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Abstract. This paper shows the general reversibility of every perfect foresight equi-
librium of an overlapping generations economy. It then shows and characterizes the
existence of reversible sunspot equilibria in these economies as well, which seems to
be at odds with our intuition about the irreversibility of a tree of events. Although
the paper establishes also that such reversible stochastic equilibria constitute a negli-
gible subset of all the equilibria of their class, their mere existence may be considered
somewhat puzzling for this intuition.

1. Introduction

This paper intends to provide some insight about the way in which time and
uncertainty get interwoven in the overlapping generations model of the economy
([18]). The conclusion that will be reached at the end of the paper is that, in most
of the cases, the introduction of uncertainty changes qualitatively the nature of the
model in a way that can give a meaning to the idea of the irreversibility of time:
while there is a sense in which every perfect foresight equilibrium can be ”read
backwards”, in general, stochastic equilibria cannot, which fits well our intuition
that a tree of events cannot be reversed. Such an intuitive fact might be hardly
noteworthy were not true as well, maybe surprisingly this time, that there are
actually reversible stochastic equilibria in the overlapping generations economies. I
characterize in what follows a family of them and show how they relate to specific
perfect foresight equilibria, the cycles of period 2. Fortunately for our intuition,
these reversible stochastic equilibria will prove to be really very few in a sensible
way. Nevertheless, their mere existence challenges interestingly our intuition on the
irreversibility of a tree of events.

What the next sections develop in detail can be expressed casually as follows. If
we consider any perfect foresight equilibrium of a simple overlapping generations

∗ I wish to thank an anonymous referee’s comments on a previous version of this paper, as well
as the attendants to the Workshop on General Equilibrium held in the University of Venice in
1998 and the European Meeting of the Econometric Society held in Berlin 1998 for their remarks.

Typeset by AMS-TEX

1



economy,1 say a cycle of period 3 to fix ideas, its allocation of resources can be
readily identified to a set of points laying on the offer curve of the representative
agent connected by arrows going, first, horizontally from any given generation’s
intertemporal profile of consumption to the line of slope −1 and going through the
endowments point of the representative agent, and then vertically from this line to
the next generation’s intertemporal profile of consumption2 (see Figure 1).

Figure 1
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If we now consider the economy that is a sort of mirror image of the previous
one, that is to say, the overlapping generations economy whose representative agent
mirrors the previous representative agent (more specifically, his endowments and
offer curve are the symmetric image across the 45 degrees line of those of the
original economy, see Figure 2), then the correspondingly mirrored allocation of
resources is not an equilibrium allocation of the new economy. In effect, although
the disposition of the intertemporal profiles of consumption on the offer curve is
inherited, the way in which they should be connected is not: the arrows just point
in the wrong direction. This means that this allocation is not even feasible in the
new economy and, so, it could hardly be an equilibrium one. Having said this,
we could just think of reversing the arrows in order to make this an equilibrium
allocation of the new economy. Now, the consequence would be that the generation
following generation t is not t+1, but t−1. Put in other words, there is a one-to-one
correspondence between the perfect foresight equilibria of one of the economies and
the equilibria of the other economy with the direction in which time flows reversed.3

1An economy consisting of a never-ending sequence of agents, indexed by the (negative and
positive) integers, identical (up to a time shift in their preferences and endowments) to a rep-
resentative agent living for two consecutive periods, and with a single dated commodity and no
production.

2Making these points lay on the offer curve takes care of the individual rationality of the
agents’ decisions, while their connection in the way just described accounts for the feasibility of
the allocation of resources.

3See Proposition 2 in Section 2.
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Figure 2
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The situation changes quite radically, as we might expect, when uncertainty
enters the stage. To see why consider the sunspot equilibrium allocation depicted
in Figure 3.4 In this equilibrium, the partition of each period resources between
the young and the old fluctuates between six possible partitions, clustered by pairs
around the three states of the previous cycle of period 3. The fluctuations are such
that from any of the two states with the highest levels of savings (those labeled 1
and 2 in Figure 3) the economy moves, randomly, to one of the two states with
medium level savings (3 and 4) and from there, randomly again, two one of the
two states with the lowest savings (5 and 6). After that, a new ”cycle” starts at
one, randomly chosen, of the two high-savings states. This looks pretty much like
a cycle of period 3 but is not quite so, since instead of repeating itself exactly every
three periods, the allocation is, at any date, only ”not far” from where it was three
periods before. Why this can be the result of a sunspot equilibrium is a matter
to be explained more at length below.5Let me only say now that the crucial fact
for it to be so is that the offer curve has a slope smaller that 1 in absolute value
at each of the three intertemporal profiles of consumption of the pure cycle close
to which the sunspot equilibrium fluctuates. In effect, this makes possible for the
offer curve to separate the two intertemporal profiles of consumption, contingent to
the realization of the uncertainty when old, that every generation may ever obtain
(in Figure 3, this means that for each of the three small boxes that the allocation
determines around each point of the pure cycle, the offer curve separates top corners
from bottom corners).

Notice that, on the one hand, the approximately cyclical dynamics described
above accounts for the feasibility of the allocation of resources and, on the other
hand, the separation property accounts for the individual rationality of every agent’s
choice. In effect, should any agent choose intertemporal profiles of consumption

4For characterizations of the existence on sunspot equilibria ([4]) in an overlapping generations
economies see [2], [8], [13], [14], [17], [21], [23].

5See Proposition 3 in Section 3 and the subsequent discussion.
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contingent to the value taken by the sunspot when old that lay on the same side of
the offer curve, i.e. for which the marginal rate of substitution is in any event bigger
(respectively smaller) than the relative price of consumption when young and old,
then a slightly higher (resp. lower) level of consumption when young would increase
his expected utility. Incidentally, notice that in order to exhibit a stationary sunspot
equilibrium in which the generation hold positive savings, the samuelsonian case
using the terminology of [12], necessarily the income and substitution effects must
work in opposite directions for the offer curve to bend backwards and thus the
separation condition to be satisfied by a feasible allocation. On the contrary, there
is no need for such condition on income and substitution effects or, equivalently,
any specific condition on the shape of the offer curve in order to produce stationary
sunspot equilibria in the classical case (see [8]).

Figure 3
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Now, should we flip the whole picture around the 45 degrees line as in Figure
4 in order to see whether the mirror allocation can be an equilibrium one of the
mirror economy, then we would get into two problems. First, as in the case without
uncertainty, the ”approximate cycle” turns in the wrong direction: the clockwise
direction. We could hope that reversing the direction of time, letting Mr t be
followed by Mr t−1 instead of Mr t+1 would recover in this case too the feasibility
of the allocation of resources, as it actually does. But there is an additional problem
now, and it is that during the trip from one economy to the mirror one we not only
lost the feasibility, but also the individual rationality of each generation’s choice:
the offer curve does not separate any longer in Figure 4 the contingent profiles of
consumption with the same consumption when young of any generation (it separates
now the left and right corners of the small boxes, but unfortunately this does not
help much to make the allocation individually rational). While the feasibility could
be recovered reversing time, there is no way of making the mirror allocation of this
example individually rational in the mirror economy.

The lack of reversibility of sunspot equilibria could actually be guessed intu-
itively from the fact that a necessary and sufficient condition for the existence of

4



local sunspot equilibria in a stationary overlapping generations economy is the inde-
terminacy of its steady state. Since the ”mirror” transformation of such an economy
makes of this steady state a determinate one, no local sunspot equilibrium can sur-
vive the transformation. Nevertheless, this ”local” argument says nothing about
the existence or not of reversible ”global” sunspot equilibria sufficiently away from
the steady state. The investigation undertaken in this paper addresses precisely
this question.

Figure 4
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As shown by the previous discussion, no link exists in general between sunspot
equilibria of the kind of an overlapping generations economy and the equilibria of
its mirror image with time reversed. I say ”in general” because, as a matter of fact,
there are sunspot equilibria that can be reversed indeed, and the condition charac-
terizing the existence of such sunspot equilibria is that the economy has a cycle of
period 2.6 This does not seem to be too demanding and, hence, the existence of such
reversible stochastic equilibria to be a terribly unlikely outcome, which would be at
odds with what our intuition tells us about the role of uncertainty in determining
a definite direction for time by means of an unfolding tree of events. Nonetheless,
our intuition will soon get reassured by the fact that whenever reversible sunspot
equilibria appear, irreversible ones do appear too, and they do it in such amount
that makes the reversible ones constitute a negligible subset in comparison to the
rest and, hence, to lack any likelihood to emerge.

