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Abstract

This paper proposes a simple and robust method for semiparametric identifi-
cation and estimation in a panel multinomial choice model, where we allow for
infinite-dimensional fixed effects that enter into consumer utilities in an additively
nonseparabe way, thus incorporating rich forms of unobserved heterogeneity. Our
identification strategy exploits multivariate monotonicity in an index vector of
observable characteristics, and uses the logical contraposition of an intertemporal
inequality on choice probabilities to obtain identifying restrictions on the indexes.
We provide consistent estimators based on our identification strategy, together with
a computational procedure that exploits a combination of theoretical and practical
advantages under a spherical-coordinate reparameterization. A simulation study
and an empirical illustration with the Nielsen data are conducted to analyze the
finite-sample performance of our estimation method and demonstrate the adequacy of
our computational procedure for practical implementation.
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1 Introduction

The prevalence of heterogeneity and its importance in economic research are now well rec-
ognized. As pointed out by Heckman (2001), one of the most important discoveries in
microeconometrics is the pervasiveness of diversity in economic behavior, which in turn has
profound theoretical and practical implications. Browning and Carro (2007) survey the treat-
ment of heterogeneity in applied microeconometrics, and find that “there is usually much
more heterogeneity than researchers allow for”, arguing that it is important yet difficult to
accommodate heterogeneity in satisfactory ways. Moreover, the increasing availability of
vast digital databases in this so-called “Big Data Era” brings about new challenges as well
as opportunities for the treatment and understanding of heterogeneity (Fan, Han, and Liu,
2014).

More concretely, in analyzing consumer choices, a topic of wide theoretical and practical
interest in microeconometrics, there might be rich forms of unobserved heterogeneity in con-
sumer and product characteristics that influence choice behavior in significant yet complex
ways. For example, it has long been recognized that brand loyalty is an important factor
in determining choices of consumer products (Howard and Sheth, 1969), and research by
Reichheld and Schefter (2000) along with their colleagues from Bain & Company, a leading
management consulting firm, finds that brand loyalty is becoming even more important for
online businesses. However, in modeling of consumer behavior it is very difficult (Luarn
and Lin, 2003) to incorporate brand loyalty, a potentially complicated object that is clearly
heterogeneous, hard to measure and often unobserved in data. Besides brand loyalty, there
may also be other forms of unobserved heterogeneity, such as subtle flavors and packaging
designs, that may influence our choices of consumer products in everyday life. It is neither
theoretically nor empirically clear whether all such complicated forms of unobserved hetero-
geneity can be fully captured by scalar-valued fixed effects in fully additive models, as often
found in the literature.

Given these motivations, this paper proposes a simple and robust method for semipara-
metric identification and estimation in a panel multinomial choice model, where we allow
for infinite-dimensional (functional) fixed effects that enter into consumer utilities in an
additively nonseparable and thus fully flexible way, thus incorporating rich forms of unob-
served heterogeneity. Our identification strategy exploits multivariate monotonicity in its
contrapositive form, which provides powerful leverage for converting observable events into
identifying restrictions under lack of additive separability. We provide consistent estimators
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based on our identification strategy, together with a computational algorithm implemented
in a spherical-coordinate reparameterization that brings about a combination of topological,
geometric and arithmetic advantages. A simulation study and an empirical illustration using
the Nielsen data on popcorn sales are conducted to analyze the finite-sample performance of
our estimation method and demonstrate the adequacy of our computational procedure for
practical implementation.

Our framework involves the following panel multinomial choice model in a short-panel
setting:

yijt = 1

{
u
(
X
′

ijtβ0, Aij, εijt
)
≥ max

k∈{1,...,J}
u
(
X
′

iktβ0, Aik, εikt
)}

where agent i’s utility from a candidate product j at time t, represented by
u
(
X
′
ijtβ0, Aij, εijt

)
, is taken to be a function of three components. The first is a linear index

X
′
ijtβ0 of observable characteristics Xijt, which contains a finite-dimensional parameter of

interest β0 we will identify and estimate. The second term Aij is an infinite-dimensional
fixed effect matrix that can be heterogeneous across each agent-product combination, while
the last term εijt is an idiosyncratic time-varying error term of arbitrary dimensions. The
three components are then aggregated by an unknown utility function u in an additively non-
separable way, with the only restriction being that each agent’s utility u

(
X
′
ijtβ0, Aij, εijt

)
is increasing in its first argument, i.e., the linear index of observable characteristics X ′ijtβ0.
Each agent then chooses a certain product in a given time period, represented by yijt = 1, if
and only if this product gives him the highest utility among all available products.

The infinite-dimensionality of the terms u, Aij and εij and the additive nonseparability in
their interactions jointly produce rich forms of unobserved heterogeneity. Across each agent-
product combination ij, we are effectively allowing for flexible variations in agent utilities
as functions of the index X

′
ijtβ0, which serve as nonparametric proxies for the effects of

complicated unobserved factors that influence choice behavior, including brand loyalty, subtle
flavors and packaging designs as discussed earlier. Moreover, unrestricted heterogeneity in
the distribution of the error term εijt is accommodated in addition, allowing for in particular
unobserved heteroskedasticity in agent random utilities.

The generality of our setup encompasses many semiparametric (or parametric) panel
multinomial choice models with scalar-valued fixed effects, scalar-valued error terms and
various degrees of additive separability in the previous literature, including the following
standard formulation:

yijt = 1

{
X
′

ijtβ0 + Aij + εijt ≥ max
k∈{1,...,J}

(
X
′

iktβ0 + Aik + εikt
)}

.
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Relatively speaking, in this paper we are able to accommodate the infinite dimensionality
of unobserved heterogeneity and the lack of additive separability in agent utility functions,
under a standard time homogeneity assumption on the idiosyncratic error term that is widely
adopted in the related literature.

Our key identification strategy exploits the standard notion of multivariate monotonicity
in its contrapositive form. The idea is very simple and intuitive, and can be loosely described
as the following: whenever we observe a strict increase in the choice probabilities of a specific
product from one period to another, then by logical contraposition it cannot be possible that
this product becomes better while all other products become worse across the two periods.
More formally, we show that a certain configuration of conditional choice probabilities sat-
isfies the standard notion of weak multivariate monotonicity in all product indexes, which
is naturally induced by the multinomial nature of our model and the monotonicity of each
agent’s utility function in each product’s index. Then, we construct a collection of observable
inequalities on conditional choice probabilities based on intertemporal comparison and cross-
sectional aggregation, which preserves weak monotonicity in the index structure. Finally, we
simply take a logical contraposition of the inequality on conditional choice probabilities, and
obtain an identifying restriction on the index values free of all infinite-dimensional nuisance
parameters, with which we construct a population criterion function that is guaranteed to be
minimized at the true parameter value. The validity of this idea relies only on monotonicity
in an index structure, and therefore it may have wider applicability beyond multinomial
choice models.

Based on our identification result, we provide consistent set (or point) estimators, to-
gether with a computational algorithm adapted to the technical niceties and challenges of
our framework. Specifically, our estimator can be computed through a two-stage procedure.
The first stage takes the form of a standard nonparametric regression, where we nonparamet-
rically estimate a collection of intertemporal differences in conditional choice probabilities,
using a machine learning algorithm based on artificial neural networks. In the second stage,
we numerically minimize our sample criterion function, constructed as the sample analog of
our population criterion function with the first-stage nonparametric estimates plugged in.

A highlight of our estimation and computation procedure is the adoption of a spherical-
coordinate reparameterization of our criterion functions in terms of angles, which enables us
to exploit a combination of topological, geometric and computational advantages. Due to
the intrinsic lack of scale identification induced by the discreteness in our model (and most
discrete choice models), angles arise as a natural reparameterization of the parameter space
under a normalization on the scale of the index parameter β0 to be unity. When endowed
with the natural great-circle metric, the angle space becomes a parameter space that is
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both compact and convex, while preserving the spherical geometry among the observational
equivalence classes in the original parameter space of β0. We discuss why this combination of
niceties enjoyed by our reparameterization brings about both theoretical and computational
advantages relative to other forms of normalization or parameterization in the previous
literature.

Our computation procedure then exploits the compactness and convexity of our angle
parameter space, represented essentially in the form of a hyper-rectangle. We deploy a
bisection-style nested rectangle algorithm that shrinks and refines an adaptive grid recursively
to any chosen precision, with a technical adaption to account for the underlying spherical
geometry. Moreover, our grid-based algorithm handles well the discreteness in our criterion
functions, which renders usual gradient-based algorithms inapplicable.

A simulation study is then conducted to analyze the finite-sample performance of our
method and the adequacy of our computational procedure for practical implementation. We
investigate under different model configurations the performances of the first-stage machine
learning estimators and the final estimators obtained through our second-stage computa-
tional algorithm, and show how the results vary with the sizes and dimensions of data. We
also compare the performances of our estimator under set identification and point iden-
tification, and demonstrate the informativeness of our set estimator under lack of point
identification.

An empirical illustration of our procedure is also provided, where we use the Nielsen data
on popcorn sales in the United States to explore the effects of marketing promotion effects.
The results show that our procedure produces estimates that conform well with economic
intuition. For example, we find that special in-store displays boost sales not only through a
direct promotion effect but also through the attenuation of consumer price sensitivity.

As an extension, the estimated model is shown to be further utilizable for counterfactual
analysis, such as predicting the effect of a promotional campaign on product sales. We show
that monotonicity in the parametric index structure provides a key lever to separate the direct
effect of observable characteristics on choice probabilities from the indirect correlation effect
between observable characteristics and unobserved heterogeneity. This separation allows us
to predict the counterfactual effect of an exogenous change in observable characteristics, with
the unobserved agent-product fixed effects held fixed, which can be achieved in a long panel
setting through a nonparametric time series regression of individual choices on the index
vectors of observable characteristics.

As a further generalization, we discuss the wider applicability of our identification strat-
egy beyond panel multinomial choice models, using an umbrella framework called monotone
multi-index models. This framework captures the key ingredients of a large class of models,
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such as sample selection models and network formation models. To elaborate, we provide a
specific example of a dyadic network formation model under the setting of nontransferable
utility, which naturally induces lack of additive separability in a micro-founded manner. The
applicability of our current method, though with some nontrivial adaptions to the additional
complications in network settings, is investigated in a companion paper by Gao, Li, and Xu
(2018).

This paper builds upon and contributes to a large literature in econometrics on semipara-
metric (and parametric) discrete choice models, dating back to McFadden (1974) and Manski
(1975), and more specifically a recent branch of research that focuses on panel multinomial
choice models.

Our work is most closely related to the work by Pakes and Porter (2016), who also
exploit weak monotonicity and time homogeneity. Assuming additive separability between
the parametric index of observable characteristics and a scalar-valued function of unobserved
heterogeneity terms, they are able to focus on the scalar differences between the parametric
indexes of different products in the panel multinomial choice setting, and use the first-order
stochastic dominance implied by monotonicity to derive identifying moment inequalities. Our
current paper adopts a similar approach that heavily exploits monotonicity, but does not
restrict the effect of unobserved heterogeneity as a scalar index that is additively separable
from the scalar index of observable characteristics. Hence, it is no longer feasible in our
model to directly calculate the differences between the indexes of observable characteristics
as in Pakes and Porter (2016).

Another related paper is Shi, Shum, and Song (2018), who propose a novel approach
that exploits cyclical monotonicity of vector-valued functions in a fully additive panel multi-
nomial choice model, where scalar-valued fixed effects are differenced out through “cyclical
summation”. Khan, Ouyang, and Tamer (2017) consider a similar additive multinomial
choice model, but utilize the subsample of observations with time-invariant covariates along
all products but one so as to leverage monotonicity in a single linear index for the con-
struction of a rank-based estimator a la Manski (1987). A recent paper by Chernozhukov,
Fernández-Val, and Newey (2017) studies a nonseparable multinomial choice model with
bounded derivatives, and demonstrates semiparametric identification in a specialized panel
setting with an additive effect under an “on-the-diagonal” restriction (i.e., when covariates
at two different time periods coincide). Our method is significantly different from and thus
complementary to those proposed in these afore-cited papers.

At a more general level, our work can be related to and compared to semiparametric
methods of identification and estimation on monotone single-index models. A related class
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of estimators that leverages univariate monotonicity, known as maximum score or rank-order
estimators, dates back to a series of original contributions by Manski (1975, 1985, 1987),
and is further investigated in Han (1987), Horowitz (1992), Abrevaya (2000), Honoré and
Lewbel (2002) and Fox (2007). Despite the similarity in the reliance on monotonicity, the
multinomial or multi-index nature of our current model induces a key theoretical difference
from the single-index setting, leading to a significantly different method of estimation relative
to rank-order estimators. See Pakes and Porter (2016) and our appendix for more discussion
on this difference.

Finally, our model and method are complementary to another class of models that fall
into the framework of invertible multi-index models, using the terminology of Ahn, Ichimura,
Powell, and Ruud (2018). The celebrated paper by Berry, Levinsohn, and Pakes (1995a) first
utilizes the invertibility of the market share function to obtain a vector of unknown indexes,
which is investigated more generally by Berry, Gandhi, and Haile (2013) and Berry and
Haile (2014). Outside the specific context of demand estimation, the recent work by Ahn,
Ichimura, Powell, and Ruud (2018) provides a high-level treatment of multi-index models
based on invertibility. In comparison, the method proposed in our paper does not involve
invertibility, but relies instead on monotonicity.

The rest of this paper is organized as follows. Section 2 introduces our main model
specifications and assumptions, and Section 3 presents our key identification strategy. In
Section 4 we provide consistent estimators along with a computational procedure to imple-
ment it. Section 5 and Section 6 contain a simulation study and empirical illustration with
the Nielsen data. Section 7 discusses extension and generalization of our method, and finally
we conclude with Section 8.

2 Panel Multinomial Choice Model

2.1 Model Setup

In this section we present a semiparametric panel multinomial choice model featured by
infinite-dimensional unobserved heterogeneity and flexible forms of nonseparability, which we
will use as the main model to illustrate our identification and estimation method. See Section
7.2 for a more general discussion about the wide applicability of our proposed methods.

Specifically, we consider the following discrete choice model, which essentially states that
agent i chooses product j at time t if and only if i prefers product j to all other alternatives
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at time t:

yijt = 1

{
u
(
X
′

ijtβ0, Aij, εijt
)
≥ max

k∈{0,1,...,J}
u
(
X
′

iktβ0, Aik, εikt
)}

(1)

where

• i ∈ {1, ...N} denotes N decision makers, or simply agents.

• j ∈ {0, 1..., J} denotes J + 1 choice alternatives, with J products indexed by 1, ..., J
and an outside option denoted by 0.

• t ∈ {1, ..., T} denotes T ≥ 2 different time periods.

• Xijt is RD-valued vector of observable characteristics specific to each agent-product-
time tuple ijt. This could include, for example, buyer characteristics such as income
level, product characteristics such as price and promotion status, as well as interaction
and higher-order terms among characteristics.

• yijt is an observable binary variable, with yijt = 1 indicating that buyer i chooses
products j at time t and yijt = 0 indicating otherwise.

• β0 ∈ RD is a finite-dimensional unknown parameter of interest. We will repeatedly
refer to the term

δijt := X
′

ijtβ0 (2)

as the (ijt-specific) index throughout this paper, which is intended to capture how
the observable characteristics Xijt influence agent i’s choice of j at t, ceteris paribus.
Further discussion on the index is offered later.

• Aij represents an ij-specific time-invariant unobserved heterogeneity term of arbitrary
dimensions. We will thereafter refer to Aij as the (ij-specific) fixed effect.

• εijt is an ijt-specific unobserved error term of arbitrary dimensions, which captures
time-idiosyncratic utility shocks to product j for agent i, or in other words, agent i’s
statistical uncertainty in decision making regarding the choice of product j.

• u is an unknown measurable real-valued function, interpreted as a utility function that
aggregates the parametric index X ′ijtβ0, the fixed effect Aij and the error term εijt into
a scalar representing agent i’s utility from choosing product j at time t.
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The combination of infinite dimensionality and nonseparability jointly produces rich forms
of heterogeneity in agent utility functions. Particularly, nonseparability translates into un-
restricted flexibility regarding the ways in which the nonparametric fixed effect Aij may
enter into the utility function u

(
X
′
ijtβ0, Aij, εijt

)
. In fact, we could equivalently suppress the

notation Aij and instead write the utility function u to be ij-specific,1 i.e.,

uij
(
X
′

ijtβ0, εijt
)
≡ u

(
X
′

ijtβ0, Aij, εijt
)
. (3)

Written in this form, our formulation allows for flexible time-invariant heterogeneity in how
the index X ′ijtβ0 affects agent i’s utility from product j. In other words, given a fixed value
of the index δ, the utility uij

(
δ, εijt

)
can vary across each agent-product pair in totally

unrestricted ways. Such heterogeneity can be induced by a plethora of complicated factors,
such as subtle flavors, styles of design and social perceptions, the effects of which may be
highly subjective on an individual basis. Some people may have a strong preference for
Coca Cola over Pepsi or vice versa, while there might not exist any objective measure of
flavor to assess, or even to describe, the subtle differences between the two popular soft
drinks. Car shoppers may have heterogeneous tastes over engineering and design features in
terms of safety, reliability, comfort, sportiness or luxury, while leading car manufacturers are
often famous for their unique blends of features along these various dimensions, therefore
appealing to different groups of customers to different extents. Beyond these examples, our
formulation nests in itself arbitrary dimensions of agent-product specific heterogeneity that
can be represented by (3).

It should be pointed out in particular that the fixed effect Aij also effectively incorporates
unobserved variations in the distributions of error terms εijt. For example, if we assume that
εijt is real-valued and follows a time-invariant distribution with a cumulative distribution
function (CDF) Fij, then the whole function Fij can be readily incorporated as part of the
fixed effect Aij, which may lie in a vector of infinite-dimensional functions. The CDF Fij

absorbs in particular a form of heteroskedasticity specific to each agent-product pair, and
our method will be robust against such forms of heterogeneity in error distributions without
requirement for explicit specification of the functional forms.

On a technical note, we now briefly discuss how the potential concern of tie-breaking
can be handled in our framework. In cases where ties occur with nonzero probabilities, one
popular approach in the literature is to incorporate a random tie-breaking process, modeled

1This reformulation, however, will introduce randomness to the utility function uij when we consider
the sampling process and assume cross-sectional random sampling later. Hence, to fully separate random
elements from nonrandom ones, and to explicitly emphasize the dependence on Aij , we will retain the
notations of model (1) unless explicitly stated otherwise.
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as a (potentially unknown) selection probability distribution among ties. The conceptual
idea underlying this approach is to recognize the incompleteness of the model with respect
to the determination of choice behaviors, and use an ad hoc selection probability to capture
the effects of all unmodeled randomness. When we move from the scalar additive model (4)
to model (1), rich forms of unmodeled randomness under (4) are automatically absorbed into
the infinite-dimensional error term εijt, which nests in itself all possible latent variables that
affect utilities in some appropriate yet unspecified ways.2 As a result, the assumption that
ties occur with zero probabilities is effectively a much weaker restriction under our current
model (1) than under model (4).

