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Abstract

Set-identified models often restrict the number of covariates leading to wide identified sets in prac-

tice. This paper provides estimation and inference methods for set-identified linear models with high-

dimensional covariates where the model selection is based on modern machine learning tools. I charac-

terize the boundary (i.e, support function) of the identified set using a semiparametric moment condition.

Combining Neyman-orthogonality and sample splitting ideas, I construct a root-N consistent, uniformly

asymptotically Gaussian estimator of the support function. I also prove the validity of the Bayesian boot-

strap procedure to conduct inference about the identified set. I provide a general method to construct a

Neyman-orthogonal moment condition for the support function. I apply this result to estimate sharp non-

parametric bounds on the average treatment effect in Lee (2008)’s model of endogenous selection and

substantially tighten the bounds on this parameter in Angrist et al. (2006)’s empirical setting. I also apply

this result to estimate sharp identified sets for two other parameters - a new parameter, called a partially

linear predictor, and the average partial derivative when the outcome variable is interval-censored.
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1 Introduction

Economists are often interested in bounds on parameters when parameters themselves are not point-identified

(e.g., Manski (2010)). In practice, however, bounds are often wide. For example, the upper and lower bounds

on average treatment effect frequently have opposite signs and cannot determine whether the treatment helps

or hurts. As discussed in Lee (2008) and Manski and Pepper (2011), covariates can help tighten the bounds.

However, economists rarely know which covariates have the strongest tightening ability. As a result, the

reported bounds may not be as tight as possible.

The covariate selection problem has gained recent attention in the context of high-dimensional data sets

that contain hundreds of covariates per observation. On the one hand, ex-ante covariate selection delivers

valid inference but leads to wide bounds since important covariates may be dropped in this approach. On

the other hand, ex-post covariate selection is prone to overfitting. To perform data-driven model selection

and obtain valid inference at the same time, economists have used modern machine learning tools to control

for omitted variable bias (Belloni et al. (2016), Chernozhukov et al. (2017a)) and to model treatment effect

heterogeneity (Wager and Athey (2016)) in point-identified settings. However, exploiting the predictive

power of machine learning tools to tighten the bounds is a novel idea.

The main contribution of this paper is to provide estimation and inference methods for identified sets

where the selection among high-dimensional covariates is based on machine learning tools. Using my

methods, economists can conduct inference about sharp (that is, tightest possible) nonparametric bounds on

the average treatment effect (ATE) in the presence of endogenous sample selection. I develop a general set-

identified linear model with high-dimensional covariates that covers a broad variety of set-identified models:

for example, those considered in Beresteanu and Molinari (2008), Bontemps et al. (2012), Chandrasekhar

et al. (2011), and Kaido (2017). I propose a root-N consistent, uniformly asymptotically Gaussian estimator

of the identified set’s boundary (i.e., support function) and conduct uniform inference about the boundary.

This paper focuses on identified sets whose boundaries can be characterized by a semiparametric mo-

ment equation. In this equation, the parametric component gives the description of the boundary (i.e.,

support function) and the nonparametric component is a nuisance parameter, for example, a conditional

mean function. A natural approach would be to plug-in a machine learning estimate of the nuisance pa-

rameter into the moment equation and solve the moment equation for the boundary. However, to achieve

consistency in a high-dimensional setting, I must employ modern regularized methods whose bias converges

slower than the parametric rate. As a result, plugging such estimates into the moment equation produces a

biased, low-quality estimate of the identified set’s boundary.
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The major challenge of this paper is to overcome the transmission of the biased estimation of the first-

stage nuisance parameter into the second stage. A basic idea, proposed in the point-identified case, is to make

the moment equation insensitive, or, formally, Neyman-orthogonal, to the biased estimation of the first-stage

parameter (Neyman (1959)). Combining Neyman-orthogonality and sample splitting, Chernozhukov et al.

(2017a) derive a root-N consistent and asymptotically normal estimator of the low-dimensional parameter

identified by a semiparametric moment equation. However, extending this idea to a set-identified case

presents additional challenges.

The main distinction between the point- and set-identified cases is that the target parameter is no longer a

finite-dimensional vector, but a boundary that consists of continuum points. Therefore, in addition to point-

wise inference, economists are interested in uniform statistical properties over the identified set’s boundary.

Second, because the moment condition for the boundary depends on the nuisance parameter in a non-smooth

way, establishing Neyman-orthogonality is a non-trivial exercise. I develop high-level sufficient conditions

for Neyman-orthogonality and derive a uniformly root-N consistent, uniformly asymptotically Gaussian

estimator of the identified set’s boundary.

To make the orthogonal approach useful, I provide a general recipe to construct a Neyman-orthogonal

moment equation starting from a non-orthogonal one, extending the previous work on orthogonal estimation

(Newey and Stoker (1993), Newey (1994), Ichimura and Newey (2017)) from a point- to a set-identified

case. I also provide a Bayesian bootstrap algorithm to conduct inference about the identified set’s boundary.

The procedure simplifies the Bayesian bootstrap algorithm from Chandrasekhar et al. (2011): instead of

re-estimating the first-stage parameter in each bootstrap repetition, I estimate the first-stage parameter once

on an auxiliary sample. My algorithm is faster to compute because only the second stage is repeated in

the simulation. I show that the simpler Bayesian bootstrap procedure is valid when the moment equation is

Neyman-orthogonal.

I demonstrate my method’s utility with three applications. In the first application, I estimate sharp

bounds on the average treatment effect in the presence of endogenous sample selection and non-compliance.

Reporting nonparametric bounds on the average treatment effect in addition to the point estimates derived

under stronger identification assumptions is a common robustness check in labor and education studies

(Angrist et al. (2006), Lee (2008), Engberg et al. (2014), Huber et al. (2017), Abdulkadiroglu et al. (2018),

Sieg and Wang (2018)). In some cases, such as Engberg et al. (2014), the bounds have opposite signs

and are therefore uninformative.1 To tighten these bounds, Lee (2008) suggests splitting the observations

1For example, Engberg et al. (2014) reports the effect of attending a magnet program on the Mathematics test score lies between
−24.22(148.06) and 87.09(57.62). The results are taken from Table 8 of Engberg et al. (2014), which reports the ATE of attending a
magnet program in a mid-sized urban school district on the high school achievement in Mathematics, as measured by a standardized

3



into several categories, performing the analysis within each category, and then averaging the lower and the

upper bounds across categories. I show how to tighten the bounds even further by conditioning on high-

dimensional covariates.

In the second application, I study the partially linear model from Robinson (1988) in the presence of

high-dimensional covariates when the outcome variable is recorded in intervals. I characterize the identified

set for the causal parameter in this model and provide estimation and inference methods for the identified

set’s boundary. I provide primitive conditions on the problem design that allow to incorporate machine

learning tools to conduct uniform inference about the boundary. Because Robinson (1988)’s model may

be misspecified in practice, I introduce a new parameter, called a partially linear predictor, to measure the

predictive effect of an endogenous variable on an outcome variable in the presence of high-dimensional

controls. I show that the identified set for the causal parameter in Robinson (1988) is the sharp identified set

for the partially linear predictor.

In the third application, I study the average partial derivative (Newey and Stoker (1993)) in the presence

of high-dimensional controls when the outcome variable is recorded in intervals. Kaido (2017) characterized

the identified set’s boundary. He also derived an orthogonal moment equation for the boundary and proposed

the estimator for the boundary when the number of control variables is small. I extend his result, allowing

the number of covariates to exceed the sample size. I also provide primitive sufficient conditions on the

problem design that allow to incorporate machine learning tools to conduct uniform inference about the

boundary.

As an empirical application, I revisit the bounds analysis of Lee (2008) using the data in Angrist et al.

(2006) and substantially tighten the bounds suggested by Lee (2008)’s method. In the original study, Angrist

et al. (2006) examined the effect of a private school-subsidizing voucher on test scores. To derive the bounds,

Angrist et al. (2006) assumed that the voucher can neither deter the test participation nor harm the test score.

Following the approach in Lee (2008), I use only the first assumption and estimate sharp bounds using all

available covariates. For both Mathematics and Language, the estimated bounds are substantially tighter

than the original bounds reported in Angrist et al. (2006) and are both positive. For Language, the estimated

bounds are both positive and significant.

The paper is organized as follows. Section 2 provides motivating examples and constructs an estimator

for the support function in a one-dimensional case of the partially linear predictor. Section 3 introduces a

general set-identified linear model with high-dimensional covariates and establishes theoretical properties

of the support function estimator. Section 4 describes the applications of the proposed framework to bounds

achievement test score. The standard errors are indicated in parentheses.
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analysis and to models where an outcome variable is recorded in intervals. Section 5 revisits the empirical

application in Angrist et al. (2006) and sharpens the bounds on the treatment effect. Section 6 states my

conclusions.

1.1 Literature Review

This paper is related to two lines of research: estimation and inference in set-identified models and Neyman-

orthogonal semiparametric estimation. This paper contributes to the literature by introducing Neyman-

orthogonal semiparametric estimation to the set-identified literature.

Set-identification is a vast area of research (Manski (1989), Manski and Tamer (2002), Beresteanu and

Molinari (2008), Bontemps et al. (2012), Beresteanu et al. (2011), Ciliberto and Tamer (2009), Chen et al.

(2011), Kaido and White (2014), Kaido and Santos (2014), Chandrasekhar et al. (2011), Kaido (2016),

Kaido (2017)), see e.g. Tamer (2010) or Molinari and Molchanov (2018) for a review. There are two

approaches to estimate and conduct inference on identified sets: the moment inequalities approach (Cher-

nozhukov et al. (2007), Kaido and White (2014)) and the support function approach (Beresteanu and Moli-

nari (2008), Bontemps et al. (2012)), which applies only to convex and compact identified sets. A framework

to unify these approaches was proposed by Kaido (2016). In this paper, I extend the support function ap-

proach, allowing the moment equation for the identified set’s boundary to depend on a nuisance parameter

that can be high-dimensional and is estimated by machine learning methods. In Semenova (2018), I intro-

duce the same dependence in moment inequalities.

Within the first line of research, my empirical applications are most connected to work that derives

nonparametric bounds on the average treatment effect in the presence of endogenous sample selection and

non-compliance. This literature (Angrist et al. (2002), Angrist et al. (2006), Engberg et al. (2014), Huber

et al. (2017), Abdulkadiroglu et al. (2018), Sieg and Wang (2018)) derives nonparametric bounds on the

average treatment effect. Specifically, I build on Lee (2008), who derived sharp bounds on the average

treatment effect and highlighted the role of covariates in achieving sharpness. However, Lee (2008)’s esti-

mator only applies to a small number of discrete covariates. In this paper, I permit a large number of both

discrete and continuous covariates and leverage the predictive power of machine learning tools to identify

sharp bounds.

The second line of research obtains a
√

N-consistent and asymptotically normal estimator of a low-

dimensional target parameter θ in the presence of a high-dimensional nuisance parameter η (Neyman

(1959), Neyman (1979), Newey and Stoker (1993), Newey (1994), Robins and Rotnitzky (1995), van der

Vaart (1998), Robinson (1988), Chernozhukov et al. (2017a), Chernozhukov et al. (2017b)). It is common to
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estimate the target parameter in two stages, where a first-stage estimator of the nuisance η̂ is plugged into a

sample analog of a mathematical relation that identifies the target, such as a moment condition, a likelihood

function, etc. A statistical procedure is called Neyman-orthogonal (Neyman (1959), Neyman (1979)) if it

is locally insensitive with respect to the estimation error of the first-stage nuisance parameter. In a point-

identified problem, the orthogonality condition is defined at the true value of the target θ0. Since the notion

of unique true value θ0 no longer exists in a set-identified framework, I extend the orthogonality condition

to hold on a slight expansion of the boundary of the identified set.

2 Setup and Motivation

2.1 General Framework

I focus on identified sets that can be represented as weighted averages of an outcome variable that is known

to lie within an interval. Let Y be an outcome and YL,YU be random variables such that

YL ≤ Y ≤ YU a.s. (2.1)

Consider an identified set of the following form

B= {β = Σ
−1EVY, YL ≤ Y ≤ YU}, (2.2)

where V ∈ Rd is a d-vector of weights and Σ ∈ Rd×d is a full-rank normalizing matrix. Σ can be either

known or unknown, covering a variety of cases. For example, Σ =V = 1 corresponds to the expectation of

an outcome Y . For another example, Σ = (EVV⊤)−1 corresponds to the set-valued best linear predictor of

the outcome Y when V is used as a predictive covariate. I have adopted this structure because it allows me

to cover a wide class of set-identified models that are usually studied separately.

A key innovation of my framework is that the bounds YL,YU and the weighting variable V can depend

on an identified nuisance parameter that I allow to be high-dimensional. To fix ideas, let W be a vector of

observed data and PW denote its distribution. Then, I allow each coordinate of the weighting vector V and

the bounds YL,YU to depend on an identified parameter of the data distribution PW . The examples below

demonstrate the importance of this innovation.
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2.2 Motivating Examples

Example 1. Endogenous Sample Selection. In this example I revisit the model of endogenous sample

selection from Lee (2008). I use the following notation for the potential outcomes. Let D ∈ {1,0} denote an

indicator for whether an unemployed subject has won a lottery to participate in a job training program. Let

S0 = 1 be a dummy for whether the subject would have been employed after losing the lottery, and S1 = 1

be a dummy for whether the subject would have been employed after winning the lottery. Similarly, let

{Yd ,d ∈ {1,0}} represent the potential wages in case of winning and losing the lottery, respectively. The

object of interest is the average effect on wages

β = E[Y1 −Y0|S1 = 1,S0 = 1] (2.3)

for the group of people who would have been employed regardless of lottery’s outcome, or, briefly, the

always-employed.

The data consist of the admission outcome D, the observed employment status

S = DS1 +(1−D)S0, (2.4)

and the baseline covariates X (e.g., age, gender, race). In addition, the data contain wages for employed

subjects

S ·Y = S · (DY1 +(1−D)Y0). (2.5)

Without additional assumptions, the average treatment effect on the always-employed is not point-identified.

Under the Assumptions from Lee (2008), the average wage in case of non-admission, E[Y0|S1 = 1,S0 =

1], is point-identified. In contrast, the average potential wage in case of admission, E[Y1|S1 = 1,S0 = 1], is

not. Then (see Lemma 11 for details), the sharp bounds on E[Y1|S1 = 1,S0 = 1] are given by

[EYL(X),EYU(X)], (2.6)

where the lower bound YL(X) is equal to

YL = YL(X) :=
D ·S ·Y ·1{Y≤y{p0(X),X}} Pr(D = 0|X)

Pr(D = 0,S = 1)Pr(D = 1|X)
(2.7)
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and the upper bound is equal to

YU = YU(X) :=
D ·S ·Y ·1{Y≥y{1−p0(X),X}} Pr(D = 0|X)

Pr(D = 0,S = 1)Pr(D = 1|X)
, (2.8)

where s(D,X), p0(X),y{p0(X),X}, y{1−p0(X),X} are functions of X defined as follows

s(D,X) = E[S = 1|D,X ], (2.9)

p0(X) =
s(0,X)

s(1,X)
,

y{u,X} : Pr(Y ≤ y{u,X}|X ,D = 1,S = 1) = u, u ∈ [0,1].

