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Abstract

One consequence of dynamic system theory is that relatively

simple systems, which can be described by a few non-linear

equations, can exhibit very complicated, stochastic-like

behavior. Such models simulate processes inexpensively. They

reveal insights into the underlying mechanisms while devising

strategies to control these processes.

Chaotic systems are sensitive to initial conditions. Since

these conditions are not precisely known and are subject to

perturbations, long-term predictions of the behavior of these

systems are impossible. Thus, the availability of large

computational resources will not enable one to generate long-term

predictions for systems ranging from weather to economic

forecasts.
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Introduction

The last few decades have seen an increased emphasis on

mathematical modeling. One class of models consists of evolution

equations: the description of the time-dependence or the dynamics

of various processes through mathematical statements written

either as differential equations for continuous processes or

difference equations for discrete processes. Such models have

been of great utility in the physicaJ and natural sciences,

engineering, and economics. Just a few examples of such models

are the oscillations of a pendulum, the weather system, streams

in the ocean, the spread of diseases, physiological rhythms, and

population dynamics. Broadly speaking, mathematical models can be

classified as either deterministic or stochastic. Since our

intention is to avoid technical jargon and to make the

presentation simple, we define a deterministic process as a

process that when repeated exactly in the same way will yield

exactly the same outcome. In contrast, stochastic processes will

yield different outcomes when repeated. Here, we will focus

solely on deterministic processes.

One may be tempted to conclude that deterministic systems

exhibit only regular behavior and that once a deterministic model

is available, one should be able to predict the system's future

behavior. In other words, if we know the system's current state,

we should be able to tell the system's future states at all
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times. Although many systems do exhibit regular and predictive

behavior, there are many others that do not. In fact, there are

many deterministic systems that exhibit irregular, random-like

behavior. Such systems are referred to as chaotic. We

reemphasize that, in the context of this paper, we define chaotic

systems as deterministic systems that exhibit complex behavior.

One of the characteristics of chaotic systems is high

sensitivity to initial conditions. When a system exhibits high

sensitivity to initial conditions, even when we have an accurate

model for that system, we cannot predict its future behavior.

Any small inaccuracy in the initial data, such as may result from

measurement errors, will amplify rapidly and will render any

long-term prediction useless. The possibility of initial errors

growing rapidly is common to all unbounded systems (linear

systems included) that exhibit exponential growth. Less widely

known is the fact that such sensitivity to initial conditions is

exhibited by many nonlinear, bounded systems.

The prominent French mathematician, dynamist, and

astronomer, Henri Poincare is credited to be the first to realize

that "... it may happen that small differences in the initial

conditions produce very great ones in the final phenomena. A

small error in the former will produce an enormous error in the

latter. Prediction becomes impossible, and we have the

fortuitous phenomenon" (Poincare, 1913). A detailed depiction

of the complex behavior exhibited by chaotic systems was delayed
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until the appearance of computers that allowed one to investigate

numerically the behavior of continuous models over relatively

long time intervals and discrete models over many iterations. In

1963, while he was studying various simplified models for the

weather system, the meteorologist E. N. Lorenz observed that a

deceptively simple-looking system of three coupled, nonlinear

differential equations exhibits complex (chaotic) behavior.

Although the scientific community recognized that deterministic

systems may exhibit random-like, turbulent behavior, the

prevailing dogma had been that such behavior would be exhibited

only by systems with very many degrees of freedom. Lorenz's work

demonstrated that a system with a relatively small number of

degrees of freedom (as few as three) may also exhibit chaotic

behavior. Although deterministic systems may exhibit random-like

behavior that resembles the behavior of stochastic (random)

systems, such irregularity results from the system's intrinsic

dynamics, and not random influences.

The fact that certain systems may exhibit chaotic,
..

unpredictable behavior has very important practical and

philosophical implications. The lack of predictability of

chaotic systems cannot be cured by increases in computer and

computational power. No matter how large a computer one would

acquire, the chaotic system will still remain unpredictable over

the long-term. The realization that low-dimension systems may

exhibit chaotic, complex behavior suggests that some complex
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phenomena that appear to be random at first sight may be

describable by relatively low-dimensional mathematical models.

One of the targets of such investigations (apparently with little

or no success) has been the stock market. Of course, there is no

assurance that the market fluctuations result from chaotic

dynamics. Although the chaotic dynamics defy long-term

predictions, short-term predictions with error estimates can

still made. Furthermore, with an observer that observes some of

the system's states, it is possible to devise a state estimator

capable of updating and modifying predictions. Finally, many

chaotic systems are controllable. One can suppress their chaotic

behavior altogether or induce them to behave periodically with

various periods. This leads to the opportunity of extracting

many types of behavior from a single system with minimal

intervention. Moreover, occasionally it may be beneficial to

induce chaos under conditions when it would normally not occur.

