prevent to obtain a solution to the necessary conditions for the existence of a SSPE, to show the

20Actually, with respect to any such Cn topology. Interestingly enough, the perturbation need not always be made in

the space of utility functions. For instance, in the case of the Cobb-Douglas example introduced in section 2 (for which

c∗ = 1 always), this condition is satisfied only for initial endowments on the anti-diagonal of the Edgeworth box, i.e. in a
closed and nowhere dense subset of endowments for the given utility functions.
21In effect,

−∇
B
1 (x

∗B)
∇B2 (x∗B)

) =
(1 + c∗)p∗ + (1− c∗p∗2)(−∇

A
1 (x
∗A)

∇A2 (x∗A)
)

(1 + c∗)p∗(−∇A1 (x∗A)∇A2 (x∗A)
) + (c∗ − p∗2)

.

Also

lim
z→∞ g

∗(z) =
1− c∗p∗2
(1 + c∗)p∗

lim
z→ c∗−p∗2

(1+c∗)p∗
g∗(z) =∞

and, for all z ∈ R,
dg∗

dz
(z) = − (1− c

∗p∗2)(c∗ − p∗2) + ((1 + c∗)p∗)2
((1 + c∗)p∗z + (c∗ − p∗2))2 6= 0

for all c∗, p∗ > 0.
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existence of SSPE whenever there is a Walrasian equilibrium that almost satisfies it.

Theorem 4 For any generic22 exchange economy {ui, ei}i∈{A,B} satisfying Assumption 1 and such that,
at every Walrasian equilibrium (x∗, p∗), the profile of slopes of the offer curves

³
−∇A1 (x∗A)∇A2 (x∗A) ,−

∇B1 (x∗B)
∇B2 (x∗B)

´
is close enough to the graph of g∗ such that

g∗(z) =
(1 + c∗)p∗ + (1− c∗p∗2)z
(1 + c∗)p∗z + (c∗ − p∗2) , (26)

and for any discount factors δA, δB close enough to 1, there exist at least one SSPE of the problem of

bargaining over prices. Moreover, that SSPE remains bounded away from efficiency even as δA, δB → 1.

Proof. In effect, for any utility functions uA, uB generic with respect to the topology of C1 uniform

convergence on compacts23

(1− c∗p∗2)∇A1 (x∗A)− (1 + c∗)p∗∇A2 (x∗A)
(c∗ − p∗2)∇A2 (x∗A) + (1 + c∗)p∗∇A1 (x∗A)

6= −∇
B
1 (x

∗B)
∇B2 (x∗B)

. (27)

Then Lemma 3 guarantees the existence of inefficient allocations x̂, x̄ that solve the necessary conditions

(12) for a SSPE. By continuity, this solution remains for discount factors δA, δB close enough to 1, and

still corresponds to inefficient allocations. This solution corresponds indeed to a SSPE if both curves

fA and fB of profiles of utilities are downward-sloped at (u
A(x̂A), uB(x̂B)) = (uA(x̄A), uB(x̄B)).24 Note

then that if the slope
dx̂A2
dx̂A1

of the path followed by (x̂A1 , x̂
A
2 ) in the modified system (13) is not far from

the slope of B’s offer curve at the Walrasian allocation, −∇B1 (x∗B)∇B2 (x∗B)
, then the slopes of the two curves

of profiles of utilities at (uA(x̂A), uB(x̂B)) = (uA(x̄A), uB(x̄B)) would be not far from their common

negative slope at the Walrasian allocation profile (uA(x∗A), uB(x∗B)), and hence they will be negative
also. But recall that

dx̂A2
dx̂A1

(x∗A1 ) =
(1− c∗p∗2)∇A1 (x∗A)− (1 + c∗)p∗∇A2 (x∗A)
(c∗ − p∗2)∇A2 (x∗A) + (1 + c∗)p∗∇A1 (x∗A)

(28)

also, i.e.
¡ − ∇A1 (x∗A)∇A2 (x∗A) ,

dx̂A2
dx̂A1

(x∗A1 )
¢
is on the graph of g∗. Hence dx̂A2

dx̂A1
(x∗A1 ) is not far from −∇

B
1 (x
∗B)

∇B2 (x∗B) ,

whenever
¡− ∇A1 (x∗A)∇A2 (x∗A) ,−

∇B1 (x∗B)
∇B2 (x∗B)

¢
, is close to the graph of g∗. As a consequence, x̂, x̄ would indeed be

the allocations arising from a SSPE (pA, pB) according to whether it is A or B who accepts the other

agent’s offer.

22With respect to the usual topology in the space of endowments, and the topology of C1 uniform convergence on

compacts in the space of utility functions (actually for any Cn convergence as well).
23Actually, with respect to any such Cn topology.
24Note that the negative slope at (uA(x̂A), uB(x̂B)) = (uA(x̄A), uB(x̄B)) is equivalent to satisfying the first two equa-

tions of (10). To see this, note that the first two equations require that at a candidate equilibrium allocation, there

exists no allocation on the offer curve of either agent that is inside the lens of Pareto-improving allocations, which means

precisely that no profile of utilities exists where both are increasing along the offer curve. Thus, should both curves of

profiles of utilities not be downward-sloped, then a mutually beneficial counter-offer could be made to the agent whose

curve of profiles of utilities along his offer curve is upward-sloped.
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5 Generic existence of SSPE that remain bounded away from

efficiency

The previous section has shown in Lemma 3 the generic existence of at least one other intersection of the

curves fA and fB of profiles of utilities along each agent’s offer curve not corresponding to a Walrasian

outcome and moreover inefficient, in the extreme case in which there is no discounting. This intersection

is robust to the introduction of discounting and, under a condition guaranteeing its subgame perfection,

corresponds thus to a Stationary Subgame Perfect Equilibrium of the bargaining problem. Still one

may wonder whether there are SSPE even when the sufficient condition of Theorem 4 is not satisfied.

