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Abstract 

We present three examples of finitely repeated games with public moni­
toring that have sequential equilibria in private strategies, i.e., strategies 
that depend on own past actions as well as public signals. Such private 
sequential equilibria can have features quite unlike those of the more fa­
miliar perfect public equilibria: (i) making a public signal less informative 
can create Pareto superior equilibrium outcomes; (U) the equilibrhun final­
period action profile need not be a stage game equilibrium; and (iii) even if 
the stage game has a unique correlated (and hence Nash) equilibrium, the 
first-period action profile need not be a stage game equilibrium. 
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1. Introduction 

A repeated game has public monitoring if, after each period, each player observes 
the same signal of that period's action profile. The most easily studied sequential 
equilibria of these games are those in which each player's strategy is public, i.e., 
depends only on the history of public signals. These "perfect public equilibria" 
have been studied prominently by Abreu, Pearce, and Stacchetti (1990) and Fu­
denberg, Levine, and Maskin (1994). However, if the monitoring is imperf,ect, 
sequential equilibria may exist in which players use "private strategies" that de­
pend on privately known past actions in addition to publicly known past signals. 
We refer to these equilibria as private sequential equilibria. 

In this paper we provide three examples to illustrate features that distinguish 
private sequential equilibria from perfect public equilibria. These distinctions 
appear even in finitely repeated games. In our examples a stage game is played 
twice, with the players observing a public signal of the first-period actions. 

In each example a private sequential equilibrium exists that Pareto dominates 
every perfect public equilibrium and, indeed, every subgame perfect equilibrium 
of the corresponding game with perfect monitoring. The examples thus show 
that if a repeated game's public signal is made less informative, new sequential 
equilibrium payoffs can arise that are not in the convex hull of the original game's 
set of sequential equilibrium payoffs. This is in contrast to the opposite result 
obtained by Kandori (1992) for perfect public equilibria. l 

Our first two examples show that the following well-known result also does not 
extend to private sequential equilibria: If the stage game of a finitely repeated 
game has a unique Nash equilibrium, then the unique perfect public equilibrium of 
the finitely repeated game consists of playing the stage-game equilibrium in every 
period after any history. In contrast, our first two examples have unique stage 
game equilibria, and nonetheless exhibit private sequential equilibria in which the 
stage-game equilibrium is not played in each period. In the second example, the 
stage game's Nash equilibrium is also its only correlated equilibrium. 

In the first example, the unique stage-game equilibrium is played in the first 
period but not in the second. Instead, a non-Nash correlated equilibrium of the 
stage game is played in the second period. This is possible because the stage 
game's Nash equilibrium is in mixed strategies. When it is played in the first 
period, each player's realized first-period action becomes his private information. 

1 However, an example in Kandori (1991) shows that the convex hull of the set of sequential 
equilibrium payoffs can expand if private signals are made less informative. 
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In the second period, after also observing the realization of the public signal, each 

player has a strict best response that depends on both his first-period action and 

the public signal. The random first-period actions and the public signal together 

constitute an appropriate correlating device for the second-period play. This is 

like the "internal correlation" ·of Lehrer (1991), as we discuss in Section 6.2 


In the second example, unlike in: the first, the unique stage-game correlated 
equilibrium is not played in the first period. Inste&d, player 2 plays another mixed 
strategy in the first period. Her second-period st.J;ategy is pure, and it determines 
her action as a function of her realized first...;peripd action and the public signal.3 

These two random variables are independent if pl&):'er1 does not deviate in the first 
period. If player 1 does deviate in the first perio<l, player 2's first-period action', 
and the public signal become correlated. Moreover, since player 2's second-period' , 
action depends on her first-period action and the signal, this correlation causes 
player 2 to play (with high probability) an action that is particularly bad for 

'player L This "unwitting punishment" deters player 1 from deviating in the first 
pM~d.'. 

The third example, like the second, is of a private sequential equilibrium in 

which first-period play is not a stage-game equilibrium. A deviation in the first 

period is deterred by subsequent play that is not a stage-game correlated equi­

librium. The example appe~ ,~o be more robust than the second example to 

perturbations of signals and payoffs. Rather than being inspired by purification, 

it uses arguments that rely on there being at least three players. The presentation 

starts with a signal that has the property that while any unilateral deviatIon is 

obs~rved, the deviator's identity is not. The resulting game has a pure-strategy 

private sequential equilibrium that Pareto dominates every perfect public equi­

librium. The equilibrium is in pure strategies, and does not entail the play of 

a stage-game equilibrium in the first period-:-even though the stage game has a 

unique pure-strategy equilibrium payoff veCtor. The relevant deviation (by player 

3) from the private sequential equilibdufll is deterred because when he deviates, 

the other players' beliefs differ as to the 'probable identity of the deviator,and 

so of continuation play. While this equilibrium is not robust to perturbing the 

probabilities so that the signalhas non-moving support, there is a similar private 

sequential equilibrium in mixed strateiies that is:' 


2 It is not true that private strategies allow anything to happen in the last period: on the 

equilibrium path of any sequential equilibrium of a finitely repeated game with public monitor­

ing,.conditional on the signal a correlated equilibrj.um is played in the laSt period (Proposition 

2 below). .... 


aOn the equilibr.ium path, player 2'r;; pure second-period strategy purifies her mixed stage­

game equilibrium strategy. 


