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Abstract

In this paper we critically examine the main workhorse model in asset pricing theory, the
Lucas (1978) tree model (LT-Model), extended to include heterogeneous agents and multiple
goods, and contrast it to the benchmark model in ..nancial equilibrium theory, the real assets
model (RA-Model). Households in the LT-Model trade goods together with claims to Lucas
trees (exogenous stochastic dividend streams speci..ed in terms of a particular good) and zero-
net-supply real bonds, and are endowed with share portfolios. The RA-Model is quite similar
to the LT-Model except that the only claimstraded there are zero-net-supply assets paying
out in terms of commodity bundles (real assets) and households’ endowments are in terms
of commodity bundles as well. At the outset, one would expect the two models to deliver
similar implications since the LT-Model can be transformed into a special case of the RA-
Model. We demonstrate that this is simply not correct: results obtained in the context of
the LT-Model can be strikingly dicerent from those in the RA-Model. Indeed, specializing
households’ preferences to be additively separable (over time) as well as log-linear, we show
that for a large set of initial portfolios the LT-Model — even with potentially complete ..nancial
markets — admits a peculiar ..nancial equilibrium (PFE) in which there is no trade on the bond
market after the initial period, while the stock market is completely degenerate, in the sense
that all stocks ozer exactly the same investment opportunity — and yet, allocation is Pareto
optimal. We then thoroughly investigate why the LT-Model is so much at variance with the
RA-Model, and also completely characterize the properties of the set of PFE, which turn out
to be the only kind of equilibria occurring in this model. We also ..nd that when a PFE exists,
either (i) it is unique, or (ii) there is a continuum of equilibria: in fact, every Pareto optimal
allocation is supported as a PFE. Finally, we show that our results continue to hold true in
the presence of various types of restrictions on transactions in ..nancial markets. While our
analysis is carried out in the framework of the traditional two-period Arrow-Debreu-McKenzie
pure exchange model with uncertainty (encompassing, in particular, many types of contingent
commodities), we show that similar results hold for the analogous continuous-time martingale
model of asset pricing.

1. Introduction

One of the most commonly employed models in asset pricing theory is the Lucas [14] asset-
market tree economy. Investment opportunities in this economy are represented by claims to

“This paper reports initial results obtained within a broader project which also involves Suleyman Basak and
Svetlana Boyarchenko.



exogenously speci..ed stochastic dividend streams paid out by ..rms (Lucas trees) and long-lived
real bonds. Households trade in goods and shares of trees or, as we will call them, stocks and
bonds so as to maximize their expected lifetime utility de..ned over intertemporal consumption.
Initial endowments of the households are in terms of portfolios of shares of stocks and bonds. By
imposing clearing in spot goods and asset markets, one obtains an environment for determining
equilibrium asset prices.

In this paper we critically examine the Lucas tree model (LT-Model) extended to include
heterogeneous agents and multiple consumption goods. Dividend streams of the trees are speci..ed
in terms of a particular good; dicerent trees pay out in dicerent goods. We weigh equilibrium
implications of the LT-Model against those of the benchmark real assets model (RA-Model) in
..nancial equilibrium theory, in which (i) there is no production (and therefore there are no ..rms);
(i) households diversify risk by trading 10U’s whose promised returns are speci..ed in terms of
commodity bundles (real assets); and (iii) initial endowments are also commodity bundles. At the
outset, one would expect the two models to deliver similar implications since the LT-Model can
be transformed into a special case of the RA-Model. Consequently, the wide array of equilibrium
results developed in the context of the RA-Model should then readily apply to the LT-Model. It
turns out that this is simply not correct: the LT-Model has certain embedded structure that makes
it signi..cantly dicerent from the RA-Model, and part of our goal is to highlight this structure
and the implications it may lead to.

In particular, specializing households’ preferences to be additively separable (over time) as well
as log-linear, we show that for a large set of initial portfolios the LT-Model — even with potentially
complete ..nancial markets — admits a peculiar ..nancial equilibrium (PFE) in which all stocks
but one are redundant. Put dicerently, even though returns to the trees — one can think of these
as cash fows of ..rms involved in production of dicerent commodities - are generally unrelated,
goods prices always adjust to make the yields (returns in value terms) from traded claims to the
trees perfectly correlated. This result is in sharp contrast to a fundamental implication of the
RA-Model (see, in particular, Magill and Shafer [16] for the case of potentially complete ..nancial
markets, and Duce and Shafer [9] for the case of intrinsically incomplete ..nancial markets):
under mild regularity conditions (satis..ed in the LT-Model), the matrix of yields on the stocks
has full column rank generically in initial endowments and, perhaps, asset returns (i.e., except
for a closed, measure-zero subset of endowments and, perhaps, returns). Furthermore, while in
the real asset economy households typically must trade in all assets to achieve equilibrium, in our
Lucas tree economy trading in bonds only occurs at the initial date, and the desired objective
from trading in stocks can always be achieved by means of a single, ..xed portfolio of stocks (for
example, consisting of just a single stock).

It then follows that since there are necessarily fewer non-redundant assets in equilibrium than
there are states of the world, ..nancial markets are always incomplete. In the RA-Model, when
..nancial markets are incomplete, for given household preferences and asset returns, but for a
generic subset of initial endowments, equilibrium allocations are never Pareto optimal (as argued,
for example, by Geanakoplos, Magill, Quinzii and Dréze [10]). Strikingly, in the LT-Model, PFE
allocations are always Pareto optimal. Also, for a large subset of initial endowments, this peculiar
..nancial equilibrium in our model exists in general, while existence is only generic in the RA-Model
(again see Magill-Shafer and Duce-Shafer).

The very peculiar characteristics of equilibria in our economy bring to the fore an important
structural dicerence between the LT- and RA-Models. One of the key features driving our puzzling
implications is the speci..cation of endowments. While in the LT-Model, endowments are speci..ed



in terms of shares of stocks and bonds, in the RA-Model endowments are speci..ed in terms of
commodities. If in addition to portfolios of shares, households in our model were endowed with
bundles of commodities, equilibrium would typically no longer be of the peculiar kind.

It is not unrealistic, however, to have endowments speci..ed in terms of shares of assets. And,
in fact, this speci..cation may lead to a number of new results in equilibrium theory. In particular,
equilibrium theorists have usually assumed that endowments are nonnegative. And while a non-
negativity assumption is certainly very defensible in a model with commodity endowments, there
is nothing contradictory in dropping this assumption in a model with share endowments, espe-
cially if we assume no restrictions on asset trade. In our model we allow for short initial positions
in some assets. Our log-linear utility speci..cation best highlights one of the implications of this
additional degree of freedom. It is a standard result in microeconomics that in an economy with
(nonnegative) commodity endowments and log-linear utility, competitive equilibrium is always
unique. In contrast, in our model we can ..nd share endowments for which this is no longer true.
In fact, we can show that there may even be a continuum of equilibria, all of PFE-type. The
subset of initial portfolios for which this can occur is of a smaller dimension than the space of all
initial portfolios, so getting a continuum of equilibria is atypical, but it is nonetheless a distinct
theoretical possibility. We fully characterize the errant subset. The proposition about nonunique-
ness does not require that there be multiple consumption goods in the economy, it encompasses
the one-good case as well.