For example, chaotic behavior is often associated with high

levels of stirring and mixing which is desirable for

homogenization as well as chemical and biological reactions.

Chaos is a ubiquitous phenomenon that crosses disciplinary

lines. The topic has attracted a great amount of attention in

the last two decades. There are a great number of excellent and

not so excellent books focused on this topic as well as a number

of professional journals. A month will hardly go by without a

new book or compendium devoted to chaos theory appearing in

"
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print. There are journals devoted to chaos theory, and hundreds

of research papers on this topic appear annually. The literature

ranges from highly readable non-technical books such as Gleick's

(1987) bestseller, and Peitgen and Richter's (1986) coffee table

images, to the engineering/physics literature and highly

mathematical manuscripts. This paper targets a non technical

audience seeking to obtain somewhat greater exposure than that

offered by the non technical literature, albeit without

inordinate immersion in technical details. To facilitate this

quest, we shall therefore introduce the topic through the

description of two chaotic toys. Although these toys were chosen

from the authors' areas of expertise, the phenomena described and

its implications are generic and cross disciplinary lines. The

first toy - the Lorenz loop - exhibits temporal chaos while the

second toy - the electro-magneto hydrodynamic stirrer - exhibits

spatial chaos.

The Lorenz Loop

The first "toy" is a thermal convection loop. We

it as the

the Lorenz

experimental

into a torus

See Figure 1

INSERT FIGURE

Lorenz loop

equations.

analog of

(doughnut-shape)

for the schematic

1

refer

it can be approximately modeled by

other words, this set-up is an

Lorenz model. Imagine a pipe bent

and standing in the vertical plane.

depiction of the apparatus.

because

In
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The tube is filled with liquid (i.e", water)

of the apparatus is heated while the upper half is cooled. The

heating and cooling conditions are symmetric with respect to the

loop's axis that is parallel to the gravity vector. As a result

of the heating, the liquid in the lower half of the apparatus

expands, its density decreases, and it tends to rise. When the

heating rate exceeds a certain critical value, irregular flow is

observed in the loop. The flow rate oscillates irregularly in

time with occasional reversals of the direction of the flow. We

denote the flow rate as X, the temperature difference between

positions 3 and 9 o'clock across the loop as Y, and the

temperature difference between positions 6 and 12 o'clock as Z.

These three variables, all of which are functions of time, are

sufficient to describe the major features of the flow dynamics in

the loop. The solid line in Figure 2 depicts the computed flow

rate (X) as a function of time when the heating rate is held

constant at some value.

INSERT FIGURE 2

The documentation of a signal as a function of time as we

did in Figure 2 is referred to as a time-series. Witness the

irregular, random-looking oscillations, i.e., periodic motion

about an equilibrium position. Positive and negative values of X

correspond, respectively, to motion in the counterclockwise and

8
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clockwise directions. Let us denote, respectively, the positive

and negative peaks with P and N and document the succession of

peaks and valleys as N2PN2PN2PNPN2p8 In other words, the above

sequence implies two negative peaks followed by a positive one,

etc. This sequence is reminiscent of the random sequence that

one would obtain when tossing a coin and counting the sequence of

heads (P) and tails (N). Yet, the signal described in Figure 2

is fully deterministic, and there is nothing random about it.

Similar behavior to that depicted in Figure 2 has been observed

in experiments. Furthermore, behaviors like the one depicted in

Figure 2 prevail in many systems. For example, one can think of

X, Y, and Z as representing the fluctuations around a mean value

of the populations of three interacting species.

In Figure 2, we depicted also a second time-series (dashed

line). This second time series was generated by the same

mathematical model as the first one, albeit with slightly

different initial conditions. Although the two signals initially

stay close to each other, eventually the time series diverge and

exhibit significantly different behaviors. This is a result of

the high sensitivity to initial conditions. The divergence does

not continue indefinitely as the system is bounded, and X never

exceeds certain values. Only non-linear systems can exhibit

bounded behavior with high sensitivity to initial conditions or

disturbances. Chaotic behavior can be exhibited only by

nonlinear systems.
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The time series depicted in Figure 2 seems to lack

structure. Indeed, traditional methods of analyzing time series

such as presenting the data in the frequency domain (Fourier

transform and power spectrum) reveal a broadband signal lacking

any dominating frequencies. Nevertheless, the signal depicted in

this Figure has fair amount of order to it. To unravel this

order, we will depict the signal in a space spanned by the

coordinates X, Y, and Z (the phase space). The state of the

system at any instant in time is specified by a point (X, Y, 4")

in phase space. The time evolution of the system is depicted by

a curve (trajectory) in phase space. It is useful to think of

the system's state as a particle roaming around in space.

