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Abstract

We consider a repeated duopoly game where each ¯rm chooses its in-
vestment in quality, and realized quality is a noisy indicator of the ¯rm's
investment. We derive reputation equilibria, whereby consumers `disci-
pline' a ¯rm by switching to its rival in case its realized quality is too
low. The model predicts that ¯rms with good reputation charge a higher
price, sell a bigger quantity and have a higher stock-market capitalization.
Every so often, the market is subjected to turnover, whereby the high-
quality / good reputation ¯rm loses market share, lowers its price and its
capitalization su®ers, while its rival gains market share, raises its price
and enjoys increased capitalization. We examine properties of reputation
equilibria. In particular, we show that the equilibrium is not e±cient or
nearly e±cient even as the discount factor goes to 1.
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1 Introduction

When product quality is not apparent at the point of sale a consumer runs the
risk of buying a low-quality product at a high-quality price. As a result, and as
Akerlof (1970) has pointed out some 30 years ago, the market outcome may be
one where low-quality products are being traded, although buyers and sellers
derive a higher surplus by trading higher-quality products. Numerous market
and non-market mechanisms have been suggested to cope with this problem. In
this paper we analyze one such mechanism, which is operative when consumers
purchase the product repeatedly and are able to observe its realized quality (once
they \bring it home" and use it), although they are still not able to observe the
¯rm's investment in quality. In this set of circumstances consumers are able
to reward a ¯rm whose realized quality is high by raising their future demand
for the ¯rm's product. Conversely, consumers are able to penalize a ¯rm whose
realized quality is low by lowering their future demand for the ¯rm's product.
Therefore, if high investment in quality is more likely to result in high realized
quality the ¯rm has an incentive to invest in quality because of the threat of
consumers' disciplinary actions.

Rather than describe this as \disciplinary actions" we can describe it as a
reputational mechanism. Suppose a ¯rm is known, or reputed, to have produced
high-quality products in the past, and suppose that that makes consumers be-
lieve the ¯rm will also produce high-quality products in the future. Then having
the reputation of being a high-quality provider is valuable because consumers
expect the delivery of high-quality products in the future and are, hence, will-
ing to pay a premium for the ¯rm's product. Therefore, investing in product
quality may be viewed as an attempt to sustain one's reputation and the °ow of
extra pro¯t that comes with it. Conversely, not investing in quality may result
in poor realized quality, tarnished reputation and the denial of future pro¯t.

There is ample empirical evidence to suggest that consumers discipline ¯rms
in this fashion and that ¯rms react to this by trying to sustain their reputation.
This evidence is most transparent, probably, in the case of catastrophic losses.
A recent example is the Ford / Bridgestone / Firestone debacle, which occupied
the media during the summer of 2000; see, for example, the Chicago Tribute 8
/ 24 / 2000. As reported in that article Bridgestone / Firestone decided to ¯re
25% of its workforce in one plant and suspend production for more than a month
in another plant, and these cuts might have been even bigger if not for the tire-
replacement program which kept production temporarily high. A similar event
took place some 20 years ago when Tylenol capsules were poisoned at the retail
level in the summer of 1982. As documented by Mitchell (1989), Johnson and
Johnson decided to cut the price of Tylenol by 2.50 dollars (by distributing a
coupon), and had lost signi¯cant market share. Likewise, following an airplane
crash, consumers switch to competitors, which a®ect adversely the market share
and pro¯ts of the airline whose plane has crashed; see Chalk (1986). While such
events receive a lot of publicity, this phenomenon is certainly not limited to
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catastrophic losses. For instance, Ippolito (1992) persuasively documents the
reaction of investors to performance in the mutual-fund industry. Not surpris-
ingly, he ¯nds that poor relative performance results in investors shifting their
assets into other funds.

The following empirical regularities are common in the above (and other)
cases. When a ¯rm is hit by an adverse event (car accidents, drug poisoning,
etc.) the demand for its product is dramatically reduced. As a result, the ¯rm
loses market share, it has to decrease its product price and its stock-market
capitalization su®ers. While the exact combination of these regularities, and
where consumers end up diverting their expenditures varies, naturally, from one
industry (or case) to another, these regularities can be found quite commonly
in the aftermath of many adverse events.

In this paper we construct and analyze a model based on these empirical
regularities. More speci¯cally, the model is based on the premise that consumers
react to an adverse event by lowering their demands or, more precisely, by
expecting the ¯rm to deliver a poor-quality product from this point onwards,
which, in turn, translates into low demand. Given this low demand the ¯rm
has indeed little incentive to invest in product quality, which, in turn, ful¯lls
consumers' expectations. Conversely, when realized quality is high, consumers'
expectations and demands are high and the ¯rm invests more in product quality,
which, again, ful¯lls consumers' expectations. The aim of our model is to embed
this idea into an equilibrium framework and show the set of circumstances under
which such reputation equilibria exist and to study their properties. In particular
the model highlights the type of dynamic that this mechanism gives rise to;
namely, it shows that the time path of an industry is subject to turbulences,
whereby market shares, prices, and stock-market capitalizations °uctuate over
time.

The ¯rst paper to suggest consumers-switching-alliances as a disciplinary
device is the one by Klein and Le²er (1981). A subsequent paper by Shapiro
(1983) signi¯cantly extended this idea by developing a competitive model, where
di®erent ¯rms specialize in di®erent quality products, and where entry and exit
are possible. Both papers as well as subsequent contributions consider, however,
only the \deterministic case," i.e., where the link between investment in quality
and realized quality is deterministic. By contrast, we consider the stochastic
case, where higher investment leads to stochastically higher quality but may,
nonetheless, result in low quality (for reasons beyond the ¯rm's control.) In
that case, and unlike the deterministic case, a ¯rm cannot maintain inde¯nitely a
reputation for being a high-quality provider. To the contrary, sooner or later, the
quality of a ¯rm's product falls short of consumers' tolerance level, consumers'
expectations and demands for the product drop, and so does the ¯rm's product
quality. In this way market shares, prices and stock-market capitalizations
°uctuate over time - the market is subjected to turnover - which is consistent
with the empirical literature mentioned earlier.