Specifically, s(D,X) is the probability of employment given X , p0(X) is the ratio of conditional prob-

abilities, and y{u,X} is the quantile function of employed and admitted individuals given X . As a result,

the sharp bounds on the program effect depend on the first-stage parameter η0(X) = {s(0,X),s(1,X),yu,X}.

Therefore, the identified set (2.6) is a special case of model (2.1)-(2.2) with V = Σ = Pr(D = 0,S = 1) and

the first-stage parameter η0(X).

Table 1: Lee (2008)’s bounds on Voucher Effect on Test Scores using the data in Angrist et al. (2006)

Covariates None { Age, gender } My result, all 7 covs
(1) (2) (3)

A. Mathematics
Estimate [-1.304, 2.073] [-1.100, 1.827] [0.160, 0.904]
95% CR (-2.131, 2.886) (-1.875, 2.599) (-0.168, 01.570)

B. Language
Estimate [-1.192, 2.640] [-0.946, 2.341] [0.473, 1.112]
95% CR (-2.086, 3.542) (-1.8007, 3.211) (0.144, 1.847)

Table 2 reports estimated bounds for the voucher effect (Estimates) and a 95% confidence region (95% CR) for the
identified set for the voucher effect for test scores in Mathematics (Panel A) and Language (Panel B). I report the
results for 3 specifications: without covariates (Column 1), with age and gender covariates (Column 2), and my result
based on all 7 covariates (Column 3).

Table 1 shows the bounds on the voucher’s effect on the test scores using the data in Angrist et al. (2006).

The empirical details are discussed in Section 5. Without any covariates, Lee (2008)’s bounds have opposite

signs and cannot determine the direction of the effect (Column 1). Including age and gender covariates,

selected by Angrist et al. (2006), does not help determine the direction of the effect (Column 2). However,
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conditioning on all covariates (Column 3) that better predict test participation results in bounds that are both

positive and substantially tighter. The bounds for Language are also significant.

Example 2. Average Partial Derivative. An important parameter in economics is the average partial

derivative. This parameter shows the average effect of a small change in an endogenous variable D on the

outcome Y conditional on the covariates X . To describe this change, define the conditional expectation

function of an outcome Y given the endogenous variable D and exogenous variable X as

µ(D,X) := E[Y |D,X ]

and its partial derivative with respect to D as ∂Dµ(D,X) := ∂d µ(d,X)|d=D. Then, the average partial deriva-

tive is defined as

β = E∂Dµ(D,X). (2.10)

For example, when Y is the logarithm of consumption, D is the logarithm of price, and X is the vector of

other demand attributes, the average partial derivative stands for the average price elasticity.

Assume that the endogenous variable D has bounded support D ⊂ Rd and has positive density on this

support. Newey and Stoker (1993) have shown that the average partial derivative can be represented as

β = EVY,

where

V =−∂D log f (D|X) =−∂D f (D|X)

f (D|X)
(2.11)

is the negative partial derivative of the logarithm of the density f (D|X).

Suppose the outcome Y is interval-censored. As discussed in Kaido (2017), the sharp identified set B

for the average partial derivative can be represented as

B= {EVY, YL ≤ Y ≤ YU}, (2.12)

which is a special case of model (2.1)-(2.2) with Σ = 1, V =− ∂D f (D|X)
f (D|X) , and the nuisance parameter η0(X) =

∂D f (D|X)
f (D|X) . In contrast to Kaido (2017), I allow the vector of covariates X to be high-dimensional.

9



Example 3. Partially Linear Predictor. A widely used approach to measure the causal effect of an

endogenous variable D on an outcome variable Y is to adopt the partially linear model from Robinson

(1988)

Y = Dβ0 + f0(X)+U, E[U |D,X ] = 0, (2.13)

where X is a vector of covariates. However, when the conditional exogeneity restriction (2.13) does not

hold, the parameter β0 has no interpretation. An alternative parameter, which is robust to misspecification of

the partially linear model, is a partially linear predictor. This parameter is defined as the linear component

of the projection of Y on a partially linear combination of the endogenous variable D and the covariates X

β = arg min
b∈Rd , f∈M

E(Y −D⊤b− f (X))2, (2.14)

where M is a set of integrable functions of X . Equivalently, the parameter β can be represented as the best

linear predictor of variable Y in terms of the first-stage residual V (see Lemma 12 for the derivation)

β = arg min
b∈Rd

E(Y −V⊤b)2, (2.15)

where the first-stage residual V is

V := D−E[D|X ]. (2.16)

Suppose the outcome Y is interval-censored. Then, the sharp identified set B for the partially linear

predictor is

B= {(EVV⊤)−1EVY, YL ≤ Y ≤ YU}, (2.17)

which is a special case of model (2.1)-(2.2) with V = D−E[D|X ], Σ = EVV⊤, and the nuisance parameter

η0(X) = E[D|X ]. Moreover, the identified set B is a non-sharp identified set for the causal parameter β0

when the partially linear model is correctly specified (i.e., (2.13) holds).
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2.3 Partially linear predictor, one-dimensional case

Consider the setting from Example 3 when the endogenous variable D is one-dimensional. Then the identi-

fied set B is a closed interval

B= [βL,βU ].

Given an i.i.d sample (Wi)
N
i=1 = (Di,Xi,YL,i,YU,i)

N
i=1, I derive a root-N consistent asymptotically normal

estimator, [β̂L, β̂U ], of the identified set and construct a confidence region for the identified set B.

I characterize the upper bound βU as a solution to a semiparametric moment equation. Inspecting (2.17),

one can see that the identified set (2.17) consists of the ordinary least squares coefficients where the first-

stage residual (D−η0(X)) is the regressor and Y ∈ [YL,YU ] is an outcome. To achieve the upper bound βU ,

or, equivalently, the largest possible least squares coefficient, I construct a random variable Y UBG as

Y UBG(η) =


YL, D−η(X)≤ 0,

YU , D−η(X)> 0.
(2.18)

Intuitively, Y UBG(η), referred to as an upper bound generator, takes the largest possible value YU when D−

η(X) is positive and the smallest possible value YL otherwise2. As a result, the upper bound is characterized

by the semiparametric moment equation

E(Y UBG(η0)− (D−η0(X))βU)(D−η0(X)) = 0 (2.19)

(see, e.g. Beresteanu and Molinari (2008) or Bontemps et al. (2012)). The major difficulty when estimating

βU comes from the nuisance function η0(X) = E[D|X ], which is a function of high-dimensional covariates

vector and must be estimated by regularized machine learning methods in order to achieve consistency.

I describe the naive approach to estimate βU and explain why it does not work. To abstract away from

other estimation issues, I use different samples for the first and second stages. Given the sample (Wi)
N
i=1,

I split it into a main sample J1 and an auxiliary sample J2 of equal size n = [N/2] such that J1 ∪ J2 =

{1,2, . . . ,N}. I use the auxiliary sample J2 to construct an estimator η̂(X). Then, I construct an estimate of

the upper bound generator Ŷ UBG
i and regress it on the estimated first-stage residual Di − η̂(Xi)

β̂
NAIVE
U = (∑

i∈J1

(Di − η̂(Xi))
2)−1

∑
i∈J1

(Di − η̂(Xi))Ŷ UBG
i .

2In what follows, I assume that the residual V has a continuous distribution and is equal to zero with probability zero.
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Unfortunately, the naive estimator converges at a rate slower than
√

N

√
N|β̂ NAIVE

U −βU | → ∞ (2.20)

and cannot be used to conduct inference about βU using standard Gaussian approximation. The behavior of

the naive estimator is shown in Figure 1(a).

Figure 1: Finite-sample distribution of non-orthogonal (naive) and orthogonal estimates of the bounds

Figure 1 shows the finite-sample distribution (blue histogram) of naive (left panel) and orthogonal (right panel)
estimates of the lower (βL) and the upper (βU ) bounds of the identified set. The red curve shows the normal (infeasible)
approximation when the first-stage parameter η0(X) = E[D|X ] is known. The dashed line should the true value of the
bound. In the left panel, the distribution of the naive estimator is centered substantially far from the true value. The
naive estimator is biased because the first-stage bias transmits into the bias of the bounds. In the right panel, the
distributions are close. This estimator is approximately unbiased because the first-stage bias of η̂ does not transmit
into the bias of the bounds. The function E[D|X ] is a linear sparse function of a high-dimensional vector X , so the
gamma-lasso first-stage estimator of E[D|X ] from Taddy (2011) has good prediction properties. I use the cross-fitting
procedure from Definition 2 with the number of folds K = 2.

The slow convergence of the naive estimator β̂ NAIVE
U is due to the slower-than-root-N convergence of

the first-stage estimator of η0(X). In order to estimate η0(X) consistently in a high-dimensional framework,

I must employ modern regularized methods, such as boosting, random forest, and lasso, that rely on regular-

ization constraints to achieve convergence. This regularization creates bias in the first-stage estimates. The

bias converges slower than root-N and carries over into the naive estimator β̂ NAIVE
U .

I show that the major obstacle to optimal convergence and valid inference is the sensitivity of the moment

function (2.19) with respect to the biased estimation of the first stage parameter η0. Assume that I can

somehow generate the true value of the upper bound generator Y0 =Y UBG(η0). Consider a smooth moment

function

m0(W,βU ,η0) = (Y0 − (D−η0(X))βU) · (D−η0(X)) (2.21)

12



Then the difference between the infeasible moment equation m0(W,βU ,η0), based on the true value of the

nuisance parameter η0, and the feasible yet slightly incorrect moment equation m0(W,βU , η̂), based on the

first-stage estimate η̂ is proportional to the expected derivative of (2.21)

E[m0(W,βU , η̂)−m0(W,βU ,η0)]≈ ∂η0E[m0(W,βU ,η0)(η̂(X)−η0(X))].

The derivative of (2.21) is non-zero

∂η0Em0(W,βU ,η0)(η̂ −η0) =−E[Y0(η̂(X)−η0(X))],

which is why the first-stage bias carries over into the second stage.

To overcome the transmission of the bias, I replace the moment equation (2.19) by another moment

equation that is less sensitive to the biased estimation of its first-stage parameters. Using the classic idea

from Frisch-Waugh-Lowell, I replace Y0 by the second-stage residual Y0 −E[Y0|X ]. The derivative of the

new moment equation takes the form

−E[(Y0 −E[Y0|X ])(η̂(X)−η0(X))] = 0.

The new moment equation takes the form

E(Y0 −E[Y0|X ])− (D−η0(X))βU) · (D−η0(X)) = 0

and can be interpreted as the ordinary least squares regression of the second-stage residual Y0 −E[Y0|X ] on

the first-stage residual D−η0(X). This equation is known as a doubly-robust moment equation (Robins and

Rotnitzky (1995), Robins et al. (1994), Chernozhukov et al. (2017a)) from point-identified case, where an

observed outcome Y appeared in place of the constructed (and unobserved) upper bound generator Y0.

I argue that the estimation error of the upper bound generator Y UBG(η0) can be ignored when the

first-stage residual V = D − η0(X) is continuously distributed. Then this estimation error matters (i.e.,

Y UBG(η̂) ̸= Y UBG(η0)) only if the first-stage residual is small enough

|Y UBG(η̂)−Y UBG(η0)| ≤


YU −YL, 0 < |D−η0(X)|< |η̂(X)−η0(X)|

0, otherwise
.

When the residual D−η0(X) is sufficiently continuous, the probability of the event Y UBG(η̂) ̸=Y UBG(η0) is
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smaller than the estimation error |η̂(X)−η0(X)|. Assuming that the estimation error |η̂(X)−η0(X)| itself

converges at o(N−1/4) rate, I show that this error can be ignored since its contribution to bias is second-order.

The proposed estimator has two stages. In the first-stage, I estimate the conditional expectations

{η0(X),E[Y0|X ]}

of the endogenous variable D and of the upper bound generator Y UBG, respectively, using machine learning

tools. In the second stage, I regress the estimated second-stage residual on the estimated first-stage residual.

I use different samples in the first and the second stages (a more sophisticated form of sample splitting,

called cross-fitting, is defined in Section 3). The behavior of the proposed estimator is shown in Figure 1(b).

Algorithm 1 Upper Bound on the Partially Linear Predictor
Let γU,0(X) := E[Y0|X ].
Input: an i.i.d sample (Wi)

N
i=1 = (Di,Xi,YL,i,YU,i)

N
i=1, estimated values (η̂(Xi), γ̂U(Xi))i∈J2 ,

where γ̂U(·) is estimated using the auxiliary sample J2.
1: Estimate the upper bound generator for every i ∈ J1

Ŷ UBG
i :=

{
YL,i, Di − η̂(Xi)≤ 0,
YU,i, Di − η̂(Xi)> 0.

2: Estimate β̂U by Ordinary Least Squares using the second-stage residual of the upper bound generator as
the dependent variable and the first-stage residual V as the regressor

β̂U = (∑
i∈J1

(Di − η̂(Xi))
2)−1

∑
i∈J1

(Di − η̂(Xi))[Ŷ UBG
i − γ̂U(Xi)]. (2.22)

Return: β̂U .

Sample Splitting. I can use machine learning methods in the first stage because of sample splitting. In

the absence of sample splitting, the estimation error of the first-stage machine learning estimator may be

correlated with the true values of the first and second-stage residuals. This correlation leads to bias, referred

to as overfitting bias. The behavior of the overfit estimator is shown in Figure 2 (a).

While sample splitting helps overcome overfitting bias, it cuts the sample used for the estimation in

half. This problem can lead to the loss of efficiency in small samples. To overcome this problem, I use the

cross-fitting technique from Chernozhukov et al. (2017a) defined in Section 3. Specifically, I partition the

sample into two halves. To estimate the residuals for each half, I use the other half to estimate the first-

stage nuisance parameter. Then, the upper bound is estimated using the whole sample. As a result, each

observation is used both in the first and second stages, improving efficiency in small samples.
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Figure 2: Finite-sample distribution of the orthogonal estimator without and with sample splitting

Figure 2 shows the finite-sample distribution (blue histogram) of the orthogonal estimator without (left panel) and
with (right panel) sample splitting. The red curve shows the normal (infeasible) approximation when the first-stage
parameter η0(X) = E[D|X ] is known. The dashed line should the true value of the bound. In the left panel, the
distribution of the naive estimator is centered substantially far from the true value. The naive estimator is biased
because of overfitting. In the right panel, the distributions are close. This estimator is approximately unbiased because
different samples are used in the first and the second stages. The function E[D|X ] is a linear sparse function of a high-
dimensional vector X , so the gamma-lasso first-stage estimator of E[D|X ] from Taddy (2011) has good prediction
properties. I use the cross-fitting procedure from Definition 2 with the number of folds K = 2.