INSERT FIGURE 3

Figure 3 depicts the phase portrait of the Lorenz loop.

Witness that the phase portrait of the system has a fair amount

of structure to it. Indeed, there is an amazing tendency for

self-organization. No matter what the system's initial

conditions are, eventually, the trajectories will follow a

similar pattern. The trajectories in Figure 3 appear to lie on a

twisted surface. The feature to which the trajectories are

attracted is called an attractor. Since the structure of the

attractor depicted in Figure 3 is complicated, it is referred to

as a strange attractor. Attractors are present onl¥ in

."

JQ



dissipative system, i.e., systems that do not preserve "potential

energy" but dissipate energy such as when friction is present.

In our example, the phase space is three-dimensional, and the

attractor occupies zero volume in the three-dimensional phase

space; so its dimension must be smaller than 3. The sheet

occupied by the attractor has a sort of "onion" feature to it, as

it contains numerous layers. Hence the attractor must have a

dimension larger than 2 (2 is the dimension of a surface). This

suggests generalizing the concept of dimension to include

fractional dimensions -known as fractal dimensions. In our case,

the attractor' s fractal dimension is approximately 2. Pc?""

The phase space portrait is very useful for obtaining

qualitative information on the nature of the solutions of

differential equations. For example, closed trajectories

indicate periodic behavior. Barring pathological behavior (which

usually does not occur in physical systems), evolution equations

have a unique solution. In other words, once the initial

conditions have been specified, the system will trace a unique

trajectory in phase space. This implies that trajectories cannot

cross. In two-dimensional space, trajectories cannot intersect

and the most complicated behavior that an autonomous, continuous,

bounded system can exhibit is periodic oscillations. To exhibit

chaotic behavior, continuous autonomous systems must be at least

three-dimensional (three degrees of freedom). Such a restriction

does not apply to discrete systems. Discrete systems lack
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continuous trajectories; and points in phase space can jump

around. In fact, even one-dimensional, nonlinear discrete

systems may exhibit chaotic behavior. One celebrated example of

a one-dimensional, discrete chaptic system is the logistic

equation.

The phase space portrait in Figure 3 was constructed using

the mathematical model to compute the trajectories. The

attractor can also be reconstructed based on a time series. One

can carry out measurements and obtain a time series for a single

variable, say X, as a function of time (t). One then constructs

a "comb" with P teeth placed at distances 1: apart from each

other. Guidelines are available for the range of desirable 1

values. One then slides the comb along the time axis and

extracts the points at which the comb intersects the curve traced

by the time series (i.e., Figure 2) to obtain the variables Xl,

X21 ..., Xp. These variables are considered to be the coordinates

of a point in the P-dimensional phase space. The collection of

all these points in phase space provides a description of the

attractor. This technique is especially useful when the

mathematical model is not known, and one analyzes empirical data

and when the mathematical model has very many degrees of freedom

and one wishes to determine the feasibility of describing the

dynamics with a low dimension model. When the dimensionality of

the dynamic system is not apriori known, the practice is to start

with a relatively small value of P, for example P=3, reconstruct
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the attractor, and calculate its dimension (DA). Tpen increase P"

gradually, and compute DA as a function of P. Typically, DA will

initially increase as P increases. When the time series is

generated by a chaotic system, eventually, once P is sufficiently

large, DA will saturate, achieve a constant value, and will no

longer vary with further increases in P. The value of P beyond

which the fractal dimension no longer depends on P is the

estimate of the systems' number of significant degrees of

freedom. The above procedure allows us to test whether a signal

is generated by a chaotic or a stochastic system. In stochastic

systems, there is no attractor and DA will keep increasing

indefinitely as P increases. Of course, such a procedure is

practical only for relatively low-dimension systems. Using this

technique, one can reconstruct different attractors. All of

these attractors, however, are related through smooth

transformations. As funky as this technique may sound, it has

rigorous foundations. Its practical applications may not always

be straightforward, if only, because measured signals may be

contaminated with noise that must be filtered out.

