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Abstract

I show that the Zero Lower Bound (ZLB) on interest rates can be used to identify the causal

e¤ects of monetary policy. Identi�cation depends on the extent to which the ZLB limits the e¢ cacy

of monetary policy. I develop a general econometric methodology for the identi�cation and esti-

mation of structural vector autoregressions (SVARs) with an occasionally binding constraint. The

method provides a simple way to test the e¢ cacy of unconventional policies, modelled via a �shadow

rate�. Application of the method to US monetary policy using a three-equation SVAR model in

in�ation, unemployment and the federal funds rate provides some evidence that unconventional

policies are partially e¤ective.

1 Introduction

The zero lower bound (ZLB) on nominal interest rates has arguably been a challenge for policy makers

and researchers of monetary policy. Policy makers have had to resort to so-called unconventional

policies, such as quantitative easing or forward guidance, which had previously been largely untested.

Researchers have to use new theoretical and empirical methodologies to analyze macroeconomic models

when the ZLB binds. So, the ZLB is generally viewed as a problem or at least a nuisance. This paper

proposes to turn this problem on its head to solve another long-standing question in macroeconomics:

the identi�cation of the causal e¤ects of monetary policy on the economy.

The intuition is as follows. By providing an exogenous constraint on policy, the ZLB acts like a

�quasi experiment�introducing random variation to policy that can be used to identify the monetary

policy shock. Once this is identi�ed, the entire impulse response function can be obtained. This idea

is potentially generalizable to other models with occasionally binding constraints.
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There are similarities between identi�cation via occasionally binding constraints and identi�ca-

tion via structural change proposed by Magnusson and Mavroeidis (2014). Structural change induces

di¤erent regimes, and the switch from one regime to another generates variation that identi�es para-

meters that are constant across regimes. For example, an exogenous shift in a policy reaction function

identi�es the transmission mechanism, provided the latter is una¤ected by the policy shift.1 An in-

strumental variables interpretation of this is that regime indicators (dummy variables) can be used as

instruments for the endogenous policy variable. When the switch from one regime to another is ex-

ogenous, regime indicators are valid instruments, and the methodology in Magnusson and Mavroeidis

(2014) is applicable.2 However, regimes induced by occasionally binding constraints are not exogenous

�whether the ZLB binds or not clearly depends on the structural shocks, so regime indicators cannot

be used as instruments in the usual way, and a new methodology is needed to analyze these models.

In this paper, I show how to control for the endogeneity in regime selection and obtain identi�cation

constructively in structural vector autoregressions (SVARs).

The methodology is parametric and likelihood-based, and the analysis is similar to the well-known

Tobit model (Tobin, 1958). More speci�cally, the methodological framework builds on the early

microeconometrics literature on simultaneous equations models with censored dependent variables, see

Amemiya (1974), Lee (1976), Blundell and Smith (1994), and the more recent literature on dynamic

Tobit models, see Lee (1999), and particle �ltering, see Pitt and Shephard (1999).

The second contribution of this paper is a general methodology to estimate reduced-form VARs

with a variable subject to an occasionally binding constraint. This is a necessary starting point for

SVAR analysis that uses any of the existing popular identi�cation schemes, such as short- or long-run

restrictions, sign restrictions, or external instruments. In the absence of any constraints, reduced-form

VARs can be estimated consistently by Ordinary Least Squares (OLS), which is Gaussian Maximum

Likelihood, or its corresponding Bayesian counterpart, and inference is fairly well-established. How-

ever, it is well-known that OLS estimation is inconsistent when the data is subject to censoring or

truncation, see, e.g., Greene (1993) for a textbook treatment. So, it is not possible to estimate a VAR

consistently by OLS using any sample that includes the ZLB, or even using (truncated) subsamples

when the ZLB is not binding. It is not possible to impose the ZLB constraint using Markov switching

models, as was done in Hayashi and Koeda (2013, 2014), because Markov-switching cannot guarantee

that the constraint will be respected with probability one, and also typically does not account for

the fact that the switch from one regime to the other depends on the structural shocks. Finally, it is

also not possible to perform consistent estimation and valid inference on the VAR (i.e., error bands

with correct coverage on impulse responses), using externally obtained measures of the shadow rate,

1Examples of such policy regime shifts are a switch from passive to active US monetary policy (Clarida et al. (2000)),
or changes in the in�ation target (Cogley and Sbordone, 2008).

2Magnusson and Mavroeidis (2014) deal with the additional complication that the timing and number of regimes
might be unknown.
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such as the one proposed by Wu and Xia (2016), as the estimation error in any such measures is not

asymptotically negligible and is typically highly autocorrelated. In other words, shadow rate estimates

are subject to large and persistent measurement error that is not accounted for if they are treated as

known in subsequent analysis. The methodology developed in this paper allows for the presence of

a shadow rate, estimates of which can be obtained, but more importantly, it fully accounts for the

impact of sampling uncertainty in the estimation of the shadow rate on inference about the structural

parameters such as impulse responses. Therefore, the paper �lls an important gap in the literature,

as it provides the requisite methodology to implement any of the existing identi�cation schemes.

Identi�cation of the causal e¤ects of policy from the ZLB relies on two conditions. The �rst con-

dition is that the ZLB �does represent an important constraint on what monetary policy can achieve�

as argued by Eggertsson et al. (2003). This condition rules out the following scenario. Suppose the

conventional policy instrument is subject to a lower bound, but policy makers can still achieve their

policy objectives fully using �unconventional�policies. Such a scenario could be characterized by a

model in which the �e¤ective� policy instrument is unconstrained but we only observe a censored

version of it. In this case, there is no actual regime change when the observed policy instrument hits

the constraint, and so there is no additional information to identify the causal e¤ects of policy. In

the opposite case, i.e., when unconventional policies are completely ine¤ective, we obtain point iden-

ti�cation of the policy e¤ects. Finally, in intermediate cases, i.e., when unconventional policy is only

partially e¤ective, I show that the policy e¤ects are only partially (set) identi�ed. The methodology

I develop covers all of the above cases. It also provides a simple test of the e¢ cacy of unconventional

policy.

The second condition for identi�cation of the policy e¤ects via the ZLB is that the parameters

of the transmission mechanism are the same across the di¤erent regimes induced by the ZLB. In

general, this condition seems fairly innocuous, since the parameters of the transmission mechanism

typically depend on preferences and technology, and there is no obvious reason to expect these to

be a¤ected by whether policy is constrained or not. Structural models that are immune to the well-

known Lucas (1976) critique satisfy this assumption. In micro-founded dynamic stochastic general

equilibrium (DSGE) models this assumption is seemingly uncontroversial and it is commonly imposed

in the literature, see, e.g., Aruoba et al. (2016); Mertens and Ravn (2014); Fernández-Villaverde

et al. (2015) and the references therein. However, in SVARs, this assumption is potentially more

controversial. This is because with occasionally binding constraints there is no piecewise linear SVAR

representation of a generic DSGE model under rational expectations (there could be under backward-

looking or naive expectations), as the solutions of those models are typically highly nonlinear, see,

e.g., Fernández-Villaverde et al. (2015), Guerrieri and Iacoviello (2015), and Aruoba et al. (2017).

Therefore, if one has a strong prior on a micro-founded rational expectations DSGE representation,

a piecewise linear SVAR model would be misspeci�ed and should not be used for causal inference.
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However, the methodology developed in this paper still provides a valid test of the null hypothesis

that unconventional policy is fully e¤ective, i.e., that the ZLB is empirically irrelevant, as was argued

recently by Debortoli et al. (2018) and Swanson (2018). It also provides a valid method to analyze a

linear SVAR with conventional identifying restrictions if the aforementioned hypothesis is not rejected.

Identi�cation of the causal e¤ects of policy by the ZLB does not require that the policy reaction

function be stable across regimes. However, inference on the e¢ cacy of unconventional policy, or

equivalently, the causal e¤ects of shocks to the shadow rate over the ZLB period, obviously depends on

the constancy or otherwise of the reaction function across regimes. For example, an attenuation of the

causal e¤ects of policy over the ZLB period may indicate that unconventional policy is only partially

e¤ective, but it is also be consistent with unconventional policy being less active (during ZLB regimes)

than conventional policy (during non-ZLB regimes), i.e., with policy objectives being di¤erent across

regimes. This is a fundamental identi�cation problem that is di¢ cult to overcome without additional

information. The conclusions in the empirical analysis below on the e¢ cacy of unconventional policies

are drawn under the assumption that there is no di¤erence in the policy objectives, and hence the

policy reaction function, across regimes. This seems to be a reasonable starting point for an initial

analysis of the data, especially since this is mainly intended as an illustration of the methods developed

in the paper. A more thorough investigation of this issue should incorporate additional information,

such as other measures of unconventional policy stance, or additional identifying assumptions, such as

parametric restrictions or external instruments. This can be done using the methodology developed

in this paper.

The structure of the paper is as follows. Section 2 presents the main identi�cation results of the

paper in the context of a static bivariate simultaneous equations model with a limited dependent

variable subject to a lower bound. Section 3 generalizes the analysis to a SVAR with an occasion-

ally binding constraint and discusses identi�cation, estimation and inference. Section 4 provides an

application to a three-equation SVAR in in�ation, unemployment and the Federal funds rate from

Stock and Watson (2001). Using a sample of post-1960 quarterly US data, I �nd some evidence that

the ZLB is empirically relevant, and that unconventional policy is only partially e¤ective. Proofs,

computational details and simulations are given in the Appendix at the end. Additional supporting

material is provided in a supplementary Appendix.

2 Simultaneous equations model

I �rst illustrate the idea using a simple bivariate simultaneous equations model (SEM), which is both

analytically tractable and provides a link to the related microeconometrics literature.

Consider a system of simultaneous equations in two endogenous variables y = (y1; y2)
0, with y2 � b.

For example, y2 can be interpreted as the policy instrument and y1 is some target macroeconomic
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variable of interest. The model is given by the equations

y1 = �y2 + �
0
1x+ "1 (1)

y2 = max
�
y1 + �

0
2x+ "2; b

	
(2)

where " = ("1; "2)
0 are the structural shocks and x are exogenous variables, such that E ("jx) = 0.

Assume that " � N (0;�) ; with � = diag
�
�21; �

2
2

�
. The unknown structural parameters are � =�

�; ; �1; �2; �
2
1; �

2
2

�0
; and b is assumed to be known (but does not need to be constant over the

sample). I will refer to the model given by equations (1) and (2) as a kinked simultaneous equations

model (KSEM). KSEM reduces to a standard linear SEM when b = �1.

A variant of the above model was �rst studied in Amemiya (1974) and Lee (1976), as a multivariate

extension of the well-known Tobit model (Tobin, 1958).3 The �rst reference I found to the model (1)

and (2) is in (Nelson and Olson, 1978, eq. 6 and 7). Nelson and Olson (1978) wrote it down as

an example of a model that was less suitable for microeconometric applications than the following

alternative speci�cation, which I will refer to as a censored simultaneous equation model (CSEM):

y1 = �y�2 + �
0
1x+ "1; (3)

y�2 = y1 + �
0
2x+ "2; (4)

y2 = max fy�2; bg ; (5)

where y�2 is a latent variable. Nelson and Olson (1978) focused their analysis only on the CSEM,

which subsequently became the main focus of the literature (Smith and Blundell, 1986; Blundell and

Smith, 1989). The key distinction between the KSEM (1)-(2) and CSEM (3)-(5) is that in the former,

y1 depends on the observed y2; while in the latter it depends on the latent variable y�2 which is only

partially observed due to censoring. This distinction is crucial for identi�cation.

2.1 Coherency and completeness

It is important to point out an issue that arises in (1)-(2) but not in (3)-(5): the likelihood does not

exist without restrictions on the parameter space. Speci�cally, there are values of � and " for which

there are either no solutions or multiple solutions of (1)-(2) for y. Amemiya (1974) refers to these as

�type 1 and type 2 di¢ culties�, respectively, also known as �incoherency�and �incompleteness�in the

microeconometrics literature (Blundell and Smith, 1994). Coherency and completeness of a structural

model together imply existence and uniqueness of a reduced form (Lewbel, 2007). Amemiya (1974)

notes that the problem is akin to the Complementarity Problem in the programming literature, where

necessary and su¢ cient conditions can be found. In the present example, these are 1�� > 0 (Nelson
3The di¤erence is that in the models of Amemiya (1974) and Lee (1976), all endogenous variables are truncated.
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y 1 = β y 2 + α 1 + ε 1 y 2 = m a x ( γ y 1 + α 2 + ε 2 ,b )
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Figure 1: Coherency and completeness of the Kinked Simultaneous Equations model.

and Olson, 1978). This issue is illustrated in Figure 1. Speci�cally, coherency and completeness are

satis�ed in this example when the slope of equation (2) is strictly smaller than that of equation (1).

Despite its importance, the coherency condition (which is the same as existence of an equilibrium)

is rarely addressed in the literature on the ZLB. This is probably because in nonlinear DSGE models it

is analytically intractable and also hard to characterize numerically. However, I will show in the next

section that in SVARs the condition is straightforward to characterize analytically and check in any

given application. The condition is essential for estimation, and also provides additional restrictions

on the admissible range of the structural parameters.

