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Abstract

The increasing hazard rate (IHR) property of distributions of asymmetric
information parameters play a critical role in characterizing a separating
Perfect Bayesian–Nash Equilibria in screening problems. This paper studies
sufficient conditions on these distributions for IHR to be preserved under
convolution. When different sources of asymmetric information aggregate
into a single scalar, these preservation results prove very useful in designing
alternative optimal mechanisms. The paper proves that if the distributions
of all convoluting parameters are IHR the resulting distribution is also IHR.
This result does not necessarily requires that the corresponding densities
have to be log–concave. JEL: C00, D42, D82.
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1 Introduction
In a recent work, Biais, Martimort, and Rochet (2000), BMR hereafter, develop a common
agency model in which agents’ types have two dimensions that lie on the real line and
define a single dimensional aggregate:

θ0 = θ1 + θ2, (1)

Thus, BMR face two alternative models of screening: either accounting for each source of
asymmetry of information separately, i.e., using Fi(θi), i = 1, 2, or targeting the aggregate
directly using the convolution distribution:

F0(θ0) =
∫
Θj

Fi(θ0 − θj)dFj(θj). (2)

BMR choose to make the necessary assumptions on the distribution of θ0 in order to
characterize an equilibrium in nonlinear schedules that depends exclusively on θ0, thus
reducing the dimensionality of the screening problem. Theorem 1 of BMR argues that such
procedure is not restrictive because log–concavity is preserved under convolution. They
claim that the convolution of a log–concave density f1(θ1), with any arbitrary density
f2(θ2) leads to a probability distribution F0(θ0), and survival function 1−F0(θ0) that are
both log–concave for the convolution defined by equations (1)−(2). Their only requirement
is that f1(θ1) and the arbitrary density f2(θ2) are defined on a bounded support.

Figures 1 and 2 cast some doubt on the validity of Theorem 1 of BMR. In these
figures, the first row presents the probability density functions fi(θi), i = 0, 1, 2. The
second row pictures the ratio f ′i(θi)/fi(θi) to analyze the log–concavity of the density
functions, while the third row shows the ratio fi(θi)/Fi(θi) to analyze the log–concavity of
the corresponding distribution functions. Finally, the bottom row describes the behavior
of the hazard rate, ri(θi).

Figure 1 shows the convolution of a uniform distribution defined on the unit interval,
with a beta distribution with parameters p = 0.4 and q = 0.5, also defined on the unit
interval. The third column represents the distribution of their convolution defined on
the [0, 2] interval.1 As it is well known, the uniform is a log–concave distribution with
increasing hazard rate. Thus, both the ratio f ′1(θ1)/f1(θ1) and f1(θ1)/F1(θ1) are non–
increasing functions to be consistent with log–concavity. The beta distribution –defined
on a bounded support as required by BMR–, may or may not be log–concave depending
on the values of the indexing parameters p and q. If these parameters are sufficiently small
as in the present case, the ratio f ′2(θ2)/f2(θ2) becomes increasing (log–convex density),

1 Pham and Turkkam (1994) study this type of convolution. A general reference is Johnson, Kotz,
and Balakrisnahan (1995, §25.8). To obtain the convolution density function, the range of integration
was divided in 10,000 intervals. For each one of these intervals, the convolution was computed using a
40–points Gauss–Legendre quadrature.
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the distribution function also fails to be log–concave, and the hazard rate includes regions
where it decreases. The consequence for the convolution distribution is that small values
of p and q make the density of θ2 sufficiently log–convex to turn the convolution density
sufficiently peaked, so that there is a nontrivial region in the neighborhood of the mode
of θ0 where f ′0(θ0)/f0(θ0) becomes increasing, thus violating the log–concavity of f0(θ).
Although there might be log–concave distribution functions whose densities are not log–
concave, this is not the case for the present example either because the ratio f0(θ0)/F0(θ0)
in the figure also rejects such hypothesis around the mode of θ0 and in a neighborhood of
its lower bound (not shown in the figure due to scale issues). Finally, the bottom figure of
the third column clearly shows that the hazard rate is not increasing for the whole support
of θ0, thus contradicting the presumed log–concavity of the convolution survival function
1− F0(θ0).