We then explore the robustness of our results. In particular, we investigate whether the
peculiar ..nancial equilibria that we exhibit survive various types of restrictions on transactions
in ..nancial markets. We ..nd that for a large class of portfolio constraints, our implications are
robust. For example, if households are unconstrained in their bond trades and unconstrained in
trading at least one stock (but face arbitrary portfolio constraints on the remaining stocks), the
PFE still occur. This is because, in contrast to well-explored single good models with portfolio
constraints, there are other markets which are open in addition to asset markets: spot goods
markets. So, it is possible to replicate the unconstrained equilibrium allocation by trading in one
stock, bonds and goods, thus fully circumventing portfolio constraints.

Finally, we investigate whether there are other (or ordinary) ..nancial equilibria (OFE), apart
from the peculiar ones, in our model. At ..rst blush it appears as if this problem should be very
similar to the problem of establishing the possibility of sunspot equilibria as in Cass and Shell [5].
Indeed, a natural transformation of the units of the quantities of goods in our model reveals that it
is essentially deterministic in the sense that (in the transformed units) the aggregate endowment
of each commodity in each date-event is always unity. Then, all PFE in the transformed economy
can be identi..ed with the nonsunspot equilibria of Cass-Shell, and the remaining equilibria - OFE
- with their sunspot equilibria. It turns out, however, that this suggestive parallel is illusory. In
particular, when there are just two households (but any numbers of states, goods and assets), the
only FE are PFE, while, in contrast, in the leading example of the benchmark model of incomplete
..nancial markets (with asset returns speci..ed in value terms) there is typically a continuum of
sunspot equilibria (Cass [3]).

All the above results have their analogues in continuous time. There, equilibria in the model
are peculiar in the sense that, for arbitrary stochastic processes representing dividends paid by the
trees, the volatility matrix of securities in the investment opportunity set of the agents is always
degenerate. Continuous time ocers additional tractability over the original two-period model: we
are able to parameterize stochastic processes for the state prices and stochastic weighting for a
representative agent in the economy. We feel that this extension may be particularly useful for a



further investigation of the ecects of portfolio constraints on asset prices and goods allocations in
our model.

Closely related to our work is the analysis by Zapatero [17], who uncovers a ..nancial equilib-
rium of the peculiar variety in the context of a two-country two-good model of asset prices and
exchange rates. In fact, it was Zapatero’s results which led us to thinking about our trees and
logs model. In the same vein is the earlier work of Cole and Obstfeld [6], who also document
occurrence of something like a PFE in an equilibrium international model. Also related is the
strand of literature investigating the special structure of preferences belonging to the linear risk
tolerance class (see Magill and Quinzii [15], Chapter 3, and the references contained therein). In
the context of a one-good model, it has been shown that *“ecective” market completeness, and
hence Pareto optimality obtains in an incomplete ..nancial market when households’ preferences
display linear risk tolerance with the same coe®cient of marginal risk tolerance.

The remainder of the paper is organized as follows. Section 2 describes the economy. Section 3
characterizes the set of equilibria and investigates its properties. Section 4 contains an extension
in continuous time. Section 5 outlines the avenues for future research, while the Appendix contains
all proofs.

2. The Economic Environment

Most of our basic framework is very standard in the Finance literature. There are two periods,
today and tomorrow, labeled (when useful) t = 0;1 (= T): Uncertainty tomorrow is represented
by future states of the world, labeled ' =1;2;:::;— < 1; so that it is also natural to represent
today as the present state of the world, labeled ' = 0: In our only major departure from the
common conventions in asset pricing theory (but the common convention in ..nancial equilibrium
theory), we assume here that there are many goods in each state, labeled g =1;2;::: ;G < 1.:

Production is described by exogenous stochastic streams of output of each type of good, £9(1);
all g; all I; what in Finance have traditionally been viewed as dividend streams from stocks, but
more recently as real returns from Lucas trees. The main dicerence here is that our trees or — as
we will usually refer to them — stocks correspond one-to-one with the goods, and are accordingly
also labeled g = 1;2;::: ; G: Quantities of stocks are denoted s'9; all g; all t; and are by de..nition
each in initial positive net supply of one unit.

Stocks are the sole source of goods in the economy, as well as one type of investment oppor-
tunity. The only other type of investment opportunity is long-lived real bonds,! each of whose
promised returns is also speci..ed in terms of a single good, by de..nition one unit of that good in
each state. The bonds are labeled g =1;2;::: ;G - G — where returns from bond g are speci..ed
in units of good g = g — and are in zero net supply. Their quantities are denoted b'¢; all g; all t:
Even though the returns on bonds are nonstochastic (and speci..ed equal one unit of particular
goods), later on it will be useful to denote them by the abstract notation +%(1); all g; all !:

Households are the consumer-investors in this economy, and are labeled h =1;2;::: ;H < 1.:
Each household is endowed with an initial portfolio of assets (b2;s2); and trades on a spot market
for goods and assets at spot O; and then again, after the future state of the world ! > 0 has
been realized, on a spot market for goods at spot !: Short sale of stocks (as well as borrowing) is
permitted. Purchase, and therefore also consumption of goods is denoted cﬂ(!); all g; all ¥; and

LOur particular speci..cation of the alternative available investments to stocks is chosen primarily for expositional
convenience. In fact, our results generalize immediately to any real (Economics) or derivative (Finance) assets — as
long as they are in zero net supply.



the terminal portfolio (bt; st); while spot goods, bond, and stock prices are denoted p%(1); all g;
all !;qg; all g; and qgg; all g; respectively. Both consumption of goods and spot goods prices are
always assumed to be strictly positive.

Each household evaluates its actions according to a von Neumann-Morgenstern utility function
over present and prospective future consumption

X
un(ch) = %(¥)vh(ch(0);cn(1));

1=>0

where %(1) > 0; I > 0; with P!>O Ya(1) = 1 represent common prior probabilities, and vy, :
R3S ¥ R represents the household’s two-period certainty utility function. Expected utility is as-
sumed to satisfy textbook regularity, monotonicity, and convexity assumptions, in particular those
(minimally) consistent with additively separable log-linear certainty utility: vy, is C?; dicerentiably
strictly increasing, and dicerentiably strictly concave, and satis..es the boundary condition, for
every (c¥;ct) A0;

0.1 2G . 0..1 00. 10 2G .
clf(ch; cr) 2 RE% 1 Vn(Chi Ch) . Vn(Chich)g 2 RES:
Later on we will specialize to log-linear utility

> X
Vh(ch(0);cn(1)) = ®logcl(0)+ ", ®.2logcd(1);
g g

so that

< X XX
un(ch) =  ®Clogcl(0)+  %(1) 7,  ®Llogcd();
g 1>0 g

. tg . . P tg _ q. . — .
with ® > 0; all g; and g®h =1;allt;and |, >0:

Since one of our primary concerns will be with the relationship between equilibrium allocation
and Pareto optimality, for the most part we will concentrate on the situation where there are
potentially complete ..nancial markets, that is, where G + G = — (so that — - 2G). However,
our main results do not depend on this assumption, and are equally true for the case where
G + G < —; so that there are intrinsically incomplete ..nancial markets — as well as, obviously,
the case where G + G > —; so that there are necessarily redundant assets. Notice that when
assets provide, ecectively — as they do in this economy — both initial endowments (of goods) and
investment opportunities, having “necessarily redundant assets” (in the conventional sense) is not
immaterial; such “redundancy” typically enlarges the set of possible initial endowments.

Aside from the presentation of the ..rst of our main results (Proposition 1), we will also concen-
trate on situations where there are relatively few states, goods, and households, and especially on
what we will refer to as the leading example, where — = 3;G = 2;G = 1; and H = 2, sometimes
its poorer cousin, where, instead, G = 0 (the smallest dimensional example with intrinsically
incomplete ..nancial markets and more than one good). This is partly for purely expositional
purposes. But, to be perfectly honest, more importantly, we have yet to ..nish generalizing the
last of our main results (Proposition 4) to the situation with many households, that is, where
H > 2: This particular generalization, as well as other extensions and re..nements of the results
reported here will be the subject of future work.