2.2 Nesting KSEM and CSEM models

The KSEM and CSEM models can be nested by combining equations (1) and (3) into the following

equation:

y1 = ��2y
�
2 + �2y2 + �

0
1x+ "1; (6)

The model given by equations (6), (4) and (5) can be termed censored and kinked simultaneous

equations model, or CKSEM.

Reparametrize ��2 and �2 into �
�
2 = �� and �2 = (1� �)�: Then, equation (6) can be equivalently

written as

y1 = � (�y�2 + (1� �) y2) + �01x+ "1: (7)

If (4) gives the desired policy stance in the absence of any constraints, and there exist alternative

policies not modelled explicitly that can partially mitigate the e¤ect of the constraint, then the variable

ys := �y�2 + (1� �) y2 can be thought of as a measure of the e¤ective policy stance. When � = 1;

policy is completely unconstrained, and the CKSEM reduces to a CSEM, while if � = 0; unconventional
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policy is completely ine¤ective and the model reduces to the KSEM. Hence, � is interpretable as a

measure of the e¢ cacy of unconventional policy.

2.3 Identi�cation

The CSEM (3)-(5) is an unrestricted linear SEM in the variables (y1; y�2), so it is underidenti�ed.

Censoring is simply a measurement issue that complicates estimation and inference but does not a¤ect

identi�cation of the structural parameters. I will now show that the CKSEM, given by equations (7),

(4) and (5), is identi�ed when � 6= 1: Speci�cally, it is point-identi�ed when � is known, e.g., � = 0 in

the case of the KSEM (1)-(2), and partially identi�ed when � is unknown. This result appears to be

new in the literature and is, in my view, the most interesting contribution of the paper.

Substituting for y�2 in (7) using (4), and rearranging, we obtain

y1 = e�y2 + e�01x+ e"1; where (8)

e� = (1� �)�
1� �� ; e�1 = �1 + ���2

1� �� ; e"1 = "1 + ��"2
1� �� : (9)

Note that, since equation (8) is isomorphic to (1), the coherency and completeness condition for the

CKSEM is analogous to that of the KSEM (1)-(2), i.e.,  e� < 1; which, using (9), is equivalent to

(1� �) = (1� ��) > 0: Similarly, the discussion of identi�cation of (8) is analogous to that of the

KSEM. Therefore, I discuss �rst the identi�cation of the KSEM (� = 0) and then turn to the general

case.

2.3.1 Identi�cation of KSEM

Let D := 1fy2=bg be an indicator (dummy) variable that takes the value 1 when y2 is on the boundary

and zero otherwise. When � < 1 (coherency), the reduced form of the KSEM is given by the

equations

y1 = �01x+ u1 + �D
�
b� �02x� u2

�
; and (10)

y2 = max
�
�02x+ u2; b

�
; (11)

where

u1 =
"1 + �"2
1� � ; u2 =

"1 + "2
1� � ; (12)

�1 =
�1 + ��2
1� � ; �2 =

�1 + �2
1� � :

Equation (11) is a standard univariate limited dependent variable model. With Gaussian errors, it is

exactly a Tobit model (Tobin, 1958). Its parameters, �2 and �2 := var (u2) ; are therefore identi�ed
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in the usual way by Tobit regression. Equation (10) is an �incidentally kinked�regression model. It is

similar to an incidentally censored regression, and, with Gaussian errors, its parameters are identi�ed

by a variant of the well-known Heckit method (Heckman, 1979). The details of this, as well as various

alternative estimators, are derived in the next section for the full SVAR model.

Here, it is instructive to provide an alternative instrumental variables interpretation of identi�ca-

tion. Consider using the regime indicator D = 1fy2=bg as an instrument for the endogenous regressor

y2 in the structural equation (1). The corresponding IV estimator identi�es

�IV :=
E (y1jx;D = 1)� E (y1jx;D = 0)

E (y2jx;D = 1)� E (y2jx;D = 0)
;

which is inconsistent for � because D is, in fact, endogenous:

�IV = � +
E ("1jx;D = 1)� E ("1jx;D = 0)

E (y2jx;D = 1)� E (y2jx;D = 0)
6= �: (13)

However, if we know the distribution of the reduced-form errors, we can compute the bias of the IV

estimator, given by the second term in the right-hand side of (13), and point-identify �. A simple way

to do this is via the control function approach (Heckman et al., 1978).4 Let

h (�2; �) := (1�D)
�
y2 � �02x

�
�D�� (a)

� (a)
; a :=

b� �02x
�

;

and � (�) ; � (�) are standard Normal density and distribution functions, respectively. The control

function h (�2; �) captures the endogeneity in y2 in equation (1), i.e., E ("1jy2; x) = �h (�2; �) ; for

some constant �.5 Hence, � can be identi�ed from the regression

E (y1jy2; x) = �y2 + �
0
1x+ �h (�2; �) : (14)

The rank condition for the identi�cation of � is simply that the regressors are not perfectly collinear.

This holds if and only if 0 < Pr (D = 1) < 1: So, as long as there are some but not all the observations

at the boundary, the model is generically identi�ed.

Importantly, the control function only depends on the parameters in one of the two regimes, when

D = 0: So, it does not matter whether the policy rule (4) changes when y2 hits the lower bound.

2.3.2 Partial identi�cation of the CKSEM

The discussion of the previous subsection carries over to the CKSEM given by equations (7), (4) and

(5), when �; �1 and "1 in (10)-(12) are replaced by e�; e�1; and e"1; de�ned in (9). Therefore, e� is
identi�ed as the coe¢ cient on the kink in the reduced-form equation for y1 (10). From (9), it follows

4 I am grateful to Andros Kourtelos for that suggestion.
5Speci�cally, � = cov ("1; u2) =�2 � �.
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that �; �1 and "1 are underidenti�ed unless � is known.

Now, consider the restriction � 2 [0; 1] : Given the interpretation of � as a measure of the e¢ cacy

of unconventional policy, this restriction implies that unconventional policy is neither counter- nor

over-productive. Speci�cally, it says that the e¤ect of unconventional policy on y1 cannot be of a

di¤erent sign or of higher magnitude (in absolute value) than the e¤ect of conventional policy. I will

now discuss the implications of this restriction for the identi�cation of the structural parameters.

First, we have already established that � is completely unidenti�ed when � = 1 (which corresponds

to the CSEM). From the de�nition of e� in (9) and the fact that 1 � �� 6= 0 from the coherency

condition, it follows that � = 1 implies e� = 0: So, when e� = 0, � is completely unidenti�ed. It

remains to see what happens when e� 6= 0. Let !ij := E (uitujt) denote the variances and covariance

between the reduced form errors, which are identi�able, and de�ne the coe¢ cient of the regression of

u2t on u1t by 0 := !12=!11: It is also the coe¢ cient of the regression of y2 on y1 over the uncensored

observations. This can be interpreted as the value the reaction function coe¢ cient  in (4) would take

if � = 0; i.e., the value corresponding to a Choleski identi�cation scheme where y2 is placed last. 0

is obviously identi�able from the reduced form. In the Appendix, I prove the following bounds

if e� = 0 or e�0 < 0, then � 2 <; otherwise
if !12 = 0 = 0, then � 2 (�1; e�] if e� < 0 or � 2 [e�;1) if e� > 0;
if 0 < e�0 � 1; then � 2 h 10 ; e�i if e� < 0 or � 2 he�; 10 i if e� > 0;
if e�0 > 1, then � < 0:

(15)

In words, when the coe¢ cient on the kink in the reduced form, e�; is di¤erent from zero, and it is of
the same sign as the coe¢ cient of the regression of y2 on y1 over the uncensored observations, 0; and

if e�0 � 1; then we can identify both the sign of the causal e¤ect of y2 on y1 and get bounds on (the
absolute value of) its magnitude. In those cases, the identi�ed coe¢ cient e� is an attenuated measure
of the true causal e¤ect �: Moreover, e�0 > 1 implies that the coe¢ cient on the latent variable y�2 is
of the opposite sign than the coe¢ cient on the observed variable y2; i.e., unconventional policy has

the opposite e¤ect of the conventional one. That could be interpreted as saying that unconventional

policy is counterproductive.

Finally, the hypothesis that the bound is �empirically irrelevant�in the sense that unconventional

policy fully removes any constraints on what policy can achieve is equivalent to � = 1: From the above

discussion, it is clear that this hypothesis is testable: � = 1 implies that e� = 0; so e� 6= 0 implies � 6= 1:
Therefore, rejecting e� = 0 unambiguously implies that the bound is empirically relevant.6 In fact, the
parameter � is also set-identi�ed. The sharp identi�ed set is as follows:

6The converse is not true since e� = 0 can also arise from � = 0 even when � 6= 1.
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3 SVAR with an occasionally binding constraint

I now develop the methodology for identi�cation and estimation of SVARs with an occasionally binding

constraint. Let Yt = (Y 01t; Y2t)
0 be a vector of k endogenous variables, partitioned such that the �rst

k � 1 variables Y1t are unrestricted and the kth variable Y2t is bounded from below by b: De�ne

the latent process Y �2t that is only observed, and equal to Y2t; whenever Y2t > b. If Y2t is a policy

instrument, Y �2t can be thought of as the �shadow�instrument that measures the desired policy stance.

The pth-order SVAR model is given by the equations

A11Y1t +A12Y2t +A
�
12Y

�
2t = B10X0t +

pX
j=1

B1;jYt�j +

pX
j=1

B�1;jY
�
2;t�j + "1t; (16)

A�22Y
�
2t +A22Y2t +A21Y1t = B20X0t +

pX
j=1

B2;jYt�j +

pX
j=1

B�2;jY
�
2;t�j + "2t; (17)

Y2t = max (Y
�
2t; b) ;

for t � 1 given a set of initial values Y�s; Y �2;�s; for s = 0; :::; p � 1, and X0t are exogenous and

predetermined variables

Equation (17) can be interpreted as a policy reaction function, as it determines the desired policy

stance Y �2t: Similarly, "2t is the corresponding policy shock. The above model is a dynamic SEM.

Two important di¤erences from a standard SEM are the presence of (i) latent lags amongst the

exogenous variables, which complicates estimation; and (ii) the contemporaneous value of Y2t in the

policy reaction function (17), which allows it to vary across ZLB and non-ZLB regimes.

Collecting all the observed predetermined variables X0t; Yt�1; :::; Yt�p into a vector Xt; and the

latent lags Y �2;t�1; :::; Y
�
2;t�p into X

�
t ; and similarly for their coe¢ cients, the model can be written

compactly as:

0@A11 A�12 A12

A21 A�22 A22

1A
0BBB@
Y1t

Y �2t

Y2t

1CCCA = BXt +B
�X�

t + "t; (18)

Y2t = max fY �2t; bg :

The vector of structural errors "t is assumed to be i.i.d. Normally distributed with zero mean and

identity covariance.

In the previous section, we de�ned the KSEM as a special case of the CKSEM model, where

Y �2t < b has no (contemporaneous) impact on Yt: In the dynamic setting, it feels natural to de�ne the

corresponding �kinked SVAR�model (KSVAR) as a model in which Y �2t has neither a contemporaneous

nor a dynamic e¤ect on Yt. Therefore, the KSVAR obtains as a special case of (18) when both A�12 = 0;
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and B� = 0; which corresponds to a situation in which the bound is fully e¤ective in constraining

policy at all horizons.

The opposite extreme to the KSVAR is the censored SVAR model (CSVAR). Again, unlike the

CSEM, which only deals with contemporaneous e¤ects, the idea of a CSVAR is to impose the as-

sumption that the constraint is ine¤ective at all horizons. So, it corresponds to a fully unrestricted

linear SVAR in the latent process (Y 01t; Y
�
2t)

0. This is a special case of (18) when both A12 = 0 and

the elements of B corresponding to lagged Y2t are equal to zero. Finally, in accordance with the

terminology in the previous section, I refer to the general model given by (18) as the �censored and

kinked SVAR�(CKSVAR).

De�ne the k � k square matrices

A :=

0@A11 A12 +A
�
12

A21 A22 +A
�
22

1A ; and A� :=

0@A11 A�12

A21 A�22

1A : (19)

A determines the impact e¤ects of structural shocks during periods when the constraint does not bind.

A� does the same for periods when the constraint binds.

To analyze the CKSVAR, we �rst need to establish existence and uniqueness of the reduced form.

This is done in the following proposition.

Proposition 1 The model given in eq (18) is coherent and complete if and only if

� :=
A22 �A21A�111 A12
A�22 �A21A

�1
11 A

�
12

> 0: (20)

Note that (20) does not depend on the coe¢ cients on the lags (whether latent or observed), so it

is exactly the same as in a static SEM. This condition is useful for inference, e.g., when constructing

con�dence intervals or posteriors, because it restricts the range of admissible values for the structural

parameters. It can also be checked empirically when the structural parameters are point-identi�ed.

The proposition follows as a corollary to (Gourieroux et al., 1980, Theorem 2). An alternative proof

is given in the Appendix.