Another way of analyzing the phase space portrait is by

documenting the penetration points of trajectories through a

designated surface in phase space.

INSERT FIGURE 4

Figure 4 depicts the penetration points through the plane

Z=Zo=constant. Such portraits are known as Poincare sections.
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At first glance, the Poincare section appears to consist of line

segments, which would imply that the attractor is confined to a

two-dimensional sheet. In fact, when we zoom on the line, we

discover that it consists of a very large number of closely

packed sheets. The structure appears to be self-similar in the

sense that each additional magnification reveals a structure

similar to the one we saw in the previous magnification. The h~

th penetration in the Poincare section relates to the previous

one through a two-dimensional map of the form {Xn-l' Yn-l} - > {Xn,

Yn}. In effect, the Poincare section converts the continuous

model to a discrete one, allowing us to make a connection between

continuous and discrete models. Often when a system is forced

periodically in time, the Poincare section will consist of

stroboscopic images (images taken once every period) of the

system's state. This is explained in greater details in the next

section.

Although chaotic systems defy long-term predictions, short

terms predictions are possible. One can estimate the rate of

divergence of the trajectories. This rate of divergence is known

as the Lyapunov exponent and one can estimate the prediction's

error as a function of the error in estimating the initial state

and the estimation time interval. Moreover, with the aid of an

observer, the state of the chaotic system can be estimated in the

presence of disturbances and uncertainty in initial conditions.

The observer continuously monitors one or more of the state
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variables or some other state-dependent measurant. The system's

behavior is estimated with the aid of its mathematical model plus

an extra term (filter) that is a function of the difference

between the actually measured and the predicted values.

Finally, chaotic systems are controllable. With the use of

a feedback controller, one can suppress the chaotic behavior

completely, and obtain time-independent behavior (i.e., when one

depicts X as a function of time, one would obtain a nearly

straight horizontal line). See Singer et al., tt.ij§'l). In fact,

the chaotic attractor contains numerous non-stable, periodic

orbits of various periodicities. It is possible to use a

controller to stabilize any desired period. Thus, one can obtain

very many types of behaviors from a single chaotic system. For

example, researchers have determined that the irregular beatings

of the atrial chambers of the heart are chaotic. Through the

application of electrical stimuli in a feedback mode, they were

able to control the cardiac arrhythmia in a rabbit. Similarly,

apparently chaotic electrical patterns characteristic of

epileptic behavior in the rat brain tissue (cf. paper by Gur,

Contreras, Gur) have been controlled with the aid of a feedback

controller.

Of equal interest is the problem of using a controller to

induce chaos in systems that are naturally well behaved

(laminar). Chaotic systems usually exhibit efficient stirring.

Efficient stirring is desirable in chemical and biological



reactions. We shall explore the use of chaos to induce steering

in the next section and this will give us the opportunity also to

spatialencounter

The Magneto Hydrodynamic Stirrer

The magneto-hydrodynamic stirrer consists of a qircular

cavity with an electrode C deposited around its periphery. Two

additional electrodes A and B are deposited eccentrically inside

the cavity on the cavity's bottom. See Figure 5.

Insert Figure 5

The cavity is positioned in a uniform magnetic field that is

parallel to the cavity's axis, and it is filled with a weak

electrolyte solution such as saline solution. When a potential

difference is applied across electrodes A-C, where A is positive

and C is negative, electric current will flow in the solution

between the two electrodes. The interaction between the current

and the magnetic field results in Lorenz forces that, in turn,

induce, say, counter clockwise flow circulation in the cavity.

The motion can be traced by seeding the liquid with small

particles. The trajectories of some of such particles are

depicted in Figure 6. We refer to this flow pattern as pattern

A. When we apply a potential difference across electrodes B-C,

where B is negative and C is positive, now a clockwise

circulation will be induced around electrode B. We refer to this

t6-
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flow pattern as pattern B. We operate the device by alternately

engaging electrodes A-C and C-B with a period T. Each electrode

pair is engaged for a time interval equal to half the period.

FigureInsert

Figure 7 depicts stroboscopic images (Poincare sections) of

the tracer's location at the end of each period. When the

alterations are at high frequency (Figure 7a), the tracer tracks

a trajectory that is nearly a superposition of patterns A and B.

At moderate values of T (Figure 7b), one observes the appearance

of irregular chaotic islands. When T is further increased, the

chaos spreads into the entire cavity (Figur~ 7c).

