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Perturbations in DSGE Models:

Odd Derivatives Theorem∗

Sherwin Lott†

May 21, 2018

Abstract

This paper proves a generalization of previous results in the perturbation

literature. Perturbation methods compute policy functions to DSGE models

using a multivariate Taylor series with respect to the state variables x and a

perturbation parameter σ. Schmitt-Grohé and Uribe (2004) shows that Taylor

coefficients of order x0σ1 and x1σ1 are zero. Andreasen (2012) extends this to

order x2σ1, and shows the x0σ3 coefficient is zero if innovations are symmetric.

We show that Taylor coefficients of order xrσ1 are zero for all r. Most gen-

erally, if odd moments of the innovations are zero up to some moment s̄, then

coefficients of order xrσs are zero for all r and odd s ≤ s̄. (The intuition for this

comes from classical portfolio theory.) Eliminating these coefficients significantly

reduces what needs to be computed and thereby runtime, memory usage, and

numerical errors.

Keywords: Perturbation methods, DSGE models, odd derivatives, computational

macroeconomics.

1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are a primary workhorse of

macroeconomics. Since DSGE models are generally intractable, a variety of approaches

∗I thank Jesús Fernández–Villaverde for posing this theorem, as well as mentoring myself through

the literature and writing process.
†University of Pennsylvania Department of Economics, 160 McNeil Building, 3718 Locust Walk,

Philadelphia, PA. Email: lotts@sas.upenn.edu. Declarations of interest: none.
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have been developed to compute their solutions. One popular way is with perturbation

methods. A perturbation approximates the solution by a multivariate Taylor series

with respect to the state variables x and a perturbation parameter σ. The purpose of

this paper is to prove a theorem that many of these Taylor coefficients are zero, which

will increase the speed and accuracy of perturbations.

These methods have been well established in other fields, such as the natural sci-

ences, but only relatively recently gained prevalence within economics. Judd and Guu

(1993) show how perturbations can be effectively applied to basic growth models. Later

work—Judd (1998), Judd and Guu (2001), and Jin and Judd (2002)—build up more

of the theoretical foundations.

Perturbations have become standard because they are quite fast, yet maintain rea-

sonable accuracy. (Caldara et al. (2012) run detailed comparisons against Chebyshev

polynomials and value function iterations in a real business cycle model with Epstein–

Zin preferences and stochastic volatility.) For applications that perturbations already

work well on, our computational advances may only be of marginal importance.

A growing number of problems require high order perturbations. Fernández-Villaverde

et al. (2011) shows that only perturbations of the third–order or higher can accurately

model volatility shocks. de Groot (2015) and de Groot (2016) argue that perturba-

tions as high as the fourth or sixth–order are necessary for asset pricing models with

stochastic volatility. Unfortunately, computation becomes successively much more dif-

ficult with each order: errors grow rapidly in magnitude, and runtime can be a binding

constraint.

Swanson et al. (2006) concludes that numerical accuracy is especially important

for high order perturbations. This is because numerical errors propagate relatively

quickly as higher order perturbations build on the solutions to past orders. In their

example, “coefficient errors as large as 10% become quite common by about the fourth

or fifth order.” Numerical errors arise when computing derivatives to the equilibrium

conditions. For instance, a model with Epstein-Zin utility can have large non–integer

exponents that are invariably computed with numerical error. This then leads to errors

in the computed coefficients.

Our theorem shows that many coefficients can be set exactly to zero, which elimi-

nates all errors that come from computing these coefficients. Further, this allows the

remaining coefficients to be computed with greater accuracy. The eliminated errors

will no longer enter into the remaining coefficients through the equilibrium conditions.
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Relatedly, there are fewer coefficients for errors to propagate through. The causes of

inaccuracy in high order perturbations are the reasons why reducing the number of

coefficients is valuable.

Because runtimes can be substantial, there is now greater focus on computing high

order perturbations faster. Levintal (2017) recently developed a “new notation” that

sped computation up by manyfold when implemented for fifth–order perturbations.

Our theorem fits into the literature through its direct improvement to computation

by reducing the number of coefficients that need to be solved for. Further, it could

complement Levintal’s type of approach. Eliminating coefficients substantially simpli-

fies the equilibrium conditions that determine the remaining coefficients, which new

approaches could take advantage of.