Figure 2 removes the restriction of bounded supports for the distributions of θ1 and
θ2. The first column presents a standard lognormal distribution, and the second column
shows a standard normal distribution. The third column is the lognormal–normal convo-
lution. This case has some appeal for economic modeling since the normally distributed
variable may represent an error of measurement in the appraisal of each individual’s
own type which in addition, due to some economic reason, might be restricted to take
only positive values in many models.2 It is well known that the lognormal density is
not log–concave and that it is characterized by a decreasing hazard rate as θ1 increases
[Sweet (1990)]. Consequently, and as I will show in the next section, the convolution den-
sity function cannot be log–concave. However, the lognormal distribution is log–concave
[Bagnoli and Bergstrom (1989)], a property that is preserved under convolution since the
normal distribution is also log–concave. The normal density is log–concave, and thus by
Proposition 1 later in Section 2, its distribution and survival functions are also log–concave,
and therefore IHR. Finally, as it can easily be confirmed looking at the third column
of Figure 2, the convolution of a log–concave density as the normal, and an arbitrary
distribution such as the lognormal, does not ensure that the convolution distribution is
IHR in the case of unbounded supports either.

The proof of Theorem 1 of BMR ignores that the convolution is a commutative
operation,3 and thus, the distribution f2(θ2) (in my notation) plays no role; it just smears
the effect of the endowment shock θ2 on the support of θ0 according to the rule of the
distribution of asset values f1(θ1). Intuitively, the same result should be obtained by
spreading the effect of θ1 according to the distribution of θ2. Therefore, the proof should
be true if f1(θ1) is replaced by f2(θ2) and vice versa, but in such a case, f2(θ2) cannot

2 Hawkins (1991) studies in detail the basic properties of this convolution. For a general overview,
see Johnson, Kotz, and Balakrisnahan (1995, §14.8). Romberg integration was used to compute the
convolution density with a minimum of 10,000 divisions of the initial range [−25, 75]. Convergence required
an error of integration smaller than 10−8 to define the final range of integration.

3 The characteristic function of F0(θ0) is the product of the Fourier transforms of the distributions
of its components [Hirschman and Widder (1955, §2.5); Karlin (1968, §7.1-7.3)]
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be any arbitrary density defined on a bounded support, but rather a log–concave density
function without a necessarily bounded support.

There are two alternatives to overcome this difficulty. One is to assume that both
density functions are log–concave. As log–concavity is preserved under convolution, the
distribution F0(θ0) has the desired properties and the rest of results of BMR will remain
correct. Section 2 presents these preservation results taking the log–concavity of the density
functions as starting point of the analysis. However, what BMR need, as well as in many
other screening problems, is that the distribution F0(θ0) is IHR to ensure the existence
of a separating Perfect Bayesian–Nash Equilibria. Thus, Section 3 only assumes that the
distributions F1(θ1) and F2(θ2) are IHR to show that the convolution distribution F0(θ0)
is IHR. The approach of Section 3 is less restrictive because it does not exclude those
IHR distributions whose densities are not log–concave and that will be excluded under the
approach of BMR or that of Section 2. Finally, Section 4 concludes.

2 Preservation of Log–Concavity
This section proves that the convolution of log–concave densities is also log–concave.
It also proves that any random variable whose density functions is log–concave is also
characterized by a log–concave distribution and survival function, and therefore is IHR.
I start by presenting the minimal mathematical tools needed to prove these preservation
results.

Assumption 1: The random variable θi, i = 1, 2, has a continuously differentiable
probability density function fi(θi) ≥ 0 on Θi = [θi, θi] ⊆ <, such that the cumulative
distribution function given by:

Fi(θi) =

θ∫
θ

i

fi(z)dz, (3)

is absolutely continuous.

Log–concavity is a smoothness property common to many distributions. The fol-
lowing is a formal definition for continuously differentiable probability density functions.