Sketch of the pointwise result. I end this section with a sketch of my pointwise result. Let [β̂L, β̂U ]
⊤ be

a vector of the estimators of the lower and upper bounds defined in Algorithm 1. My estimator is root-N

consistent and asymptotically Gaussian

√
N

 β̂L −βL

β̂U −βU

⇒ N(0,Ω), (2.23)

where the sample size N converges to infinity, ⇒ denotes convergence in distribution, and Ω is a covariance

matrix. The confidence region of level α ∈ (0,1) for the identified set [βL,βU ] takes the form

[β̂L −N−1/2Ĉα/2, β̂U +N−1/2Ĉ1−α/2],

where the critical values Ĉα/2,Ĉ1−α/2 are

 Ĉα/2

Ĉ1−α/2

= Ω̂
1/2

Φ−1(
√

1−α)

Φ−1(
√

1−α)


and Φ−1(t) is the inverse of the standard normal distribution. I estimate the covariance matrix Ω using a

version of Bayesian bootstrap given in Definition 7.
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3 Main Results

In this section, I introduce a general set-identified linear model with a high-dimensional nuisance parameter.

I describe the boundary of the identified set (support function) by a semiparametric moment equation. I

introduce a new sufficient condition for a moment equation - uniform near-orthogonality - and establish

uniform asymptotic theory for the support function estimator and bootstrap support function process under

that condition. Finally, I provide a general recipe to construct a uniformly near-orthogonal moment equation

starting from a non-orthogonal one.

Notation. I use the following standard notation. Let Sd−1 = {q ∈ Rd ,‖q‖= 1} be the d-dimensional unit

sphere and q ∈ Sd−1 be a generic vector on the unit sphere. I use the following notation

Γ(t1, t2 − t1, t3) := t1 +(t2 − t1)1{t3≥0}, (3.1)

where 1{t3≥0} = 1 if t3 is non-negative and 1{t3≥0} = 0 otherwise. I use standard notation for numeric

and stochastic dominance. For two numeric sequences {an,n ≥ 1} and {bn,n ≥ 1}, let an . bn stand for

an = O(bn). For two sequences of random variables {an,n ≥ 1} and {bn,n ≥ 1}, let an .P bn stand for

an = OP(bn). For a random variable ξ , (ξ )0 := ξ −E[ξ ]. Let L∞(Sd−1) be the space of absolutely surely

bounded functions defined on the unit sphere Sd−1. Define an LP,c norm of a vector-valued random variable

W as: ‖W‖LP,c :=
(∫

w∈W ‖W‖c
)1/c. Let W be the support of the data vector W of the distribution PW . Let

(Wi)
N
i=1 be an i.i.d sample from the distribution PW . Denote the sample average of a function f (·) as

EN [ f (Wi)] :=
1
N

N

∑
i=1

f (Wi)

and the centered, root-N scaled sample average as

GN [ f (Wi)] :=
1√
N

N

∑
i=1

[ f (Wi)−E f (Wi)].

3.1 High-Level Assumptions

One of this paper’s key innovations is to allow the identified set B, given in (2.2), to depend on an identified

parameter of data distribution PW . Definition 1 formalizes this dependence.

Definition 1 (Constructed Random Variable). Let W be the vector of the observed data, PW its distribution,

and W its support. I refer to V as a constructed random variable if there exists an identified parameter
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η0,η0 ∈ T from a linear and convex set T and a known measurable map H(W,η) : W×T → R such that

V = H(W,η0) a.s.

I refer to η as a nuisance parameter and η0 as the true value of η .

ASSUMPTION 1 (Constructed Random Variables). Each coordinate of the random vector (V,YL,YU) in

the identified set (2.2) is either an observed or constructed random variable.

To complete the model, I need to identify matrix Σ in (2.2) when Σ is unknown. If this is the case, I

assume that Σ is identified by a semiparametric moment condition (Assumption 2).

ASSUMPTION 2 (Identification of Σ). 1. There exists an identified parameter η of the distribution PW

and a known measurable map A(W,η) : W×T → R such that

Σ = EA(W,η0). (3.2)

2. There exist constants λmin > 0 and λmax < ∞ that bound the eigenvalues of Σ from above and below

0 < λmin ≤ mineig(Σ)≤ maxeig(Σ)< λmax.

In what follows, let η be a vector-valued nuisance parameter whose components appear in Assumptions

1, 2, or both assumptions.

According to Bontemps et al. (2012), the identified set B is a compact and convex set. Therefore, it

can be equivalently represented by its support function. Fix a direction q on a unit sphere Sd−1 := {q ∈

Rd , ‖q‖= 1}. Define the support function

σ(q,B) := sup
b∈B

q⊤b (3.3)

as the (signed) distance from the origin to the hyperplane tangent to B in the direction q. According to

Bontemps et al. (2012), the function σ(q,B) is equal to the expectation of the product of two random

variables zq and Yq

σ(q,B) = EzqYq, (3.4)
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where

zq = q⊤Σ
−1V

is a normalized projection of the covariate V onto the direction q and the variable Yq is defined as

Yq = YL +(YU −YL)1{zq>0} := Γ(YL,YU −YL,zq). (3.5)

Namely, Yq is equal to the lower bound YL when zq is non-positive and equal to the upper bound YU otherwise.

To highlight the dependence of zq and Yq on η , I will rewrite (3.4) as a semiparametric moment equation for

σ(q,B)

E[σ(q,B)− zq(η0)Yq(η0)] = 0. (3.6)

Equation (3.6) shows that the support function σ(q,B) depends on

p0(q) = (Σ−1)⊤q,

that is, the projection of the matrix Σ−1 onto the direction q, rather than Σ−1 itself. I define the projection P

as a set that contains p0(q) for all directions q ∈ Sd−1, when Σ is known, or as a slight expansion of this set,

when Σ is unknown.

Definition 2 (Projection Set). 1. When Σ is known, let P= {(Σ−1)⊤q,q ∈ Sd−1}.

2. When Σ is unknown, let P be

P= {p ∈ Rd , 0.5λmin ≤ ‖p‖ ≤ 2λmax}. (3.7)

Orthogonality and near-orthogonality. As discussed in the introduction, the moment equation (3.6) pro-

duces a low-quality estimator of the support function. The problem arises because the moment equation

(3.6) is sensitive with respect to the biased estimation of η0. To overcome this problem, I replace this

equation with

E[σ(q,B)−g(W, p0(q),ξ0(p0(q))] = 0, (3.8)

where the new moment function g(W, p,ξ (p)) :W×P×Ξ→R depends on a functional nuisance parameter

ξ = ξ (p). I assume that the true value ξ0 = ξ0(p) of the nuisance parameter includes η0 (i.e, η0 ⊆ ξ0(p))
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and contains additional parameters that introduce dependence on the projection p. Below I formalize the

notion that (3.8) is an insensitive moment equation and provide the sufficient conditions for (3.8) to deliver

a high-quality estimator of the support function.

Let Ξ be a convex subset of a normed vector space that contains the functional parameter ξ0 = ξ0(p).

Define the pathwise (Gateaux) derivative map on the set Ξ−ξ0 as Dr : Ξ−ξ0 → R

Dr[ξ −ξ0] := ∂rEg(W, p,r(ξ −ξ0)+ξ0), ξ ∈ Ξ, p ∈ P, r ∈ [0,1)

which I assume exists. I will also use the notation

∂0Eg(W, p,ξ0)[ξ −ξ0] = D0[ξ −ξ0]

for the Gateaux derivative at ξ0. Let {ΞN ,N ≥ 1} be a sequence of subsets of Ξ (i.e, ΞN ⊆Ξ) and {TN ,N ≥ 1}

be a sequence of subsets of T(i.e, TN ⊆ T).

Definition 3 (Neyman-orthogonality). The moment function g(W, p,ξ ) obeys the orthogonality condition at

ξ0 with respect to the nuisance realization set ΞN ⊂ Ξ if the following conditions hold.

1. Equation (3.8) holds.

2. The pathwide derivative map Dr[ξ −ξ0] exists for all r ∈ [0,1) and ξ ∈ ΞN and vanishes at r = 0 for

each p ∈ P

∂ξEg(W, p,ξ0)[ξ −ξ0] = 0 ∀p ∈ P. (3.9)

Definition 3 requires the expectation of the moment function g(W, p,ξ0) to have zero Gateaux derivative

with respect to ξ at ξ0 at each vector p in the projection set P. To accommodate the moment function (3.4)

that depends on η in a non-smooth way, I relax the requirement of Definition 3 using the notion of uniform

near-orthogonality.

Definition 4 (Uniform near-orthogonality). The moment function g(W, p,ξ ) obeys the near-orthogonality

condition at ξ0 with respect to the nuisance realization set ΞN ⊂ Ξ uniformly over P if the following condi-

tions hold.

1. Equation (3.8) holds.

2. The pathwise derivative map Dr[ξ −ξ0] exists for all r ∈ [0,1) and ξ ∈ ΞN .
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3. There exists a sequence of positive constants µN = o(N−1/2) such that the pathwide derivative Dr[ξ −

ξ0] at r = 0 is uniformly small over the set P

sup
p∈P

|∂ξEg(W, p,ξ0)[ξ −ξ0]| ≤ µN

ASSUMPTION 3 (Near-orthogonality). 1. There exists a measurable moment function g(W, p,ξ ) :W×P×Ξ→

R that obeys (3.8) and the near orthogonality condition uniformly over P.

2. When Σ is unknown, there exists a moment matrix-valued function A(W,η) that obeys (3.2) and the

orthogonality condition

∂ηEA(W,η0)[η −η0] = 0.

Assumption 3 is the key assumption of my paper. Assumption 3 (1) states that there exists a moment

function g(W, p,ξ ) for the support function σ(q,B) that is approximately insensitive with respect to the

biased estimation of the nuisance parameter ξ at ξ0. I show how to achieve this condition in Section 3.3.

The second assumption states that the moment function A(W,η) is insensitive with respect to the biased

estimation of the parameter η at η0. This assumption holds in practical applications (e.g., in Example 3).

To sum up, the uniform near-orthogonal moment equation for σ(q,B) is

Eψ(W,θ(q),ξ0(p)) := E

σ(q,B)−g(W, p(q),ξ0(p(q)))

A(W,η0)p(q)−q

= 0. (3.10)

Algorithm 2 Cross-fitting
Input: an array of sample indices [N] = {1,2, ...,N}.

1: For K ≥ 2, denote a K-fold random partition of this array by (Jk)
K
k=1, and a complement of Jk as Jc

k . (For
example, when K = 2, J1 ∪ J2 = [N] and Jc

1 = J2).
2: For each partition k ∈ [K], construct the estimator ξ̂Wi∈Jc

k
(p) of the nuisance parameter using only the

data in the Jc
k .

3: For each sample index i ∈ Jk, estimate ξ̂i(p) := ξ̂Wi∈Jc
k
(p).

Return: (ξ̂i(p))N
i=1.

Definition 5 (Support Function Estimator when Σ is Known). Let (Wi)
N
i=1 be an i.i.d sample of the distri-

bution PW and ξ0(p) be an identified parameter of PW . Let ξ̂ (p) be the estimate of ξ0(p) constructed in
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Algorithm 2. Define an estimate of the support function σ̂(q,B) as follows

σ̂(q,B) =
1
N

N

∑
i=1

g(Wi, p0(q), ξ̂i(p)) (3.11)

where p0(q) = (Σ−1)⊤q.

Definition 6 (Support Function Estimator when Σ is Unknown). Let (Wi)
N
i=1 be an i.i.d. sample from a

distribution PW . Let ξ̂ (p), p ∈ P be the estimate of ξ0(p) constructed in Algorithm 2. Define an estimate of

the support function σ̂(q,B) as follows

Σ̂ =
1
N

N

∑
i=1

A(Wi, η̂i),

σ̂(q,B) =
1
N

N

∑
i=1

g(Wi,(Σ̂
−1)⊤q, ξ̂i((Σ̂

−1)⊤q)). (3.12)

Additional regularity conditions. Assumption 4 formalizes the speed of convergence of the estimated

nuisance parameter ξ̂ (p). It introduces the sequence of neighborhoods {ΞN ,N ≥ 1} around the true value

ξ0(p) that contain the estimate ξ̂ (p) with probability approaching one. As the sample size N increases, the

neighborhoods shrink. The following rates rN ,r′N ,r
′′
N ,δN control the speed at which these neighborhoods

shrink around ξ0(p).

ASSUMPTION 4 (Quality of the First-Stage Estimation and Regularity of the Moment Function). There

exists a sequence {ΞN ,N ≥ 1} of subsets of Ξ (i.e, ΞN ⊆ Ξ) such that the following conditions hold.

1. The true value ξ0 belongs to ΞN for all N ≥ 1. There exists a sequence of numbers φN = o(1) such

that the first-stage estimator ξ̂ (p) of ξ0(p) belongs to ΞN with probability at least 1− φN . There

exist sequences rN ,r′N ,r
′′
N ,δN : r′′N log1/2(1/r′′N) = o(1), r′N log1/2(1/r′N) = o(1), rN = o(N−1/2), and

δN = o(N−1/2) such that the following bounds hold

sup
ξ∈ΞN

sup
p∈P

(E(g(W, p,ξ (p))−g(W, p,ξ0(p)))2)1/2 . r′′N ,

sup
ξ∈ΞN

sup
q∈Sd−1

sup
p∈P:‖p−p0(q)‖.RN−1/2

(E(g(W, p,ξ0(p))−g(W, p0,ξ0(p0)))
2)1/2 . r′N ,

sup
r∈[0,1)

sup
p∈P

(∂ 2
r Eg(W, p,r(ξ (p)−ξ0(p))+ξ0(p)))≤ rN ,
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sup
r∈[0,1)

‖∂
2
r EA(W,r(η −η0)+η0)‖ ≤ rN ,

sup
η∈TN

(E‖A(W,η)−A(W,η0)‖2)1/2 . δN .

2. The following conditions hold for the function class Fξ = {g(W, p,ξ (p)), p ∈ P}. There exists a

measurable envelope function Fξ = Fξ (W ) that absolutely surely bounds all elements in the class

sup
p∈P

|g(W, p,ξ (p))| ≤ Fξ (W ) a.s.

There exists c > 2 such that ‖Fξ‖LP,c :=
(∫

w∈W(Fξ (w))c
)1/c

< ∞. There exist constants a,v that do not

depend on N such that the uniform covering entropy of the function class Fξ is bounded

logsup
Q

N(ε‖Fξ‖Q,2,Fξ ,‖ · ‖Q,2)≤ v log(a/ε), for all 0 < ε ≤ 1.

Assumption 5 is a standard requirement for a differentiable support function σ(q,B) (see, e.g. Chan-

drasekhar et al. (2011)). The differentiability of the support function ensures that the identified set B is

strongly convex. This property rules out the presence of the exposed faces of the identified set B where the

bias accumulates non-trivially. When the random variable V in (2.2) is sufficiently continuous, Assumption

5 holds. When the distribution of V is discrete, adding a small amount of continuously distributed noise

suffices to achieve this requirement (see, e.g. Chandrasekhar et al. (2011)).