As a matter of fact, the existence of such equilibria is a quite general phenomenon. In effect, the next

theorem establishes the generic existence of multiple SSPE that remain bounded away from efficiency

as δA, δB converge to 1.

Theorem 5 Within any neighborhood of any generic25 exchange economy {ui, ei}i∈{A,B} satisfying As-
sumption 1, and for any discount factors δA, δB close enough to 1, there exists an economy {eui, eei}i∈{A,B}
with multiple SSPE of the bargaining over prices that remain bounded away from efficiency as δA, δB →
1. Moreover, the same is true of any economy in some neighborhood of {eui, eei}i∈{A,B}.
Proof. Consider a Walrasian equilibrium (p∗, x∗) of the economy. Since

dx̂A2
dx̂A1

(x∗A1 ) =
(1− c∗p∗2)∇A1 (x∗A)− (1 + c∗)p∗∇A2 (x∗A)
(c∗ − p∗2)∇A2 (x∗A) + (1 + c∗)p∗∇A1 (x∗A)

, (29)

then the function g∗ defined in (25) above expresses dx̂A1
dx̂A2

(x∗A1 ) as an injective function of the slope of

A’s offer curve at x∗ whose range is R\
n
1−c∗p∗2
(1+c∗)p∗

o
. As a consequence, the slope

dx̂A2
dx̂A1

(x∗A1 ) of the path
followed by x̂ at x∗ can be made to take (almost) any value varying adequately the slope of the offer
curve of A at x∗. In particular, this implies that there exists an intersection of the curve followed by
x̂ with B’s offer curve for an arbitrarily close economy with respect to the topology of the C1 uniform

convergence on compacts in the space of A’s utility function uA. In effect, consider a sequence of

paths x̂n that differ from the path x̂ corresponding to any given offer curve of A only in a compact

neighborhood of x∗, and that converge pointwise to x̂ while keeping their slopes at x∗ smaller than that
25With respect to the usual topology in the space of endowments, and the topology of C1 uniform convergence on

compacts in the space of utility functions (actually for any Cn convergence as well).
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of B’s offer curve (see Figure 12 below).

Figure 12
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To each of these paths for x̂ there is associated a different offer curve xAn (p
B) for A (not depicted in

Figure 12 for the sake of readability). The pointwise convergence of these paths x̂n to x̂ guarantees the

pointwise convergence within a compact of the associated offer curves xAn (p
B) of A to xA(pB). Also

the (piecewise) monotone and pointwise convergence of xAn (p
B) within a compact guarantees that their

convergence to xA(pB) is uniform indeed. As a consequence, the utility functions uAn of A generating

these offer curves xAn (p
B) converge in the topology of C1 convergence on compacts towards the utility

function uA that generates the offer curve xA(pB) of A.

Note, finally, that it is essential to the argument to be sure that the new intersections between the

path followed by x̂ and B’s offer curve are not new Walrasian equilibria, which cannot be excluded

a priori since, in perturbing the slope of the path followed by x̂, we necessarily are perturbing also

that of A’s offer curve xA(pB) at x∗, and hence new crossings of xA(pB) with B’s offer curve xB(pA)
corresponding to new Walrasian allocations might occur. As a matter of fact, it turns out that this is

not the case.

In effect, in order to make the path followed by x̂ cross again B’s offer curve arbitrarily close to a

Walrasian allocation x∗, we just need to be able to make dx̂A2
dx̂A1

(x∗A1 ) equal to the slope of B’s offer curve
at x∗, i.e.

dx̂A2
dx̂A1

(x∗A1 ) = −
∇B1 (x∗B)
∇B2 (x∗B)

. (30)

But since
dx̂A2
dx̂A1

(p∗) =
(1− c∗p∗2)∇A1 (x∗A)− (1 + c∗)p∗∇A2 (x∗A)
(c∗ − p∗2)∇A2 (x∗A) + (1 + c∗)p∗∇A1 (x∗A)

, (31)

this is achieved making the profile
³
−∇A1 (x∗A)∇A2 (x∗A)

,−∇B1 (x∗B)∇B2 (x∗B)
´
of slopes of the offer curves at the Walrasian

allocation x∗ to be on the graph of the function g∗ in (25) above. It is straightforward to check that
the graph of g∗ can be attained from any profile of slopes for the offer curves without making appear

new intersections between them. This can be seen in Figure 13 below for the case c∗ = 1 and 1 < p∗2.
There the whole plane of profiles of slopes of the offer curves of A and B at a Walrasian equilibrium

is partitioned in the six areas ai, i = 1, . . . , 6 within which the number of Walrasian equilibria remains

locally constant. The graph of g∗ intersects every ai, except for the areas a5 and a6 that correspond to
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preferences that do not satisfy the Assumption 1 (in particular, they violate the requirement of A’s and

B’s demand not being simultaneously upward-sloped for both goods).26

Figure 13
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Far enough in the sequence, the marginal rate of substitution of A at the intersection x̂ that gives him

a higher utility than the Walrasian allocation x∗ is close to the relative price supporting the Walrasian
allocation, and hence smaller than the slope of B’s offer curve at x∗(see Figure 14 below). By continuity,
the same will be true for δA, δB smaller but close enough to 1. This is enough to guarantee that this

intersection corresponds to a SSPE. A similar argument applies to the intersection that gives him a

lower utility than the Walrasian allocation, and the existence of a multiplicity of SSPE follows. Note

that as δA, δB → 1 these SSPE remain bounded away from efficiency.