In the rest of the paper, Section 2 develops the model without uncertainty, char-
acterizes its perfect foresight equilibria and establishes the general reversibility of
these equilibria. Section 3 introduces extrinsic uncertainty in the model, character-
izes the new set of equilibria and shows how to use this characterization to produce
allocations of sunspot equilibria following a finite state Markov chain in a station-
ary overlapping generations economy. Section 4 exhibits a special example of a
sunspot equilibrium of this class that is reversible. Section 5 provides a necessary

6See Proposition 5 in section 5.
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characterization of the finite state Markovian stationary sunspot equilibria of a sta-
tionary overlapping generations economy that are reversible, as well as a sufficient
characterization of the economies that exhibit them. Section 6 shows that these
reversible sunspot equilibria are nonetheless negligible in comparison with all the
equilibria of their class. Some concluding remarks can be found in Section 7 and,
finally, the appendix collects proofs and lemmas.

2. The Model without Uncertainty

For each t ∈ Z, let ut be a utility function of the set7 U of utility functions
that are continuous on R2

+, twice continuously differentiable on R2
++, monotone,8

strictly quasi-concave9 and well-behaved in the boundary,10 and et be in R2
+ but

distinct from 0.
Let {(ut, et)}t∈Z denote the overlapping generations economy whose consumers of

the generation born at date t are all identical to a representative agent characterized
by the preferences represented by ut and the endowments et. Thus the consumers
are identical within generations but may differ across generations

An equilibrium of the overlapping generations economy {(ut, et)}t∈Z consists of
an allocation of resources {ct}t∈Z and positive prices {pt}t∈Z such that,

(1) for all t ∈ Z, ct solves

max
ct∈R2

+

ut(ct)

pt(ct − et) ≤ 0
(1)

where pt = (pt, pt+1), and
(2) the allocation of resources is feasible, i.e. for all t ∈ Z,

ct−1
2 + ct

1 = et−1
2 + et

1. (2)

The following proposition characterizes completely the equilibrium allocations
of resources of the overlapping generations economy {(ut, et)}t∈Z.

Proposition 1.
(1) If {ct}t∈Z is an equilibrium allocation of the overlapping generations econ-

omy {(ut, et)}t∈Z, then for all t ∈ Z,

dut
ct(ct − et) = 0. (3)

(2) If {ct}t∈Z satisfies (3) and

ct−1
2 + ct

1 = et−1
2 + et

1, (4)

for all t ∈ Z, then it is an equilibrium allocation of the overlapping genera-
tions economy {(ut, et)}t∈Z.

7Endowed with the C2 uniform convergence on compacta.
8In the sense that Dut(ct) is always in the strictly positive orthant.
9In the sense that D2ut(ct) is always definite negative in the subspace orthogonal to the

gradient Dut(ct).
10In the sense that the limits of D1ut(ct) and D2ut(ct) at any (ct

1, 0) distinct from the origin
are zero and positive respectively, while at any (0, ct

2) distinct from the origin are positive and
zero respectively.
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Condition (3) is nothing else than the equalization of the intertemporal marginal
rate of substitution and the real rate of interest, expressed as the orthogonality of
the gradient of u and the excess demand of every generation (dut

ct is the differential
of ut at ct), and condition (4) is the feasibility condition for the allocation of
resources. The proof of Proposition 1 is straightforward and is relegated to the
appendix.

Now, for each t ∈ Z, let ũt and ẽt be ut ◦ ρ and ρ(et) respectively, where ρ is the
permutation in R2 with matrix

(

0 1
1 0

)

. (5)

Notice that, since the effect of the permutation ρ is to exchange the entries of the
vector et and the arguments of the function ut, each consumer (ũt, ẽt) is, so to
speak, the mirror image of the corresponding consumer (ut, et), i.e. its symmetrical
counterpart with respect to the diagonal of his consumption space R2

+.
In the following proposition I establish a one-to-one identification of the equilibria

of the overlapping generations {(ut, et)}t∈Z to those of the associated overlapping
generations {(ũ−t, ẽ−t)}t∈Z.

Proposition 2. If {ct}t∈Z is an equilibrium allocation of the overlapping gener-
ations economy {(ut, et)}t∈Z, then {ρ(c−t)}t∈Z is an equilibrium allocation of the
overlapping generations economy {(ũ−t, ẽ−t)}t∈Z.

Proof. Since, for all t ∈ Z,

dũ−t
ρ(c−t)(ρ(c−t)− ẽ−t) =

d(u−t ◦ ρ)ρ(c−t)(ρ(c−t)− ρ(e−t)) =

(du−t
c−t ◦ ρ)(ρ(c−t − e−t)) =

du−t
c−t(c−t − e−t) = 0

(6)

and
ρ2(c−(t−1)) + ρ1(c−t) =

c−(t−1)
1 + c−t

2 =

c−t
2 + c−t+1

1 = e−t
2 + e−t+1

1

= e−(t−1)
1 + e−t

2

= ẽ−(t−1)
2 + e−t

1 ,

(7)

then the conclusion follows from (2) of Proposition 1. Q.E.D.

A few remarks are due now to try to make clear what the economy {(ũ−t, ẽ−t)}t∈Z
represents. Notice that in considering this economy we are reversing in {(ut, et)}t∈Z
both the ordering with respect to t and the coordinates and arguments of each et

and ut respectively (generation t is (ũ−t, ẽ−t)). Thus the overlapping generations
economy {(ũ−t, ẽ−t)}t∈Z is a sort of image of the economy {(ut, et)}t∈Z through a
looking-glass. The precise sense in which this is so can be better understood con-
sidering the prices {p̃t}t∈Z supporting the allocation {ρ(c−t)}t∈Z as an equilibrium

7



allocation of the economy {(ũ−t, ẽ−t)}t∈Z. These prices are,11 for any given p̃0 > 0,

p̃t = − ρ1(c0)− ẽ0
1

ρ2(c−(t−1))− ẽ−(t−1)
2

· p̃0 (8)

for each t ∈ Z, where ρ1 and ρ2 denote the coordinate functions of the mapping
ρ. Thus we have that, on the one hand (rewriting (8) for −t + 1 and recalling the
effect of ρ on any vector of R2),

p̃−t+1 = −c0
2 − e0

2

ct
1 − et

1
· p̃0 (9)

and, on the other hand (recalling the prices that support {ct}t∈Z as an equilibrium
allocation of the economy {(ut, et)}t∈Z),

pt = − c0
1 − e0

1

ct−1
2 − et−1

2
· p0, (10)

for any given p0 > 0. Since ct−1
2 − et−1

2 = −(ct
1 − et

1) holds at any date because of
the feasibility of the allocation of resources, the prices {p̃t}t∈Z are therefore linked
to the prices {pt}t∈Z supporting the allocation {ct}t∈Z as an equilibrium of the
overlapping generations economy {(ut, et)}t∈Z, as follows

p̃t = − p̃0

p0

c0
2 − e0

2

c0
1 − e0

1
p−t+1. (11)

As a consequence, the problem faced by the generation born at date t of the
economy {(ũ−t, ẽ−t)}t∈Z is actually the same one faced by the generation −t of
{(ut, et)}t∈Z. In effect,

max
c̃t∈R2

+

ũ−t(c̃t)

p̃t(c̃t
1 − ẽ−t

1 ) + p̃t+1(c̃t
2 − ẽ−t

2 ) = 0
(12)

where c̃t stands for ρ(c−t) actually, is, as a matter of fact,

max
c−t∈R2

+

u−t(c−t)

p̃t+1(c−t
1 − e−t

1 ) + p̃t(c−t
2 − e−t

2 ) = 0.
(13)

Now, we have just seen in (11) that p̃t = − p̃0
p0

c0
2−e0

2
c0
1−e0

1
p−t+1 and p̃t+1 = − p̃0

p0

c0
2−e0

2
c0
1−e0

1
p−t,

which substituted in this problem gives

max
c−t∈R2

+

u−t(c−t)

p−t(c−t
1 − e−t

1 ) + p−t+1(c−t
2 − e−t

2 ) = 0.
(14)

11See the proof of Proposition 1 in the Appendix in order to see how to get prices supporting
an equilibrium allocation.
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This is the problem faced by the generation −t of the economy {(ut, et)}t∈Z. There-
fore, the problem of generation t+1 in {(ũ−t, ẽ−t)}t∈Z is that of generation −t−1 of
{(ut, et)}t∈Z, and so on. Hence, the effect of ρ on the economy {(ut, et)}t∈Z is that
of reversing the direction in which time flows in the model, and what Proposition 2
states is, roughly speaking, that any equilibrium of the economy {(ut, et)}t∈Z can
actually be read backwards in {(ũ−t, ẽ−t)}t∈Z.