If condition (20) is satis�ed, there exists a reduced-form representation of the CKSVAR model

(18). For convenience of notation, de�ne the indicator (dummy variable) that takes the value one if

the constraint binds and zero otherwise:

Dt = 1fY2t=bg: (21)

Proposition 2 If (20) holds, and for any initial values Y�s; Y �2;�s; s = 0; :::; p � 1; the reduced-form

11



representation of (18) for t � 1 is given by

Y1t = C1Xt + C
�
1X

�
t + u1t � e�Dt �C2Xt + C�2X�

t + u2t � b
�

(22)

Y2t = max
�
Y
�
2t; b

�
; (23)

Y
�
2t = C2Xt + C

�
2X

�
t + u2t; (24)

Y �2t = (1�Dt)Y
�
2t +Dt

�
�Y

�
2t + (1� �) b

�
; (25)

where ut = (u01t; u2t)
0 = A

�1
"t; C

�
=
�
C
�0
1 ; C

�0
2

�0
= �A

�1
B�; X

�
t = (xt�1; :::; xt�p)

0 ; xt = min
�
Y
�
2t � b; 0

�
;

x�s = ��1min
�
Y �2;�s � b; 0

�
; s = 0; :::; p� 1;

e� = �A11 �A�12A��122 A21
��1 �

A�12A
��1
22 A22 �A12

�
; (26)

� is de�ned in (20) and the matrices C1; C2; are given in the Appendix.

Note that the �reduced-form� latent process Y
�
2t is, in general, di¤erent from the �structural�

shadow rate Y �2t de�ned by (25). They coincide only when � = 1: This holds, for example, in the

CSVAR model.

Equation (23) combined with (24) is a familiar dynamic Tobit regression model with the added

complexity of latent lags included as regressors whenever C
�
2 6= 0: Likelihood estimation of the uni-

variate version of this model was studied by Lee (1999). The k � 1 equations (22) are �incidentally

kinked�dynamic regressions, that I have not seen analyzed before.

3.1 Identi�cation

3.1.1 Identi�cation of reduced-form parameters

Let  denote the parameters that characterize the reduced form (22)-(23): e�;C; C� and 
 =

var (ut) : It is useful to decompose  into  2 =
�
C2; C

�
2; �
�0
; where � =

p
var (u2t); and  1 =�

vec
�
C1
�0
; vec

�
C
�
1

�0
; e�0; �0; vech (
1:2)�0 ; where � = 
12=�2, 
1:2 = 
11���0�2, and 
ij = cov (uit; ujt).

Equation (23) is the dynamic Tobit regression model studied by Lee (1999). So, its parameters,

 2; are generically identi�ed provided that the regressors are not perfectly collinear. This requires

that 0 < Pr (Dt = 1) < 1:

Given  2; the identi�cation of the remaining parameters,  1; can be characterized using a control

function approach. Consider the k � 1 regression equations

E
�
Y1tjY2t; Xt; X

�
t

�
= C1Xt + C

�
1X

�
t +

e�Z1t + �Z2t; (27)

12



where

Z1t = Dt

�
b� C2Xt � C

�
2X

�
t �

�� (at)

� (at)

�
; (28)

Z2t = (1�Dt)
�
Y2t � C2Xt � C

�
2X

�
t

�
+Dt

�� (at)

� (at)
; (29)

at =
�
b�C2Xt�C

�
2X

�
t

�

�
, and � (�) ; � (�) are the standard normal density and distribution functions,

respectively. When C
�
is di¤erent from zero, regressors X

�
t , Z1t; and Z2t in (27) are unobserved, so we

need to replace them with their expectations conditional on Y2t; Yt�1; :::; Y1: Then, the regressors on the

right-hand side of (27) becomeXt :=
�
X 0
t; X

�0
tjt; Z1tjt; Z2tjt

�0
, where htjt := E

�
h
�
X
�
t

�
jY2t; Yt�1; :::; Y1

�
for any function h (�) whose expectation exists.7 The coe¢ cients C1; C

�
1;
e�; and � are generically

identi�ed if the regressors Xt are not perfectly collinear.

3.1.2 Identi�cation of structural parameters

From the order condition, we can easily establish that there are not enough restrictions to iden-

tify all the structural parameters in the CKSVAR (18). Let k0 = dim (X0t) denote the number of

predetermined variables other than the own lags of Yt: For example, in a standard VAR without

deterministic trends, we have X0t = 1; so k0 = 1: The number of reduced-form parameters  is

k0k+ k
2p+ kp+ k (k + 1) =2: The number of structural parameters in (18) is k0k+ k2p+ kp+ k2+ k:

So, the CKSVAR is underidenti�ed by k (k + 1) =2 restrictions. Nevertheless, I will show that the

impulse responses to "2t are identi�ed. Speci�cally, they are point-identi�ed when A�12 = 0; and par-

tially identi�ed when A�12 6= 0 but A�12 and A12 have the same sign, analogous to the bounds given in

equation (15) in the previous section.

Because the CKSVAR is nonlinear, IRFs are obviously state-dependent, and there are many ways

one can de�ne them, see Koop et al. (1996).8 The IRF to "2t; according to any of the de�nitions

proposed in the literature, is identi�ed if the reduced-form errors ut can be expressed as a known

function of "2t and a process that is orthogonal to it, i.e., ut = g ("2t; et) ; where et is independent of

"2t: From Proposition 2, it follows that the g function is linear, and more speci�cally,

u1t =
�
Ik�1 � �

��1 �
�"1t + ��"2t

�
; and (30)

u2t =
�
1� �

��1
(�"2t + �"1t) ; (31)

7 In the KSVAR model, we have C
�
1 = 0 and C

�
2 = 0; so X

�
t drops out of (27), and the regressors Z1t; Z2t are observed,

so Zjtjt = Zjt; j = 1; 2:
8For the empirical analysis below, I will use the conditional �generalized impulse response function�de�ned in (Koop

et al., 1996, eq. (3)), see (38).
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where

� := �A�111 A12;  := �A�122 A21; (32)

�"1t := A�111 "1t; �"2t := A
�1
22 "2t;

and A22 = A�22 + A22; de�ned in (19). Note that � can be interpreted as the marginal e¤ect of Y2t

on Y1t; and  is the marginal e¤ect of Y1t on Y2t (the contemporaneous reaction function coe¢ cients)

when Y2t > b (unconstrained regime). The shock vector "1t is not structural but it is orthogonal to

"2t; so it plays the role of et in ut = g ("2t; et) : Hence, the IRF is identi�ed if and only if �; ; and A22

are identi�ed.

The following proposition shows identi�cation when A�12 = 0.

Proposition 3 When A�12 = 0 and the coherency condition (20) holds, the parameters in (30)-(31)

are identi�ed by the equations � = e�;
 =

�

012 � 
22�

0��

11 � 
12�

0��1
; and (33)

A
�1
22 =

q
(�; 1)
 (�; 1)0: (34)

Remarks 1. � = e� follows immediately from the de�nition (26) with A�12 = 0. Equations (33) and

(34) hold without the restriction A�12 = 0: They follow from the orthogonality of the shocks "2t and

"1t:

2. An instrumental variables interpretation of this identi�cation result is as follows. De�ne the

instrument

Zt := Y1t � e�Y2t = A�111 B1Xt +A
�1
11 B

�
1X

�
t +A

�1
11 "1t:

The orthogonality of the errors E ("1t"2t) = 0 implies E (Zt"2t) = 0: So, Zt are valid k�1 instruments

for the k � 1 endogenous regressors Y1t in the structural equation of Y2t = max (Y �2t; b), where Y �2t is

given by (17). Normalizing (17) in terms of Y �2t yields the structural equation in the more familiar

form of a policy rule:

Y2t = max
�
Y1t + �B2Xt + �B�2X

�
t + �"2t; b

�
; (35)

where �B2 = A
�1
22 B2;

�B�2 = A
�1
22 B

�
2 . Since A

�1
11 is non-singular, the coe¢ cient matrix of Zt in the

��rst-stage�regressions of Y1t is nonsingular, so the coe¢ cients of (35) are generically identi�ed by the

rank condition. An alternative to the Tobit IV regression model (35) is the indirect Tobit regression

approach used in the static SEM by Blundell and Smith (1994). Equation (35) can be written as the

dynamic Tobit regression

Y2t = max
�eZt + ~B2Xt + ~B�2X

�
t + ~"2t; b

�
; (36)
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where e = �1� ���1 ; ~B2 = �1� ���1 �B2; ~B�2 = �1� ���1 �B�2 and ~"2t = �1� ���1 �"2t: Note
that the coherency condition (20) becomes � = A22

A�22

�
1� �

�
> 0; so 1�� 6= 0; which guarantees the

existence of the representation (36). Given � = e�; the structural parameter  can then be obtained
as  = e �Ik�1 + e�e��1 ; and similarly for the remaining structural parameters in (35).

3. The parameter A22 allows the reaction function of Y �2t to di¤er across the two regimes. The

special case A22 = 0 thus corresponds to the restriction that the reaction function remains the same

across regimes. The parameters A22 and A�22 are not separately identi�ed. Hence, A
��1
22 , the scale of the

response to the shock "2t during periods when Y2t = b, is not identi�ed.9 Similarly, � = A22
A�22

�
1� �

�
is not identi�ed, and therefore, neither is the structural shadow value Y �2t in eq. (25). Identi�cation of

these requires an additional restriction on A22, e.g., A22 = 0: Turning this discussion around, we see

that a change in the reaction function across regimes does not destroy the point identi�cation of the

e¤ects of policy during the unconstrained regime, since the latter only requires �;  and A22, not A�22

or �: The change allowed for by A22 6= 0 is of a speci�c type.

Next, we turn to the case A�12 6= 0; and derive identi�cation under restrictions on the sign and

magnitude of A�12 relative to A12 and A�22 relative to A22: The �rst restriction is motivated by a

generalization of the discussion on the CKSEM model in equation (7). Speci�cally, if A12 = A12+A
�
12

measures the e¤ect of conventional policy (operating in the unconstrained regime) and A�12 measures

the e¤ect of unconventional policy (operating in the constrained regime), then the assumption that

A12 and A�12 have the same sign means that unconventional policy e¤ects are neither in the opposite

direction nor larger in absolute value than conventional policy e¤ects. In other words, unconventional

policy is neither counterproductive nor over-productive relative to conventional policy. This can be

characterized by the speci�cation A�12 = �A12 and A12 = (Ik�1 � �)A12; where � = diag (�j) ;

�j 2 [0; 1] for j = 1; :::; k� 1: I further impose the restriction that �j = � for all j; so that A�12 = �A12

and A12 = (1� �)A12 with � 2 [0; 1] : This, in turn, means that Y2t and Y �2t enter each of the �rst

k � 1 structural equations for Y1t only via the common linear combination �Y �2t + (1� �)Y2t; which

can be interpreted as a measure of the e¤ective policy stance.

We also need to consider the impact of A22 on identi�cation. The variable � = A22=A
�
22 gives

the ratio of the standard deviation of the monetary policy shock in the constrained relative to the

unconstrained regime. It is also the ratio of the reaction function coe¢ cients in the two regimes, e.g.,

A��122 A21 versus A
�1
22 A21. I will impose � > 0; so that the sign of the policy shock does not change

across regimes. With the above reparametrization and the de�nitions in (32), the identi�ed coe¢ ciente� in (9) can be written as
e� = (1� �) �I � ����1 �; � := ��: (37)

9This is akin to the well-known property of a probit model that the scale of the distribution of the latent process is
not identi�able.
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Similarly, given � > 0; the coherency condition (20) reduces to
�
1� �

� �
1� ��

�
> 0: Notice that

the parameters �; � only appear multiplicatively, so it su¢ ces to consider them together as � = ��:

Once � is known, the remaining structural parameters needed to obtain the IRF to "2t are  and A22,

and they are obtained from Proposition 3. So, the identi�ed set can be characterized by varying �

over its admissible range. Without further restrictions on �; the admissible range is obviously � � 0:

If we further assume that � � 1; i.e., that the slope of the reaction function coe¢ cients is no steeper in

the constrained regime than in the unconstrained regime, then � 2 [0; 1] ; and so partial identi�cation

proceeds exactly along the lines of the CKSEM in the previous section where � played the role of �: In

the case k = 2; the bounds derived in eq. (15) apply, with � = � in the notation of the present section.

However, when k > 2; it is di¢ cult to obtain a simple analytical characterization of the identi�ed set

for �: In any case, we will typically wish to obtain the identi�ed set for functions of the structural

parameters, such as the IRF. This can be done numerically by searching over a �ne discretization of

the admissible range for �: An algorithm for doing this is provided in Appendix B.3.

3.2 Estimation

Estimation of the KSVAR is straightforward, since the likelihood is analytically available under

Gaussian errors. The key is that latent lags do not appear on the right-hand side of the model.

Estimation of the CKSVAR is more involved because of the presence of latent lags and the likeli-

hood function of the reduced form given in Proposition 2 is not analytically available. It can be

approximated using particle �ltering, such as the sequential importance sampler (SIS) proposed by

Lee (1999) for a univariate dynamic Tobit model. The SIS has the attractive feature that it is smooth,

so the likelihood can be numerically di¤erentiated and maximized with derivatives-based methods.

However, the SIS can potentially su¤er from sample degeneracy, see Herbst and Schorfheide (2015).

I therefore consider also a fully adapted particle �lter (FAPF) that uses resampling to address the

sample degeneracy problem. The method can be found in Malik and Pitt (2011) and is a special case

of the auxiliary particle �lter of Pitt and Shephard (1999). The disadvantage of FAPF is that the

resampling step makes it discontinuous, so the likelihood cannot be maximized using derivatives-based

algorithms, nor can we compute standard errors using numerical di¤erentiation. We can still maximize

the likelihood using simulated annealing and use the Likelihood Ratio (LR) test for inference. Given

the aforementioned computational challenges, it is possibly more practical to implement FAPF using

Bayes than Maximum Likelihood (ML).