4Some of the logic of this example appears in Marx and Matthews (2000) for a dynaniic, non­
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The next section presents preliminary material.· The examples are presented 
in the three subsequent sections. The final section discusses related literature, 
and the appendix considers the robustness of the second example. 

2. Preliminaries 

The set of players is N {I, ... ,n}. The stage game isa strategic form game 
G = (u, A) , where A = rr~=;l Ai .is a finite set of action profiles and u : A -t ~n 
is the payoff function. The repeated game has two periods, t 1,2. In period· 
t the players simultaneously choose their actions a!. The resulting action profiles 
are a 1 and a2 , and the resulting payoffs are u(a1) + u(a2 ). The first-period profile 
determines the probability distribution, 1T (,1 a 1), of a signal y that is publicly 
observed by the players between the periods. The set of possible signals is a finite 
set Y. For each y E Y, some a E A exists such that 1T(y Ia) > O. Denote this 
once-repeated game with imperfect public monitoring as G(1T, Y). 

A (behavior) strategy profile for G(1T, Y) is denoted a (ai, ... ,an), where 
ai = (al, a;), a; E 6. (Ai), and af : A X Y -t 6. (Ai). If a; is a pure strategy, 
at(a; , y) is the action taken; otherwise at (a; Ia; ,y) is a probability. The outcome 
of a profile a is the distribution it induces on A x Y x A: Its payoff-relevant outcome 
is the corresponding marginal distribution on A x A. We restrict attention to 
sequential equilibrium strategy profiles (Kreps and Wilson (1982». 

A strategy a i is public if at (ai, y) = a; (iii, y) for all ai, ~ E Ai and y E Y. A 
profile a is a perfect public eqUilibrium (PPE) if it is a sequential equilibrium and 
each ai is public. A sequential equilibrium in which some strategy is not public 
is a private sequential equilibrium (PSE). 

It is well known that in repeated games with imperfect monitoring, any out­
come of a pure strategy sequential equilibrium is also the outcome of a PPE 
outcome. It is worth emphasizing that this result requires the support of the 
signal to not vary with the action profile. The precise statement of this result in 
our setting is the following proposition. 

Proposition 1. 111T(y Ia) > 0 for all (y, a) E Y x A, the outcome of any sequen­
tial equilibrium 01 G(1T, y) with pure first-period strategies is a PPE outcome. 

repeated game with noiseless imperfect public monitoring. A similar repeated-game example is 
in Matthews (1998), which has been subsumed by this paper. 
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Proof. Let (J be a sequential equilibrium in which, say, a E A is surely played 
in the first period. Since any signal is realized with positive probability after 
any action profile, even if player i plays ~ =1= ~ in the first period, he must still 
believe the others will play the profile «(J1 (aj, y)) j"ci in the second period, given 
any realization y E Y. His best action after he plays ai in the first period is hence 
a best reply to «(JJ(aj, Y))j:f.i. One best reply to this profile is his equilibrium--path 
strategy, (J;(ai' y). Thus, replacing player i's second-period action (J;(ai' y) by 
(J;(ai, y) for every ~ E Ai yields a public strategy ai from which player i has no 
incentive to deviate. This shows that (ai,(J-i) is a sequential equilibrium that has 
the same outcome as does (J. Continuing in this fashion for all the players yields 
a PPE awith the same outcome as (J. • 

Perfect public equilibria are relatively tractable because they have a recursive 
formulation (Abreu, Pearce, and Stacchetti (1990)). For a once-repeated stage 
game, this recursive formulation takes the following form: given any PPE (J and 
signal Y E Y, the distribution (J2(y) of the second-period action profile conditional 
on y is a Nash equilibrium of the stage game. Thus, even after a one-shot deviation 
in the first period, second-period play conditional on the signal is a stage-game 
equilibrium. 

There is no analogous simple recursive formulation for private sequential equi­
libria. Conditional ona signal realization, a PSE need not yield a stage-game 
equilibrium in the second period, even on the eqUilibrium path. In fact, if a 
player makes a one-shot deviation in the first period, second-period play, condi­
tional on the signal realization, need not even be a correlated equilibrium. Our 
second and third examples rely on this property. The only recursiveness neces­
sarily exhibited by a PSE is that of any Nash equilibrium, which is given in the 
following proposition. 