In the particular case in which the overlapping generations economy is stationary,
i.e. for an economy {(u, e)}t∈Z or rather (u, e) from now on, this result can actually
be seen more easily looking at the effect of the ”mirror” transformation on the
dynamics of any equilibrium allocation (see, for instance, Figure 1). Its symmetric
image with respect to the diagonal (the result of applying the permutation ρ to
utilities and endowments; see Figure 2) delivers an allocation of resources that is
not an equilibrium one if the current labeling of time periods is maintained (namely
the feasibility condition does not hold). Nonetheless, it becomes an equilibrium
allocation once the flowing of time is reversed.

In effect, if we think of the allocation of resources to be implemented by means
of a fixed amount of outside money m and, hence, the problem of the representative
agent is written as

max
0≤ct

1,ct
2

u(ct
1, c

t
2)

ptct
1 + m = pte1

pt+1ct
2 = pt+1e2+m

(15)

the equilibrium dynamics is completely characterized by the first order condition

θtD1u(e1 − θt, e2 + θt+1) = θt+1D2u(e1 − θt, e2 + θt+1) (16)

where θt is the real monetary holdings at date t, i.e. m/pt. Considering the ”mirror”
economy of this one the representative agent’s problem is

max
0≤ct

1,ct
2

u(ct
2, c

t
1)

ptct
1 + m = pte2

pt+1ct
2 = pt+1e1+m

(17)

and the corresponding equilibrium dynamics

θtD2u(e1 + θt+1, e2 − θt) = θt+1D1u(e1 + θt+1, e2 − θt). (18)

which happens to be the same dynamics (16) as before but for −θt, i.e. the inter-
generational debt in real terms, with time reversed.

3. The Model with Uncertainty

Consider now this same economy when there is uncertainty about the realization
of a sunspot signal, i.e. an extrinsic uncertainty12 that takes at each period a value

12By extrinsic uncertainty it is meant the uncertainty about the realization of states of the
world with respect to which the fundamentals of the economy (preferences and endowments here)
are constant. On the irrelevancy of the extrinsic uncertainty in the standard Arrow-Debreu frame-
work, see the so-called Ineffectivity Theorem in [4]. On the relevance of such type of uncertainty
in equilibria of different departures from the Arrow-Debreu World, see the literature on sunspot
equilibria ([20]) with incomplete markets, non-convexities, infinite economies, etc., e.g. in [7], [15]
and the citations there.
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σt in the set {1, . . . , k}. Letting s = (. . . , st−1, st, st+1, . . . ) in S = {1, . . . , k}Z
be a realization of the uncertainty, and st = (. . . , σt−1, σt) be a history up to t,
let P (s′t+1|s′t = st) denote the probability, conditional to a history up to t, of a
particular continuation of this history next period. An equilibrium of the over-
lapping generations economy {(ut, et)}t∈Z with such a publicly observed sunspot
signal {σt}t∈Z, consists of an allocation of resources {ct

st+1
}t∈Z,s∈S such that each,

for any t ∈ Z and s ∈ S, ct
1st+1

does not depend on σt+1 (since generation t makes
its decision before σt+1 is observed), and positive prices {ptst}t∈Z,s∈S , verifying

(1) for all t ∈ Z and all s ∈ S, (ct
s′t+1

)s′t+1|s′t=st solves

max
ct

s′t+1
∈R2

+

s′t+1|s
′
t=st

∑

s′t+1|s′t=st

P (s′t+1|s′t = st)ut(ct
s′t+1

)

pt
s′t+1

(ct
s′t+1

− et) ≤ 0 , s′t+1|s′t = st

(19)

where pt
s′t+1

= (ptst , pt+1s′t+1
), and

(2) the allocation of resources is feasible, i.e. for all t ∈ Z and all s ∈ S,

ct−1
2st

+ ct
1st+1

= et−1
2 + et

1. (20)

The equilibrium allocations of this economy are thus characterized again by, on
the one hand, the expected equalization at each date of the intertemporal marginal
rate of substitution and the real rate of interest supporting the allocation of re-
sources and, on the other hand, the feasibility condition for any realization of the
uncertainty, which can be stated as follows (the proof is relegated to the appendix
as well).

Proposition 3.
(1) If an allocation {ct

st+1
}t∈Z,s∈S such that each ct

1st+1
does not depend on σt+1,

and the prices {ptst}t∈Z,s∈S constitute an equilibrium of the overlapping
generations economy {(ut, et)}t∈Z with the sunspot signal {σt}t∈Z, then for
all s ∈ S and all t ∈ Z,

∑

s′t+1|s′t=st

P (s′t+1|s′t = st)dut
ct

s′t+1

(ct
s′t+1

− et) = 0. (21)

(2) If an allocation of resources {ct
st+1

}t∈Z,s∈S such that each ct
1st+1

does not
depend on σt+1, satisfies (21) and the feasibility condition

ct−1
2st

+ ct
1st+1

= et−1
2 + et

1 (22)

for all s ∈ S and all t ∈ Z, then it is an equilibrium allocation of the over-
lapping generations economy {(ut, et)}t∈Z with the sunspot signal {σt}t∈Z.

If an equilibrium allocation of resources happens to depend effectively on s, then
the corresponding equilibrium is said to be a sunspot equilibrium;13 otherwise,

13For results on the existence of this type of equilibria in overlapping generations economies
see [1], [2], [8], [13], [14], [17], [21] and more generally [5], [9] and [23].
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it can be identified with a perfect foresight equilibrium of the economy without
uncertainty.

When the overlapping generations economy is stationary, a sunspot equilibrium
allocation particularly easy to characterize is that of an equilibrium that is station-
ary itself, depends only on the current realization of the signal σt instead of on the
entire history of realizations up to some date, and the stochastic process followed
by the signal is Markovian. Then the allocation {ct

st+1
}t∈Z,s∈S is characterized by

just k possible consumptions when young ci
1, one for each possible realization of

the signal when young i = 1, . . . , k, and similarly k possible consumptions when
old cj

2, such that i) they are feasible no matter what is the value of the signal ob-
served at any date, and ii) not all the intertemporal profiles of consumption with
the same consumption when young are on the same side of the offer curve of the
representative agent. This geometrical characterization follows from the require-
ment in equation (21) that each agent equalizes, in expected value, his marginal
rate of substitution between consumption today and consumption tomorrow to the
real interest rate: a choice of intertemporal profiles of consumption contingent to
tomorrow’s sunspot, whose marginal rates of substitution are consistently bigger
(respectively, smaller) than the corresponding real interest rate and, hence, on the
same side of the offer curve (where the equality holds), could not be individually
rational since it would imply that the representative agent consistently values more
the consumption when young (respectively, when old), than what the market does,
leaving thus room for further exchanges that would improve his expected utility.
Therefore, for a stationary economy, the signs of the differentials dut

ct
s′t+1

(ct
s′t+1

−et),

i.e. the inner products of the gradients of utility Du(cσt
1 , cσt+1

2 ) and the excess de-
mands (cσt

1 − et
1, c

σt+1
2 − e2) corresponding to each possible sequence of realizations

of the signal (σt, σt+1) for every generation t, cannot be all the same for any given
consumption when young ci

1. Thus zero can be written as a convex linear combi-
nation of these inner products, and then the weights be taken as the probabilities
of transition between values of the sunspot signal. An example of such a sunspot
equilibrium allocation is shown in Figure 3, where the consumptions when young
contingent to the sunspot are given by the abscissas of the points 1 through 6, the
consumptions when old by their ordinates, and the only non zero probabilities of
transition are those from 1 and 2 to 3 or 4, from 3 and 4 to 5 or 6, and from 5
and 6 to 1 or 2. Now an example of a reversible sunspot equilibrium of this kind
(although somewhat special) follows.