The description of the likelihood and the two �ltering algorithms is given in Appendix B. In

addition, one can consider method of moments (MM), and sequential estimation motivated by the

constructive identi�cation proof in Section 3. These are also described in the Appendix.

When the data is stationary and ergodic, and subject to some additional regularity conditions

given in Newey and McFadden (1994), the ML estimator can be shown to be consistent and asymptot-
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ically Normal and the LR statistic asymptotically �2 with degrees of freedom equal to the number of

restrictions. I will not discuss primitive conditions for these results, but I note that they are somewhat

weaker than for a standard linear VAR. This is because the lower bound on one of the variables means

that negative autoregressive roots that are larger than 1 in absolute value do not violate stationarity,

see, e.g., (de Jong and Herrera, 2011, p. 230). Instead, I report Monte Carlo simulation results on the

�nite-sample properties of ML and related frequentist estimators and LR tests in Appendix C. They

show that the Normal distribution provides a very good approximation to the �nite-sample distrib-

ution of the various estimators discussed above. I �nd some �nite-sample size distortion in the LR

tests of various restrictions on the CKSVAR, but this can be addressed e¤ectively with a parametric

bootstrap, as shown in the Appendix. One important observation from the simulations is that the

LR test of the CSVAR restrictions against the CKSVAR appears to be less powerful than the corre-

sponding test of the KSVAR restrictions against the CKSVAR. Thus, we expect to be able to detect

deviations from KSVAR more easily than deviations from CSVAR. In other words, �nding evidence

against the hypothesis that unconventional policies are fully e¤ective (CSVAR) will be harder than

�nding evidence against the opposite hypothesis that they are completely ine¤ective (KSVAR).

4 Application

I use the three-equation SVAR of Stock and Watson (2001), consisting of in�ation, the unemployment

rate and the Federal Funds rate to provide a simple empirical illustration of the methodology developed

in this paper. As discussed in Stock and Watson (2001), this model is far too limited to provide credible

identi�cation of structural shocks, so the results in this section are meant as an illustration of the new

methods.

The data are quarterly and are constructed exactly as in Stock and Watson (2001).10 The variables

are plotted in Figure 2 over the extended sample 1960q1 to 2018q2. I will consider all periods in which

the Fed funds rate was below 20 basis points to be on the ZLB. This includes 28 quarters, or 11% of

the sample.

4.1 Tests of e¢ cacy of unconventional policy

I estimate three speci�cations of the SVAR(4) with the ZLB: the unrestricted CKSVAR speci�cation,

as well as the restricted KSVAR and CSVAR speci�cations. The maximum log-likelihood for each

model is reported in Table 1, computed using the SIS algorithm in the case of CKSVAR and CSVAR,

with 1000 particles. The accuracy of the SIS algorithm was gauged by comparing the log-likelihood to

the one obtained using the resampling FAPF algorithm. In both CKSVAR and CSVAR the di¤erence

is very small. The results are also very similar when we increase the number of particles to 10000.

10The in�ation data are computed as �t = 4001n(Pt=Pt�1), where Pt, is the implicit GDP de�ator and ut is the civilian
unemployment rate. Quarterly data on ut and it are formed by taking quarterly averages of their monthly values.
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Figure 2: Data used in Stock and Watson (2001) over the extended sample 1960q1 to 2018q2.

Model log lik (FAPF) # restr. LR stat. Asym. p-val. Boot. p-val.
CKSVAR(4) -81.64 -81.94
KSVAR(4) -97.05 - 12 30.82 0.002 0.015
CSVAR(4) -94.86 -94.87 14 26.43 0.023 0.129

Sample: 1960q1-2018q2 (234 obs, 11% at ZLB)

Table 1: Maximized log-likelihood of various SVAR models in in�ation, unemployment and Federal
funds rate. CKSVAR is unrestrcted speci�cation (22)-(23); KSVAR excludes latent lags; CSVAR is
a purely censored model. CKSVAR and CSVAR likelihoods computed using sequential importance
sampling with 1000 particles (alternative estimates based on Fully Adapted Particle Filtering with
resampling are shown in parentheses). Asymptotic p-values from �2q , q = number of restrictions.
Bootstrap p-values from parametric bootstrap with 999 replications.

Finally, the table reports the likelihood ratio tests of KSVAR and CSVAR against CKSVAR using

both asymptotic and parametric bootstrap p-values.

The KSVAR imposes the restriction that no latent lags (i.e., lags of the shadow rate) should

appear on the right hand side of the model, i.e., B� = 0 in (18) or C
�
1 = 0 and C

�
2 = 0 in (22) and

(23). This amounts to 12 exclusion restrictions on the CKSVAR(4), four restrictions in each of the

three equations. This is necessary (but not su¢ cient) for the hypothesis that unconventional policy

is completely ine¤ective at all horizons. It is necessary because C
�
=
�
C
�0
1 ; C

�0
2

�0
6= 0 would imply

that unconventional policy has at least a lagged e¤ect on Y1t: C
�
= 0 is not su¢ cient to infer that

unconventional policy is completely ine¤ective because it may still have a contemporaneous e¤ect on

Y1t if A�12 6= 0; and the latter is not point-identi�ed. The result of the test in Table 1 shows that lags
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of the shadow rate are statistically signi�cant at the 5% level, meaning that unconventional policy is

at least partially e¤ective.

The CSVAR model imposes the restriction that only the coe¢ cients on the lags of the shadow

rate (which is equal to the actual rate above the ZLB) are di¤erent from zero in the model, i.e., the

elements of B corresponding to lags of Y2t in (18) are all zero, or equivalently, the elements of C1 and

C2 corresponding to lags of Y2t in (22) and (23) are all zero. In addition, it imposes the restriction

that e� = 0 in (22), that is, no kink in the reduced-form equations for in�ation and unemployment

across regimes, yielding 14 restrictions in total. This is necessary for the hypothesis that the ZLB

is empirically irrelevant for policy in that it does not limit what monetary policy can achieve. The

evidence against this hypothesis is not as strong as in the case of the KSVAR. The asymptotic p-

value is 0.023, indicating rejection at the 5% level, but the bootstrap p-value is 0.129. Note that this

di¤erence could also be due to fact that the test of the CSVAR restrictions may be less powerful than

the test of the KSVAR restrictions, as indicated by the simulations reported in the previous section.

Thus, I would cautiously conclude that the evidence on the empirical relevance of the ZLB is mixed.

Further evidence on the e¢ cacy of unconventional policy will also be provided in the next subsection.

4.2 IRFs

Based on the evidence reported in the previous section, I estimate the IRF associated with the mone-

tary policy shock using the unrestricted CKSVAR speci�cation, and compare them to recursive IRFs

from the CSVAR speci�cation that place the Federal funds rate last in the causal ordering. From the

identi�cation results in Section 3, the CKSVAR point-identi�es the nonrecursive IRFs only under the

assumption that the shadow rate has no contemporaneous e¤ect of Y1t; i.e., A�12 = 0 in (16). Note

that, due to the nonlinearity of the model, the IRFs are state-dependent. I use the following de�nition

of the IRF from Koop et al. (1996):

IRFh;t

�
&;Xt; X

�
t

�
= E

�
Yt+hj"2t = &;Xt; X

�
t

�
� E

�
Yt+hj"2t = 0; Xt; X

�
t

�
: (38)

If t is such that Y
�
2;t�s = Y2;t�s > b for all s = 1; :::; p; then X

�
t = 0,11 and hence IRFh;t (&;Xt; 0)

is observed. However, if t is such that any element of X
�
t is unobserved, we could either evaluate

IRFh;t (&;Xt; �) at an estimated value of X
�
t conditional on the observed data, or we can estimate

IRFh;t

�
&;Xt; X

�
t

�
conditional on the observed data. When we estimate the IRF from a CKSVAR(4)

at the end of our sample, t = 2018q3; X
�
t = 0 because the Federal funds rate was above the ZLB over

the previous four quarters, so �ltering is unnecessary.

Figure 3 reports the nonrecursive IRFs to a 100 basis points monetary policy shock from the

CKSVAR under the assumption that � = 0 (unconventional policy is ine¤ective) and two di¤erent

11Recall the de�ntion X
�
t = (xt�1; :::; xt�p)

0 ; xt = min
�
Y
�
2t � b; 0

�
; given in Proposition 2.

19



estimates of recursive IRFs using the identi�cation scheme in Stock and Watson (2001). The �rst

estimate is a nonlinear IRF that is obtained from the CSVAR speci�cation. The second is a �naive�

OLS estimate of the linear IRF in a SVAR with interest rates placed last, ignoring the ZLB constraint

(a direct application of the method in Stock and Watson (2001) to the present sample). The �gure

also reports 90% bootstrap error bands for the nonrecursive IRFs.

In the nonrecursive IRF, the response of in�ation to a monetary tightening is negative on impact,

albeit very small, and, with the exception of the �rst quarter when it is positive, it stays negative

throughout the horizon. Hence, the incidence of a price puzzle is mitigated relative to the recursive

IRFs, according to which in�ation rises for up to 6 quarters after a monetary tightening (9 quarters

in the OLS case). Note, however, that the error bands are so wide that they cover (pointwise) most

of the recursive IRF, though less so for the OLS one. Turning to the unemployment response, we

see that the nonrecursive IRF starts signi�cantly positive on impact (no transmission lag) and peaks

much earlier (after 4 quarters) than the recursive IRF (10 quarters). In this case, the recursive IRF is

outside the error bands for several quarters (more so for the naive OLS IRF). Finally, the response of

the Federal funds rate to the monetary tightening is less than one on impact and generally signi�cantly

lower than the recursive IRFs. This is both due to the contemporaneous feedback from in�ation and

unemployment, as well as the fact that there is a considerable probability of returning to the ZLB,

which mitigates the impact of monetary tightening.

Next, we turn to the identi�ed sets of the IRFs that arise when we relax the restriction that

unconventional policy is ine¤ective, i.e., � can be greater than zero. We consider the range of � = �� 2

[0; 1] ; recalling that � measures the e¢ cacy of unconventional policy and � measures the ratio of the

reaction function coe¢ cients and shock volatilities in the constrained versus the unconstrained regimes.

The left-hand-side graphs in Figure 4 report the identi�ed sets without any other restrictions. The

right-hand-side graphs derive the identi�ed sets when we impose the additional sign restriction that

the contemporaneous e¤ect of the monetary policy shock to the Fed Funds rate should be nonnegative.

The red shaded area gives the identi�ed sets and the blue line with diamonds gives the point estimates

when � = 0: The latter are the same as the nonrecursive point estimates reported in Figure 3.

We observe that the identi�ed set for the IRF of in�ation is bounded from above by the limiting

case � = 0: This is also true of the response of the Fed Funds rate. The case � = 0 provides a lower

bound on the e¤ect to unemployment only from 0 to 9 quarters. Even though the point estimate of

the unemployment response under � = 0 remains positive over all horizons, the identi�ed set includes

negative values beyond 10 quarters ahead. We also notice that the identi�ed sets are fairly large, albeit

still informative. Interestingly, the identi�ed IRF of the Fed Funds rate includes a range of negative

values on impact. These values arise because for values of � > 0; there are generally two solutions for

the structural VAR parameters �;  in the equations (33), (37), with one of them inducing such strong

responses of in�ation and unemployment to the interest rate that the contemporaneous feedback in
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Figure 3: IRFs to a monetary policy shock from a three equation CKSVAR(4) estimated over the
period 1960q1 to 2018q2. The solid red line corresponds to the nonrecursive identi�cation from the
ZLB under the assumption that unconventional policy is ine¤ective. The dashed blue line corresponds
to the nonlinear recursive IRF, estimated with the CKSVAR(4) under the restriction that the con-
temporaneous impact of Fed Funds on in�ation and unemployment is zero. The green line with circles
corresponds to the recursive IRF from a linear SVAR(4) estimated by OLS with Fed Funds ordered
last.
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Figure 4: Identi�ed sets of the IRFs to a 100bp monetary policy shock in a CKSVAR(4) in 2018q3.
The red area denotes the identi�ed set, the blue line with diamonds indicates the point identi�ed IRF
under the restriction that unconventional policy is ine¤ective (� = 0) : The �gures on the left provide
the full identi�ed set. The �gures on the right impose the restirction that the response of the Fed
funds rate be nonnegative.

the policy rule would in fact revert the direct positive e¤ect of the policy shock on the interest rate.

If we impose the additional sign restriction that the contemporaneous impact of the policy shock

to the Fed Funds rate must be non-negative, then those values are ruled out and the identi�ed sets

become considerably tighter. This is an example of how sign restrictions can lead to tighter partial

identi�cation of the IRF.