Figure 14
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26The same holds true for any c∗, p∗ > 0. In effect, the relevant property is that, since

−p∗ < c∗ − p∗2
(1 + c∗)p∗

and

−p∗ < 1− c∗p∗2
(1 + c∗)p∗

always, then the asymptotes of g∗ (and hence g∗ itself) intersect every ai, but a5, a6.
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6 SSPE converging to Walrasian allocations

Note now that at every profile of utilities corresponding to a Walrasian allocation, one of the curves fA

and fB of profiles of utilities along the offer curves of A and B intersects tangently (see Proposition 9

in the Appendix), and generically from below (by Lemma 3), the other curve. As a consequence, any

such intersection is not robust to the introduction of discounting. In fact, two different possibilities

arise: (i) either the intersection vanishes as at least one of δA, δB becomes distinct from 1, and therefore

there cannot be SSPE converging to that Walrasian outcome as the agents become infinitely patient,

or (ii) the tangent intersection bifurcates into two new transversal intersections that correspond to two

distinct SSPE (since they would necessarily satisfy the sufficient condition for subgame perfection), that

moreover would converge to the Walrasian outcome as the agents become infinitely patient.

It is worth noting that, even in the second case, the efficiency in the limit of the outcome of bargaining

over prices does not follow from this convergence towards a Walrasian equilibrium, since the generic

existence established in Theorem 5 of other SSPE that remain bounded away from efficiency creates an

indeterminacy of the outcome of the bargaining that prevents to guarantee its efficiency. This section

addresses in detail the conditions under which each of the two cases above arises.

Consider first the profiles of utilities of each agent along A’s and B’s offer curve, i.e. respectively

(uA(xA(p)), uB(e− xA(p))) (32)

(uA(e− xB(p)), uB(xB(p)))

for all p ∈ R++. Consider now these same profiles but after discounting B’s utility in the first, and A’s
in the second, i.e.

(uA(xA(p)), δBuB(e− xA(p))) (33)

(δAuA(e− xB(p)), uB(xB(p))).

Note that a point in the intersection of these sets of profiles corresponds to a solution, for some pA, pB,

to the last two equations of the system (10) of necessary conditions for a SSPE studied in the previous

sections. As in the previous section, fA denotes the function associating u
B(e−xA(p)) to uA(xA(p)) as

p ∈ R++, and similarly fB denotes the function associating uA(e− xB(p)) to uB(xB(p)) as p ∈ R++. If
p∗ is a Walrasian price of the economy, let

uA∗ = uA(xA(p∗)) (34)

uB∗ = uB(xB(p∗)).
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Therefore, uB∗ = fA(uA∗) and uA∗ = fB(uB∗) (see Figure 15 below).

Figure 15

...........................................................................................................................................................................................................................................................................................................................................................................
uAuA(eA)

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

............u
B

uB(eB) ........
........
........
........
.........
.........
.........
..........
..........
...........
...........
............
.............
..............
................
..................
......................
..............................
..............................................................................................................................................................................................................................................................................................................................................................................................

fA

............. ............. ............. ............. ............. ............. ............. .............................................................................................................................................................................................................................

fB

(uA∗, uB∗)

We are interested in seeing what happens to this intersection (uA∗, uB∗) of fA and fB when δA and δB

depart from 1, more specifically whether an intersection of the graphs of the functions δAfA and δBfB

(that now would correspond to a SSPE) exists or not around (uA∗, uB∗) for δA, δB smaller than but

close to 1. The next theorem establishes that actually both cases are possible, depending on how δA, δB

approach 1. It will also be established below that none of these two cases is degenerate, i.e. that the

conditions for both the existence and the nonexistence of SSPE converging to a Walrasian equilibrium

do not constrain too much the way in which δA and δB must approach 1.

Theorem 6 Given a generic27 exchange economy {ui, ei}i∈{A,B} satisfying Assumption 1, and a Wal-
rasian equilibrium (x∗, p∗) of the economy,

1. there exist sequences of discount factors (δAn , δ
B
n ) converging to (1, 1) for which there is an even

number of SSPE that converge to (x∗, p∗), and

2. there also exist sequences of discount factors (δ0An , δ
0B
n ) converging to (1, 1) for which there is no

SSPE converging to (x∗, p∗).

Proof. Note that the efficiency of the Walrasian allocation implies that fB is invertible in a neigh-

borhood of the profile of utilities (uA∗, uB∗) corresponding to the Walrasian outcome x∗, and hence so
is δBfB around u

A∗ for δB close enough to 1. Thus we can wonder about whether, for given δA, δB < 1,
(δBfB)

−1(uA∗) is smaller or bigger than δAfA(u
A∗). This is useful for our purposes because

(δBfB)
−1(uA∗) < δAfA(u

A∗) (35)

along with

fA(u
A) ≤ f−1B (uA∗) (36)

27With respect to the usual topology in the space of endowments, and the topology of C1 uniform convergence on

compacts in the space of utility functions (actually for any Cn convergence as well).
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for every uA close enough to uA∗ implies the existence of two other intersections of δAfA and δBfB (see
Figure 16).

