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Go Big or Go Home:
A Free and Perfectly Safe but Only Partially Effective Vaccine

Can Make Everyone Worse Off∗

Eduard Talamàs & Rakesh Vohra†

Abstract

Vaccines are crucial to curb infectious-disease epidemics. Indeed, one of the highest

priorities of the National Institutes of Health (NIH) on the HIV front is the development

and delivery of a vaccine that is at least moderately effective. However, risk compensa-

tion could undermine the ability of partially-effective vaccines to curb epidemics: Since

vaccines reduce the cost of risky interactions, vaccinated agents may optimally choose to

engage in more of them and, as a result, may increase everyone’s infection probability.

We show that—in contrast to the prediction of standard models—things can be worse

than that: A free and perfectly safe but only partially effective vaccine can reduce everyone’s wel-

fare. The reason is simple: By reducing the cost of risky interactions, a partially-effective

vaccine can destabilize the existing interaction structure in favor of a less efficient one.

Because of the strategic complementarities in risky interactions that we show arise when

agents strategically choose their partners, the most efficient stable interaction structure

after the introduction of a partially-effective vaccine can be much denser and—due to the

negative externalities of risky interactions—worse for everyone. The result of this paper

underscores the importance of taking into account the effects that different interventions

have on social structure, and it suggests that the NIH might want to go big—i.e. deliver

a highly-effective vaccine—or go home.
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1 Introduction

Infectious-disease epidemics like HIV are a major source of human suffering. According to

the World Health Organization, about 35 million people have died from HIV, and roughly

the same number are currently living with this virus.1 The development of effective vac-

cines is crucial for preventing infectious-disease epidemics. Developing an HIV vaccine, for

instance, is a high priority for the US National Institutes of Health. Anthony S. Fauci, the

Director of the National Institute of Allergy and Infectious Diseases, recently observed2

The development and delivery of a preventive HIV vaccine that is safe and at least

moderately effective would help bring about a durable end to the HIV/AIDS pan-

demic. We are committed to pursuing multiple vaccine development strategies

to achieve this goal.

In this paper we show that a free and perfectly safe but only partially effective vaccine can

make everyone worse off. A partially-effective vaccine has two opposing effects on welfare.

On the one hand, it allows agents to have more risky interactions, making them better off.

On the other hand, it can increase the probability that agents become infected (because of

the increase in risky interactions), making them worse off. We show that—in contrast to the

prediction of existing economic epidemiological models—the second effect can dominate

the first.

A key force in the mechanism is that there are strategic complementarities in risky inter-

actions.3 The reason is simple; we illustrate it here with an example. Suppose that there are

two pairs of agents having risky interactions to start with: Ann and Bob are one pair, and

Chloe and Dane the other (Network 1 in Figure 1). Each individual has a fixed probability

of contracting a given virus independently of her interactions, and an infected individual

transmits the virus in any given interaction with probability p. Infection and transmission

are independent across agents and interactions, respectively.

To build intuition, consider first the extreme case in which each interaction transmits the

virus with probability one—that is, p = 1. An interaction between Chloe and Bob is risky

for each of them, since under some states of the world only one of them is infected, and

1See “Global Health Observatory (GHO) data” here.
2See “NIH and partners launch HIV vaccine efficacy study” here. Emphasis added.
3Friedman et al. (1987), Abdul-Quader et al. (1990) and Tross et al. (1992) provide evidence that is consistent

with strategic complementarities in risky interactions: They document how—in the context of unprotected sex

and needle sharing—partners’ risk-reductions efforts are correlated with own risk-reduction efforts.
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hence an interaction would infect the other. We claim that an interaction between Ann and

Dane (a switch from Network 1 to Network 2 in Figure 1) increases Chloe and Bob’s incentives

to interact. Indeed, in Network 2, the states of the world where one catches the virus are the

same as the states of the world where the other one catches it, so their interaction is risk free.

A similar intuition holds when p < 1: Ann and Dane’s interaction decreases the probability

that only one of Chloe and Bob is infected, hence increasing their incentives to interact.

A

B

C

D

Network 1

A

B

C

D

Network 2

Figure 1: Two illustrative interaction networks.