With an additional assumption on �; the method can be used to obtain an estimate of the identi�ed

set for �; the measure of the e¢ cacy of unconventional policy. In particular, if we set � = 1; i.e., the

reaction function remains the same across the two regimes, then the identi�ed set for � is [0:0:506] : In

other words, the identi�ed set excludes values of the e¢ cacy of policy beyond 51%, so that, roughly

speaking, unconventional policy is at most 50% as e¤ective as conventional one. Note that this estimate

does not account for sampling uncertainty and relies crucially on the assumption about the constancy

of the reaction function across the two regimes. As argued in the introduction, this assumption can

be motivated by arguing that there is no reason to believe that policy objectives (and hence the

reaction function) may have shifted over the ZLB period. However, to illustrate the implications of

relaxing that assumption, consider the following alternative assumption. Suppose � = 1=2; i.e., the

shadow rate reacts half as fast to shocks during the ZLB period than it does in the non-ZLB period.
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Then, the identi�ed set for � would include 1, i.e., the data would be consistent with the view that

unconventional policy is fully e¤ective. So, under this assumption, the reason we observed a subdued

response to policy shocks over the ZLB period is because policy was less active over that period.

As I discussed in the introduction, it is di¢ cult to make further progress on this issue without

further information or additional assumptions. The technical reason is that the scale of the latent

regression over the censored sample is not identi�ed, so we will require additional information to

untangle the structural parameters � and � from � = ��. One possibility would be to identify � from

the coe¢ cients on the lags of the shadow rate and observed rate by imposing the (overidentifying)

restriction that lags of Y2t and Y �2t appear in the model only via the linear combination �Y
�
2t+(1� �)

Y2t; which can be interpreted as the e¤ective policy stance. Provided that the coe¢ cients on the lags

of Y �2t or Y2t are not all zero, this restriction point identi�es �: We then need an additional restriction

to identify � so that we can draw inference on �: This can be done, for instance, by using external

instruments, as in Gertler and Karadi (2015). Those will identify � directly, and, using (37), we can

obtain �:

5 Conclusion

This paper has shown that the ZLB can be used constructively to identify the causal e¤ects of monetary

policy on the economy. Identi�cation relies on two conditions: the stability of the transmission mecha-

nism across regimes, and the ine¢ cacy of alternative (unconventional) policies. When unconventional

policies are partially e¤ective in mitigating the impact of the ZLB, the causal e¤ects of monetary

policy are only partially identi�ed. A general method is proposed to estimate SVARs subject to an

occasionally binding constraint. The method can be used to test the e¢ cacy of unconventional policy,

modelled via a shadow rate. Application to a core three-equation SVAR with US data indicates that

the ZLB is empirically relevant and unconventional policy is only partially e¤ective.

A Proofs

A.1 Derivation of equation (15)

For any given �; the orthogonality of the errors implies that

 =
!12 � !22�
!11 � !12�

; (39)

see the proof of Proposition 3. Substituting this into (9) we have

e� = g (�)�; g (�) :=
1� �

1� ��(!12�!22�)!11�!12�
: (40)
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So, we look at the shape of the function g (�) :

When !12 = 0; we have g (�) = 1��
1+�!22�2=!11

2 (0; 1) for all � 2 (0; 1) : Therefore, when e� 6= 0; the
sign of � is the same as that of e� and its magnitude is lower, as stated in (15).

Next, consider !12 6= 0: It is easily seen that g (0) = 1� � and lim�!�1 (�) = 0: Moreover,

@g

@�
= � (1� �) !12!22�

2 � 2!11!22� + !11!12
(!11 � �!12 � ��!12 + �2�!22)2

:

For � 2 (0; 1) ; the above derivative function has zeros at

!12!22�
2 � 2!11!22� + !11!12 = 0;

which occur at

�1 =
!11!22+

q
!11!22(!11!22�!212)
!12!22

�2 =
!11!22�

q
!11!22(!11!22�!212)
!12!22

; if !12 6= 0:

Now, because 0 <
�
!11!22 � !212

�
< !11!22 implies

q
!11!22

�
!11!22 � !212

�
< !11!22; we have �i < 0;

i = 1; 2; when !12 < 0 and �i > 0; i = 1; 2; when !12 > 0:

By symmetry, it su¢ ces to consider only one of the two cases, e.g., the case !12 < 0: In this case,

g0 (�) = @g
@� < 0 for all � > 0 and, since g (0) = 1� � and g (1) = 0; it follows that g (�) 2 (0; 1� �)

for all � > 0: Thus, from (40) we see that e� < 0 cannot arise from � > 0 when !12 < 0: In other

words, observing e� < 0 must mean that � < 0: Moreover, since g0 (�) < 0 for all � > �1 and �1 < 0;

it must be that g (�) > 0 for all � > �1; and hence, also for �1 < � � 0: At � < �1; g
0 (�) > 0; and

since g0 (�) < 0 for all � < �2 < �1; and g (�1) = 0; it has to be that g (�) approaches zero from

below as � ! �1; and therefore, g (�) must cross zero at some �0 2 (�2; �1) ; and g (�) � 0 for all

� 2 [�0; 0] : Inspection of (40) shows that �0 = !11=!12; which corresponds to  = �1 from (39).

Since g (�) 2 [0; 1� �] for all � 2 [�0; 0] ; and � 2 (0; 1); it follows from (40) that
���e���� � j�j. In other

words, e� is attenuated relative to the true �:
Finally, we notice that there is a minimum value of e� that one can observe under the restriction

� 2 [0; 1] (at � = 1; e� = 0). Given the attenuation bias and the fact that e� < 0 if and only if

� 2 [�0; 1] ; the smallest value of e� occurs when � = 0 and � = !11=!12; so e�min = !11=!12 . Thus,

observing e� < !11=!12 and !12 < 0; or e�!12=!11 > 1; violates the identifying restriction that � � 0

for only with a � < 0 can we get g (�) > 1 when � < 0 and hence e� < � < 0.

A.2 Proof of Proposition 1

First, a necessary condition for coherency is that the matrices A and A� in (19) are nonsingular

(otherwise, there would be fewer unknowns than equations in each or either of the two regimes and

there would be no solution). Without loss of generality, we can assume that A11, A�22 and A�22 +A22
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are nonsingular, so that the �rst k � 1 equations can be solved for Y1t and the last equation can be

solved for Y �2t in each regime (this can always be achieved by reordering the variables in Yt).

We need to eliminate Y �2t to obtain a system of equations in Y1t and Y2t alone. Let Wt = BXt +

B�X�
t +"t denote the right-hand side (RHS) of (18) for compactness and solve (18) for Y

�
2t as a function

of Y2t and Wt = (W
0
1t;W2t)

0 ; partitioned conformably with Yt = (Y 01t; Y2t)
0 to get

Y �2t = A��122 (W2t �A22Y2t �A21Y1t) :

Substitute into the equation for Y1t to get

Y1t = A�111 (�A12Y2t �A�12Y �2t +W1t)

= �A�111 A12Y2t �A
�1
11 A

�
12A

��1
22 (W2t �A22Y2t �A21Y1t) +A�111W1t

= A�111
�
A�12A

��1
22 A22 �A12

�
Y2t +A

�1
11 A

�
12A

��1
22 A21Y1t +A

�1
11

�
W1t �A�12A��122 W2t

�
;

or �
A11 �A�12A��122 A21

�
Y1t =

�
A�12A

��1
22 A22 �A12

�
Y2t +

�
W1t �A�12A��122 W2t

�
:

Now, since detA� = detA�22 det
�
A11 �A�12A��122 A21

�
6= 0 (Lütkepohl, 1996, p. 50 (6)), it follows that�

A11 �A�12A��122 A21
�
is invertible, so

Y1t =
�
A11 �A�12A��122 A21

��1 �
A�12A

��1
22 A22 �A12

�
Y2t + x1t; (41)

x1t :=
�
A11 �A�12A��122 A21

��1 �
W1t �A�12A��122 W2t

�
:

Finally, the equation for Y2t is

Y2t = max
�
A��122 (W2t �A22Y2t �A21Y1t) ; b

	
:

Substituting for Y1t using (41), we have

Y2t = max
n
A��122

�
W2t �A21x1t �A22Y2t �A21

�
A11 �A�12A��122 A21

��1 �
A�12A

��1
22 A22 �A12

�
Y2t

�
; b
o

= max
n�
x2t �A��122

�
A22 +A21

�
A11 �A�12A��122 A21

��1 �
A�12A

��1
22 A22 �A12

��
Y2t

�
; b
o

with x2t := A��122 (W2t �A21x1t) : Coherency and completeness hold if the above equation has a unique

solution for all possible x2t: If x2t is arbitrary, which is the case when "t is supported on <k, the

necessary and su¢ cient coherency and completeness condition is given by

�A��122

�
A22 +A21

�
A11 �A�12A��122 A21

��1 �
A�12A

��1
22 A22 �A12

��
< 1: (42)
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From (Lütkepohl, 1996, p. 29 (2)), we have

�
A11 �A�12A��122 A21

��1
= A�111 +A

�1
11 A

�
12

�
A�22 �A21A�111 A�12

��1
A21A

�1
11 :

Hence,

A21
�
A11 �A�12A��122 A21

��1 �
A�12A

��1
22 A22 �A12

�
= A21A

�1
11

�
A�12A

��1
22 A22 �A12

�
+A21A

�1
11 A

�
12

�
A�22 �A21A�111 A�12

��1
�A21A�111

�
A�12A

��1
22 A22 �A12

�
=

�
1 +

A21A
�1
11 A

�
12

A�22 �A21A
�1
11 A

�
12

�
A21A

�1
11

�
A�12A

��1
22 A22 �A12

�
=

A�22
A�22 �A21A

�1
11 A

�
12

A21A
�1
11

�
A�12A

��1
22 A22 �A12

�
Substituting back into (42) yields

1 > �A��122

�
A22 +A21

�
A11 �A�12A��122 A21

��1 �
A�12A

��1
22 A22 �A12

��
= �A22

A�22
�
A21A

�1
11

�
A�12A

��1
22 A22 �A12

�
A�22 �A21A

�1
11 A

�
12

= �
A22

�
A�22 �A21A�111 A�12

�
+A�22A21A

�1
11

�
A�12A

��1
22 A22 �A12

�
A�22

�
A�22 �A21A

�1
11 A

�
12

�
= �A22 �A21A

�1
11 A12

A�22 �A21A
�1
11 A

�
12

:

Re-arranging yields (20).

A.3 Proof of Proposition 2

De�ne Ai2 := A�i2 + Ai2; i = 1; 2 as the right blocks of A that was de�ned in (19). Also let Y �t :=

(Y 01t; Y
�
2t)

0 : When the coherency condition (20) holds, the solution of (18) exists and is unique. It can

be expressed as

Y �t =

8<: CXt + C
�X�

t + ut; if Dt = 0eCXt + eC�X�
t + ecb+ eut; if Dt = 1

(43)

where

C = A
�1
B; C� = A

�1
B�; ut = A

�1
"t (44)

and eC = A��1B; eC� = A��1B�; ec = �A��1�A12
A22

�
b; eut = A��1"t: (45)
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From the partitioned inverse formula we have

A��1 =

0@A�111 +A�111 A�12 �A�22 �A21A�111 A�12��1A21A�111 �A�111 A�12
�
A�22 �A21A�111 A�12

��1
�
�
A�22 �A21A�111 A�12

��1
A21A

�1
11

�
A�22 �A21A�111 A�12

��1
1A

=

0@ �
A11 �A�12A��122 A21

��1 �
�
A11 �A�12A��122 A21

��1
A�12A

��1
22

�A��122 A21
�
A11 �A�12A��122 A21

��1
A��122 +A��122 A21

�
A11 �A�12A��122 A21

��1
A�12A

��1
22

1A :

So,

eC1 = �A11 �A�12A��122 A21
��1 �

B1 �A�12A��122 B2
�

eC2 = �A�22 �A21A�111 A�12��1 �B2 �A21A�111 B1�
and similarly

C1 =
�
A11 �A12A

�1
22 A21

��1 �
B1 �A12A

�1
22 B2

�
C2 =

�
A22 �A21A�111 A12

��1 �
B2 �A21A�111 B1

�
:

Solving the latter for B1 and B2 yields

B1 =
�
A11 �A12A

�1
22 A21

�
C1 +A12A

�1
22 B2

and

�
1�A21A�111 A12A

�1
22

�
B2 =

�
1�A21A�111 A12A

�1
22

�
A22C2 +

�
1�A21A�111 A12A

�1
22

�
A21C1:

Now, since detA = det (A11) det
�
A22 �A21A�111 A12

�
6= 0 (Lütkepohl, 1996, p. 50 (6)), it follows that

A22 �A21A�111 A12 6= 0; (46)

so

B2 = A22C2 +A21C1; and

B1 = A11C1 +A12C2:

Thus, eC1 = C1 +
�
A11 �A�12A��122 A21

��1 �
A12 �A�12A��122 A22

�
C2 = C1 � e�C2;
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since

�
A11 �A�12A��122 A21

��1 �
A12 �A�12A��122 A22

�
= �

�
A11 �A�12A��122 A21

��1 �
A�12A

��1
22 A22 �A12

�
= �e�:

Next,

eC2 = �A�22 �A21A�111 A�12��1 �B2 �A21A�111 B1�
=
�
A�22 �A21A�111 A�12

��1 �
A�22 �A21A�111 A�12 +A22 �A21A

�1
11 A12

�
C2 = �C2;

where � is given in (20). The exact same derivations apply to eC�; i.e.,
eC�1 = C�1 � e�C�2 ; and eC�2 = �C�2 :