In greater detail our analysis delineates a whole set of equilibria that can
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be supported via such mechanism. These equilibria are di®erentiated based on
¯rms' investment in quality and consumers' tolerance level - the level of realized
quality below which a ¯rm \falls from grace," and a punishment is triggered.
Not surprisingly given the self-ful¯lling nature of equilibrium there are multiple,
Pareto-ranked equilibria.

The variables which di®erentiate the equilibria - consumers' tolerance level
and ¯rms' investment in quality - are not directly observable. Nonetheless, the
values of these variables determine the values of two other variables, which are
observable, and which can be used to study the relationship between the various
equilibria. Indeed, a ¯rm's investment in quality determines its period pro¯t, an
observable. And a ¯rm's investment in quality along with consumers' tolerance
level determine the probability of turnover, also an observable (known in the
empirical literature as the \hazard rate.")

When we compare reputational equilibria, for instance, by looking at the
same product traded at geographically separated markets, the following rela-
tionship between pro¯tability and turnover is predicted by our model. If the
discount factor is high, then, locally, high-pro¯t ¯rms are subjected to less
turnover, i.e., there is a negative relationship between pro¯ts and turnover.
This accords with the intuition that pro¯table and patient ¯rms have a lot to
lose by tarnishing their reputation and, hence, invest enough in product quality
to make the likelihood of turnover low.

However, the quali¯cation to high discount factors and to local changes is
indispensable. Without this quali¯cation, one could get a positive relationship
between pro¯ts and turnover. This hinges on whether consumers' tolerance level
and ¯rms' investment in quality are complements or substitutes, i.e., whether
an increase in consumers' tolerance level leads to an increase or a decrease in
¯rms' investments. Both reactions are economically plausible: As consumers'
become more tolerant ¯rms might either be \encouraged" to increase their in-
vestment in quality, or they might \abuse" consumers' tolerance and decrease
their investment in quality. Which reaction prevails depends on the discount
factor and on consumers' initial tolerance level. And, which reaction prevails
determines whether we have a negative or a positive correlation between prof-
its and turnover. In fact, in one of our examples we show that the correlation
between pro¯ts and turnover is \hump-shaped."

The rest of the paper is organized as follows. In the next section we set up
the model. In section 3 we characterize reputation equilibria. In section 4 we
state conditions under which a reputation equilibrium exists. In section 5 we
study the comparative static properties of the equilibrium. And, in section 6,
we study the e±ciency of reputation equilibria.
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2 The Model

We consider a model of duopoly, denoting the ¯rms by i = 1; 2. There is a
continuum of consumers whose measure is 1. The model is formulated as an
in¯nitely-repeated game in discrete time. We start with a description of the
stage game.

At the beginning of each period each ¯rm i chooses an action xi, interpreted
as \investment in quality." We restrict xi 2 X ´ [x; 1) and assume x ¸ 0.
When a ¯rm chooses xi it spends c(xi). At the same time, ¯rm i also chooses
the price of its product, bpi ¸ 0. If a fraction ° 2 [0; 1] of consumers buy from
¯rm i, ¯rm i's stage game payo® is °bpi ¡ c(xi).1

Once xi is chosen and assuming the ¯rm sells a positive quantity, ° > 0,
the quality of its product qi is realized. qi is a random variable with support
qi 2 [q; 1), where q is exogenously given and can be ¡1. qi is the same for all

consumers.2 xi is privately chosen and observed, whereas qi is publicly observed.
The distribution of qi depends on xi and we denote the conditional density by
f(qi j xi) with a corresponding cumulative distribution function F (qi j xi).
Throughout the paper, we make the following assumptions.

Assumption 0.

1. c and F are twice continuously di®erentiable.

2. c is strictly increasing and strictly convex, with c(x) = c0(x) = 0 and
c(1) = c0(1) = 1.

3.
R

qf(q j x) = x, and f satis¯es stochastic dominance: F2(q j x) < 0 for all
q > q, where F2 is the derivative of F with respect to its second variable,
x.

The following examples satisfy Assumption 0.

Example 1 The cost is c(x) = (x ¡ x)®, where ® > 1, and the quality is

normally distributed with variance 1 and mean value x, f(q j x) = 1p
2¼

e¡(q¡x)2 .

In this example, we have q = ¡1.

1Since the total cost of production is independent of the number of consumers who buy
it, ° , this formulation assumes that xi is a ¯xed cost. A more general assumption is that the
cost depends both on the investment and on the fraction of consumers who buy from the ¯rm.
In this case, we would denote the cost by c(xi; °), and we would assume that c(xi; °) satis¯es
Assumption 0 for any ¯xed ° and that it is linear in ° for any ¯xed xi. This more general
approach yields the same qualitative results, so we here limit attention to the special case of
c(xi) = c(xi; °), for the sake of simplicity.

2In some real world applications, for example airlines, not all consumers buy the product
in the same period. In that case the assumption is that realized quality (airplane crashed
or did not crash) becomes known to all consumers, whether they bought the product or not.
Formally, the assumption is that realized quality becomes common knowledge.
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Example 2 The same cost as in Example 1, but quality is exponentially
distributed, f(q j x) = 1

xe¡ q
x , F (q j x) = 1 ¡ e¡ q

x . In this example q = 0.

Consumers move after ¯rms have chosen their xi and bpi, and have unit
demands in each period. Namely, given the ¯rms' price vector (bp1; bp2), and
given consumers' beliefs regarding the equilibrium xi, consumers decide whether
to buy or not, and in case they decide to buy, from which ¯rm. A consumer's
gross bene¯t when she buys one unit, whose realized quality is q, is q. If the
consumer paid price p, her net bene¯t is q ¡p. Consumers are risk neutral with
respect to quality shocks.3 Thus, if a consumer buys from a ¯rm whose choice
of action is (x; p), her expected bene¯t is x¡p by Assumption 0. If a consumer
buys nothing she gets zero bene¯t.