We now continue with a list of key assumptions, and discuss these assumptions in relation
to model (1). To economize on notation, we will from now on frequently refer to collection of
variables concatenated along product and time dimensions: Xit := (Xijt)Jj=1, Xi = (Xit)Tt=1,
Ai := (Aij)Jj=1, εit = (εijt)Jj=1 and εi = (εit)Tt=1.

The first assumption below imposes a monotonicity restriction on the utility function.

Assumption 1 (Monotonicity in the Index). u (δijt, Aij, εijt) is weakly increasing in the
index δijt, for every realization of (Aij, εijt).

It should first be clarified that the substantive part of Assumption 1 is the restriction
of monotonicity in the index, while increasingness is without loss of generality given that
the index δijt = X

′
ijtβ0 contains an unknown parameter with unrestricted signs. Moreover,

the monotonicity restriction is imposed on the index δijt, but not directly on any specific
observable characteristics in Xijt: quadratic or higher-order polynomial terms as well as
other nonlinear or non-monotone functions of observable characteristics may be included in
Xijt whenever appropriate.

Assumption 1 not only serves as a key restriction that will be heavily leveraged upon by
our subsequent identification and estimation method, but may also be regarded an integral
part of our semiparametric model: monotonicity endows the index δijt with an interpreta-
tion as an objective summary statistic for the direct effect of observable covariates on agent
utilities. In other words, δijt may be regarded as a quality measure of the match between
agent i and product j based on their observable characteristics at time t, inducing a con-

2It should be pointed out that the standard ad hoc approach, using selection probabilities among ties,
and our current approach, where latent variables are explicitly modeled by the infinite-dimensional error εijt,
are two distinct approaches, neither of which includes the other as a special case. The key distinction comes
from the lexicographic nature of the selection-probability approach, which cannot be fully represented by
utility functions. It might be debatable whether the lexicographic structure is more conceptually justifiable
or practically relevant, but we refrain from further discussion on this topic, as it is tangential to the main
focus of this paper.
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sequent interpretation of the parameter β0 as representing how a certain change in a linear
combination of observable characteristics may increase utilities for all agents from a certain
product j, ceteris paribus.

Given the parametric index structure δijt = X
′
ijtβ0, monotonicity itself seems a rather

weak assumption widely satisfied in a large class of models. In many additive models where a
parametric index in the style of X ′ijtβ0 is added to other components of the model, Assump-
tion 1 may be trivially satisfied by construction, such as the standard panel multinomial
choice model (4). In Section 7.2, we provide more examples of parametric and semiparamet-
ric models featured by monotonicity in an index structure beyond the multinomial choice
setting.

Next, we impose the standard assumption of cross-sectional random sampling.

Assumption 2 (Random Sampling). (Yi,Xi,Ai, εi) is i.i.d. across i ∈ {1, ..., N}.

So far we have not made any explicit restriction on the structure of the spaces on which the
arbitrary dimensional random elements Ai and εi are defined, but implicit in our specification
as well as Assumption 2 is the requirement that (Yi,Xi,Ai, εi) be well-defined as random
elements (measurable functions) on a large enough probability space (Ω,F ,P).

It is now worth noting that the main part of this paper considers a short panel set-
ting, where we focus on cross-sectional asymptotics with the number of agents getting large
(N →∞) but the number of time periods T held fixed. Section 7.1 provides further dis-
cussion on the additional capabilities of our method afforded in long panels, a setting with
growing practical importance given the increasing availability of panel data.

Finally, we impose the following stationarity assumption on the distribution of error
terms.

Assumption 3 (Homogeneity of Errors). The marginal distributions of εit and εis condi-
tional on (Xit,Xis,Ai) are the same across any pair of periods t 6= s ∈ {1, ..., T}, i.e.,

εit| (Xit,Xis,Ai) ∼ εis| (Xit,Xis,Ai) .

We now provide some further clarifications and explanations for model (1).
We begin with a brief comparison that highlights the differences between our current

model (1) to other models studied in several closely related papers on panel multinomial
choice models. Notice first that model (1) includes as a special case the standard panel
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multinomial choice model under full additivity and scalar-valued unobserved heterogeneity:

yijt = 1

{
X
′

ijtβ0 + Aij + εijt ≥ max
k∈{1,...,J}

X
′

iktβ0 + Aik + εikt

}
, (4)

Such models have been studied in recent work by Khan, Ouyang, and Tamer (2017) and Shi,
Shum, and Song (2018) with different methods of identification and estimation. In another
recent paper by Pakes and Porter (2016), they investigate a generalized version of (4) in the
following form:

yijt = 1

{
gj (Xijt, β0) + fj (Aij, εijt) ≥ max

k∈{1,...,J}
gk (Xikt, β0) + fk (Aik, εikt)

}
, (5)

where the function gj produces a potentially nonlinear parametric index and fj aggregates
fixed effects and idiosyncratic errors into a scalar value in a nonseparable way, while additive
separability between the observable covariate index gj (Xijt, β0) and the unobserved hetero-
geneity index fj (Aij, εijt) is still maintained. Moreover, notice that, though the dimensions
of (Aij, εijt) are not restricted in Pakes and Porter (2016), their overall effect is taken to be
represented by a scalar value, fj (Aij, εijt). We reiterate that our model (1) not only incor-
porates infinite-dimensionality in unobserved heterogeneity as captured by Aij and εijt, but
also allows such heterogeneity to enter into agent utility functions in a fully nonseparable
way.

The flexibility induced by nonseparability and infinite-dimensionality comes with the
consequent analytical challenges to handle them. Various traditional techniques in the style
of differencing based on additivity no longer apply in our current model. For example,
the recent method proposed by Shi, Shum, and Song (2018) utilizes cyclical monotonicity
requires additivity to sum along a cycle of comparisons and cancel out the scalar-valued fixed
effects via this summation, which becomes infeasible under nonseparability in our model (1).
To confront the challenges induced by nonseparability, we instead exploit a standard shape
restriction, or more specifically, monotonicity, which captures a general commonality shared
by many additive models but on its own does not involve additivity at all.

2.2 Key Assumptions

Assumption 3 as presented here is strictly stronger than necessary, but leads to easier
notations afterwards for clearer illustration of our key method. Alternatively, we could
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impose the following weaker version:
Assumption 3’, a multinomial extension of the group homogeneity assumption in Manski
(1987), is also imposed in Pakes and Porter (2016) and Shi, Shum, and Song (2018), both
containing further discussions about the interpretation, flexibility and restrictions associated
with this assumption. Assumption 3’ suffices for our subsequent analysis based on pairwise
intertemporal comparisons, while allowing for some dependence of εit on time-varying com-
ponent of observable covariates (Xit,Xis). We demonstrate in Appendix B that our identi-
fication and estimation results carry over under Assumption 3’, but until then we will work
with the stronger Assumption 3 for notational simplicity.

It might be worth noting that Assumption 3 (or Assumption 3’), a statement conditioned
on the arbitrarily dimensional fixed effect Ai in a fully flexible manner, automatically absorbs
all possible time-invariant heterogeneity and dependence structures across and within Xit =
(Xijt)Jj=1, Ai = (Aij)Jj=1 and εit = (εijt)Jj=1.

In particular, the allowance for arbitrary distributional dependence between observable
covariates Xit and the fixed effect Ai incorporates automatically the effects of time-invariant
variables, or more precisely the effects of time-invariant components of relevant variables,
that affect choice behaviors in economically significant ways. As discussed earlier, long-term
brand loyalty, potentially produced by a mixture of complicated factors such as design, style,
flavor, consumer personality or social perception, is just one example that applied researchers
have found to be important since long ago (Howard and Sheth, 1969) yet conceptually
difficult to incorporate empirically (Luarn and Lin, 2003). Such factors are often hard, if not
impossible, to measure quantitatively and therefore are largely unobserved, and it is neither
theoretically nor empirically clear whether a single-dimensional scalar term is sufficient to
capture the effects from such factors. In the meanwhile, completely ignoring such factors will
likely create endogeneity issues in econometric analysis of consumer behaviors, and it might
be hard to find proper instruments for every potentially relevant latent factor. Therefore,
we believe that our main model along with the assumptions above, admittedly with its own
restriction to the fixed-effect specification, constitutes a step forward in the direction of
accommodating more complex unobserved heterogeneity.

A noteworthy restriction of Assumption 3 lies in that it rules out random coefficients, a
widely adopted modeling device proposed by Berry, Levinsohn, and Pakes (1995b) to induce
sophisticated substitution patterns among products with multi-dimensional characteristics
space. However, the flexibility afforded by our general fixed effect specification can incorpo-
rate arbitrarily complicated substitution patterns with respect to time-invariant components
of observed and unobserved product characteristics, by exploiting the panel structure of ob-
servable data along with the time homogeneity assumption (Assumption 3). It is thus worth
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pointing out that our current fixed-effect approach and the random-coefficient approach are
two rather different methods: neither nests the other as a special case, and the two approaches
may be more suitable for different sets of empirical applications. The random-coefficient ap-
proach using market share inversion, as developed by Berry, Levinsohn, and Pakes (1995b),
Berry, Gandhi, and Haile (2013) and Berry and Haile (2014), has already been widely used
in various settings of demand analysis where time-varying (or market-varying) endogeneity
is a major concern. Our infinite-dimensional fixed-effect approach based on weak monotonic-
ity might be more suitable to panel-data settings where researchers are more interested in
incorporating an arbitrarily complicated form of time-invariant heterogeneity across agent-
product pairs.

Finally, as briefly discussed in (2.1) and formally stated in Assumption 3, the whole
distribution of εit can be indexed by the fixed effect Ai. Furthermore, serial autocorrelation
in εit is not ruled out either, as Assumption 3 concerns only the marginal distributions of εit

in different periods.
We may now proceed to provide identification arguments for the leading parameter of

interest, β0, in Section 3 and construct estimators of β0 in Section 4. For the identification
of more sophisticated counterfactual parameters that involve other unknown components of
model (1), see Section 7.1 for further analysis.

3 Identification Strategy

Assumption 3’ (Pairwise Stationarity of Errors). The conditional distribution of εit given
(Xi,Ai) is stationary over time t, i.e.,

εit| (Xi,Ai) ∼ P ( ·|Ai) .

In this section, we present semiparametric identification results for model (2) under As-
sumptions 1-3. However, as will become clear later in this section, the underlying idea of
our identification strategy applies more widely beyond panel multinomial choice models. See
Section 7.2 for more details.

Our key identification strategy exploits the standard notion of multivariate monotonicity
in its contrapositive form. As a reminder, we start with an explicit statement of multivariate
monotonicity in the definition below, followed by a statement of its logical contraposition.

Definition 1 (Multivariate Monotonicity). A real-valued function ψ : RJ → R is said to be
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weakly increasing if, for any pair of vectors δ and δ in RJ ,

δj ≤ δj for all j = 1, ..., J ⇒ ψ
(
δ
)
≤ ψ (δ) .

Remark 1 (Logical Contraposition of Multivariate Monotonicity). The following is logically
equivalent to weak increasingness as defined in Definition 1: for any pair of

(
δ, δ

)
,

ψ
(
δ
)
> ψ (δ) ⇒ NOT

{
δj ≤ δj for all j = 1, ..., J

}
. (6)

where “ NOT” denotes the logical negation operator.

Remark 1 is tautologically true given Definition 1, which simply states the standard
notion of weak monotonicity for a multivariate real function ψ. It is important to note
that ψ is scalar-valued, so that the logical negation of the inequality ψ

(
δ
)
≤ ψ (δ) simply

becomes ψ
(
δ
)
> ψ (δ), which will not be true if ψ is vector-valued, as the negation of an

vector inequality is no longer a vector inequality in general. For this very reason, we leave
an explicit negation sign in the right-hand side of (6), which contains a vector inequality
written out elementwisely.

Our subsequent identification strategy will leverage heavily the simple contraposition of
monotonicity (6), and our arguments proceed in three major steps.

First, we define a multivariate monotone function in the form of conditional choice prob-
abilities. Second, we construct an observable inequality based on the monotone function
we define, effectively producing the left-hand side of (6). Finally, we use the contraposition
of monotonicity to obtain the right-hand side of (6), which will translate into identifying
restrictions on the parameter β0 via the indexes δit := (δijt)Jj=1.

We now present our key identification strategy step by step. For the moment, we fix a
particular product j ∈ {1, ..., J}, a pair of time periods t 6= s ∈ {1, ..., T} and condition on a
generic realization of the observable covariates in the two periods t and s, i.e., (Xit,Xis) =(
X,X

)
∈ Supp (Xit,Xis).

Step 1: Construction of a monotone function

For each individual i, consider i’s choice probability of j given (Xit,Ai):

E [yijt|Xit,Ai]

=
∫
1

{
u
(
X
′

ijtβ0, Aij, εijt
)
≥ max

k 6=j
u
(
X
′

iktβ0, Aik, εikt
)}

dP (εijt|Xit,Ai)
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=
∫
1

{
u (δijt, Aij, εijt) ≥ max

k 6=j
u (δikt, Aik, εikt)

}
dP (εijt|Ai)

=: ψj
(
δijt, (−δikt)k 6=j ,Ai

)
(7)

where the second equality follows from the index definition δijt = X
′
ijtβ0 and Assumption

(3) (Stationarity of Errors), which enables us to write ψj without the time subscript t.
Clearly, the monotonicity of the utility function u in the index argument δijt (Assumption

(1)) translates into the multivariate monotonicity of the function ψj in the vector of indexes(
δijt, (−δikt)k 6=j

)
:

Lemma 1. For any given realization of Ai, the function ψj ( · ,Ai) : RJ → R is weakly
increasing.

Notice that we flip the signs of (δikt)k 6=j purely for the ease of exposition: as discussed
earlier, it is the monotonicity, not the exact direction of monotonicity, that matters in our
analysis.

In terms of economic interpretation, ψj (δit ,Ai) summarizes each agent i’s conditional
choice probability of product j given i’s fixed effect Ai as a function of the index vector δit.
Lemma (1) admits a simple interpretation: if a product j becomes weakly better for agent i
in terms of the index δijt, while all other products k 6= j becomes weakly worse, then agent
i’s choice probability of product j should weakly increase.

However, as the realization of Ai is not observable, the conditional choice probability
function ψj ( · ,Ai) is not directly identified from data in the short-panel setting under con-
sideration here. In the next step, we construct an observable quantity based on ψj by
averaging out Ai.

Step 2: Construction of an observable inequality

Consider the following intertemporal difference in conditional choice probabilities:

γj,t,s
(
X,X

)
:= E

[
yijt − yijs|Xit = X,Xis = X

]
(8)

which is by construction directly identified from data.
Write δ := Xβ0 ≡

(
X
′

jβ0

)J
j=1

and similarly for δ. The following lemma translates the

monotonicity of ψj
(
δ,Ai

)
in the index vector δ into a restriction on the sign of the observable

quantity γj,t,s
(
X,X

)
, effectively corresponding to an observable scalar inequality.

Lemma 2. δj ≤ δj and δk ≥ δk for all k 6= j ⇒ γj,t,s
(
X,X

)
≤ 0.
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To see why Lemma 2 is true, rewrite γj,t,s
(
X,X

)
using the law of iterated expectations

as follows:

γj,t,s
(
X,X

)
= E

[
E
[
yijt − yijs|Xit = X,Xis = X,Ai

]∣∣∣Xit = X,Xis = X
]

= E
[
E
[
yijt|Xit = X,Ai

]
− E [yijs|Xis = X,Ai]

∣∣∣Xit = X,Xis = X
]

=
∫ [

ψj

(
δj,
(
−δk

)
k 6=j

,Ai

)
− ψj

(
δj, (−δk)k 6=j ,Ai

)]
dP

(
Ai|Xit = X,Xis = X

)
.

Whenever δj ≤ δj and δk ≥ δk for all k 6= j, by Lemma 1 we have:

ψj

(
δj,
(
−δk

)
k 6=j

,Ai

)
− ψj

(
δj, (−δk)k 6=j ,Ai

)
≤ 0,

which holds for every possible realization of Ai. Consequently, the inequality will be pre-
served after integrating over the fixed effect Ai cross-sectionally with respect to the condi-
tional distribution P

(
Ai|Xit = X,Xis = X

)
, potentially a hugely complicated probability

measure considering the infinite dimensionality of Ai and the unrestricted forms of depen-
dence between Ai and Xi.

Step 3: Derivation of the key identifying restriction

We now take the logical contraposition of Lemma 2 and obtain the following proposition.

Proposition 1 (Key Identifying Restriction). Under Assumptions 1, 2 and 3,

γj,t,s
(
X,X

)
> 0 ⇒ NOT

{(
Xj −Xj

)′
β0 ≤ 0 and

(
Xk −Xk

)′
β0 ≥ 0 for all k 6= j

}
.

(9)

Recall that δijt = X
′
ijtβ0, so Proposition 1 follows immediately from Lemma 2 and defines

an identifying restriction on β0 that is free of all unknown nonparametric heterogeneity terms
u, A and ε.

Proposition 1 is very intuitive given the monotonicity of conditional choice probabilities
in the product indexes: if we observe an intertemporal increase in the conditional choice
probability of product j from one period to another, then it is impossible that product j’s
index becomes worse, while all other products’ indexes become better.

The simple idea behind Proposition 1 is to leverage the contraposition of monotonicity
in the index vector, which despite its simplicity brings about robustness against the rich
built-in forms of unobserved heterogeneity along with nonseparability.

As the validity of this idea relies only on monotonicity in an index structure, it is applica-
ble more widely beyond the panel multinomial choice settings we are currently considering.
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See Section 7.2 for a general framework under which the contraposition of monotonicity may
be utilized. In particular, in a companion paper (Gao, Li, and Xu, 2018), we adapt this idea
to the additional complications induced in a network formation setting, where nonseparabil-
ity arises naturally from nontransferable utilities.

Formulation of Population Criterion Functions

We now formulate a population criterion function based on Proposition 1.
For every candidate parameter β ∈ RD, we represent in Boolean algebra the right hand

side of (9) in Proposition 1 by

λj
(
X,X; β

)
:=

J∏
k=1

1

{
(−1)1{k 6=j}

(
Xk −Xk

)′
β ≤ 0

}
, (10)

where (−1)1{k 6=j} takes the value −1 for k 6= j and the value 1 for k = j. Therefore,
Proposition 1 can be written algebraically as

1

{
γj,t,s

(
X,X

)
> 0

}
= 1 ⇒ λj

(
X,X; β0

)
≡ 0,

for any possible realization
(
X,X

)
.