Definition 1: A probability distribution function Fi(θi) is log–concave if:

∂2 log[fi(θi)]
∂θ2

i

=
∂

∂θi

[
f ′i(θ)
fi(θ)

]
≤ 0 on Θi. (4)

The IHR property keeps a close relation with the log–concavity of fi(θi). Actually, it
is equivalent to the log–concavity of the corresponding survival function F i(θi) = 1−Fi(θi).
The IHR property is defined as follows.
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Definition 2: If a univariate random variable θi has density fi(θi) and distribution
function Fi(θi), then the ratio:

ri(θi) =
fi(θi)

1− Fi(θi)
on {θi ∈ Θi : Fi(θi) < 1}, (5)

is called the hazard rate of either θi or Fi(θi). A univariate random variable θi or its
cumulative distribution function Fi(θi) are said to be increasing hazard rate if r′i(θi) ≥ 0
on {θi ∈ Θi : Fi(θi) < 1}.

In order to prove that log–concavity is preserved under convolution, I need to
introduce the set of Pólya frequency functions. The major practical significance of Pólya
frequency functions is that their smoothness properties are preserved under convolution,
and more importantly, that a class of Pólya frequency functions coincides with the set of
log–concave functions.

Definition 3: A function g(z) is a Pólya frequency function of order n (PFn) if
∀x1 < x2 < · · · < xm, xi ∈ X ⊆ <; and ∀y1 < y2 < · · · < ym, yi ∈ Y ⊆ <; and all
1 ≤ n ≤ m: ∣∣∣∣∣∣∣∣

g(x1 − y1) g(x1 − y2) · · · g(x1 − yn)
g(x2 − y1) g(x2 − y2) · · · g(x2 − yn)

...
...

. . .
...

g(xn − y1) g(xn − y2) · · · g(xn − yn)

∣∣∣∣∣∣∣∣ ≥ 0. (6)

The following lemma is the basis of the preservation results.

Lemma 1: Let f1(θ1) and f2(θ2) be PFn, and θ1 and θ2 be stochastically indepen-
dent, then the convolution:

f0(θ0) =
∫
Θ2

f1(θ0 − θ2)f2(θ2)dθ2 =
∫
Θ1

f1(θ1)f2(θ0 − θ1)dθ1, (7)

is also PFn.

Proof: Without loss of generality, let n = 2. By definition of PF2, the convolution
f0(x − y) has to be such that ∀x1, x2 ∈ X ⊆ < and ∀y1, y2 ∈ Y ⊆ <, such that x1 < x2

and y1 < y2, the following condition holds:

∣∣∣∣ f0(x1 − y1) f0(x1 − y2)
f0(x2 − y1) f0(x2 − y2)

∣∣∣∣ =

∣∣∣∣∣∣
∫

f1(x1 − z)f2(z − y1)dz
∫

f1(x1 − z)f2(z − y2)dz∫
f1(x2 − z)f2(z − y1)dz

∫
f1(x2 − z)f2(z − y2)dz

∣∣∣∣∣∣
=

∫
z1<

∫
z2

∣∣∣∣ f1(x1 − z1) f1(x1 − z2)
f1(x2 − z1) f1(x2 − z2)

∣∣∣∣ · ∣∣∣∣ f2(z1 − y1) f2(z2 − y1)
f2(z1 − y2) f2(z2 − y2)

∣∣∣∣dz1dz2 ≥ 0, (8)
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where the last inequality is the Basic Composition Formula that relates compositions of
totally positive functions.4 From here the proof is straightforward since the first determi-
nant in the double integral is positive as f1(x − y) is PF2 and the second determinant is
also positive as f2(x− y) is PF2.

An immediate consequence of the application of the Basic Composition Formula is
the following result that will be used later in this section.

Corollary 1: If f1(θ1) is PFm and f2(θ2) is PFn, then f0(θ0), the probability
density function defined by convolution (7), is PFmin(m,n).

I now need to link Pólya frequency functions with log–concavity. The previous
mathematical results of this section have shown that the smoothness properties of Pólya
frequency functions of the same order are preserved under convolution. While reliability
properties such as IHR keep a close relation with the log–concavity of the probability
density functions, the preservation of such smoothness condition is easily ensured if we
focus on the family of Pólya frequency functions. The remaining results of this section
rely on the equivalence between log–concave and a class of Pólya frequency functions. The
following Lemma establishes such equivalence.