We consider a repeated game in which the stage game described above is
played in¯nitely often. In this repeated game, we have two types of public
information: The price and realized quality of the ¯rms, and the fractions of
consumers who buy from each ¯rm in each period (since the consumers are
anonymous, ¯rms know the measure of consumers who bought from them, but
not who bought from them). Those two types of information constitute the
public history of the game. The private history of the game is as follows. For
each ¯rm the sequence of actions, xi, it chose, and, for each consumer, the
sequence of ¯rms she bought from. A player's strategy in this repeated game
speci¯es behavior as a function of both the public and her own private history.
In later sections, though, we restrict attention to public strategy equilibria, in
which each player's action depends solely on the public history.

The objective of the ¯rms is to maximize average discounted pro¯ts, where
the discount factor is ± 2 (0; 1). Each consumer, on the other hand, maximizes
her payo® in the current period given a particular history. There are several
ways to justify this assumption of myopia. First, consumers may be literally
myopic, i.e., their discount factor equals zero. Second, which is a subcase of
the ¯rst, consumers may live just one period and each consumer is replaced by
a successor and successors learn the public history of the game before making
their choices. Third, and most relevant to the case of non-atomic consumers, if
all consumers behave myopically, then, a single consumer has no e®ect on the
public history and, hence, on the game's continuation; thus, the best a single
consumer can do is maximize her current period payo®.

This completes the description of the repeated game. We proceed now to
solve it, using sequential equilibrium as the solution concept.

3In other words, we assume that the von Neumann-Morgenstern utility of the consumer
paying p for the good whose quality is q is q ¡ p.
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3 Reputation Equilibrium

Now that we have boiled down the situation into a repeated game, we should
expect multiple equilibria, i.e., a Folk-Theorem type result.4 This holds true
even if we con¯ne attention to strategies that depend on public-information
only.5 However, in this paper we focus on a particular subset of the set of
equilibria, which we call reputation equilibria. These equilibria are de¯ned more
precisely immediately below.

The reason for restricting attention to particular equilibria is three-fold.
First, as discussed in the introduction, there is empirical support for ¯rms'
attempts to establish and maintain reputation for product quality, and a rep-
utational equilibrium is the theoretical counterpart of such behavior. Thus,
by studying reputational equilibria we capture and understand the logic of a
frequently observed phenomenon. Second, some of the Folk-Theorem equilib-
ria are supported by strategies that are very complicated for players to carry
out, whereas reputational equilibria are simple. Thus, reputational equilibria
may be more realistic descriptors of actual behavior than other repeated-game
equilibria. Third, some repeated game equilibria achieve high payo®s when the
discount factor is close to one (see Fudenberg, Levine and Maskin (1994), which
is a normative reason for favoring them. However, we analyze the game under
a ¯xed discount factor. So these results are not necessarily valid, and it is less
than clear that higher payo®s (than the ones we exhibit) can be achieved by
means of relatively simple strategies.

Let us ¯rst describe the strategies that players use in the equilibria we study,
calling them reputation strategies. In a reputation strategy, only one ¯rm makes
sales in each period, and all consumers buy from that ¯rm. The reason only one
¯rm makes positive sales is that consumers believe it invests more in product
quality.6 We call the lone seller (in some period) the high quality ¯rm (of that
period), or, in short, the HQ ¯rm. The ¯rm that sells nothing is called the low
quality ¯rm, or, in short, the LQ ¯rm. In each period, the HQ ¯rm chooses its
investment in quality, as well as an associated price, and we denote this pair by
(xH ; pH). Similarly, the LQ ¯rm chooses (xL; pL) in each period.

Next we turn to the rule that speci¯es who is the HQ ¯rm in each period.
The rule is speci¯ed inductively. First, the HQ ¯rm of period 1 is ¯rm 1.7

4This is true even in the presence of imperfect monitoring; see Fudenberg, Levine and
Maskin (1994). Although that paper considers discrete action sets, we can discretize our
action sets, and obtain a similar game to which their result is applicable.

5See Abreu, Pearce and Stacchetti (1986, 90) for studies of the structure of the public
strategy equilibrium set.

6In fact the equilibrium of a static Bertrand game in which one ¯rm is believed to produce
a higher-quality product is such that the high-quality ¯rm supplies the whole market while
the low-quality ¯rm sells nothing. Therefore, reputation equilibria extend this feature from
the static game to the repeated game.

7That, obviously, is an arbitrary speci¯cation and a `twin' equilibrium exists whereby ¯rm
2 is the HQ ¯rm of period 1.
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Second, let a period t > 1 and the HQ ¯rm of period t ¡ 1 be given. If HQ sold
a positive quantity8 in period t ¡ 1 and if the corresponding quality was above
some threshold, denoted by q, the ¯rm continues to be the HQ ¯rm of period t.
Otherwise, it becomes the LQ ¯rm of period t, and the ¯rm that was the LQ
¯rm of period t ¡ 1 becomes the HQ ¯rm of period t. q is endogenous and has
yet to be determined. We refer to q as consumers' tolerance level.

Let us express this idea in formal terms. A reputation strategy pro¯le is
a 5-tuple (xH ; xL; pH ; pL; q). This 5-tuple along with the rule stated in the
previous paragraph determines which ¯rm is the HQ ¯rm at any given history
(whether deviation had occurred or not.) Thus, at any information set of a
consumer, she knows who is the HQ ¯rm and the prices chosen by the two
¯rms, (bpH ; bpL). Using this data, a consumer's reputation strategy is as follows.
At any information set, buy from the HQ ¯rm if xH ¡ bpH ¸ maxf0; xL ¡ bpLg;
otherwise, buy from the LQ ¯rm if xL ¡ bpL > 0, and buy from neither ¯rm
otherwise. A ¯rm's reputation strategy is as follows. Whenever it is the HQ
¯rm, choose (xH ; pH); otherwise, choose (xL; pL).