Figure 16
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If, on the contrary, equation (35) holds with the opposite inequality (i.e. (δBfB)
−1(uA∗) > δAfA(u

A∗)
along with fA(u

A) ≤ f−1B (uA∗)), then there exists no intersection of δAfA and δBfB in some neighbor-

hood of (uA∗, uB∗) for δA, δB close enough to 1.28

Let us consider the first case. Clearly, since fA(u
A∗) = uB∗, then for any δA < 1,

δAfA(u
A∗) = δAuB∗. (37)

As for (δBfB)
−1(uA∗), let f̃B(uB, δB) = δBfB(u

B). Then

f̃B(u
B∗, 1) = fB(uB∗) = uA∗. (38)

28Similarly (δBfB)
−1(uA∗) > δAfA(u

A∗) along with

fA(u
A) ≥ f−1B (uA∗)

guarantees the existence of two other intersections as well (see Figure 17), while (δBfB)
−1(uA∗) < δAfA(u

A∗) along with
fA(u

A) ≥ f−1B (uA∗) guarantees that there exists no intersection of δAfA and δBfB in some neighborhood of (uA∗, uB∗)
for δA, δB close enough to 1.
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Since the linear approximation of f̃B at (u
B∗, 1) is

f̃B(u
B, δB) ≈ f̃B(uB∗, 1) +D1f̃B(uB∗, 1)(uB − uB∗) +D2f̃B(uB∗, 1)(δB − 1), (39)

then (δBfB)
−1(uA∗) is the level of utility uB for B such that

uA∗ ≈ uA∗ + f 0B(uB∗)(uB − uB∗) + fB(uB∗)(δB − 1) (40)

i.e.

(δBfB)
−1(uA∗) ≈ uB∗ + uA∗

f 0B(uB∗)
(1− δB). (41)

Therefore

(δBfB)
−1(uA∗) < δAfA(u

A∗) (42)

holds for δB smaller but close to 1 if, and only if,

uB∗ +
uA∗

f 0B(uB∗)
(1− δB) < δAuB∗ (43)

i.e. if, and only if,
uB∗

uA∗
< − 1

f 0B(uB∗)
1− δB

1− δA
. (44)

Note that the range of values taken by 1−δB
1−δA in every neighborhood of (δ

A, δBuA∗) = (1, 1) in (0, 1)×(0, 1)
is R++. Therefore there always exist discount factors δA, δB arbitrarily close to 1 for which the condition
(44) holds, as well as discount factors δA, δB arbitrarily close to 1 for which the reversed inequality

uB∗

uA∗
> − 1

f 0B(uB∗)
1− δB

1− δA
(45)

holds. Since, generically, either

fA(u
A) ≤ f−1B (uA∗) (46)

or

fA(u
A) ≥ f−1B (uA∗) (47)

holds for all uA close enough to uA∗, the conclusion follows.
Clearly, neither (δBfB)

−1(uA∗) < δAfA(u
A∗) nor (δBfB)−1(uA∗) > δAfA(u

A∗) is a condition that is
necessarily satisfied by any given economy, and hence one may wonder whether the sequences of discount

factors guaranteeing or preventing the existence of SSPE arbitrarily close to a Walrasian equilibrium of

Theorem 6 are too special. It turns out that this is not the case for any of the two possibilities.

In effect, letting (ūA∗, ūB∗) denote a profile of utilities on the contract curve, and letting dūB∗
dūA∗ denote

the common slope 1
f 0B(u

B∗) = f
0
A(u

A∗) of fA and fB at (uA∗, uB∗), the condition

uB∗

uA∗
= − 1

f 0B(uB∗)
1− δB

1− δA
. (48)

that separates the two cases in Theorem 6 of existence and nonexistence of SSPE converging to a

Walrasian equilibrium, can be written equivalently as

δB = 1 +
uB∗

uA∗
dūA∗

dūB∗
(1− δA), (49)
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which implies that the slope of this separating curve at (δA, δB) = (1, 1) is

dδB

dδA
= −u

B∗

uA∗
duA∗

duB∗
. (50)

As a consequence, dδ
B

dδA
is bounded above and bounded away from 0. In effect, because of the discounting

in the bargaining game, utility functions are constrained to be positive. As a result, anywhere interior in

the Edgeworth box, 0 < uB∗
uA∗ <∞. Similarly, for any concave utility functions 0 < dūA∗

dūB∗ <∞ anywhere

on the contract curve and interior in the Edgeworth box. As a result, the curve of (δA, δB) separating

the set of discount factors for which there is no SSPE converging to the Walrasian equilibrium from

the set of those discount factors for which an even number of such SSPE exist, approaches (1, 1) with

a slope bounded away from the horizontal and vertical slopes of the boundary of [0, 1]× [0, 1] at (1, 1)
(see Figure 18 below). As a consequence, no degenerate convergence is required for either the existence

or the nonexistence of SSPE converging to the Walrasian allocation to obtain.

Figure 18

...........................................................................................................................................................................................................................................................................................................................................................................
δA10

0

δB(δA)

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

............δB

1

.....................
....................
....................
...................
..................
.................
.................
................
................
................
...............
...............
...............
..............
..............
.............

............................................................

.................................................................................................................................................................................................

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

....

Theorem 6 above provides a link between multiplicity and inefficiency of outcomes of the bargaining

problem considered. In effect, from Theorem 6 it follows that for a generic economy either there is no

SSPE converging to a Walrasian equilibrium as the agents become infinitely patient, or an even number

of them exist. As a consequence, uniqueness of SSPE only obtains if this equilibrium is inefficient even

as discounting frictions vanish. Hence the corollaries below follow.29

Corollary 7 (Multiplicity) For a generic30 exchange economy {ui, ei}i∈{A,B} satisfying Assumption
1, if there is one SSPE of the bargaining over prices that converges to a Walrasian equilibrium as

δA, δB → 1, then there exists an even number of them.