Proposition 2. Let (J be a Nash equilibrium of G(1[, V). IE Y E Y is realized 
with positive probability in this equilibrium, then the equilibrium distribution of 
second-period actions, conditional on y, is a correlated equilibrium of G. 

Proof. 5 Let p E .6. (A x Y x A) be the probability distribution (outcome) in­
duced by (J. Fix y E Y such that p(y) > O. The conditional distribution over 
second-period action profiles, p(a2

1 y), is a correlated equilibrium of G if for all 

5The essential idea is that if an action is a best reply after two different histories, and so 
potentially to two different beliefs over the opponents' play, then that action is a best reply to 
any average of those beliefs. This logic is much the same as the "obedience" part of the general 
revelation principle of Myerson (1982). 
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(1) 

The maximand in (1) can be written as 


L L p(aL a;, a:i IY)Ui(ai, a:i) = L L p(a;'a~,a:iIY)Ui(a;,a:i)' 

a:';EA_i a~EA; a:EA; a~iEA_i 

Hence (1) holds if, for all at E At, 

-2ai E argmax "'" ~ (1 -2 2P ai,ai,a_ i 
I ) ( 2)Y Ui ~,a_i . (2) 

Fix a; E Ai. If at(aI) 

a;EA; 2 EA . a_ i -~ 

= °or area; Iat,y) = 0, then pea}, at, a:i Iy) 0 for all 
a:i E A_i. In this case (2) holds trivially. So we can assume aHa!) > 0 and 
17;(a; IaI,y) > 0, i.e., that (aL a;, y) is on the equilibrium path. Since a is a Nash 
equilibrium, 

(3) 

Since 

(4) 

Multiplying the maximand in (4) by the positive term pea; Iy) yields that of (2), 
and we are done. • 

3. Internal Correlation 

The stage game of this section's example is shown below. 

0,0 1,2 2,1 
2,1 0,0 1,2 
1,2 2,1 0,0 

(5) 
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This game has a unique Nash equilibrium, in which each player plays each action 
with probability 1/3. The resulting payoff vector is (1,1). Non-Nash correlated 
equilibria also exist, one of which is the following distribution on A : 

~: IrIrIrI 
 (6)
T3 - - 0 

This correlated equilibrium gives rise to the payoff vector (3/2,3/2). 

The public signal (11", Y) is defined in terms of a partition, {AI, A2, A3}, of A, 
where 

Aa = {(TI, S3), (T2' SI), (Ta, S2)}. 

The set of possible signals is Y = {Yll Y2, Ya}, and the signal distribution is given 
by 

1/2, if a rf- Ak,
11"(Yk I)a = { 0 ·f Ak (7) 

, 1 a E . 

Thus, conditional on the signal and his own action, a player can rule out one 
action of the opponent. For example, if player 1 observes Y2 after choosing Ti, he 
knows player 2 did not choose Si+I.6 

We now describe a profile a = (aI, ( 2 ) of private strategies in which the 
stage-game Nash eqUilibrium is played in the first period, and the correlated 
equilibrium shown in (6) is played in the second period. The profile is given by 
at = a~ = (1/3,1/3,1/3), 

if yl = Yl, 

if yl = Y2, (8) 

if yl Y3, 


and 

Sj, if yl = Yl, 

a~(s}, yl) = sHb if yl = Y2, and (9) 
{ 

Sj-l, if yl = Y3. 

OWe use the convention that the first action follows the third. 
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We now argue that this profile is a sequential equilibrium. Consider first the 
sequential rationality of play in the second period. If y1 Yb then player I, 
having played Ti in the first period, has the ex post belief that player 2 played 
Si+! with probability 1/2 and Si-1 with probability 1/2. From (9), player 1 thus 
believes that 2 will play Si+! with probability 1/2 and Si-1 with probability 1/2 
in the second period. Given this belief, it is sequentially rational to play Ti again 
in the second period, as specified by O'i. A similar argument applies to player 2 
after the signal yl = Y1. 

If y1 Y2, player 1, having played Ti in the first period, believes that 2 played 
Bi with probability 1/2 and 8i-1 with probability 1/2. Thus by (9), he assigns 
equal probability to player 2, in the second period, playing Si+1 and Si, and so 
playing Ti-1 is optimal. On the other hand, player 2 who played Sj believes that 
1 played Tj with probability 1/2 and Tj+1 with probability 1/2. By (8), player 
2 therefore believes that 1 plays each of Tj-1 and Tj with probability 1/2. It is 
thus sequentially rational to play Sj+! given this belief. The case where y1 = Y3 
is established through a similar argument. 

Finally, no player has an incentive to deviate in the first period. Each player's 
continua.tion payoff under the profile in the second period is independent of history, 
being equal to 3/2. Since the choice of action in the first period has no payoff 
implications in the second period, it is a best response if it maximizes first-period 
payoffs, which it does. 