Lemma 2: A continuously differentiable function g(z) is PF2 if and only if g(z) > 0
∀z ∈ < and g(z) is log–concave on <.

Proof: Since g(z) > 0 ∀z ∈ <, it follows from Definition 1 that a continuously
differentiable function g(z) is log–concave if and only if it is monotone decreasing in <.
Next, without loss of generality, assume x1 < x2 and 0 = y1 < y2 = ∆. Then, from the
definition of PF2 in equation (6) the following inequalities hold:

∣∣∣∣∣∣
g(x1) g(x1 −∆)

g(x2) g(x2 −∆)

∣∣∣∣∣∣ = ∆ ·

∣∣∣∣∣∣∣∣
g(x1)− g(x1 −∆)

∆
g(x1 −∆)

g(x2)− g(x2 −∆)
∆

g(x2 −∆)

∣∣∣∣∣∣∣∣ ≥ 0. (9a)

Since ∆ > 0, we can take limits in the latter determinant to obtain:

lim
∆→0

∣∣∣∣∣∣∣∣
g(x1)− g(x1 −∆)

∆
g(x1 −∆)

g(x2)− g(x2 −∆)
∆

g(x2 −∆)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
g′(x1) g(x1)

g′(x2) g(x2)

∣∣∣∣∣∣ ≥ 0, (9b)

leading to:
g′(x1)
g(x1)

≥ g′(x2)
g(x2)

, (9c)

4 The Basic Composition Formula is the continuous version of the Binet–Cauchy formula that
expresses any minor of order k of the product of two rectangular matrices as the product of all possible
minors of order k [Gantmacher (1958, §1.1)]. The proof of this intermediate result is sketched in Karlin
(1968, §1.2).
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which, given g(z) > 0, proves that ∀z ∈ <, g′(z)/g(z) is monotone decreasing in <, and
therefore log–concave.

I can prove now the main results of this section. By imposing the log–concavity
assumption on f1(θ1) and f2(θ2), I identify a wide class of distributions with nice properties
for economic modeling, and further ensure that f0(θ0) also share those properties. These
results are summarized in the following Proposition and Corollary.

Proposition 1: If the probability density function fi(θi) is continuously differen-
tiable and log–concave, all the following properties are equivalent:

(a) Fi(θi) is log–concave,
(b) F i(θi) = 1− Fi(θi) is log–concave,
(c) Fi(θi) is IHR in θi on {θi ∈ Θi : Fi(θi) < 1}.

Proof: In order to prove parts (a) and (b) let first study the properties of the
function δ : < → {0, 1} defined as follows:

δ(x− y) =
{

0 if x < y
1 otherwise (10)

It is straightforward to show that δ(x− y) is PF2 by direct application of Definition 3. It
follows that δ̂(x − y) = 1 − δ(x − y) is also PF2. By Lemma 1, γ̂(θi), the convolution of
δ̂(x− θi) and fi(θi) is PF2. Hence:

γ̂(θi) =
∫
<

δ̂(x− θi)fi(θi)dθi =

x∫
−∞

fi(θi)dθi = Fi(θi = x), (11)

because δ̂(x − θi) = 1 only if x < θi, and therefore the cumulative distribution function
Fi(θi) is PF2. Similarly, γ(θi) the convolution of δ(x − θi) and fi(θi) is also PF2, which
in this case implies that:

γ(θi) =
∫
<

δ(x− θi)fi(θi)dθi =

∞∫
x

fi(θi)dθi = F i(θi = x), (12)

because δ(x − θi) = 1 only if x ≥ θi, and the survival function 1 − Fi(θi) is also PF2.
Finally, to prove part (c), note that by Definition 2, it follows that the hazard rate is
ri(θi) = −F

′
i(θi)/F i(θi) on {θi ∈ Θi : Fi(θi) < 1}, which has to be increasing in θi because

by part (b) of this Proposition, F i(θi) is log–concave, and according to Definition 1, this
implies that the quotient F

′
i(θi)/F i(θi) is decreasing in θi.