Finally, we again emphasize that — except for the assumption of many goods — this model,
including log-linear utility, is a standard workhorse in Finance, even more so when there are
intrinsically incomplete ..nancial markets, or institutionally imposed portfolio restrictions.



3. Characterization of Equilibrium

3.1. Preliminaries
3.1.1. Notation

We adopt the obvious convention for forming vectors (and, similarly, matrices) from indexed
scalars or vectors: simply suppress the common index, and write the corresponding set of indexed
scalars or vectors in their natural order. Thus, for instance,

p(1) = (p°(1); all g) and p = (p(1); all T); while
ch(l) = (cﬂ(!); all g); ch = (ch(1); all 1); and c = (cn;all h):

Also, modifying the standard convention in mathematics that x 2 R" is an n-dimensional column
vector, we will treat price (e.g., p(1)) and price-like (e.g., ®) vectors as rows rather than columns
of their elements.

3.1.2. Financial Equilibrium

>From each household’s viewpoint, the returns from an asset are simply a vector of goods —
albeit a particular, possibly a very special vector of goods — and their initial portfolio (of assets)
represents their initial endowment (of goods). For this reason it is useful to begin by formulating
the concept of ..nancial equilibrium (FE) in terms of the real asset equivalents of bonds and
stocks, initial endowments, and net changes in portfolio holdings. Such a general formulation also
highlights the dicerences between the LT-model and the RA-model, and facilitates comparing
properties of their equilibria. Let

22 6 33
. 0 M T
I
Cy(1) = gg £5(1) Z% ¢ T 0
0 .
0 Gi
and
2 G 3

¢s(1) = g £9(1) ’ Z G
0 E

be the (G £ €)- and (G £ G)-dimensional matrices representing the goods returns from bonds
and stocks, respectively, so that

en(?) = [Er(1) Es(1)1(bD; sP)
is the initial endowment of household h in state w: Also let
zy = (b} i b2) and zs = (s} i sD)

be the net change in the portfolio holdings of household h: Then, (p;c;q;z) is a FE if



2 households optimize, i.e., given (p;q) (and ¢ = [¢(1); all 1] = [[¢,(1)Ts(1)]; all 1];
according with our convention), for every h; (cn;z,) is an optimal solution to the problem

(H) maximizeg,.z, Un(Ch) with multipliers
subject to p(0)(cnh(0) § en(0)) +qz, =0 .h(0)
and p(Hn(?) i en()) i p(H)E(1)zn =0; 1 >0; .h(1)
and

2 spot goods and asset markets clear, i.e.,
P

(M)  (chien)=0; and
P

Zh=O.
h

For the purpose of presenting and interpreting our main results concerning the structure of
FE, it is necessary to introduce two auxiliary concepts: ..rst, the concept of a certainty equilibrium
(CE) — which is the Walrasian equilibrium in a related two-period, pure-distribution economy that
we will refer to as the certainty economy (see Cass-Shell, pp. 207-8) — and second, the device for
relating FE to CE, the concept of a puzzling or peculiar ..nancial equilibrium (PFE).

3.1.3. Certainty Equilibrium

Consider the two-period, pure-distribution economy without uncertainty for which utility func-
tions, initial endowments, and consumption for each household are vy;&, = (EO;E%); and t, =
(c;cl); respectively, and goods prices (on overall goods markets in period 0) are p = (p°;p?). In
such a certainty economy, (p;T) is a CE (otherwise known as a Walrasian, competitive, or general
equilibrium) if

2 households optimize, i.e., given P, for every h, Ty is the optimal solution to the problem

(H) maximizes, Vn(Ch) with multiplier
subjectto  p(Ch j&h) =0 .h

and

2 overall goods markets clear, i.e.,

— P _ _
(M) ) Cnh i®)=0.

It will be convenient, when analyzing existence of FE, to have a means of referring to the set
of certainty endowments for which CE exists. So, given total resources T = (T%;71) = 1; let

_ >
E=fc2(R*®)": &, =7and there is a CEg.
h

Note that here there is a major departure from the mainstream Walrasian tradition: we consider all
conceivable certainty endowments, and, speci..cally, do not require that they lie in each household’s
consumption set.



3.1.4. Peculiar Financial Equilibrium

Our ..rst main result concerns the particular kind of FE we refer to as PFE in an economy in
which (as in the original economy, the economy described in section 2)

en(1) = [Ep(D)Ts(N](bY;s2); all 1; all h; (3.1)

but (in sharp contrast to the original economy)

t8(1)>0; all g; and t9(1) =1; all g; all I; 3.2)

that is, ¢, (1) is essentially unrestricted while €s(!) = I. The crucial implication of the second
assumption is that, in this economy, total resources, denoted r, are stationary across states

r=[r(1); all 1] =[¢s(1)1; all 1] = 1:

It is then straightforward to apply this result to the original economy with log-linear utility,
through a simple transformation of the units of goods.

When €¢5(1) =1, all ; a FE is a PFE if

(i) irrelevancy: z,n = ib?; all h, i.e., households completely liquidate their initial portfolio of
bonds;

(i) degeneracy: rank [p(1)€s(!),! > 0] = rank [p(!); ! > 0] = 1, i.e., households are
completely indicerent to which (equally valued) terminal portfolio of stocks they hold; and yet

(iii) optimality: rank [_n; all h] = 1; i.e., the goods allocation is Pareto optimal.

3.2. Existence and Optimality

The key feature of a PFE which permits a simple characterization is that, ecectively, the spot
market budget constraints in a FE collapse to the Walrasian budget constraint in a CE with
certainty endowments given by the formulas
P
€ = (en(0);  %(Ven(1))
1>0

- P
= ()OI s~ H(DISH(HSs(DIER:sP)); all h

1>

(3.3)

This will become obvious when we detail the proof of Proposition 1 in the appendix. So now let

_ - X
Eq¢= T8 2E : for some (b9;s2); all h; such that  (b?;s2) = (0; 1); & satis..es (3.1)g.
h

Note that, generically in ¢, dim E¢= (H j 1)(G + G); which in the leading example equals 3:
For simplicity, normalize prices so that p'(1) = 1; all I; and p*! = 1 (later on we will ..nd
that another price normalization is more useful when analyzing the nature of PFE).

Proposition 1 (Existence of PFE). Consider an economy which satis..es (3.1) and (3.2),
together with the related certainly economy which satis..es (3.3).



() If (p;c;q;2) is a PFE, then € 2 E¢ and there is a CE (p;T) such that

P = (p(0); (. 1(1)="(1).,1(0))p(1))
and (3.9
Th = (ch(0); ch(1));all h.

(i) If e2 E¢ and (p;T) is a CE, then there is a PFE (p;c;q;z) such that

Yo

p° 1=0
p(!) = glzpll : 1 >0
and " (3.5)
Tt :1=0
cn(1) = 62 1 >0; all h:

Returning now to consideration of the original economy, we observe that if units of goods are
converted into per-stock-return units, that is, if, in each state I; one unit of good g becomes
1=t9(1) units of good g; then the return matrix for stocks ¢s(!) becomes simply the identity
matrix. Furthermore, with log-linear utility functions, each household’s utility in the old and the
new units is identical up to an additive constant. This leads immediately to a characterization
of FE in such an economy, which we can state succinctly in terms of the “trees and logs” of the
paper’s title.