This example is robust in the sense that a similar non-trivial equilibrium is ob­
tained even if we perturb the initial monitoring structure 1r. To see this, note that 
play in the second period given 0' and any history remains sequentially rational 
under any monitoring structure sufficiently close to 11", because each 0'7 (a; ,y1) is 
a strict best response given the beliefs. This is so even if each player's first-period 
strategy is not equal to (1/3,1/3,1/3), but is sufficiently close to it. 

Suppose now that the players are restricted to play 0'2 in the second period. 
This yields a one-shot game in which only the first-period actions are chosen. Its 
unique equilibrium is 0'1 = ((1/3,1/3,1/3), (1/3, 1/3,1/3)). Therefore, under any 
monitoring structure sufficiently close to 11", there exists an equilibrium 0'''' of this 
game that is close to 0'1. By the above argument, the strategy profile in which 
the players play 0'''' in the first period and then 0'2 in the second period is an 
equilibrium if the monitoring structure is sufficiently close to 11". 
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4. Unwitting Punishment 

The stage game of this section's example, based on that of Kandori (1991), is 
shown below. 

6,0 0,1 0,0 0,0 
5,6 1,5 11,0 11,1 
0,0 0,0 10,10 10,10 

In this game rg is strictly dominated, and its removal causes 8g and 84 to become 
strictly dominated. The unique correlated (and hence Nash) equilibrium is for 
each player to play each of his first two actions with equal probability. The 
equilibrium payoff vector is (3,3). Profiles (rg , 8g) and (ra,84) are desirable, but 
are not equilibria because player 1 has an incentive to deviate to r2. We now 
present a signal structure such that the two-period game has aPSE inwhich, 
in the first period, player 1 plays rg and player 2 plays 8g and 84 with equal 
probability. 

The public signal structure is given by Y = {yt, yll} , and the following table 
of conditional probabilities rr(ytl ril 8j) : . 

.5 . 5 .5 .5 

.5 .5 1 ° .5 .5 .5 .5 

(1O) 


Thus, if player 1 plays r2 and player 2 randomizes between 8a and 84, the public 
signal is perfectly correlated with player 2's action-player 1 will then surely learn 
whether 8g or 84 was played. But if player 1 plays rg (or rl), the signal and player 
2's action are independent, and player 1 will learn nothing from the signal about 
player 2's action. 

The candidate strategy for player 1, 0"1. requires that he pJay rg in the first 
period: 

O"i (ra) = 1. 

In the second period he plays rl and r2 with equal probability, provided he played 
rg or rl in the first period. If he deviated to r2 in the first period, he plays r2 in 
the second: 

;' . 
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and (7I(r21 rl, y) = 1 - (7r(rl Irl,y). The candidate strategy for player 2 requires 
her to play 83 and 84 with equal probability in the first period: 

. 1 ( .) _ {1/2, if Sj = S3, 84 
(72 8 J - 0 'f 

, 1 Sj = S1>S2. 

In the second period she plays 82 if her private history is (y', S3) or (y", S4), and 
otherwise she plays 81: 

. {O if y y'and s} = S3, 

(7~(slls;,y)= ' or y -- yIf and Sjl_- S4, 

1, otherwise, 

and (7~(s21 sj, y) = 1- (7~(SI Is3, y). 

On the equilibrium path of (7, conditional on either signal realization, the 
stage-game equilibrium is played in the second period (a.., required by Proposition 
2). In particular, player 1 is content to play rl and r2 with equal probability 
because the signal is uninformative about player 2's past action, and hence about 
her second-period action, even though she is actually using a pure strategy in 
the second period. Her fifty-fifty mixture of S1 and S2 is purified by her random 
first-period action and the signal. 

However, if player 1 deviates in the first period to his myopic best reply T2, the· 
continuation play conditional on either signal realization is not even a correlated 
equilibrium of the stage game: (r2,82) is played after either y' or y". If, for 
example, y' is realized after player 1 deviates to r2, he will know that player 2's 
first-period action was 83, and hence that she will surely play S2, and so r2 is 
his only best reply. Player 2 is nonetheless still content to play 82 after (S3, y'); 
observing y' does not reveal to her that player 1 deviated, and so she still believes 
he is playing the fifty-fifty mixture of rl and T2. 

It is now easy to see why player 1 does not deviate to r2 in the first period, 
and hence that (7 is a PSE. This deviation results in the play of (r2' S2) instead 
of the stage-game equilibrium in the second period, and so it costs him 3 1 = 2 
utiles. This is more than his myopic gain from the deviation, 11 - 1 = L He thus 
has a strict incentive not to deviate from (7 in the first period. 