4. An example of reversible sunspot equilibrium

Consider a stationary overlapping generations economy (u, e) and a sunspot equi-
librium that follows a finite state first-order Markov process, i.e. a finite Markovian
stationary sunspot equilibrium.14If mσtσt+1 denotes the probability of transition
from state σt to state σt+1, the equilibrium allocation {(cσt

1 , (cσt+1
2 )k

σt+1=1)
k
σt=1}

14A so-called k-SSE, for Stationary Sunspot Equilibrium of order k, following [6], [14].
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must satisfy, for all i = 1, . . . , k

k
∑

j=1

mij(D1u(ci
1, c

j
2)(c

i
1 − e1) + D2u(ci

1, c
j
2)(c

j
2 − e2)

)

= 0,

ci
1 + ci

2 = e1 + e2

(23)

Similarly, for the symmetrical allocation {(cσt
2 , (cσt+1

1 )k
σt+1=1)

k
σt=1}t∈Z to be the al-

location of a sunspot equilibrium of its mirror economy (ũ, ẽ), perfectly correlated
to the same sunspot signal, it has to satisfy, for all i = 1, . . . , k, the equations

k
∑

j=1

mij(D1ũ(ci
2, c

j
1)(c

i
2 − ẽ1) + D2ũ(ci

2, c
j
1)(c

j
1 − ẽ2)

)

= 0,

ci
2 + cj

1 = ẽ1 + ẽ2

(24)

that is to say, the equations, for all i = 1, . . . , k,

k
∑

j=1

mij(D1u(cj
1, c

i
2)(c

j
1 − e1) + D2u(cj

1, c
i
2)(c

j
2 − e2)

)

= 0,

ci
1 + cj

2 = e1 + e2

(25)

(notice in (25) the reversed order of the signals in the probabilities of transition
and the consumptions when old and young). Therefore, a reversible finite Markov-
ian stationary sunspot equilibrium of a stationary overlapping generations economy
(u, e) consists of an allocation {(cσt

1 , (cσt+1
2 )k

σt+1=1)
k
σt=1}t∈Z and a matrix of proba-

bilities of transition m satisfying (23) and (25) simultaneously. In order to produce
such an equilibrium, let e1 be positive and c1

1, . . . , c
k
1 be in the open interval (0, e1),

all distinct, ci
2 be e1 + e2 − ci

1, for all i = 1, . . . , k, and all such that if i 6= j and
(i′, j′) 6= (i, j), then

cj
2 − e2

e1 − ci
1
6= cj′

2 − e2

e1 − ci′
1

. (26)

This means that, (i, j) being an arbitrary sequence of consecutive values for the
sunspot, there is no such sequence of distinct sunspot signals for which the corre-
sponding real interest rate determined by the allocation of resources, coincides with
those of any other sequence of distinct values of the sunspot. Put in other words,
the sequence of real interest rates supporting this allocation necessarily changes ev-
ery period in which it is not zero. Graphically, this means that, any two contingent
intertemporal profiles of consumption located off the line c1 + c2 = e1 + e2, lay
in distinct rays starting from the endowments. This fact allows to draw an offer
curve going through all the profiles of consumption off the line going through the
endowment point e with slope −1, a key property for our argument.

In effect, if u is such that the gradient of the utility at the consumption (ci
1, c

j
2),

for all i 6= j, is orthogonal to the associated excess of demand, i.e.

D1u(ci
1, c

j
2)(c

i
1 − e1) + D2u(ci

1, c
j
2)(c

j
2 − e2) = 0, (27)
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(the existence of a utility function u in U with this property and, hence, the ex-
istence of an offer curve going through all the consumption points off the line
c1 + c2 = e1 + e2, is guaranteed by the fulfillment of (26)) and m is a Markov
matrix with a diagonal of zeros, then, whichever are the gradients of u at the con-
sumption points (ci

1, c
i
2) on the line c1 + c2 = e1 + e2, for all i = 1, . . . , k, it holds

that, for all i, j = 1, . . . , k,

mij(D1u(ci
1, c

j
2)(c

i
1 − e1) + D2u(ci

1, c
j
2)(c

j
2 − e2)

)

= 0

mji(D1u(ci
1, c

j
2)(c

i
1 − e1) + D2u(ci

1, c
j
2)(c

j
2 − e2)

)

= 0
(28)

either because the inner product in parentheses is null or because the probability of
transition is null. Hence, conditions (23) and (25) are simultaneously satisfied. Such
an allocation {(cσt

1 , (cσt+1
2 )k

σt+1=1)
k
σt=1}t∈Z is a sunspot equilibrium allocation of the

economy (u, e) while the symmetric counterpart {(cσt
2 , (cσt+1

1 )k
σt+1=1)

k
σt=1}t∈Z is a

sunspot equilibrium allocation of its mirror economy (ũ, ẽ) with the same sunspot
signal.

The previous example is clearly an extreme one, since the offer curve is such that
every contingent bundle off the feasibility line is on the representative agent’s offer
curve. This is what allows us not to worry about the impact of such bundles on the
fulfillment of the first order conditions characterizing the equilibrium allocation.
As a matter of fact, only the contingent bundles on the feasibility line matter for
this purpose, but for these we are free to choose probabilities equal to zero, as long
as the probability mass is spread over all the rest of the transitions. Nonetheless,
the following section characterizes the existence of less trivial reversible sunspot
equilibria.

5. Reversible finite Markovian stationary sunspot equilibria

In general, the equilibrium allocation of a finite state Markovian stationary
sunspot equilibrium of a stationary overlapping generations economy (u, e) is such
that its symmetrical allocation is that of an equilibrium of the mirror economy
(ũ, ẽ) too if, as the whole picture of the representative agent flips around the diag-
onal (i.e. contingent bundles, endowments and offer curve), the set of contingent
consumptions when old are still not strictly on the same side of the new offer curve,
for each sunspot value that may have been observed when young. This separation
property is what actually characterizes the allocation of a sunspot equilibrium. In
effect, the offer curve separates the bundles for which the marginal rate of substi-
tution is greater than the real interest rate needed to support them, from those
for which it is smaller. Thus, in order to equalize in mathematical expectation the
marginal rate of substitution to the real rate of interest, the representative agent
has to choose consumptions when old contingent to the sunspot across the offer
curve for each of the possible consumptions when young (unless the intertemporal
profiles of consumption lay on the offer curve actually, as in the previous example).

The following proposition shows, that a necessary condition for this separation
property to hold both for a sunspot-contingent feasible allocation in the economy
(u, e) and for its symmetrical counterpart in (ũ, ẽ) is that, if consumption is at any
age a normal good, the highest and lowest levels of consumption at equilibrium are
those of a cycle of period 2. Moreover, the existence of such a cycle turns out to
be sufficient for the existence of reversible sunspot equilibria of this kind.
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Proposition 5. If consumption is a normal good for the representative agent in
both periods of life, then

(1) for any finite Markovian stationary sunspot equilibrium of a stationary over-
lapping generations economy (u, e) that is reversible (i.e. its symmetrical
allocation across the diagonal is an equilibrium allocation of the symmetrical
economy (ũ, ẽ)), its highest an lowest states are those of a cycle of period 2,
and

(2) if an overlapping generations economy (u, e) has a cycle of period 2, then it
has reversible finite Markovian stationary sunspot equilibria.

Proof. The following proof is for the ”Samuelsonian” case, following the terminol-
ogy used in [12], in which the marginal rate of substitution between current and
future consumption is, at the endowments point e, smaller than 1, and, hence, the
generations want to save when young in order to consume when old more than their
endowment. The modifications needed to produce a proof for the classical case, in
which this marginal rate of substitution is bigger than 1, are straightforward.

(1) Let {(cσt
1 , (cσt+1

2 )k
σt+1=1)

k
σt=1}t∈Z be the allocation of a finite Markovian

stationary sunspot equilibrium of the stationary overlapping generations
economy (u, e), with c1

1 < · · · < ci
1 < · · · < ck

1 , without loss of gener-
ality, (and hence c1

2 > · · · > cj
2 > · · · > ck

2). Assume moreover that
this allocation is such that its symmetrical image across the 45 degrees
line {(cσt

2 , (cσt+1
1 )k

σt+1=1)
k
σt=1}t∈Z is an equilibrium allocation of the mirror

economy (ũ, ẽ) as well. If, for the sake of readability, we let f ij
ue(c) stand for

duci
1,cj

2
(ci

1 − e1, c
j
2 − e2) for any given c = (c1, c2) = (c1

1, . . . , c
k
1 , c1

2, . . . , c
k
2)

and all i, j = 1, . . . , k, then, according to Proposition 3, zero must be in the
convex hull of the set of values {f ij

ue(c)}k
j=1 for all i = 1, . . . , k as well as in

the convex hull of {f ij
ue(c)}k

i=1 for all j = 1, . . . , k.
Assume f1k

ue (c) < 0, i.e. (c1
1, c

k
2) is to the left of the offer curve. Then

there must be an h = 1, . . . , k−1 such that f1h
ue (c) > 0, i.e. (c1

h, ch
2 ) is to the

right of the offer curve. But since the consumption when old is a normal
good and, hence, any excess supply when old is mapped univocally to an
excess demand when young, then actually all the points in {(ci

1, c
h
2 )}k

i=1 are
to the right of the offer curve. Therefore zero cannot be contained in the
convex hull of {f ih

ue(c)}k
i=1. Assume on the contrary that f1k

ue (c) > 0, i.e.
(c1

1, c
k
2) is now to the right of the offer curve. Then because the normality of

the consumption when old again, the set of points {(ci
1, c

k
2)}k

i=1 is entirely to
the right of the offer curve, leaving zero out of the convex hull of {f ik

ue(c)}k
i=1.