ASSUMPTION 5 (Differentiable Support Function). Let P̄ ⊂ Rd be an open set that contains P : P ⊂ P̄.

Assume that the function p → E[g(W, p,ξ0(p))], p ∈ P̄ is differentiable on P̄. Define its gradient

G(p) := ∇pEg(W, p,ξ0(p)). (3.13)

In addition, if Σ is unknown, assume that the following bound holds uniformly on p0 ∈ P

E[g(W, p,ξ0(p))−g(W, p0,ξ0(p0))] = G(p0)(p− p0)+o(‖p− p0‖), ‖p− p0‖→ 0. (3.14)

3.2 Asymptotic Results

Theorem 1 (Limit Theory for the Support Function Estimator). Suppose Assumptions 1, 2, 3, 4, 5 hold. Let

p0(q) = (Σ−1)⊤q. Let σ̂(q,B) be the Support Function Estimator provided in Definition 5 when Σ is known
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and Definition 6 when Σ is unknown. Define an influence function

h(W,q) := g(W, p0(q),ξ0(p0(q)))−E[g(W, p0(q),ξ0(p0(q)))]

when Σ is known and

h(W,q) = g(W, p0(q),ξ0(p0(q))−E[g(W, p0(q),ξ0(p0(q))]−q⊤Σ
−1(A(W,η0)−Σ)Σ−1G(p0(q))

when Σ is unknown. Then, the Support Function Estimator σ̂(q,B) is uniformly asymptotically linear over

the unit sphere Sd−1

√
N(σ̂(q,B)−σ0(q,B)) =GN [h(Wi,q)]+oP(1). (3.15)

Moreover, the empirical process GN [h(Wi,q)] converges to a tight Gaussian process G[h(Wi,q)] in L∞(Sd−1)

with the non-degenerate covariance function

Ω(q1,q2) = E[h(W,q1)h(W,q2)]−E[h(W,q1)]E[h(W,q2)], q1,q2 ∈ Sd−1.

Theorem 1 is my first main result. It shows that the Support Function Estimator is asymptotically

equivalent to the sample average of the function h(W,q). Due to uniform near-orthogonality and sample

splitting, the first-stage estimation of ξ̂ (p), p ∈ P has no effect on the sample average representation of

σ̂(q,B) at any point q on the unit sphere Sd−1. By Assumption 4, the class of the moment functions

Fξ = {g(W, p,ξ (p)), p∈P} is P-Donsker. Therefore, the approximation by a tight Gaussian process follows

by, e.g., Skorohod-Dudley-Whichura representation (van der Vaart (1998)).

Theorem 1 allows the matrix Σ to be known or unknown. When Σ is known, the influence function

h(W,q) coincides with the centered moment equation (3.8). When Σ is unknown, the influence function

h(W,q) contains an additional component from the estimation Σ. According to the Delta method, this

component is equal to the derivative of the expected moment function G(p) = Eg(W, p0(q),ξ0(p0(q))) with

respect to Σ

h(W,q) = g(W, p0(q),ξ0(p0(q)))−Eg(W, p0(q),ξ0(p0(q)))−q⊤Σ
−1(A(W,η0)−Σ)Σ−1G(p0(q)).

This result mirrors the sample average representation of the Support Function Estimator in Chandrasekhar

et al. (2011).
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Definition 7 (Bayesian Bootstrap). Let B represent a number of bootstrap repetitions. For each b ∈

{1,2, . . . ,B}, repeat

1. Draw N i.i.d. exponential random variables (ei)
N
i=1 : ei ∼ Exp(1). Let ē = ENei.

2. When the matrix Σ is known, set Σ̃ = Σ. Otherwise, estimate Σ̃ as follows

Σ̃ = EN
ei

ē
A(Wi, η̂i).

3. Estimate σ̃b(q,B) = EN
ei
ē g(Wi,(Σ̃

−1)⊤q, ξ̂i((Σ̃
−1)⊤q)).

Bayesian bootstrap algorithm from Definition 7 is a simplification of the Bayesian bootstrap algorithm

from Chandrasekhar et al. (2011). Instead of estimating the first-stage parameter in each bootstrap repetition,

I estimate the first-stage parameter once on an auxiliary sample.

Theorem 2 (Limit Theory for the Bootstrap Support Function Process). The bootstrap support function pro-

cess S̃N(q) :=
√

N(σ̃(q,B)− σ̂(q,B)) admits the following approximation conditional on the data S̃N(q) =

GN [e0
i h0

i (q)]+oPe(1) in L∞(Sd−1). Moreover, the support function process admits an approximation condi-

tional on the data

S̃N(q) = G̃[h(q)]+oPe(1) in L∞(Sd−1),

where G̃[h(q)] is a sequence of tight P-Brownian bridges in L∞(Sd−1) with the same distributions as the

processes GN [h(q)], and independent of GN [h(q)].

Theorem 2 is my second main result. It states that the support function process from Theorem 1 and

bootstrap support function process from Theorem 2 converge to the same stochastic process. Therefore, the

bootstrap support function process can be used to construct pointwise and uniform critical values for testing

hypotheses about σ(q). By virtue of Neyman-orthogonality (and near-orthogonality), the estimation error of

the nuisance parameter ξ̂ (p) does not contribute to the asymptotic variance of the support function. Because

first-stage estimation error does not contribute to the asymptotic variance, the first-stage nuisance parameter

does not have to be repeated in the bootstrap simulation.

3.3 General Recipe for the Construction of an Orthogonal Moment Condition

In this section, I provide a general recipe to construct a near-orthogonal moment condition for the support

function starting from a non-orthogonal moment condition (3.4), extending the previous work of (Newey

and Stoker (1993), Newey (1994), Chernozhukov et al. (2017b), Ichimura and Newey (2017)) from a point-
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to a set-identified case. Adding generality helps to understand the derivation. Suppose I am interested in a

function M(p) defined by the moment condition

M(p) = Em(W, p,η0),

where η0(X) is a functional parameter. To make the moment condition above insensitive to the biased

estimation of η0, I add a bias correction term α(W, p,ξ (p)) that enjoys the following two properties. First,

the bias correction term has zero mean

E[α(W, p,ξ0(p))] = 0,

so that the new moment condition is still valid. Second, I require that the function

g(W, p,ξ (p)) = m(W, p,η)+α(W, p,ξ (p)) (3.16)

obeys the Neyman-orthogonality condition (Assumption 3).

Lemma3 3 derives a general form of a bias correction term for the case η0(X) is defined via the con-

ditional exogeneity restriction (3.17). In our applications, we consider two important cases of this Lemma:

a conditional expectation function (Lemma 4) and a conditional quantile function (Lemma 5). Lemma 3 is

the extension of Ichimura and Newey (2017)’s result to the set-identified case.

Lemma 3 (Bias Correction Term for a Nuisance Function Determined by a Conditional Exogeneity Restric-

tion). Suppose the true value η0 = η0(X) of a functional nuisance parameter η satisfies the generalized

conditional exogeneity restriction

ER[(W,η0(X))|X ] = 0, (3.17)

where R(W,η) : W×T → RL is a known measurable map that maps a data vector W and a square-

integrable vector-function η into a subset of RL. Define the bias correction term α(W, p,ξ (p)) for the

moment m(W, p,η) as

α(W, p,ξ (p)) :=−γ(p,X)I(X)−1R(W,η(X)), (3.18)

where the nuisance parameter ξ (p) = ξ (p,x) is a P-square integrable vector-valued function of x ξ (p,x) =
3Lemma 3 was co-developed in the co-authored project "Plug-in Regularized Estimation of High-Dimensional Parameters in

Nonlinear Semiparametric Models" with Vasilis Syrgkanis, Denis Nekipelov, and Victor Chernozhukov.
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{γ(p,x), I(x),η(x)}. The true value ξ0(p,x) of ξ (p,x) is

ξ0(p,x) = {η0(x),γ0(p,x), I0(x)},

where η0(x) is the original functional parameter defined by (3.17), γ0(p,x) = ∂η0(x)E[m(W, p,η0)|X = x],

and I0(x) := ∂η0E[R(W,η)|X = x] is the Gateaux derivative of the expected generalized residual E[R(W,η)|X ]

with respect to η conditionally on X. Furthermore, the function g(W, p,ξ (p)) in (7.11) has zero Gateaux

derivative with respect to ξ (p) at ξ0(p) uniformly on P

∂ξ0(p)Eg(W, p,ξ0(p))[ξ (p)−ξ0(p)] = 0 ∀p ∈ P.

Lemma 4 is a special case of Lemma 3 when R(W,η(X)) = U −η(X). This result is an extension of

Newey (1994)’s result to the set-identified case.

Lemma 4 (Bias Correction Term for Conditional Expectation Function). Suppose the true value η0(X) of a

functional parameter η = η(X) is the conditional expectation of an observed random variable U given X

η0(x) = E[U |X = x].

Define the bias correction term α(W, p,ξ (p)) for the moment m(W, p,η)

α(W, p,ξ (p)) := γ(p,X)[U −η(X)],

where ξ (p) = ξ (p,x) is a P-square integrable vector-valued function of x ξ (p,x) = {η(x),γ(p,x)}. The

true value ξ0(p,x) is equal to

ξ0(p,x) = {η0(x),γ0(p,x)},

where γ0(p,x) is the expectation function conditional on X of the moment derivative

γ0(p,x) := ∂ηE[m(W, p,η0)|X = x].

Then, the function g(W, p,ξ (p)) in (3.16) has zero Gateaux derivative with respect to ξ at ξ0 for each p ∈ P

∂ξEg(W, p,ξ0(p))[ξ −ξ0] = 0 ∀p ∈ P.
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Lemma 4 is a special case of Lemma 3 when R(W,η(X)) = 1U≤η(X)−u0. This result is an extension of

Ichimura and Newey (2017)’s result (Proposition 7) to the set-identified case.

Lemma 5 (Bias Correction Term for Conditional Quantile Function). Suppose the true value η0(X) of the

functional parameter η(X) is the conditional quantile of an observed random variable U given X at a given

quantile level u0 ∈ (0,1)

η0(X) = QU |X=x(u0,x).

Define the bias correction term α(W, p,ξ (p)) for the moment m(W, p,η)

α(W, p,ξ (p)) =−γ(p,X)
1U≤η(X)−u0

l(X)
,

where ξ (p,x) is a P-square integrable vector-valued function of p and x ξ (p,x) = {η(x),γ(p,x), l(x)}. The

true value ξ0(p,x) is equal to

ξ0(p,x) = {η0(x),γ0(p,x), fU |X(η0(X))},

where γ0(p,x) is the expectation function conditional on X of the moment derivative

γ0(p,x) = ∂ηE[m(W, p,η0)|X = x]

and fU |X(η0(X)) is the conditional density of U given X evaluated at η0(X). Then, the function g(W, p,ξ (p))

in (3.16) has zero Gateaux derivative with respect to ξ at ξ0 for each p ∈ P

∂ξEg(W, p,ξ0)[ξ −ξ0] = 0 ∀p ∈ P.

Lemma 6 discusses the empirically relevant case where there are multiple components appearing in an

initial moment condition (7.10).

Lemma 6 (Additive Structure of bias correction Term). Suppose η0(X) is an L-dimensional vector-function.

Suppose each of its L distinct components l ∈ {1,2, . . . ,L} is defined by a separate exclusion restriction:

E[Rl(W,ηl,0(X))|X ] = 0, l ∈ {1,2, . . . ,L}. Then, the bias correction term α(W, p,ξ (p)) is equal to the sum

of L bias correction terms {1,2, . . . ,L}

α(W, p,ξ (p)) =
L

∑
l=1

αl(W, p,ξl(p)), (3.19)
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where each term αl(W, p,ξl(p)) corrects for the estimation of ηl, l ∈ {1,2, . . . ,L} holding the other compo-

nents η−l fixed at their true value η−l,0. The new nuisance function ξ (p) is equal to the union ∪L
l=1ξl(p):

ξ = ∪L
l=1ξl(p).

Lemmas 4, 5, and 6 give a general recipe for the construction of the bias correction term α(W, p,ξ (p))

starting from the moment condition (3.4), which is not orthogonal. Let η be an L-dimensional vector. First,

for each l ∈ {1,2, . . . ,L} I derive a bias correction term αl(W, p,ξl(p)) as if the nuisance parameter η−l,0

were known. Then, the bias correction term α(W, p,ξ (p)) is the sum of these L bias correction terms, and

the new nuisance parameter ξ (p) is the union ∪L
l=1ξl(p) of the nuisance parameters of each of the L terms.

In several applications, including the support function problem, the nuisance parameter η appears inside

the weighting variable V defined in (2.2). As a result, the moment equation (3.4) depends on η in a non-

smooth way. In particular, V = Vη appears inside a function x → x1x>0 whose first derivative 1x>0 is not a

differentiable function of x at x = 0.

I resolve this problem in two steps. First, I show that the difference between the expectations of the

target function

m(W, p,η) = p⊤Vη(YL +(YU −YL)1{p⊤Vη>0})

and its smooth analog

m0(W, p,η) = p⊤Vη(YL +(YU −YL)1{p⊤Vη0>0})

is negligible under regularity conditions. Second, I derive the bias correction term for the smooth moment

function m0(W, p,η). Lemma 7 provides the sufficient conditions for the first step. Lemmas 4, 5, and 6 give

an orthogonalization recipe for the second step.

Lemma 7 (Indicator Function). Suppose the following statements hold.

1. There exists a bound BUL <∞ such that the interval width is absolutely surely bounded for all nuisance

parameter values η ∈ TN supη∈TN
YU,η −YL,η ≤ BUL < ∞.

2. A collection of distributions of {p⊤Vη0 , p ∈ P} is uniformly continuous on P

sup
p∈P

sup
η∈TN

E|p⊤Vη − p⊤Vη0 |1{0<|p⊤Vη0 |≤|p⊤Vη−p⊤Vη0 |}
. E‖Vη −Vη0‖2.

3. The following convergence bound applies

sup
η∈TN

(
E‖Vη −Vη0‖2)1/2

. sup
η∈TN

(
E‖η −η0‖2)1/2

.
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4. The nuisance parameter η is estimated at least at o(N−1/4) rate

sup
η∈TN

(
E‖η −η0‖2)1/2

= o(N−1/4).

Then replacing (3.6) by its smooth analog produces a bias of order o(N−1/2)

sup
p∈P

sup
η∈TN

|E[m(W, p,η)−m0(W, p,η)]|= o(N−1/2).

An argument similar to Lemma 7 was used to establish the consistency and asymptotic normality of

Censored Least Absolute Deviation in Powell (1984).

4 Applications

In this section, I apply the asymptotic theory of Section 3 to three empirically relevant settings: Endogenous

Sample Selection of Lee (2008), Average Partial Derivative of Kaido (2017), and Partially Linear Predictor.

For each setting, I derive an orthogonal (or uniformly near-orthogonal) moment equation for the support

function and provide primitive sufficient conditions for the theoretic results of Section 3 to hold.