Finally, our result is of theoretical interest in understanding the odd σ–order co-

efficients that it eliminates. Interpreting these coefficients within specific applications

would be worthwhile—as has been done with the previous results that we are general-

izing. However, we feel doing so in this paper would distract from the broad conclusion

of our theorem.

1.1 Odd σ–Order Derivatives

Schmitt-Grohé and Uribe (2004) prove that Taylor coefficients of order x0σ1 and

x1σ1 are zero (assuming without loss of generality that innovations have mean zero).

Andreasen (2012) extends this result to order x2σ1, and shows the x0σ3 coefficient is

zero if the third moment of the innovations is zero.1

The purpose of our paper is to generalize these previous results. We show that if

innovations have mean zero, then Taylor coefficients of order xrσ1 are zero for all r.

Most generally, if odd moments of the innovations are zero up to some moment s̄, then

coefficients of order xrσs are zero for all r and odd s ≤ s̄.

An implication of this result is an open conjecture stated in Fernández-Villaverde

et al. (2016) (page 559). If the innovations are symmetric, then all Taylor coefficients

involving an odd σ–order are zero. Because symmetric innovations are widely used,

this may be the most applicable implication of our theorem. Note that symmetry is

not as strong of an assumption as it may seem since there is little restriction on how

state variables enter into the DSGE model. However, models for tail events such as

1The statement of his theorem assumes symmetry. However, Andreasen notes in the proof that he

just uses that the third moment of the innovations are zero, which is an implication of symmetry.
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catastrophes will generally not be symmetric.

Intuition for this proof derives from a classical portfolio theory result. Agents are

marginally risk neutral when they have no risk in their portfolio. That is a statement

about the first derivative of utility with respect to risk. However, the result more

generally applies to all odd order derivatives when the corresponding odd moment

of the innovations is zero. This ties back into the DSGE model through the value

function. If the value function is unaffected by odd order changes in risk, then the

optimal decision rule should not be affected either.

The rest of the paper is organized as follows. In section 2, we detail the standard

perturbation setup in the macroeconomics literature. Section 3 develops new arguments

and proves the theorem. Section 4 analyzes the computational impact of this, and

section 5 concludes.

2 Perturbation Setup

The idea of a perturbation is to approximate solutions over the space of models, which

then lets us back out the solution to a particular model. This is conceptually much like

a Taylor series, but where the domain is over models. We start with a simple model,

in that it has a known or easily computable solution, and then build an approximation

around it.

In our macroeconomic context, we want to compute the equilibrium policy functions

of a specific DSGE model. To that end, consider the space over all transformations

of this model where the innovations are scaled by a constant perturbation parameter

σ ≥ 0. The deterministic model corresponds to σ = 0, which has a relatively easy

to compute steady–state. Policy functions are then approximated by a Taylor series,

centered at this steady–state, with respect to the state variables x and the perturbation

parameter σ. The equilibrium to our unscaled model, σ = 1, can then be backed out.

This will be detailed in the rest of the section.

2.1 Standard Setup

We will consider perturbations in the context of a generic DSGE model.2 Denote the

control variables of this model by yt ∈ Rny and the state variables by xt ∈ Rnx . Let

2We follow the generalized setup in Fernández-Villaverde et al. (2016).
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the equilibrium conditions be expressible as a system of equations:

EtH (yt,yt+1,xt,xt+1) = 0 (1)

Denote the corresponding policy functions by g and h, where:

yt = g (xt;σ) , (2)

xt+1 = h (xt;σ) + σηεt+1 (3)

The state variables evolve stochastically. Here, εt+1 is a vector of nε independent

innovations; η is a nx × nε matrix—it linearly transforms the innovations into state

variable shocks. Notice that this setup allows for any state variable covariance matrix

through the choices of η and εt+1. Finally, the perturbation parameter σ ≥ 0 is a

constant that scales the magnitude of the shocks.

When these shocks are scaled away, σ = 0, the variables evolve deterministically.

Denote the deterministic steady-state of the model as (x̄, ȳ), satisfying:

H (ȳ, ȳ, x̄, x̄) = 0 (4)

Solving this yields the fixed point of the policy functions: ȳ = g (x̄, 0) and x̄ = h (x̄, 0).

Here, the purpose of perturbation methods is to find the policy functions of the

unscaled model—when σ = 1. These are g ( · , 1) and h ( · , 1). They can be backed out

by computing Taylor series for g and h centered at the deterministic steady-state.