Corollary to Proposition 1 (PFE with Trees and Logs). The characterization of PFE in
Proposition 1 applies to an economy with trees and logs after conversion to per-tree-return units
of goods.

An economy in which stocks return the same amount of goods in each state is itself not really
very interesting. It is also doubtful that much more can be said in general about FE in such an
economy; this would surely require imposing additional restrictions on bond returns or certainty
utility. On the other hand, the trees and logs model (TL-Model) is intrinsically interesting and
— as it turns out — much can be inferred about the ..ner structure of FE in this model. For this
reason we now focus exclusively on the TL-Model, assuming conversion to per-tree-return units
(so that hereafter, £8(1) > 0, all g, all !, while ¢s(1) =1, all 1). At the same time we will also
concentrate on the smaller dimensional examples, where G5 — 5 2G; G = H = 2: We emphasize,
however, that the Corollary to Proposition 1 is valid for arbitrary dimensionality (including the
very special case so common in the Finance literature, where G = 1).

Before turning to questions of uniqueness and, say, exclusivity — that is, whether there are
other (or *“ordinary”) ..nancial equilibria (OFE) in the TL-Model — it is quite instructive to
highlight the peculiarity of the PFE. We accomplish this by, ..rst, contrasting the results reported
in Proposition 1 with well-known properties of the RA-Model, and second, relating them to well-
known properties of the Cass-Shell sunspot model (SS-Model).

3.2.1. The LT-Model v. the RA-Model

The “well-known” properties asserted here can be found — or easily inferred following the lead
of related results in the RA-Model literature’. We contrast these to the results reported in

2In fact, many of the counterexamples are so obvious, or so easily constructed based on other results in the
..nancial equilibrium literature that they are hard to ..nd explicit cites for. We will refer to such “well-known”



Proposition 1 applied to the TL-Model. For this purpose, when presenting a result which is
(within a well-speci..ed conventional context) true without any quali..cation we will use the term
“general” or “generally”. Otherwise, when a result is only true generically,> we will use the
term “typical” or “typically” (in contrast to “exceptional” or “exceptionally’). We also use self-
explanatory tables to describe the RA-Model literature. Note that, looking ahead to subsection
3.5 below (where we show that OFE can never occur), it is accurate to simply identify PFE with
FE in the TL-Model when H = 2:
1. Existence

Existence of FE

FM are / Existence is typical only typical
Potentially Complete Magill-Shafer Hart [11]
Intrinsically Incomplete Dudce-Shafer Cass [4]

In the TL-Model, on the other hand, the operative condition in Proposition 1 — € 2 I%q; -
characterizes the very large set of initial portfolios for which there is generally a PFE (depending,
of course, on the other parameters of the model, in particular, t8(1); all g; all 1). We will provide
a more detailed analysis and elaboration of this condition in future work, but stress here that it
clearly encompasses much more than just the initial portfolios for which € >> 0 (see subsection
3.4 below).

2. Optimality

By virtue of Arrow’s Equivalency Theorem [1], for the RA-Model, when ..nancial markets are
potentially complete, Pareto optimality is closely related to the rank of the matrix of asset yields
(in value terms).* So we tabulate both optimality and rank properties for this model.

Optimality of FE

FM are / Pareto Optimality is typical only typical exceptional
Potentially Complete Magill-Shafer folklore £
Intrinsically Incomplete £ £ Geanakoplos et al

results as “folklore”.

3«Generically” means, precisely, “on an open, full measure subset of parameters” (of some given open, full
measure subset of a Euclidean space). We will be a bit vague about the particular spaces of parameters involved,
and the interested reader should consult the original sources cited for precise detail.

4For example, in the TL-Model, this matrix is

Y =[p()[Es(HEs(H)]; ! >0
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Matrix of Asset Yields

FM are /7 Full Rank is typical only typical
Potentially Complete Magill-Shafer folklore
Intrinsically Incomplete Dud¢e-Shafer folklore

The TL-Model obviously turns all this on its head: The matrix of asset yields never has full
rank, and yet allocation is always Pareto optimal! FE in this model are very, very peculiar, indeed.

3. Trade in Assets

Using the fact that, typically, in the RA-Model the matrix of asset yields has full rank, it is
a routine application of the Transversality Theorem to show that, again typically, all assets must
be traded by all households. In the TL-Model, contrarily, ..nancial markets are quite inactive. In
the ..rst place, households transact on the bond market only to the extent that they completely
liquidate their initial positions. In a model with many periods, that is, where T > 1; this means
that, beyond today, bond markets are completely inactive.® In the second place — the point of
Proposition 1 — only a single stock market need be active, though, obviously they all can be. So,
in this respect as well, PFE are also very, very peculiar!

4. The Explanation

Why such striking disparity between the two models? The answer is both very simple and
obvious. The TL-Model is an extraordinarily atypical speci..cation of the RA-Model, for two
basic reasons: First, tree returns, and hence total resources are identically one in each state of the
world. Second, initial endowments must both (i) lie in the span of the matrix of asset returns, and
(ii) add up to the tree returns in each state of the world.® In particular, when there are potentially
complete ..nancial markets (as, say, de..ned precisely by Magill and Shafer p. 174), it must be the
case that if households own (independent) initial endowments, in addition to initial portfolios,
then all the anomalies revealed above (typically) simply disappear. What more is there to say,
really?

3.2.2. The TL-Model vis-a-vis the SS-Model

For one familiar with the literature on the SS-Model (as one of us, anyway, surely is!), the
parallel between PFE and nonsunspot equilibria (NSE) is inescapable. Both types of equilibrium
exhibit stationarity in the precise sense that they are equivalent to CE. Moreover, both are,
in their respective economic environments, the only equilibria for which goods allocations are
Pareto optimal. This suggests another possible interesting parallel, that between what we have
earlier labeled OFE and sunspot equilibria (SSE). It turns out, however, that even though there
is a strong parallel between the two concepts, it is far from exact. The essential dicerence is a
consequence of the fact that optimality in the LT-Model has nothing to do with ..nancial market
completeness, whereas in the SS-Model this is a very signi..cant consideration. Thus, for instance,

°By the way (and this should really go without saying!) all the results concerning the discrete date-event version
of our model are easily generalized to many periods — provided all assets can be retraded. “Many periods” and
“asset retrade” (what is labelled “dynamically ...” in Finance) are of course inherent in the continuous date-event
version of the model; see section 4 below.

®In fact, from the proof of Proposition 1 it is readily seen that the detailed structure of initial endowments and
tree returns today (transformed into bond returns today) plays no inherent role in generating PFE.
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in the LT-Model, as we will establish in section 3.5 below, there can be no OFE in the leading
example whether ..nancial markets are potentially complete or not, while in the SS-Model there is
typically a distinct SSE in the leading example with an incomplete ..nancial market (this can be
inferred from the analysis in Cass [3] together with Balasko and Cass [2], pp. 145-9; when asset
returns are speci..ed in value terms, there is typically even a continuum of distinct SSE).

We now turn to consideration of another very important implication of the fact that degeneracy
and incompleteness of ..nancial markets are part and parcel of the PFE.

3.3. Portfolio Constraints

Financial markets with portfolio constraints have recently become the major area of research in
asset pricing theory (see Karatzas and Shreve [13] and references contained therein). The main
bulk of this analysis is undertaken in the context of a single-good economy. Rather surprisingly,
however, very little is known about the robustness of various implications within a multiple-good
setting.