4.1 Endogenous Sample Selection

I start this section with the original assumptions of Lee (2008), under which the bounds in (2.7) and (2.8)

are derived.

ASSUMPTION 6 (Identification in Endogenous Sample Selection). The following assumptions hold.

1. The program admission D is independent of the potential employment and wage outcomes, as well as

the subject covariates: (S1,S0,Y1,Y0,X)

D ⊥ (S1,S0,Y1,Y0).

2. The program admission D cannot hurt selection S1 ≥ S0 a.s.

I follow the recipe of Section 3.3 to construct the Neyman-orthogonal moment equation. The non-

orthogonal moment equation for the upper bound βU is

E[βU −mU(W,η0)] = 0,
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where the function mU(W,η) is equal to

mU(W,η) =
D ·S ·Y 1{Y≥η3(η1(x)/η2(x),x)} Pr(D = 0|X)

Pr(D = 0,S = 1)Pr(D = 1|X)
, (4.1)

and η(x)= {η1(x),η2(x),η3(u,x)} is a P-square integrable vector-valued function whose true value η0(x)=

{s(0,x),s(1,x),QY |D=1,S=1,X=x(u,x)}.4 The functions s(1,x) and s(0,x) are the conditional employment

probabilities in case of admission and non-admission, respectively. For a given quantile u ∈ [0,1] the func-

tion QY |D=1,S=1,X=x(u,x) is the quantile function of the Y conditional on X in the employed and admitted

group D = 1,S = 1.

The nuisance parameter η(x) is a vector-valued functional parameter. According to Lemma 6, the bias

correction term

αU(W,η) =
3

∑
i=1

αi(W,ξi)

is the sum of three bias correction terms, correcting for the functions s(0,x), s(1,x), and

QY |D=1,S=1,X=x(y1−p0(x),x),

respectively, and ξi is the new nuisance parameter of the respective term i, i ∈ {1,2,3}.

The individual bias correction terms for each component in η0(x) are below. The true value s(0,x) and

s(1,x) of the functional parameters η1(x) and η2(x) are the conditional expectation functions:

s(0,x) := E[
(1−D)S

Pr(D = 0|X)
|X = x], s(1,x) := E[

DS
Pr(D = 1|X)

|X = x]

Applying Lemma 4 gives the bias correction term

α1(W,η) = γ1(X)

(
(1−D)S

Pr(D = 0|X)
−η1(X)

)
,

where the true value of γ1,0(X) is

γ1,0(X) = y{1−p0(X),X}
Pr(D = 0|X)

Pr(D = 0,S = 1)

4For simplicity I treat Pr(D = 1|X) as a known functional parameter. In case Pr(D = 1|X) is unknown, the bias correction term
for Pr(D = 1|X) can be derived similarly to the bias correction terms of other nuisance parameters.
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and p0(X) = s(0,X)/s(1,X). Applying Lemma 4 gives the bias correction term

α2(W,η) = γ2(X)

(
DS

Pr(D = 1|X)
−η2(X)

)
,

where the true value of γ2,0(X) is

γ2,0(X) = y{1−p0(X),X}
Pr(D = 0|X)s(0,X)

Pr(D = 0,S = 1)s(1,X)
.

The true value of η3(u,x) is the conditional quantile function. Applying Lemma 5 gives the bias correction

term

α3(W,η) =−γ3(X)
(
1{Y≤η3(1−p0(X),X)}−1+ p0(X)

)
,

where the true value of γ3,0(X) is

γ3,0(X) =−y{1−p0(X),X}
Pr(D = 0|X)s(1,X)

Pr(D = 0,S = 1)
.

The bias correction term for the lower bound βL is derived in the Appendix.

ASSUMPTION 7 (Regularity Conditions for Endogenous Sample Selection). The following assumptions

hold.

1. There exist both a lower bound s > 0 and an upper bound s̄ < ∞ such that the conditional employment

probability s(d,x) is bounded from above and below:

0 < s ≤ s(D,X)≤ s̄ < ∞ a.s.

2. Let U⊂R be an open set that contains the support of s(0,X)/s(1,X) and 1−s(0,X)/s(1,X). Assume

that the conditional quantile function u→QY |D=1,S=1,X=x(u,x) is differentiable on U absolutely surely

in X, and its derivative is bounded by some KQ < ∞

Pr( sup
u∈cl(U)

|∂uQY |D=1,S=1,X=x(u,X)| ≤ KQ) = 1.

3. There exist sequences of numbers φN = o(1), gN = o(N−1/4) and realization sets ΞN ⊂ Ξ such that the

following statements hold. The estimators ξ̂U of ΞU and ξ̂L of ΞL belong to ΞU
N (ΞL

N) with probability
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approaching one, respectively. The true values ξU,0 and ξL,0 belong to ΞU
N and ΞL

N for all N ≥ 1. The

realization sets shrink at the following speed

sup
ξU∈ΞU

N

‖ξU −ξU,0‖P,2 ≤ gN , sup
ξL∈ΞL

N

‖ξL −ξL,0‖P,2 ≤ gN .

4. Assume that the functional parameter u → η3(u,X) is differentiable on U, and its derivative is

bounded by some KQ < ∞ absolutely surely in X

Pr( sup
η3∈ΞU

N

sup
u∈cl(U)

|∂uη3(u,X)| ≤ KQ) = 1.

5. There exists a conditional density y → ρY |D=1,S=1,X=x(y,x) whose zero ρ0
Y |D=1,S=1,X(Y,X) and first

ρ1
Y |D=1,S=1,X(Y,X) derivatives are bounded from above and below by some f > 0 and f̄ < ∞

Pr(0 < f ≤ ρ
j

Y |D=1,S=1,X(Y,X)≤ f̄ < ∞) = 1, j ∈ {0,1}.

Theorem 8 (Asymptotic Theory for Endogenous Sample Selection). Suppose Assumption 7 holds. Then,

the estimator (β̂L, β̂U) of Definition 6 obeys:

√
N

 β̂L −βL

β̂U −βU

⇒ N (0,Ω) , (4.2)

where Ω is a positive-definite covariance matrix.

Theorem 8 is my third main result. It establishes that the bounds defined by (4.1) are consistent and

asymptotically normal. It extends the bounds estimator from Lee (2008), defined for a small number of

discrete covariates, to the case of high-dimensional covariates that can be either discrete and continuous.

Because the bounds (2.7) and (2.8) condition a larger number of covariates, the identified set (2.6) is nec-

essarily weakly tighter than the identified set from Lee (2008), where only small number of covariates is

permitted.

4.2 Average Partial Derivative

Consider the setup of Example 2. The constructed random variable V is equal to the derivative of the log

conditional density

V =−∂D log f (D|X) = η0(D,X),
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the orthonormalized projection zq(η) is

zq(η) := q⊤η(D,X)

and the q-generator Yq = Γ(YL,YU −YL,q⊤η(D,X)). Equation (3.6) does not satisfy Assumption 3(1). The

uniform near-orthogonal moment equation (3.10) takes the form

g(W,q,ξ (q)) = zq(η)Yq(η)−q⊤η(D,X)γq(D,X)+q⊤∂Dγq(D,X), (4.3)

where zq(η) = q⊤η(D,X), Yq(η) = Γ(YL,YU −YL,q⊤η(D,X)), and

γq(D,X) = γL(D,X)+ γU−L(D,X)1{q⊤∂D log f (D|X)>0}.

The nuisance parameter of this problem is

ξ (q,X) = ξ (D,X) = {η(D,X),γL(D,X),γU−L(D,X)},

and its true value ξ0(D,X) is ξ0(D,X) = {∂D log f (D|X),E[YL|D,X ],E[YU−L|D,X ]}.

ASSUMPTION 8 (Regularity Conditions for Average Partial Derivative). The following conditions hold.

1. There exists a bound BUL < ∞ such that the interval width YU −YL ≤ BUL is bounded a.s.

2. The distribution of the gradient of the log-density η0(D,X) = ∂D log f (D|X) is sufficiently continuous.

Define the event Eq as follows: Eq := {0 < |q⊤∂Dη0(D,X)| < |q⊤∂D(η(D,X)−η0(D,X))|}. The

following bound holds

sup
q∈Sd−1

E|q⊤∂D(η(D,X)−η0(D,X))|1{Eq} ≤ ‖η(D,X)−η0(D,X)‖LP,2 .

3. There exist sequences φN = o(1), gN = o(N−1/4) of numbers ZN ⊂ T of nuisance realization sets such

that the following statements hold. The vector-valued parameter ξ0(D,X) belongs to ZN for all N ≥ 1.

With probability at least 1−φN , the estimator ξ̂ (D,X) of ξ0(D,X) belongs to ZN . The set ZN shrinks

at the following rate

sup
ξ∈ZN

‖ξ (D,X)−ξ0(D,X)‖LP,2 ≤ gN .
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4.3 Simple sufficient conditions for Average Partial Derivative

Suppose the endogenous covariate vector D obeys the following decomposition

D = m0(X)+V, V ∼ N(0,Λ), (4.4)

where m0(X) = E[D|X ] is the conditional expectation function and V is the first-stage residual that is inde-

pendent of X and distributed as N(0,Λ). Then, the true value of the logarithm of the conditional density

is

∂D log f (D|X) = Λ
−1(D−m0(X)).

I describe the computation steps of the Support Function Estimator σ̂(q,B) for Average Partial Derivative

in the following algorithm.

Algorithm 3 Support Function Estimator for Average Partial Derivative
Input: a direction q on a unit sphere Sd−1, an i.i.d sample (Wi)

N
i=1 = (Di,Xi,YL,i,YU,i)

N
i=1, estimated values

(m̂(Xi), γ̂L(Di,Xi), γ̂U−L(Di,Xi))
N
i=1.

1: Estimate the first-stage residual for every i ∈ {1,2, . . . ,N}: V̂i := Di − m̂(Xi).
2: Compute the sample covariance matrix of the first-stage residuals: Λ̂ := 1

N ∑
N
i=1 V̂iV̂⊤

i .
3: Estimate the q-generator for every i ∈ {1,2, . . . ,N}

Ŷq,i := YL,i +(YU,i −YL,i)1{q⊤Λ̂−1V̂i>0}.

4: Compute the second-stage reduced form γ̂q(Di,Xi) := γ̂L(Di,Xi)+ γ̂U−L(Di,Xi)1{q⊤Λ̂−1V̂i>0}
5: Estimate β̂q by Ordinary Least Squares with the second-stage residual of the q-generator as the depen-

dent variable and the first-stage residual V as the regressor

β̂q = Λ̂
−1 1

N

N

∑
i=1

V̂i[Ŷq,i − γ̂q(Di,Xi)].

Return: the projection of β̂q on the direction q: σ̂(q,B) = q⊤β̂q.

ASSUMPTION 9 (Simple Sufficient Conditions for Average Partial Derivative). There exist a sequence

of realization sets {ZL,N ,N ≥ 1} and {ZU−L,N ,N ≥ 1} that are shrinking neighborhoods of γL,0(D,X) :=

E[YL|D,X ] and γU−L,0(D,X) := E[YU −YL|D,X ] obeying the following conditions. For some sequence φN =

o(1) the estimate γ̂L of γL,0 and γ̂U−L of γU−L,0 belong to respective sets with probability at least 1− φN .
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There exists rates ζL,N = o(N−1/4) and ζU−L,N = o(N−1/4) such that the following bounds hold

sup
γL∈ZL,N

(E(γL(D,X)− γL,0(D,X))2)1/2 . ζL,N , sup
γU−L∈ZU−L,N

(E(γU−L(D,X)− γU−L,0(D,X))2)1/2 . ζU−L,N .

Assumption 9(3) requires the functions γL,0(D,X) and γU−L,0(D,X) to be estimated at the o(N−1/4) rate.

A variety of classic econometric and modern machine learning methods achieve this requirement.

Theorem 9 (Asymptotic Theory for Average Partial Derivative with an Interval-Valued Outcome). Suppose

Assumption 8 holds. Then, Theorems 1 and 2 hold for the Support Function Estimator of Definition 5 with

the influence function equal to

h(W,q) = g(W,q,ξ (q))−E[g(W,q,ξ (q))].

In particular, if Equation (4.4) and Assumption 9 hold, then Assumption 8 holds.

Theorem 9 is my fourth main result. It establishes that the Support Function Estimator given in (5) is

uniformly consistent and asymptotically normal. It extends the support function estimator of Kaido (2017),

defined for a small number of covariates, to the case of high-dimensional covariates.

4.4 Partially Linear Predictor

Consider the setup in Example 3. The constructed variable Vη =D−η(X) is equal to the first-stage residual,

the orthonormalized projection zq(η) is equal to the inner product of this residual and the projection p(q) =

(Σ−1)⊤q

zq(η) = q⊤Σ
−1(D−η(X)),

and the q-generator Yq is equal to Yq(η) =YL +(YU −YL)1{q⊤Σ−1(D−η(X))>0}. Equation (3.6) does not satisfy

Assumption 3(1). The Neyman near-orthogonal moment equation (3.10) is

ψ(W,θ(q),ξ (p(q))) =

σ(q,B)− p(q)⊤(D−η(X))(Yq(η)−E[Yq(η)|X ])

(D−η(X))(D−η(X))⊤p(q)−q

 , (4.5)

where the true value of θ(q) is θ0(q) = [σ(q,B), p(q)] and the true value of the nuisance parameter ξ (p) =

{η(X),γ(p,X)} is

ξ0(p(q)) = {η0(X),E[Yq(η0)|X ]}.

I describe the computation steps of the Support Function Estimator σ̂(q,B) in the following algorithm.
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Algorithm 4 Support Function Estimator for Partially Linear Predictor
Input: a direction q on a unit sphere Sd−1, an i.i.d sample (Wi)

N
i=1 = (Di,Xi,YL,i,YU,i)

N
i=1, estimated values

(η̂(Xi), γ̂(p,Xi))
N
i=1, p ∈ P.

1: Estimate the first-stage residual for every i ∈ {1,2, . . . ,N}: V̂i := Di − η̂(Xi).
2: Compute the sample covariance matrix of the first-stage residuals: Σ̂ := 1

N ∑
N
i=1 V̂iV̂⊤

i .
3: Estimate the q-generator for every i ∈ {1,2, . . . ,N}

Ŷq,i := YL,i +(YU,i −YL,i)1{q⊤Σ̂−1V̂i>0}.

4: Estimate β̂q by Ordinary Least Squares with the second-stage residual of the q-generator as the depen-
dent variable and the first-stage residual V as the regressor

β̂q = Σ̂
−1 1

N

N

∑
i=1

V̂i[Ŷq,i − γ̂(Σ̂−1q⊤,Xi)].

Return: the projection of β̂q on the direction q: σ̂(q,B) = q⊤β̂q.

Assumption 10 gives the regularity conditions for the Support Function Estimator.

ASSUMPTION 10 (Regularity Conditions for Partially Linear Predictor). The following regularity

condition holds for the universal constants λmin, λmax, BUL,Kh. Let the projection set P be as in (3.7).