We may now define the following criterion function by taking a cross-sectional expectation
over the random realization of (Xit,Xis):

Qj,t,s (β) := E [1 {γj,t,s (Xit,Xis) > 0}λj (Xit,Xis; β)] , (11)

≥ 0 = Qj,t,s (β0)

which is clearly minimized to zero at the true parameter value β0. Without normalization
and further assumptions for point identification, there might be multiple values of β0 that
minimize Qj,t,s to zero.

More generally, fix any function G : R→ R that is one-sided sign preserving, i.e.,

G (z)

> 0, if z > 0,

= 0, if z ≤ 0.
(12)

we may define QG
j,t,s by the following:
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QG
j,t,s (β) := E [G (γj,t,s (Xit,Xis)) λj (Xit,Xis; β)] , (13)

which is also clearly minimized to zero at the true parameter value β0.
The sign-preserving function G, if also set to be monotone, continuous or bounded, may

serves as a smoothing function that helps with the finite-performance of our estimators. We
will provide more discussions on function G in the next section, when we construct estimators
based on the sample analogs of the population criterion function defined here. It is worth
pointing out, however, that this smoothing function G is built into the population criterion
function as in (13), which is different from the usual technique where smoothing is only done
in finite samples but not in the population.

For notational simplicity, we suppress G in QG
j,t,s and simply write Qj,t,s throughout this

paper, except where the functional forms of G become significant for some particular results.
So far we have focused on a fixed product j and a fixed pair of periods (t, s), but in practice

we may utilize the information across all products and all pairs of periods by defining the
aggregated criterion function:

Q (β) :=
J∑
j=1

T∑
t6=s

Qj,t,s (β) , for any β ∈ RD, (14)

which is again minimized to zero at the true parameter value β0.

Essentially, our criterion function is constructed to be an aggregation of the identify-
ing restrictions on β0 in the form of discrete Boolean variables across all (j, t, s) in the
data, obtained via the logical contraposition of weak multivariate monotonicity whenever
γj,t,s (Xit,Xis) > 0 occurs. As γj,t,s (Xit,Xis) = −γj,s,t (Xis,Xit), either γj,t,s (Xit,Xis) > 0
or γj,s,t (Xis,Xit) > 0 occurs for each unordered pair of periods {t, s}, provided that there is
nonzero intertemporal variation in the relevant conditional choice probabilities.

It is important to note that the stochastic relationship between the outcome variable
yi and the observable covariates Xi enters into our criterion function Q only through
the intertemporal differences in conditional choice probabilities as represented by the term
γj,t,s (Xit,Xis). As the randomness of y conditional on X is completely averaged out in γj,t,s,
the only remaining form of randomness in our population criterion function is the random
sampling of observable covariates Xi, which no longer involves the outcome variable yi.

As a result, the systematic component of our population criterion function Qj,t,s, as
defined in (11) and (13), is nonstandard relative to usual forms of moment conditions as
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studied in the literature on extremum estimation. Specifically, in our criterion function the
expectation (moment) operators show up twice, the first time in the definition of the con-
ditional expectation γj,t,s and the second time in the expectation over observable covariates
(Xit,Xis). Moreover, the two expectation operators are separated by the nonlinear one-sided
sign-preserving function G, so it is not possible to push inside (or outside) the expectation
operators via the law of iterated expectations.

Relative to the well-known maximum-score or rank-order criterion function as studied by
Manski (1985, 1987) utilizing univariate monotonicity, the nonstandardness of our criterion
function arises from a key difference of multivariate monotonicity from univariate mono-
tonicity. To see this more clearly, consider the special case of a single-index setting (J = 1)3,
in which our population criterion function essentially degenerates to the maximum-score or
rank-order criterion function, as can be easily seen from the following derivations, where
G is taken to be the positive part function G (z) = [z]+, the product subscript j = 1 is
suppressed, and Xt now simply denotes the vector of observable covariates:

Qt,s (β) +Qs,t (β)

=E
[
[γ (Xt, Xs)]+ 1 {(Xt −Xs) β ≥ 0}

]
+ E

[
[γ (Xs, Xt)]+ 1 {(Xs −Xt) β ≥ 0}

]
=E

[
[γ (Xt, Xs)]+ sgn ((Xt −Xs) β)

]
+ E

[
[−γ (Xt, Xs)]+ [−sgn ((Xt −Xs) β)]

]
=E

[(
[γ (Xt, Xs)]+ − [−γ (Xt, Xs)]+

)
sgn ((Xt −Xs) β)

]
=E [γ (Xt, Xs) sgn ((Xt −Xs) β)]

=E [E [yt − ys|Xt, Xs] sgn ((Xt −Xs) β)]

=E [(yt − ys) sgn ((Xt −Xs) β)] , (15)

The last line (15) is a familiar maximum-score or rank-order criterion function, constructed
based on an equivalence relationship induced by univariate monotonicity of the following
form:

γ (Xt, Xs) > 0 ⇔ (Xt −Xs) β > 0, (16)

Such an equivalence relationship is a unique feature of the univariate setting, which can be
essentially derived as a special case of Proposition 1:

γ (Xt, Xs) > 0⇒ NOT {(Xt −Xs) β ≤ 0} ⇔ (Xt −Xs) β > 0⇒ γ (Xt, Xs) ≥ 0, (17)
3This arises naturally in binomial choice models with the characteristics of the outside option set to be

zero completely. In this case, even though there are nominally two choice alternatives, choice behavior is
completely determined by a single index based on the characteristics of the non-default option.
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If weak monotonicity is strengthened to strict monotonicity, (17) immediately gives (16).
However, such equivalence relationships as (16) or (17) cannot be generalized to the

multivariate setting with J ≥ 2, as the right hand side of (9),

NOT
{(
Xj −Xj

)′
β0 ≤ 0 and

(
Xk −Xk

)′
β0 ≥ 0 for all k 6= j

}
,

does not imply γj,t,s
(
X,X

)
≥ 0 in the converse direction. This breaks the bidirectionality

built into the maximum-score or rank-order criterion function, and thus we can no longer
aggregate Qj,t,s and Qj,s,t from two opposite directions into a unified representation as in
(15). See a more general discussion on this difference in Appendix D.

Hence, our population criterion function can be seen as a generalization of the maximum-
score or rank-order criterion functions to multi-index settings, where the lack of bidirection-
ality as described above leads to a key difference in the population criterion functions, and
consequently a significantly different approach of estimation, which will be discussed in the
next section.

We may now present our set identification result.

Theorem 1 (Set Identification). Under model (1) and Assumptions 1-3,

β0 ∈ B0 :=
{
β ∈ RD : Q (β) = 0

}
. (18)

We will refer to B0 as the identified set.
In Appendix C, we provide sufficient conditions for point identification of β0 up to scale

normalization, with similar styles of assumptions imposed for point identification in the
literature on maximum-score or rank-order estimation, dating back to Manski (1985), as
well as in related work on panel multinomial choice models, such as Khan, Ouyang, and
Tamer (2017) and Shi, Shum, and Song (2018).4

However, since point identification, or lack thereof, is conceptually irrelevant to our key
methodology, and as set identification and set estimation are becoming increasingly relevant
in econometric theory as well as applied research, we will focus on set identification and
estimation results in the main text, following a similar approach adopted in the seminal paper

4It might be worth pointing out that the identification arguments in Khan, Ouyang, and Tamer
(2017) and Shi, Shum, and Song (2018) feature conditioning on equality events in the form of{
Xk −Xk = 0, for all k 6= j

}
, which essentially utilizes subsamples where observable covariates stay un-

changed except for a single product j across two periods. In contrast, our point identification argument,
available in Appendix (C), do not involve conditioning on equalities, but only inequalities that define (inter-
sections of) half-spaces in the parameter space RD.
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by Manski (1975). Of course, whenever the additional assumptions for point identification
are satisfied in data, the set estimator will automatically shrink to a point asymptotically.

4 Estimation and Computation

4.1 Two-Stage Estimation Procedure

We now proceed to construct consistent estimators of the identified set B0 defined in (18),
and provide a computation procedure designed to exploit the niceties and in the meanwhile
confront the challenges in our estimation problem.

We construct our estimator in the framework of extremum estimation, and start by
defining the sample criterion functions. For each product j and each pair of periods (t, s),
we define the sample analog of the population criterion function Qj,t,s, as defined in (13), by
the following:

Q̂j,t,s (β) := 1
N

N∑
i=1

G (γ̂j,t,s (Xit,Xis))λj (Xit,Xis; β) (19)

where γ̂j,t,s is some chosen nonparametric estimator of γj,t,s and G is some chosen one-sided
sign preserving function. This leads to the implied dependence of the final estimate β̂ on
both the choice of γ̂ and the choice of G, which we will discuss in more details later.

Our estimator may naturally be obtained through a two-stage procedure.
The first stage takes the form of a standard nonparametric regression, in which we obtain

a nonparametric estimator γ̂j,t,s of γj,t,s for each (j, t, s). Applied researchers could choose
from an abundance of kernel-based or sieve-based estimators. In this paper, we adopt a
machine learning algorithm using single-layer neural network sieves. Section (4.2) provide
more in-depth discussion about the first stage.

The second stage of our estimation procedure solves an optimization problem, i.e., to
numerically compute minimizers of the aggregated sample criterion function:

Q̂ (β) :=
J∑
j=1

T∑
t6=s

Q̂j,t,s (β) .

In our implementation, we first impose in Section (4.3.1)a scale normalization on the pa-
rameter of interest β0 by restricting its Euclidean norm to unity, effectively transforming the
parameter space into the unit sphere in RD. Moreover, we further reparameterize the unit
sphere in polar coordinates, or more precisely angles, which enjoy a combination of topo-
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logical, geometric and arithmetic advantages, such as compactness and convexity. Section
(4.3.2) provides consistency results for our set estimators in the Hausdorff set distance, while
consistency under further assumptions for point identification is established in Appendix C.
Lastly, Section (4.3.3) contains more detailed discussions about our computation procedure,
which exploits the compactness and convexity of our reparameterized parameter space and
utilizes a bisection-style algorithm that recursively shrink and refine to a conservative enclo-
sure of the minimizers with arbitrarily chosen precision.

4.2 First Stage: Nonparametric Regression

The first stage of our procedure concerns with estimating the intertemporal differences in
conditional choice probabilities of the following form, as derived in (8):

γj,t,s
(
X,X

)
= E

[
yijt − yijs|Xit = X,Xis = X

]
for all on-support realizations

(
X,X

)
, all pair of periods (t, s) and all products j. The

estimation of γj,t,s boils down to a nonparametric regression of the following form

regress (yijt − yijs) on
(
vec (Xit)

′
, vec (Xis)

′)
across all agents i = 1, ..., N. (20)

Many kernel-based and sieve-based methods have been developed in statistics and economet-
rics, with potentially different properties developed under various conditions. For example,
see Chen (2007) and Wasserman (2013) for more comprehensive surveys of methods on non-
parametric estimation. Hence in this paper we will simply take as given the results available
in the literature on the first-stage nonparametric regression.

Specifically, we adopt a machine learning estimator based on single-layer artificial neural
networks, which has been widely adopted in many disciplines due to its theoretical and
numerical advantages in estimating nonlinear and high dimensional functions. Clearly, model
(1) naturally induces nonlinearity through the complex inequalities inside the multinomial
choice model (1) with unknown forms of utility functions. Also, given that the regression
(20) includes time-varying observable characteristics of all products from two periods, the
potentially high dimensionality of the regression also makes machine learning algorithm a
suitable choice.

For single-layer neural network estimators, Chen and White (1999) provides theoretical
results on the convergence rates, which we will use to derive the consistency of our final
estimators obtained in the second stage. On the computational side, there are also many
readily usable computational packages to implement neural-network estimators. For exam-
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ple, in our simulation study and empirical illustration, we use the R package “mlr” by Bischl
et al. (2016), who provides a front end for cross validation and hyperparameter tuning.

As our identification strategy is based on the logical implication of the event
γj,t,s

(
X,X

)
> 0, we are intrinsically only interested in estimating whether the event

γj,t,s
(
X,X

)
> 0 occurs, that is, a binary functional of γj,t,s in the form of

1

{
γj,t,s

(
X,X

)
> 0

}
,

but we are not interested in the exact magnitude of γj,t,s
(
X,X

)
.

When γj,t,s
(
X,X

)
is close to zero, the estimation of 1

{
γj,t,s

(
X,X

)
> 0

}
may not be very

precise relatively. Yet when γj,t,s
(
X,X

)
is positive and large so that 1

{
γj,t,s

(
X,X

)
> 0

}
can be estimated well, we do not care much about the magnitude of γj,t,s

(
X,X

)
. We can

exploit these intuitions by setting the one-sided sign-preserving function G, defined in (12),
to be both Lipschitz continuous and bounded above, so that observations for γj,t,s

(
X,X

)
close to zero are down-weighed in Qj,t,s via G

(
γj,t,s

(
X,X

))
, while variations for positive

and large γj,t,s
(
X,X

)
are dampened in the same time.

In practice, we only need to estimate γj,t,s for (J − 1) products and 1
2T (T − 1) ordered

pairs of periods. The former is due to the fact that conditional choice probabilities must sum
to one across all J products, so we may easily compute the estimator for the last product
from the other (J − 1) estimates: γJ,t,s = 1 −∑J−1

j=1 γj,t,s. The latter is due to the fact that
γj,t,s = −γj,s,t by construction, so we may estimate either (t, s) or (s, t).5

It might be worth noting that our first-stage nonparametric estimation does not involve
the parameter β0, so there is no need to run the machine learning algorithm for different
candidate parameter value β. Moreover, as all economic structures are supplied in the second
stage through the criterion function we defined earlier, the use of machine learning algorithms
does not interfere at all with the economic interpretability of our final estimates.

5Notice, however, that each ordered pair (t, s) or (s, t) provides complementary identifying information,
as λ (Xit,Xis;β) and λ (Xis,Xit;β) do not admit such kind of deterministic relationship.
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4.3 Second Stage: Extremum Estimation

4.3.1 Normalization and Reparameterization

The second stage of our estimation procedure concerns with the numerical minimization of
the sample criterion function:

Q̂ (β) = 1
N

N∑
i=1

J∑
j=1

T∑
t6=s

G (γ̂j,t,s (Xit,Xis))λj (Xit,Xis; β) .

Before we solve this minimization problem, however, we first discuss about the inherent
indeterminacy of the scale of β0 in our model, and impose a particular form of scale normal-
ization, followed by a reparamterization, to deal with this indeterminacy without affecting
the implicit topological and metric structures in our problem.6

We begin with a discussion on observational equivalence relations for our main model
(1). Clearly, for any positive constant c > 0, we may redefine the unknown parameter β0

and the unknown utility function u in the following way:

β0 := 1
c
β0, u (δijt, Aij, εijt) := u (c · δijt, Aij, εijt) , for all ijt.

Clearly, model (1) as characterized by (β0, u,A, ε,X,y) is observationally equivalent to the
reparameterized model characterized by

(
β0, u,A, ε,X,y

)
, because by construction:

u
(
X
′

ijtβ0, Aij, εijt
)
≡ u

(
X
′

ijtβ0, Aij, εijt
)
.

If β0 6= 0, then we could take c = ‖β0‖ and normalize

β0 := 1
‖β0‖

β0 ∈ SD−1,

where SD−1 :=
{
v ∈ RD : ‖v‖ = 1

}
denotes the unit sphere in RD.

Applied to the identified set B0 defined in (18), this scale normalization essentially im-
poses the following restriction:

B0 ⊆ SD−1. (21)
6The reason why we did not discuss about this scale indeterminacy in earlier sections is because our

previous set identification results automatically recognize and accommodate this indeterminancy. Given
that normalization is merely a representational device to index the underlying equivalence classes in the
parameter space, its significance is conceptually more relevant in the implemention of estimation procedures
rather than in identification analysis.
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We now make a stronger claim about the validity of (21), even when β0 = 0.

Proposition 2 (Scale Normalization WLOG). The scale normalization (21) is without loss
of generality (WLOG) in terms of the represented observational equivalence classes defined
on the unknown components of model (1).

To see this, we focus on the potentially pathological case of β0 = 0, which implies that
δijt ≡ 0 for all ijt. Then, (β0, u,A, ε,X,y) is observationally equivalent to

(
β0, u,A, ε,X,y

)
for any β0 ∈ SD−1 and

u (δijt, Aij, εijt) := u (0, Aij, εijt) ,

because again we have

u
(
X
′

ijtβ0, Aij, εijt
)
≡ u

(
X
′

ijtβ0, Aij, εijt
)
.

This reflects the simple fact that any degeneracy with respect to observable covariates can
be equivalently induced by the degeneracy of index parameter β0 or the degeneracy of the
utility function u with respect to the index argument, and observable data cannot distinguish
one from the other. Hence, we might as well use the nonparametric utility function u to
absorb this denegeracy and normalize the scale of β0 to unity.

Translated to our identification results, β0 = 0 or degeneracy of u in its first argument
imply that γj,t,s

(
X,X

)
≡ 0 and thus Q (β) ≡ 0, giving a trivial identified set B0 = SD−1,

which is consistent with (21) and in the same time admits a clear interpretation: the iden-
tification result is agnostic about the direction of β0, as there is no (populational) variation
in the data to begin with.

The normalized parameter space SD−1 is a compact and connected space, but it is not
convex under standard vector arithmetic. We now adopt a natural reparameterization of the
unit sphere that preserves all its topological and geometric niceties but simultaneously brings
about convexity, which will turn out to be handy for the implementation of our computation
algorithm.

To fix ideas, we start with two examples, the unit circle S1 and the unit 2-sphere S2, in
which case our reparameterization closely relates to familiar concepts such as polar coordi-
nates.

Example 1 (Unit Circle S1 in R2). Let D = 2, in which case SD−1 reduces to the unit circle
as illustrated in Figure 1. In this case, Θ = [−π, π) and a point β0 ∈ S1 can be represented
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Figure 1: Reparameterization of the Unit Circle
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−1

β0

θ0
cos θ0

sin θ0

−1

−1

β0

β

∆θ

by θ0 ∈ Θ via a mapping ω defined by:

β0 = ω (θ0) :=
 cos θ0

sin θ0

 .
There are at least two straightforward ways to measure the distance between two points
on the unit circle, say, β0 and β. First, we can use the standard Euclidean metric on
R2, represented by the length of the straight line segment connecting β0 and β in Figure1.
Second, we can use the great-circle metric on S1, represented by the length of the inferior
arc connecting β0 and β, which is exactly equal to the radian of the angle ∆θ between the
two vectors β0 and β. It turns out that the Euclidean metric and the great-circle metric are
strongly equivalent7 in consideration of the following relationship:

‖β − β0‖ = 2 sin
(1

2∆θ
)
≤ ∆θ ≤ π

2 ‖β − β0‖ ,

with ‖β − β0‖ bounded in [0, 2] and ∆θ bounded in [0, π]. Consequently, the choice of either
metric leads to no differences in all topological structures and most essential metric structures
such as uniform continuity and convergence.