This paper illustrates as simply as possible the mechanism by which a free and perfectly

safe but only partially effective vaccine can make everyone worse off. Intuitively, fixing the

network of social interactions, the introduction of a partially effective vaccine reduces every-

one’s probability of becoming infected, and hence makes everyone better off. However, by

reducing the (ceteris-paribus) cost of each risky interaction, such an intervention can destabi-

lize the efficient network structure. Because of the strategic complementarities in risky interac-

tions just described, the next-best stable network structure can feature substantially more in-

teractions and—as a consequence of the negative externalities that each interaction imposes

on others via an increased infection probability—be worse for everyone. In other words, a

relatively high transmission probability can play a beneficial role by preventing deviations

from the efficient social structure. As a result, the beneficial effects of a partially-effective

vaccine—in terms of decreased infection probability given any social structure—must be

traded off against the welfare effects of the change in social structure that it unleashes.

Many social scientists have long realized that social networks play a central role in epi-

demiological processes (see for example Jacquez et al. 1988, Barnard 1993 and Friedman

et al. 2006). Standard economic epidemiological models, however, abstract away from the

structure of social interactions, so they are unable to capture the mechanism that we illus-

trate in this paper (see for example Kremer 1996 and Fenichel et al. 2011). Indeed, a free and

perfectly safe but only partially effective vaccine necessarily makes everyone better off in
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these models. The logic is simple; Kremer (1996, page 555) explains it as follows:4

Adoption of an imperfectly effective vaccine could not cause the number of part-

ners to increase so much that [the per-interaction probability of infection] in-

creased, because people would not be willing to have more partners if the prob-

ability of infection from an additional partner increased.

Hence, in these canonical models, everyone is better off after the adoption of a free and

perfectly safe imperfect vaccine. Indeed, since such a vaccine decreases the per-interaction

probability of infection, everyone can choose the same amount of interaction as she was

choosing before its introduction, and in this way obtain the same benefits from her interac-

tions with a reduced probability of infection. From this perspective, the contribution of this

paper is to show the existence of non-trivial tradeoffs in the distribution of free and perfectly

safe but only partially effective vaccines: When agents strategically choose whom to interact

with, there are strategic complementarities in risky interactions, which implies that the in-

troduction of a perfectly safe and free but only partially-effective vaccine can make everyone

worse off.

The result of this paper suggests that taking into account agents’ strategic choice of part-

ners is important in order to understand the potential effects that different interventions

have on social structure—and hence on behavior and welfare. Moreover, it suggests that

measuring the relevant interaction structure—and how it changes with different interventions—

can be crucial for understanding which social groups are more likely to feature strategic

complementarities in risky interactions, and hence which parts of a society are more vul-

nerable to the potentially-negative welfare effects of partially-effective vaccines and similar

interventions.

The remainder of this paper is organized as follows. In section 2 we introduce the sim-

ple model that we use to illustrate our argument, and in section 3 we discuss how strategic

complementarities in risky interactions naturally arise in this model. In section 4 we charac-

terize the set of pairwise-stable networks in this simple model. In section 5 we present the

main result of this paper: A free and perfectly safe but only partially-effective vaccine can

make everyone worse off. We discuss the contribution of this paper in the context of the re-

4In this quote, we have substituted the symbol βY with its corresponding words: The per-interaction prob-

ability of infection. The sentence that follows the one in this quote is: “However, the combined costs of the

increased prevalence, plus the expense and side effects of the vaccine, could outweigh the benefits of a reduced

risk of infection per partner and so introduction of an imperfect vaccine could make everybody worse off.” In

this paper we show that an imperfect vaccine can reduce everyone’s welfare even if it is free and has no side effects.
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lated literature in section 6, and we conclude in section 7. Appendix A derives the infection

probabilities that we use to prove some of the statements in the main body of the paper.

2 Simple Epidemiological Model

There are four agents (two men and two women) and four stages, listed below.

Stage 1: Network Formation. Each agent simultaneously announces which partners he or she

wants to have. An edge between two agents is formed if and only if both of them have

announced that they want to partner with the other.

Stage 2: Infection. Each agent becomes exogenously infected with probability q. Infection is

independent across agents.

Stage 3: Contagion. Each edge becomes live with probability p. Each agent connected via a path

of live edges to an infected agent becomes infected. Edges become live independently

of each other.

Stage 4: Utility Realized. The utility of each agent is the benefit that he or she derives from his

or her partners5 (0 if no opposite-sex partners, s1 if one opposite-sex partner, and s1+s2

if two opposite-sex partners) less the cost of infection (c if infected, and 0 otherwise).