1. The data vector W = (D,X ,YL,YU) is square integrable.

2. There exist constants λmin > 0 and λmax < ∞ such that all of the eigenvalues of the covariance matrix

Σ = E(D−η0(X))(D−η0(X))′ are bounded from above and below

0 < λmin ≤ mineig(Σ)≤ maxeig(Σ)≤ λmax < ∞.

3. There exists D̄ < ∞ such that max(‖D‖, |YL|, |YU |)≤ D̄ holds absolutely surely.

4. For all vectors p ∈ P there exists a conditional density ρ{p⊤V |X=x}(·,x) absolutely surely in X.

5. A bound Kh < ∞ exists such that the collection of the densities in (4) {ρ{p⊤V |X=x}(·,x), p ∈ P} is

uniformly bounded over p ∈ P a.s. in X

Pr(sup
p∈P

sup
t∈R

ρ{p⊤V |X=x}(t,x)< Kh) = 1.

6. There exist sequences φN = o(1) and gN = o(N−1/4) such that, with probability at least 1− φN , the

estimates ‖η̂(X)−η0(X)‖P,2 ≤ gN = o(N−1/4).
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7. Let Fγ = {γ(p,x) :P×X→R} be a class of functions in p,x that satisfy Conditions 4(1,2). Moreover,

there exists a sequence of realization sets GN that are subsets of Fγ

GN ⊆ Fγ

such that the estimator γ̂(·, ·) belongs to GN with probability at least 1−φN . Moreover, the nuisance

realization set shrinks at a statistical rate uniformly in p ∈ P

sup
p∈P

sup
γ(·,·)∈GN

‖γ(p,X)− γ0(p,X))‖LP,2 ≤ gN = o(N−1/4).

8. Let γ0(p,x) be the conditional expectation on X of the q-generator γ0(p,x) = E[Yq|X ] = E[Γ(YL,YU −

YL, p⊤Vη0)|X ]. Assume that there exists a sequence g′N such that γ0(p,x) is continuous uniformly on

P, on average in X

sup
q∈Sd−1

sup
p∈P:‖p−p0(q)‖≤RN−1/2

‖γ0(p,X)− γ0(p0(q),X))‖LP,2 ≤ g′N : g′N log(1/g′N) = o(1).

9. The first-stage residual D−η0(X) has a uniformly sufficiently smooth distribution on P. Namely,

for some m such that 0 < m ≤ 1, the following bound holds: supp∈P Pr(0 < p⊤(D−η0(X))
‖D−η0(X)‖ < δ ) =

O(δ m),δ → 0.

ASSUMPTION 11 (Simple Sufficient Conditions for Partially Linear Predictor ). The following conditions

hold.

1. The first-stage residual is independent from the covariates X and has a symmetric continuous distri-

bution around zero (i.e., Pr(p⊤V > 0) = 1
2 ∀p ∈ Rd).

2. Conditional on X, the interval width YU −YL and the covariate D are mean independent

E[(YU −YL)1{p′V>0}|X ] = E[YU −YL|X ]Pr(p′V > 0|X) =
1
2
E[YU −YL|X ].

3. There exists a sequence of realization sets {ZL,N ,N ≥ 1} and ZU−L,N ,N ≥ 1} that are shrinking

neighborhoods of γL,0(X) :=E[YL|X ] and γU−L,0(X) :=E[YU −YL|X ] obeying the following conditions.

For some sequence φN = o(1) the estimate γ̂L of γL,0 and γ̂U−L of γU−L,0 belong to respective sets ZL,N

and ZU−L,N with probability at least 1−φN . There exist rates ζL,N = o(N−1/4) and ζU−L,N = o(N−1/4)

37



such that the following bounds hold

sup
γL∈ZL,N

(E(γL(X)− γL,0(X))2)1/2 . ζL,N , sup
γU−L∈ZU−L,N

(E(γU−L(X)− γU−L,0(X))2)1/2 . ζU−L,N .

When Assumptions 11(1) and (2) hold, the conditional expectation function γ0(q,X) takes the following

simple form:

γ0(p,X) := γ0(X) = E[YL|X ]+
1
2
E[YU −YL|X ] = γL,0(X)+

1
2

γU−L,0(X).

Assumption 11(3) requires that the functions γL,0(X) and γU−L,0(X) are estimated at the o(N−1/4) rate.

Theorem 10 (Asymptotic Theory for Partially Linear Predictor with an Interval-Valued Outcome). Suppose

Assumption 10 holds. Then, Theorem 1 and 2 hold for the Support Function Estimator with the influence

function h(W,q) equal to

h(W,q) = g(W, p0(q),ξ0(p0(q),X))−E[g(W, p0(q),ξ0(p0(q),X))]

−q⊤Σ
−1 ((D−η0(X))(D−η0(X))′−Σ

)
Σ
−1E(D−η0(X))Yq,

where p0(q) = (Σ−1)⊤q and Yq =YL+(YU −YL)1q⊤Σ−1(D−η0(X))>0. If Assumption 11 holds, then Assumption

10 holds with the estimator γ̂(p,X) of γ0(p,X) equal to γ̂(p,X) = γ̂L(X)+ 1
2 γ̂U−L(X)

Theorem 10 is my fifth main result. It establishes that the Support Function Estimator given in (5) is

uniformly consistent and uniformly asymptotically Gaussian.

5 Empirical Application

In this section, I re-examine the effectiveness of Colombia PACES program, a voucher initiative established

in 1991 to subsidize private school education in low-income population, studied in Angrist et al. (2002) and

in Angrist et al. (2006). After being admitted to a private school, a student participates in a lottery to win a

voucher that partially covers his tuition fee. Each year, a student can renew an existing voucher if he passes

to the next grade. After high school graduation, some students take a centralized test to enter a college.

Following Angrist et al. (2006), I am interested in the average effect of winning the private school voucher

today on the college admission test scores several years later.

I use the notation of Example 1 to define the voucher’s effect. The variable D = 1 is a dummy for

whether a student has won a voucher, S0 = 1 is a dummy for whether a student would have participated in
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a test after losing the voucher, S1 = 1 is a dummy for whether a student would have participated in a test

after winning the voucher. Similarly, the potential test scores Y0 and Y1 are the scores a student would have

had after losing and winning the lottery, respectively. I am interested in the average voucher’s effect on the

group of students who would have taken the test regardless of receiving the voucher

E[Y1 −Y0|S1 = 1,S0 = 1],

of, briefly, the always-takers. The data contain the voucher status D, observed test participation5 S (2.4),

test score S ·Y observed only if a student takes a test (2.5), and the covariates. The covariates X include age,

phone access, gender, and four indicators of having an invalid or inaccurately recorded ID constructed by

Angrist et al. (2006) by matching PACES records to administrative data.

Because test participation may be endogenous, the average voucher effect is not point-identified. To

bound the effect, Angrist et al. (2006) make two assumptions: receiving a voucher can neither deter the test

participation

S1 ≥ S0 for everyone, (5.1)

nor hurt the test scores

Y1 ≥ Y0 for everyone. (5.2)

Angrist et al. (2006) state that the assumption (5.2) may not hold if private school applicants anticipated

educational gains that did not materialize. To relax this assumption, I use Lee (2008)’s bounds that are

based only on the first assumption (5.1). I describe the construction of Lee (2008)’ bounds in Example 1.

I estimate Lee (2008)’s bounds with all covariates in two stages. In the first stage, I estimate the prob-

ability of receiving the voucher given covariates X (i.e, Pr(D = 1|X)), the probability of test participation

given the voucher status D and covariates X (i.e, s(D,X) = E[S = 1|D,X ]), and the quantile function of the

winners’ test scores given the covariates. I estimate the first two functions using logistic lasso algorithm of

Belloni et al. (2016) with the penalty choice described in Chernozhukov et al. (2018) package. Assuming

that winners’ test scores are determined by age and gender only, I estimate the quantile function by taking an

5The test participation S is not explicitly recorded in the data. I conclude that a student comes to a test if and only if his test
score is positive S = 1{Y>0}. My conclusion is based on two facts. For a given subject, Angrist et al. (2006) interprets the subset
of voucher losers with positive test scores as the always-takers (page 14). To arrive at this interpretation, one needs to assume that
S = 1{Y>0} and that (2.4) holds. Second, the test scores have a 66% point mass at zero value for both subjects.
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empirical quantile6 in the relevant group. In the second stage, I plug the estimates into Neyman-orthogonal

moment equations for the bounds given in (7.13). Because logistic lasso is not prone to overfitting under

reasonable sparsity assumptions (see, e.g. Chernozhukov et al. (2017a)), I use the whole sample in the first

and the second stage.

Table 2: Bounds on Voucher Effect on Test Scores in Angrist et al. (2006)

Method Angrist et al. (2006) Lee (2008) My method
Covariates { Age, gender } { Age, gender } All 7 covs

(1) (2) (3)

A. Mathematics
Estimate [0.401, 2.410] [-1.100, 1.827] [0.160, 0.904]
95% CR (0.163,2.869) (-1.868, 2.592) (-0.168, 1.570)

B. Language
Estimate [0.697, 2.798] [-0.946, 2.341] [0.473, 1.112]
95% CR (0.440, 3.198) (-1.800, 3.211) (0.144, 1.847)

Table 2 reports estimated bounds for the voucher effect (Estimates) and a 95% confidence region (95% CR) for the
identified set for the voucher effect for test scores in Mathematics (Panel A) and Language (Panel B). Original bounds
from Angrist et al. (2006) are based on age and gender covariates (Column 1). These bounds are valid assuming (5.1)
and (5.2) hold. Lee (2008)’s bounds, based on the assumption (5.1) only, are reported in Column 2 with age and gender
covariates. My estimate of Lee (2008)’s bounds, based on a full set of covariates, are reported in Column 3.

Table 2 shows the bounds on the voucher effect constructed by Angrist et al. (2006) (Column 1), Lee

(2008) (Column 2), and my method (Column 3). Original Angrist et al. (2006)’s bounds, based on age and

gender covariates, are positive by construction. Lee (2008)’s bounds with the same set of covariates have

opposite signs and cannot determine the direction of the effect. Including all covariates into Lee (2008)’s

method is challenging because some within certain groups determined by covariates’ values there is no

variation in voucher status, resulting in identification problem. Finally, my method, based Lee (2008)’s

bounds with a full set of covariates, gives both substantially tighter and positive bounds. I find the voucher

effect on the test score in Language to be both positive and significant.

My bounds are tighter because the covariates, selected by the logistic lasso algorithm, predict test par-

ticipation substantially better than age and gender. For each subject, having a valid ID explains 96% of the

total variance in test participation, while age and gender explain only 35%. Once ID validity is taken into

account, voucher has little effect on the test-taking decision. Mechanically, the probability of taking the

6Because the test scores’ distribution had multiple point masses, I added a small amount of N(0,0.01) distributed noise in order
to compute the exact quantiles.
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test after losing the lottery, s(0,X), is close to the respective probability after winning the lottery given X ,

s(1,X), i.e.

p0(X) =
s(0,X)

s(1,X)
≈ 1.

As a result, the distributions of the always-takers’ test scores in the worst (2.7) and the best (2.8) cases are

close to each other, resulting in tighter bounds. Intuitively, because voucher has little effect on the test-

taking decision, test participation is close to being exogenous given the covariates, thereby leading to tighter

bounds (Remark 2 from Lee (2008)).

6 Conclusion

In this paper, I incorporate machine learning tools into set-identification and harness their predictive power

to tighten an identified set. I focus on the set-identified models with high-dimensional covariates and pro-

vide two-stage estimation and inference methods for an identified set. In the first stage, I select covari-

ates (or estimate a nonparametric function of them) using machine learning tools. In the second stage, I

plug the estimates into the moment equation for the identified set’s boundary that is insensitive, or, for-

mally, Neyman-orthogonal, to the bias in the first-stage estimates. I establish the uniform limit theory for

the proposed estimator and the Bayesian bootstrap procedure and provide a general recipe to construct a

Neyman-orthogonal moment function starting from a non-orthogonal one.

My method’s main application is to estimate Lee (2008) nonparametric bounds on the average treatment

effect in the presence of endogenous selection. I derive a Neyman-orthogonal moment equation for Lee

(2008)’s bounds and provide primitive sufficient conditions for their validity. Moreover, I substantially

tighten Lee (2008)’s bounds in the data from Angrist et al. (2006). In addition, I also provide the low-level

sufficient conditions to estimate sharp identified sets for two other parameters - the causal parameter in the

partially linear model and the average partial derivative when the outcome variable is interval-censored.

7 Appendix

Notation. We use the standard notation for vector and matrix norms. For a vector v ∈ Rd , denote the

`2 norm of a as ‖v‖2 :=
√

∑
d
j=1 v2

j . Denote the `1 norm of v as ‖v‖1 := ∑
d
j=1 |v j|, the `∞ norm of v as

‖v‖∞ := max1≤ j≤d |v| j, and `0 norm of v as ‖v‖0 := ∑
d
j=1 1{a j ̸=0}. Denote a unit sphere as Sd−1 = {α ∈

Rd : ‖α‖ = 1}. For a matrix M, denote its operator norm by ‖M‖2 = supα∈Sd−1 ‖Mα‖. We use standard

notation for numeric and stochastic dominance. For two numeric sequences {an,bn},n ≥ 1 an . bn stands
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for an = O(bn). For two sequences of random variables {an,bn,n ≥ 1}: an .P bn stands for an = OP(bn).

Finally, let a∧b = min{a,b} and a∨b = max{a,b}. For a random variable ξ , (ξ )0 := ξ −E[ξ ].

Fix a partition k in a set of partitions [K] = {1,2, . . . ,K}. Define the sample average of a function f (·)

within this partition as: En,k[ f ] = 1
n ∑i∈Jk

f (xi) and the scaled normalized sample average as:

Gn,k[ f ] =
√

n
n ∑

i∈Jk

[ f (xi)−E[ f (xi)|Jc
k ]],

where [·|Jc
k ] := [·|(Wi, i ∈ Jc

k )]. For each partition index k ∈ [K] define an event En,k := {ξ̂k ∈ Ξn} as the

nuisance estimate ξ̂k belonging to the nuisance realization set GN . Define EN = ∩K
k=1En,k as the intersection

of such events.

7.1 Proof of Section 2

Lemma 11 (Derivation of Equation (2.6) ). Let the Assumptions 1 and 2a of Lee (2008) hold. Let Pr(D =

0|X) = Pr(D = 1|X) = 1
2 hold. Then, the bounds given in Equation (2.6) coincide with the bounds given in

Proposition 1b of Lee (2008).