Insert Figure 7

The chaotic behavior is characterized by the irregular

spread of points. Witness that the chaotic behavior is induced

by alternating two regular flow patterns of the types depicted in

Figure 6. This phenomenon is known as Lagrangian chaos. In

contrast to our first example where the chaotic behavior was

temporal; here the chaotic behavior is spatial. The other

features of chaos such as high sensitivity to initial conditions

are also present here. In other words, if we place two tracer

particles next to each other, their trajectories will markedly

diverge as time goes by.
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To see additional features of the chaotic advection, we will

trace the evolution of a trace of dye introduced into the fluid

when the period T is relatively large (same period as in Figure

7). In Figure 8a, we place a black blob inside the cavity.

Figures 8b, 8c, 8d, 8e, and 8f depict, respectively, the same

material blob after 10, 20, 30, 40, and 50 time periods.. Witness

that the flow stretches material

INSERT FIGURE 8

Since the flow is bounded (confined to the cavity), the

stretching cannot continue indefinitely and the material lines

are forced to fold. The process increases the interface between

the two materials and this is why chaotic flows provide for

efficient stirring. The process depicted in Figure 8 is governed

by kinematics alone, and it does not include any molecular

diffusion. This process of continuous stretching and folding is

characteristic of chaotic dissipative systems and it is also

present in the Lorenz attractor..

Beyond Physics and Engineering

So far, we have discussed concrete examples taken from the

world of engineering and physics. Earlier in the paper, we

hinted about possible extensions to biological and social

systems. Indeed, biology, finance, economics, and social

lines (Figure 8b)



phenomena yield complex time and spatial evolutions that often

appear to be stochastic and unpredictable. It is natural to

wonder whether such phenomena can be attributed to endogenous

(intrinsic) mechanisms (described with deterministic models) or

exogenous influences (described by stochastic noise). Although

in these systems, the driving forces are quite different (and

often more difficult to discern) than in physical systems, the

patterns of behavior are often phenomenologically similar to the

ones displayed by deterministic chaotic systems. Indeed, Dynamic

System Theory crosses disciplinary lines.

For many years, biologists and population dynamists have

been aware of population fluctuations. As early as 1926,

Volterra proposed a simple predator-prey model to explain the

annual fluctuations of certain fish catches in the Adriatic.

Perhaps the simplest model of population dynamics is the one that

describes the evolution of a single species. Let Xn denote the

number of members of a certain species at generation (n). With

appropriate normalization (O<Xo<l, 1<A<4), the number of

individuals in generation (n+1), Xn+l' is modeled as

Xn+l= AXn(l-Xn). In the above, the first term represents the

growth rate. When Xn is small, the growth rate is nearly a

linear function of Xn. When Xn is relatively large, limited

resources and crowding check the size of the population. The

above equation is known as the discrete logistic map. It is easy

to iterate this equation on a hand-held calculator and observe

~'9i\c,'



the various patterns that evolve for various values of A.

Clearly, the size of the population is bounded (O~Xn~l). As A

increases, the population's evolution patterns vary from time-

independent to time-periodic, with various periodicities to

chaotic (irregular) behavior; that is to say, with high

sensitivity to initial conditions. The logistic model can be

readily enriched (and made more complicated) by including

interactions between two or more competing species, as in the

predator-prey model. It is perhaps not surprising that models of

population dynamics have been used with various degrees of

success to study, among other things, the cause and spread of

epidemic outbreaks and the effectiveness of vaccinations.

Models similar to the ones used in population dynamics have

been utilized also to simulate various economic phenomena such as

the relationships between prices and commodity quantities,

capital growth, and business cycles. Business cycles, for

example, are often likened in their unpredictability to turbulent

flow. Nonlinear mathematical models can duplicate complex

behaviors qualitatively, in ways similar to those observed in

economic systems. This, however, does not necessarily imply that

economic systems are chaotic, in the sense of deterministic

chaos. For example, Forsyth (1994) claims that the behavior of

the international financial market in the 1990s is remarkably

20



similar to the behavior of local markets in the l8~Q$, suggesting

a possible deterministic pattern.

Recognizing the existence of deterministic chaos in economic

data is important from both theoretical and practical points of

view. From the theoretical point of view, knowing that a system

is chaotic may assist in constructing mathematical models, which

would provide a deeper understanding of the underlying dynamics.

From the practical point of view, such a model may facilitate

process control and, in some cases, short-term predictions. The

high sensitivity of chaotic systems to small perturbations makes

long-term predictions impossible. Nevertheless, in some cases,

short-term predictions within estimable error margins are not

beyond the realm of possibility.