Next,

ec1 = �A11 �A�12A��122 A21
��1 �

A�12A
��1
22 A22 �A12

�
b = e�b; and

ec2 = �A22 �A21A�111 A12
A�22 �A21A

�1
11 A

�
12

b = (1� �) b:

Finally, eut = A��1Aut, so

eu1t = �A11 �A�12A��122 A21
��1 �

I �A�12A��122

�0@A11u1t +A12u2t
A21u1t +A22u2t

1A
= u1t � e�u2t;

and

eu2t = �A�22 �A21A�111 A�12��1 ��A21A�111 I
�0@A11u1t +A12u2t

A21u1t +A22u2t

1A
=

�
1 +

A22 �A21A�111 A12
A�22 �A21A

�1
11 A

�
12

�
u2t = �u2t:

Substituting back into (43), the reduced-form model for Y1t becomes

Y1t = (1�Dt) (C1Xt + C�1X�
t + u1t)

+Dt

��
C1 � e�C2�Xt + �C�1 � e�C�2�X�

t + u1t � e�u2t� ; (47)
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and for Y �2t it is

Y �2t = (1�Dt) (C2Xt + C�2X�
t + u2t) +Dt (�C2Xt + �C

�
2X

�
t + (1� �) b+ �u2t)

= C2Xt + C
�
2X

�
t + u2t � (1� �)Dt (C2Xt + C�2X�

t + u2t � b) : (48)

Next, de�ne eY �2t := C2Xt + C
�
2X

�
t + u2t; (49)

and rewrite (48) as

Y �2t = eY �2t � (1� �)Dt �eY �2t � b�
= (1�Dt) eY �2t +Dt ��eY �2t + (1� �) b� : (50)

Let q = dimXt denote the number of elements of Xt and de�ne, for each i = 1; 2;

Cij =

8<: Cij ; j 2 f1; qg : Xtj 6= Y2;t�s for all s 2 f1; pg

Cij + C
�
is; j 2 f1; qg : Xtj = Y2;t�s; for some s 2 f1; pg :

(51)

In other words, C contains the original coe¢ cients on all the regressors other than the lags of Y2t;

while the coe¢ cients on the lags of Y2t are augmented by the corresponding coe¢ cients of the lags of

Y �2t: For example, if p = 1 and there are no other exogenous regressors X0t; then, for i = 1; 2;

CiXt + C
�
iX

�
t = Ci1Y1t�1 + Ci2Y2t�1 + C

�
i Y

�
2t�1;

so Ci = (Ci1; Ci2 + C�i ). Using (51), we can rewrite (49) as

eY �2t = C2Xt + C
�
2 min (X

�
t � b; 0) + u2t: (52)

Now, observe that

min (Y �2t � b; 0) = Dt (Y
�
2t � b) = �Dt

�eY �2t � b� = �min
�eY �2t � b; 0�

So, letting eX�
t denote the lags of eY �2t; we have min (X�

t � b; 0) = �min
� eX�

t � b; 0
�
; and consequently,

C�min (X�
t � b; 0) = C

�
min

� eX�
t � b; 0

�
;

where C
�
= �C�: Now, from (52) we have

eY �2t = C2Xt + C
�
2min

� eX�
t � b; 0

�
+ u2t:
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Recall the de�nition of Y
�
2t in (24):

Y
�
2t := C2Xt + C

�
2X

�
t + u2t;

whereX
�
t := (xt�1; :::; xt�p)

0 ; and xt := min
�
Y
�
2t � b; 0

�
; with initial conditions x�s = ��1min

�
Y �2;�s � b; 0

�
;

s = 0; :::; p� 1: It follows that min
� eX�

t � b; 0
�
= X

�
t for all t � 1; so that eY �2t = Y

�
2t: Substituting Y

�
2

for eY �2 in (50), we get (25). Using the reparametrization (51) and the relationship between X�
t and

X
�
t in (47), we obtain (22).

Finally, from eq. (48), it follows that the event Y �2t < b is equivalent to

b+ � (C2Xt + C
�
2X

�
t + u2t � b) < b;

which, since � > 0 by the coherency condition (20), is equivalent to

u2t < b� C2Xt � C�2X�
t : (53)

Using the de�nition (24), and (51), the inequality (53) can be written as Y
�
2t < b; which establishes

(23).

Comment: Note that � appears in the reduced form only multiplicatively with C�; so � and C�

are not separately identi�ed, only C
�
= �C� is. The reparametrization from C to C is convenient

because C is identi�ed independently of �; while C;C� and � are not separately identi�ed.

A.4 Proof of Proposition 3

We solve ut = A
�1
"t using the partitioned inverse formula to get

u1t =
�
A11 �A12A

�1
22 A21

��1 �
"1t �A12A

�1
22 "2t

�
(54)

u2t =
�
A22 �A21A�111 A12

��1 �
"2t �A21A�111 "1t

�
: (55)

Using the de�nitions

�� := �A�111 A12; � := �A�122 A21;

�"1t := A�111 "1t; �"2t := A
�1
22 "2t;

we can rewrite (54)-(55) as (30)-(31).
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Note that

�"1t = A�111
�
A11u1t +A12u2t

�
= u1t � ��u2t;

�"2t = A
�1
22

�
A21u1t +A22u2t

�
= �u1t + u2t;

so,

var (�"1t) =
�
Ik�1;���

�


�
Ik�1;���

�0
;

var (�"2t) = (��; 1)
 (��; 1)0 ;

and

cov (�"1t; �"2t) =
�
Ik�1;��

�0@
11 
12


012 
22

1A (�; 1)0
= �

�

11 � �
012

�
0 +
12 � �
22 = 0:

The last equation identi�es  given �. Speci�cally,

0 =
�

11 � �
012

��1 �

12 � �
22

�
:

B Computational details

B.1 Derivation of the likelihood

To compute the likelihood, we need to obtain the prediction error densities. The �rst step is to write

the model in state-space form. De�ne

st =

0BBB@
yt
...

yt�p+1

1CCCA ; yt
(k+1)�1

=

0@ Yt

Y
�
2t

1A ;

and write the state transition equation as

st = F (st�1; ut; ) =

0BBBBBB@
F1 (st�1; ut; )

yt�1
...

yt�p+1

1CCCCCCA ; (56)
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and

F1 (st�1; ut; ) =

0BBB@
C1Xt + C

�
1X

�
t + u1t � e�Dt �C2Xt + C�2X�

t + u2t � b
�

max
�
b; C2Xt + C

�
2X

�
t + u2t

�
C2Xt + C

�
2X

�
t + u2t

1CCCA ;

and the observation equation as

Yt =
�
Ik 0k�1+(p�1)(k+1)

�
st: (57)

Next, I will derive the predictive density and mass functions conditional on the past state variables

that make up the prediction error decomposition of the likelihood. The contribution of the uncensored

observations is straightforward. With Gaussian errors, the joint predictive density of Yt corresponding

to the observations with Dt = 0 can be written as:

f0 (Ytjst�1;  ) := j
j�1=2 exp
�
�1
2
tr

��
Yt � CXt � C

�
X
�
t

��
Yt � CXt � C

�
X
�
t

�0

�1

��
: (58)

It remains to determine the contribution of the observations on the boundary, Dt = 1: Speci�cally,

because Dt = 1 if and only if u2t < b� C2Xt � C
�
2X

�
t , we need to �nd

Z b�C2Xt�C
�
2X

�
t

�1
fY1;u2 (Y1t; u2tjst�1;  ) du2t;

where fY1;u2 is the joint density of Y1t and u2t; conditional on st�1: This can also be expressed as the

marginal density of Y1t for observations with Dt = 1; denoted f1 (Y1tjst�1;  ) ; times Pr(u2t < b�C2Xt
� C�2X

�
t jY1t; st�1;  ):

Now, at Dt = 1; Y1t = (predetermined variables)+u1t � e�u2t; so f1 (Y1tjst�1;  ) is Gaussian, and
can be written as

f1 (Y1tjst�1;  ) := j�1j�
1
2 exp

�
�1
2
(Y1t � �1t)0 ��11 (Y1t � �1t)

�
(59)

�1t := e�b+ �C1 � e�C2�Xt + �C�1 � e�C�2�X�
t (60)

�1 := 
1:2 + e�e�0�2 = �Ik�1 �e��
�Ik�1�e�0
�
; e� = 
12!�122 � e�; (61)


1:2 = 
11 � 
12!�122 
21; and � =
p
!22. Next,

u2tjY1t; st�1 � N
�
�2t; �

2
2

�
; with (62)

�2t := �2e�0��11 (Y1t � �1t) ; �2 = �

r�
1� �2e�0��11 e��: (63)
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Hence,

Pr (Dt = 1jY1t; st�1;  ) = �
 
b� C2Xt � C

�
2X

�
t � �2t

�2

!
: (64)

In the case of the KSVAR model, there are no latent lags (C
�
= 0; C = C), so the log-likelihood

is available analytically:

logL ( ) =

TX
t=1

�
(1�Dt) log f0 (Ytjst�1;  )

+ Dt log

�
f1 (Y1tjst�1;  ) �

�
b� C2Xt � �2t

�2

���

where f0 (Ytjst�1; �) and f1 (Y1tjst�1; �) are given by (58) and (59), resp., with C
�
= 0.12

The likelihood for the unrestricted CKSVAR (C
� 6= 0) is not available analytically, but it can

be computed approximately by simulation (particle �ltering). I will describe two di¤erent simulation

algorithms. The �rst is a sequential importance sampler (SIS), proposed originally by Lee (1999) for

the univariate dynamic Tobit model. It is extended here to the CKSVAR model. The advantage of

this algorithm is that the resulting likelihood approximation is continuous and smooth, so it can be

readily maximized using derivative-based methods, and asymptotic standard errors can be computed

numerically by the delta method. The disadvantage is that it su¤ers from sample degeneracy of the

particles, and may give an inaccurate approximation to the true likelihood function. This can be

gauged from the e¤ective sample size (ESS) of the �lter as explained below.

The second algorithm is a fully adapted particle �lter (FAPF), which is a sequential importance

resampling algorithm designed to address the sample degeneracy problem. It is proposed by Malik

and Pitt (2011) and is a special case of the auxiliary particle �lter developed by Pitt and Shephard

(1999). The disadvantage of any resampling algorithm is that the resulting likelihood approximation is

discontinuous, and therefore this method is not amenable to derivative-based optimization or numerical

computation of standard errors. Thus, I resort to simulated annealing for likelihood maximization,

and use the likelihood ratio statistic for testing. This takes much longer to execute, but it is potentially

more accurate than SIS.

Both algorithms require sampling from the predictive density of Y
�
2t conditional on Y1t; Dt = 1

and st�1: From (24) and (62), we see that this is a truncated normal with original mean ��2t =

C2Xt + C
�
2X

�
t + �2t and standard deviation �2; where �2t; �2 are given in (63), i.e.,

f2 (Y
�
2tjY1t; Dt = 1; st�1;  ) = TN

�
��2t; �2; Y

�
2t < b

�
(65)

Draws from this truncated distribution can be obtained using, for instance, the procedure in Lee (1999).

12Note that the contribution to the likelihood of the observations on the boundary is di¤erent from �
�
b�C2Xt

�

�
; which

would be the corresponding term in the marginal Tobit likelihood for Y2t.
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Let �(j)t � U [0; 1] be i.i.d. uniform random draws, j = 1; :::;M . Then, a draw from Y
�
2tjY1t; st�1; Y

�
2t <

b is given by

Y
�(j)
2t = ��2t + �2�

�1
�
�
(j)
t �

�
b� ��2t
�2

��
: (66)

Algorithm 1 (SIS) Sequential Importance Sampler

1. Initialization. For j = 1 :M; set W j
0 = 1 and s

j
0 =

�
yj0; : : : ;y

j
�p+1

�
; with yj�s = (Y

0
0 ; Y2;0)

0 ; for

s = 0; :::; p� 1: (in other words, initialize Y �2;�s at the observed values of Y2;�s).

2. Recursion. For t = 1 : T :

(a) For j = 1 :M; compute the incremental weights

wjt�1jt = p
�
Ytjsjt�1;  

�
=

8<: f0

�
Ytjsjt�1;  

�
; if Dt = 0

f1

�
Y1tjsjt�1;  

�
Pr
�
Dt = 1jY1t; sjt�1;  

�
; if Dt = 1

where f0; f1; and Pr (Dt = 1jY1t; st�1; ) are given by (58), (59), and (64), resp., and

St =
1

M

MX
j=1

wjt�1jtW
j
t�1

(b) Sample sjt randomly from p
�
stjsjt�1; Yt

�
. That is, sjt =

�
yjt ;y

j
t�1; : : : ;y

j
t�p

�
where yjt =�

Y 0t ; Y
�(j)
2t

�
and Y

�(j)
2t is a draw from f2

�
Y �2tjY1t; Dt = 1; s

j
t�1;  

�
using (66).