Thus, necessarily, f1k
ue (c) = 0 holds.

Similarly, assume fk1
ue (c) > 0, i.e (ck

1 , c1
2) is to the right of the offer curve.

Then, since necessarily fkk
ue (c) > 0 (otherwise 0 would not be in the convex

hull of {f ik
ue(c)}k

i=1), there must be some h = 1, . . . , k such that fkh
ue (c) < 0,

unless zero is left out of the convex hull of {fkj
ue (c)}k

j=1. But then the set
{(ci

1, c
h
2 )}k

i=1 is entirely to the left of the offer curve and zero would not be
in the convex hull of {f ih

ue(c)}k
i=1. Finally, if fk1

ue (c) < 0, i.e. (ck
1 , c1

2) is to
the left of the offer curve, then the entire set {(ci

1, c
1
2)}k

i=1 is to the left of
the offer curve and the zero would not be in the convex hull of {f i1

ue(c)}k
i=1.

Therefore, fk1
ue (c) = 0 holds as well.

So, both (c1
1, c

k
2) and (ck

1 , c1
2) are necessarily on the offer curve and since
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moreover c1
1 + c1

2 = e1 + e2 and ck
1 + ck

2 = e1 + e2, then they constitute a
cycle of period 2.

(2) Let (ca
1 , ca

2) and (cb
1, c

b
2), with ca

1 < cb
1, be the two consumption bundles of a

cycle of period 2 of the stationary overlapping generations economy (u, e),
Then, letting c1

1 and ck
1 be ca

1 and cb
1 respectively (and hence ck

2 = ca
2 and

c1
2 = cb

2), trivially (c1
1, c

k
2) and (ck

1 , c1
2) are (ca

1 , c
a
2) and (cb

1, c
b
2) respectively.

On the other hand, since consumption when old is a normal good, c2 is
an increasing function of the real rate of interest if this rate exceeds the
representative agents marginal rate of substitution at the endowments point.
As a consequence, the steady state consumption when young c̄1 is necessarily
between c1

1 and ck
1 , and the bundles (c̄1, ck

2) and (c̄1, c1
2) (respectively (c1

1, c̄2)
and (ck

1 , c̄2)) are separated by the offer curve. Therefore, so are any k − 2
bundles (ci

1, c
k
2) and (ci

1, c
1
2) (respectively (c1

1, c
i
2) and (ck

1 , ci
2), with ci

2 = e1+
e2 − ci

1), for any ci
1 close enough to c̄1 because of the continuity of the offer

curve. Thus, ((ci
1, c

j
2)

k
i=1)

k
j=1 constitute the allocation of a finite Markovian

stationary sunspot equilibrium of (u, e), as well as its symmetric counterpart
((cj

2, c
i
1)

k
j=1)

k
i=1 constitute the allocation of a sunspot equilibrium of the

same kind for the economy (ũ, ẽ). Q.E.D.

Notice that in the previous characterization only the allocation of resources mat-
ters and not the Markov process that governs the stochastic dynamics of the equi-
librium. Thus, in principle, one could expect that the Markov matrix that supports
the allocation of a reversible finite Markovian stationary sunspot equilibrium of a
stationary overlapping generations economy (u, e) can be distinct from the Markov
matrix that supports its symmetrical image as an equilibrium allocation of the
economy (ũ, ẽ). Nonetheless, even if we require these two matrices to be the same
one, it is straightforward to see that for any allocation satisfying the character-
ization provided in Proposition 5 there is a Markov matrix that makes of both
this allocation and its symmetrical counterpart sunspot equilibria of the economies
(u, e) and (ũ, ẽ). In effect, for a given pair of k-tuples of consumptions when young
and old c = (c1, c2) ∈ Rk

+ × Rk
+ such that ci

1 + ci
2 = e1 + e2 for all i = 1, . . . , k to

define the allocation of resources of a reversible finite Markovian stationary sunspot
equilibrium supported by the same Markov matrix both in (u, e) and in (ũ, ẽ), this
Markov matrix has to be a solution to the system of equations



























f11
ue(c) . . . f1k

ue (c)
. . .

fk1
ue (c) . . . fkk

ue (c)
f11

ue(c) . . . fk1
ue (c)

. . .
f1k

ue (c) . . . fkk
ue (c)

1 . . . 1
. . .

1 . . . 1

















































m11

...
m1k

...
mk1

...
mkk























=























0
...
0
...
1
...
1























(29)

(empty entries stand for zeros, dots for obvious sequences). This is an underdeter-
mined linear system of 3k equations in the k2 probabilities of transition as long as
k > 3, and it is determined for k = 3 (notice that the left-hand side matrix has
generically full rank since typically the column vector and row vector of the matrix
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(f ij
ue(c)) with the same index, and the vector of k ones 1 will be in general position,

i.e. linearly independent.
An immediate corollary of the previous proposition is that there is no true 2-state

Markovian stationary sunspot equilibrium that is reversible. In effect, it is easy to
check that the solution of the system above has only one solution for k = 2 and this
is precisely the matrix of a pure cycle of period 2. This fact follows easily as well
from the characterization provided in Proposition 5: in order to be reversible, the
two states of a sunspot equilibrium of this kind fluctuating between just two states
have to be those of the cycle of period 2 and, hence, the equilibrium is actually a
pure cycle.

In spite of the underdeterminacy showed above, the finite Markovian stationary
sunspot equilibria with the symmetry property of being invertible and keeping the
same Markov process constitute a negligible subset of the set of all the equilibria
of their class, as the following section shows.

6. The reversible finite Markovian
stationary sunspot equilibria are negligible

The following proposition states, for the case k = 3 but by means of an argument
general enough (as explained in the discussion following the proof), that the finite
Markovian stationary sunspot equilibria of a stationary overlapping generations
economy that are reversible with the same Markov process, constitute typically a
negligible subset in comparison with those that are not reversible.

Proposition 6. For any u in a dense subset of U , the set of 3-state Markovian
stationary sunspot equilibria of any stationary overlapping generations economy
(u, e) whose symmetric allocation is that of a sunspot equilibrium of the mirror
economy (ũ, ẽ) with the same sunspot signal, is null measure in a neighborhood of
any regular15 sunspot equilibrium of this kind.

In order to simplify the notation in the proof of Proposition 6 below, for any
given stationary overlapping generations economy (u, e), for any given k×k Markov
matrix m and c = (c1, c2) ∈ Rk

++ × Rk
++, let Am

ue(c) and Bm
ue(c) be the k × k

matrices whose typical (i, j) entry is, respectively, mijf ij
ue(c) and mijf ji

ue(c) (notice
the reverse order in the superscripts), where as previously f ij

ue(c) stands for the
scalar product of the gradient of utility and the excess demand at (ci

1, c
j
2).

It then follows readily from the definitions that

(1) (c1, c2) ∈ Rk
++×Rk

++ is a k-state Markovian stationary sunspot equilibrium
allocation of a stationary overlapping generations economy (u, e) following
a Markov chain with matrix of probabilities of transitions m if, and only if,
ci
1 + ci

2 = e1 + e2 and (1, . . . , 1) ∈ Rk is in the null space of Am
ue(c1, c2) (this

is actually the equilibrium conditions (23));
(2) moreover, a necessary condition for (c1, c2) ∈ Rk

++×Rk
++ such that ci

1+ci
2 =

e1 + e2 for all i = 1, . . . , k, to be the allocation of a k-state Markovian
stationary sunspot equilibrium, with a matrix of probabilities of transi-
tions m, for the stationary overlapping generations economy (u, e), is that

15In the sense that f ii
ue(c) 6= 0, for all i = 1, 2, 3, i.e. the steady state is not in the support of

the equilibrium.
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(1, . . . , 1) ∈ Rk is in the null space of the matrix Bm
ũẽ(c2, c1) of its mirror

economy (ũ, ẽ) too (see the Lemma 1 in the Appendix).
Bearing this in mind, the proof of Proposition 6 follows.