Our objective here is to illustrate the interaction between the spot goods market and portfolio
constraints, and to see to what extent the possibility of trade in the real markets can alleviate
frictions in the ..nancial markets. Toward that end, we present a straightforward implication of
the arguments in the proof of Proposition 1.

Proposition 2 (Portfolio Constraints). Consider a class of portfolio constraints under which
it is feasible for the households in the economy to liquidate their initial bond holdings in period
0 and invest the proceeds (net of c,(0)) in some (.xed) portfolio of the stocks. Then in this
constrained economy, as long as it is feasible for the households to jointly hold one share of each
stock, the unconstrained equilibrium (PFE) still obtains.

In particular, Proposition 2 encompasses the case of restricted participation in the stock
market.

Corollary to Proposition 2 (Restricted Participation). Suppose that bﬁ 2 R, all g; and

sﬁg 2 R, some g. Then, for arbitrary constraints on the remaining stocks, as long as market
clearing in those stocks is feasible, the unconstrained equilibrium still obtains.

This result is in striking contrast to the implications of a single-good model with multiple
stocks. Portfolio constraints in the TL-economy can be fully circumvented by households trading
in the spot goods markets (nonexistent in a single-good model). The policy replicating the
unconstrained optimum involves a combination of trades in the assets and the exchange of goods
for those paid out by the stocks whose share holdings are constrained.

3.4. Uniqueness

In the TL-Model the question of uniqueness of PFE for given initial portfolios is equivalent to the
question of uniqueness of CE for the corresponding initial endowments (3). This question has a
very straightforward answer.
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Figure 1. Equilibria in the TL-Model. The Edgeworth-Bowley box is presented
for the (certainty) case of G = Q =1, G = 1, H = 2. The thick solid line depicts the
Pareto set, the dotted lines correspond to the prices which support allocations in
the Pareto set. (), €l) is the endowment point for which a continuum of equilibria



It is a routine exercise given in the graduate microeconomics theory sequence to show the
following: in the standard 2£2 model of pure distribution with log-linear utility, Walrasian equi-
librium is unique. This property stems from the fact that, in this example, the prices which
support allocations in the Pareto set de..ne lines which are either parallel — in the borderline case
of identical log-linear utility — or intersect outside the Edgeworth-Bowley box. In other words, the
only initial endowments for which there are multiple equilibria must lie outside the households’
consumption sets — and this violates the spirit of the model.

In the certainty model equivalent of the TL-Model, however, there is absolutely no reason,
given the opportunities of both borrowing and short-selling, that initial endowments must lie in
the households’ consumption sets. This yields an interesting result for the leading example.’

Proposition 3 (Uniqueness of PFE). For the leading example, the CE, and hence the PFE is
unique
2 in the borderline case where ®§ =@% t=0;1and ; = ,; for all initial endowments & 2 I%q;;
but otherwise
2 in the general case, for all initial endowments except possibly those which lie on a line segment,
say, 82 L¢ % Bg.

And, for & 2 L, every Pareto optimal allocation is supported as a PFE.

In other words, either the PFE is unique, or there are PFE corresponding to each allocation in
the Pareto set (on a relatively small subset of possible initial portfolios, to be sure!).

The intuition behind this result is presented in Figure 1 for the case inwhichG = - =1;6 = 1;
and H = 2; the redundant bond is required so the &} is consistent with portfolio choice (otherwise,
for an initial portfolio consisting of just one stock, it must be the case that 8 =&} =s? > 0; and
the PFE is unique). Note also that in this example, since G =1; ®, =1;h =1;2:

3.5. Exclusivity

When one ..rst encounters the pervasiveness of PFE — mainly because these ..nancial equilibria
are so strange — an immediate, natural reaction is to ask “Just how important is this peculiar
phenomenon, anyway?”, or more objectively, “Are there other FE which have substantial presence
as well?” In this subsection, at least for the leading example, we establish that the answer is a
blunt and clear “No!”

Proposition 4 (Exclusivity of PFE). Regarding the existence of OFE: for the leading example,
the only FE are PFE.

If is worth emphasizing, as mentioned earlier, that our present proof of the this result gen-
eralizes to any situation in which there are at least two goods but only two households — and
also, that this result is completely independent of whether or not ..nancial markets are potentially
complete.

At this point, that’s really all we have to say about exclusivity.

"Our formulation is based on analysis by Sveltlana Boyarchenko of this and much more general cases.
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4. Extension in Continuous Time

We now consider a continuous-time variation on our leading example. Translating the results that
have been presented in terms of the discrete date-event version is routine. For that reason this
section is going to be intendedly dense. The economy has a ..nite-horizon, [0; T]. Uncertainty is
represented by a ..Itered probability space (—; F; fFg; P), on which is de..ned a two-dimensional
Brownian motion w(t) = (wy(t); wa(t)), t 2 [0; T]. All stochastic processes are assumed adapted
to fF¢; t 2 [0; T]g, the augmented ..Itration generated by w. All stated equalities involving random
variables hold P-almost surely. Note that this continuous-time speci..cation of the state space
is in direct parallel to that of the discrete-time leading example: there, a random variable was
represented by three possible future realizations corresponding to the three branches of the date-
event tree; in the continuous-time version, each process would be parameterized by a triple (%,
%1, %2) — the drift and volatility processes.

The risky stocks pay out the strictly positive dividend stream at rate £?, in good g, following
an Itb process

d+9(t) = 2 (t)dt + % (t)dw(t); 9=1;2;

where 12 and ¥%; ~ (%1; ¥2)” are arbitrary stochastic processes. The price of the locally riskless
bond (whose returns are speci..ed in terms of good 1), g, and the stock prices, q¢, are assumed
to follow

dot(t) = qt®ridt;  gi(0) =1;
dod(t) + +9()dt = (O[Ot +WOAW®]; g =1; 2;

where the interest rate rt, in terms of good 1, the drift coe¢cients 1, = (11; 12), and the volatility
matrix % = %;j, i; j = 1, 2g are to be determined in equilibrium. Under this speci..cation of the
investment opportunities, ..nancial markets are (potentially) dynamically complete.

Similarly, the relative price of good 2 in terms of good 1, p, can be assumed to follow

dp(t) = p(O[*p (Dt + % (Ddw(D)];

where 1, and % ~ (Y%p1; %p2)” are (endogenous) drift and volatility processes. Accordingly, one
can express the investment opportunity set in terms of good 1. The bond and the ..rst stock price
dynamics are already speci..ed in terms of good 1; the second stock dynamics are given by

dp(t)gZ (1) + p()£*(t)dt = p()aZ (OI(XE(D) + (1) + ¥%Z ()%p (1) ")t + (45(1) + ¥p (1)) AW(D)]:

The two households maximize their expected lifetime log-linear utility
-Z ¢ .
un(cn) = E el ”nty, (ch(t))dt h=1;2;
0

where vp(ch(t)) = ®L(t)logch(t) + ®2(t)logci(t) and %, > 0, subject to the dynamic budget

constraint

il
dt

K
dWh(t) = Wh(tri(t)dt j (ci(t) + p(t)c3(t))dt j sn(t)™1s(t)
K |
+sn()715(1) dw(D);

1) § ri)
12(t) + (1) + %21 ¥p(t) § (D)

374% ()
3745 + 3y4p
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where Wy, is the household’s wealth and Is is a 2 £ 2 diagonal matrix with diagonal elements
g and pg2. Appealing to the martingale methodology, standard in asset pricing, we convert the
dynamic budget constraint of each household into a static Arrow-Debreu budget constraint of the
form

-7 T

s -Z T
E . m(BIeh () +p(ch(DIdt =E

oL (1) + PO O ;

where »;, are (possibly personalized) Arrow-Debreu state prices per unit probability speci..ed in
terms of good 1, and el: g =1;2, is, as before, the dividend stream from the initial shareholdings.
A ..nancial equilibrium is de..ned as a collection of prices (»; p; q) and associated optimal

policies (ch; bn; sh; h = 1; 2) such that the goods, bond and stock markets clear, i.e., 8t 2 [0; T],
forg=1,; 2

cp(t) = 9(t);

X
bp(t) = 0;
X g
sp(Hh) =1

h

For analytical convenience, we introduce a representative agent with utility
-Z + .
U:")=E v(c(t); ")dt ;
0

where

V(e )= max “iettvi(er) + e v(co);
and ", > 0; h = 1;2; may be stochastic. If in an equilibrium, ", and “, are constants, then
the allocation is Pareto optimal, otherwise it is not. Since in equilibrium the weights for the
representative agent are unique up to a multiplicative constant, we adopt the normalization "; = 7,
=137, 2(0;1).
We are now ready to characterize equilibria in the economy.