Corollary 8 (Inefficiency) For a generic30 exchange economy {ui, ei}i∈{A,B} satisfying Assumption 1,
if there is a unique SSPE of the bargaining over prices for all δA, δB close enough to 1, then it remains

bounded away from efficiency as δA, δB → 1.

29Note that Corollary 7 implies Corollary 8, but not the other way around.
30With respect to the usual topology in the space of endowments, and the topology of C1 uniform convergence on

compacts in the space of utility functions (actually for any Cn convergence as well).
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Finally, note also that the existence of a SSPE of the bargaining problem is not guaranteed in

general,31 even for δA, δB close to 1. In effect, for an economy where no SSPE converging to a Walrasian

equilibrium exists, it may well be the case that the candidate to SSPE that generically exists by Lemma

3 does not satisfy the first two equations (10), i.e. the conditions for subgame perfection, and hence is

not a SSPE.

7 Some Further Examples: uniqueness and non-existence

Consider the Cobb-Douglas example of Section 2 again. Both agents have identical utility functions

uA =
p
xA1 x

A
2 and uB =

p
xB1 x

B
2 , the total resources are e = (1, 1) , and now δ → (1, 1) at a rate

r = log δA

log δB
= 2. Then

lim
δ→(1,1)

1− δB

1− δA
=
1

r
=
1

2

from de l’Hôpital’s rule. Now consider an economy with initial endowments eA = (0.9, 0.3) and

eB = (0.1, 0.7) . Then the corresponding Walrasian equilibrium price is p∗ = 1 and the correspond-

ing equilibrium allocation is xA∗ = (0.6, 0.6) and xB∗ = (0.4, 0.4) , so that u
B∗
uA∗ =

2
3 . It is easily verified

that the utility possibility frontier is given by uB = 1 − uA and that as a result,
¯̄̄
duB

duA

¯̄̄
= 1, so that

limδ→(1,1)
¯̄̄
duB

duA

¯̄̄
1−δB
1−δA =

1
2 , which is strictly smaller than

uB∗
uA∗ =

2
3 . As a result, condition (45) is satisfied.

On the other hand, the condition fA(u
A) ≥ f−1B (uA∗) is satisfied, since it is equivalent to32

(1− p∗2)∇A1 (x∗A)− 2p∗∇A2 (x∗A)
(1− p∗2)∇A2 (x∗A) + 2p∗∇A1 (x∗A)

< −∇
B
1 (x

∗B)
∇B2 (x∗B)

(51)

where the left-hand side of this condition at the Walrasian allocation, with p∗ = 1, reduces to,

−∇
A
2 (x

∗A)
∇A1 (x∗A)

= −2x
∗A
2 − eA2

2x∗A1 − eA1
= −3, (52)

which is the inverse of the slope of A’s offer curve in the Walrasian equilibrium allocation (0.6, 0.6), and

the right hand side of condition (51) is the slope of B’s offer curve in the Walrasian allocation

−∇
B
1 (x

∗B)
∇B2 (x∗B)

= −2x
∗B
1 − eB1 − 1

2x∗B2 − eB2 − 1
= −1

3
.

It follows from Theorem 6 that there is no SSPE converging to the Walrasian equilibrium for this

economy.

As for the existence of SSPE that remain bounded away from efficiency, it is sufficient to show that

the slope of B’s offer curve at x̂ in Figure 1 (see section 2) is flatter than the slope of A’s indifference

curve through the same point, i.e.
2xB1 − eB1 − 1
2xB2 − eB2 − 1

<
xA2
xA1

(53)

where xA and xB are evaluated at x̂, i.e. xA = (0.75, 0.5625) and xB = (0.25, 0.4375). It can be

immediately verified that this is satisfied, since 0.727 < 0.75. As a result, by Theorem 4 there will exist
31Although Theorem 5 guarantees its generic existence.
32Note that c∗ = 1 in this example.
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an SSPE of this economy converging to this inefficient outcome as δA, δB converge to 1. Moreover, by

Theorem 6 this is the only SSPE of this economy.

One can repeat the same exercise for an economy with initial endowments eA = (E, 0.3) and eB =

(1−E, 0.7) where 0.95 < E ≤ 1. It can be easily verified that there is still no SSPE converging to the
Walrasian equilibrium. However, now the only candidate to be a SSPE delivered by Lemma 3 ceases to

be one. To see this, note that for, say, E = 0.96 at the new candidate solution x̂, with corresponding

allocations x̂A = (0.882, 0.578) and x̂B = (0.118, 0.421), the slope of B’s offer curve is steeper than of

A’s indifference curve (more specifically 0.939 > 0.655). As a result, for this economy, there does not

exist any SSPE.

Finally, compare the outcome of the SSPE of the bargaining game over prices with the bargaining

equilibrium over allocations. Binmore (1987) shows that for discounting frictions disappearing, bargain-

ing over allocations leads to an allocation on the contract curve and hence efficiency (but in general

different from the Walrasian allocation). In the example we considered earlier, the players’ outside

options are equal to the utility obtained in the initial endowment,
¡
uA, uB

¢
= (0.52, 0.26) . Since the

total surplus on the contract curve is constant and equal to 1, the net surplus is 0.22 (i.e. 1 minus the

sum of the outside options). Then given log δA

log δB
= r = 2, bargaining over allocations converges toµ

0.52 + 0.22
1

1 + r
, 0.26 + 0.22

r

1 + r

¶
= (0.59, 0.41) ,

which is different from the utility profile at the Walrasian allocation (0.6, 0.4). On the other hand,

bargaining over prices leads to the unique, inefficient SSPE in this example with payoffs (0.65, 0.33).

See Figure 16.
Figure 16
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dūA
=−1

...