We made this example non-symmetric only for convenience; a symmetric ex­
ample with the same features can be obtained from the authors. The example 
is also robust in the following sense: any game obtained by slightly perturbing 
either the payoffs or the signal probabilities has a PSE close to (7. However, 
this is not true if both structures are perturbed. In the Appendix we show that 
almost all small perturbations of the payoffs and probabilities together yield a 
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game that has a unique sequential equilibrium, the perfect public equilibrium in 
which the stage-game equilibrium is played after any history. We conjecture that 
if a two-player finitely-repeated game with public monitoring has a stage game 
with generic payoff and signal probability structures, and if the stage game has 
a unique correlated equilibrium, then that correlated equilibrium is played after 
any history in the unique sequential equilibrium of the repeated game. We have 
no conjecture if the number of players is greater than two. 

5. Punishment by Disparate Beliefs 

There are three players in this section's example. Each player has two actions, c 
and d. The stage game is shown below, with player 3 choosing the left or right 
matrix by his choice of c or d, respectively. 

P2 P2 

c 

Action d is strictly dominant for player 3; his payoff increases by 9 if he plays 
d instead of c. The pure strategy equilibria are (c, d, d) and (d, c, d), and both 
generate the payoffs (1,1,12). In the remaining equilibrium, players 1 and 2 each 
play c with probability ~; the resulting payoffs are (~, i, 8~). 

In any once-repeated game G(1T:, Y) based on this stage game, when player 3 
plays d in the second period, each player's payoff is maximized by the outcome 

0: == ((c, c, c) , (c, d, d)) . 

The outcome 0: is not a PPE outcome. Recall that PPE requires, upon the real­
ization of any signal, even off-the-equilibrium path, that a stage-game equilibrium 
be played in the second period. Player 3 can thus be punished by at most the 
maximal difference in his stage-game equilibrium payoffs, 12 - 8~ = 3~, which 
is less than his gain of 9 obtained by playing d rather than c in the first period. 
It follows that ((c, d, d), (c, d, d)) is a Pareto dominant PPE outcome.7 Since this 
outcome is Pareto dominated by 0:, every PPE outcome of any of the games 
G(1T:, Y) is Pareto dominated by 0:. 

7 A payoff-equivalent PPE outcome is «d, c, d), Cd, c, d»). 
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On the other hand, player 3 would not deviate to d in the first period if doing 
so caused the second-period profile to switch from (c, d, d) to (d, d, d).8 While this 
is impossible in a PPE, it is possible in a PSE given an appropriate signaling 
structure, as we now show. 

Consider the noiseless signal consisting of the number of players who play c in 
the first period. Letting C(a) == #{i \ ai = c}, the possible signal realizations are 
Y = {O, 1,2, 3} and the probability function is 

-( I 1) _ {I, ify = C(a1), 
rrya = 0, ify;fC(a1). 

The game G(1i", Y) has a PSE with outcome at. The equilibrium profile, s, 18 

in pure strategies and defined as follows. In the first period, (c, c, c) is played: 
s; = c for i = 1,2,3. In the second period, player 3 plays d regardless of history: 
s~h .) d. Players 1 and 2 play (c, d) in the second period if the number of 
players who played c in the first period was not two: 

si(" y) = c and s~h y) = d fory ;f 2. 

Otherwise, each of players 1 and 2 takes the action he did not take previously: 

s;(c,2) = d and s;(d, 2) c for i = 1,2. (11) 

This completes the definition of s. Observe that its outcome is at, and that (d, d, d) 
is played in the second period if player 3 deviates to d in the first. It follows that 
s is a Nash equilibrium. 

To show that 8 is a PSE profile, suppose each of players 1 and 2 believes, when 
he takes action c in the first period and observes y = 2, that player 3 was the 
player who chose the other c. A deviation by player 3 then causes players 1 and 
2 to each believe the other was the deviator (when in fact it was player 3). Given 
(11), each of players 1 and 2 then believes the other will play c, and so his best 
reply is d. These beliefs thus make (d, d, d) sequentially rational in· the second 
period if player 3 unilaterally deviates in the first. 

To complete the argument that 8 is a sequential equilibrium profile, we now 
show that the assessment obtained by pairing s with the specified beliefs is con­
sistent. For c > 0, define the following profile of mixed first-period strategies: 

llIndeed, if the monitoring is perfect, the path 7t, together with (d, d, d) after any deviation, 
constitutes a Nash equilibrium. 