Weak-form market efficiency has long been the subject of

empirical scrutiny. The weak-form market efficiency hypothesis

states that future securities prices cannot be predicted from

current and past price and market information. This hypothesis

suggests that investors cannot reliably earn abnormal returns

merely by looking at universally available information. However,

the weak-form market efficiency should not be confused with the

"random walk" theory of market efficiency (Fama, 1970). Random

walk theories maintain that stock returns are identically and

independently distributed, and that the sole indicator of future

prices is the current price. Unlike random walk theories, weak-

form efficiency does not claim that stock returns are stochastic

~t



given all unobserved information.

prices are

information.

The most basic test of the weak-form efficiency hypothesis

is autocorrelation. This test fits the time-series of excess

returns to a linear regression model. The excess return is equal

to the actual minus the expected return, which is determined from

models such as the Capital Asset Pricing Model (Fama and MacBeth,

1973)

stochastic,

Autocorrelation studies strongly support the weak-form

market efficiency theory. Cootner (1974) studies the

relationship between forty-five U.S. stock returns, over one and

fourteen weeks respectively, and finds no significant

correlation. Meanwhile, some studies do show some small

correlation between successive daily returns. For example, Fama

(1965) finds a correlation coefficient of 0.026 for a period of

one day. Lo and MacKinlay (1988) and Conrad and Kaul (1988) have

performed correlational studies on portfolio stocks. They find
,

that weekly returns of large-cap stock portfolios show almost no

correlation, whereas as much as nine percent of the weekly return

of a portfolio of smaller stocks can be explained by the return

of the previous week. The higher correlation among small-stock

portfolios may result from infrequent trading.

Another tool of technical analysis is the filter rule. This

class of rules states that, for a given security, the price

22"
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fluctuates between two barriers around some "fair" price. When

new information comes to the market, however, the fair price and

range may shift to a new equilibrium. A shift to a new

equilibrium is signaled by a breakout through one of the

barriers. Technical analysts claim that, when such a breakout

occurs, investors should buy the stock to capitalize on the

impending gains or sell the stock to avoid further losses.

Besides the conventional approaches, a number of useful

tools were introduced to test the hypothesis, such as the run

test and the filter rule. Fama and Blume (1966) have studied a

number of possible filter sizes. Although a very small filter

can outperform a buy-and-hold strategy over time, transaction

costs make such a strategy unprofitable since it requires

frequent buying and selling. This is consistent with the small

daily correlation. In summary, although technical analysts claim

that their techniques can earn abnormal profits, the evidence

does not support their presumption of market efficiency.

It is clear that the preponderance of traditional measures

support the weak-form market efficiency hypothesis. This is

particularly true since transaction costs would eliminate

whatever small excess profits can be earned by studying past

price movements. Thus, it appears that, given only universally

available price and market data, stock prices are indeed

unpredictable.

~'
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In the last few decades, scientists in the natural sciences

have recognized that many processes that were previously thought

to be stochastic are actually chaotic (see papers by Domotor &

Batitsky, and by Domotor). Even low-dimension nonlinear systems

can produce stochastic-like behavior. This suggests that some

time-series of economic processes may appear random but are

actually chaotic, possibly contaminated by random noise.

The embedding theorem provides a procedure for redesigning

(embedding) the system's trajectories in phase space from the

observation of a single signal. The redesigned phase space

portrait is the topological equivalent to the exact one. Since

deterministic chaos occurs in a finite-dimension space while

random noise does not, this algorithm provides the means to

distinguish between the deterministic, but apparently disordered,

behavior of a chaotic system and a truly random one. When the

data represents a chaotic system, the attractor's dimension will

initially increase as the embedding space dimension increases,

eventually attaining an asymptotic value. In contrast, when the

data represents a truly random system, the attractor1s dimension

~i+l continue to increase as the embedding space dimension

increases.

mentioned earlier that the Lyapunov exponent indicates

of divergence of the trajectories. The existence of a

Lyapunov exponent is often used as an indication of

A problem in estimating Lyapunov exponents is that

We

the rate

positive

chaos.
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commonly used algorithms require a large number of observations.

Since few economic series of such large size are available,

Lyapunov exponent estimates of economic data may not be so

reliable.