Example 2 (Unit Sphere S2 in R3). Let D = 3. S2, the standard unit sphere, is illustrated
in Figure 2. In this case, Θ = [−π, π)×

[
−π

2 ,
π
2

]
and a transformation mapping ω : Θ→ S2

7Two metrics ρ1 and ρ2 defined on the same point space X is said to be strongly equivalent if there exist
two positive constants c, c such that

cρ1 (x, y) ≤ ρ2 (x, y) ≤ cρ1 (x, y) , ∀x, y ∈ X .
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Figure 2: Reparameterization of the Unit Sphere

β

θ2

θ1

β3

β1

β2

can be defined by

β = ω (θ) :=


cos θ2 cos θ1

cos θ2 sin θ1

sin θ2

 ,
It should be noted that, for the case of D ≥ 3, there exist many valid ways to define Θ and
the transformation mapping ω. The one defined above is just one illustrative example, which
exactly corresponds to the widely used longitude-latitude coordinate system on the surface
of Earth. In particular, notice that an asymmetry is generated between the first and the
remaining coordinates of θ ∈ Θ: while θ1 can vary from −π to π with half-closed half-open
boundaries, the domain of every other coordinates is given by the closed interval

[
−1

2π,
1
2π
]
,

so that there exists a one-to-one mapping, i.e., ω, between Θ and SD−1. The intuition behind
this asymmetry can be easily seen from the longitude-latitude coordinates: while longitude
varies from 180 degree west to 180 degree east, latitude varies from 90 degree south to 90
degree north.

In general, for D ≥ 2, we reparameterize SD−1 with (D − 1) angles in spherical coordi-
nates. Specifically, define the angle space Θ by

Θ := [−π, π)×
[
−π2 ,

π

2

]D−2
, (22)
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and the transformation ω : Θ→ SD−1 ⊆ RD by the following mapping ω : θ 7→ β:

β1 := cos θD−1 . . . cos θ2 cos θ1,

β2 := cos θD−1 . . . cos θ2 sin θ1,
... ...

βD−1 := cos θD−1 sin θD−2,

βD := sin θD−1,

(23)

which is a direct generalization of the transformation mappings in Examples 1 and 2.
We now endow Θ with a natural metric ρΘ that reflects its inherent spherical geometry,

known as the great-circle metric, which we import from the natural great-circle distance
defined on the unit sphere. Specifically, for any two points β, β on the unit sphere SD−1,
the great-circle distance ρGC

(
β, β

)
between β and β is defined as the length of the inferior

arc of the great circle that both β and β lie on. As the radius of the unit sphere is one by
definition, ρGC

(
β, β

)
is equal to the angle between the two vectors β and β:

ρGC
(
β, β

)
:= arccos

(
β
′
β
)
∈ [0, π] , ∀β, β ∈ SD−1.

Relative to the Euclidean distance in RD, the great-circle distance better reflects the cur-
vature of SD−1, and has been widely used in other theoretical and applied disciplines such
as physics, astronomy, geography and navigation. Considering now the angle space Θ, we
import the great-circle distance ρGC to Θ via the transformation mapping ω, i.e.,

ρΘ
(
θ, θ

)
:= ρGC

(
ω
(
θ
)
, ω (θ)

)
= arccos

(
ω
(
θ
)′
ω (θ)

)
, ∀θ, θ ∈ Θ. (24)

Then the metric space (Θ, ρΘ) is by construction isometric to the metric space
(
SD−1, ρGC

)
,

so all topological and metric properties of
(
SD−1, ρGC

)
are preserved after the reparameter-

ization.
Alternatively, we may import the standard Euclidean metric in RD to the angle space Θ

by defining, for all θ, θ ∈ Θ,

ρEuc
(
θ, θ

)
:=
∥∥∥ω (θ)− ω (θ)

∥∥∥ . (25)

Notice that, just as shown for the D = 2 case in Example 1, the great-cricle metric ρΘ and
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the imported Euclidean metric ρEuc are strongly equivalent, considering that

ρEuc
(
θ, θ

)
≤ ρEuc

(
θ, θ

)
≤ π

2ρEuc
(
θ, θ

)
holds for any D ≥ 2 in general. Hence, the choice between ρΘ and ρEuc is largely inconse-
quential in terms of topological and metric structures. However, the great-circle metric ρΘ

naturally arises in the derivation of our results on consistency and convergence rates, so we
will focus on ρΘ from now on.

The metric space (Θ, ρΘ) enjoys many niceties. First, while the unit sphere SD−1 is not
convex, the new parameter space Θ is convex in the form of a (D − 1)-dimensional hyper-
rectangle, making it easy to take averages (or find bisection points) computationally in the
parameter space. Second, (Θ, ρΘ) preserves all topological structure of the unit sphere,
and particularly inherits the compactness of

(
SD−1, ‖·‖

)
, automatically satisfying the com-

pactness condition usually imposed for extremum estimation. Third, it also preserves the
geometric structures of the sphere, including for instance the obvious observation that −π
and π in the first coordinate of Θ should be treated as exactly the same point, or more
rigorously,

ρΘ ((π − ε, θ2, ..., θD−1) , (−π, θ2, ..., θD−1))→ 0, as ε↘ 0.

This seemingly trivial property is nevertheless important in defining and interpreting whether
certain parameter estimates converge asymptotically or not, and provide conceptual foun-
dations for subsequent asymptotic theories.

The nontriviality of the theoretical niceties afforded by our reparameterization can be
partially seen from a comparison with a popular alternative form of normalization or repa-
rameterization, where the scale of the first coordinate of β0 is normalized to unity based on
the assumption that β0,1 6= 0. More precisely, if β0,1 6= 0, then we may define

β̃0 :=


sgn (β0,1)
β0,2/ |β0,1|

...
β0,D/ |β0,1|

 ∈ B̃ := {1,−1} × RD−1 ⊆ RD. (26)

A convenient choice of metric on B̃ that has been often used in previous work is to simply
adopt the restriction of the standard Euclidean norm ρEuc on RD onto B̃. There are, however,
at least three advantages of the metric space (Θ, ρΘ), or equivalently

(
SD−1, ρGC

)
, relative

to
(
B̃, ρEuc

)
.

First, Θ or SD−1 represents a strictly larger point space: every point in B̃ can
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be represented by a point in Θ or SD−1, but not vice versa. Specifically, points in{
β ∈ SD−1 : β0,1 = 0

}
are not represented in B̃, and thus ruled out a priori from subse-

quent analysis. Hence, the parameterization (Θ, ρΘ) or
(
SD−1, ρGC

)
is preferable when there

is no strong a priori knowledge on which coordinate of β must be nonzero.
Second, topologically

(
B̃, ρEuc

)
is not compact, but (Θ, ρΘ) is compact. In particular, if

compactness in the style of β̃0 ∈ {1,−1} × [−M,M ]D−1 is nevertheless assumed ad hoc in(
B̃, ρEuc

)
, as often found in proofs of consistency for extremum estimators, then it is not

only points with β0,1 = 0 are ruled out, but a neighborhood of points with |β0,1| < 1
M

are
also ruled out a priori. However, as (Θ, ρΘ) is compact globally (as a whole parameter space)
by construction, there is no need for further restrictive assumption on compactness.

Lastly, and perhaps most importantly, the metric ρEuc, when restricted to B̃, produces
distortions in the definition and interpretation of convergence. To see this, consider the
simple case of D = 2 with β̃(M) = (1,M)

′
∈ B̃. The limit Euclidean distance between β̃(M)

and −β̃(M) as we take M →∞ is given by:

ρEuc
(
β̃(M),−β̃(M)

)
= 2

√
1 + (D − 1)M2 →∞

suggesting an apparent interpretation that the two points β̃(M) and −β̃(M) are moving farther
and farther away from each other. Now, observe that β̃(M) and −β̃(M) correspond exactly
to the points θ(M) and θ(M) in Θ given by

θ
(M) := ω−1

(
β̃(M)/

∥∥∥β̃(M)
∥∥∥)

θ(M) := ω−1
(
−β̃(M)/

∥∥∥β̃(M)
∥∥∥) .

To see this more rigorously, notice that the equivalence class of RD represented by θ(M) or
β̃(M) is exactly the same for every finite M :{

β ∈ RD : β = rω
(
θ

(M)
)

for some r > 0
}
≡
{
β ∈ RD : β = rβ̃(M) for some r > 0

}
.

However, as M →∞, we have

ρΘ

(
θ

(M)
, θ(M)

)
≤ ρ

(
θ

(M)
,
π

2

)
+ ρ

(
θ(M),

π

2

)
→ 0,

suggesting the opposite interpretation that θ(M) and θ(M) should be viewed as converging to
each other! Such a drastic distinction in the definition of convergence in the two different
metric spaces will lead to qualitatively different asymptotic results in terms of consistency,
convergence rates or asymptotic distributions, which are fundamentally dependent on the
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choice of metrics. We take the view that our choice of metric space (Θ, ρΘ), which is isometric
with

(
SD−1, ρGC

)
, is more natural in its representation of the underlying equivalence classes

induced by the lack of scale identification than the metric space
(
B̃, ρEuc

)
.

We have now presented our scale normalization, as well as the subsequent angle-space
reparameterization that preserves important topological and geometric structures inherent
in our model, and that brings about additional niceties that will be made clearer in both
our convergence-rate results and our computational algorithm to be introduced in the next
two subsections.

4.3.2 Consistency

As discussed in Section 4.2, we take as given the available results in the literature on the first-
stage nonparametric regression, and state the the following assumption regarding first-stage
convergence.

Assumption 4 (First-Stage Convergence). There exists a sequence of positive constants
(cN) such that, for any (j, t, s),

‖γ̂j,t,s − γj,t,s‖2 :=
√∫

(γ̂j,t,s (Xit,Xis)− γj,t,s (Xit,Xis))2 dP (Xit,Xis)

= Op (cN) ,

and
N

1
2 cN →∞, cN → 0, as N →∞.

For single-layer neural networks in particular, Chen and White (1999) establishes that

cN =
(

logN
N

) 1+2/(d+1)
4(1+1/(d+1))

= op
(
N−

1
4
)
.

Next, we impose some smoothness condition on the one-sided sign preserving function
G, which the first stage estimate γ̂ is plugged into. As G can be chosen arbitrarily, the
assumption below is not restrictive at all, but simply provides a guideline for the specification
of G.

Assumption 5 (Nice Smoothing Function). The one-sided sign preserving function G :
R→ R+ is also Lipschitz continuous and strictly increasing.

The next assumption, Assumption 6, imposes regularity conditions on the data distribu-
tion, so that the population criterion function Q (θ) is continuous.
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To state Assumption 6, we first define the following notations: for each realized pair of
observable covariates (Xit,Xis) =

(
X,X

)
from two periods, define the following spherical-

coordinate reparametrization:

rk
(
X−X

)
:=
∥∥∥Xk −Xk

∥∥∥
vk
(
X−X

)
:=


(
Xk −Xk

)
/rik, rik > 0,

0, rik = 0.

so that
Xk −Xk ≡ rk

(
X−X

)
· vk

(
X−X

)
,

i.e., vk
(
X−X

)
represents the direction of intertemporal change in observable characteristics

of each product.

Assumption 6 (Regularity Condition). The distribution of vk (Xit −Xis) has no mass point
for each (k, t, s).

Assumption 6 is a fairly weak assumption: it essentially requires that the directions of
intertemporal differences in observable characteristics are continuously distributed on their
own supports. This allows all but one dimension of observable characteristics to be discrete.

Theorem 2 (Consistency). Under Assumptions 1-6, we have

ρΘ,Hausdorff
(
Θ̂,Θ0

)
p−→ 0.

The asymptotic properties of the implied optimizer Θ̂, or correspondingly B̂ = ω
(
Θ̂
)
,

depend on the estimator γ̂, the choice of G and the nature of the functional dependence
induced by our nonstandard criterion function Q. Therein lies the difficulties in developing
a full asymptotic theory of inference because of these induced complexities.

4.3.3 Computation Algorithm

Computationally, we search for minimizers of Q̂ (θ) in Θ exploiting the compactness and
convexity of our spherical-coordinate parameter space Θ, which takes the form of a hyper-
rectangle Θ = [−π, π)×

[
−π

2 ,
π
2

]D−2
as in (22).

Specifically, we compute a conservative rectangular enclosure of arg min Q̂ (θ), deploying
a bisection-style grid-search algorithm that recursively shrinks and refines an adaptive grid
to any pre-chosen precision. Unlike gradient-based local optimization algorithms, our adap-
tive grid algorithm handles well the built-in discreteness in our sample criterion function,
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Figure 3: An Adaptive-Grid Algorithm
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which has zero derivative almost everywhere, while maintain global initial coverage over the
whole parameter space. While a brute-force global search algorithm is the safest choice if
the dimension of product characteristics D is relatively small, our adaptive-grid algorithm
performs significantly faster. The essential structure of our algorithm is laid out as follows,
with a corresponding illustration in Figure 3.

Step 1: Initialize a global grid Θ(1) of some chosen size MD−1
0 on Θ.

Step 2: Compute Q̂ (θ) for each θ ∈ Θ(1), and select all points in Θ(1) with a criterion
value below the αth-quantile in Q̂

(
Θ(1)

)
:=
{
Q̂ (θ) : θ ∈ Θ(1)

}
into

Θ(1) :=
{
θ ∈ Θ(1) : Q̂ (θ) ≤ quantileα

(
Q̂
(
Θ(1)

))}
.

Step 3: Take the enclosing rectangle of Θ(1), by defining

θ
(1)
d := min∗Θ(1)

d ,

θ
(1)
d := max∗Θ(1)

d ,

where Θ(1)
d :=

{
θd : θ ∈ Θ(1)

}
for each d = 1, ..., D − 1 and the operator min∗ and max∗

have standard definitions of min and max except for the first dimension d = 1. For the first
dimension, it is necessary to account for the underlying spherical geometry and recognize
the periodicity of angles, i.e. θ1 + 2π ≡ θ1 and in particular −π ≡ π, as we move around
the unit sphere (a Riemann surface). This is largely a programming nuisance: whenever
Θ(1)

1 ( Θ(1)
1 crosses over at −π and π, we can add 2π to every θ1 ∈ Θ(1)

1 and obtain lower
and upper bounds of Θ(1)

1 + 2π, as illustrated in Figure 3.
Step 4: We initialize a refined grid Θ(2) on Θ(1) := ×D−1

d=1

[
θ

(1)
d , θ

(1)
d

]
of size MD−1

0 .
Step 5: Reiterate until refinement stops (falls below a certain numerical precision).

Note that the above is simply a sketch of our algorithm. To be conservative, we also add
in buffers at each step of refinement, keep track of both outer and inner boundaries of the
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lower-quantile set Θ(m) and make sure that the minimizers of the criterion functions at all
computed points are indeed enclosed by the set returned in the end.

Clearly, our algorithm relies heavily on the compactness and convexity of the angle space
Θ. Compactness allows us to start with a global grid over the whole parameter space for
initial evaluations of the sample criterion function. At each step of recursion, the convexity
of Θ allows us to conveniently refine the grid by separately cutting each coordinate of Θ(m)

into smaller pieces through simple division. In comparison, it is much harder to carry out
this seemingly trivial arithmetic calculation in a clean manner with D-dimensional Euclidean
coordinates on SD−1, due to the lack of convexity and the troublesome dependence across
coordinates.

We find the current algorithm to be conservative and perform reasonably well in our
simulation study and empirical illustration. In particular, see Figures 4 and 5 in Section 5.2
for more illustration of our computation algorithm. Admittedly, there are certainly some
aspects of our algorithms that can be improved, especially in terms of its computational
efficiency and grid uniformity under the great-circle metric. We look forward to future work
that improves the implementation of our computational procedure in the spherical-coordinate
reparameterization.

5 Simulation

In this section, we examine the finite-sample performance of our estimation method via
a Monte Carlo simulation study. We start by graphically presenting the estimated set to
demonstrate intuitively how our method performs. Next, we study the performance of the
first-stage nonparametric estimator γ̂, or more precisely the performance of the plugged-in
estimator G (γ̂), on which our sample criterion function is built. Then, we show how the
two-stage estimator β̂ performs under various configurations of data generating processes
(DGP). Finally, we investigate how our proposed estimator performs under the lack of the
point identification.

Estimated Set

To intuitively illustrate the performance of our method, we first show the estimated set
graphically under a simple setting. The purpose of this exercise is to demonstrate the
power of our general method in finding the true β0. For simplicity we assume there is no
fixed effect Aij only in this illustration. We draw each of X(d)

ijt independently across each
dimension d ∈ {1, ..., D} from the standard normal distribution. We assume the distribution
of εijt ∼i.i.d. TIEV is known. We can thus calculate the true conditional choice probability
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Figure 4: The Estimated Set for θ0

conditioning on each Xi. We take the true conditional choice probability to our second-step
algorithm to adaptively search for β0. In this exercise we set N = 107, D = 3, J = 3, T = 2.

Figure 4 shows how our general method performs in finding the true unknown θ0, the
reparametrization of the true β0 in the Θ space. In the figure the horizontal and the vertical
axes correspond to the two polar coordinates that are associated with S2. The blue dots
represent the points where our algorithm searches over and reports it is not a minimizer
of the sample criterion Q̂. The black box indicates the area where the minimizers for the
sample criterion Q̂ lie, i.e. the estimated set. We take the mean along each dimension of the
black box to be our point estimator for θ0. The huge black dot stands for the true unknown
θ0 = (0.4205, 0.4636)

′
.

It is evident from Figure 4 that our method is able to correctly find the area that covers
the true θ0. The true θ0 falls right in the small black box that represents the estimated set
of θ̂. The size of the black box is very small, demonstrating the efficacy of the algorithm.
Also it is worth mentioning that our algorithm computes very fast because it first performs
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Figure 5: The Estimated Set for β0

a rough search on the whole unit sphere S2, then focuses on the area where the minimizers
are most likely to lie. In the last few rounds of search, our algorithm evaluates the criterion
function Q̂ on a much smaller set of points shown by those blue and red dots in Figure 4
while achieving the desired level of accuracy.

For a more transparent representation of our estimates, we translate the angles θ in the
polar coordinates into unit vectors β on the unit sphere S2 in Figure 5.