11 



As € --+ 0, (TI,e --+ (e, e, e). Let (T2.e be any completely mixed second-period strategy 
profile for which (T2,e --+ '82 . Then ~ == «(Tl,e, (T2,e) --+ '8. To prove consistency, we 
need only verify that the limiting belief, as € --+ 0, of both players 1 and 2 after a 
history (e,2) is that. player 3 chose the other e. When (Te is played; each of players 
1 and 2 has the following belief after history (e,2): 

(1 - c:2 ) c: 
Pr{3 chose e , e, 2} = ( 2) 2 (1 )l-c: c:+c: -c 

As this converges to 1, s paired with the specified beliefs is indeed consistent.g
· 
lD 

Remark. The punishment of player 3 in this equilibrium is sequentially rational 
only because, if he deviates, his identity as the deviator is not detectable. Neither 
other player knows it was player 3 who deviated; and so neitl~er knows (d, d, d) will 
be played - each thinks the other will play c. This confusion is a lack of coordinar­
tion that allows (d, d, d) to be sequentially rationaL In contrast, most, if not all, of 
the previous literature is motivated by the observation that imperfect detection of 
deviators can make it difficult to coordinate on punishing profiles. Assumptions 
are thus made to insure that monit.oring is not too imperfect, so that a deviation 
and the deviator's identity are statistically detectable, and punishment can be 
coordinated. 11 The logic of our example shows instead that imperfect monitoring 
can sometimes increase punishment levels because it impedes coordination. 

The profile s remains a sequential equilibrium if the payoffs are perturbed, 
but not if the signaling structure is perturbed. It is easy to show that if 1f is 
any "full support" perturbation of 1f, in the sense that 1f(Y ,.) > 0 for all y E Y, 
then no sequential equilibrium outcome of G(1f, Y) is close to a:. (This is in 
accordance with Proposition 1, since S has pure first-period strategies, but a non­
PPE outcome.) 

However, another PSE is robust to perturbations of the signal distribution. 
Denoting it as (j, it is the same as s in the second period, and in the first period 

9Less extreme beliefs can also be paired with s to obtain a consistent assessment. It is 
sufficient for each of players 1 and 2, after history (c,2), to believe player 3 played c with 
probability p :2': 1/3. To obtain the appropriate trembles, replace a}E with (1 e{l - p)/p) 0 

c+c(1 p)/pod. 
lOIn fact, s is even an (extensive-form trembling-hand) perfect equilibrium, since s is a best 

reply to o-E for small e. 
11 For example, Fudenberg, Levine, and Maskin (1994) assume "individual full rank" and 

"pairwise identifiability", and Mailath and Morris (1999) assume "almost-public monitoring," 
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it is given by 

9
O'~(c) = O'i(c) = 10' and O'Hc) l. 

The nature of 0' is similar to that of s. It too has the property that a first­
period deviation by player 3 causes (d, d, d) to be subsequently played with high 
probability, now .81 instead of 1. Also like 5, 0' Pareto dominates any PPE of any 
of the games C(1C', Y). The fact that 0' is a Nash equilibrium is obvious. It is thus 
a sequential equilibrium, since now the only problematic signal realization, y = 2, 
occurs with positive probability on the equilibrium path. Moreover, 0' is robust 
to any small perturbation of ft, and it is a perfect equilibrium of C(ft, Y): 

Proposition 3. Fbr any sequence of distributions {1C'k}, 1C'k : Y x A ~ [0, IJ, 
converging to ft, there is a sequence {(J'k} of strategy profiles converging to 0' such 
that each (J'k is a perfect equilibrium ofC(1C'k, Y). 

Proof. For large k, the first-period part of player 3's strategy, O'A, is a strict best 
reply to 0' in C(1C'k, Y), Since O'~ always puts all probability on d and is hence 
a second-period best reply to any profile, 0'3 is thus a best reply in C(1C'k, Y) to 
any profile in a neighborhood of 0'. We can thus fix player 3's strategy at 0'3 in 
C(1C'k, Y) and consider the resulting game between players 1 and 2, denoted C k, 

Let C kl be the one-shot game obtained from Ck by fixing the second-period 
strategies at 0':'3 = (O'i,O'~), For large k, Cit! is the same as the original stage 
game, with player 3's action fixed at c, except that a number near 1 is added to 
each of the payoffs of players 1 and 2. The profile 0'~_3 = (O'~, O'~) is an equilibrium 
of this one-shot game if precisely 1 is added to each of their payoffs. Since a 
completely mixed equilibrium of a 2 x 2 game that has no dominant strategies is 
continuous in payoffs, Cltl has an equilibrium (J'~13 close to 0':3' 

Let (J'~3 = ((J'~13' 0':3)' By the argument just given, each first-period strategy 
in this profile is a best reply to (J'~3 in the two-period game C k. For large k, since 
(1C'It, (J'~~) is close to (ft, 0':3)' when (J'~13 is played in Cit, Bayes' rule implies that 
for i =J j = 1,2, Pr(a} = d I at = c, y = 2) is close to 1, and so an 1 c, 2) is a strict 
best reply to O'r in the second period. Similarly, for large k the strategy 0';(·1 d, 2) 
is a strict best reply to 0';. Following any y =J 2, ai and a~ are strict best replies 
to each other regardless of the first-period actions. Thus, the strategies in 0':'3 
are strict best replies to each other in the second period if k is large enough. It 
follows, since (J'~~ is completely mixed, that (J'~3 is a perfect equilibrium of Cit. 
Finally, it is clear that (J'k = ((J'~3' 0'3) converges to a. • 
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6. Related Literature 