A reputation equilibrium is a reputation strategy pro¯le that is a sequential
equilibrium. Given that a reputation strategy pro¯le is characterized by ¯ve
parameters, we have, in principle, a large number of equilibrium candidates.
The following result, however, reduces considerably the set of these candidates.

Proposition 1 In any reputation equilibrium the following must hold
(i) xL = x.
(ii) xH ¸ c(xH) + x, where equality holds if and only if xH = x.
(iii) pH = xH ¡ x.
(iv) pL = 0.

Proof. Fix a reputation equilibrium characterized by (xH ; xL; pH ; pL; q) and
¯x a period. Since the LQ ¯rm cannot sell anything in this period unless the
HQ ¯rm or consumers deviate, it chooses the action that minimizes its cost.
Hence (i) follows.

To prove (ii), suppose x < xH · c(xH) + x. If pH · c(xH), then HQ's
overall payo® is nonpositive. If HQ chooses (x; pH) instead of (xH ; pH), con-
sumers cannot observe this deviation so they buy from HQ anyway. Therefore,
since xH > x, this deviation gives HQ larger current-period pro¯t. Moreover,
choosing x maximizes the probability of turnover, which is a good thing for HQ
because pH · c(xH). Thus playing (x; pH) and then conforming to the reputa-
tion strategy is a pro¯table deviation. Thus pH · c(xH) is not consistent with
equilibrium.

So suppose pH > c(xH). Because xH · c(xH) + x, there exists an " > 0
such that 0 · xH ¡ pH < x ¡ ". The ¯rst inequality follows because consumers

8Although the HQ sells positive quantity in equilibrium the rule is speci¯ed independently
of whether ¯rms are playing their equilibrium strategies or not. In particular, if the HQ ¯rm
deviates it may sell nothing.
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must be willing to buy from HQ in equilibrium. Suppose LQ chooses (x; ") in
period 1. Since (i) holds, consumers buy from LQ (by the choice of "), and
therefore LQ can earn a positive pro¯t in this period. Moreover, this deviation
automatically causes a turnover, because HQ would sell nothing. Hence for LQ,
the deviation not only produces a larger pro¯t in this period but also maximizes
the probability of turnover, which is a good thing because pH > c(xH). Thus
the deviation is pro¯table, and therefore we must have (ii) in equilibrium.

To prove (iii), suppose ¯rst pH < xH ¡ x. This implies the existence of an
" > 0 such that xH ¡ (pH + ") > maxf0; x ¡ pLg, and therefore HQ can still
make sales in the next period if it chooses (xH ; pH + "). Since this deviation
has no e®ect on the probability of turnover, it is pro¯table. Thus pH < xH ¡ x
cannot hold in equilibrium. If pH > xH ¡x, then there exists an " > 0 such that
x¡" > xH ¡pH ¸ 0. Thus if LQ chooses (x; ") in the current period, consumers
would buy from it. Hence the deviation raises both the current-period pro¯t and
the probability of turnover, which makes it a pro¯table deviation. Therefore,
pH > xH ¡ x is also inconsistent with equilibrium, and we have (iii).

Finally, to prove (iv), suppose pL > 0. Then there exists an " > 0 such that
x ¡ pL < xH ¡ (pH + "), because of (iii). Therefore, HQ can still make sales in
the current period when it chooses (xH ; pH +"), which raises the current period
pro¯t without a®ecting the probability of turnover. Thus pL > 0 cannot be true
in equilibrium.

Proposition 1 tells us that a reputation equilibrium is characterized by two
parameters only, (xH ; q).

Let us ¯x a reputation strategy pro¯le characterized by (xH ; q), which sat-
is¯es (i)-(iv) of Proposition 1. Let vH and vL be the overall (average) payo®s
of HQ and LQ, respectively, given the discount factor ±. Since turnover occurs
with probability F (qjxH), we have the following recursion equations.

vH = (1 ¡ ±)[bxH ¡ c(xH)] + ±fvH [1 ¡ F (qjxH)] + vLF (qjxH)g; (1)

where bxH = xH ¡ x, and

vL = ±fvL[1 ¡ F (qjxH)] + vHF (qjxH)g: (2)

Solving (1) and (2), we obtain

vH =
1 ¡ ±[1 ¡ F (qjxH)]

1 ¡ ±[1 ¡ 2F (qjxH)]
[bxH ¡ c(xH)] (3)

and

vL =
±F (qjxH)

1 ¡ ±[1 ¡ 2F (qjxH)]
[bxH ¡ c(xH)]: (4)

Given that LQ follows the reputation strategy, let v(x; ±; q; xH) be the payo®
of HQ when it chooses (x; pH) in the current period and then follows the repu-
tation strategy from the next period onwards. HQ is still the lone seller given
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consumers' belief, but turnover now occurs with a di®erent probability, F (qjx).
Hence we obtain

v(x; ±; q; xH) = (1 ¡ ±)[bxH ¡ c(x)] + ±fvH [1 ¡ F (qjx)] + vLF (qjx)g: (5)

Using (3) and (4), (5) is rewritten as

v(x; ±; q; xH) = (1 ¡ ±)[bxH ¡ c(x)] + H(x; ±; q; xH)[bxH ¡ c(xH)]; (6)

where

H(x; ±; q; xH) ´ ±
(1 ¡ ±)[1 ¡ F (qjx)] + ±F (qjxH)

1 ¡ ±[1 ¡ 2F (qjxH)]
: (7)

Hence, in order for the above reputation strategy pro¯le to be an equilibrium,
it must be a maximizer of the RHS of (6); namely,

v(xH ; ±; q; xH) ¸ v(x; ±; q; xH) for all x 2 X. (8)

The above argument shows that (8) is a necessary condition for a reputa-
tion equilibrium. The following result demonstrates that it is also a su±cient
condition.

Proposition 2 Fix a reputation strategy pro¯le characterized by (xH ; q), sat-
isfying (i)-(iv) of Proposition 1. Then the pro¯le is a sequential equilibrium if
and only if (8) holds.