Researchers have applied tools of dynamic system analysis to

economic data. A study by Frank, Gencay, and Stengos (1988),

demonstrates that the correlation dimension of quarterly GDP data

since 1960 for Italy, Japan, the UK, and West Germany increases

monotonically as a function of the embedding space dimension less

than 15. They have also found that the largest Lyapunov

exponents for their data were negative in most cases. Hence,

they conclude that there is no evidence of deterministic chaos in

their data. Frank and Stengos (1988), too, have computed

negative Lyapunov exponents for Canadian macroeconomics series,

and have found no evidence of deterministic chaos.

Bajo-Rubio, Fernandez-Rodriguez, and Sosvilla-Rivero (1992)

have since examined the Spanish Peseta-Dollar spot and forward

exchange rates at various periods. They computed the correlation

dimensions as a function of the embedding space dimension (less

than 12) as well as the Lyapunov exponent of the series. They

observed that the correlation dimension achieves an asymptotic

value between 2 and 3 and that the largest Lyapunovexponent is

positive. This constitutes evidence of chaotic behavior. Using

their model, the authors sought to predict also of the one- apq

three-month forward rates, but these yielded root mean square



errors lower than those obtained from forecasts from a random-

walk model. One may conclude therefore that evidence of chaos in

economic data is inconclusive.

Motivated by the study of linear systems, a frequent

starting point when analyzing time-series is the construction of

the power spectrum, such as the one seen in Figure 2, which is

equivalent to the computation of the autocorrelation. The power

spectrum may assist in the discovery of periodic or quasi-

periodic behavior. Saligari and Snyder (1997) find that,

although the model is generally not useful in forecasting the

underlying long-run trend, it may be advantageous for short-term

predictions of the data. In linear systems, modes in the power

spectrum correspond to generalized degrees of freedom of the

system, and broad-band power spectra are generated by an

infinite-dimensional system. This is not true, however, in

nonlinear systems; some low-dimension chaotic systems may well

exhibit broad-band power spectra.

In order to determine whether the economy is chaotic or not,

once we utilized methods of dynamic systems to analyze the daily

returns of nine major stock indices (Shachmurove, Yuen, and Bau,

1999). Our group tried to test the weak-form market efficiency

hypothesis in a new way by attempting to find low-order

deterministic chaos in stock price data. The data analyzed by us

included the stock indices of Canada, Europe-14, Europe excluding

the UK, World excluding USA, France, Germany, Japan, the UK, and
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the USA, during the period from January 1, 1982, to September 5,

1997. For the purposes of our report, we analyzed the relative

daily changes in the stock price indices expressed in

percentages. We calculated the percentages from returns

converted to U. S. Dollars (Shachmurove, Yuen, and Bau, 1999).

The power spectra of the daily returns of stock price indices

were depicted as a function of frequency (see Figure 9).

INSERT FIGURE 9

Note that all of the daily returns have a broad-band power

spectrum, which implies lack of periodicity in the data.

Although this type of power spectrum is consistent with random

behavior, it is also common to many chaotic systems; for example,

in the logistic map (Gershefeld, 1988).

Figure 10 depicts the probability distribution function as

obtained from histograms of the daily returns of the stock price

indices. The horizontal axis represents the daily return, and

the vertical axis represents the probability of obtaining this

return.

Insert Figure 10
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common in many stochastic processes, it is also eXhib£t~d by

deterministicchaotiqi

Fi~re 11 depicts the informat$9U dimension, Dr, of the

daily returns of the stock price indices, expressed in US

dollars, of different exchanges as a function of the embedding

dimension, n. Briefly, the embedding space is divided into N(E)

n-dimensional cubes with edge size E. One counts the number of

points in each cell, 1;;9; 9p:Hpin an estimate of the probability

(Pi) of finding a point $fi {;~ll (i). The information dimension

I

is defined as:

For a more detailed exposition of the information entropy see

Shannon (1948). The largest 11-k value sets are used in the

construction of Figure 11. The information dimension obtained

using the largest k-sets is generally considered to be less

susceptible to noise and therefore more reliable. The vertical

bar represents the root mean square (rms) of the oscillations in

Dr. Due to the smallness of the rms, the vertical bars are not

always visible.

INSERT FIGURE 11

Note that, as (n) increases so do (Dr) and the rms of

oscillations in Dr. For example, as n increases from 1 to
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the rms of the oscillations in DIc

index increases from 0.01

and g), Dr approximately

45-degree line.

The dimensions of the German (Figure llf) and USA (Figure

11i) daily returns appear to approach an asymptote at a large

value of n. Once larger embedding dimensions are included in the

analysis, however, the information dimension of the German and

USA indices increases further. Figure 11 as a whole, indicates

daily returns of all the stocks' price indices are

~andom or a result a high-dimension, deterministic

follows a

thethat

either

process.