Note 2.1. This model is similar to the one in Blume et al. 2011: The main difference is that

Blume et al. 2011 assume that infected agents do not benefit from their links, whereas we

assume that infected agents benefit from their links but pay a cost c when they become

infected. More importantly, their objective is different: Whereas we focus on the effects of

partially-effective vaccines—which we think of as reductions in the probabilities q and p—

they focus on characterizing the structural differences between optimal and stable networks.

Stage 1 is the only stage in which agents take actions. We focus on situations in which

having a risky interaction involves mutual consent. To capture this idea, we assume that

the outcome in stage 1 is a pairwise-stable network. This solution concept—first proposed by

Jackson and Wolinsky (1996)—is a natural refinement of Nash equilibrium in the network

formation game (stage 1). Informally, a network is (pairwise) stable if no agent has an in-

centive to drop an existing edge, and no two agents have an incentive to form a new edge.

To define it formally, let E be the edge set of a network and denote by ui(E) the utility that

5For simplicity, agents derive no benefit from same-sex partners.
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agent i enjoys at edge set E. The network with edge set E is said to be (pairwise) stable if

the following two conditions hold:6

1. For all ij ∈ E, ui(E) ≥ ui(E \ ij) and uj(E) ≥ uj(E \ ij).

2. For all ij 6∈ E, if ui(E ∪ ij) > ui(E), then, uj(E ∪ ij) < uj(E).

Note 2.2. We base our analysis on pairwise stability because it is both a well understood

solution concept and natural for the applications that we focus on in this paper. Our analysis

goes through if—in addition to pairwise stability—we require that no agent has incentives

to sever any subset of her existing links.

For simplicity, we focus throughout on the case in which the utility s1 of the first edge is

high enough so that no network with an isolated agent is pairwise stable. Figure 2 depicts

all the possible networks (up to isomorphism) that can emerge in the network formation

stage. Let µi denote the probability that agent i becomes infected (exogenously—i.e. in stage

2—or endogenously—i.e. in stage 3); for simplicity we denote by µI and µX the infection

probability of any given agent in the symmetric networks I andX , respectively. Appendix A

describes the probability that the agent in each relevant network position is infected.

I1

I2

I3

I4

Network I

N1

N2

N3

N4

Network N

X1

X2

X3

X4

Network X

Figure 2: The Three Relevant Network Structures.

3 Strategic Complementarities in Risky Interactions

In this section we show how strategic complementarities in risky interactions naturally arise

in the model described in section 2. Proposition 3.1 formalizes this idea using Definition 3.1.

Definition 3.1. Given a network G, the risk of the edge ij for agent i is the difference in i’s

infection probability in G ∪ ij and i’s infection probability in G. When the risk of edge ij is

the same for agents i and j, we refer to it simply by the risk of the edge ij.
6For brevity, we denote the edge between nodes i and j by ij.
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Proposition 3.1. The risk of the edge N2N3 in Network N is smaller than the risk of the edge I2I3 in

Network I .

Proof. The risk of edge N2N3 is µX − µN2 , and the risk of edge I2I3 is µN1 − µI . Using the

expressions derived in Appendix A, it is easily verified that µX − µN2 ≥ µN1 − µI for all

values of p and q.

Note 3.1. Figure 3 depicts the risk of edge N2N3 and I2I3 as a function of the transmission

probability p when the exogenous infection probability is q = 1
4
; the picture looks similar for

all q ∈ (0, 1). The risk of edge N2N3 is increasing for low values of p and decreasing for high

values of p. Intuitively, the risk of edge N2N3 is highest when the transmission probability is

high enough so that this edge has a substantial probability of transmitting an infection but

low enough so that there is a substantial probability that only one of agents N2 and N3 are

infected.

4 Stable Networks

Proposition 4.1 shows that requiring that the outcome in the network formation stage be

stable reduces the candidate networks to I and X . This observation substantially simplifies

the analysis, since these two networks are fully symmetric.

Proposition 4.1. Network N is unstable for all p.

Proof. Suppose for contradiction that network N is stable. This implies that the cost of the

diagonal edge for N2 is not greater than its benefit. By Proposition 3.1, the cost of adding

the edge N2N3 for N2 and N3 is smaller than the cost of adding N1N4 for N1 and N4, while

its benefit is exactly the same, so both N1 and N4 have incentives to remove the edge N1N4,

a contradiction.

Proposition 4.2 shows that network I is stable for intermediate values of the transmission

probability p, which is intuitive: When the transmission probability p is small enough, net-

work I is not stable because agents have incentives to form the diagonal links. In contrast,

when the transmission probability p is high enough, network I is not stable because agents

have incentives to remove their one link.