The following Corollary shows that all the above properties are preserved under
convolution, and thus, assuming that the density functions of each type component is
log–concave suffices for all distributions involved to be well behaved.
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Corollary 2: If the probability density functions fi(θi), i = 1, 2, are continuously
differentiable and log–concave, and θ1 and θ2 are stochastically independent, then:

(a) f0(θ0) is continuously differentiable and log–concave,
(b) F0(θ0) is log–concave,
(c) F 0(θi) = 1− F0(θi) is log–concave,
(d) F0(θ0) is IHR in θ0 on {θ0 ∈ Θ0 : F0(θ0) < 1}.

Proof: By Lemma 2, f1(θ1) and f1(θ2) are both PF2. Thus, Lemma 1 ensures
that f0(θ0) is also PF2. Part (a) results from applying Lemma 2 again to the convolution
density function f0(θ0). Since the premises of Proposition 1 are now fulfilled by f0(θ0),
parts (b)–(d) follow straightforwardly from its application.

These results can be used to comment Theorem 1 of BMR more rigourously. Any
single dimensional density function is, by Definition 3, at least PF1. This is the case of
all convoluting distributions of Figures 1 and 2. However, by Lemma 2, only log–concave
densities are PF2. Thus, the uniform in Figure 1 and the normal density in Figure 2 are
PF2. As shown by Corollary 1, the convolution of Pólya frequency functions of different
order is also a Pólya frequency function of order equal to the lower order of the convoluting
distributions. Therefore, the convolutions of Figures 1 and 2 are necessarily PF1 which,
while still well defined as densities, lack the log–concavity property, a sufficient condition
to prove that the convolution distribution and survival functions are both log–concave.

3 Preservation of the IHR Property

It could still be argued that Theorem 1 of BMR does not make any inference about the
log–concavity of the convolution density function but only about the distribution and
survival function of the convolution. However, both examples in Figure 1 and 2 show that
there are regions in Θ0 where log–concavity of F0(θ0) and/or the IHR property fails to
hold.

In many screening problems, as in BMR or in nonlinear pricing, the critical as-
sumption to ensure the existence of a separating equilibria is the IHR property of the
distribution of types instead of the more restrictive assumption of log–concavity of the
corresponding density functions. The results of Section 2 imply that if all density functions
of type components are log–concave, then the screening problems could also be solved when
demands are stochastic or have more than one source of asymmetric information, but only
at the cost of reducing the set of distributions that could be used for modeling these
problems. Taking the approach of Section 2, we will not be able to use IHR distribution
functions whose density functions are not log–concave.
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Fortunately, this is not a additional restriction of models with multiple type com-
ponents because, as Proposition 2 shows, IHR is preserved under convolution regardless of
the log–concavity of the respective density functions.5

Proposition 2: If F1(θ1) and F2(θ2) are IHR, then their convolution F0(θ0) defined
in equation (2) is also IHR.

Proof: Since parts (b) and (c) of Proposition 1 are equivalent, I only have to prove
that the survival function of the convolution distribution is log–concave, i.e., for x1 < x2

and y1 < y2:∣∣∣∣ 1− F0(x1 − y1) 1− F0(x1 − y2)
1− F0(x2 − y1) 1− F0(x2 − y2)

∣∣∣∣ =

∣∣∣∣∣∣
∫

[1− F1(x1 − z)]f2(z − y1)dz
∫

[1− F1(x1 − z)]f2(z − y2)dz∫
[1− F1(x2 − z)]f2(z − y1)dz

∫
[1− F1(x2 − z)]f2(z − y2)dz

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫

[1− F1(x1 − z)]f2(z − y1)dz
∫

f1(x1 − z)[1− F2(z − y2)]dz∫
[1− F1(x2 − z)]f2(z − y1)dz

∫
f1(x2 − z)[1− F2(z − y2)]dz

∣∣∣∣∣∣ =

∫
z1<

∫
z2

∣∣∣∣ 1−F1(x1 − z1) f1(x1 − z2)
1−F1(x2 − z1) f1(x2 − z2)