Figure 5 is now plotted on S2 ⊆ R3. Again the blue dots represent the points that do
not achieve the minimum of Q̂; the black box shows where the minimizers of Q̂ lie. The
huge black dot represent the true unknown β0, which resides inside the black box of the
minimizers of Q̂. It again delivers the message that our algorithm is able to find a very tight
area that contains the true β0.
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Formal Setup

We have shown graphically that our method is able to find a small area that correctly covers
the true β0 in a simple setting. Now, we formally describe the setup used in our simulations.
For each DGP configuration, we run M = 100 independent simulations of model (1) with
the following utility specification unknown to the econometrician for each agent-product-time
tuple ijt:

u
(
X
′

ijtβ0, Aij, εijt
)

= A
(0)
ij

(
X
′

ijtβ0 + A
(1)
ij

)
+ εijt,

where A(0)
ij is the unobserved scale fixed effect that captures agent-level heteroskedasticity

in utilities, and A
(1)
ij is the unobserved location shifter specific to each agent-product pair.

We fix A(0)
ij across j, and abbreviate it as Ai0. We further denote A(1)

ij as Aij whenever no
ambiguity is present. We draw the scale fixed effect Ai0 from a uniform distribution on
[2, 2.5]. We set the location fixed effect corresponding to product 1 to be zero, i.e., Ai1 ≡ 0.
To generate correlation between the observable characteristics Xi and the fixed effects Ai,
we introduce a latent variable Zi ∼i.i.d. N (0, 1) for each agent i. Then we construct the
location fixed effect Ai2 with respect to the product 2 to be the positive part of Zi, i.e.
Ai2 = [Zi]+ . The same latent variable Zi will also be used to generate one covariate of the
observable characteristics Xijt later on. For all other products j ∈ {3, ..., J}, we draw the
corresponding location shifter Aij from a uniform distribution on [−0.25, 0.25].

We draw the unobserved random utility shock εijt independently from the Type I Extreme
Value (TIEV ) distribution with its location being 0 and scale of 1. Note that our estimation
method does not require the knowledge of the distribution of εijt per se. In the next section
where we evaluate the performance of our first-step estimator, it will be used to calculate
the true conditional choice probabilities. Specifically, the TIEV assumption allows us to
analytically compute the conditional choice probabilities given Xit and Ai, and subsequently
compute the true γj,t,s (Xit,Xis) by numerically integrating over the conditional distribution
of Ai by simulation. Note that the TIEV assumption on ε makes the choice probabilities
immune to any common location shifts in the indexes X ′ijtβ0.

We set the true β0 ∈ RD to be (2, 1, ..., 1︸ ︷︷ ︸
D−1

)′ , and seek to estimate the direction of β0,

represented by the normalized vector β0 := β0/ ‖β0‖ on the unit sphere SD−1. We will stick
to the specifications on u,A, ε, β0 across all the simulations.

In our baseline DGP configuration, we construct the N ×D × J × T observable charac-
teristic matrix X as follows. We draw X

(1)
ijt , the first coordinate of D coordinates of Xijt,

from a uniform distribution on [−1, 1]. For the second coordinate, we set X(2)
ijt = Wijt + Zi

39



with Wijt ∼i.i.d. N (0, 2J), inducing correlation and nonlinear dependence between Ai2 and
X

(2)
ijt for each ijt tuple. For any pair of (Xit,Xis), the variable Zi enters into the 2J random

variables in (Xijt)Jj=1 and (Xijs)Jj=1. By configuring V ar (Wijt) = 2J , we control the variance
of Zi to be the same as the aggregate variance of all idiosyncratic components (Wijt)Jj=1 and
(Wijs)Jj=1 from the two periods (t, s). More detailed discussion on this point will be provided
below. For all other dimensions d ∈ {3, ..., D}, we draw X

(d)
ijt ∼i.i.d. N (0, 1). Later on, we

will change these assumptions on Xit as well as vary (N,D, J, T ) to evaluate the performance
of our method under different scenarios.

To summarize, for each of the M = 100 simulations we first generate (β0,Xit,Ai, εit)
for all it combinations based on the DGP in this section. Then we calculate the binary
individual choices Y matrix according to model (1). Lastly, we estimate the true β0 by
using our method on the observable data of (X,Y), and finally compare our estimator β̂
with the truth. Unless otherwise noted, all results are derived using the baseline DGP
configuration. We will explicitly mention any alternations in the configurations of DGP
relative to the baseline setup.

5.1 First-Stage Performance

We examine the performance of our first stage estimator γ̂ or G(γ̂) in this part. First,
we calculate the true γ or G (γ) using the knowledge of DGP. Specifically, for each of the
M = 100 simulations, we numerically compute the true first-stage conditional expectation

γj,t,s
(
X,X

)
= E

[
yijt − yijs|Xit = X,Xis = X

]
for each (j, t, s) combination and for each realization of (Xit,Xis) =

(
X,X

)
. We take the

true γ to the known functional G to derive the true G (γ) as the benchmark of comparison.
Next, we estimate γ with only the observable data (X,Y) using the single-layered neural
networks regression technique and calculate the plugged-in functional G

(
γ̂
(
X,X

))
at each

realized
(
X,X

)
. Finally, we evaluate the performance of our estimated G (γ̂) by comparing

it against the true G (γ).
We leverage the TIEV distribution of ε to obtain the conditional choice probability

E
[
yijt − yijs|Xit = X,Xis = X,Ai

]
= expAi0

(
X
′
jβ0+Aij

)
∑J
k=1 expAi0

(
X
′
kβ0+Aik

) − expAi0
(
X
′
jβ0+Aij

)
∑J
k=1 expAi0(X

′
kβ0+Aik) .

Then we integrate Ai out to obtain the true γ function
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E [yijt − yijs|Xit,Xis] =
∫

E [yijt − yijs|Xit,Xis,Ai] dPt,s (Ai|Xit,Xis)

=
∫  expAi0

(
X
′
ijtβ0+Aij

)
∑J
k=1 expAi0(X

′
ikt
β0+Aik) −

expAi0
(
X
′
ijsβ0+Aij

)
∑J
k=1 expAi0(X

′
iks
β0+Aik)

 (27)

dPt,s (Ai|Xit,Xis)

Because in our setting only Ai2 is correlated with X, we need the conditional prob-
ability distribution of Ai2|Xit,Xis to evaluate the integral (27). Define X

(2)
i,ts :=

1
2J
∑J
j=1

(
X

(2)
ijt +X

(2)
ijs

)
∼ N (0, 1) +N (0, 1), then

Ai2|Xit,Xis
∼ Ai2|(

X
(2)
ijt ,X

(2)
ijs

)3

j=1

∼ Ai2|X(2)
i,ts
∼
[
N
(1

2X
(2)
i,ts,

1
2

)]
+

(28)

We use simulation methods to numerically calculate the integral (27). Specifically, we use
M0 := 107 random draws of Ai →

{
A(m)
i : m = 1, ...,M

}
according to the true conditional

distribution Ai|(Xit,Xis)=(X,X) in (28). For each j, we compute the numerical average

1
M0

M0∑
m=1

 expA
(m)
i0

(
X
′
jβ0+A(m)

ij

)
∑J
j=1 expA

(m)
i0

(
X
′
jβ0+A(m)

ij

) − expA
(m)
i0

(
X
′
jβ0+A(m)

ij

)
∑J
j=1 expA

(m)
i0

(
X
′
jβ0+A(m)

ij

)


which we refer to as the true intertemporal differences in choice probabilities γj,t,s
(
X,X

)
and enables us to derive the G(γ) for any known G functional.

Next, we estimate γj,t,s (Xit,Xis) by a machine learning algorithm with single-layered
neural networks, using the R package “mlr” by Bischl et al. (2016). For each fixed product
j, we regress (yijt − yijs) on neural-network functions of vec (Xit,Xis). We tune over hy-
perparameters of the number of neurons, initial random weights and maximum number of
iterations based on a three-fold cross validation. Then we use the tuned learner to obtain
prediction γ̂j,t,s (Xit,Xis) of γj,t,s (Xit,Xis) for each realized pair of (Xit,Xis). Finally, we
plug these predicted γ̂’s into G (·) function and compare it to the true G (γ) we obtained via
simulation above.

Per the discussion in Section 3, our method only requires G(·) to be one-sided sign
preserving, i.e., G (z) is zero for nonpositive z and positive when for positive z. It is worth
noting that the precision of our estimation of β0 does not crucially depend on the accuracy of
the first stage estimator γ̂ per se, but only relies on how well G (γ̂) approximates G (γ). We
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Figure 6: G (·) Functions

Table 1: Performance of First Stage Estimator G (γ̂)

1 {γ̂ > 0} [γ̂]+ 2Φ
(
[γ̂]+

)
− 1

mean MSE 0.1290 0.0221 0.0109

max MSE 0.1578 0.0254 0.0124

compare below the performance of G (γ̂) under several choices of G: the indicator function,
the positive part function and an adjusted normal CDF 2Φ

(
[z]+

)
− 1.

We report in Table 1 both the means and the maximums of the mean squared errors across
M simulations to evaluate the performance of our first stage estimator G (γ̂). The first row
of Table 1 lists the three choices of the G (·) function that satisfy the single-directionality
requirement. Note that in the normal CDF 2Φ

(
[γ̂]+

)
− 1 case, we first keep the positive

part of γ̂ obtained through the machine learning method, then evaluate it with normal CDF
and renormalize the whole function to have a range between 0 and 1. The first row, “mean
MSE”, reports the average MSE of G (γ̂) against the true G (γ), i.e. 1

M

∑M
m=1 MSE(m) where

MSE(m) is the mean squared error of G (γ̂) in the mth simulation. Similarly the second row,
“max MSE”, reports the maximum MSE of G (γ̂).

From Table 1 we can see that the normal CDF G (·) performs the best in terms of both
mean MSE and max MSE, while the indicator function gives the worst results and that the
positive part function lies somewhere in between. This is expected because when the true γ
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is close to zero, it is more likely to have the estimated sign of γ̂ to be different from γ. The
discontinuity of the indicator function 1 {γ̂ > 0} at 0 magnifies this uncertainty around zero
and leads to a higher MSE. When the true γ is positive and large, it actually does not matter
for our method whether the exact value of γ is estimated well by γ̂. All we need is the sign
of γ̂ coincides with the sign of γ so as to obtain identifying restrictions on β0. According to
this intuition, the positive part function [γ̂]+ is expected to perform the least well when γ is
positive and large. The adjusted normal CDF function 2Φ

(
[γ̂]+

)
− 1 performs the best, as

it not only dampens the uncertainty in the estimated sign of γ̂ near zero, but also attenuates
the sensitivity to the exact value of γ̂+ relative to γ+ when γ is positive and large. For this
reason, we will use the adjusted normal CDF function as G functional in our second-stage
search for β̂.

5.2 Two-Stage Performance

Using G (γ̂) = 2Φ
(
[γ̂]+

)
− 1 in our finite sample criterion function Q̂ (θ) as defined in (19),

we minimize Q̂ (θ) using our adaptive-grid algorithm in the angle space Θ. Later on we
translate the estimated θ̂ ∈ Θ back to β̂ ∈ SD−1 for transparency and compare it with the
normalized β0 ≡ β0/ ‖β0‖.

In this section, we first give a graphical illustration of the output of our algorithm from
one of theM simulations under a regular setting. Then we show the simulation results under
the baseline DGP configuration. Next, we study the performance of our algorithm under
different numbers of individuals N , dimensions of observable characteristics D, numbers of
products available J , and numbers of time periods T . Finally, we inspect how informative
our estimates will be under the lack of point identification.

A Typical Estimator

In this section, we show graphically how a typical estimator β̂ of β0 performs in one of the
M = 100 simulations. The setting here is different from the estimated set case above in the
sense that we now include the unobserved fixed effect Aij into the DGP and that we do not
use the knowledge of the distribution of εijt in the estimation process. The unknown DGP
remains the same as in the baseline setting. All we observe is the realized data (Xi,Yi) for
i ∈ {1, ..., N}. We need to first estimate E [yijt|Xi], the conditional choice probability. Then
we take the first step estimation results to the second step adaptive-grid algorithm to search
for the minimizers β̂ of the sample criterion Q̂ on the unit sphere Sd−1. The minimizer β̂ is
our estimator for the true β0. For the first step nonparametric estimation, we use the single-
layered neural network regression method from the mlr package in R. We run the analysis
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Figure 7: A Typical Estimator for θ0

under the setting of N = 10, 000, D = 3, J = 3, T = 4. Below we show graphically a typical
estimator θ̂ and its corresponding β̂ from one of the M simulations.

The blue dots, black boxes and huge black dots each represent the points that do not
minimize the sample criterion, points that do minimize the criterion function, and the true
θ0 or β0 respectively in Figure 7 and 8. We can see that the first step nonparametric
estimation of E[y|X] introduces uncertainty into the estimation procedure which translates
into a slightly larger area of the estimated set than when we do not need to estimate E[y|X]
above. Nonetheless, our method is still able to capture the true θ0 or β0 since they are located
inside the black box and the sizes of the black boxes are small in the absolute scale. Figure
7 and 8 are reflections of what our method is able to generate across all the simulations. We
use the center of these black boxes as the point estimator and report the summary statistics
including the root MSE and the mean norm deviations (MND) across all M simulations
based on our point estimator in the following sections.
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Figure 8: A Typical Estimator for β0
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Table 2: Baseline Performance

β̂1 β̂2 β̂3

bias 1
M

∑
m

(
β̂md − β̃0,d

)
-0.0050 0.0021 0.0006

upper bias 1
M

∑
m

(
β̂ud − β̃0,d

)
0.0015 0.0084 0.0108

lower bias 1
M

∑
m

(
β̂ld − β̃0,d

)
-0.0115 -0.0042 -0.0096

mean(u−l) 1
M

∑
m

(
β̂ud − β̂ld

)
0.0130 0.0126 0.0205

root MSE
√

1
M

∑
m

∥∥∥β̂m − β̃0

∥∥∥2
0.0745

mean norm
deviations

1
M

∑
m

∥∥∥β̂m − β̃0

∥∥∥ 0.0648

We now present the formal measures of the performance of our estimator under the
baseline configuration.

Baseline Results

For the baseline configuration we set N = 10, 000, D = 3, J = 3, T = 2. We define the set
estimator as

B̂ := arg min
β∈SD−1

Q̂ (β) ,

and for each dimension of product characteristics d = 1, ..., D, define

β̂ud := max B̂d, β̂ld := min B̂d, β̂md := 1
2
(
β̂ud + β̂ld

)
.

For each dimension d = 1, ..., D, β̂ud is defined as the maximum value along dimension d of
the identified set B̂, β̂ld as the minimum value along dimension d of the identified set B̂, and
β̂md as the middle point along dimension d of the identified set B̂. As

B̂ ⊆ ×Dd=1

[
β̂ld, β̂

u
d

]
,

we will refer to ×Dd=1

[
β̂ld, β̂

u
d

]
as the enclosing rectangle of B̂. Note that if β0 is point identified

on SD−1, the enclosing rectangle ×Dd=1

[
β̂ld, β̂

u
d

]
should shrink to β0 asymptotically.

Table 2 summarizes the main results for the simulations under our baseline configuration.
In the first row of Table 2 we use the middle value β̂m along each dimension of set estimator
B̂ to calculate the bias against true β0 across all M = 100 simulations. The bias is very
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Table 3: Performance under Varying N

∑
d |biasd|

∑
dmean(u-l)d rMSE MND

N = 10, 000 0.0077 0.0461 0.0745 0.0648

N = 4, 000 0.0174 0.0715 0.1006 0.0884

N = 1, 000 0.0694 0.1076 0.1690 0.1405

small across all three dimensions with a magnitude between -0.0050 and 0.0021. The next
two rows show the biases in estimating β0,d using β̂ud and β̂ld respectively. Again, the bias is
close to zero and stable across all three dimensions. The fourth row of Table 2 measures on
average width of the set estimator B̂ along each dimension. It is relatively tight compared
to the magnitude of β̃0. In the second part of Table 2 we report the rMSE and MND of our
second stage estimation results using β̂m. Our proposed algorithm is able to achieve a low
rMSE and MND.

Results Varying N

In this section we vary N while holding D = 3, J = 3, T = 2 to show how our procedure
performs under different size of observations. In addition to our baseline setup under which
N = 10, 000, we calculate mean absolute deviation, average size of the estimated set, rMSE
and MND for N = 4, 000 and N = 1, 000. Results are summarized in Table 3.

From Table 3 it is clear that a larger N helps with overall performance. Mean absolute
deviation decreases from 0.0694 to 0.0077 when N increases from 1, 000 to 10, 000. The
average size of the estimated sets, the rMSE and the MND show a similar pattern. However,
even with a relatively small N = 1, 000 the result from our algorithm is still quite informative
and accurate, with the average size of the estimated set and the mean norm deviation being
equal to 0.1076 and 0.1405, respectively. It is worthwhile mentioning that in this baseline
configuration the total number of time periods is set to the minimum of T = 2. Our method
can extract information from each of the T (T − 1) ordered pairs of time periods, which
increases quadratically with T .

Next we numerically investigate the speed of convergence of our method when we in-
crease sample size N from 1, 000 to 4, 000 and 10, 000. Table 4 summarizes the main results
compared to the benchmark case N = 1, 000.

Table 4 shows that our method achieves a convergence speed slower than the root-N
rate. Compared with the case when N = 1, 000, The relative ratios of rMSE are 1.68 for
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Table 4: Convergence Rate√
N/1000 rMSE1000/rMSEN MND1000/MNDN

N = 10, 000
√

10 ≈ 3.2 0.1690
0.0745 ≈ 2.27 0.1405

0.0648 ≈ 2.17

N = 4, 000
√

4 = 2 0.1690
0.1006 ≈ 1.68 0.1405

0.0884 ≈ 1.59

Table 5: Performance Varying D, J, T

rMSE J = 3 J = 4 MND J = 3 J = 4
T = 2 T = 4 T = 2 T = 4 T = 2 T = 4 T = 2 T = 4

D = 3 0.0745 0.0397 0.1137 0.0722 D = 3 0.0648 0.0348 0.1005 0.0639
D = 4 0.0945 0.0580 0.1357 0.0807 D = 4 0.0864 0.0539 0.1233 0.0750

N = 4, 000 and 2.27 for N = 10, 000. In terms of MND, the corresponding ratios are 1.59
for N = 4, 000 and 2.17 for N = 10, 000. Still our method is able to achieve a rate slightly
faster than N1/3.