Thus, the results indicate that the daily returns are not

governed by a low-dimension, deterministic system. However, due

to the limited number of data points, the results should be

considered as indicative and tentative. In order to have a more

reliable estimate for large embedding dimensions a much larger

data set would be required. This finding is consistent with the

weak-form market efficiency hypothesis. The weak-form market

hypothesis states that prices of future securities cannot be

predicted from current and/or past price and market information,

and thus investors cannot reliably earn abnormal returns merely

by examining such publicly available information. Panas and

Ninni (2000) have arrived at similar conclusions when analyzing

oil futures.

the Canadian stock pricefor

0.49. In many cases (Figures lla,fJq

the curve nearlyequals n,

of



Like physical systems, economic systems represent the

aggregate of a vast number of individual, possibly random,

actions that allow for statistical generalizations. Elementary

particles, however, obey laws of physics that do not change over

time. In contrast to physical systems, peoples' choices reflect

perceived needs and desires that do change over time. These

preferences are influenced by many factors such as new inventions

that lead to new options, changing value systems and political

structures, and government regulations. Whether one can construct

a model that accounts for this added complexity is an open

question (see papers by Krippendorff and also by Reiner, Teune

and Tomazinis).

Summary

Before the advent of chaos theory, it was believed that

complicated, stochastic-like behavior could be generated only by

complicated mathematical models with large numbers of degrees of

freedom (i.e., models consisting of partial differential

equations such as the Navier-Stokes equations or a large number

of ordinary differential equations) and/or by stochastic systems.

Perhaps one of the most exciting consequences of dynamic system

theory is the realization that relatively simple dynamic systems,

which can be described by just a few non-linear, ordinary

differential or difference equations, can exhibit very

complicated, stochastic-like behavior.
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This observation gives hope that, in some cases, complicated

dynamic behavior can be formulated by low-dimensional

mathematical models (i.e., a relatively small number of

equations). The possibility of low-dimensional modeling of

complicated behavior has tremendous practical applications. Low

dimension models allow us to simulate processes inexpensively;

they enable us to gain insights into the underlying physical

mechanisms, and assist us in identifying important variables in

processes; not least, they guide us in devising strategies to

control these processes.

One of the hallmarks of chaotic systems is their sensitivity

to initial conditions and small perturbations (noise). When one

is modeling real systems, the initial conditions are not

precisely known and all real systems are subject to perturbations

and noise. Hence long term prediction of the detailed behavior

of a chaotic system is impossible. The lack of long-term

predictability is a fundamental property of chaotic systems just

as the uncertainty principle is a cornerstone of quantum

mechanics. One of the practical implications is that when one

deals with chaotic systems, the availability of large

computational resources will not enable one to generate long-term

predictions. In the context of meteorology, for example, if the

weather system is chaotic (as many believe it to be), long-term

weather patterns may well remain unknowable and indeterminable,

after all.

!~.
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return. (a): Canada; (b): Europe 14; (c): Europe Excluding

the UK; (d): World Excluding USA; (e): France; (f): Germany;

(g): Japan; (h): UK; (i): USA.

11. The information dimension, D1, of the daily returns of stock

price indices, expressed in US dollars for each stock exchange

(a to i) respectively, is depicted as a function of the

embedding dimension, n. The largest 11-k value sets were used

in the construction of the figures. The vertical bar

represents the root mean squared (rms) of the oscillations in

D1. (a): Canada; (b): Europe-14; (c): Europe Excluding the

UK; (d): World Excluding USA; (e): France; (f): Germany; (g):

Japan; (h): UK; (i): USA.
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Fig. 1: Schematic description of the experimental apparatus.
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Figure 10. The probability distribution functions of the daily

returns of stock price indices are depicted as functions of the daily

return. (a): Canada; (b): Europe 14; (c): Europe Excluding the UK;

(d): Wq~lq Ekcluding USA; (e): France; (f): Germany; (g): Japan; (h):

j '; } c USA " t

l C~v ,,' '*UK;
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Figure 11. The information dimension, Dr, of the daily returns of

stock price indices, expressed in US dollars, of different exchange is

depicted as a function of the embedding dimension, n. The largest 11-

k value sets were used in the construction of the figures. The

vertical bar represents the rms of the oscillations in Dr. (a):

Canada; (b): Europe 14; (c): Europe Excluding the UK; (d): World

Excluding USA; (e): France; (f): Germany; (g): Japan; (h): UK; (i):

USA.
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