The coefficients of this Taylor series are computed through an implicit function

argument. Using decision rules (2) and (3), the variables yt, yt+1, and xt+1 can be

expressed in terms of xt and σ. Plugging these into the equilibrium condition gives an

expression that only depends on xt and σ, denote this as a function F :

F (x;σ) ≡ E
[
H
(
g(x;σ), g

(
h(x;σ) + σηε;σ

)
, x, h(x;σ) + σηε

)]
= 0

By construction, F is always zero; hence, any derivatives of F must also evaluate

to zero, Fxrσs(x;σ) = 0. Taking these derivatives up to some finite nth–order, forms a

system of equations. The unknowns are the derivatives of g and h up to the nth–order.

This system has exactly as many equations as unknowns—allowing us to compute the

Taylor expansion.
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2.2 Stochastic Volatility Setup

We can add stochastic volatility into the model by changing how state variables evolve

in (3) to the following.

xt+1 = h (xt;σ) + σηαt+1εt+1 (3*)

Here, αt+1 is the stochastic volatility term—an nε × nε matrix.

All our results will hold for stochastic volatility so long as expectations in the system

of equations are still well defined. The stochastic volatility term α may depend on the

past ε’s in any way. For example, α can be used to represent any GARCH model. The

standard setup in section 2.1 corresponds to α being the identity matrix.

Just like η, the αt+1 is a constant with respect to the expectation after time t, and

it does not depend on σ. The proofs will go through by simply replacing every instance

of η with ηαt+1. Therefore, we stick with the notation in section 2.1 by omitting αt+1.

3 Main Developments

This section proves the main theorem that says when odd σ–order coefficients are zero.

(In the following, functions are evaluated at the deterministic steady state, (x̄; 0),

unless otherwise noted. Let εs denote the Kronecker product of ε with itself s times.)

Theorem 1 If E[εs] = 0 for all odd s ≤ s̄, then gxrσs = hxrσs = 0, for all r and odd

s ≤ s̄.

This immediately generalizes the results in Schmitt-Grohé and Uribe (2004) and

Andreasen (2012), as well as proves the open conjecture in Fernández-Villaverde et al.

(2016).

Corollary 1 If E[ε] = 0 (mean zero innovations), then gxrσ = hxrσ = 0, for all r.

Corollary 2 If ε is symmetric, then gxrσs = hxrσs = 0, for all r and odd s.

Since this paper is about proving a specific property of perturbations, we will take

as given that the standard methods are valid. (See Lan and Meyer-Gohde (2014) for

solvability conditions.) That means we assume the system of equations has a unique

solution. For this system of equations to even exist, we must assume the expectations

are well defined, and that the functions H, g, and h are differentiable up to whatever
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order the perturbations are taken to. If any of these assumptions are violated in an

application, then perturbations should not be used in the first place.

The intuition for the theorem is straightforward. A classical portfolio theory result

says that if E[εs] = 0 for all odd s ≤ s̄, then ∂s

∂σsV (x; 0) = 0 for all x and odd s ≤ s̄.

(Where V is a representative agent’s value function). It then stands to reason that if

an agent’s utility is marginally unaffected by these odd high order changes in risk, then

perhaps their optimal decision is not affected either. That is, gσs(x; 0) = hσs(x; 0) = 0

for all x and odd s ≤ s̄. This would then imply the theorem.

While our proof only uses basic calculus, it is a bit more convoluted than the

intuition because policy functions are determined by a system of equations (outlined

in section 2). The following subsection 3.1 carefully examines the system of equations

and proves a basic “bookkeeping” result. Finally, subsection 3.2 uses this to prove the

theorem by induction.

3.1 Derivatives of F

The derivatives of F form a system of equations that determine the policy functions g

and h. Understanding the functional form of these derivatives is key. As an example,

consider the first σ–order derivative:3

Fx0σ1(x;σ) = E [Hygσ +Hy′ĝxhσ +Hy′ĝxηε+Hy′ĝσ +Hx′hσ +Hx′ηε]

Any order derivative can readily be obtained by repeatedly applying the product and

chain rules. Multiplying these expressions out, they can be represented generically as

a sum of products.

Claim 1 The equations Fxrσs can be expressed as a finite sum of products:

Fxrσs(x;σ) = E

J(r,s)∑
j=1

P (r,s,j)


Each P (r,s,j) is the product of terms of the form: H•, g•, ĝ•, h•, and ηε.4 The total

number of products being summed over is J (r,s), with j indexing over these products.