...

..

...

...

.

...

...

.
...
...
...
......
..
...
.....
.
...
............

8 Discussion

8.1 The Coase Conjecture and ”Renegotiation” of Inefficient Outcomes

Coase (1972) conjectures that the monopolist seller of a durable good will tend to price at marginal

cost, absent some mechanism to commit to withholding supply. The underlying idea is that once the
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monopolist has sold at the monopoly price, he can now lower the price on unsold units, because past units

have already been traded. Rational consumers will anticipate the price cuts, and will delay purchases

until lower prices are offered. If the monopolist can change prices sufficiently fast, subgame perfection

will lead her to set the price equal to the marginal cost (see Gul, Sonnenschein and Wilson (1986)).

A similar criticism applies to bargaining over prices in the exchange of durable goods. If, and when an

inefficient equilibrium is obtained, the parties may not be able to commit to terminating the negotiation

after trade has taken place. Since the outcome is inefficient, gains from trade remain and both agents

may be tempted to resume negotiation. As in the case of the durable goods monopoly, this may lead to

different prices being offered on the equilibrium path.

Analyzing a game with such lack of commitment of either party to stop the negotiation is an inter-

esting an promising research venture. A sensible conjecture is that under certain restrictive assumption

— e.g. Markov perfect equilibrium, restricting attention to strategies that are only dependent on the

allocation where each bargaining round starts — such renegotiation will improve efficiency, and may well

achieve an allocation on the contract curve. However, there are good reasons to believe that it may not

necessarily lead to the Walrasian allocation on the contract curve because the Walrasian allocation is

not in the Pareto set relative to the allocation of the initially inefficient equilibrium.

Unfortunately, the renegotiation argument for price bargaining is subject to the same shortcom-

ings as the Coase conjecture (see Bulow (1982)). Renegotiation only occurs when the good is traded

”permanently”, i.e. when there is a permanent change of property rights. If this is not the case, then

any renegotiation starts at the initial endowment. Examples that have been provided in the literature

include leasing contracts. Of course, in the case of negotiation for services rather than goods, as in

union-wage bargaining, the trade is considered not permanent.

8.2 Comparison with the Nash Axiomatic Bargaining-over-prices Solution

Does there exist a Nash Bargaining-over-prices problem that obtains the same outcome as the SSPE of

the bargaining game over prices? The answer is yes. To see this, consider the Nash bargaining problem

where one player (say player A) chooses the quantity of trade, and the Nash bargaining program selects

a price, given bargaining power α, that solves the following maximization program

p ∈ argmax
p

¡
uA
¡
xA (p)

¢¢α ¡
uB
¡
e− xA (p)¢¢1−α

where xA (p) denotes the allocation on A’s offer curve given price p. Note that this is a modified version

of Nash’s static bargaining problem. Here, once p is determined, player A chooses the quantity. As a

result, Nash’s second axiom — that the solution be Pareto optimal — is not satisfied. However, in this

modified version, conditional on optimal behavior in the ensuing subgame by player A (i.e. conditional

on the equilibrium being subgame perfect), the bargaining solution is required to be ”constrained”

Pareto optimal.

The first order condition for this problem is:

αuA
¡
xA (p)

¢α−1
uB
¡
e− xA (p)¢1−αDuA ¡xA (p)¢DxA (p)

− (1− α)uA
¡
xA (p)

¢α
uB
¡
e− xA (p)¢−αDuB ¡e− xA (p)¢DxA (p) = 0
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which is satisfied if, and only if,33"Ã
uB
¡
e− xA (p)¢

uA (xA (p))

!
αDuA

¡
xA (p)

¢− (1− α)DuB
¡
e− xA (p)¢#DxA (p) = 0.

This holds if either the first vector in brackets is the null vector, or both the vector in brackets and

DxA (p) are non-null but orthogonal.34 This second case implies35

DuB
¡
e− xA (p)¢DxA (p)

DuA (xA (p))DxA (p)
=

α

1− α

Ã
uB
¡
e− xA (p)¢

uA (xA (p))

!
.

Remind that
¡
uA
¡
xA (p)

¢
, uB

¡
e− xA (p)¢¢ is the profile of utilities along A’s offer curve fA, i.e.

uB
¡
e− xA (p)¢ = fA ¡uA ¡xA (p)¢¢. Then the derivative is of fA is given by

f 0A
¡
uA
¡
xA (p)

¢¢
= −Du

B
¡
e− xA (p)¢DxA (p)

DuA (xA (p))DxA (p)

and as a result, the solution p of this Nash bargaining problem has to satisfy

f 0A
¡
uA
¡
xA (p)

¢¢
= − α

1− α

Ã
uB
¡
e− xA (p)¢

uA (xA (p))

!
.

Note that since α
1−α takes any positive value for some α ∈ [0, 1] , any negative slope f 0A

¡
uA
¡
xA (p)

¢¢
of

fA can be made equal to the right-hand side for some α ∈ [0, 1] . Therefore any point on the negatively
sloped portion of fA, the constrained Pareto frontier, is a Nash bargaining solution for some choice of

α within [0, 1].

8.3 More than two goods

It is worth to note that the existence of SSPE that remain bounded away in the limit for a nonempty

open set of economies shown above (Theorem 1), does not depend on having just two goods as in the

previous set-up, but is rather a completely general property. As a matter of fact, this property follows

from the fact that the curves of profiles of utilities fA and fB along the agents’ offer curves do not cross

generically at any profile of utilities (uA∗, uB∗) corresponding to a Walrasian outcome, even though they
necessarily intersect tangently there.