In a series of papers, Lehrer (1990, 1991, 1992), introduces the idea of internal 
correlation, in the setting of undiscounted infinitely-repeated games with deter­
ministic imperfect public monitoring. These papers consider equilibria in which 
players use private histories of past play to correlate future choices, in effect con­
structing "internal" correlating devices. A similar idea underlies our first example, 
where the first-period actions, together with the signal, correlate second-period 
play. Since the first-period equilibrium payoffs of the players are independent 
of their first-period actions in the example, the first-period actions have some of 
the features of cheap talk announcements. As such, the example is also related 
to the literature on mediated cheap talk. For instance, Lehrer and Sorin (1997) 
show that almost any correlated equilibrium outcome is a Nash equilibrium of the 
extended game obtained by adding a mediator to whom the players send private 
messages, and who then replies with a public deterministic message, before the 
original game is played. The mediator in Lehrer and Sorin (1997) has a similar 
role as the public signal in our example, although its first-period actions are not 
literally cheap talk. 

Like our examples, the examples of Kandori and Obara (2000) show that 
private sequential outcomes need not be in the convex hull of the set of PPE 
outcomes. Their examples, unlike our's, are equilibria of infinitely repeated games 
with discounting. The structure of their examples depend on the infinite horizon. 
Our examples show that there are significant differences between PSE and PPE 
outcomes even with a finite horizon. 

Tomala (1999) studies undiscounted infinitely repeated games with public 
monitoring in which observed deviations may be compatible with several potential 
deviators. As he points out, the inability to identify deviators can shrink the set 
of equilibrium payoffs. Our third example, on the other hand, shows the opposite 
can also occur, i.e., in some games, an inability to identity a deviator can expand 
the set of equilibrium payoffs. 

Finally, the literature has noted another reason why PSE payoffs may differ 
from PPE payoffs. If there are more than two players, the correlated minmax 
payoff for a player (i.e., the minmax payoff when opponents can correlate their 
actions) may be less than the player's standard minmax payoff. Consequently, 
since correlation may be obtained via private strategies, some repeated games 
with imperfect public monitoring have PSE payoffs outside the set of feasible 
and individually rational payoffs, as usually defined. See Fudenberg and Tirole 
(1991, exercise 5.10) for a simple example and Tomala (1999) for a more detailed 
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discussion. 

A. Robustness of the Second Example 

We show here that for almost all small perturbations of the payoffs and proba­
bilities in the example of Section 4, the resulting game has a unique sequential 
equilibrium: the PPE in which the stage-game equilibrium is played after any 
history. 

We first argue that since the stage game has a unique correlated equilibrium, 
each player must have identical beliefs over the future behavior of the other player 
after any private history. 

Proposition A. Let a be a Nash equilibrium ofa two-player game G(rr, Y), and 
suppose the stage game G has a unique correlated equilibrium, a"'. Then, when a 

is played, the equilibrium belief of player i about player j 's second-period action, 
after any history (at, y) that has positive probability under a, is given by 0';. 

Proof. Let y E Y have positive probability under a. When a is played, the 
realization of y gives rise to a one-shot incomplete information game in the sec­
ond period. The types of player i in this game are the actions aJ that have 
positive probability under aI, conditional on y having been realized; denote this 
subset of A as Ti. The prior distribution, p, on the type space, T It Ti, is 
the conditional (on y) distribution of first-period action profiles under a l . This 
construction yields an incomplete information game, (G, T,p) , in which the types 
are payoff-irrelevant. Since a is a Nash equilibrium, and it puts positive probabil­
ity on y, it induces a Bayes-Nash equilibrium on (G, T,p). Specifically, defining 
<Xi(Ui It i ) == at(ai Iti , y) for i = 1,2 and (ai, t i ) E Ai X Ti, <X is a Bayes-Nash equi­
librium of (G, T, p) . The beliefs of player i, conditional on his type t i , about the 
action player j will take in this equilibrium are given by Ltj <Xj (aj Itj) Pi (tj It i ). 