3With the appropriate shorthand notations: g• = g•(x;σ), ĝ• = g•
(
h(x;σ) + σηε;σ

)
, h• =

h•(x;σ), and H• = H•
(
g(x;σ), g

(
h(x;σ) + σηε;σ

)
, x, h(x;σ) + σηε

)
. Dropping time subscripts,

x′ and y′ are shorthand for next period variables.
4This holds inductively. The derivative of any one of these terms is an expression containing only

these terms multiplied or added together.
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One approach would be to write out each P (r,s,j) explicitly, but this would give

unnecessarily complex tensor products. Instead, for our purposes, we only need to

show that when s is odd, P (r,s,j) contains an odd number of ε’s or an odd σ–order

derivative of g or h. To do this, we will show that the sum over the frequency of ε and

σ–orders of derivatives of g and h is s. (This summation will be made more precise.)

When s is odd, there must then be at least one such odd term.

The idea is that when P (r,s,j) is differentiated by σ, each new product will contain

exactly either one more ε or another σ–order derivative of g or h. When P (r,s,j) is

differentiated by x, there will be no new such terms. This will inductively show that

the previously mentioned sum is s, which will be sufficient information about the

products to prove the theorem.

To prove this idea, we need to determine how each P (r,s,j) changes when differen-

tiated. When P (r,s,j) is differentiated, the product rule will split it up into a sum of

products where only one term is being differentiated. Exhaustively, the following are

all the derivatives that arise from differentiating one term in a product:

(With respect to σ.)

(D1) ∂
∂σ
H• = H•ygσ +H•y′ĝxhσ +H•y′ĝxηε+H•y′ĝσ +H•x′hσ +H•x′ηε

(D2) ∂
∂σ

gxrσs = gxrσs+1

(D3) ∂
∂σ

ĝxrσs = ĝxr+1σshσ + ĝxr+1σsηε+ ĝxrσs+1

(D4) ∂
∂σ

hxrσs = hxrσs+1

(With respect to x.)

(D5) ∂
∂x
H• = H•ygx +H•y′ĝxhx +H•x +H•x′hx

(D6) ∂
∂x

gxrσs = gxr+1σs

(D7) ∂
∂x

ĝxrσs = ĝxr+1σshx

(D8) ∂
∂x

hxrσs = hxr+1σs

Notice that these terms changed inline with what we had expected. When a term

is differentiated by σ, (D1)–(D4), each new product has exactly either an additional ε

or another σ–order derivative of g or h. Whereas, when a term is differentiated by x,

(D5)-(D8), each new product has no such additional ε’s or σ–order derivatives.
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To be rigorous, we explicitly track these term totals. For each P (r,s,j), we denote

the number of ε terms and define a sum over the σ–orders of derivatives of g and h.

These are expressed in the following notation as a(r,s,j) and b(r,s,j) respectively.

Notation 1

• Let a(r,s,j) denote the total number of ε’s that are multiplied in P (r,s,j).

• Let k
(r,s,j)
i denote the σ–order of the derivative for the ith g or h term in P (r,s,j),

1 ≤ i ≤ K(r,s,j). And, denote the sum by, b(r,s,j) =
K(r,s,j)∑
i=1

k
(r,s,j)
i .

We have argued that these should sum to s, as stated in the following lemma. This

will be the core of the proof—the only piece of information needed about the products

to prove our theorem.

Lemma 1 a(r,s,j) + b(r,s,j) = s, ∀r, s, j.

Proof. This holds for the base case when r = 0 and s = 0.

Inductively, suppose this holds for some r, s: a(r,s,j) +b(r,s,j) = s, ∀j. Then, consider

each new term obtained from the product rule on ∂
∂σ
P (r,s,j). Inspecting (D1) - (D4), any

of these differentiations increases a+ b by one in any new products. Hence, a(r,s+1,j) +

b(r,s+1,j) = s+ 1, ∀j.
Similarily, consider each new term obtained from the product rule on ∂

∂x
P (r,s,j).

Inspecting (D5) - (D8), none of these differentiations effect a or b. Hence, a(r+1,s,j) +

b(r+1,s,j) = s. This lemma then holds by induction.

This implies that if s is odd, then either a(r,s,j) or b(r,s,j) is odd. Further, then P (r,s,j)

must have an odd σ–order derivative or an odd number of ε’s.