Proof of Proposition 6. Let (u, e) be a stationary overlapping generations economy
and let (c̄1, c̄2) ∈ R3

++ × R3
++ such that c̄i

1 + c̄i
2 = e1 + e2 for all i = 1, 2, 3, and

the 3 × 3 Markov matrix16 m̄ be a regular sunspot equilibrium of (u, e). The set
of sunspot equilibria of this class of the economy (u, e) is a smooth manifold in a
small enough neighborhood N(c̄1,c̄2,m̄) of the point (c̄1, c̄2, m̄) (see Lemma 2 in the
Appendix).

Let the point (c1, c2,m) in N(c̄1,c̄2,m̄) be a sunspot equilibrium of the overlapping
generations economy (u, e) such that (c2, c1,m) is a sunspot equilibrium of its mirror
economy (ũ, ẽ). Then, on the one hand, since (c1, c2,m) is a sunspot equilibrium
of the economy (u, e), the vector (1, 1, 1) is in the null space of Am

ue(c), and on
the other hand, since (c2, c1, m) is a sunspot equilibrium of (ũ, ẽ), (1, 1, 1) is in
the null space of Bm

ue(c) too. Therefore, both |Am
ue(c)| and |Bm

ue(c)| are zero and
hence equal. Thus, from the straightforward computation of these determinants,
necessarily either

m13m32m21 = m12m23m31 (30)

or
f13

ue(c)f32
ue(c)f21

ue(c) = f12
ue(c)f23

ue(c)f31
ue(c). (31)

Should none of these equations be transversal at (c1, c2,m) to the manifold of 3-
state Markovian stationary sunspot equilibria of the economy (u, e) in N(c̄1,c̄2,m̄),
there would be arbitrarily close to u in U , with respect to C2 topology, another
utility function v such that

(1) (c1, c2,m) is a sunspot equilibrium of (v, e) as well,
(2) (c2, c1,m) is a sunspot equilibrium of the mirror economy (ṽ, ẽ) of (v, e) and
(3) the transversality holds.17

Hence the null measure of the subset in N(c̄1,c̄2,m̄) of sunspot equilibria (c1, c2,m) ∈
R3

++ × R3
++ × (0, 1)6 of the economy (u, e) such that (c2, c1,m) is a sunspot equi-

librium of its mirror economy (ũ, ẽ). Q.E.D.

A comment should be made on the fact that the claim is constrained to hold
only around equilibria which are regular in the sense of not containing the steady
state in their support. This fact does not limit the scope of the statement in any
serious way since non-regular equilibria constitute clearly a negligible subset among
all the equilibria,18 and thus non-regular equilibria can sensibly be considered quite
unlikely.

The proof of proposition 6 deserves a few comments about how to extend it to
any finite state Markovian stationary sunspot equilibrium. The strategy followed
in that proof consists of noticing first that, necessarily, both determinants |Am

ue(c)|
and |Bm

ue(c)| have to take the same value for (c,m) ∈ Rk
++ × Rk

++ × (0, 1)k(k−1)

16Considered as a point (m12, m13, m21, m23, m31, m32) of the open 6-dimensional cube (0, 1)6.
17See Lemmas 3 and 4 in the Appendix.
18Specifically the set of non-regular equilibria is, for a dense subset of economies, contained

in a manifold of smaller dimension than the manifold of regular equilibria (see Lemma 5 in the
Appendix).
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such that ci
1 + ci

2 = e1 + e2 to be a reversible k-state Markovian stationary sunspot
equilibrium of (u, e). As a matter of fact, these determinants share a very peculiar
structure. In effect, if we let ∗ denote an operation on k× k matrices such that, for
any given P, Q, P ∗Q has pijqij as (i, j) entry, then |Am

ue(c)| and |Bm
ue(c)| are of the

form |P ∗Q| and |P ∗Qt| respectively, for P = (mij) and Q = (f ij
ue(c)). Thus the

necessary condition for the reversibility of the equilibrium is |P ∗Q| − |P ∗Qt| = 0,
i.e.

∑

ρ∈P

(−1)sign(ρ)
k

∏

i=1

piρ(i)qiρ(i) −
∑

ρ∈P

(−1)sign(ρ)
k

∏

i=1

piρ(i)qρ(i)i = 0, (32)

where P stands for the set of permutations of {1, . . . , k}, or, equivalently,

∑

ρ∈P̃

(−1)sign(ρ)
k

∏

i=1

piρ(i)(
k

∏

h=1

qhρ(h) −
k

∏

h=1

qρ(h)h) = 0, (33)

where P̃ stands for the subset of asymmetric permutations, i.e. those which are
not their own inverse, since the terms corresponding to the symmetric ones cancel
out in the equation (32).

For k = 3, four of the six permutations of {1, 2, 3} are symmetric and the neces-
sary condition for the reversibility of the equilibrium takes the form

(m12m23m31 −m13m32m21)(f12
ue(c)f23

ue(c)f31
ue(c)−

f13
ue(c)f32

ue(c)f21
ue(c)) = 0.

(34)

Hence the equations whose transversality to the manifold of equilibria is studied in
the proof of Proposition 6. For values of k bigger than 3, no such simple factorization
exists19 and necessarily the transversality of (32) would have to be checked directly,
which is far from being a simple task. Still, the conjecture of (32) being transversal
at any regular sunspot equilibrium for some v arbitrarily close to a given u in the
space of utility functions U is likely to hold in general, since this transversality
depends on the values of the second order partial derivatives of u at the allocation,
on which there are no restrictions (even if there are on their signs).

Interestingly enough, if k = 2, the only two permutations of {1, 2} are sym-
metric. This means that in this case the condition (32) is an identity, and thus it
is surely satisfied for sunspot equilibria fluctuating randomly between two states.
Nevertheless, this does not mean that such equilibria can be reversed, but just
that this proof cannot be extended to that case (actually the 2-states Markovian
stationary sunspot equilibria cannot be reversed, as it has already been shown to
follow easily from Proposition 5).

7.Concluding remarks

The differences shown in the previous sections between the certainty and the un-
certainty cases for the reversibility of the equilibria of an overlapping generations
economy were actually hinted at by previous characterizations of the existence of
sunspot equilibria in these economies. In effect, [8] shows that a necessary and

19For instance, if k = 4, then just 9 out of the 24 permutations of {1, 2, 3, 4} are symmetric
and thus 15 asymmetric ones are left to be taken into account.
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sufficient condition for the existence of finite state Markovian stationary sunspot
equilibria translate into a condition on the representative agent’s offer curve much
weaker in the so called ”classical” case than in the ”Samuelsonian” case (following
the terminology used in [12]). Accordingly many more classical overlapping gen-
erations economies exhibit such sunspot equilibria than the Samuelsonian ones do.
Bearing this in mind, since the mirror economy of any Samuelsonian overlapping
generations economy is a classical economy and viceversa, that result pointed al-
ready at a missing one-to-one correspondence between the sunspot equilibria of any
two such mirrored economies like the one existing for the perfect foresight equilibria.

Incidentally, at the heart of the proof of Proposition 6 there is an argument used
in [10] to show the impossibility of a robust equivalence between the finite Mar-
kovian stationary sunspot equilibria of a simple overlapping generations economy
and the correlated equilibria of the finite economy with asymmetric information
considered in [16]. The idea of a connection between the equilibria of an open-
ended economy and those of a related one-shot economy has already been explored
to some extent, starting from the link between the cycles of an overlapping gen-
erations economy and the multiple equilibria of finite economies with a symmetric
structure, as shown in [3] and [22]. I show in [11] how to circumvent the impossi-
bility to extend the connection to sunspot equilibria in the way conjectured in [16]
and thus make it hold in general.

As for the reversibility issue itself, the only reference I am aware of about the
extent to which the overlapping generations models determine a definite direction
of time is [19].20That paper considers only the case of certainty and concludes, as
it follows from the analysis presented here as well, that the overlapping structure is
not enough to determine unequivocally the direction in which time flows for perfect
foresight equilibria. Stochastic equilibria are not considered in that paper.

Dept. of Economics, University of Pennsylvania, 3718 Locust Walk Philadelphia,
PA 19104, U.S.A.; davilaj@ssc.upenn.edu.

Appendix

Proof of Proposition 1.
(1) If {ct}t∈Z and {pt}t∈Z constitute an equilibrium of the overlapping genera-

tions economy {(ut, et)}t∈Z, then for every t ∈ Z, ct is a solution to (1) i.e.
there exists a positive multiplier λt such that

D1ut(ct)− λtpt = 0

D2ut(ct)− λtpt+1 = 0

pt(ct
1 − et

1) + pt+1(ct
2 − et

2) = 0.