Proof. We have already proven the \only-if" part. Thus, let us suppose (8)
holds. Let consumers' belief at any period t be that HQ has chosen xH and
LQ has chosen xL in that period, given any actual choice of prices, (bpH ; bpL).
This belief is consistent, and the consumers' purchase decision speci¯ed by the
reputation strategy is sequentially rational given this belief.

Let us then turn to the incentives of ¯rms. Note that at the beginning
of any period, the HQ ¯rm (the LQ ¯rm, respectively) of that period has a
continuation payo® of vH (vL), given its strategy. Thus (8) implies that any
one-shot deviation with respect to x of the HQ ¯rm would be unpro¯table.
Furthermore, we have seen in Proposition 1 that deviating with respect to price
is not pro¯table, either, which establishes sequential rationality of the HQ ¯rm's
behavior. The LQ ¯rm makes no sales irrespective of its choice of actions, as
long as all other players follow the given strategy pro¯le. Hence its behavior is
also sequentially rational, which completes the proof.

Thus (8) is the equilibrium condition for our solution concept. With an
abuse of terminology, we say that (xH ; q) is a reputation equilibrium under ± if
(8) is satis¯ed.9

9Although xH ; q are jointly determined in equilibrium and, thus, have the same \status" of
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4 Existence

In this section we prove the existence of reputation equilibria. To start with,
let us note that a trivial (or degenerate or Akerlof-type) reputation equilibrium
always exists for any ¯xed tolerance level q. Namely, (x; q). In this equilibrium,
consumers' expectation is so low that ¯rms never bother to invest in quality
(above the minimum, x) irrespective of consumers' tolerance level.

Obviously, we are interested in \better" equilibria, i.e., equilibria which have
higher social surplus associated with them. And the whole point of introducing
repeat purchase and consumers' disciplinary actions is to ensure the existence
of such equilibria. With this idea in mind we seek now equilibria with xH > x.
To prove the existence of such equilibria, we need an additional assumption and
a de¯nition.

Assumption 1 c00(x) = 0.

Assumption 1 is satis¯ed in Examples 1 and 2 if ® > 2.

Next, we de¯ne

Q = fq > q : ¡c00(x)

c0(x)
+

F22(qjx)

F2(qjx)
< 0; 8x > xg;

where F2(qjx), F22(qjx) are the ¯rst and second derivatives of F with respect
to its second variable, x.

The signi¯cance of the set Q is that the function v(x; ±; q; xH) is \hump-
shaped" in x for any ¯xed ± and xH , if q 2 Q. More precisely, we have:

Lemma 3 Fix q 2 Q, ± 2 (0; 1) and xH . Then the function v(¢; ±; q; xH) attains
a global maximum on X, and has no other local maxima. It has at most one
local minimum, which occurs at x =x.

Proof. Fix q 2 Q and ± 2 (0; 1). For any ¯xed xH , (6) and (7) imply that
v(x; ±; q; xH) is a continuous function of x. Moreover, since H(x; ±; q; xH) is
bounded and since c(x) ! +1 as x ! 1, v(x; ±; q; xH) ! ¡1 as x ! 1.
Thus, v(x; ±; q; xH) attains a maximum on X.

To show there is no other local maximum, suppose we have two local maxima,
x1 and x2, where x1 > x2. Let x3 be an element of [x2; x1] that minimizes
v(x; ±; q; xH) on [x2; x1]. Let us con¯ne attention to x3 2 (x2; x1), for otherwise,
if x3 2 fx1; x2g, v(x; ±; q; xH) is constant on [x2; x1]. Since x3 > x2 ¸ x, both

being self-enforcing, there is a fundamental di®erence between xH and q. xH is the behavior
of a single player, the HQ ¯rm, so it is conceivable that this player will eventually converge
on it (via, say, a process of trial and error.) On other hand, q is the behavior of a continuum
of players so it is far from obvious how they would converge on the same behavioral rule. We
interpret q as a \convention" or a \norm," although our model is silent on how such norm
may spontaneously arise.
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the ¯rst-order and the second-order conditions must be satis¯ed at x3. Hence,
we obtain

¡(1 ¡ ±)c0(x3) + H1(x3; ±; q; xH)[bxH ¡ c(xH)] = 0 (9)

and
¡(1 ¡ ±)c00(x3) + H11(x3; ±; q; xH)[bxH ¡ c(xH)] ¸ 0: (10)

Since x3 > x, it follows that c0(x3) > 0, which in turn implies H1(x3; ±; q; xH) 6=
0 by (9). Thus, combining (9) and (10), we have

¡c00(x3)

c0(x3)
+

H11(x3; ±; q; xH)

H1(x3; ±; q; xH)
¸ 0: (11)

However, since (7) implies

H11(x3; ±; q; xH)

H1(x3; ±; q; xH)
=

F22(qjx3)

F2(qjx3)
; (12)

combining (11) and (12) yields a contradiction to the fact that q 2 Q.

Therefore, q 2 Q implies that v(¢; ±; q; xH) has a unique maximizer and no lo-
cal minimizers other than x. Thus, there is a one-to-one correspondence between
the set of equilibria with xH >x, and the set of solutions to v1(xH ; ±; q; xH) = 0.
Or, in other words, the \¯rst-order approach" µa la Rogerson (1985) is valid.10

Note that the Lemma 3 does not rely on Assumption 1. On the other hand,
our next result (the proof of existence) does.

Proposition 4 Assume Assumption 1 holds. Then, for any q 2 Q and ± 2
(0; 1),

(i) an xH > x exists so that (xH ; q) is a reputation equilibrium under ±.
(ii) The set of all xH's such that (xH ; q) is a reputation equilibrium is com-

pact.

Proof. Fix q 2 Q and ± 2 (0; 1). By the foregoing Lemma, there exists a
unique maximum to v(x; ±; q; xH) on X. Let us denote it by R(xH ; ±; q). In
view of Proposition 2, (xH ; q) is a reputation equilibrium under ± if and only if
xH is a ¯xed point of R(¢; ±; q), i.e., xH = R(xH ; ±; q).