In effect, on the one hand, the tangent intersection follows intuitively from the fact that any profile of

utilities (uA∗, uB∗) corresponding to a (isolated) Walrasian allocation must be both on fA and fB , and
on the (smooth) Pareto frontier, while fA and fB must be within (the interior of the) set of attainable

utilities (at points distinct from (uA∗, uB∗) ). This tangency implies that the slopes of fA and fB

at (uA∗, uB∗), i.e. the derivatives f 0A(u
A∗) and (f−1B )0(uA∗), coincide. On the other hand, assuming a

(necessarily non-transversal) crossing of fA and fB at (u
A∗, uB∗) would require the derivative (f−1B )0(uA)

to be smaller than the derivative f 0A(u
A) at every uA in a neighborhood of uA∗ and distinct from uA∗.

33Note that

µ
uB(e−xA(p))
uA(xA(p))

¶−α
6= 0 because the utility functions take only positive values.

34The second vector DxA (p) is non-null for any generic utility function uA.
35Generically in utility functions, DuA

¡
xA (p)

¢
and DxA (p) are not orthogonal.
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As a consequence, the graphs of the derivatives of fA and f
−1
B would necessarily have to intersect at

(uA∗, f 0A(u
A∗)) = (uA∗, (f−1B )0(uA∗)) without crossing each other, and hence that intersection of the

graphs of f 0A and (f
−1
B )0 itself would have to be tangent, i.e. non-transversal, as well.

Now, while the non-transversality of the intersection of fA and f
−1
B at (uA∗, uB∗) follows, as explained

above, from the fact that (uA∗, uB∗) is the profile of utilities corresponding to a Walrasian allocation,
the non-transversality of the intersection of f 0A and (f

−1
B )0 at (uA∗, f 0A(u

A∗)) = (uA∗, (f−1B )0(uA∗)) does
not follow necessarily from any assumption on the economy or the properties of a Walrasian allocation.

As a matter of fact, the non-transversality of the intersection of f 0A and (f−1B )0 at (uA∗, f 0A(u
A∗)) =

(uA∗, (f−1B )0(uA∗)) imposes a constraint on the derivatives up to the order 2 of the utility functions uA

and uB at the Walrasian allocation x∗A and x∗B respectively (like condition (24) above for the two

goods case, where the coordinates of the gradients ∇A(x∗A) and ∇B(x∗B) of A and B’s offer curves

depend on the derivatives up to the order 2 of the utility functions) that will not be satisfied generically.

Now, with fA and fB not crossing at (u
A∗, uB∗), their boundary behavior guarantees the existence of

at least one crossing that, for the reasons explained above, will generically be transversal and hence

interior to the utilities possibility set, i.e. inefficient. If moreover fA and fB were close enough to have

a crossing at (uA∗, uB∗) indeed, then this other crossing will necessarily satisfy also the condition for
subgame perfection that guarantees it to correspond to a SSPE.

Note that the argument above is independent of the number of goods in the economy and relies only

on the properties of the curves fA and fB of profiles of utilities attainable along the agents offer curves.

It is easy to see now why the assumptions A3 and A4 made in Yildiz (2001),36 under which conver-

gence of a unique SSPE towards a unique Walrasian outcome is obtained, are degenerate. In effect, while

each of the two assumptions A3 and A4 in Yildiz (2001) are not degenerate on their own, nonetheless

the requirement of both of them holding simultaneously amounts to having a non-transversal crossing

of fA and fB at a Walrasian profile of utilities that, as explained above, is a degenerate property in the

space of economies.

9 Conclusion

We have analyzed in this paper a model of alternating-offer bargaining over prices in an exchange

economy. Because the only allocations that arise in equilibrium must necessarily be on the offer curve

of the agent accepting the offer, and the market power of infinitely patient agents is evenly distributed

between both agents, a sensible conjecture about the equilibrium outcome of the bargaining over prices

as discounting frictions vanish is an allocation on both offer curves, i.e. a Walrasian allocation.

We have indeed shown that the Walrasian allocation can be the outcome of the bargaining over

prices in the limit, as the agents become infinitely patient. In effect, Theorem 6 provides conditions

under which such convergence of a stationary subgame perfect equilibrium to the Walrasian equilibrium

occurs. Moreover, it establishes that whenever this convergence obtains there is actually an even number

of stationary subgame perfect equilibria converging to the same Walrasian equilibrium. As a result,

36In words, A3: both monopolistic outcomes are dominated by some allocation attainable along an offer curve; and A4:

there is a unique crossing of fA and fB within the interval defined by the profiles of utilities attained at the monopolistic

outcomes.
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convergence only obtains along with the indeterminacy of the outcome. Nevertheless, the convergence

of the stationary subgame perfect equilibria of bargaining over prices to Walrasian outcomes is not even

guaranteed, and Theorem 6 provides robust conditions under which there is no such convergence.

As a matter of fact, contrarily to what intuition tells us, the convergence of the bargaining over prices

to a Walrasian outcome should not be expected. Theorem 4 proves that the existence of stationary

subgame perfect equilibria that remain bounded away from efficiency as the agents become infinitely

patient is a robust outcome of bargaining over prices. More importantly, Theorem 5 establishes that the

subset of economies with such stationary subgame perfect equilibria is actually open and dense, which

makes the non-convergence to a Walrasian outcome a generic property of these economies.

Interestingly enough, these results are in stark contrast with the existence of a unique and efficient

subgame perfect equilibrium in the Rubinstein (1982) alternating-offer bargaining model.

What can be learned from the results presented in this paper is, in the first place, that bargaining

over prices as a procedure for negotiation can be thoroughly questioned. The generic inefficiency of

its outcomes suggests that this may not be the right procedure to solve a bilateral monopoly problem.