(35)

Multiplying the first equation by (ct
1−et

1), the second by (ct
2−et

2) and adding
them up taking into account the budget constraint in the third equation, it
follows

D1ut(ct)(ct
1 − et

1) + D2ut(ct)(ct
2 − et

2) = 0 (36)

that is to say
dut

ct(ct − et) = 0. (37)

20I thank Frank Heinemann for drawing my attention upon the existence of this paper.
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(2) In order to produce prices {pt}t∈Z supporting {ct}t∈Z as an equilibrium
allocation, let p0 be any positive price and define,21 for each t ∈ Z, the
price

pt = − c0
1 − e0

1

ct−1
2 − et−1

2
p0 (38)

and the multiplier

λt = −D2ut(ct)
ct
2 − et

2

c0
1 − e0

1

1
p0

. (39)

Then, for all t ∈ Z, the allocation of resources is feasible by assumption
and, moreover, the first order conditions (35) are satisfied since, firstly, the
budget constraint holds

pt

pt+1
=
− c0

1−e0
1

ct−1
2 −et−1

2
p0

− c0
1−e0

1
ct
2−et

2
p0

=
ct
2 − et

2

ct−1
2 − et−1

2
= −ct

2 − et
2

ct
1 − et

1
; (40)

secondly, the partial derivative of the lagrangian with respect to ct
2 is zero

because of the very definition of λt; and, finally, the partial derivative with
respect to ct

1 is also zero since

D1ut(ct)− λtpt =

D1ut(ct) + D2ut(ct)
ct
2 − et

2

c0
1 − e0

1

1
p0
· − c0

1 − e0
1

ct−1
2 − et−1

2
p0 =

1
ct
1 − et

1

(

D1ut(ct)(ct
1 − et

1) + D2ut(ct)(ct
2 − et

2)
)

=

1
ct
1 − et

1
dut

ct(ct
1 − et

1) = 0

(41)

by mere substitutions, recalling (3) and (4).
Q.E.D.

Proof of Proposition 3.
(1) If {ct

st+1
}t∈Z,s∈S such that each ct

1st+1
does not depend on σt+1, and {ptst}t∈Z,s∈S

constitute an equilibrium, then, for any s ∈ S and any t ∈ Z, (ct
s′t+1

)s′t+1|s′t=st

is the solution to (19), i.e. there exist positive multipliers λt
s′t+1

for all s′t+1

such that s′t = st, for which
∑

s′t+1|s′t=st

P (s′t+1|s′t = st)D1ut(ct
s′t+1

)−
∑

s′t+1|s′t=st

λt
s′t+1

ptst = 0

P (s′t+1|s′t = st)D2ut(ct
s′t+1

)− λt
s′t+1

pt+1s′t+1
= 0 , s′t+1|s′t = st

ptst(c
t
1s′t+1

− et
1) + pt+1s′t+1

(ct
2s′t+1

− et
2) = 0 , s′t+1|s′t = st.

(42)

21Notice that, Dut(ct) ∈ R2
++ and the feasibility condition guarantee that, at equilibrium, if

c01 − e0
1 < 0 (> 0), then ct

1 − et
1 < 0 (> 0), i.e. ct−1

2 − et−1
2 > 0 (< 0), for all t ∈ Z and thus

pt and λt are always positive. If the allocation of resources is the autarky, then the first order
conditions will be satisfied by any positive price p0, with pt = Πt

i=1(D2ui(ei)/D1ui(ei))p0 if t > 0,
pt = Π−1

i=t(D1ui(ei)/D2ui(ei))p0 if t < 0, and λt being −D2ut(et)Πt+1
i=1(D1ui(ei)/D2ui(ei))·1/p0

if t > −1, −D2ut(et) · 1/p0 if t = −1 and −D2ut(et)Π−1
i=t+1(D2ui(ei)/D1ui(ei)) · 1/p0 if t < −1.

20



Multiplying the first equation by (ct
1s′t+1

− et
1), each of the equations in the

second line by the corresponding (ct
2s′t+1

−et
2) and adding all them up taking

into account the budget constraints in the third line, then the condition (21)
follows.

(2) In order to produce prices supporting {ct
st+1

}t∈Z,s∈S as an equilibrium allo-
cation, let p0s0 , for every22 s ∈ S, be any positive price such that, for any
other s′ ∈ S,

p0s0

p0s′0

=
c0
1s′1

− e0
1

c0
1s1

− e0
1
. (43)

Then define, for all s ∈ S and all t ∈ Z, the prices

ptst = −
c0
1s1

− e0
1

ct−1
2st

− et−1
2

p0s0 , (44)

and for all s′t+1 such that s′t = st, the multipliers

λt
s′t+1

= −P (s′t+1|s′t = st)D2ut(ct
s′t+1

)
ct
2s′t+1

− et
2

c0
1s′1

− e0
1

1
p0s′0

. (45)

Then, for all t ∈ Z and all s ∈ S, the feasibility constraint is satisfied by
assumption and the first order conditions (42) are satisfied too: firstly, the
budget constraints are satisfied since, for all s′t+1 such that s′t = st,

ptst

pt+1s′t+1

=
− c0

1s1
−e0

1

ct−1
2st

−et−1
2

p0s0

−
c0
1s′1
−e0

1

ct
2s′t+1

−et
2
p0s′0

=
ct
2s′t+1

− et
2

ct−1
2st

− et−1
2

= −
ct
2s′t+1

− et
2

ct
1s′t+1

− et
1
, (46)

where the second equality results from the normalization (43) adopted; sec-
ondly, the partial derivatives of the lagrangian with respect to ct

2s′t+1
are

satisfied by the very definition of the multipliers λt
s′t+1

, and finally, the par-

tial derivative with respect to ct
1s′t+1

is again satisfied by mere substitutions,
recalling (21) and (22).

Q.E.D.

Lemma 1. If (ci
1, (c

j
2)

k
j=1)

k
i=1 is the allocation of resources of a finite Markovian

stationary sunspot equilibrium of (u, e) governed by the Markov matrix m, then the
(1, . . . , 1) ∈ Rk is in the null space of the matrix Bm

ũẽ(c2, c1) of its mirror economy
(ũ, ẽ).

Proof. If (ci
1, (c

j
2)

k
j=1)

k
i=1 is the allocation of resources of a finite markovian station-

ary sunspot equilibrium of (u, e) governed by the Markov matrix m, then for all
i = 1, . . . , k,

k
∑

j=1

mijdu(ci
1,cj

2)
(ci

1 − e1, c
j
2 − e2) = 0, (47)

22Actually, just one p0s0 needs to be fixed arbitrarily, all the other prices at date 0 and at
every state of the world s being then determined by the normalization (43).
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that is to say, for all i = 1, . . . , k,

k
∑

j=1

mijdũ(cj
2,ci

1)
(cj

2 − ẽ1, ci
1 − ẽ2) = 0, (48)

or, equivalently, for all i ∈ {1, . . . , k},

(mijf ji
ũẽ(c2, c1) )1 = 0 (49)

that is to say, (1, . . . , 1) ∈ Rk is in the null space of the matrix Bm
ũẽ(c2, c1) of its

mirror economy (ũ, ẽ). Q.E.D.

Lemma 2. The set of 3-state Markovian stationary sunspot equilibria of an over-
lapping generations economy (u, e) is locally a smooth manifold around any of them
that is regular.

Proof. Let (u, e) be a stationary overlapping generations economy such that the
set of its 3-state Markovian stationary sunspot equilibria is non-empty and let a
(c̄1, c̄2, m̄) be such an equilibrium that is regular, i.e. such that for all i = 1, 2, 3,
f ii

ue(c̄) 6= 0. Let Fue : R3
++ × R3

++ × (0, 1)6 → R3 be such that

Fue(c,m) =



















∑3
j=1 m1jf1j

ue(c)
∑3

j=1 m2jf2j
ue(c)

∑3
j=1 m3jf3j

ue(c)
c1
1 + c1

2 − e1 − e2

c2
1 + c2

2 − e1 − e2

c3
1 + c3

2 − e1 − e2



















. (50)

Then Fue
−1(0) is the set of 3-state Markovian stationary sunspot equilibria and

thus (c̄1, c̄2, m̄) ∈ Fue
−1(0). The jacobian of Fue at (c̄1, c̄2, m̄), DFue(c̄1, c̄2, m̄), is

of the form
(

C C ′ C ′′

I3 I3 0

)

(51)

where

C =







∑3
j=1 m̄1jD1f1j

ue(c̄) 0 0
0

∑3
j=1 m̄2jD2f2j

ue(c̄) 0
0 0

∑3
j=1 m̄3jD3f3j

ue(c̄)





 , (52)

C ′ =





m̄1jD4f11
ue(c̄) m̄12D5f12

ue(c̄) m̄13D6f13
ue(c̄)

m̄21D4f21
ue(c̄) m̄2jD5f2j

ue(c̄) m̄13D6f13
ue(c̄)

m̄31D4f31
ue(c̄) m̄32D5f32

ue(c̄) m̄3jD6f3j
ue(c̄)



 (53)

and

C ′′ =





f12
ue(c̄)− f11

ue(c̄) f13
ue(c̄)− f11

ue(c̄)
0 0
0 0

. . .