3.2 Proof of Theorem

With these bookkeeping results in mind, we now turn to partially solving the system

of equations generated by Fxrσs = 0. First, it should be emphasized, the role that

evaluating Fxrσs at the deterministic steady-state plays. Having σ = 0 eliminates all

of the ε terms within functions, so all the functions can be treated as constants with

respect to the expectation. In conjunction, evaluating at x̄ makes g and ĝ equivalent—

all the functions are being evaluated at the deterministic steady-state.

The idea behind our partial solution is that, in a nth–order perturbation, odd σ–

order equations are solved by setting odd σ–order unknowns gxrσs and hxrσs to zero.
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This will follow from Lemma 1—every product in the odd σ–order equations contains

either a zero or an odd number of ε’s.

Lemma 2 If E[εs] = 0 for all odd s ≤ s̄, and gxrσs(x̄; 0) = hxrσs(x̄; 0) = 0 for all r

and odd s ≤ s̄ where r + s ≤ n; then, the equations Fxrσs(x̄; 0) = 0 are satisfied for all

such previous r and s.

Proof. Take any such r and s. By Lemma 1, every product in Fxrσs multiplies an

odd σ-order (≤ s̄) policy derivative or an odd number (≤ s̄) of ε terms.5 All other

terms in Fxrσs are constant because functions are being evaluated at the deterministic

steady-state. Hence, each product in Fxrσs evaluates to zero in expectation.

The number of equations eliminated is equal to the number of unknowns being set.

The theorem can now be proven by induction.

Theorem 1 If E[εs] = 0 for all odd s ≤ s̄, then gxrσs = hxrσs = 0, for all r and odd

s ≤ s̄.

Proof. We’ll prove this by induction on the order of the perturbation. Schmitt-Grohé

and Uribe (2004) already proved that gσ = hσ = 0, which is our base case.

Suppose this theorem holds for policy derivatives in a nth–order perturbation; we

want to show that then it holds for policy derivatives in a (n+1)th–order perturbation.

By Lemma 2, setting the (n + 1)th–order policy derivatives corresponding with this

theorem to zero eliminates exactly as many equations as unknowns. We now invoke

the fact that the (n+1)th–order equations are linear given the solution to the nth–order

perturbation. This concludes the proof. Our proposed partial solution eliminates as

many equations as unknowns in a linear system of equations with a unique solution;

therefore, it is in fact a partial solution.

As noted in the beginning of section 3, we assume there is a unique solution to each

perturbation. Otherwise, these perturbation methods should not be used in the first

place. While this is an important foundational question, it is outside the purview of

this paper, so we consider it a rather innocuous assumption for our purposes. (See Lan

and Meyer-Gohde (2014) for solvability conditions.)

5It does not matter the order the ε’s appear. Every element in the resultant tensor will contain

that many elements of ε, which will evaluate to zero in expectation if there is an odd such number

≤ s̄.
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4 Analysis

High order perturbations with many state variables require a lot of computing power

and memory. This is because the number of coefficients in a perturbation grows

exponentially with its order n and number of state variables nx. (See Appendix A.1 for

a closed form expression and analysis of the number of coefficients in a perturbation.)

Runtime and memory become binding constraints when there are so many coefficients—

the computer simply runs out of memory. Further, numerical errors compound as high

order perturbations build on lower order solutions (Swanson et al. (2006)).

The primary purpose of our paper is to improve computation by reducing the

number of coefficients. Theorem 1 proved that odd σ–order coefficients are zero when

the corresponding odd moments of ε are zero. (If ε is symmetric, then all odd σ–order

coefficients are zero.) And, Lemma 2 proved that this partial solution solves all the

equations of corresponding odd σ–order. We can now eliminate a sizable percentage

of the coefficients and equations in perturbations (see Table 1).

These results reduce runtime, memory use, and numerical errors in the computation

of perturbations.6 This is because the coefficients and equations we eliminate no longer

need to be computed or stored. Further, these coefficients are now known with per-

fect accuracy—they are exactly zero. The magnitude of these computational benefits

correspond with the percent of coefficients that are eliminated, which is substantial.

In addition, it is now easier to compute the coefficients and equations that remain.

The equations are sums of products, and any product that contains an eliminated

coefficient is itself zero.7 Setting these products to zero greatly simplifies the equations,

which allows the coefficients to be computed faster and with fewer numerical errors.

A natural followup question is: what proportion of coefficients and equations are

eliminated? That is, what proportion of coefficients are of “odd σ–order?” We quantify

this in section 4.1. Then, section 4.2 discusses how to modify current methods to best

implement our results.