We ¯rst show that R(xH ; ±; q) is a continuous function of xH . To see this,
¯x xH and let f»ng1

n=1 be a sequence of real numbers converging to zero. Then
for any x and any n, we have

v(R(xH + »n; ±; q); ±; q; xH + »n) ¸ v(x; ±; q; xH + »n): (13)

10Hump-shapedness is slightly weaker than strict quasi-concavity and, a fortiori, strict con-
cavity. Thus, if F (qjx) is convex in x (as is assumed by Rogerson (1985)), q 2 Q follows.
Indeed, in our examples together with Assumption 1, q 2 Q is equivalent to convexity of
F (qjx) in x.
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Let R be a limit point of the sequence fR(xH + »n; ±; q)g1
n=1. Then taking a

limit in (13) yields
v(R; ±; q; xH) ¸ v(x; ±; q; xH)

for any x. Therefore, by Lemma 3, R = R(xH ; ±; q). Since the choice of f»ng1
n=1

is arbitrary, R is continuous in xH .
If xH is so large that xH ¡c(xH) < x, then it is easily seen that R(xH ; ±; q) =

x. Next, let us de¯ne

h(x) = ¡(1 ¡ ±)c0(x) + H1(x; ±; q; x)[x ¡ x ¡ c(x)]:

It is easily seen that h(x) = 0. By Assumption 1, we have h0(x) > 0. Hence
there exists an x1 > x such that R(x1; ±; q) > x1. Since R is continuous, there
exists an xH > x1 so that xH = R(xH ; ±; q). Hence (i) is proved.

Since R is continuous, the set of ¯xed points is closed. The above argument
shows that the set is also bounded, which proves (ii).

Let us examine what the set Q looks like in our examples. In Example 1, a
simple computation shows that F2(qjx) = ¡f(qjx), and therefore

F22(qjx)

F2(qjx)
=

@ lnF2(qjx)

@x
= 2(q ¡ x): (14)

Since c is strictly convex, (14) implies that any q · x belongs to Q. In Example

2, F2(qjx) = ¡q
x2 e¡ q

x and F22(qjx) = ¡q
x3 e¡ q

x ( q
x ¡ 2). If we additionally assume

that x > 0, F22=F2 is well-de¯ned whenever q 6= 0. In this case, F22(qjx)
F2(qjx)

=
1
x
( q

x
¡ 2), which is non-positive if and only if q

x
· 2. Therefore, (0; 2x] µ Q.

Thus, the set Q is non-empty in these examples so Proposition 4 holds non-
vacuously. Note also that Proposition 4 applies to any ± 2 (0; 1), as long as
q 2 Q. Thus the existence of a non-trivial equilibrium is guaranteed independent
of ¯rms' rate of time preference. On the other hand, the set of xH 's that can
be supported in equilibrium depends on ±, as the comparative static result of
the next section shows.

The approach of Proposition 4 is to ¯x q ¯rst, and ask whether an xH exists
so that along with q it forms a reputation equilibrium. While our analysis
does not show existence for an arbitrary q, q 2 Q is a su±cient condition for the
existence of such an xH and, hence, for the existence of a reputation equilibrium.
It is interesting to note that the set Q in our examples forms an interval (or a
half line), which includes all su±ciently small q. This implies two things. First,
there exists a continuum of tolerance levels that are consistent with equilibrium.
Second, reputation equilibria exist only when consumers are relatively tolerant.

Since the equilibrium xH in the above proof is generated as a ¯xed-point of
a continuous function and since a continuous function may have more than one
¯xed point, the nontrivial reputation equilibrium corresponding to some q 2 Q
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need not be unique.11 However, uniqueness can be shown in some situations.
To see this, recall that a reputation equilibrium (x; q), where q and x > x, must
satisfy the ¯rst-order condition (9). Rewriting it yields

c0(x) =
¡±F2(qjx)

1 ¡ ±[1 ¡ 2F (qjx)]
[x ¡ c(x) ¡ x]: (15)

By Lemma 3, (15) is also a su±cient condition for (x; q) to be a reputation
equilibrium.

Let us specialize (15) to the case of c(x) = (x¡ x)3. If we limit attention to
x > x, (15) is rewritten as

3 = ¡ ±F2(qjx)

1 ¡ ±[1 ¡ 2F (qjx)]
¢ 1 ¡ (x ¡ x)2

x ¡ x
: (16)

Fix an x > x such that (16) holds. Then the derivative of the RHS of (16) at x
is

3
F22(qjx)

F2(qjx)
¡[5¡ 1

(x ¡ x)2
]

±F2(qjx)

1 ¡ ±[1 ¡ 2F (qjx)]
< 3

F22(qjx)

F2(qjx)
¡4

±F2(qjx)

1 ¡ ±[1 ¡ 2F (qjx)]
;

(17)
where the inequality follows from Proposition 1(ii). If F is given as in either

Example 1 or 2, F22(qjx)
F2(qjx) < 0 because q 2 Q. Since F2(qjx) is bounded in these

examples, the RHS of (17) is negative for all su±ciently small ±. Therefore,
the RHS of (16) is decreasing in x whenever x is a solution to (16). This
proves uniqueness of the solution to (16) and, hence, uniqueness of reputation
equilibrium given q 2 Q.

The analysis shows that the multiplicity of reputation equilibrium for a ¯xed
q is possible, for some parameterization, only for large ±. This is parallel to Folk-
Theorem-type results, where a large ± is associated with multiple equilibria;
see Fudenberg, Levine and Makin (1994). However, the equilibrium set in the
Folk Theorem is usually a continuum, whereas in Examples 1 and 2, or, more
generally, whenever c and F are smooth, the set of equilibria, which is the set
of solutions to (15), need not be a continuum. Hence, we do not have nearly as
many equilibria as the Folk Theorem would suggest. One should bear in mind,
though, that we still have a continuum of q that are consistent with equilibrium,
and that we focus on a subset of the repeated game equilibria (those we call
reputation equilibria.)