. . .
0 0

f21
ue(c̄)− f22

ue(c̄) f23
ue(c̄)− f22

ue(c̄)
0 0

. . . (54)
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. . .
0 0
0 0

f31
ue(c̄)− f33

ue(c̄) f32
ue(c̄)− f33

ue(c̄)



 ,

with Di denoting the i-th partial derivative.
Should DFue(c̄, m̄) not be full rank, then necessarily f i1

ue(c̄) = f i2
ue(c̄) = f i3

ue(c̄)
for some i ∈ {1, 2, 3}, but then (c̄, m̄) ∈ F−1

ue (0) would imply f ii
ue(c̄) = 0. Thus, if

for all i = 1, 2, 3, f ii
ue(c̄) 6= 0, then DFue(c̄, m̄) is full rank and therefore Fue

−1(0) is
a manifold (of dimension 6) in a neighborhood of (c̄, m̄). Q.E.D.

Lemma 3. If a stationary overlapping generations economy (u, e) has a regular
3-state Markovian stationary sunspot equilibrium (c̄, m̄) such that

f12
ue(c̄)f23

ue(c̄)f31
ue(c̄)− f13

ue(c̄)f32
ue(c̄)f21

ue(c̄) = 0, (55)

then arbitrarily close to this economy there is another economy (v, e) for which
(c̄, m̄) is an equilibrium as well and whose equilibria of the same kind that satisfy
(55) constitute a null measure subset of the set of such equilibria in a neighborhood
of (c̄, m̄).

Proof. Let us see that the subset of utility functions in U such that the equation (55)
is transversal to the manifold S of 3-state Markovian stationary sunspot equilibria
at (c̄, m̄) is dense in U . In effect, let (u, e) be a stationary overlapping generations
economy that has a regular 3-state Markovian stationary sunspot equilibrium (c̄, m̄)
satisfying (55). Let Fue be as in Lemma 2 and Gue : R3

++ × R3
++ × (0, 1)6 → R be

such that
Gue(c,m) = f12

ue(c)f23
ue(c)f31

ue(c)− f13
ue(c)f32

ue(c)f21
ue(c). (56)

Then (c̄, m̄) ∈ F−1
ue (0) ∩G−1

ue (0). Thus G−1
ue (0) is transversal to Fue

−1(0) at (c̄, m̄)
if DGue(c̄, m̄) is not in the span of the rows of DFue(c̄, m̄). Since DGue(c̄, m̄) is a
12-tuple whose six first entries are expressions in terms of the second order partial
derivatives of u at the points (c̄i

1, c̄
j
2), for all i, j = 1, 2, 3, its six last entries are

zero and f ii
ue(c̄) 6= 0, for all i = 1, 2, 3, then DGue(c̄, m̄) could only be the trivial

linear combination of the rows of DFue(c̄, m̄) with zero scalars. Thus the six first
entries of DGue(c̄, m̄) would have to be zero too, which requires the second order
partial derivatives of u at the points (c̄i

1, c̄
j
2) to satisfy six equations. But there is

a function v in U arbitrarily close to u with the same gradients as u at the points
(c̄i

1, c̄
j
2) —and hence such that (c̄, m̄) ∈ F−1

ve (0) ∩ G−1
ve (0) as well— but such that

DGve(c̄, m̄) is not in the span of the rows of DFve(c̄, m̄), i.e. such that F−1
ve (0) is

transversal to G−1
ve (0) at (c̄i

1, c̄
j
2). Q.E.D.

Lemma 4. If a stationary overlapping generations economy (u, e) has a regular
3-state Markovian stationary sunspot equilibrium (c̄, m̄) satisfying

m12m23m31 −m13m32m21 = 0, (57)

then arbitrarily close to this economy there is another economy (v, e) for which
(c̄, m̄) is an equilibrium as well and whose equilibria of the same kind that satisfy
(57) constitute a null measure subset of the set of such equilibria in a neighborhood
of (c̄, m̄).

Proof. Let us see that the subset of functions in U such that the equation (57) is
transversal to the manifold of these equilibria at (c̄, m̄) is dense in U . In effect, let
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(u, e) be a stationary overlapping generations economy that has a regular 3-state
Markovian stationary sunspot equilibrium (c̄, m̄) satisfying (57). Let Fue be as in
Lemma 2 and H : R3

++ × R3
++ × (0, 1)6 → R be such that

H(c,m) = m12m23m31 −m13m32m21. (58)

Then (c̄, m̄) ∈ Fue
−1(0)∩H−1(0). Thus H−1(0) is transversal to Fue

−1(0) at (c̄, m̄)
only if DH(c̄, m̄) is not in the span of the rows of DFue(c̄, m̄). Since DH(c̄, m̄) is
a 12-tuple whose six first entries are zeros and its six last entries are

(m̄23m̄31,−m̄32m̄21,−m̄13m̄32, m̄12m̄31, m̄12m̄23,−m̄32m̄21), (59)

should DcFue(c̄, m̄) not be full rank, then there is a function v in U arbitrarily
close to u with the same gradients at the points (c̄i

1, c̄
j
2) —and hence such that

(c̄, m̄) ∈ Fve
−1(0) ∩ H−1(0) as well— such that DcFue(c̄, m̄) is full rank indeed.

Thus if moreover DH(c̄, m̄) were in the span of the rows of DFve(c̄, m̄), then it
would necessarily be the trivial linear combination with scalars 0, which cannot be
since m̄ ∈ (0, 1)6. Therefore, H−1(0) is transversal to Fue

−1(0) at (c̄, m̄). Q.E.D.

Lemma 5. For any given endowments e and any utility function u from a dense
subset of U , the set of nonregular 3-state Markovian stationary sunspot equilibria
of the stationary overlapping generations economy (u, e) is, in a neighbourhood of
any of them, contained in a manifold of a dimension smaller than that of the local
manifold of regular equilibria.

Proof. Let (u, e) be a stationary overlapping generations economy that has a non-
regular 3-state Markovian stationary sunspot equilibrium (c̄, m̄), i.e. such that for
some i = 1, 2, 3, f ii

ue(c) = 0. Let Fue be as in Lemma 2 and Ψi
ue : R3

++ × R3
++ ×

(0, 1)6 → R be such that Ψi
ue(c,m) = f ii

ue(c).
Then (c̄, m̄) ∈ Fue

−1(0) ∩ Ψi
ue
−1(0). Thus all the entries of DΨi

ue(c̄, m̄) other
than Dci

1
Ψi

ue(c̄1, m̄) and Dci
2
Ψi

ue(c̄1, m̄) are zero. Should both Dci
1
Ψi

ue(c̄1, m̄) and
Dci

2
Ψi

ue(c̄1, m̄) —in terms of the second order partial derivatives of u at (c̄i
1, c̄

i
2)—

be null too, then there is v in U arbitrarily close to u with the same gradient at
the points (c̄i

1, c̄
j
2) —and hence such that (c̄, m̄) ∈ Fve

−1(0) ∩ Ψi
ve
−1(0) as well—

such that DΨi
ve(c̄, m̄) is non-null. Hence DΨi

ve(c̄, m̄) is not in the span of the rows
of DFve(c̄, m̄) (otherwise, necessarily for all h = 1, 2, 3, fh1

ve (c̄) = fh2
ve (c̄) = fh3

ve (c̄),
which from (c̄, m̄) ∈ Fve

−1(0) implies fhh
ve (c̄) = 0 for all h = 1, 2, 3, i.e.

D1v(c̄h
1 , e1 + e2 − c̄h

1 )(c̄h
1 − e1) + D2v(c̄h

1 , e1 + e2 − c̄h
1 )(e1 − c̄h

1 ) = 0. (60)

But the strict quasi-concavity and monotonicity of v guarantees that there is a
unique c satisfying this condition. Thus, necessarily, all c̄h

1 = c and hence c̄i
1 = c̄1

1 for
all i = 1, 2, 3, contradicting the assumption). The conclusion follows immediately.
Q.E.D.
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