Proposition 5 (Characterization of PFE). If an equilibrium exists in the leading example,
it is a PFE. Equilibrium prices are identical across households and are given by

(0= et et et s e 20, @
_ s et B30 e ()
O = G e SO i e ) o

where the constant weight ~ is determined from either household’s static budget constraint, i.e.,
-Z T 5 'Z T s
E  H»OCi®+pmE®dt =E  »@®[el(t) + pt)e()]dt (4.3)
0 0
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The equilibrium allocations are
®I() e *t0(t)
®J(1) et +@J()(L 1 ei%!
Sty = —_BOW i e
2 R (t) it + @J(t)(L j “)ei*at

Furthermore, the stock prices and interest rate are given by

HOE g=1,2; 4.4)

g=12 (4.5)

i(p = T1BHO @1 i et T) GO Y fetT)
ity (@) et + @L()(1 § “)ei’e)

(1) = Y%, ®2(t) (1ei1/21t i eiiflT_)1+1/22®§(t)(1 i :)(e_j%zt j eitel) 200,
oy (BF() et + @F(1)(L § “)ei*et)

ri(t) =130 i )

Conversely, if there exist », p and ~ satisfying (4.1)-(4.3), then the associated optimal policies
clear all markets.

It is easy to see that the equilibrium is a PFE. Analogously to the discrete date-event version,
the relative price of the two goods is proportional the ratio of the dividends. It follows then that
in equilibrium the volatility matrix in the representation of the investment opportunity set,

- owo N
3745 + 3yélp ’

is degenerate, or, equivalently, the two stocks yield the same investment opportunity. The mapping
into the certainty model is also apparent from the characterization in Proposition 5: in per-tree-
return units, optimal consumption and prices are deterministic functions of time. Furthermore,
since the weight ~ is constant in equilibrium, the allocation is Pareto optimal.

We now turn to the nonuniqueness of peculiar equilibria.

Proposition 6 (Nonuniqueness). Consider the set of initial endowments of household 1, es,
satisfying:
-7 T H

il -
1 2 > = ailyT
E eieint LY 4 @zpyernt aM gy JLielE (4.6)
0 (1) (1) y
LT H 1 2 >
E atert 81 4 gaperat 4 gy @.7)
0 (1) (1)

On this set of endowments, there is a continuum of PFE with the characterization given by
(4.1)-(4.2) and (4.4)—(4.5) for all © 2 (0;1).

Proposition 6 is an exact analogue of Proposition 3 in the discrete date-event version. Note
that for condition (4.7) to be satis..ed it is necessary that household 1 be endowed with a short
position in one of the securities.

The continuous-time formulation ocers additional tractability over the discrete-time version in
that one can parameterize the processes for state prices and stochastic weighting in the economy;,
which proves to be very useful for getting explicit formulas in economies with frictions. Com-
prehensive investigation of the ewects of portfolio constraints in the TL-economy is the focus of
a companion project, and is not included in this paper. Here, we just concentrate on a speci..c
constraint: restricted participation in one of the risky securities.
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Proposition 7 (Restricted Participation). Consider the economy where household 1 is re-
stricted from investing in one of the risky stocks, e.g., stock 1, but can take an unrestricted
position in the bond and stock 2. Household 2 is unconstrained. Equilibrium in this constrained
economy coincides with that of the unconstrained with the characterization given in Proposition
5.

Remark 1. Proposition 7 is also valid if instead of assuming that household 2 is unconstrained,
we assumed that it can hold any amount of the bond and stock 2, but not stock 1.

5. Final Remarks

Our thorough examination of the Lucas tree model when extended to include multiple goods
uncovers a variety of puzzling characteristics. In particular, we show that under the maintained
assumption of log-linear utility, the only equilibria in the model are peculiar ..nancial equilibria, in
which all the stocks represent the same investment opportunity — and yet, nonetheless, allocation
is Pareto optimal. Our argument establishing that there are no other equilibria, however, is
specialized to a two-household economy. Preliminary analysis suggests that this result is valid
for the general case as well, but we have yet to provide a formal proof. While the log-linear
speci..cation of preferences best suits our purpose of highlighting the special structure of the Lucas
tree model, one would like to investigate the robustness of our implications beyond logarithmic
utility. Extending the family of preferences to include Cobb-Douglas utility is a natural second
step, but it still remains to be seen what class of utility speci..cations delivers the equivalency
between the original and the certainty economies which is the foundation of our argument.
Fairly complete analysis of the ecects of portfolio constraints in the general trees and logs
economy is a separate issue. In this paper, we merely demonstrate that for a certain large class
of portfolio constraints — in contrast to a single-good model — their impact on the economy is
fully alleviated by the possibility of trade in the spot goods markets. Another important class
of constraints to consider is the one which leads to allocation which is not Pareto optimal (and
therefore ..nancial equilibria which are not peculiar). In this situation constraints on transactions
could only, at best, be partially alleviated by trading in the spot goods markets, and it would be
of interest to quantify the extent to which trade in goods can circumvent restrictions on trade in
assets. Conversely, we should be able to use our framework to investigate the interaction between
restrictions on transactions on goods markets (e.g., one cannot transact an unlimited quantity of
a particular good, or certain goods have to be purchased concurrently) and transactions on asset
markets. This analysis will of course make use of the remarkable tractability of our model: despite
the presence of multiple positive-net-supply stocks, it appears possible to explicitly characterize
equilibria in an economy encompassing a variety of realistic constraints on transactions.
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Appendix

We begin by writing down the extended system of equations which provides the whole basis for
our formal analysis. This consists of the Lagrange conditions characterizing an optimal solution
to each household’s optimization problem (H) together with the spot goods and asset market
clearing conditions (M). For the time being we will continue to assume that spot goods prices are
normalized at each spot in terms of good 1 as the numeraire, p*(1) =1; all !:

A.1 The Extended System of Equations
“All 1.7 “1 > 0;” or “all h” are understood as given, where appropriate.

First-order conditions (FOC’s)

X
(1)De, ) Vh (en(0);cn (1)) i .n(0)p(0) =0 (A1)
1>0
and
(1) Dg, (1yvn(en(0);cn(1)) i .n(1)p(1) =0; (A-2)
No-arbitrage conditions (NAC’s)
X
@ i La(Dp(HEp(r) =0 (A.3)
1>0
and
X
@0 i La(Wp() =0; (A.4)
1>0
Budget constraints (BC’s)
P(0)(ch(0) i en(0)) +qzn =0 (A.5)
and
p(HCn(!) i en(1)) i p(H)e(!)zn =0; (A.6)
Market clearing conditions (MCC’s)
X
ch(M)il=0 (A7)
h
and
X
zh = 0. (A.8)
h

Also bear in mind the de..nition of initial endowments,

en(1) = [Ep()1(bY; sP): (A.9)
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Remarks. 1. By virtue of the NAC’s (A.3)-(A.4), the ..rst BC (A.5) is equivalent to a personal-
ized Walrasian-like BC

>
-h(Mp(M)en(t) i en(!)) =0, (A5)

This fact will prove to be very useful in the course of most of our argument.