∣∣∣∣ · ∣∣∣∣ f2(z1 − y1) 1−F2(z2 − y1)
f2(z1 − y2) 1−F2(z2 − y2)

∣∣∣∣dz1dz2≥0. (13)

The second determinant just states the survival function 1 − F0(·) in terms of the distri-
butions F1(·) and F2(·). The third determinant integrates the expressions in the second
column of the second determinant by parts using the convolution identity:∫

F1(x− z)f2(z − y)dz =
∫

f1(x− z)F2(z − y)dz, (14)

while the double integral of the product of determinants in (13) is again the Basic Compo-
sition Formula. For the last expression of equation (13) to be positive, and thus to ensure
that the distribution F0(·) is IHR, both determinants must have the same sign. Assuming
without loss of generality that 0 = z1 < z2 = ∆, the IHR property of the convoluting
distributions imply that these determinants are positive. To prove this statement observe
that:

[1− F1(x1)]f1(x2 −∆)− [1− F1(x2)]f1(x1 −∆) ≥ 0, (15)

5 Observe that Proposition 2 does not exclude the possibility that the convolution of distributions
is IHR even when at least one of the convoluting distributions is not IHR. See Karlin (1968, §3.8.C) for
an example.
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implies:

f1(x2 −∆)
1− F1(x2 −∆)

· 1− F1(x2 −∆)
1− F1(x2)

≥ f1(x1 −∆)
1− F1(x1 −∆)

· 1− F1(x1 −∆)
1− F1(x1)

. (16)

But since ∆ > 0 and x1 < x2, lets compare the first ratios on each side of this inequality:

f1(x2 −∆)
1− F1(x2 −∆)

≥ f1(x1 −∆)
1− F1(x1 −∆)

, (17)

which is just the hypothesis that F1(·) is IHR. Similarly, comparing the other ratios of
inequality (16):

1− F1(x2 −∆)
1− F1(x2)

≥ 1− F1(x1 −∆)
1− F1(x1)

, (18)

which is equivalent to: ∣∣∣∣∣∣
1− F1(x1) 1− F1(x1 −∆)

1− F1(x2) 1− F1(x2 −∆)

∣∣∣∣∣∣ ≥ 0, (19)

that is the condition for the survival function 1− F1(·) to be log–concave, which holds by
assumption as F1(·) is IHR. A similar argument proves that if F2(·) is IHR, the second
determinant in the last inequality of (13) must also be positive. Thus, F0(·) is IHR.

4 Concluding Remarks
Models of multidimensional screening can sometimes just define a single aggregate type
that embodies the effects of all different sources of asymmetric information. This opens the
possibility of screening agents using the distributional information on either the aggregate
or its type components. The present paper has shown that such procedure is feasible
and that separating Perfect Bayesian–Nash equilibria can still be characterized in both
frameworks for a wide set of distribution functions.

There are two main results in this paper. First, log–concavity is preserved under
convolution. This implies that that if all density functions of type components are log–
concave, then the density function of the aggregate type is also log–concave. It then
follows that the corresponding distribution an survival functions are also log–concave,
and therefore IHR. Second, I have shown that IHR is preserved under convolution, which
ensures that the set of distributions that might be used to model screening problems is not
restricted to those whose density functions are log–concave. Miravete (2001a) makes use
of Proposition 2 in the framework of optional nonlinear pricing and test empirically the
implications of such model using data from a tariff experiment in local telephone service.

Pólya frequency functions and preservation of log–concavity under convolution are
just particular cases of the preservation of regularity conditions of totally positive functions
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under composition. Miravete (2001b) explores whether the commonly observed preference
for bundling solutions when types are multidimensional can be explained by the properties
of convolution distributions relative to the original type component distributions. In that
work it is shown that preservation results of totally positive functions can also be applied
to models of voting as well as to multidimensional moral hazard problems.
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Figure 1. Uniform–Beta Convolution
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Figure 2. Lognormal–Normal Convolution
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