Results Varying D, J, T

Now we fix N = 10, 000 and vary D, J, T relative to the baseline configuration. Specifically,
we draw A and X according to the following specifications:

Aij ∼


0, j = 1,

[Zi]+ , j = 2,

U [−0.25, 0.25] , j = 3, ..., J,

X
(d)
ijt ∼


U [−1, 1] , d = 1,

Zi +N (0, 6) , d = 2,

N (0, 1) , d = 3, ..., D,

which coincides with the baseline configuration at D = 3, J = 3.
We report in Table 5 the rMSE and the MND of our estimators for each of the cor-

responding configurations across all M simulations. First, as discussed earlier, a larger T
improves the performance of our estimator, because we can now extract more information
from T × (T − 1) ordered pairs of time periods. Second, increase in D or J will adversely
affect the performance of our estimator, but its magnitude is mild. For example, when J

is 4 and T is 4, an increase in the dimension of product characteristics D from 3 to 4 will
increase the rMSE from 0.0722 to 0.0807. In summary, in datasets with larger T , which is
more and more practically relevant with the increasing availability of long panel datasets, we
find our method can produce good estimates in settings with higher dimensions of observable
characteristics and larger choice sets of alternative products.
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Performance without Point Identification

We investigate in this section the performance of our proposed estimator under specifications
where point identification fails. To make things comparable, we fix N = 10, 000, D = 3, J =
3, T = 2 as in the baseline configuration, but we modify the baseline configuration in two
different ways. We maintain the point identification of β0 in one setting but lose the point
identification in the other setting.

For the setting where the point identification of β0 is preserved, we draw

Zi ∼ U
[
−
√

3,
√

3
]
, X

(d)
ijt ∼


U [−1, 1] , d = 1,

Zi +N (0, 6) , d = 2,

N (0, 1) , d = 3,

(29)

and maintain the data generating assumptions on the fixed effects Aij’s as in the baseline
configuration. This DGP ensures point identification of β0 according to Appendix C. Note
that the nonlinear structure in the indirect utility and the dependence between X and A are
both preserved.

Next, we get rid of the point identification of β0 by discretizing the supports of the
observable characteristics:

Zi ∼ U
[
−
√

3,
√

3
]
, X

(d)
ijt ∼


U {−1, 1} d = 1,

Zi + U
[
−
√

6,
√

6
]

d = 2,

U [−1, 1] d = 3,

(30)

Specifically, from (30) to (29), we change the distribution ofX(1)
ijt from U [−1, 1] to a Binomial

distribution on two points {−1, 1} with equal probability. We also change the distributions
of X(2)

ijt and X
(3)
ijt to be uniformly distributed with same means, but set the boundaries of

the supports to be one standard deviation from the mean, i.e, from N (0, 6) to U
[
−
√

6,
√

6
]

and from N (0, 1) to U [−1, 1]. Due to the discreteness and boundedness of Xi in (30),
intertemporal differences in Xijt −Xijs can no longer span all directions on the unit sphere,
so the point identification fails in this case.

We deliberately control the location and scale of each variable to be comparable across the
two configurations (29) and (30), with the only differences being the presence of discreteness
and boundedness. Table 6 contains simulation results under both configurations.

From Table 6, we see that the lack of point identification does negatively affect the
performance of our estimates, but the impact is limited to a moderate degree. Here all the
results are calculated using β̂m, the middle point along each dimension of the estimated set
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Table 6: Performance with and without Point ID

point ID ? ∑
dmean(u-l)d

∑
d |biasd| rMSE MND

(i) yes 0.0414 0.0119 0.0770 0.0661

(ii) no 0.0283 0.0185 0.0881 0.0762

Table 7: Performance with and without Point ID: Further Examination

point ID ? rMSE point ID ? MND
β̂m β̂u β̂l β̂m β̂u β̂l

(i) yes 0.0770 0.0789 0.0795 (i) yes 0.0661 0.0685 0.0697

(ii) no 0.0881 0.0892 0.0892 (ii) no 0.0762 0.0778 0.0778

B̂. According to the second column of Table 6 there is minor change between the two settings
in the average sizes of the estimated sets, both of which are relatively tight. In terms of mean
absolute deviation, rMSE and MND, our estimator performs quite satisfactorily even under
the lack of the point identification of β0.

In Table 7, we calculate the performance measures using the upper bound estimator β̂u

and the lower bound estimator β̂l of the estimated set B̂. When comparing the results
between row (i) and (ii), the estimated sets tend to become larger and farther away from
the true β0 when the point identification no longer holds. However, the changes are mild in
magnitude, suggesting that our method handles discrete and bounded characteristics well,
and remains informative without the point identification assumptions.

6 Empirical Illustration

As an empirical illustration, we apply our method to the Nielsen Retail Scanner Data on
popcorn sales to explore the effects of marketing promotion effects, permitting rich unob-
served heterogeneity in factors such as brand loyalty or responsiveness to subtle flavor and
packaging designs, which may affect choices in complex ways. The results show that our
procedure produces estimates that conform well with economic intuition.

6.1 Data Description

The Nielsen Retail Scanner Data contains weekly information on store-level price, sales
and promotion status generated by about 35,000 participating retail store with point-of-
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sale systems across the United States. It also includes additional information on store and
product characteristics.

We choose to focus on the sales of popcorn among a huge variety of products covered by
the Nielsen data. One of the reasons why we focus on popcorn is heuristically due to the
consideration that purchases of popcorn are more likely to be driven by temporary urges of
consumption without too much dynamic planning. For example, when a certain brand of
popcorn is on sale people probably would not stock it up for future consumption. Another
reason lies in the fact that there is good variation in the promotion status of popcorn. It is
often easier to promote popcorn by displaying it near the exit or cashier’s desk than some
other products, such as milk and eggs, that need to be refrigerated at all time. This fact
enables us to estimate how important special in-store displays are in consumer’s purchase
decisions.

We aggregate the store level data to the N = 205 designated market area (DMA) level
defined by Nielsen for year 2015. There are T = 52 weeks in 2015, giving us T0 = T ×
(T − 1) = 2652 ordered week pairs. The Nielsen data contains detailed universal product
code (UPC) level information, which we aggregate to brand level data. We focus on the top
3 brands ranked by market share and aggregate the rest into a fourth product - “all other
products”.

In the Nielsen Scanner Data we have the volume data sold by each UPC re-scaled to the
same units. To calculate the market share variable, We aggregate it up across all the UPCs
under brand j in DMA i during week t and divide it by the total volume sold for all brands
in the same DMA and week. We will use it as the dependent variable for the first-stage
nonparametric regression.

The observed product characteristics X for each brand include price, promotion and their
interaction. We calculate brand j’s price in DMA i in week t Priceijt as the weighted average
unit price equaling to the total weekly sales of all the UPCs contained in brand j in DMA i

during week t divided by total selling volume of the same UPCs in the same DMA and week.
In the Nielsen data we find two variables related to promotion: display and feature. The
feature variable captures whether or not a product is promoted via advertisement on local
newspapers, free standing inserts, free standing circulars or online from the retailer’s website.
The display variable reflects whether or not a product is brought temporarily to the store
lobby, front of store or end of aisle to increase its exposure. Due to their similarity, we define
the promotion variable Promoijt to be the maximum of feature and display and calculate
it as the percentage of stores in DMA i in week t that either feature or display brand j,
i.e. Promoijt =(feature∨display)ijt. The third variable we construct is the interaction term
Priceijt × Promoijt. It is included to show the effect of promotion of a product on the price
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Table 8: Empirical Application: Summary Statistics

mean s.d. min max

DMA-level Market Share sijt 25.00% 21.59% 0.07% 96.69%

Priceijt 0.4924 0.1803 0.1094 1.3587

Promoijt 0.0282 0.0377 0.0000 0.5000

Priceijt × Promoijt 0.0136 0.0203 0.0000 0.4505

elasticity of consumers. The summary statistics of the variables discussed above are provided
in Table 8.

6.2 Methodology

We use the observed DMA-level market shares as an estimate of

sijt = E [yijt|Xit,Ai] .

Then to apply our method, under the strong stationarity assumption we still need to run
the first-stage estimation of

E [sijt − sijs|Xit,Xis] =
∫

(E [yijt|Xit,Ai]− E [yijs|Xis,Ai]) dP (Ai|Xit,Xis) .

Specifically, we nonparametrically regress (sijt − sijs) on (Xit,Xis) through the single-
layered neural network from the mlr package in R. We obtain an estimator γ̂ of the
true γi,t,s

(
X,X

)
:= E

[
sijt − sijs| (Xit,Xis) =

(
X,X

)]
evaluated at each realized pair of

(Xit,Xis) =
(
X,X

)
in the data. Then we make use of the first-stage estimation results to

run our adaptive-grid search algorithm in order to find the θ̂ that minimizes sample criterion
function Q̂ (θ) on the corresponding spherical coordinate space. Finally, we translate θ̂ into
β̂ that lies on the unit sphere of R3 to interpret our results.

6.3 Results and Discussion

We report our estimation results for this empirical application in Table 9. The column
corresponding to β̂mean in Table 9 uses the center of the identified set B̂ as the estimated
coefficients for each variable of X.

[
β̂l, β̂u

]
corresponds to the lower and upper bound of the

identified set B̂. Our method estimate the coefficient for Priceijt to be negative in the range
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Table 9: Empirical Application: Estimation Results

β̂mean
[
β̂l, β̂u

]
Priceijt -0.9681 [-0.9687, -0.9677]

Promoijt 0.1988 [ 0.1861, 0.2078]

Priceijt × Promoijt 0.1520 [ 0.1399, 0.1700]

Table 10: Empirical Application: Comparison of Results

β̂mean β̂LS β̂LS−FE β̂mLogit−FE

Priceijt -0.9681 0.0240 −0.3803 −0.8511

Promoijt 0.1988 0.5760 0.5978 0.4589

Priceijt × Promoijt 0.1520 −0.8171 −0.7057 −0.2552

of [-0.9687, -0.9677]. This is in line with the economic theory of a downward sloping demand
curve. The estimated sign for the coefficient of Promoijt is positive with a magnitude between
0.1861 and 0.2078. It gives direct evidence that featuring a product in advertisements or
displaying it in the prominent location of a store will help increase the possibility of sale of
the product.

The most interesting result regards the interaction term Priceijt × Promoijt. Its estimated
coefficient falls in [0.1399, 0.1700]. It suggests that people become less price-sensitive when a
product is promoted. One possible explanation is that by displaying the product in the front
row, it is effectively isolated from its competitors. Therefore, consumers cannot compare
their prices directly and increase the possibility of impulse buying behavior.

To further shed light upon our empirical results, we compare β̂meanwith those from three
different methods that are widely used in this context, i.e. Least Squares, Least Squares with
ij−Fixed Effects and the Multinomial Logit with ij−Fixed Effect. Results are summarized
in the Table 10. The estimated coefficients under different methods are each normalized to
have L2−norm equal to 1. The LS regression result shows that the estimated coefficient for
Priceijt is 0.0240. This is in marked contrast to our estimate of -0.9681, which is consistent
with the economic intuition that higher prices will usually lead to lower utility. The estimated
coefficients for Promoijt are significantly positive using both our method and LS regression.
Regarding Priceijt × Promoijt, our proposed method estimate its coefficient to be 0.1520,
while the LS estimation shows -0.8171. The negative sign for the LS estimate indicates
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that when there is promotion, consumers are more price sensitive even though the promoted
product may be isolated from its competitors. We consider this to be counterintuitive.

The least squares with ij−fixed effect method in the third column of Table 10 performs
slightly better than the LS. It derives a negative coefficient for the Priceijt variable now,
though still at a much smaller scale than our proposed method. Note that we have normalized
all the estimated coefficients to have L2−norm equal to 1, making the comparison of scale
valid. The estimated coefficient for the interaction term is negative, opposite to what the
economic theory would predict to be. Similar results are derived using the multinomial Logit
model with fixed effect, which again is unable to generate a positive coefficient for Priceijt ×
Promoijt. From this comparison, it is clear that our method is able to generate economically
intuitive estimates for all the variables compared with the 3 popular methods we consider
here.

7 Extension and Generalization

7.1 Counterfactual Analysis

So far we have focused on the identification and estimation of the index parameter β0.
While β0 may be the only parameter of interest in many settings, often times we are also
interested in counterfactual parameters defined as some functional of not only β0 but also
other unknown components of the model. In this extension, we discuss how the estimate β̂
of β0, and the computed indexes based on β̂, may be used to estimate more sophisticated
counterfactual parameters.

An important class of counterfactual parameters concerns with the prediction of coun-
terfactual market shares (aggregate choice probability), say, in the form of

µ
(
X
)

:=
∫
E
[
yijt|Xit = Xi,Ai

]
dP (Ai) .

In the context of our empirical illustration with popcorn sales (or more generally, the retailing
industry), a marketing campaign manager might be interested in predicting the effects of
a specific promotion strategy, potentially via a combination of price discounts and in-store
special displays, and thus optimizes over promotion strategies. Moreover, demand elasticities
may be further computed as ∇µ

(
X
)
, which gives the marginal effect of an exogenous change

in certain observable characteristics on consumer choices.
It is important to note that in the expression of µ we use the marginal distribution

P (Ai) rather than the conditional distribution P
(

Ai|Xit = Xi

)
. This separation between

the exogenously imposed counterfactual X and the distribution of the unobserved Ai is key
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to the interpretation of µ
(
X
)
as the direct effect of the exogenous change in observable

characteristics X on choice probabilities, with the unobserved heterogeneity A unaffected
by this exogenous change held fixed.

To achieve this separation, we seek to identify and estimate the integrand
E
[
yijt|Xit = Xi,Ai

]
, which is a function of β0. We first define the scalar index values

δijt := X
′

ijtβ0.

Let δ =
(
δi1t, ..., δiJt

)′
= X

′

iβ0. Conditional on δit = δ and Ai, by our model specification
we have

E
[
yijt| δit = δ,Ai

]
= ψj

(
δ, Ai

)
=: ψij

(
δ
)
.

Here an important observation is that although the individual heterogeneity Ai is not directly
observable, the identity of i is observable. We can hold individual i fixed in the regression to
control for Ai and only use variations in the data across t in a long panel setting to estimate
the conditional choice probability. Specifically, suppose we have long panels, i.e. T → ∞.
We can identify ψij

(
δ
)
by

ψij
(
δ
)

= E
[
yijt| δit = δ, i

]
and estimate it via nonparametric regression of yijt on (δi1t, ..., δiJt) for each fixed i across
t = 1, ..., T . We can use kernel, sieve, local linear regression or neural network techniques to
derive the nonparametric estimator ψ̂ij for ψij.

We are now in the position to evaluate the counterfactual market share of product j at
any counterfactual Xi. We first use the estimated β̂ to compute the counterfactual index δ̂

evaluated at Xi

δ̂
(
Xi

)
=
(
δ̂i1t, ..., δ̂iJt

)′
= Xiβ̂.

Then we obtain ψ̂ij
(
δ̂
)
by plugging δ̂ into the nonparametric estimate ψ̂ij for each fixed i.

Finally, we can obtain an estimate of µ by averaging over individuals in the sample:

µ̂ = 1
N

N∑
i=1

ψ̂ij
(
δ̂i
(
Xi

))
.

Notice that the parametric index structure δ = Xiβ0 provides the key foundation for
counterfactual extrapolation to some Xi that may not lie in the support of the (in-sample)
observed characteristics Xi, provided that that the support of the in-sample indexes Xiβ0 is
large enough.

The validity of such counterfactual analysis relies on the functional form assumption of the
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index structure, which provides the underlying global invariance property for extrapolation.
Yet without any assumption that induces some form of global invariance structures, it is con-
ceptually impossible to make “out-of-support” counterfactual extrapolations. For example,
if our linear index δ = Xiβ0 is replaced by a fully nonparametric function δ = f

(
Xi

)
, then

it is no longer feasible to carry out “out-of-support” counterfactual prediction as described
above, even if we have estimated f well on its on the support of Xi.

Admittedly there are

7.2 Monotone Multi-Index Models

We now present a general framework under which our identification strategy is applicable,
using the notations of Ahn, Ichimura, Powell, and Ruud (2018, AIPR thereafter):

γ (Xi) = φ (Xiβ0) (31)

where:

• (yi,Xi)Ni=1 constitutes a random sample of N observations on a scalar8 random variable
yi and a J ×D random matrix Xi.

• γ
(
X
)

= T
(
Fyi|Xi=X (·)

)
is a real variable defined as a known functional T of the

conditional distribution of yi given Xi = X. A leading example is to set γ (Xi) :=
E [yi|Xi], so that model (31) becomes a conditional moment condition; however, this
is not necessary.

• φ : RJ → R is an unknown real-valued function.

• β0 ∈ RD\ {0} is unknown finite-dimensional parameter.9 Again, we normalize β0, as
β0 ∈ SD−1, as β0 is at best identified up to scale given that φ is an unknown function.

As in Lee (1995), Powell and Ruud (2008) and Ahn, Ichimura, Powell, and Ruud (2018),
model (31) restricts the dependence of γ (Xi) on the matrix Xi to the J linear parametric

8Similar to Ahn, Ichimura, Powell, and Ruud (2018), the dimension of yi is largely irrelevant to the
analysis of model (31): it is the dimension of γ that matters. Nevertheless, for the clarity of presentation,
we take yi to a scalar variable.

9If β0 = 0, then model (31) degenerates to γ (Xi) ≡ φ (0), which is a constant. As γ (Xi) is assumed to be
an identifiable quantity, whether β0 = 0 or not is also identifiable. We focus thereafter on the nondegenerate
case where β0 6= 0.
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indexes Xiβ0 ≡
(
X
′
ijβ0

)J
j=1

.10

A noteworthy difference of model (31) from the setup in AIPR is that we take γ (Xi)
here both to be scalar-valued quantities, while AIPR require their γ (Xi) to have dimension,
namely R, no lower than J . This “order condition” R ≥ J is necessary for their vector-
valued version of function φ to admit a left-inverse φ−1 such that φ−1 (γ (Xi)) = Xiβ0, which
constitutes the foundation for their subsequent analysis. However, we impose no such order
condition for the sake of invertibility, as we will not rely on invertibility at all. Instead, we
adopt a multinomial version of the monotonicity assumption that is familiar in the literature
on monotone single-index models, such as Han (1987), Ahn, Ichimura, and Powell (1996),
Cavanagh and Sherman (1998), and Abrevaya (2000).

Assumption 7 (Weak Monotonicity). φ is nondegenerate and nondecreasing in each of its
J arguments on Supp (Xiβ0) ⊆ RJ .

With no other restrictions besides Assumption 7 on the unknown function φ, model (31)
builds in the fundamental lack of additive separability across the parametric indexes. As
demonstrated later in Section 2, the key idea developed below for the general multi-index
model (31) naturally apply to the analysis of the panel multinomial choice model under
complete lack of additive separability.

However, we now provide a few illustrative examples for model (31) that satisfy Assump-
tion 7 beyond multinomial choice settings.