(c) Update the weights:

W j
t =

wjt�1jtW
j
t�1

St
:

3. Likelihood approximation

log bp(YT j ) = TX
t=1

logSt

If the draws �(j)t are kept �xed across di¤erent values of  , the simulated likelihood in step 3 is

smooth. Note that when k = 1 and Yt = Y2t (no Y1t variables), the model reduces to a univariate

dynamic Tobit model, and Algorithm 1 reduces exactly to the sequential importance sampler proposed

by Lee (1999). As mentioned before, a possible weakness of this algorithm is sample degeneracy, which

arises when all but a few weights W J
t are zero. To gauge possible sample degeneracy, we can look at

the e¤ective sample size (ESS), as recommended by Herbst and Schorfheide (2015)

ESSt =
M

1
M

PM
j=1

�
W j
t

�2 : (67)

Next, I turn to the FAPF algorithm.
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Algorithm 2 (FAPF) Fully Adapted Particle Filter

1. Initialization. For j = 1 : M; set sj0 =
�
yj0; : : : ;y

j
�p+1

�
; with yj�s = (Y 00 ; Y2;0)

0 ; for s =

0; :::; p� 1: (in other words, initialize Y �2;�s at the observed values of Y2;�s).

2. Recursion. For t = 1 : T :

(a) For j = 1 :M; compute

wjt�1jt = p
�
Ytjsjt�1;  

�
=

8<: f0

�
Ytjsjt�1;  

�
; if Dt = 0

f1

�
Y1tjsjt�1;  

�
Pr
�
Dt = 1jY1t; sjt�1;  

�
; if Dt = 1

where f0; f1; and Pr (Dt = 1jY1t; st�1; ) are given by (58), (59), and (64), resp., and

�jt�1jt =
wjt�1jtPM
j=1w

j
t�1jt

:

(b) For j = 1 :M , sample kj randomly from the multinomial distribution
n
j; �jt�1jt

o
: Then, set

~sjt�1 = s
kj
t�1 (this applies only to the elements in s

j
t�1 that correspond to X

�j
t ; since all the

other elements are observed and constant across all j. That is, ~sjt�1 =
�
~yjt�1; : : : ; ~y

j
t�p

�
;

~yjt�s =
�
Y 0t�1; Y

�(kj)
2;t�s

�
; s = 1; :::; p:)

(c) For j = 1 :M , sample sjt randomly from p
�
stj~sjt�1; Yt

�
. That is, sjt =

�
yjt ; ~y

j
t�1; : : : ; ~y

j
t�p

�
where yjt =

�
Y 0t ; Y

�(j)
2t

�
and Y

�(j)
2t is a draw from f2

�
Y �2tjY1t; Dt = 1; ~s

j
t�1;  

�
using (66).

3. Likelihood approximation

ln p̂ (YT j ) =
TX
t=1

ln

0@ 1

M

MX
j=1

wjt�1jt

1A
Many of the generic particle �ltering algorithms used in the macro literature, described in Herbst

and Schorfheide (2015), are inapplicable in a censoring context because of the absence of measurement

error in the observation equation. It is, of course, possible to introduce a small measurement error in

Y2t; so that the constraint Y2t � b is not fully respected, but there is no reason to expect other particle

�lters discussed in Herbst and Schorfheide (2015) to estimate the likelihood more accurately than the

FAPF algorithm described above.

Moments or quantiles of the �ltering or smoothing distribution of any function h (�) of the latent

states st can be computed using the drawn sample of particles. When we use Algorithm 2, simple

average or quantiles of h
�
sjt

�
produce the requisite average or quantiles of h (st) conditional on

Y1; : : : ; Yt (the �ltering density). For particles generated using Algorithm 1, we need to take weighted
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averages using the importance sampling weights Wt: Smoothing estimates of h
�
sjt

�
can be obtained

using weights WT :

B.2 Other estimators

B.2.1 Method of moments

A method of moments estimator for  can be constructed using equation (27), together with the

following equations

E
�
Y2tjXt; X

�
t

�
= C2Xt + C

�
2X

�
t +�(at)

�
b� C2Xt � C

�
2X

�
t

�
+ �� (at) ; (68)

E (DtjXt) = � (at) ; at =
b� C2Xt � C

�
2X

�
t

�
(69)

and an expression for var
�
Y1tjXt; X

�
t ; Y2t

�
: When C� 6= 0; we need to integrate out X

�
t from

the above expressions. Then, the regressors become Xt :=
�
X 0
t; X

�0
tjt; Z1tjt; Z2tjt

�0
, where htjt :=

E
�
h
�
X
�
t

�
jY2t; Yt�1; :::; Y1

�
for any function h (�) whose expectation exists. Structural estimates can

be obtained by the same transformations as for ML.

B.2.2 Sequential estimation of KSVAR

The KSVAR (with C� = 0 and � = 0, so e� = �) can be estimated easily using standard estima-

tion routines that are available in most econometrics software. Speci�cally, the following sequential

estimator involves the steps Tobit-OLS-Tobit:

1. Estimate the reduced-form parameters  2 by ML from the Tobit regression of Y2t given by

equations (23) and (24) with C
�
2 = 0: Denote them b 2:

2. Construct the auxiliary variables bZ1t = Z1t

� b 2� ; bZ1t = Z2t

� b 2� de�ned in (28)-(29) with
C
�
2 = 0; and estimate C1 = C1; � = e�; and � from (27) (with C�1 = 0) by OLS. Denote the

estimate of � by b�:
3. Construct bZt = Y1t � b�Y2t and estimate the Tobit regression (36) (with ~B�2 = 0) by ML. This

yields be; b~B2; whereupon you get estimates of the structural parameters b = be �Ik�1 + b�be��1 ;
and bB2 = �1� b b�� b~B2:

B.3 Computation of the identi�ed set

Substitute for  in (37) using Proposition 3 to get

e� = (1� �)�I � �� �
012 � 
22�0��
11 � 
12�0��1��1 �: (70)
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For each value of � 2 [0; 1); the above equation de�nes a correspondence from <k�1 to <k�1. The

range of � can then be obtained numerically by solving (70) for � as a function of the reduced-form

parameters and � for each value of �; and gathering all the solutions in the set. It is shown in the

supplementary appendix that (70) can be written as

e� � ~A� + ��
0~b = 0; (71)

where

~b = 
�111
��

22 � 
012
�111 
12

�
Ik�1 +
12


0
12


�1
11

� e��; and
�A = e�
012
�111 + ��
012e� + 1� �� Ik�1:

De�ning z := ~b0�; it is further shown in the supplementary appendix that premultiplying equation

(71) by ~b0 yields the equation

0 = ~b0e� det (C0 (z)) + ~b0 ~A~b�~b0~b��1 z det (C0 (z)) (72)

� ~b0 ~A~b?C0 (z)adj c1 (z) + det (C0 (z)) z2;

where

C0 (z) := �
�
~b0? ~A

~b? +~b
0
?
~b?z

�
;

c1 (z) := ~b
0
?
e� +~b0? ~A~b�~b0~b��1 z;

~b? is a k� 1� k� 2 matrix such that ~b0?~b = 0, and det (C) and Cadj denote the determinant and the

adjoint of a square matrix C; respectively. This is a polynomial equation of order k and has at most

k real roots, denoted zi; say. Then, the solutions for � are given by

�i =
~b
�
~b0~b
��1

zi +~b?C0 (zi)
�1 c1 (zi) : (73)

provided that det (C0 (z)) 6= 0:

An algorithm for obtaining the identi�ed set of the IRF (38) is as follows.

Algorithm 3 (ID set) Discretize the space (0; 1) into R equidistant points.

For each r = 1 : R; set �r = r
R+1 and solve equation (72).

1. If no solution exists, proceed to proceed to next r:

2. If 0 < qr � k solutions exist, denote them zi;r; and, for each i = 1 : qr,
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(a) derive �i;r from (73), i;r =
�

012 � 
22�

0
i;r

��

11 � 
12�

0
i;r

��1
,

A
�1
22;i;r =

q�
�i;r; 1

�


�
�i;r; 1

�0, and �1;i:r = �Ik�1;��i;r�
 �Ik�1;��i;r�0 ;
(b) for j = 1 :M;

i. draw independently �"j1t;i;r � N (0;�1;i:r) and u
j
t+h � N (0;
) for h = 1; :::;H;

ii. for any scalar &, set

uj1t;i;r (&) =
�
Ik�1 � �i;ri;r

��1 �
�"j1t;i;r � �i;r&

�
uj2t;i;r (&) =

�
1� i;r�i;r

��1 �
& � i;r�"

j
1t;i;r

�
;

and compute Y jt;i;r (&) using (22)-(23) with u
j
t;i;r (&) in place of ut; and iterate forward

to obtain Y jt+h;i;r (&) using u
j
t+h computed in step i. Set & = 1 for a one-unit (e.g., 100

basis points) impulse to the policy shock "2t; or & = A
�1
22;i;r for a one-standard deviation

impulse.

(c) compute

[IRF h;t;i;r (&) =
1

M

MX
j=1

�
Y jt+h;i;r (&)� Y

j
t+h;i;r (0)

�
:

The identi�ed set is given by the collection of [IRF h;t;i;r (&) over i = 1 : qr; r = 1 : R; and the single

point-identi�ed IRF at � = 0:

C Numerical results

This section provides Monte-Carlo evidence on the �nite-sample properties of the proposed estimators

and tests. The data generating process (DGP) is a trivariate VAR(1), given by equations (16) and

(17). I consider three di¤erent DGPs corresponding to the CKSVAR, KSVAR and CSVAR models,

respectively. The parameters are set as follows. In all three DGPs, the following parameters are set

to the same values: the contemporaneous coe¢ cients are A11 = I2; A12 = A�12 = 02�1; A
�
22 = 1 and

A22 = 0; the intercepts are set to zero, B10 = 02�1 and B20 = 0; the coe¢ cients on the lags are

B1;1 = (�I2; 0) ; B
�
1;1 = 02�1; B2;1 = (01�2; B22;1), with � = 0:5: Finally, in each of the three DGPs

is determined as follows. DGP1: B22;1 = B�2;1 = 0 (both KSVAR and CSVAR, since lags of Y2;t

and Y �2;t all have zero coe¢ cients); DGP2: B22;1 = �; B�2;1 = 0 (KSVAR but not CSVAR); DGP3:

B22;1 = 0; B�2;1 = � (CSVAR but not KSVAR). The setting of the autoregressive coe¢ cient � = 0:5

leads to a lower degree of persistence than is typically observed in macro data (e.g., in the Stock and

Watson, 2001, application, the three largest roots are 0.97, 0.97 and 0.8), because I want to avoid

confounding any possible �nite-sample issues arising from the ZLB with well-known problems of bias

and size distortion due to strong persistence (near unit roots) in the data. Finally, the bound on Y2t
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Figure 5: Sampling distribution of reduced-form coe¢ cients of CKSVAR(1) in DGP1. T = 250; 1000
Monte Carlo replications.

is set to b = 0; the sample size is T = 250; the initial conditions are set to 0 and the number of Monte

Carlo replications is 1000. In all cases, the CKSVAR and CSVAR likelihoods are computed using SIS

with R = 1000 particles.

Figures 5, 6 and 7 report the sampling distribution of the ML estimators of the reduced-form

parameters in Proposition 2 for the CKSVAR, KSVAR and CSVAR models, respectively, under DGP1

(all three models are correctly speci�ed). The sampling densities appear to be very close to the

superimposed Normal approximations, indicating that the Normal asymptotic approximation is fairly

accurate.

Tables 2, 3 and 4 report moments of the sampling distributions of the above mentioned estimators.

We notice no discernible biases. Unreported results with T = 100 and T = 1000 indicate that

the RMSE declines at rate
p
T in accordance with asymptotic theory. It is noteworthy that the

estimators of e� in CKSVAR and KSVAR have substantially larger RMSE than the estimators of the
other parameters.

Next, I turn to the properties of the LR test for of the restrictions of KSVAR against CKSVAR

and CSVAR against CKSVAR. The former hypothesis involves three restrictions (exclusion of the

latent lag Y �2;t�1 from each of the three equations), so the LR statistic is asymptotically distributed

as �23 under the null. The latter hypothesis involves �ve restrictions (exclusion of the observed lag

Y2;t�1 from each of the three equations, plus e� = 0), and the LR statistic is asymptotically distributed
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Figure 6: Sampling distribution of reduced-form coe¢ cients of KSVAR(1) in DGP1. T = 250; 1000
Monte Carlo replications.
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Figure 7: Sampling distribution of reduced-form coe¢ cients of CSVAR(1) in DGP1. T = 250; 1000
Monte Carlo replications.
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ML-CKSVAR true mean bias sd RMSE
� 1.000 0.983 -0.017 0.068 0.070

Eq.3 Constant 0.000 -0.006 -0.006 0.175 0.176
Eq.3 Y11_1 0.000 0.000 0.000 0.061 0.061
Eq.3 Y12_1 0.000 -0.000 -0.000 0.064 0.064
Eq.3 Y2_1 0.000 -0.010 -0.010 0.173 0.173
Eq.3 lY2_1 0.000 -0.013 -0.013 0.258 0.258

~�1 -0.000 -0.008 -0.008 0.356 0.356
~�2 0.000 -0.004 -0.004 0.359 0.359

Eq.1 Constant 0.000 0.002 0.002 0.213 0.213
Eq.1 Y11_1 0.500 0.489 -0.011 0.057 0.058
Eq.1 Y12_1 0.000 0.002 0.002 0.060 0.060
Eq.1 Y2_1 0.000 -0.002 -0.002 0.163 0.163

Eq.2 Constant 0.000 0.005 0.005 0.214 0.214
Eq.2 Y11_1 0.000 0.000 0.000 0.058 0.058
Eq.2 Y12_1 0.500 0.491 -0.009 0.057 0.058
Eq.2 Y2_1 0.000 -0.001 -0.001 0.159 0.159
Eq.1 lY2_1 0.000 0.005 0.005 0.232 0.232
Eq.2 lY2_1 0.000 0.002 0.002 0.233 0.233

�1 0.000 -0.001 -0.001 0.157 0.157
�2 0.000 -0.004 -0.004 0.155 0.155

Ch_11 1.000 0.975 -0.025 0.044 0.051
Ch_21 0.000 -0.001 -0.001 0.066 0.066
Ch_22 1.000 0.972 -0.028 0.046 0.054

Table 2: Moments of sampling distribution of ML estimator of the parameters CKSVAR(1), under
DGP1. T = 250, 1000 MC replications.