2. By virtue of the BC’s (A.5)-(A.6) and the MCC’s (A.7)-(A.8), — + 1 of these equations are
redundant (the analogue of Walras’ law), for example, Mr. H’s BC’s. We will use this fact later
on, but we will also ..nd it useful to carry along the redundant equations.

3. Taking account of the preceding remark together with the spot goods price normalizations,
it follows that there are (at most)

J =HG(-+1)+H(EG+G)+(H j 1)(-+1)+G(-+1)+(E+G)
=HG(-+1)+H(6+G) +H(-+1)+ (G i )(- +1) + (€ +G)

independent equations in the J independent variables
ChiZh; . (PP(1);g>1; all 1); and q:

Of course, at a solution corresponding to a PFE, and therefore a Pareto optimal allocaton, the
NAC’s (A.3)-(A.4) are not independent. This means that, with potentially complete ..nancial
markets, all of the equations (A.1)-(A.8) can never be independent (since otherwise one would get
an immediate contradiction based on Arrow’s Equivalency Theorem), and this tends to complicate
their analysis.

A.2 Proof of Proposition 1
(i) Suppose that (p; c; q;z) is a PFE. Then, by degeneracy, p(1) = p(1); ! > 0, and by irrelevancy,
p(Den(?) +p(1)E(1)zn = p(1)sy; ! > 0;
so that (A.2) and (A.6) become simply, for all h,
(1) Dep1yVn(Cn(0); cn(1)) i .n(Hp1) =0;1 > 0; (A.10)
and
p()(cn(1) i sp) =0;1 >0: (A.11)

>From our textbook assumptions about vy; it follows that (AA.10), (A.11), and (A.7), for
1 > 0, describe an identical Walrasian equilibrium at each spot ! > 0: Thus, from (A.10) it also
follows that, for all h,

ch(!) =cn(@) and ,n(1)=4(1) = .n()=%1); ! = 0;
and from optimality (or, equally well, the NAC (A4)) that, for all h,
-h(DF4(1).n(0) = ,1(1)=4(2). 1(0):
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Hence, (A.5) becomes simply, for all h,

P0)(ch(0) i [Eu(0)II(bR; SR))+

(.1(1)74(1).1(0))p(D)(cn (1) i z%(!)[q?b(!)l](bo;sﬂ)) =0, (A.12)
while (A1) and (A10) become simply, for all h,
De,,0yvh(cn(0); cn(1)) i .n(0)p(0) =0 (A.13)
and
De,,1yVh(ch(0); cn(1)) i .n(0)(,1(1)=%(1).1(0))p(1) = 0. (A.14)

Finally, making the identi..cations (3.3)-(3.4) together with _, = _(0), all h, we see that, for
all h, (A.12)-(A.14) characterize the optimal solution to (H), and that these necessarily satisfy
(M), so that this half of the proof is complete.

(i) Suppose that & 2 B¢, and that (B; &) is a CE. Then, given ; (&: fh) solves the analogues
of the Lagrange conditions (A.12)-(A.14),

B(n i &) =0; (A.12"
DoV (&; &) i 2nB° =0; (A13)

and
D Vi (&0; &) i 2nB* =0, (A.14)

with 8, satisfying (3.3) for some (b9;s?), all h. Making the identi..cations (3.5) together with
.n(0) = 2n,

_1(1)=4(1), 1(0) = p,
and, say,
st =sP + (¢sPl;0;:::;0) such that gt (ct i st) =0, all h,

one can then simply reverse the steps of the preceding argument. Since this procedure is obvious,
we omit its details. ¥
A.3 Reduction to The True Equations

>From here on we will maintain the assumption of log-linear utility. This permits substantial
simpli..cation of the extended system of equations (A.1)-(A.8).
With log-linearity, the FOC’s (A.1)-(A.2) become, for all g,

®=c}(0) i .n(0)p°(0) =0 (A.15)
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and
(1) Th®2= (1) i Ln(1P(1) = 0. (A.16)
>From (A.15) it follows that
-h(0)p(0)cn(0) =1 (A.17)
and, together with (A.7) for ¥ =0, that

>
PO) = (1=.n(0)&. (A.18)
h

Similarly, from (A.16) it follows that

Sh(Mp(Mea (1) =%(1) (A.19)
and, together with (A.7) for ' >0, that
X
p(H) =% Ch=.n()8%. (A.20)
h

What this means — and this is the main advantage of assuming log-linear utility — is that, for
all practical purposes, we can ignore the FOC’s (A.15)-(A.16) as well as the MCC (A.7): the
information these equations contain concerning the household’s goods consumption can easily be
recovered from the system of equations consisting of (A.3)-(A.6), (A.8), and the spot goods price
equations (A.18) and (A.20) (SGP’s).

It will be very convenient to record this fact formally, but only after ..rst introducing two
additional modi..cations, (i) substituting, in the appropriate places, for the Lagrange multipliers
.h(1) the so-called stochastic weights

“n(1) ="h=.n(h),

and (ii) substituting, in the the NAC’s (A.3)-(A.4) for h < H, for the asset prices q de..ned by
the NAC’s (A.3)-(A.4) for h=H.

All this manipulation and consequent simpli..cation then leaves us with what we only half-
jokingly refer to as The True Equations (TTE).
Spot goods prices

> _
pO) = “H(0)(®= 1) (A.21)
h
and
<
p(1) =%(1) (DG (A.22)

h
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No arbitrage conditions (for h < H)

X
Ch@="n(1) i "HO)="u(I)p(H)Ey(1) =0 (A.23)
1>0
and
X
Ch@="h(M) i "HO)="r(1)p(}) =0; (A.24)
1=>0
Budget constraints
_ X
Q+1=n) i @ R(M)PMIE()IER;sp) =0 (A.25)
and
ZORONEOICAONCHEIE (A.26)
Asset market clearing conditions
X
(bt;st) i (0;1) =0: (A.27)
h

Finally, we will now ..nd it much more useful to normalize prices according to the formulas
X
WM =1 (A.28)
h

Remarks. 1. In deriving (A.25)-(A.26) we also used (A.9), (A.17), and (A.19). We are also still
carrying along the redundant BC’s (A.25)-(A.26) for h = H; this will be useful in establishing
Proposition 4, but is unnecessary (maybe even a bit confusing) for establishing Proposition 3
(where we focus on implications of the BC’s for just h = 1).
2. The so-called stochastic weights "}, (1) owe their name to the fact that the FOC’s (A.15)-
(A.16) can be derived from the social welfare/social planner’s problem of maximizing a so-called
representative agent’s utility function of the form

X< XX . X< o XX
[0  (®,'= n)logcp(0) +  %(1) h(1) & logcy(1)]
h g 1>0 g

subject to feasibility of goods allocation (with associated multipliers p). Note that this fact implies
that, for goods allocation to be Pareto optimal, and thus a FE to be a PFE, it must be the case
that, for all h,

“h(D) ="h0) =",

3. TTE preserve consistency of equations and variables. For this system of equations there are
(at most)

K= G6-+D+MHiDG+E)+H iD=+ +(GC+G)+(-+1)
= H(G+G)+H(-+1)+G(- +1)
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independent equations in the K independent variables
(bt;st); ; and p.