6These results will ideally be implemented at a developer level for softwares such as Dynare.

Section 4.2 discusses at a high-level how to code this, though we have not done so. We want to

keep our general result separate from important coding and application specific details of how best to

compute a perturbation. Fruitful future work includes not just implementing our result, but figuring

out additional implications. (For instance, we can eliminate many products in the even σ–order

equations. How can this fact be utilized? How does it affect the interpretation of various coefficients?)
7If product P (r,s,j) contains a coefficient of odd σ–order less than or equal to s̄, then P (r,s,j) = 0.
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4.1 Proportion of Coefficients that are of Odd σ–Order

Perturbation Order

nx
n 1 2 3 4 5 10 20

1 .500 .400 .444 .429 .450 .462 .478

2 .333 .333 .368 .382 .400 .439 .466

3 .250 .286 .324 .348 .368 .420 .456

4 .200 .250 .291 .320 .343 .403 .446

5 .167 .222 .265 .297 .321 .388 .436

10 .091 .143 .185 .218 .245 .326 .394

20 .048 .083 .115 .142 .165 .247 .330

N
u
m

b
er

of
S
ta

te
V

ar
ia

b
le

s

50 .020 .037 .054 .069 .083 .142 .221

Table 1: Proportion of coefficients that are of odd σ–order.(
These are approximately n

2n+nx
, see Claim 3 in Appendix A.

)
See Appendix A for the mathematical details of this section. The proportion of

coefficients that are of odd σ–order is displayed in Table 1. For instance, in a fourth–

order perturbation (n = 4) with ten state variables (nx = 10) the percent of coefficients

of odd σ–order is 21.8%.

Let’s exhaustively verify a couple entries in Table 1. Consider a first–order pertur-

bation (n = 1) with one state variable (nx = 1), the following coefficients need to be

computed: gx1 , hx1 , gσ, and hσ. The first two are of the zeroth σ–order, and the latter

two are of the first σ–order. In other words, half of the coefficients are of odd σ–order,

which corresponds to the first entry of “.5” in Table 1.

Consider a second order perturbation (n = 2) with two state variables (nx = 2).

The coefficients that need to be computed are: gx1 , gx2 , gx1x2 , gx21 , gx22 , gσ, gx1σ,

gx2σ, and gσ2 (symmetrically for h). Three of the nine, or 1/3 = .333, are of the first

σ–order. Notice that this does not depend on the number of control variables ny.

All of the entries in Table 1 are less than 1/2. This is because there are more

coefficients of order σs than σs+1. That is, there are more coefficients of order σ0 than

σ1, and of order σ2 than σ3. . . Hence, there are more even σ–order equations than

odd. Theorem 1 does not apply to the (deterministic) coefficients of order σ0, but does

substantially reduce the number of other (stochastic) coefficients of higher σ–order.
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4.2 Improving Perturbation Methods

How can our results be used to improve perturbation methods? First, the coefficients

and equations eliminated no longer need to be computed. Secondly, the remaining

equations (other than those of order σ0) can be greatly simplified. This reduces com-

putation and improves accuracy.

We will now explain in detail a modified version of the standard block recursion

method (Jin and Judd (2002)). For a fixed s, block–s is the set of equations of order σs.

In Figure 1, block–s is depicted by the entire row s. The blocks are computed recur-

sively starting with block–0.

Block–0 is computed in the following way. The system of equations Fx1σ0 is com-

puted by differentiating Fx0σ0 and then solved to get the coefficients of order x1σ0.

Similarly, Fx2σ0 is computed by differentiating Fx1σ0 and then solved to get the coeffi-

cients of order x2σ0. The rest of the block can be computed in this way.

By Theorem 1, block–1 can be skipped since all coefficients of order σ1 are zero.

We can then proceed to compute block–2. The system of equations Fx0σ2 is computed

by twice differentiating Fx0σ0 .

Any product in Fx0σ2 that contains either a coefficient of odd σ–order or an odd

number of ε’s is itself zero. Further, the derivative of such a product with respect

to x will still be zero because the σ–orders and number of ε’s are unchanged (see

(D5)–(D8)). Hence, we can eliminate all such products in the computation of block–2.

Fx0σ0 Fx1σ0 Fx2σ0 . . . Fxn−2σ0 Fxn−1σ0 Fxnσ0

Fx0σ1 Fx1σ1 Fx2σ1 . . . Fxn−2σ1 Fxn−1σ1

Fx0σ2 F̂x1σ2 F̂x2σ2
. . . F̂xn−2σ2

Fx0σ3 Fx1σ3 Fx2σ3 . . .