Proposition 4.2. There exist p∗, p∗∗ such that network I is stable if and only if p ∈ [p∗, p∗∗].
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Proof. Network I is stable if and only if (i) no agent wants to delete her existing edge (that

is, the cost s1 of deleting this edge is greater than the associated benefit cµI) and (ii) no two

agents have incentives to partner up (that is, the cost c(µN1 − µI) of an extra edge is greater

than its benefit s2). Using Equation 1 in Appendix A, condition (i) is easily verified to hold

for all p small enough. Using Equation 3 in Appendix A, condition (ii) is easily verified to

hold for all p large enough.

Note 4.1. Figure 3 illustrates the determinants of the cutoff p∗ when the infection probability

is q = 1
4

and s2
c

= .11. For simplicity, in Figure 3, we don’t show the determinants of the

cutoff p∗∗; this cutoff is 1 if s1 large enough.

Proposition 4.3 shows that network X is stable with the only potential exception of a

range of intermediate values of transmission probability, which is intuitive: The benefit from

removing the edgeX2X3 for its adjacent vertices is highest for intermediate values of p, when

it is most likely that only one of them is infected in network N .

p
1

s2
c .11

p∗ p p

µN1 − µI

µX − µN2

Figure 3: Illustration of Proposition 4.2 and Proposition 4.3 when q = 1
4

and s2
c

= .11. As-

suming s1 is large enough, network I is stable if and only if s2
c

is below µN1 − µI . Network

X is stable if and only if s2
c

is above µX − µN2 .

Proposition 4.3. There exist p∗ < p ≤ p such that network X is stable for all p /∈ (p, p).

Proof. NetworkX is stable if and only the benefit c(µX−µN2) from deleting an edge is smaller

than its cost s2. Using Equation 4 in Appendix A, it is easily verified that this is satisfied for
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all p except possibly those in an intermediate range (p, p). The fact that p∗ < p follows from

Proposition 3.1.

Note 4.2. Figure 3 illustrates the determinants of the cutoff values p and p when the infection

probability is q = 1
4

and s2
c

= .11. For large enough values of s2
c

, network X is stable for all

transmission probabilities p.

5 Partially-Effective Vaccines Can Make Everyone Worse Off

Network I and network X—the only two potentially stable networks—are fully symmetric,

which implies that each agent’s expected utility is the same in every stable network. There-

fore, the welfare in each network scales with the expected utility of a single agent in this

network.

From Proposition 4.2 and Proposition 4.3, we have that there always exists a nonempty

region (p∗, p) of values of the transmission probability p in which (i) both networks I and X

are stable and (ii) a reduction in p leads to only networkX being stable. Theorem 5.1 follows

directly from this observation and the fact that for all values of p close enough to p∗, welfare

in network I is greater than in network X .7

Theorem 5.1. There exists ∆ > 0 s.t. each agent’s expected utility in the most efficient stable

network when p ∈ (p∗, p∗ + ∆) is greater than when p ∈ (p∗ −∆, p∗).

Figure 4 illustrates Theorem 5.1 for a particular utility function (s1 = 40, c = 80 and
s2
c

= .11) and exogenous infection probability q = 1
4
. In this case, p∗ is approximately .48.

Note 5.1. Theorem 5.1 implies that there is always a range of transmission probabilities and

a threshold ∆ > 0 such that—assuming that we start from the most efficient stable network

(network I)—an intervention that reduces p by more than ∆ but less than 2∆ necessarily

harms everyone. A similar statement holds for interventions that reduce both p and q.

6 Relation to Existing Literature

The well-known phenomenon of risk compensation is an important element of the mecha-

nism that we describe in this paper. Observed at least as early as the Victorian era (see for

7To see this last fact, note that, when p = p∗, agent 1’s expected utility in network I is the same as that in

network N , and hence, agent 1’s expected utility in network I is strictly greater than that in network X .
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p

Expected Utility

10

12

14

.45 .5

Network I

Network X

Figure 4: Illustration of Theorem 5.1 when s1 = 40, c = 80, s2
c

= .11 and q = 1/4. Each agent’s

expected utility under the most efficient stable network structure is in bold.

example Adams 1879), it was popularized by Peltzman 1975, who controversially suggested

that automobile safety regulations would not diminish automobile-related deaths. In the

context of HIV, the evidence on risk compensation is mixed. For example, on the one hand,

Eaton and Kalichman 2007 (see also Blumenthal and Haubrich 2017) review the empirical

literature on risk compensation in HIV prevention and conclude that “risk compensation is

evident in response to prevention technologies that are used in advance of HIV exposure

and at minimal personal cost.” On the other hand, Marcus et al. 2013 argue that there is no

evidence of risk compensation in a recent trial of Daily Oral HIV Preexposure Prophylaxis

(iPrEx).