5 Other Properties of Reputation Equilibria

The compactness result of Proposition 3(ii) ensures that, for given q and ±, the
maximum of the set of equilibrium investment levels is attained; let us denote

11Recall that \nontrivial equilibrium" means xH >x. Also, uniqueness is under a given
q 2 Q. As usual, di®erent q 2 Q give rise to di®erent equilibria.

14



it by x(±; q). Note that x(±; q) is not necessarily continuous in its arguments.
x(±; q), in a sense, re°ects consumers' ability to discipline the ¯rms by the
threat of turnover, because this is the maximum investment in quality that can
be sustained in equilibrium.

In this section, we examine the local behavior of the function x(±; q). We
start with examination of the e®ect of the ¯rms' rate of time preference on
the equilibrium investment in quality. The following statement con¯rms the
intuition that ¯rms who care more about the future will try harder to keep a
good reputation and, therefore, will invest more in quality.

Proposition 5 Fix a q 2 Q. Then x(±; q) is increasing in ±.

Proof. We ¯rst show that R(xH ; ±; q) is increasing in ± for (arbitrarily) ¯xed
xH and q 2 Q. To that end we show that for any ± 2 (0; 1) and ±0 > ±,

R(xH ; ±0; q) ¸ R(xH ; ±; q): (18)

Let us write y = R(xH ; ±; q). Then (18) immediately follows if y = x, so let
us assume otherwise. Then the ¯rst-order condition implies

¡(1 ¡ ±)c0(y) + H1(y; ±; q; xH)[x̂H ¡ c(xH)] = 0: (19)

By (7), it is easy to verify that H1(y;±;q;xH)
1¡±

is increasing in ± for any x and xH .
Therefore (19) implies

¡(1 ¡ ±0)c0(y) + H1(y; ±0; q; xH)[x̂H ¡ c(xH)] ¸ 0 (20)

since ±0 > ±. Since v(x; ±0; q; xH) ! ¡1 as x ! 1, (20) implies the existence
of a y0 ¸ y which achieves a local maximum of v(¢; ±0; q; xH). And, by Lemma
3, y0 is also the global maximum. Hence R(xH ; ±0; q) ¸ y = R(xH ; ±; q).

In particular,

R(x(±; q); ±0; q) ¸ R(x(±; q); ±; q) = x(±; q);

where the last equality follows from the de¯nition of x(±; q). Since R(xH ; ±0; q) =
x for all su±ciently large xH , there exists an xH ¸ x(±; q) such that R(xH ; ±0; q) =
xH . Hence x(±0; q) ¸ x(±; q).

The monotonicity result obtained here holds only for the equilibrium cor-
responding to the largest investment level. Indeed, we have proven our result
by showing that R shifts upwards when ± increases and, therefore, that the
maximum (and the minimum) ¯xed point of R increases. This is analogous to
monotonicity results reported by Milgrom and Roberts (1990) for supermodular
games. On the other hand, if we ¯x ± and q, if R crosses the 450 line at some
point in (x; x(±; q)) and if R has slope > 1 at that point, the equilibrium invest-
ment decreases in ±. Thus, monotonicity is only with respect to the maximal
equilibrium.
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Next, we consider the behavior of x(±; q) with respect to q. Since q is en-
dogenous to the model, this should not be construed as a comparative static
exercise. Rather, what we are doing is comparing di®erent equilibria. For ex-
ample, the same product may be traded in geographically separated markets,
which, somehow, have settled on di®erent equilibrium tolerance levels. To make
the comparison between equilibria possible, we invoke the following additional
assumption. This assumption concerns the stochastic link between x and q only,
and not the cost function or the discount factor.

Assumption 2 For any q 2 Q and x > x,

f2(qjx)

f(qjx)
>

F2(qjx)

F (qjx)
: (21)

Assumption 2 is satis¯ed for our two examples.

Proposition 6 Assume Assumption 2 holds, and ¯x a q 2 Q. Then there
exists an " > 0 and a ± so that for any ± > ±, x(±; q) is decreasing in q on
Q" ´ Q \ [q ¡ "; q + "].

Proof. Fix a q 2 Q. Let x 2 X be such that x = c(x) + x. Assumption
0(ii) ensures that x uniquely exists. By Proposition 1(ii), x(±; q) · x always
holds. Choose an " > 0 su±ciently small that f2(qjx)F (qjx) ¡ f(qjx)F2(qjx)
is bounded away from zero on Q" £ [x; x]. We can do this because, by (21),
f2(qjx)F (qjx) ¡ f(qjx)F2(qjx) is continuous and positive on the compact set
Q" £ [x; x].

Also since f2(qjx) is continuous and, hence, bounded on Q" £ [x; x], there
exists a ± such that ± > ± implies

(1 ¡ ±)f2(qjx) + 2±[f2(qjx)F (qjx) ¡ f(qjx)F2(qjx)] > 0 (22)

for any q 2 [q ¡ "; q + "] and any x 2 [x; x].
Consider some ± > ±, q1 2 Q" and q2 2 Q", where q1 > q2. Let us write

xi = x(qi; ±). We show that x2 ¸ x1. Since x1 > x by Proposition 4(i), the
¯rst-order condition implies

¡(1 ¡ ±)c0(x1) + H1(x
1; ±; q1; x1)[x1 ¡ c(x1) ¡ x] = 0: (23)

Proposition 1(ii) implies x1¡c(x1)¡x ¸ 0. Since (22) implies that H1(x
1; ±; q; x1)

is decreasing in q on Q" (recall that x1 · x), (23) implies

¡(1 ¡ ±)c0(x1) + H1(x
1; ±; q2; x1)[x1 ¡ c(x1) ¡ x] ¸ 0:

Thus the same argument used in the proof of Proposition 5 demonstrates that
R(x1; ±; q2) ¸ x1. Therefore there exists a y ¸ x1 so that R(y; ±; q2) = y, which
proves x2 ¸ x1.
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The role of Assumption 2 is as follows. Assumption 2 implies that for a

¯xed x, F2(qjx)
F (qjx)

is increasing in q. Hence, the marginal return to investment

in product quality (i.e., the added probability of remaining the HQ ¯rm as
the investment in product quality is marginally increased) is decreasing in q.
Therefore, additional investment in product quality becomes less desirable the
more stringent the tolerance level is (the bigger is q.) In this situation, setting a
more stringent tolerance level simply discourages ¯rms from investing in quality.
So Assumption 2 is critical to the result. However, our two examples, which are
fairly natural, do satisfy it.