In the second place though, bargaining over prices seems to be pervasive in real life. For instance,

union wage bargaining is typically over prices because by law, firms have the right to choose the level

of employment. And even without legal restrictions, in similar environments it may not be possible to

contract on the quantity on because of the lack of verifiability and enforcement in court. As a result,

when bargaining over which contract to write, parties may be restricted to including unit prices. The

results derived in this paper suggest that the efficiency of such contracts can be a real concern.
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10 Appendix

Proposition 9 For a generic37 exchange economy {ui, ei}i∈{A,B} satisfying Assumption 1, the curves
fA and fB of profiles of utilities along the offer curves of A and B are tangent at every profile of utilities

(uA∗uB∗) of a Walrasian allocation x∗.

Proof. Consider the set of 2 + n+ 1 equations

uA(xA)− uA = 0

uB(xB)− uB = 0

xA + xB − eA − eB = 0

DuA(xA)(xA − eA) = 0

in the 2(1 + n) variables uA, uB, xB, xA. Note that the degrees of freedom of the system n − 1 are
positive as long as n ≥ 2. The Jacobian matrix of the system is

1 0 0 −DuA(xA)
0 1 −DuB(xB) 0

0 0 In In

0 0 0 ∇A(xA)


For uB to be implicitly defined as a function of uA, then the submatrix of the columns corresponding

to every variable distinct from uA
0 0 −DuA(xA)
1 −DuB(xB) 0

0 In In

0 0 ∇A(xA)


The only way in which this submatrix can fail to have a full rank, i.e. the only way in which the null

row vector can be a nontrivial linear combination of its rows, is multiplying its second row and the n

rows corresponding to the identity matrices In by 0, and multiplying the first and last rows by λ and µ

respectively such that

λDuA(xA) = µ∇A(xA).
This last condition requires the gradients of the utility function uA and of the function defining A’s offer

curve to be collinear at xA. This can be excluded generically (it can happen only countably many times

along an offer curve and it is not robust to perturbations), and therefore uB is indeed implicitly defined

as a differentiable function of uA by the system of equations above.

37With respect to the usual topology in the space of endowments, and the topology of C1 uniform convergence on

compacts in the space of utility functions (actually for any Cn convergence as well).
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In the case n = 2, in order to compute the derivative of uB with respect to uA at any point, we need

to compute the second entry of

−


0 0 0 −D1uA(xA) −D2uA(xA)
1 −D1uB(xB) −D2uB(xB) 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 ∇A1 (xA) ∇A2 (xA)



−1
1

0

0

0

0


For that purpose we only need to know the determinant of the matrix above and the cofactor of the

entry (1, 1). As for the determinant, it is¯̄̄̄
¯̄̄̄
¯̄̄̄
0 0 0 −D1uA(xA) −D2uA(xA)
1 −D1uB(xB) −D2uB(xB) 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 ∇A1 (xA) ∇A2 (xA)

¯̄̄̄
¯̄̄̄
¯̄̄̄

= D1u
A(xA)∇A2 (xA)−D2uA(xA)∇A1 (xA),

and the (1, 1) cofactor is ¯̄̄̄
¯̄̄̄
¯
−D1uB(xB) −D2uB(xB) 0 0

1 0 1 0

0 1 0 1

0 0 ∇A1 (xA) ∇A2 (xA)

¯̄̄̄
¯̄̄̄
¯

= −D1uB(xB)

¯̄̄̄
¯̄̄ 0 1 0

1 0 1

0 ∇A1 (xA) ∇A2 (xA)

¯̄̄̄
¯̄̄+D2uB(xB)

¯̄̄̄
¯̄̄ 1 1 0

0 0 1

0 ∇A1 (xA) ∇A2 (xA)

¯̄̄̄
¯̄̄

= D1u
B(xB)∇A2 (xA)−D2uB(xB)∇A1 (xA).

Therefore
duB

duA
= −D1u

B(xB)∇A2 (xA)−D2uB(xB)∇A1 (xA)
D1uA(xA)∇A2 (xA)−D2uA(xA)∇A1 (xA)

.

By a similar argument

duA

duB
= −D1u

A(xA)∇B2 (xB)−D2uA(xA)∇B1 (xB)
D1uB(xB)∇B2 (xB)−D2uB(xB)∇B1 (xB)

.
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Finally, since at any Walrasian allocation x∗, DuA(xA∗) = λDuB(xB∗) for some λ > 0, then at x∗

duB

duA
duA

duB
=

D1u
B(xB∗)∇A2 (xA∗)−D2uB(xB∗)∇A1 (xA∗)

D1uA(xA∗)∇A2 (xA∗)−D2uA(xA∗)∇A1 (xA∗)

·D1u
A(xA∗)∇B2 (xB∗)−D2uA(xA∗)∇B1 (xB∗)

D1uB(xB∗)∇B2 (xB∗)−D2uB(xB∗)∇B1 (xB∗)

=
D1u

B(xB∗)∇A2 (xA∗)−D2uB(xB∗)∇A1 (xA∗)
λ(D1uB(xB∗)∇A2 (xA∗)−D2uB(xB∗)∇A1 (xA∗))

·λ(D1u
B(xB∗)∇B2 (xB∗)−D2uB(xB∗)∇B1 (xB∗))

D1uB(xB∗)∇B2 (xB∗)−D2uB(xB∗)∇B1 (xB∗)
= 1

which implies that the graphs of uB(uA) and uA(uB), i.e. fA and fB, are tangent at any profile of

utilities corresponding to a Walrasian allocation. Q.E.D.
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