Example 3 (Sample Selection Model). Consider a sample selection model studied by Heck-
man (1979):

y∗i = W
′

iµ0 + ui

di = 1

{
Z
′

iλ0 + vi ≥ 0
}

yi = y∗i · di
10Note that model (31) is without loss of generality relative to the following seemingly more general

formulation, in which β0 is explicitly allowed to be heterogeneous across the J rows of Xi:

γ (Xi) = φ

((
X

′

ijβ0j

)J

j=1

)
,

where Xij , β0j are both vectors of dimension dxj for each j ∈ {1, ..., J}, making the unknown parameter of

interest β0 :=
(
β

′

01, ..., β
′

0J

)′

a
∑J

j=1 Dj-dimensional vector. This, however, could be readily incorporated in

model (31) by appropriately redefining X̃i so that each X̃ij is a vector of
∑J

j=1 Dj-dimensional vector with
nonzero entries (given by Xij) only at the Dj corresponding positions, giving the representation γ

(
X̃i

)
=

φ
(
X̃iβ0

)
as in model (31).
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where y∗i is the latent variable that is observable only when di = 1. We observe (yi,Wi, Zi)
but not y∗i . Suppose (ui, vi) ⊥ (Xi, Zi) and the joint distribution of (ui, vi) is bivariate normal
with positive correlation. Then we have

E [yi|Wi, di = 1] = X
′

iµ0 + E
[
ui| vi ≥ −Z

′

iλ0
]

: = φ
(
W
′

iµ0, −Z
′

iλ0
)

By taking Xi := (Wi, Zi, di) and β0 := (µ0, λ0), we may easily rewrite the model in the
formulation of model (31) with Assumption 7 satisfied.

Example 4 (Dyadic Network Formation Model under Nontransferable Utilities). Consider
the following simple dyadic network formation model under nontransferable utilities (NTU):

Dij = 1

{
W
′

ijµ0 + Z
′

ijγ0 ≥ εij
}
1

{
W
′

ijµ0 + Z
′

jiγ0 ≥ εji
}
, (32)

where Wij ≡ Wji denotes some symmetric observable characteristics between a pair of indi-
viduals ij, while (Zij, Zji) denote some asymmetric observable characteristics between a pair
of individuals ij, and (εij, εji) denote some potentially asymmetric idiosyncratic shocks to
i’s and j’s utilities from linking with each other. The observed indicator variable Dij ≡ Dji

of an undirected link between ij is determined jointly by two threshold-crossing conditions,
interpreted as the requirement of mutual consent in the establishment of a link between ij.
Clearly, we have

E [Dij|Wij, Zij, Zji] = φ
(
W
′

ijµ0, Z
′

ijγ0, Z
′

jiγ0
)
,

which falls under model (31) with Assumption 7 satisfied. It is worth noting that the NTU
setting, which is a highly plausible feature in the formation of social networks, naturally
induces lack of additive separability via the multiplication of two threshold-crossing condi-
tions, even if we have a fully additive specification inside each threshold-crossing condition
as in (32). Hence, the NTU setting provides a micro-founded motivation for confronting
nonseparability, which our key method is well suited to deal with.

In a companion paper (Gao, Li, and Xu, 2018), we study a related but more complicated
model of dyadic link formation with unobserved degree heterogeneity:

Dij = 1

{
u
(
W
′

ijβ0, Ai, Aj
)
≥ εij

}
1

{
u
(
W
′

ijβ0, Aj, Ai
)
≥ εji

}
,

where Ai and Aj are scalar-valued individual “fixed effects” that represent each individual’s
unobserved heterogeneity in sociability. The involvement of the two-way fixed effects in this

58



network formation setting adds further complications relative to the panel multinomial choice
model considered in this paper, and we propose a new method, called logical differencing,
to cancel out the two-way fixed effects, by constructing an observable event that contains
the intersection of two mutually exclusive restrictions on the fixed effects. Nevertheless,
the logical contraposition of multivariate monotonicity remains a convenient device for our
identification arguments.

The next proposition generalizes our key identification result (Theorem 1) to the setting
of monotone multi-index models:

Proposition 3 (General Identifying Restriction). Under model (31) with Assumption 7, for
any X,X ∈ Supp (Xi),

γ
(
X
)
> γ (X) ⇒ NOT

((
Xj −Xj

)
β0 ≤ 0, ∀j = 1, ..., J

)
. (33)

Notice that Proposition 3 applies to all functionals γ on the conditional distribution
yi|Xi that satisfy the monotonicity assumption. Besides conditional expectations, there
are many models where conditional quantiles or higher-order conditional moments are more
natural choices of γ. In some cases where the whole conditional distribution yi|Xi can be
ranked by first-order or second-order stochastic dominance, we may aggregate the identifying
information from many choices of γ into a joint restriction on β0. We leave a further analysis
of this topic to future research.

8 Conclusion

This paper proposes a simple and robust method for semiparametric identification and esti-
mation in a panel multinomial choice model, exploiting the standard notion of multivariate
monotonicity in an index vector of observable characteristics.

Our key identification strategy using logical contraposition of multivariate monotonicity
is very simple, but it is exactly this conceptual simplicity that lends us the ability to accom-
modate infinite dimensionality of unobserved heterogeneity and lack of additive separability
in consumer preferences. As the validity of this methodology essentially relies on nothing but
monotonicity in a parametric index structure, it should be more widely applicable beyond
the multinomial choice settings we consider. Section 7.2 provides a discussion about mono-
tone multi-index models, and Gao, Li, and Xu (2018) considers a dyadic network formation
model under nontransferable utilities, where the key method proposed in this paper can be
applied.
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However, a more comprehensive or in-depth investigation of whether and how this strat-
egy can be adapted to the peculiarities of specific economic problems still requires a sub-
stantial amount of future work to be done. For applications in industrial organization, it
might be worthwhile to inspect whether certain form of monotonicity can be preserved, at
least approximately, in the presence of additional features, such as random coefficients and
time-varying endogeneity, under certain conditions. In connection to microeconomic theory,
it might also be interesting to investigate whether theoretical results on monotone compar-
ative statics can be combined with our monotonicity-based method to provide a venue of
identification and estimation in endogenous economic systems.

Finally, on the technical side, the spherical-coordinate reparameterization adopted in this
paper is shown to enjoy several theoretical and practical niceties in estimation and compu-
tation, which may also be useful in a larger class of semiparametric discrete-response models
without scale identification. Meanwhile, asymptotic distributions and inferential procedures
for our estimators, developed with the nonstandard formulation of moment conditions, the
spherical geometry induced by the lack of scale identification, and the built-in discreteness
of the Boolean algebra in mind, are also conceptually important, technically interesting and
practically relevant research questions beyond the scope of the panel multinomial choice set-
ting considered in this paper. Some of these questions are currently under investigation by
the authors. while a broader range of aspects are left for future research.
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Appendix

A Proof of Theorem 2

Lemma 3. The reparameterized population criterion function Q : Θ → R+ is continuous
and

sup
θ∈Θ

∣∣∣∣∣∣ 1n
∑
i=1

∑
j

∑
t6=s

G (γj,t,s (Xit,Xis))λj (Xit,Xis; θ)−Q (θ)

∣∣∣∣∣∣ p−→ 0. (34)

Proof. Recall that

Qj,t,s (θ) = E [G (γj,t,s (Xit,Xis))λj (Xit,Xis; θ)]

=
∫
G (γj,t,s (Xit,Xis))λj (Xit,Xis; θ) dP (Xit,Xis) ,

and thus
∣∣∣Qj,t,s

(
θ
)
−Qj,t,s (θ)

∣∣∣
≤
∫
G (γj,t,s (Xit,Xis))

∣∣∣λj (Xit,Xis; θ
)
− λj (Xit,Xis; θ)

∣∣∣ dP (Xit,Xis)

=
∫
G (γj,t,s (Xit,Xis))1

{
λj
(
Xit,Xis; θ

)
6= λj (Xit,Xis; θ)

}
dP (Xit,Xis)

=E
[
G (γj,t,s (Xit,Xis))1

{
λj
(
Xit,Xis; θ

)
6= λj (Xit,Xis; θ)

}]
. (35)

Notice that

G (γj,t,s (Xit,Xis))1
{
λj
(
Xit,Xis; θ

)
6= λj (Xit,Xis; θ)

}
=G (γj,t,s (Xit,Xis))1


∏J
k=1 1

{
(−1)1{k=j} (Xikt −Xiks)

′
ω
(
θ
)
≥ 0

}
6= ∏J

k=1 1
{

(−1)1{k=j} (Xikt −Xiks)
′
ω (θ) ≥ 0

}


=G (γj,t,s (Xit,Xis))1


∏J
k=1 1

{
(−1)1{k=j} vk (Xit −Xis)

′
ω
(
θ
)
≥ 0

}
6= ∏J

k=1 1
{

(−1)1{k=j} vk (Xit −Xis)
′
ω (θ) ≥ 0

}
 ,

which is continuous in each θ ∈ Θ and θ ∈ Θ with probability one, since vk (Xit −Xis) has
no mass point for each (k, t, s).

Then, as also (Xit,Xis) is i.i.d. across i, Θ is compact, and the indicator function is
bounded, all conditions for Lemma 2.4 in Newey and McFadden (1994) are satisfied, by
which we deduce that the expectation term in (35) is continuous in θ and θ. Consequently,
we have

∣∣∣Qj,t,s

(
θ
)
−Qj,t,s (θ)

∣∣∣ ≤ E
[
1

{
λj
(
Xit,Xis; θ

)
6= λj (Xit,Xis; θ)

}]
→ 0,
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as ρΘ
(
θ, θ

)
→ 0, giving the continuity of Q = ∑

j

∑
t6=sQj,t,s on Θ.

Moreover, by Newey and McFadden (1994, Lemma 2.4) we also have

sup
θ∈Θ

∣∣∣∣∣ 1n∑i=1
G (γj,t,s (Xit,Xis))λj (Xit,Xis; θ)−Qj,t,s (θ)

∣∣∣∣∣ p−→ 0,

which implies (34) after summation over (j, t, s).

Lemma 4. Under Assumptions 2, 5 and 6, we have

sup
θ∈Θ

∣∣∣Q̂ (θ)−Q (θ)
∣∣∣ = Op (cN) .

Proof. By the Lipschitz continuity of G in Assumption 5, we have
∣∣∣Q̂j,t,s (θ)−Qj,t,s (θ)

∣∣∣
≤ 1
N

∑
i

|G (γ̂j,t,s (Xit,Xis))−G (γj,t,s (Xit,Xis))|λj (Xit,Xis; θ)

+
∣∣∣∣∣ 1
N

∑
i

(G (γj,t,s (Xit,Xis))λj (Xit,Xis; θ)− E [G (γj,t,s (Xit,Xis))λj (Xit,Xis; θ)])
∣∣∣∣∣

≤ 1
N

∑
i

c |γ̂j,t,s (Xit,Xis)− γj,t,s (Xit,Xis)|+Op

(
N−

1
2
)

=c
∫
|γ̂j,t,s (Xit,Xis)− γj,t,s (Xit,Xis)| dP (Xit,Xis) +Op

(
N−

1
2
)

+ c
1
N

∑
i

|γ̂j,t,s (Xit,Xis)− γj,t,s (Xit,Xis)| − c
∫
|γ̂j,t,s (Xit,Xis)− γj,t,s (Xit,Xis)| dP (Xit,Xis)

=c
∫
|γ̂j,t,s (Xit,Xis)− γj,t,s (Xit,Xis)| dP (Xit,Xis) +Op

(
N−

1
2
)

+Op

(
N−

1
2
)

≤c
√∫
|γ̂j,t,s (Xit,Xis)− γj,t,s (Xit,Xis)|2 dP (Xit,Xis) +Op

(
N−

1
2
)

=Op (cN) +Op

(
N−

1
2
)

=Op (cN)

and hence we have
sup
θ∈Θ

∣∣∣Q̂ (θ)−Q (θ)
∣∣∣ = Op (cN) .

Main Proof of Theorem 2

Proof. We verify Condition C.1 in Chernozhukov, Hong, and Tamer (2007) so as apply
their Theorem 3.1. Condition C.1(a) on the nonemptiness and compactness of parameter
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space is satisfied given Theorem 1. Condition C.1(b) on the continuity of the population
criterion function is satisfied by Lemma 3. Condition C.1(c) on measurability of the sample
criterion function is satisfied by its construction. Condition C.1(d)(e) regarding the uniform
convergence of Qn are satisfied by Lemma 4. Then, Theorem 3.1.(1) in Chernozhukov, Hong,
and Tamer (2007) implies the consistency of θ̂.

B Pairwise Time Homogeneity of Errors

As mentioned in Section 2.2, Assumption 3 is stronger than necessary, and our identification
strategy (and Proposition 1) carries over under the weaker Assumption 3’, which requires
that

εit| (Xit,Xis,Ai) ∼ εis| (Xit,Xis,Ai)

To see why Proposition 1 continue to hold, notice that

γj,t,s
(
X,X

)
= E

[
E
[
yijt − yijs|Xit = X,Xis = X,Ai

]∣∣∣Xit = X,Xis = X
]

= E
[
E
[
yijt|Xit = X,Ai

]
− E [yijs|Xis = X,Ai]

∣∣∣Xit = X,Xis = X
]

= E
[
E
[
yijt − yijs|Xit = X,Xis = X,Ai

]∣∣∣Xit = X,Xis = X
]

with

E
[
yijt − yijs|Xit = X,Xis = X,Ai

]
=
∫
1

{
u (δijt, Aij, εijt) ≥ max

k 6=j
u (δikt, Aik, εikt)

}
dP

(
εit|Xit = X,Xis = X,Ai

)
−
∫
1

{
u (δijs, Aij, εijs) ≥ max

k 6=j
u (δiks, Aik, εiks)

}
dP

(
εis|Xit = X,Xis = X,Ai

)
=
∫
1

{
u (δijt, Aij, ε̃ij) ≥ max

k 6=j
u (δikt, Aik, ε̃ik)

}
dP

(
ε̃i|Xit = X,Xis = X,Ai

)
−
∫
1

{
u (δijs, Aij, ε̃ij) ≥ max

k 6=j
u (δiks, Aik, ε̃ik)

}
dP

(
ε̃i|Xit = X,Xis = X,Ai

)
=
∫  1 {u (δijt, Aij, ε̃ij) ≥ maxk 6=j u (δikt, Aik, ε̃ik)}
−
∫
1 {u (δijs, Aij, ε̃ij) ≥ maxk 6=j u (δiks, Aik, ε̃ik)}

 dP ( ε̃i|Xit = X,Xis = X,Ai

)

where ε̃i denotes generic realizations of εit and εis conditional on Xit,Xis and Ai:

ε̃i ∼ εit ∼ εis|
(
Xit = X,Xis = X,Ai

)
.
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Writing δ = Xβ0 and δ = Xβ0. If

δj ≤ δj and δk ≥ δk for all k 6= j,

we have

1 {u (δijt, Aij, ε̃ij) ≥ maxk 6=j u (δikt, Aik, ε̃ik)} ≤
∫
1 {u (δijs, Aij, ε̃ij) ≥ maxk 6=j u (δiks, Aik, ε̃ik)}

for all realizations of Ai and ε̃i, so that

E
[
yijt − yijs|Xit = X,Xis = X,Ai

]
≤ 0

for all realizations of Ai, which further implies that

γj,t,s
(
X,X

)
≤ 0.

Taking the logical contraposition again gives Proposition 1.

C Consistency under Point Identification

In this section, we prove consistency results under sufficient conditions for the point identi-
fication of β0. For simplicity of notation, we fix T = 2 and denote ∆Xij = Xij1−Xij2 for all
individual i and product j. We use the indicator function in this section for G (·). First we
list two additional assumptions on the support of ∆Xi, either of which by itself is sufficient
for the point identification of β0.

Assumption 8 (Continuous Support of ∆Xi). There exists some ε > 0 such that Bε(0) ⊆
Supp (∆Xij|∆Xil, l 6= j) for all j ∈ {1, ..., J}.

Assumption 9 (Discrete Support of ∆Xi). For some k ∈ {1, ..., dx} that satisfies βk0 6= 0.
Supp

(
∆Xk

ij

∣∣∣∆Xil, l 6= j
)

= R for all j ∈ {1, ..., J}, and furthermore, for all j ∈ {1, ..., J},
Supp (∆Xij|∆Xil, l 6= j) is not contained in a proper linear subspace of Rdx.

Assumption 8 is satisfied when (Xij) is continuous random vector. On the other hand,
Assumption 9 can accommodate discrete regressors generally, but requires one continuous
covariate with large support. Assumption 8 or 9 on Supp (∆Xij) ensures that following

67



inequalities hold simultaneously with strictly positive probability
∆X ′ijβ0 > 0

∆X ′ikβ0 < 0 ∀k 6= j.

Given the above assumptions, we may without loss of generality normalize

‖β0‖ = 1

and consider in the parameter space

B :=
{
β ∈ Rdx : ‖β‖ = 1

}
.

Next, we define

Q+
j (β) = E

[
τ+
j (Xi)λ+

j (Xi; β)
]

τ+
j

(
X
)

= 1

{
E
[
∆yij|Xi = X

]
> 0

}
λ+
j

(
X; β

)
= 1

{(
∆X

′

jβ ≤ 0
)}
·
∏
k 6=j

1

{
∆X

′

kβ ≥ 0
}

and similarly for Q−j (β), τ−j (Xi) and λ−j (Xi; β). Construct the population criterion function
Q as

Q (β) = E

∑
j

(
τ+
j (Xi)λ+

j (Xi; β) + τ−j (Xi)λ−j (Xi; β)
)

=
∑
j

E
[
τ+
j (Xi)λ+

j (Xi; β)
]

+
∑
j

E
[
τ−j (Xi)λ−j (Xi; β)

]
=
∑
j

Q+
j (β) +

∑
j

Q−j (β)

and let Q̂n (β) be the sample analogue of Q (β). Define β̂ to be the minimizer of Q̂n (β) over
B. Next theorem states the consistency result for β̂ under sufficient conditions for the point
identification of β0.

Theorem 3 (PMC Point Consistency). Under Assumption 1, 2, 3, and either 8 or 9, we
have for any ε > 0 and any j ∈ {0, 1, ..., J}, there exist δ > 0 such that

inf
β∈B\Bε(β0)

Q (β) ≥ Q (β0) + δ
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Furthermore, if we also have Assumption 4,

β̂
p−→ β0 as n→∞.

Proof. To begin with, we prove the first part of Theorem 3, the point identification of β0. We
show the identification result using Q+

j (β) and break the argument into 5 steps. Then the
point identification result follows immediately by the symmetry between Q+

j (β) and Q−j (β)
and a triangular inequality argument.

We first show that β0 is a minimizer of Q+
j (β) for any fixed j = j0.