Proof. The lower bound of Lee (2008) (Proposition 1b) is given by

∫
x∈X

f (x|D = 0,S = 1)E[Y |D = 1,S = 1,Y ≤ y{p0(x),x},X = x]

=
∫

x∈X

f (x|D = 0,S = 1)
f (x|D = 1,S = 1)

E[Y |D = 1,S = 1,Y ≤ y{p0(x),x},X = x] f (x|D = 1,S = 1)

=
∫

x∈X

f (x|D = 0,S = 1)
f (x|D = 1,S = 1)

1
p0(x)

E[Y 1{Y≤y{p0(x),x}}
|D = 1,S = 1,X = x] f (x|D = 1,S = 1), (7.1)

where p0(X) in my notation is 1− p(x) in Lee (2008)’s notation. Bayes’ rule implies

f (x|D = 0,S = 1)
f (x|D = 1,S = 1)

=
Pr(X = x,D = 0,S = 1)Pr(D = 1,S = 1)
Pr(D = 0,S = 1)Pr(X = x,D = 1,S = 1)

(7.2)

Definition of p0(X) and Bayes’ rule imply

p0(x) =
Pr(S = 1|D = 0,X = x)
Pr(S = 1|D = 1,X = x)

(7.3)

=
Pr(S = 1,D = 0,X = x)Pr(D = 1|X = x)
Pr(S = 1,D = 1,X = x)Pr(D = 0|X = x)
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Plugging (7.2) and (7.3) into (7.1) gives (2.7)

∫
x∈X

f (x|D = 0,S = 1)
f (x|D = 1,S = 1)

1
p0(x)

E[Y 1{Y≤y{p0(x),x}}
|D = 1,S = 1,X = x] f (x|D = 1,S = 1) (7.4)

= E
D ·S ·Y ·1{Y≤y{p0(x),x}}

Pr(D = 0|X = x)

Pr(D = 0,S = 1)Pr(D = 1|X = x)
(7.5)

The proof for the upper bound is similar.

Lemma 12 (Equivalence of Long and Short Definitions of the Partially Linear Predictor). Suppose the

matrix Σ = E[D−η0(X)][D−η0(X)]′ is invertible. Then, the identified set B given by:

B= {β = arg min
b∈Rd , f∈M

E(Y −D⊤b− f (X))2, YL ≤ Y ≤ YU} (7.6)

coincides with the identified set given by (2.17).

Proof. Fix a random variable Y in a random interval [YL,YU ]. Let us show that the minimizer β0 of (7.6)

coincides with the minimizer β s
0 defined as:

β
s
0 = arg min

b∈Rd , f∈M
E(Y − (D−η0(X))′b)2, (7.7)

where η0(X) = E[D|X ]. For each b in (2.15) we solve for f (X) = fb(X) as a function of b. The solution

fb(X) is a conditional expectation function:

fb(X) = E[Y −Db|X ] = E[Y |X ]−η0(X).

Substituting fb(X) into (2.15) gives:

β = arg min
b∈Rd

E(Y −E[Y |X ]− (D−η0(X))′b)2. (7.8)
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Expanding (m+n)2 = m2 +2mn+n2 with m = Y − (D−η0(X))′b and n = E[Y |X ] gives:

β =i arg min
b∈Rd

E(Y − (D−η0(X))′b)2

−2E(Y − (D−η0(X))′b)E[Y |X ]

+E(E[Y |X ])2

=ii arg min
b∈Rd

E(Y − (D−η0(X))′b)2 −E(E[Y |X ])2

=iii arg min
b∈Rd

E(Y − (D−η0(X))′b)2

Since E[(D−η0(X))′b]E[Y |X ] = 0 and E(Y − (D−η0(X))′b)E[Y |X ] = E[Y |X ]2, ii follows. Since E[Y |X ]2

does not depend on b, iii follows. The solution to the minimization problem in iii coincides with β s
0 in

(2.17). According to Bontemps et al. (2012) (Proposition 2), the set (2.17) is a sharp identified set for β0.

7.2 Proofs of Section 3

Proof of Theorem 1, Σ is known. To simplify notation, we assume Σ = Id . The proof holds for any invertible

matrix Σ. Let us focus on the partition k ∈ [K].

√
n|En,k[g(Wi,q, ξ̂ (q))−g(Wi,q,ξ0(q))]| ≤

√
n|E
[
g(Wi,q, ξ̂ (q))−g(Wi,q,ξ0(q))

]
|

+ |Gn,k[g(Wi,q, ξ̂ (q))−g(Wi,q,ξ0(q))]|

=: |i(q)|+ |ii(q)|.

Step 1. Recognize that |i(q)| converges to zero conditionally on the partition complement Jc
k and the event

EN :

|i(q)| := sup
q∈Sd−1

√
n|E[g(Wi,q, ξ̂ (q))−g(Wi,q,ξ0(q))|EN ∪ Jc

k ]|

≤ sup
q∈Sd−1

sup
ξ∈Ξn

√
n|E[g(Wi,q,ξ (q))−g(Wi,q,ξ0(q))|EN ∪ Jc

k ]|

≤ sup
q∈Sd−1

sup
ξ∈Ξn

√
n|E[g(Wi,q,ξ (q))−g(Wi,q,ξ0(q))]|

≤
√

nµn = o(1).

By Lemma 6.1 of Chernozhukov et al. (2017a), the term i(q) = O(µn) = o(1) unconditionally.
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Step 2. To bound the second quantity, consider the function class

F
ξ̂ ξ0

= {g(Wi,q, ξ̂ (q))−g(Wi,q,ξ0(q)), q ∈ Sd−1}.

for some fixed ξ̂ . By definition of the class,

E sup
q∈Sd−1

|ii(q)| := Esup
f∈F

|Gn,k[ f ]|.

We apply Lemma 6.2 of Chernozhukov et al. (2017a) conditionally on the hold-out sample Jc
k and the event

EN so that ξ̂ (q) = ξ̂k can be treated as a fixed member of Ξn. The function class F
ξ̂ ξ0

is obtained as the

difference of two function classes: F
ξ̂ ξ0

:= F
ξ̂
−Fξ0 , each of which has an integrable envelope and bounded

logarithm of covering numbers by Assumption 4. In particular, one can choose an integrable envelope as

F
ξ̂ ξ0

:= F
ξ̂
+Fξ0 and bound the covering numbers as:

logsup
Q

N(ε‖F
ξ̂ ξ0

‖Q,2,Fξ̂ ξ0
,‖ · ‖)≤ logsup

Q
N(ε‖F

ξ̂
‖Q,2,Fξ̂

,‖ · ‖)+ logsup
Q

N(ε‖Fξ0‖Q,2,Fξ0 ,‖ · ‖)

≤ 2v log(a/ε), for all 0 < ε ≤ 1.

Finally, we can choose the speed of shrinkage (r′)2
n such that

sup
q∈Sd−1

sup
ξ∈Ξn

(
E[g(Wi,q,ξ (q))−g(Wi,q,ξ0(q))]2

)1/2 ≤ r′n,

the application of Lemma 6.2 of Chernozhukov et al. (2017a) gives with M := maxi∈Ic
k

F
ξ̂ ξ0

(Wi)

sup
q∈Sd−1

|ii(q)| ≤ sup
q∈Sd−1

|Gn,k[g(Wi,q, ξ̂ (q))−g(Wi,q,ξ0(q))]|

≤
√

v(r′)2
n log(a‖F

ξ̂ ξ0
‖P,2/r′n)+ v‖M‖P,c′/

√
n log(a‖F

ξ̂ ξ0
‖P,2/r′n)

.P r′n log1/2(1/r′n)+n−1/2+1/c′ log1/2(1/r′n)

where a constant ‖M‖P,c′ ≤ n1/c′‖F‖P,c′ for the constant c′ ≥ 2 in Assumption 4.

Step 3. Asymptotic Normality. By Theorem 19.14 from van der Vaart (1998), Assumption 4 implies that

the function class Fξ0 = {g(W,q,ξ0(q)), q∈ Sd−1} is P-Donsker. Therefore, the asymptotic representation

follows from the Skorohod-Dudley-Whichura representation, assuming the space L∞(Sd−1) is rich enough

to support this representation.
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Proof of Theorem 1, Σ is unknown. Step 1.
√

n-Convergence of Matrix Estimator. Let us show that there

exists φN = o(1) and a constant R such that with probability at least 1−φN ,

‖Σ̂−Σ‖ ≤ RN−1/2,

where

Σ̂ := ENA(Wi, η̂i) =
1
K

K

∑
k=1

En,kA(Wi, η̂i)−En,kA(Wi,η0)︸ ︷︷ ︸
I1,k

+ENA(Wi,η0)−EA(Wi,η0).

Recognize that the first and the second moments of
√

NI1,k converge to zero conditionally on the partition

complement Jc
k and the event EN . The first moment is bounded as:

√
n‖EI1,k|EN ∪ Jc

k ]‖ :=
√

n‖E[A(Wi, η̂)−A(Wi,η0)]|EN ∪ Jc
k ]‖

≤ sup
η∈TN

√
n‖E[A(Wi,η)−A(Wi,η0)]|EN ∪ Jc

k ]‖

≤
√

nµn = o(1).

By Assumption 4, the bound on the second moment ‖I1,k‖2 applies:

nE[‖I1,k‖2|E∪ Jc
k ]≤ sup

η∈Tn

E‖A(Wi,η)−A(Wi,η0)‖2 ≤ δn = o(1).

Applying the Markov inequality conditionally on Jc
k ,EN yields: ii = oP(δn). By Lemma 6.1 of Cher-

nozhukov et al. (2017a), conditional convergence to zero implies unconditional convergence. Therefore,

for each k ∈ [K], I1,k = oP(1). Since the number of partitions K is finite, 1
K ∑

K
k=1 I1,k = oP(1). The applica-

tion of the Law of Large Numbers for Matrices to the term EN [A(Wi,η0)−Σ] yields: ‖ENA(Wi,η0)−Σ‖=

OP(N−1/2).

Step 2. Decomposition of the error. Let P be as defined in (3.7). Fix a generic element of this set p ∈ P
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and ξ ∈ ΞN .

ENg(Wi, p,ξ (p)) = ENg(Wi, p0(q),ξ0(p0(q))) (7.9)

+EN [g(Wi, p,ξ (p))−g(Wi, p0(q),ξ0(p0(q)))]0︸ ︷︷ ︸
I3

+E[g(Wi, p,ξ (p))−g(Wi, p0(q),ξ0(p0(q)))]︸ ︷︷ ︸
I4

.

Consider the following expansion:

I4 = E[g(Wi, p,ξ (p))−g(Wi, p,ξ0(p))]+E[g(Wi, p,ξ0(p))−Eg(Wi, p0(q),ξ0(p0(q)))]

= E[g(Wi, p,ξ (p))−Eg(Wi, p,ξ0(p))]︸ ︷︷ ︸
I4,1

+J0(p0(q))[p− p0(q)]+R(p, p0(q)),

where the gradient J0(p0(q))=∇p0(q)Eg(Wi, p0(q),ξ0(p)). By Assumption 5, the remainder term R(p, p0)=

o(‖p− p0(q)‖) uniformly over q ∈ Sd−1. By Assumption 4 applied on P, the term I4,1 in (7.9) is bounded

as:

√
nI4,1 =

√
n|E[g(Wi, p,ξ (p))−g(Wi, p,ξ0(p))]|

≤
√

nsup
p∈P

sup
ξ∈Ξn

|E[g(Wi, p,ξ (p))−g(Wi, p,ξ0(p))]|

≤
√

nr′′n = o(1).

Step 4. The bound on I3. We have

Fξ ξ0 := {g(·, p,ξ (p))−g(·, p0(q),ξ (p0(q))), p ∈ P,q ∈ Sd−1,‖p− p0(q)‖ ≤ RN−1/2}.

We apply Lemma 6.2 of Chernozhukov et al. (2017a) conditionally on Jc
k and EN , so that ξ̂ can be treated as

fixed. By Assumption 4, the class F
ξ̂ ξ0

has a measurable envelope F
ξ̂ ξ0

:= F
ξ̂
+Fξ0 :

sup
q∈Sd−1

sup
p∈P,‖p−p0(q)‖≤RN−1/2

|g(Wi, p,ξ (p))−g(Wi, p0(q),ξ (p0(q)))|

≤ sup
q∈Sd−1

sup
p∈P,‖p−p0(q)‖≤RN−1/2

|g(Wi, p,ξ (p))|+ sup
q∈Sd−1

sup
p∈P,‖p−p0(q)‖≤RN−1/2

|g(Wi, p,ξ (p))|

≤ Fξ +Fξ0 .
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Moreover, the uniform covering entropy of the function class Fξ ξ0 := Fξ +Fξ0 is bounded by the sum of the

entropies of Fξ and Fξ0 . Finally,

sup
q∈Sd−1

sup
p∈P,‖p−p0(q)‖≤RN−1/2

sup
ξ∈Ξn

(
E(g(Wi, p,ξ (p))−g(Wi, p0(q),ξ0(p0(q))))2)1/2

. r′n log1/2(1/r′n)+n−1/2+1/c log1/2 n.

Lemma 13. Let P be as in (3.7). Let {Di(p), p ∈ P} be a function class with a bounded uniform covering

entropy and EDi(p) = 0 ∀p ∈ P. Let (Di(p))N
i=1 be an i.i.d sequence of random functions. Let (ei)

N
i=1 be

an i.i.d sequence of Exp(1) random variables independent from (Di(p))N
i=1. Then uniformly in P

√
NEN

ei

ē
Di(p) =

√
NENeiDi(p)(1+oP(1)).

Proof follows from Theorem 3.4 of Chandrasekhar et al. (2011).

Lemma 14. Let Assumptions 3 - 4 hold. Then

√
NEN

(
g(Wi,(Σ̃

−1)⊤q, ξ̂ ((Σ̃−1)⊤q))−g(Wi,(Σ̃
−1)⊤q,ξ0((Σ̃

−1)⊤q))
)ei

ē
= oP(1).

Proof. Step 1. Decompose the sample average into the sample averages within each partition:

EN
(
g(Wi,(Σ̃

−1)⊤q, ξ̂ (p))−g(Wi,(Σ̃
−1)⊤q,ξ0((Σ̃

−1)⊤q))
)ei

ē

=
1
K

K

∑
k=1

En,k
(
g(Wi,(Σ̃

−1)⊤q, ξ̂ (p))−g(Wi,(Σ̃
−1)⊤q,ξ0((Σ̃

−1)⊤q))
)ei

ē
.

Since the number of partitions K is finite, it suffices to show that the bound holds on every partition:

En,k
(
g(Wi,(Σ̃

−1)⊤q, ξ̂ (p))−g(Wi,(Σ̃
−1)⊤q,ξ0((Σ̃

−1)⊤q))
)ei

ē
= oP(1).

Let EN := ∩K
k=1{ξ̂Ic

k
∈ Ξn}. By Assumption 4 Pr(EN) ≥ 1−KφN = 1−o(1). The analysis below is condi-

tionally on EN for some fixed element ξ̂k ∈ Ξn. Since the probability of EN approaches one, the statements

continue to hold unconditionally, which follows from the Lemma 6.1 of Chernozhukov et al. (2017a).