The main contribution of this paper is to show that—as a result of risk compensation—

a free and perfectly safe but only partially effective vaccine can make everyone worse off,

which suggests that a non-trivial welfare trade-off must be considered when deciding whether

or not to distribute partially-effective vaccines: While such an intervention increases the wel-

fare associated with any given interaction structure, it can disrupt the existing interaction

structure in favor of a more inefficient one. As already discussed in section 1, this contrasts

with standard economic epidemiological models, which predict that free and perfectly safe

vaccines—no matter how ineffective—necessarily make everyone better off.

Interestingly, using a dynamic version of a standard economic epidemiological model,
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Toxvaerd 2017 argues that partially-effective vaccines can have negative welfare consequences

in the transition between steady states. In contrast, we show—using a different model that

allows agents to strategically choose whom to interact with—that the conclusion that a free

and perfectly safe but only partially-effective vaccine necessarily makes everyone better off

in steady state is an artifact of the anonymous-mixing assumption of the standard models.

The mechanism that we illustrate in this paper is related to—but distinct from—the one

described in Kremer 1996, which can be summarized as follows: If low-activity people re-

duce their activity by a higher proportion than high-activity people in response to an in-

crease in the prevalence of the disease, the composition of the pool of available partners

worsens after such a change, which creates positive feedbacks. In stark contrast with our

mechanism, however, the feedback effects in Kremer 1996 only make partially-effective

vaccines more desirable. Indeed, in that model, the introduction of a vaccine reduces the

marginal probability of infection for low-activity people more than for high-activity peo-

ple.8 This force is absent in our analysis because—in order to illustrate our mechanism as

simply as possible—we focus on the case of homogeneous preferences.

The main ingredients of the mechanism that we illustrate in this paper are that risky inter-

actions feature (i) strategic complementarities and (ii) negative externalities. Hoy and Pol-

born (2015) elegantly show how the combination of these two forces can imply that a safety

technology improvement is welfare reducing. From this perspective, the contribution of this

paper is to illustrate how strategic complementarities and negative externalities naturally

arise in models of strategic risky interactions, and that a safety-technology improvement—a

partially-effective vaccine in our application—can indeed reduce welfare in these models.

This paper complements the growing body of literature that studies the effects of different

interventions on epidemiological processes (see for example Galeotti and Rogers 2013, Chen

and Toxvaerd 2014, Rowthorn and Toxvaerd 2015, Goyal and Vigier 2015 and Goyal et al.

2016). The main difference between this paper and most of this literature is that we focus on

the welfare effects of such interventions—rather than the effects on infection rates.

This paper is not the first to study epidemiological processes using the network formation

model of Jackson and Wolinsky 1996. For example, Blume et al. 2011 use this approach to

provide asymptotically tight bounds on the welfare of both optimal and stable networks.

We use this simple and natural model to illustrate a simple mechanism that has important

policy implications. While the particular model that we work with is useful to make our

8For those with sufficiently many partners, the introduction of a vaccine will actually increase the marginal

risk of infection from an additional partner, reducing their optimal number of partners, and hence making the

pool of available partners safer.
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argument simply and precisely, the argument itself is general, so it should also apply to

more general epidemiological models.

7 Conclusion

The capacity of infectious-disease epidemics to disrupt societies is comparable to that of

wars and natural disasters. For this reason, considerable resources are expended to manage

and ameliorate the effects of such epidemics. Because of risk compensation, however, the

effects of different potential interventions are subtle. As a consequence, before deciding

whether and how to intervene, we might wish to ensure that our interventions at least do

no harm.

We show that—in contrast to what standard models predict—this fundamental principle

is not necessarily satisfied by an intervention that consists of distributing a free and per-

fectly safe but only partially effective vaccine. In fact, we show that such an intervention can

harm everyone. The reason is simple: Everything else equal, such a vaccine reduces the cost

(in terms of infection probability) of having risky interactions, and hence it can destabilize

the existing interaction structure in favor of a more inefficient one. We show how strate-

gic complementarities—which arise naturally once we allow agents to strategically choose

their partners—can generate feedback effects and, as a consequence, the next-best interac-

tion structure can be much denser. Because of the negative externalities of risky interactions,

this can make everyone worse off.