From equation 6 we know for all Xi ∈ Supp(Xi), τ+
j (Xi) = 1 implies λ+

j (Xi; β0) = 0,
which means the integrand in Q+

j (β) achieves its minimum 0 at β0. Therefore, β0 is a
minimizer of Q+

j (β).
Second, we show P

{
τ+
j (Xi) = 1

}
> 0.

Recall that ∆Xij := Xij1 −Xij2. Note by definition

{
τ+
j (Xi) = 1

}
⇔
{
φ
(
X
′

ij1β0,
(
−X ′ik1β0

)
k 6=j

)
> φ

(
X
′

ij2β0,
(
−X ′ik2β0

)
k 6=j

)}
,

we have

P
{
τ+
j (Xi) = 1

}
=P

{
φ
(
X
′

ij1β0,
(
−X ′ik1β0

)
k 6=j

)
> φ

(
X
′

ij2β0,
(
−X ′ik2β0

)
k 6=j

)}
≥P

{(
∆X ′ijβ0 > 0

)
∧
(
∆X ′ikβ0 < 0, ∀k 6= j

)}
>0

where the last inequality by Assumption 8 or 9 and the first inequality by

{(
∆X ′ijβ0 > 0

)
∧
(
∆X ′ikβ0 < 0, ∀k 6= j

)}
⇒
{
φ
(
X
′

ij1β0,
(
−X ′ik1β0

)
k 6=j

)
> φ

(
X
′

ij2β0,
(
−X ′ik2β0

)
k 6=j

)}

due to Assumption 1.
Third, we show for ∀β ∈ B, β 6= β0

P
{(

∆X ′ijβ ≤ 0
)
∧
(
∆X ′ikβ ≥ 0, ∀k 6= j

)∣∣∣ (∆X ′ijβ0 > 0
)
∧
(
∆X ′ikβ0 < 0, ∀k 6= j

)}
> 0.
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Fix an arbitrary β 6= β0. Denote the spatial angle between β and β0 to be θ > 0. Define

Hj := {V ∈ supp (∆Xi) : 〈Vj, β〉 ≤ 0 < 〈Vj, β0〉 , 〈Vk, β0〉 < 0 ≤ 〈Vk, β〉 , ∀k 6= j}

By continuity of inner product operator and Assumption 8 or 9, we know Hj has strict
positive probability measure implied by θ > 0. Therefore, by definition of conditional prob-
ability we have

P
{(

∆X ′ijβ ≤ 0
)
∧
(
∆X ′ikβ ≥ 0, ∀k 6= j

)∣∣∣ (∆X ′ijβ0 > 0
)
∧
(
∆X ′ikβ0 < 0, ∀k 6= j

)}
= P {∆Xi ∈ Hj}
P
{(

∆X ′ijβ0 > 0
)
∧
(
∆X ′ikβ0 < 0, ∀k 6= j

)}
>0

Fourth, we show the point-wise result that β0 uniquely minimizes Q+
j (β). Note that

Q+
j (β) =E

[
τ+
j (Xi)λ+

j (Xi; β)
]

=E
[
λ+
j (Xi; β)

∣∣∣ τ+
j (Xi) = 1

]
· P
{
τ+
j (Xi) = 1

}
=E

1{(∆X ′ijβ ≤ 0
)}
·
∏
k 6=j

1

{(
∆X ′ikβ ≥ 0

)}∣∣∣∣∣∣ τ+
j (Xi) = 1

 · P {τ+
j (Xi) = 1

}
=P

{(
∆X ′ijβ ≤ 0

)
∧
(
∆X ′ikβ ≥ 0, ∀k 6= j

)∣∣∣ τ+
j (Xi) = 1

}
· P
{
τ+
j (Xi) = 1

}
Because

{(
∆X ′ijβ0 > 0

)
∧
(
∆X ′ikβ0 < 0, ∀k 6= j

)}
is a sufficient condition for

{
τ+
j (Xi) = 1

}
and both events have strictly positive probability measure, we have for any β 6= β0

P
{(

∆X ′ijβ ≤ 0
)
∧
(
∆X ′ikβ ≥ 0, ∀k 6= j

)∣∣∣ τ+
j (Xi) = 1

}
> 0

from the result in step 3.
By Proposition 1 we have

P
{(

∆X ′ijβ0 ≤ 0
)
∧
(
∆X ′ikβ0 ≥ 0, ∀k 6= j

)∣∣∣ τ+
j (Xi) = 1

}
= 0

Combining above two equations we derive for any β 6= β0

Q+
j (β) =P

{(
∆X ′ijβ ≤ 0

)
∧
(
∆X ′ikβ ≥ 0, ∀k 6= j

)∣∣∣ τ+
j (Xi) = 1

}
· P
{
τ+
j (Xi) = 1

}
>0× P

{
τ+
j (Xi) = 1

}
=P

{(
∆X ′ijβ0 ≤ 0

)
∧
(
∆X ′ikβ0 ≥ 0, ∀k 6= j

)∣∣∣ τ+
j (Xi) = 1

}
· P
{
τ+
j (Xi) = 1

}
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=Q+
j (β0)

So far, we have obtained the point-wise result that β0 uniquely minimizes Q+
j (β) on B.

To obtain the point identification result, we need to show it uniformly minimizes Q+
j (β) on

B. Here we follow Newey and McFadden (1994) and show

(i) Q+
j (β) is continuous on B, and

(ii) B is compact.

Note (ii) is automatically satisfied by construction of B. For (i), we follow Lemma 2.4 of
Newey and McFadden (1994) and show

(i.1) g(Xi; β) := τ+
j (Xi)λ+

j (Xi; β) is continuous at each β ∈ B with probability one, and
(i.2) E supβ∈B |g (Xi; β)| <∞.

Here (i.1) is satisfied by continuity of inner product and Assumption 8 or 9. (i.2) is
satisfied by the fact that |g(Xi; β)| ≤ 1 by construction.

We have proved that for any ε > 0 and any j ∈ {0, 1, ..., J}, there exist δ > 0 such that

inf
β∈B\Bε(β0)

Q+
j (β) ≥ Q+

j (β0) + δ.

The point identification result in the first part of Theorem 3 follows immediately from
the symmetry between Q+

j (β) and Q−j (β) and a triangular inequality argument.

Next, we prove the latter part of Theorem 3, the consistency result of β̂ for β0, under the
additional Assumption 4.

Following Newey and McFadden (1994) we need show the uniform convergence (UC) of
Q̂n (β) to Q (β),

sup
β∈B

∣∣∣Q (β)− Q̂n (β)
∣∣∣ p−→ 0 as n→∞.

To prove UC, first we construct an infeasible estimator β of β0 assuming we can observe
the true τ+ and τ−

β := arg max
β∈B

Qn (β)
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where

Qn (β) = 1
n

n∑
i=1

∑
j

(
τ+
j (Xi)λ+

j (Xi; β) + τ−j (Xi)λ−j (Xi; β)
)

Then we can see conditions for Lemma 2.4 of Newey and McFadden (1994) are all satisfied,
thus the uniform convergence of Qn (β) to Q (β) is established

sup
β∈B

∣∣∣Q (β)−Qn (β)
∣∣∣ p−→ 0 as n→∞

Second, observe that

sup
β∈B

∣∣∣Q̂n (β)−Qn (β)
∣∣∣

= sup
β∈B

∣∣∣∣∣∣ 1n
n∑
i=1

J∑
j=0

[
λ+
j (Xi; β)

(
τ̂+
j (Xi)− τ+

j (Xi)
)

+ λ−j (Xi; β)
(
τ̂−j (Xi)− τ−j (Xi)

)]∣∣∣∣∣∣
≤ sup

β∈B

1
n

n∑
i=1

J∑
j=0

[∣∣∣λ+
j (Xi, β)

∣∣∣ ∣∣∣(τ̂+
j (Xi)− τ+

j (Xi)
)∣∣∣+ ∣∣∣λ−j (Xi; β)

∣∣∣ ∣∣∣(τ̂−j (Xi)− τ−j (Xi)
)∣∣∣]

≤ 1
n

n∑
i=1

J∑
j=0

[∣∣∣(τ̂+
j (Xi)− τ+

j (Xi)
)∣∣∣+ ∣∣∣(τ̂−j (Xi)− τ−j (Xi)

)∣∣∣]

≤
J∑
j=0

{
sup

i=1,...,n

∣∣∣τ̂+
j (Xi)− τ+

j (Xi)
∣∣∣+ sup

i=1,...,n

∣∣∣τ̂−j (Xi)− τ−j (Xi)
∣∣∣}

p−→ 0 as n→∞

where the first inequality by triangular inequality, the second inequality by both
∣∣∣λ+
j (Xi; β)

∣∣∣
and

∣∣∣λ−j (Xi; β)
∣∣∣ are bounded from above by 1 for all β ∈ B by construction, and the last

convergence result by Assumption 4.
Therefore, we can see the UC condition of Q̂n (β) to Q (β) holds following an triangular

inequality argument

sup
β∈B

∣∣∣Q (β)− Q̂n (β)
∣∣∣ ≤ sup

β∈B

∣∣∣Q (β)−Qn (β)
∣∣∣+ sup

β∈B

∣∣∣Q̂n (β)−Qn (β)
∣∣∣

p−→ 0 as n→∞

Now we are in the position to prove the consistency result. For any ε > 0, there exist
δ > 0 such that

P
{∥∥∥β̂ − β0

∥∥∥ ≥ ε
}

=P
{
β̂ ∈ B\Bε (β0)

}
≤P

{
Q
(
β̂
)
≤ Q (β0)− δ

}
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=P
{
Q
(
β̂
)
− Q̂n

(
β̂
)

+ Q̂n

(
β̂
)
− Q̂n (β0) + Q̂n (β0)−Q (β0) ≤ −δ

}
≤P

{
Q
(
β̂
)
− Q̂n

(
β̂
)

+ Q̂n (β0)−Q (β0) ≤ −δ
}

≤P
{

2 sup
β∈B

∣∣∣Q (β)− Q̂n (β)
∣∣∣ ≥ δ

}
→0 as n→∞

where the first inequality by the identification result in the first part of Theorem 3, the
second inequality by the definition of β̂, and the last convergence result by the UC condition
of Q̂n (β) to Q (β).

D More on Monotone Multi-Index Models

We now provide some further discussion on the monotone multi-index model (31) presented
in Section (7.2), and explain the similarities with and differences from the methods proposed
for monotone single-index models and invertible multi-index models.

In the extreme case with J = 1 (and we write X = X to emphasize this degeneration), our
multi-index setting essentially degenerates to the single-index setting, as studied by Manski
(1987).

γ
(
X
)
> γ (X)⇒ ¬

((
X −X

)
β ≤ 0

)
⇔
(
X −X

)
β > 0 (36)

In this case, the method of maximum score or rank-order estimators pioneered by Manski
(1987) would be applicable, due to a peculiar feature of the single-index setting that is not
generalizable to our multi-index setting:

γ
(
X
)
> γ (X)⇒

(
X −X

)
β > 0⇒γ

(
X
)
≥ γ (X)

γ
(
X
)
< γ (X)⇒

(
X −X

)
β < 0⇒γ

(
X
)
≤ γ (X)

which essentially encodes, and can often be strengthened to, the following equivalence rela-
tionship under suitable conditions:11

γ
(
X
)
> γ (X)⇔

(
X −X

)
β > 0, (37)

potentially with a probabilistic qualifier “almost surely”.12. Consider taking γ
(
X
)

=
E
[
yi|Xi = X

]
where yi is a binary variable as in the discrete choice models studied in

11Or a stronger form: γ
(
X
)
> γ (X)⇔

(
X −X

)
β > 0.

12See, for example, Lemma 1 in Manski (1987), equations (6) and (7) in Abrevaya (2000)
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these papers, the “equivalence-type” relationship (37) allows the formulation of the well-
known maximum score or rank-order estimators based on maximizing the sample analogue
of following population criterion function, a la Manski (1987)13:

S (β) = E [(yi − yj)1 {(Xi −Xj) β > 0}]

= E [E [yi − yj|Xi, Xj]1 {(Xi −Xj) β > 0}]

= E [[γ (Xi)− γ (Xj)]1 {(Xi −Xj) β > 0}] (38)

The proofs of identification (and consistency) based on this formulation, say, in Manski
(1985, 1987), Abrevaya (2000) and Khan, Ouyang, and Tamer (2017), basically rely on the
equivalence relationship (37). In our multi-index setup, however, an equivalence relationship
in the form of (37) no longer holds in general:

γ
(
X
)
> γ (X)⇒ ¬

((
Xj −Xj

)
β0 ≤ 0, ∀j = 1, ..., J

)
;γ

(
X
)
≥ γ (X) ,

γ
(
X
)
< γ (X)⇒ ¬

((
Xj −Xj

)
β0 ≥ 0, ∀j = 1, ..., J

)
;γ

(
X
)
≤ γ (X) ,

so the usual identification and estimation strategy based in single-index settings are no longer
directly applicable due to the multi-index nature of the problem. 14 Our proposed solution
is to instead exploit the much weaker yet more robust implication relationship (33).

Relatedly, in another extreme case where
(
X,X

)
are such that Xj = Xj for all except

one j ∈ {1, ..., J}, say, X1 6= X1, then the identifying restriction (33) reduces to the following
simpler form:

γ
(
X
)
> γ (X)⇒ ¬

((
X1 −X1

)
β ≤ 0

)
⇔
(
X1 −X1

)
β > 0 (39)

The similarity between (36) and (39) is not mere coincidence: by conditioning on the event
that Xj = Xj for all except one j ∈ {1, ..., J}, the multi-index setting is effectively reduced

13There are more general and flexible formulations of “scores” as well as smoothed versions of the sample
criterion function (potentially with another form of scale normalization) as have been studied by, for example,
Manski (1987), Han (1987), Horowitz (1992) and Abrevaya (2000). These various formulations involve subtle
differences across them in terms of the exact sequential placement of conditional expectation operators,
indicator (or sign) function, and minus signs (differencing operations), leading to technical differences in
the proofs of identification and consistency. However, the key methodology underlying them is basically the
same as represented in (38).

14In another logical direction, such “equivalence-type” relationship do not hold either.(
Xj −Xj

)
β0 > 0, ∀j = 1, ..., J ⇒ γ

(
X
)
≥ γ (X);

(
Xj −Xj

)
β0 ≥ 0, ∀j = 1, ..., J,(

Xj −Xj

)
β0 < 0, ∀j = 1, ..., J ⇒ γ

(
X
)
≤ γ (X);

(
Xj −Xj

)
β0 ≤ 0, ∀j = 1, ..., J.
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to a single-index setting. Khan, Ouyang, and Tamer (2017) explicitly focus on exploiting
events of such types where all but one row of the observable characteristics X and X match
exactly (i.e., all but one product’s observable characteristics remain unchanged over time in
their panel multinomial choice setting), and construct a rank-order estimator that exploits
the equivalence relationship in the form of (37)15 Shi, Shum, and Song (2018) partially
exploit the same type of events (in their definition of GI so as to reduce a summation
over all products to a single term) in their identification analysis. However, a theoretical
concern about this approach, which is also empirical to some extent, is that

{
Xj = Xj

}
often

regarded as probability-zero events if Xij is continuously distributed. Hence, it may require
more structures and assumptions (say, linearity, additivity, and continuity) to ensure these
“probability-zero” events have bites. Our key idea in (33), on other hand, is fundamentally
formulated based on inequalities only. The advantage of our approach is to explicitly take
advantage of events defined by inequalities (heuristically “positive-probability events” if the
distribution of, say, Xij is absolutely continuous with respect to the Lebesgue measure),
while automatically incorporating the equality-defined events such as

{
Xj = Xj

}
.

Now we discuss in more detail the differences between our approach and that developed
in Ahn, Ichimura, Powell, and Ruud (2018, AIPR). First, as pointed out earlier, we do not
impose any “order condition” on the dimensionality of γ that is necessary for invertibility,
which we do not rely on. Hence, instead of working with a vector-valued γ function, our
formulation features a scalar-valued function γ, or a real functional, of the conditional distri-
bution of yi given Xi. Interpreted from another perspective, our approach applies separately
to each element of the vector-valued function γ in AIPR, provided that our Assumption 7 is
imposed. Second, as a consequence of the first to some extent, a more salient difference of
our monotonicity-based approach to the invertibility approach adopted in in AIPR is that
we are able to utilize all inequality relationships among scalar-valued γ, while AIPR relies
on equality relationships among whole vectors of γ. As pointed out by the comment of
Aradillas-Lopez (2018) on AIPR, invertibility, or the ability to “asymptotically match” pairs
of observations with equal γ (Xi) = γ (Xj) as in equations (15) and (16) of AIPR, may not
be possible in a variety of microeconometric models. We emphasize that, when confronted
with a vector-valued γ = (γm)Mm=1, our method can be applied to all conditional events of
the form {γm (Xi) > γm (Xh)} separately across m (so the inequalities need not be aligned
across m).

Finally, some may argue that our current approach discards information from potential
equalities of (our scalar-valued) γ, which may also contributes to the identification and

15See the first displayed statement on page 6 in Khan, Ouyang, and Tamer (2017).
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estimation of β0. However, our method can be adapted to also incorporate information from
equality-type events of the form

{
γ
(
X
)

= γ (X)
}
, provided that we strengthen Assumption

7 to a stronger version:

Assumption 10 (Strict Monotonicity). φ is nondegenerate and strictly increasing in each
of its J arguments on Supp (Xiβ0) ⊆ RJ .

Assumption 10 is often imposed in the literature, say, on panel multinomial choice mod-
els, via a more primitive assumption that the distribution of structural errors is absolutely
continuous with respect to the Lebesgue measure.

Whenever Assumption 10 is imposed, we may derive an additional identifying restriction
by exploiting the implication of an observed equality γ

(
X
)

= γ (X):

Proposition 4 (Additional Identifying Restriction). Under model (31) with Assumption 10,
for any X,X ∈ Supp (Xi),

γ
(
X
)

= γ (X)⇒ NOT
 (

Xj −Xj

)
β0 < 0, ∀j s.t. Xj 6= Xj

∨
(
Xj −Xj

)
β0 > 0, ∀j s.t. Xj 6= Xj

 , (40)

Again, compared to AIPR, Proposition 4 allows us to exploit equalities (or “matching”)
between scalars in the form of γ

(
X
)

= γ (X), while AIPR requires matching of whole vectors
of γ.

Under Assumption 10, our method essentially allows us to “exploit all the data”: given a
scalar-valued γ and any two X 6= X, either γ

(
X
)
> γ (X), γ

(
X
)
< γ (X) or γ

(
X
)

= γ (X),
in whichever case we may derive some potentially informative identifying restriction on the
parameter of interest β0. However, for the simplicity and clarity of presentation, we refrain
from explicitly exploiting (40) in our subsequent analysis, with the understanding that (40)
can be easily incorporated by an additional term in our construction of criterion functions.
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