The second assumption that Proposition 6 relies upon is patience, which
implies that ¯rms care enough about future pro¯ts and are, hence, reluctant to
lose them. This assumption is only natural since the essence of the disciplinary
mechanism is to deny future pro¯t, so this must indeed be a su±ciently strong
deterrent to make ¯rms want to sustain their investment in quality.

From Proposition 6 we can infer how the probability of turnover varies as we
go across equilibria and how it relates to the period pro¯t of the HQ ¯rm. If we
are on the region where Proposition 6 holds, then an equilibrium with a smaller
q has a greater x and, therefore, a smaller probability of turnover. Thus, on
this region, the equilibrium investment is negatively related to the probability
of turnover. Furthermore, as we show in the next section, the period pro¯t
of the HQ ¯rm is locally increasing in x. Thus, our model predicts negative
correlation between pro¯ts and the probability of losing customers. As stated
in the introduction, this con¯rms the intuition that high-pro¯t and patient ¯rms
are reluctant to lose their pro¯ts and, hence, will invest enough in quality to
make the probability of losing customers small.

However, Proposition 6 only establishes local monotonicity. Namely, it con-
¯nes attention to small changes in the tolerance level, q, and to patient ¯rms.
We now show, by means of a counter example, that, these quali¯cations cannot
be removed.

Let us ¯x some q 2 Q and xH . Then, specializing (15) to Example 2 with
® = 3 and x = 1 yields

±ze¡z

1 + ± ¡ 2±e¡z
= 3

x(x ¡ 1)

2 ¡ x
; (24)

where z = q
x . The LHS of (24), as a function of z, is increasing for all su±ciently

small z, and is decreasing for all su±ciently large z. Thus the e®ect of q on x
depends on whether the corresponding z is small or large, which is equivalent to
whether q itself is small or large. Indeed, the local monotonicity of Proposition
6 corresponds to the case of a large q, i.e., where the LHS of (24) is decreasing.
If, on the other hand, we start from a su±ciently small q, then the LHS of (24)
is increasing in q. Therefore, if we increase q, x must increase in order to restore
the equality. Thus, q and x are positively related in this region.
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More importantly, if (24) is to hold x must increase less than proportionately
when q increases , i.e., z must increase. Hence if we consider a case like Example
2 in which the equilibrium turnover probability (recall that this is F (qjx)) is
positively related to z, there is a region where the investment and the probability
of turnover are positively correlated. And, likewise, pro¯ts and probability of
turnover are positively correlated in this region.

6 E±ciency

So far we have pre-speci¯ed a q and asked whether there exists an equilibrium xH

under this q. Conversely, we can pre-specify an xH and ask whether a q exists so
that (xH ; q) is a reputation equilibrium. In particular, can the optimal x or an
x that is nearly optimal be an equilibrium under some q? The optimum in our
environment is the x that maximizes the di®erence between the expected bene¯t
to consumers, x, and the cost c(x). This optimum, call it xo, is characterized
by c0(xo) = 1:

This section proves a negative result, stating that xo (and any greater x)
cannot be implemented. The result suggests limits to consumers' ability to
discipline the ¯rms. We show this for the multiplicative case where there exists
a random variable z, with mean 1, so that q = zx. We assume z has a twice
continuously di®erentiable c.d.f., G(z), and a p.d.f., g(z). Then, F (qjx) = G( q

x
)

and F2(qjx) = ¡ q
x2 g( q

x
). Note that Example 2 is a special instance of the

multiplicative case once we set G(z) = 1 ¡ e¡z.
Let us specialize (15) to the multiplicative case and characterize an equilib-

rium via:
± q

xg( q
x )

1 ¡ ±[1 ¡ 2G( q
x
)]

=
xc0(x)

x ¡ c(x) ¡ x
:

Or,
±zg(z)

1 ¡ ±[1 ¡ 2G(z)]
=

xc0(x)

x ¡ c(x) ¡ x
; (25)

where z = qx.

Proposition 7 Assume g(z) > zg0(z) and limz!0 zg(z) = 0. Then, there exists
an ex, ex < xo, so that no x, x > ex, is implementable as an equilibrium.

Proof. Let us ¯rst show that the LHS of (25) is smaller than 1 for any z and

any ±. Note that ±zg(z)
1¡±[1¡2G(z)]

< 1 if and only if ±zg(z) < 1 ¡ ±[1 ¡ 2G(z)].

This inequality holds at z = 0. And, if we take derivatives on both sides,
±[g(z) + zg0(z)] < 2±g(z) , zg0(z) < g(z), which is what we assume.

Second, at the social optimum c0(x) = 1 and x
x¡c(x)¡x

> 1. Therefore the

equality in (25) cannot hold when we set x = xo. By continuity it cannot hold
if x > ex for some ex < xo.
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Since g0(z) < 0 in Example 2, the premise underlying Proposition 7 clearly
holds and, therefore, we have shown that xo cannot be implemented in the
example. Note that Proposition 7 holds independently of the value of ±. Hence,
the ine±ciency of equilibria persists even as we let ± ! 1.

Given Proposition 7, any equilibrium investment level is suboptimal. Thus,
given the convexity of c, a bigger equilibrium x means bigger social surplus and
bigger HQ's period pro¯t (which equals the social surplus.) Thus, as argued in
Section 5, equilibria with higher x are equilibria with higher ¯rm pro¯ts.
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