The result of this paper suggests that, on the HIV front, the National Institutes of Health

might want to go big—e.g. deliver a highly effective vaccine—or go home. More generally, it

underscores the importance of taking into account the network of social interactions in theo-

retical and empirical epidemiological studies: Changes in the structure of social interactions

can have first-order effects on welfare, so understanding the forces that shape this structure

is crucial for our understanding of infectious-disease epidemics and how to minimize their

negative effects on human welfare.
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A Appendix: Infection Probabilities

Lemma A.1 describes the probability that an agent becomes infected (exogenously—i.e. in

stage 2—or endogenously—i.e. in stage 3) conditional on her network position.

Lemma A.1. The probability that any given agent in network I is infected is

(1) µI = qp+ (1− qp)q.

the probability that any given agent in network X is infected is

(2)

µX = (1− p)2µI

+ p(1− p) [q(2− q) + (1− q)2qp(2− qp)]
+ p(1− p) [q + (1− q)p(pq + (1− pq)q(2− q))]
+ p2 [q(2− q) + (1− q(2− q))q(2− q)p(2− p)] ,

the probability that N1 is infected is

(3) µN1 = µI + (1− q)(1− pq)µIp

and the probability that N2 is infected is

(4) µN2 = q + (1− q)pq + (1− q)2p2µI

Proof. To see Equation 1, consider for concreteness the probability that I1 is infected. The

probability that I2 infects I1 is qp and, conditional on not being infected by I2, I1 is infected

with probability q.

To derive Equation 2, consider the three exhaustive and mutually exclusive cases depicted

below, where thick edges correspond to live edges. We say that i is infected from j if j is

exogenously infected and there is an live path from i to j.

X1

X2

X3

X4

Case 0

X1

X2

X3

X4

X1

X2

X3

X4

Case 1

X1

X2

X3

X4

Case 2

Case 0: None of the edges X1X4 and X2X3 are live. This happens with probability (1 − p)2.

The probability that any given agent is infected is µI .
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Case 1: Exactly one of the edges X1X4 and X2X3 is live. This happens with probability

2p(1 − p). Assume without loss of generality that X1X4 is live (and hence X2X3 is not live).

The probability that node X1 is infected is q(2− q) + (1− q(2− q))(qp+ (1− qp)qp) or

(5) q(2− q) + (1− q)2qp(2− qp)

To see this, note that the probability thatX1 is infected fromX1 orX4 is 1−(1−q)2 = q(2−q),

and the probability that X1 is infected from X2 or X3 is qp+ (1− qp)qp.

The probability that node X2 is infected is

(6) q + (1− q)p(pq + (1− pq)q(2− q))

To see this, note that the probability that X2 is exogenously infected is q. Conditional on

this not happening, the probability that X2 is infected is p times the probability that X1 is

infected from X3, or X1 or X4, which is pq + (1− pq)q(2− q).

Hence, each agent’s expected probability of infection in this case is the average of expres-

sions (5) and (6).

Case 2: Both edges X1, X4 and X2X3 are live. This happens with probability p2. The proba-

bility that X1 is infected is

q(2− q) + (1− q(2− q))q(2− q)p(2− p).

To see this, note that the probability thatX1 is infected fromX1 orX4 is 1−(1−q)2 = q(2−q),

and the probability that X1 is infected from X3 or X4 is the probability q(2− q) that either of

them is infected times the probability p(2− p) that at least one of the edges X1X2 and X3X4

is live.

To see Equation 3, note that µN1 − µI = (1− q)(1− pq)µIp, since the probability that N1 is

infected from either N3 or N4 and is not infected from either N1 or N2 is the probability 1− q
that N1 is not infected from N1 times the probability 1 − qp that N1 is not infected from N2

times the probability µI that N4 is infected from either N3 or N4 times the probability p that

the edge N1N4 is live.

Finally, to see Equation 4, note that the probability that N2 is infected is the probability q

that she becomes exogenously infected plus the probability (1−q)p that she does not become

infected and N1N2 is live times the probability q + (1− q)pµI that N1 is infected from N1, N3

or N4. That is, µN2 = q + (1− q)p [q + (1− q)pµI ], which is equivalent to Equation 4.
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