...

Fx0σn

. . .

0

1

2

3

n

Figure 1: Modified block recursion.
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This substantially reduces the number of products that need to be kept track of and

differentiated. Denote this simplified system of equations by F̂x0σ2 .

Block–2 can now be computed in the same way as block–0, just with F̂x0σ2 . That

is, F̂x0σ2 is solved to get the coefficients of order x0σ2. Then, F̂x1σ2 is computed by

differentiating F̂x0σ2 and then solved to get the coefficients of order x1σ2, and so on.

The blocks can continue to be solved in this recursive way. The odd blocks are

skipped so long as the corresponding odd moments of ε are zero. (All of the odd blocks

can be skipped if ε is symmetric.) The equations in the remaining (even) blocks are

computed normally—except that the simplified system of equations F̂x0σs is used.

We have not changed how the deterministic block–0 is computed. What we have

done is eliminated odd blocks and greatly simplified all the blocks that remain besides

block–0.

5 Conclusion

We proved in Theorem 1 that if odd moments of innovations are zero up to some

moment s̄, then coefficients of order xrσs are zero for all r and odd s ≤ s̄. This

is a generalization of the theoretical results in Schmitt-Grohé and Uribe (2004) and

Andreasen (2012) to all orders. In doing so, we also proved an open conjecture in

Fernández-Villaverde et al. (2016) that all coefficients of an odd σ–order are zero when

the innovations are symmetric.

The proportion of coefficients and equations eliminated (when ε is symmetric) is

given by Table 1 in section 4.1. Since this portion of the perturbation no longer

needs to be computed or stored, we expect reduction in runtime, memory usage, and

numerical errors to be comparable. This is significant for high order perturbations

where computing power and memory can be binding constraints, and accuracy issues

are acute (Swanson et al. (2006)).

In addition, the remaining equations can be greatly simplified. This is because

any product containing an eliminated coefficient is itself zero. Setting these products

to zero simplifies the equations, which further allows the coefficients to be computed

faster, with less memory, and fewer numerical errors.

Beyond computational improvements, Theorem 1 enhances our understanding of

perturbations. We now know that odd σ–order coefficients are zero and how it relates

to classical portfolio theory.
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A Computational Analysis

Let us quantify how many coefficients there are and what proportion are of odd σ–order.

This measures the computational complexity of perturbations and the degree to which

our results can simplify them.

A.1 Total Number of Coefficients in a Perturbation

Consider a perturbation of order n with ny control variables and nx state variables. The

following Claim 2 gives an exact closed form expression for the number of coefficients

in such an order n perturbation.

Claim 2 The number of coefficients to be estimated in an order n perturbation is:

T (n, nx, ny) = (nx + ny)

((
n+ nx + 1

nx + 1

)
− 1

)
Proof. The policy functions g and h are of length ny and nx respectively. The total

number of coefficients is the number of ways these policy functions can be differentiated

(in an order n perturbation) multiplied by nx + ny.

All derivatives of these policy functions must be computed up to order n with

respect to the state variables x = (x1, . . . xnx) and the perturbation parameter σ. The

number of such derivatives is the number of expressions ∂xr11 ∂x
r2
2 . . . ∂x

rnx
nx ∂σ

s with

nonnegative integer powers satisfying 1 ≤ r1 + r2 + . . . + rnx + s ≤ n. By a standard

“stars and bars” combinatorial argument, this is
(
n+nx+1
nx+1

)
− 1.
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Using this closed form expression, we can say exactly how the total number of

coefficients is affected by n, nx, and ny. Using properties of binomials, we can say that

the total number of coefficients:

• Is linear in the number of control variables ny (fixing n and nx).

• Behaves (asymptotically) like the polynomial nn+1
x (fixing n and ny).

• Behaves (asymptotically) like the polynomial nnx+1 (fixing nx and ny).

• Grows exponentially as n and nx are multiplied by a scaling c (fixing ny).

A.2 Proportion of Coefficients that are of Odd σ–Order

We want to compute the proportion of coefficients that are of odd σ–order. For this,

it is more illustrative to think of T (n, nx, ny) as the following sum.