These are the same beliefs that player i holds when a is played in G (rr, Y ) about 
player j's second-period action, after the history (al,y) = (ti' y). The following 
Lemma now completes the proof. _ 

Lemma A. Let G = (u, A) be a two-player game that has a unique correlated 
(and hence Nash) equilibrium, a*. Let (G, T, p) be a corresponding incomplete 
information game with payoff-irrelevant types. Then, for all (aj, td E Aj x Ti and 
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any Bayes-Nash equilibrium a of this game, 

2::>~j (aj It j ) Pi (tj Iti) a; (aj) (12) 
tj 

Proof. Since every Bayesian-Nash equilibrium of (G, T, p) induces a correlated 
equilibrium of G, we have 

For a in the support of ai, dividing by ai (at) yields 

(13) 

In other words, conditional on player i taking any action ai in the support of ai, 
his average (over his type ti) belief about the action of the opponent is a; (aj). 

Let Ai {ai : ai(~) > O} be the support of ai. Fix ai E Ai. For a~ E 

Ai\ {ad, let f3,,~ E ~IA;I be the vector given by ~a~L. Ui (ai,aj) - Ui (a~,aj). 
J 

Define the set 

Then C == n,,;EA.\{ai}Ca: is the set of beliefs over player j's action, that have 
support in Ai, for which ~ is a best reply. Let T;. (tli) {ti E T;. : ai (ai Iti) > O} 
be the set of types that choose ai with positive probability. Let a~i E ~(A;) 
denote the beliefs of type t i . From (13), 

(14) 

so that a; is a convex combination of the beliefs a~i for ti E T;. (~). Moreover, 
a~' E C for all ti E Ti (ai)' 

Since (ai, a;) is the unique Nash equilibrium, a; is the only distribution in C 
for which /3a l ·aj = 0 for a~ E Ai\ {ad. (If aj were another such distribution, then , 
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(ai, a j) would also be a Nash equilibrium.) In other words, for any a j E C\ {aj}, 
f3at . aj ~ 0 for all a~ =1= ai and for at least one a~ E Ai, f3at • aj > O. Let. . 

Then, 13 . aj > 0 for all aj =1= aj. From (14), if a] =1= aj for at least one ti, then 
13· aj > 0, a contradiction. Hence, a~i aj for all ti E Ti (~) .• 

Remark. The restriction to two players is needed for the proof, since this 
is what allows us to conclude thataj is the only distribution in C for which 
f3a/ • aj = 0 for a~ E Ai\ {ai}. We do not know if Proposition A or Lemma A 
extend to three or more players. 

We can now discuss the robustness of the example. Let G be a two-player stage 
game that has a unique correlated equilibrium, 0'*. Let (7r 1 Y) be a monitoring 
structure with non-moving support: 7r(Y Ia) > 0 for all (y,a) E Y x A. Let 
a «aL af), (a~, a~)) be a sequential equilibrium of the associated repeated game 
G(7r, Y). Suppose, as in the example of Section4, that a1 

=1= 0'*. The outcome of 
a is then not a PPE outcome. This implies that a is a PSE, and by Proposition 
1, at least one player, say 2, randomizes in the first period. 

In order for player 2 to be willing to randomize in the first period, she must be 
myopically indifferent over the randomized actions: By Proposition A, every pair 
(a1, y) on the equilibrium path causes her to have the same beliefs over player l's 
past play, and so she has the same equilibrium expected payoff in period two. Her 
myopic indifference can be achieved in one of two ways. First, if a~ is pure (as in 
our example), al E Al and a2 =1= a~ E A2 exist such that u2(al,a2) = u2(aI,a~). 
This is not a generic payoff function. 

Alternatively, if a~ is mixed, player 1 randomizes in such a way as to make 
player 2 indifferent. Then, by the previous paragraph, (a~) ai) is a mixed strategy 
equilibrium of (u, Ai x A2"), where Af is the support of at and satisfies JAil ~ 2. 
For generic assignments of payoffs, JArl IAgl. Fix a value of the public signal, 
y. Then player 1 has IAn types that arise with positive probability in the game 
of incomplete information induced by a (described in the proof of Proposition 
A). By Proposition A, each type of player 1 has the same beliefs over player 2's 
second-period action. That is, for all at E Ar and a~ E A2 , 

L a~(a~ Ia~; y) Pr {a~ IaLy} = a*(a~). 
a~EA2 
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For fixed a~, there are IA! I such equations, simultaneously determining IA21 un­
knowns, i.e., a~(a~ I~; y). One solution is given by a~(a~ Ia~; y) = (T"(a~). But 
this solution yields a public strategy for player 2, and so awould be a PPE. Thus, 
there must another solution, and hence the conditional probability matrix, 

must be singular. Since 

and &~ is player 2's strategy in a mixed strategy equilibrium of (u,A! x A2')' the 
conditional probability matrix is singular only for a nongeneric choice of 1r. 

We conclude that if G is a generic stage game a unique correlated equilibria, 
and (11", Y) is a generic monitoring structure, then that correlated stage-game equi­
librium is played in the first period in any sequential equilibrium of the repeated 
game G (11", Y). The example of Section 4 is not robust to perturbations of both 
payoffs and probabilities. 
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