A.4 Proof of Proposition 2

Obvious. ¥

A.5 Proof of Proposition 3

For the leading example, in terms of just &; (so that, by de..nition, 8, =1 j &),
f&,2R*:0¢ 8 ¢ 1g%E 1R,
that is, E is a full-dimensional subset of R4. On the other hand,

Be % fa, 2 B :for some (b9;s9);8, =
(O +s7hs3% (1] + st sP)g;
1>0
that is, (given %(1)) generically in 1(1), all I, B is a full-dimensional subset of a 3-dimensional
linear subspace in R* (noting that, necessarily, 81> = 892).

This said, in order to check for uniqueness of CE in terms of 8;, we only need to consider
solutions to Ms. 1’s certainty BC (in terms of just her constant stochastic weight 0 <~ < 1; see
below), but given certainty endowments in the lower-dimensional subset Ee.

To formalize this problem, we begin by observing that the analogues of TTE in the certainty
economy are identical to (A.21)-(A.28) when — = 1;G = H = 2; and G = 0 (setting, say,
si? = s92) after making appropriate changes in notation (replacing p(0) with p*;s$ with 82, and
so on). Hence, after substituting from the SGP’s (A.21)-(A.22) into the BC (A.25) for h =1, and
also setting, for convenience, 0 < "} =" <land "§ =1 ";t =0;1; .nally we ..nd that the
question of nonuniqueness of CE, and a fortiori, PPE boils down to this: when does the linear
equation, for &, 2 Eg,

TAHE) M@ D+ )@ )R+ e+ (1 )8R =0 (A.29)
admit every 0 <~ <1 as a solution? But this will be the case if and only if the pair of equations
(®="1 i ®3= (e eP) + (@1 i @)L ) i (1+1=)=0 (A.30)

and
(®9=",)(8%;8?) + @1(alt; a9 =0 (A.31)

(together with the identity 812 = a92) has a solution in E¢. Since (A.31) but not (A.30) is a
homogeneous equation, this is possible only if

®21: 1i ®gl:_2 ®11 = ®11 (®02_ 1 +®;2) (®02: ) +®12) —5



that is, only if ®§ & ®!, some t, or 5, & ;. The set of such solutions then de..nes the line
segment L¢ ¥ Eq.8 Note that, because the coecients in (A.31) are all positive, any solution
must have both positive and negative elements. ¥

A.6 Proof of Proposition 4
We provide a proof for the “general” case in which — _ G _ 2,G _ 0; but H = 2.
Letting0<";(I)="(1)<land ",(1) =13 “(1); all I; multiply the BC’s (A.26) by
[O="Mi@i @)= (M]

and sum over ! > 0: From the NAC’s (A.23)-(A.24), and after some obvious simpli..cation, this
yields the two equations

> o) s -
@i (M), _
and
S MOTMO I
. #/4(!) =0. (A.33)

We demonstrate that the only solution to (A.32)-(A.33) must be of the form “(1) =", all 1.

Suppose that this were not the case, and without any loss of generality (i.e., by relabeling
future states appropriately) take, for some 1° > 0,

0< (1) -ttt - (1Y -7 - "(1"+1) -t -"(-)<1, (A.34)
where on either side of “(0) there is at least one strict inequality. Note that (A.34) implies that
“(0) i ~ g (10 “(0) 5 (1" g (=

O A T W T LI W ) (A.35)
and
EO) (19 (M +1) (=)

O<1i,(1) - ¢6¢ - 1i,(!0) - 1i,(!0+1) '¢¢¢'T,(_) (A36)
Now consider (A.33). It follows from (A.35) and (A.36) that

_ XOi WM,

0 = - ,('!) (1)
_ XIOitm, X 0) i “(1),
— . ,('!) /4(!)+!>!0—,('!) (1)

NEANMOT OO BRSO UG

70!

S L TR O RS
_ XOim,
= . 1) /().

80f course, there may be no solutions to (A.30)-(A.31) in B¢, as in the example depicted in subsection 3.4 when
there is no redundant bond. However, for the leading example, it is easy to ..nd parameter values for which there
are solutions (using the analogues of TTE and the degrees of freedom amorded in choosing z1(1), all 1). It is also
worth pointing out that (A.29) can also be exploited to give a precise description of Eq; a point we will elaborate
further in future work

25



Hence, if, for some 1, “(1) & " (0), and (A.33) were satis..ed, then (A.32) could not be satis..ed:
the only solution to this pair of equations must therefore be of the form “(1) =", all 1: ¥

A.7 Continuous Time

A.7.1 Proof of Proposition 5

Although ..nancial markets are potentially complete, the martingale representation approach of
Cox and Huang [7] and Karatzas, Lehoczky and Shreve [12] cannot be directly applied because
in equilibrium the volatility matrix & is not invertible. Instead, we extend Cvitanit and Karatzas
[8] (henceforth CK) to the case of multiple goods.

Since one of (g, g2) is redundant, de..ne a composite security, gs, paying out in good 1.
Households’ trading strategies for investing in individual securities are indeterminate, however
the position in the composite security (consisting of one share of both stocks) would be uniquely
identi..ed. The composite security has dynamics

dgs(t) + (£1(1) + p(D£*(D)dt = gs[*s (t)dt + %s ()W (D)]:

In the remainder of the proof, consider an incomplete market (qi; gs). A household’s dual min-
imization problem of CK for the case of incomplete markets extended to a two-good economy is
given by

5

R T /a1 1 2 2 1 2 1 2
g o (@h()1og®L + @2 log®? i ® i @2 i @ logynon(t) i @2 1ogynrn(HP())dt
© +Yn»n(0) + Yn»p(0)p(0)

where © is the parameter in the representation of » in the family of auxiliary markets of CK and
Yh is the multiplier associated with the household’s static budget constraint. This can be shown
to be reduced to a pointwise minimization problem similar to the one in CK, and then one follows
the standard steps to obtain the equilibrium characterization in the statement of the Proposition.
Details are available from the authors upon request.¥

3

<

A.7.2 Proof of Proposition 6
Household h’s ..rst-order conditions are given by
el (t) =y (t); (A.37)
el @R (t) = yn»(t)p(Y): (A.38)
The weight ~ is determined from either household’s budget constraint, e.g., household 1’s:

Z g B Z g
E . »(D)[ci(t) + p(H)cs(D]dt = E . »(t)[e1(t) + p(t)ef(t)]dt

5

Substituting (A.37)—(A.38), we have
-7 T
E

il

H 1 2 ﬂ > -Z T H s

dt =E eiat ®%1(t)
0 Vi Y1 0 y1ci(t)

®2(t)

i)+ yci(t)
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Finally, making use of (4.4)—(4.5),

.Z -Z
= aiqT T . T
1ij 1e ' —E et ut@l(t) ei(t) gt LLli E ei*2t@l(1) ei(t) it
& 7" £ 0 £1(1)
T . .
+E ei1/2;|_t®2(t) el(t) dt + +E ei%2t®l(t) el(t) dt ’ (A39)
1 2 > 2
° =0 0 ()

Due to (4.6) the sum of the ..rst and third terms on the right-hand side of the last expression is
l'e%l—m while the sum of the second and fourth is zero due to (4.7). Hence (A.39) is satis..ed
87 2(0;1): ¥

A.7.3 Proof of Proposition 7

Obvious. ¥
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