T (n, nx, ny) = (nx + ny)

( ∑
0≤s≤n

(
n− s+ nx

nx

)
− 1

)

Here, we are summing over the number of coefficients with σ–order s. For a fixed s,

the number of nonnegative integer solutions to r1 + r2 + . . .+ rnx ≤ n− s is,
(
(n−s)+nx

nx

)
.

(Again, by a “stars and bars” combinatorial argument.)

Now, we can express the number of odd σ–order coefficients.

Todd(n, nx, ny) = (nx + ny)
∑
odd s,
0≤s≤n

(
n− s+ nx

nx

)

Hence, the proportion of coefficients of odd σ–order is:

podd(n, nx, ny) = Todd(n, nx, ny)/T (n, nx, ny)

To simplify notation, we drop ny.

podd(n, nx) = Todd(n, nx)/T (n, nx)

Where:

Todd(n, nx) = Todd(n, nx, ny)/(nx + ny)

T (n, nx) = T (n, nx, ny)/(nx + ny)
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Claim 3 The proportion of coefficients of odd σ–order is bounded between:

podd(n, nx) ≤
n

2n+ nx

(
1 +

1

T (n, nx)

)
︸ ︷︷ ︸
≈ 1 (large n or nx)

podd(n, nx) ≥
(

n

2(n− 1) + nx

)
︸ ︷︷ ︸
≈ n

2n+nx
(large n or nx)

(
n+ nx − 1

n+ nx + 1

)(
1 +

1

T (n, nx)

)
︸ ︷︷ ︸

≈ 1 (large n or nx)

This claim should be interpreted as podd(n, nx) ≈ n
2n+nx

.

Proof.

First, we’ll simplify podd by eliminating the −1 in its denominator. (This is simply

coming from T (n, nx) not counting the intercepts of the policy functions.) Denote,

p̂odd(n, nx) = podd(n, nx)

(
1 +

1

T (n, nx)

)−1

Now,

p̂odd(n, nx) =
∑
odd s,
0≤s≤n

(
n− s+ nx

nx

)/ ∑
0≤s≤n

(
n− s+ nx

nx

)

The critical part of the argument is that the terms in the summation are decaying

faster than geometrically.(
n− (s+ 1) + nx

nx

)/(
n− s+ nx

nx

)
=

n− s
n− s+ nx

The first term in the summation corresponds with s = 0, which is even. Each even

term is followed by an odd term of proportion less than n
n+nx

. This then gives a lower

bound on the sum of the even terms.

n

n+ nx

∑
even s,
0≤s≤n

(
n− s+ nx

nx

)
≥
∑
odd s,
0≤s≤n

(
n− s+ nx

nx

)

This then gives an upper bound on p̂odd(n, nx):

p̂odd(n, nx) ≤
(

1 +
n

n+ nx

)−1

=
n

2n+ nx
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The lower bound is proven in the same way after accounting for the first term

(s = 0). The first term is the following percentage of the sum.(
n− 0 + nx

nx

)/ ∑
0≤s≤n

(
n− s+ nx

nx

)
=

(
n+ nx
nx

)/(
n+ nx + 1

nx + 1

)
=

nx + 1

n+ nx + 1

This implies that the sum over 1 ≤ s ≤ n is,∑
1≤s≤n

(
n− s+ nx

nx

)
=

(
1− nx + 1

n+ nx + 1

) ∑
0≤s≤n

(
n− s+ nx

nx

)
=

n

n+ nx + 1︸ ︷︷ ︸
∑

0≤s≤n

(
n− s+ nx

nx

)

Now, each odd term is followed by an even term of proportion less than n−1
n−1+nx

. This

then gives the lower bound:

n− 1

n− 1 + nx

∑
odd s,
1≤s≤n

(
n− s+ nx

nx

)
≥
∑

even s,
1≤s≤n

(
n− s+ nx

nx

)

=⇒
∑
odd s,
1≤s≤n

(
n− s+ nx

nx

)
≥
(

1 +
n− 1

n− 1 + nx

)−1 ∑
1≤s≤n

(
n− s+ nx

nx

)

=
n+ nx − 1

2(n− 1) + nx︸ ︷︷ ︸
∑

1≤s≤n

(
n− s+ nx

nx

)

We can now compute a lower bound for p̂odd(n, nx).

p̂odd(n, nx) ≥
(

n

n+ nx + 1

)(
n+ nx − 1

2(n− 1) + nx

)
=

(
n

2(n− 1) + nx

)(
n+ nx − 1

n+ nx + 1

)
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