ML-KSVAR true mean bias sd RMSE
� 1.000 0.992 -0.008 0.068 0.069

Eq.3 Constant 0.000 0.001 0.001 0.092 0.092
Eq.3 Y11_1 0.000 0.001 0.001 0.060 0.060
Eq.3 Y12_1 0.000 -0.000 -0.000 0.062 0.062
Eq.3 Y2_1 0.000 -0.019 -0.019 0.122 0.124

~�1 -0.000 -0.013 -0.013 0.349 0.349
~�2 0.000 -0.001 -0.001 0.348 0.348

Eq.1 Constant 0.000 0.001 0.001 0.165 0.165
Eq.1 Y11_1 0.500 0.488 -0.012 0.056 0.057
Eq.1 Y12_1 0.000 0.002 0.002 0.058 0.058
Eq.1 Y2_1 0.000 -0.000 -0.000 0.117 0.117

Eq.2 Constant 0.000 0.003 0.003 0.158 0.158
Eq.2 Y11_1 0.000 0.001 0.001 0.057 0.057
Eq.2 Y12_1 0.500 0.492 -0.008 0.055 0.056
Eq.2 Y2_1 0.000 -0.000 -0.000 0.113 0.113

�1 0.000 -0.003 -0.003 0.156 0.156
�2 0.000 -0.003 -0.003 0.152 0.152

Ch_11 1.000 0.982 -0.018 0.044 0.047
Ch_21 0.000 -0.000 -0.000 0.065 0.065
Ch_22 1.000 0.980 -0.020 0.045 0.050

Table 3: Moments of sampling distribution of ML estimator of the parameters KSVAR(1), under
DGP1. T = 250, 1000 MC replications.
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ML-CSVAR true mean bias sd RMSE
� 1.000 0.992 -0.008 0.068 0.069

Eq.3 Constant 0.000 -0.006 -0.006 0.081 0.081
Eq.3 Y11_1 0.000 0.001 0.001 0.060 0.060
Eq.3 Y12_1 0.000 -0.000 -0.000 0.061 0.061
Eq.3 Y2_1 0.000 -0.011 -0.011 0.078 0.079

Eq.1 Constant 0.000 -0.003 -0.003 0.065 0.065
Eq.1 Y11_1 0.500 0.488 -0.012 0.054 0.056
Eq.1 Y12_1 0.000 0.002 0.002 0.057 0.057
Eq.1 Y2_1 0.000 0.001 0.001 0.072 0.072

Eq.2 Constant 0.000 0.002 0.002 0.063 0.063
Eq.2 Y11_1 0.000 0.001 0.001 0.056 0.056
Eq.2 Y12_1 0.500 0.492 -0.008 0.054 0.055
Eq.2 Y2_1 0.000 0.000 0.000 0.070 0.070

�1 0.000 0.002 0.002 0.071 0.071
�2 0.000 -0.002 -0.002 0.070 0.070

Ch_11 1.000 0.988 -0.012 0.043 0.044
Ch_21 0.000 -0.001 -0.001 0.064 0.064
Ch_22 1.000 0.986 -0.014 0.044 0.046

Table 4: Moments of sampling distribution of ML estimator of the parameters CSVAR(1), under
DGP1. T = 250, 1000 MC replications.

H0 : KSVAR, H1 : CKSVAR H0 : CSVAR, H1 : CKSVAR
Sign. Level 10% 5% 1% 10% 5% 1%

DGP1 asymptotic 0.232 0.140 0.041 0.236 0.142 0.038
bootstrap 0.105 0.048 0.014 0.114 0.048 0.006

DGP2 asymptotic 0.187 0.115 0.036 0.250 0.149 0.049
bootstrap 0.11 0.053 0.014 0.142 0.091 0.027

DGP3 asymptotic 0.387 0.297 0.117 0.237 0.135 0.035
bootstrap 0.283 0.161 0.046 0.108 0.047 0.006

Table 5: Rejection frequencies of LR tests of H0 against H1 across di¤erent DGPs at various signi�-
cance levels. Computed using 1000 Monte Carlo replications, T = 250. The asymptotic tests use �23
and �25 critical values for KSVAR and CSVAR resp. The bootstrap rej. frequencies were computed
uisng the warp-speed method of Giacomini et al. (2013). Bold numbers indicate that the rejecction
frequencies were computed under H1 (power).

as �25: Table 5 reports the rejection frequencies of the LR tests for each of the two hypotheses in

each of the three DGPs at three signi�cance levels: 10%, 5% and 1%. In addition to the asymptotic

tests, I also report the rejection frequency of the tests using parametric bootstrap critical values.

The parametric bootstrap is obtained using Normal errors draws and the estimated reduced-form

parameters to generate the bootstrap samples. The Monte Carlo rejection frequencies are computed

using the �warp-speed�method method of Giacomini et al. (2013). Note that both null hypotheses

hold under DGP1, but only the KSVAR is valid under DGP2 and only the CSVAR is valid under

DGP3. For convenience, I indicate the rejection frequencies under the alternative in bold in the table.

There is evidence that the LR tests reject too often under H0 relative to their nominal level when

we use asymptotic critical values. Moreover, the size distortions are very similar across null hypotheses
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and DGPs. Unreported results show that size distortion eventually disappears as the sample gets large,

but this level of overrejetion is clearly unsatisfactory at T = 250 which is a typical sample size one

encounters with macroeconomic data. The parametric bootstrap appears to do a remarkably good

job at correcting the size of the tests. In all cases considered, the parametric bootstrap rejection

frequency is not signi�cantly di¤erent from the nominal level when the null hypothesis holds (all but

the numbers in bold in the Table). To shed further light on this issue, Figures 8 and 9 report the

sampling distributions of the two LR statistics and their parametric bootstrap approximations. The

sampling distributions of the LR statistics stochastically dominate their asymptotic approximations,

but the bootstrap approximations are quite accurate.

Finally, the rejection frequencies highlighted in bold in Table 5 correspond to the power of the

tests against two very similar deviations from the null hypothesis. The numbers on the left under

DGP3 show the power of the test to reject the KSVAR speci�cation under the alternative at which

the coe¢ cient on the latent lag B�2;1 = 0:5: Similarly, the bold numbers on the right give the power of

rejecting CSVAR against the alternative where the coe¢ cient on the observed lag B22;1 = 0:5: Since

the lower bound is set to zero, and the sample contains about 50% of observations at the ZLB, the

two deviations from the null are of equal magnitude. Yet, focusing on the power of the size-correct

bootstrap tests, we notice the LR test is twice as likely to detect the deviation from KSVAR than the

deviation from CSVAR.
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LR ×  Chî 2(5) LR ×  Bootstrap

Figure 9: Sampling densities and QQ plots of LR statistics of KSVAR against CKSVAR (left) or
CSVAR against CKSVAR (right) in red. Bootstrap densities in blue. Computed for T = 250 using
1000 Monte Carlo replications.

44



de Jong, R. and A. M. Herrera (2011). Dynamic censored regression and the open market desk reaction

function. Journal of Business & Economic Statistics 29 (2), 228�237.

Debortoli, D., J. Galí, and L. Gambetti (2018). On the empirical (ir) relevance of the zero lower bound

constraint. Technical report, Barcelona Graduate School of Economics.

Eggertsson, G. B. et al. (2003). Zero bound on interest rates and optimal monetary policy. Brookings

papers on economic activity 2003 (1), 139�233.

Fernández-Villaverde, J., G. Gordon, P. Guerrón-Quintana, and J. F. Rubio-Ramirez (2015). Nonlinear

adventures at the zero lower bound. Journal of Economic Dynamics and Control 57, 182�204.

Gertler, M. and P. Karadi (2015). Monetary policy surprises, credit costs, and economic activity.

American Economic Journal: Macroeconomics 7 (1), 44�76.

Giacomini, R., D. N. Politis, and H. White (2013). A warp-speed method for conducting Monte Carlo

experiments involving bootstrap estimators. Econometric theory 29 (3), 567�589.

Gourieroux, C., J. La¤ont, and A. Monfort (1980). Coherency conditions in simultaneous linear

equation models with endogenous switching regimes. Econometrica: Journal of the Econometric

Society , 675�695.

Greene, W. H. (1993). Econometric Analysis. New York: MacMillan.

Guerrieri, L. and M. Iacoviello (2015). Occbin: A toolkit for solving dynamic models with occasionally

binding constraints easily. Journal of Monetary Economics 70, 22�38.

Hayashi, F. and J. Koeda (2013). A regime-switching svar analysis of quantitative easing. Working Pa-

per CARF-F-322, Center for Advanced Research in Finance, Faculty of Economics, The University

of Tokyo.

Hayashi, F. and J. Koeda (2014). Exiting from qe. Working Paper 19938, National Bureau of Economic

Research.

Heckman, J. J. (1979). Sample selection bias as a speci�cation error. Econometrica 47 (1), 153�161.

Heckman, J. J. et al. (1978). Dummy endogenous variables in a simultaneous equation system. Econo-

metrica 46 (4), 931�959.

Herbst, E. P. and F. Schorfheide (2015). Bayesian estimation of DSGE models. Princeton and Oxford:

Princeton University Press.

Koop, G., M. H. Pesaran, and S. M. Potter (1996). Impulse response analysis in nonlinear multivariate

models. Journal of econometrics 74 (1), 119�147.

Lee, L.-F. (1976). Multivariate regression and simultaneous equations models with some dependent

variables truncated. "Discussion paper" 76-79, "University of Minnesota", "Minneapolis, USA".

Lee, L.-F. (1999). Estimation of dynamic and ARCH Tobit models. Journal of Econometrics 92 (2),

355�390.

Lewbel, A. (2007). Coherency and completeness of structural models containing a dummy endogenous

variable*. International Economic Review 48 (4), 1379�1392.

45



Lucas, R. E. J. (1976). Econometric policy evaluation: a critique. In K. Brunner and A. Meltzer

(Eds.), The Phillips Curve and Labor Markets., Carnegie-Rochester Conference Series on Public

Policy. Amsterdam: North-Holland.

Lütkepohl, H. (1996). Handbook of Matrices. England: Wiley.

Magnusson, L. M. and S. Mavroeidis (2014). Identi�cation using stability restrictions. Economet-

rica 82 (5), 1799�1851.

Malik, S. and M. K. Pitt (2011). Particle �lters for continuous likelihood evaluation and maximisation.

Journal of Econometrics 165 (2), 190�209.

Mertens, K. and M. O. Ravn (2014). Fiscal policy in an expectations driven liquidity trap. Review of

Economic Studies. forthcoming.

Nelson, F. and L. Olson (1978). Speci�cation and estimation of a simultaneous-equation model with

limited dependent variables. International Economic Review 19 (3), 695�709.

Newey, W. K. and D. McFadden (1994). Large sample estimation and hypothesis testing. In R. F.

Engle and D. McFadden (Eds.), The Handbook of Econometrics, Volume 4, pp. 2111�2245. North-

Holland.

Pitt, M. K. and N. Shephard (1999). Filtering via simulation: Auxiliary particle �lters. Journal of

the American statistical association 94 (446), 590�599.

Smith, R. J. and R. W. Blundell (1986). An exogeneity test for a simultaneous equation tobit model

with an application to labor supply. Econometrica 54 (3), 679�685.

Stock, J. H. and M. W. Watson (2001). Vector autoregressions. Journal of Economic Perspec-

tives 15 (4), 101�115.

Swanson, E. T. (2018). The federal reserve is not very constrained by the lower bound on nominal

interest rates. Technical report, National Bureau of Economic Research.

Tobin, J. (1958). Estimation of relationships for limited dependent variables. Econometrica 26 (1),

24�36.

Wu, J. C. and F. D. Xia (2016). Measuring the macroeconomic impact of monetary policy at the zero

lower bound. Journal of Money, Credit and Banking 48 (2-3), 253�291.

46


	Introduction
	Simultaneous equations model
	Coherency and completeness
	Nesting KSEM and CSEM models
	Identification
	Identification of KSEM
	Partial identification of the CKSEM


	SVAR with an occasionally binding constraint
	Identification
	Identification of reduced-form parameters
	Identification of structural parameters

	Estimation

	Application
	Tests of efficacy of unconventional policy
	IRFs

	Conclusion
	Proofs
	Derivation of equation (??)
	Proof of Proposition ??
	Proof of Proposition ??
	Proof of Proposition ??

	Computational details
	Derivation of the likelihood
	Other estimators
	Method of moments
	Sequential estimation of KSVAR

	Computation of the identified set

	Numerical results