Step 2. Consider the function class Fξ ξ0 := {(g(Wi, p,ξ (p))−g(Wi, p,ξ0(p))), p ∈ P}. Consider the

function class Fe
ξ ξ0

:= {(g(Wi, p,ξ (p))−g(Wi, p,ξ0(p)))ei, p ∈ P}. The function class is obtained by the
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multiplication of a random element of class Fξ ξ0 by an integrable random variable ei. Therefore, Fe
ξ ξ0

is

also P-Donsker and has bounded uniform covering entropy. The expectation of the random element of the

class Fe
ξ ξ0

is bounded as:

√
nsup

p∈P
|E[g(Wi, p, ξ̂ (p))−g(Wi, p,ξ0(p))|EN ]|. sup

ξ∈Ξn

E[g(Wi, p,ξ (p))−g(Wi, p,ξ0(p))]

.
√

nµn = o(1).

The variance of each element of the class Fe
ξ ξ0

is bounded as:

sup
p∈P

sup
ξ∈Ξn

E((g(Wi, p,ξ (p))−g(Wi, p,ξ0(p)))0ei)
2 = sup

p∈P
sup
ξ∈Ξn

E
(
(g(Wi, p,ξ (p))−g(Wi, p,ξ0(p)))0)2Ee2

i

≤ 2sup
p∈P

sup
ξ∈Ξn

E((g(Wi, p,ξ (p))−g(Wi, p,ξ0(p))))2

. r′′n ,

where the bound follows from the conditional independence of ei from Wi, Ee2
i = 2 for ei ∼ Exp(1), and

Assumption 4. By Lemma 13

E[sup
p∈P

Gn,k[(g(Wi, p,ξ (p))−g(Wi, p,ξ0(p)))0]
ei(1− ē)

ē
|EN ] = oP(1).Q.E.D.

Lemma 15. Let Assumptions 3 - 4 hold. Consider the function class Fpp0 = {g(Wi, p,ξ0(p))−g(Wi, p0,ξ0(p0)), ‖p−

p0(q)‖ ≤ N−1/2, q ∈ Sd−1, p ∈ P}. Then uniformly on Fpp0 ,

√
NEN

(
g(Wi,(Σ̃

−1)⊤q,ξ0((Σ̃
−1)⊤q)−g(Wi,(Σ

−1)⊤q,ξ0((Σ
−1)⊤q))

)ei

ē

=
√

Nq′Σ−1(Σ̃−Σ)Σ−1G(Σ−1q)+oP(1),

where the gradient G(p) is defined in Assumption 5.

Proof. Consider the function class Fe
pp0

= {ei(g(Wi, p,ξ0(p))−g(Wi, p0,ξ0(p0))), ‖p− p0(q)‖≤N−1/2, q∈

Sd−1, p ∈ P}. The function class is obtained by the multiplication of a random element of class Fpp0 by an

integrable random variable ei. Therefore, Fe
pp0

is also P-Donsker and has bounded uniform covering entropy.
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The expectation of the random element is as decomposed as:

E[(g(Wi, p,ξ0(p))−g(Wi, p0,ξ0(p0)))] = (p− p0) ·G(p0)+R(p, p0).

By Assumption 5, the remainder term R(p, p0) = o(‖p− p0(q)‖) uniformly over q ∈ Sd−1. The variance of

each element of the class Fe
pp0

is bounded as:

E[(g(Wi, p,ξ0(p))−g(Wi, p0,ξ0(p0)))
0e2

i ]
2 ≤ 2E[g(Wi, p,ξ0(p))−g(Wi, p0,ξ0(p0))]

2 . r′n,

where the bound follows from the conditional independence of ei from Wi, E(ei)
2 = 2 for ei ∼ Exp(1), and

Assumption 4. By Lemma 13

E[sup
p∈P

Gn,k[(g(Wi, p,ξ0(p))−g(Wi, p0,ξ0(p0)))
0]

ei(1− ē)
ē

|EN ] = oP(1).Q.E.D.

Proof of Theorem 2. The difference between the bootstrap and the true support function as follows:

√
N(σ̃(q,B)−σ(q,B)) =

1√
N

N

∑
i=1

ei

ē

(
g(Wi,(Σ̃

−1)⊤q, ξ̂ ((Σ̃−1)⊤q))−g(Wi,(Σ̃
−1)⊤q,ξ0((Σ̃

−1)⊤q))
)

︸ ︷︷ ︸
Kξ ξ0

(q)

+
1√
N

N

∑
i=1

ei

ē
(g(Wi,(Σ̃

−1)⊤q,ξ0((Σ̃
−1)⊤q))−g(Wi,(Σ

−1)⊤q,ξ0((Σ
−1)⊤q)))︸ ︷︷ ︸

Kpp0 (q)

+
1√
N

N

∑
i=1

ei

ē
(g(Wi,(Σ

−1)⊤q,ξ0((Σ
−1)⊤q))−σ(q,B))︸ ︷︷ ︸

Ke

By Lemma 14 supq∈Sd−1 |Kξ ξ0 |= oP(1). By Lemma 15 Kpp0(q)=−q′Σ−1(ENeiA(Wi,η0)−Σ)Σ−1G((Σ−1)⊤q)+

oP(1) uniformly in q. By Lemma 13,

Ke =
1√
N

N

∑
i=1

ei

ē
(g(Wi,(Σ

−1)⊤q,ξ0((Σ
−1)⊤q))−σ(q,B))

=i 1√
N

N

∑
i=1

ei

ē
(g(Wi,(Σ

−1)⊤q,ξ0((Σ
−1)⊤q)))0

=ii 1√
N

N

∑
i=1

ei(g(Wi,(Σ
−1)⊤q,ξ0((Σ

−1)⊤q)))0 +oP(1),
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where i follows from (3.8) and ii from Lemma 13. A similar argument applies to the leading term of Kpp0

q′Σ−1(EN
ei

ē
A(Wi,η0)−Σ)Σ−1G((Σ−1)⊤q) = q′Σ−1(ENeiA(Wi,η0)−Σ)Σ−1G((Σ−1)⊤q)+oP(1).

The first statement of Theorem 2 follows from:

S̃N(q) =i
√

N(σ̃(q,B)− σ̂(q,B))

=
√

N(σ̃(q,B)−σ(q,B)− (σ̂(q,B)−σ(q,B)))

=ii 1√
N

N

∑
i=1

eih(Wi,q)+oP(1)

=
1√
N

N

∑
i=1

e0
i (h(Wi,q))0,

where i is by definition of the bootstrap support function process and ii is by definition of h(W,q) in Theorem

1. Once the asymptotic approximation conditional on the data has been established all further statements

follows from Steps 2 and 3 of the Proof of Theorem 3 Chandrasekhar et al. (2011).

7.3 Proofs of Section 3.3

Below we present examples of bias correction terms α(W, p,ξ (p)) for various types of functional nuisance

parameter η . In order to guess a general form of these bias correction terms we have relied on the previous

work that used semiparametric efficiency theory to produce an efficient (and, therefore, Neyman-orthogonal)

score. In particular, a general form of a bias correction term for conditional expectation functions is given

in Newey (1994) and for average partial derivatives in Newey and Stoker (1993).

Adding a level of generality helps to understand the derivation. Suppose one is interested in the function

M(p) defined by the following equation:

M(p)−Em(W, p,η0) = 0, (7.10)

where m(W, p,η) : W×P×T → Rdim(m) is a measurable moment function. We constructed a bias correc-

tion term α(W, p,ξ (p)) such that the function:

g(W, p,ξ (p)) = m(W, p,η)+α(W, p,ξ (p) (7.11)
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obeys orthogonality condition with respect to ξ at x0 for all p ∈ P.

Proof of Lemma 3. Fix a vector p in P. Let us show that the Gateaux derivative of E[g(W, p,ξ (p)] with

respect to ξ (p) at ξ0(p) is equal to zero. The derivative with respect to η at η0 is:

∂η0Eg(W, p,ξ0(p)) = ∂η0Em(W, p,η0(X))[η(X)−η0(X)]

− γ0(p,X)I0(X)−1
∂η0ER(W,η0)[η(X)−η0(X)]

=i EX
[
∂η0E[m(W, p,η0(X))|X ]− γ0(p,X)I0(X)−1I0(X)[η(X)−η0(X)]

]
=ii 0,

where equality i follows from the definition of I0(X) = ∂η0E[R(W,η0)|X ] and equality ii follows from the

definition of γ0(p,X) = ∂η0E[m(W, p,η0(X))|X ]. The derivative with respect to I(X) at I0 is:

∂I0Eg(W, p,ξ0(p)) =−EX I0(X)−2
γ0(p,X)ER(W,η0(X))[I(X)− I0(X)]

= 0

by Equation (3.17). The derivative with respect to γ(p, ·) at γ0(p, ·) is:

∂γ0Eg(W, p,ξ0(p)) =−EX I0(X)−1ER(W,η0(X))[γ(p,X)− γ0(p,X)]

= 0

by Equation (3.17).

Lemma7 3 derives a general form of a bias correction term for the case η0(X) is defined via the condi-

tional exogeneity restriction (3.17). In our applications, we consider two important cases of this Lemma: a

conditional expectation function (Lemma 4) and a conditional quantile function (Lemma 5), respectively.

Lemma 4 is a special case of Lemma 3 with R(W,η(X)) =U −η(X).

Proof of Lemma 4. Consider the setup of Lemma 3 with

R(W,η(X)) :=U −η(X).

Then, I0(X) := ∂η0E[R(W,η0(X))] =−1 and is bounded away from zero a.s. in X . Therefore, by Lemma 3

7Lemma 3 was co-developed in the co-authored project "Plug-in Regularized Estimation of High-Dimensional Parameters in
Nonlinear Semiparametric Models" with Vasilis Syrgkanis, Denis Nekipelov, and Victor Chernozhukov.
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the bias correction term is equal to

α(W, p,ξ (p)) := γ(p,X)(U −η(X)),

where γ0(p,X) := ∂η0E[m(W, p,η0)|X ].

Lemma 5 is a special case of Lemma 3 with R(W,η(X)) = 1{U≤η(X)}−u0, where u0 ∈ (0,1) is a given

quantile level.

Proof of Lemma 5. Let u0 ∈ (0,1) be a given quantile level. Suppose the true value η0(X) of the nuisance

parameter η(X) is the conditional quantile function η0(X) = QU |X=x(u0,x) of level u0. Consider the setup

of Lemma 3 with

R(W,η) := 1U≤η(X)−u0.

Then,

I0(X) := ∂η0E[1U≤η0(X)|X ] = fU |X(η0(X))

where fU |X(η0(X)) is the conditional density of U given X evaluated at η0(X). By Assumptions of Lemma

5, fU |X(η0(X)) is bounded away from zero a.s. in X . Therefore, by Lemma 3 the bias correction term is

equal to

α(W, p,ξ (p)) :=−γ(p,X)
1U≤η(X)−u0

l(X)
,

where γ0(p,X) := ∂η0E[m(W, p,η0)|X ] and l0(X) = fU |X(η0(X)).

Lemma 16 (Bias Correction term for Average Partial Derivative). Suppose the true value η0(D,X) of the

functional parameter η(D,X) is the gradient of the logarithm of the conditional density of D given X:

η0(D,X) = ∂D log f0(D|X) = ∂d log f (D = d|X). Let the moment function be:

m(W, p,η(D,X)) := p⊤η(D,X)Y.

Define the bias correction term

α(W, p,ξ (p)) := p⊤[−η(D,X)µ(D,X)+∂Dµ(D,X)],
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where ξ (p) = ξ (D,X) := {η(D,X),µ(D,X)} consists of two P-square-integrable function of D,X which do

not depend on p. Moreover, the true value of η(D,X) is η0(D,X) = ∂d log f (D = d|X), and that of µ(D,X)

is µ0(D,X) := E[Y |D,X ]. Then, the moment function g(W, p,ξ (p)) in (7.11) has a zero Gateaux derivative

with respect to ξ (p) at ξ0(p) uniformly on P:

∂ξEg(W, p,ξ0)[ξ −ξ0] = 0, ∀p ∈ P.

Lemma 16 is the extension of Newey and Stoker (1993) to set-identified case.

Proof of Lemma 6. Consider the setup of Lemma 3. Since each component ηl(X), l ∈{1,2, . . . ,L} is defined

by a separate exclusion restriction, the matrix I0(X) is a diagonal matrix whose l’th element on the diagonal

is equal to Ill,0(X) := ∂ηl,0E[Rl(W,ηl,0(X))|X ]. Therefore,

α(W, p,ξ (p)) = γ(p,X)I(X)−1R(W,η(X))

=
L

∑
l=1

γl(p,X)Ill(X)−1Rl(W,ηl(X))

=
L

∑
l=1

α(W, p,ξl(p)).

Proof of Lemma 16. Let ξ (p,X)= ξ (X)= {η(D,X),µ(D,X)} be a P-square integrable vector-valued func-

tion that does not depend on p.

g(W, p,ξ ) = p⊤η(D,X)Y + p⊤[−η(D,X)µ(D,X)+∂Dµ(D,X)].

The first-order Gateaux derivative of Eg(W, p,ξ ) w.r.t ξ at ξ0 is equal to:

∂ξ0Eg(W, p,ξ0)[ξ −ξ0] =

 p⊤E[η(D,X)−∂D log f0(D|X)][Y −µ0(D,X)]

E[∂D[µ(D,X)−µ0(D,X)]−η0(D,X)[µ(D,X)−µ0(D,X)]]


=

0

0

 ,
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where the second equality follows from integration by parts:

E[∂D[µ(D,X)−µ0(D,X)]−η0(D,X)[µ(D,X)−µ0(D,X)]]

= E[η0(D,X)[µ(D,X)−µ0(D,X)]−η0(D,X)[µ(D,X)−µ0(D,X)]

= 0.

Proof of Lemma 7. Fix an element η in the realization set TN . Define an event of an incorrectly chosen sign

in the indicator function 1{·}:

E := {1p⊤Vη>0 ̸= 1p⊤Vη0>0}= {p⊤Vη > 0 > p⊤Vη0 , p⊤Vη < 0 < p⊤Vη0}.

Recognize that the event E is included into the event

Eηη0 := {0 < |p⊤Vη0 |< |p⊤Vη − p⊤Vη0 |},

that is: E ⊆ Eηη0 a.s. . Therefore, the contribution of an incorrectly chosen sign in the indicator function

admits the following bound, where we dropped the dependence of YL and YU on η in the notation:

∣∣Ep⊤Vη(YU −YL)(1{p⊤Vη>0}−1{p⊤Vη0>0})
∣∣

=
∣∣Ep⊤Vη(YU −YL)1{E}

∣∣ (Definition of E)

≤
∣∣Ep⊤Vη(YU −YL)1{Eηη0}

∣∣ (E⊆ Eηη0 a.s. )

≤ BUL
∣∣Ep⊤Vη1{Eηη0}

∣∣ (Assumption (a))

≤ BUL
∣∣Ep⊤Vη01{Eηη0}

∣∣+BUL
∣∣Ep⊤(Vη −Vη0)1{Eηη0}

∣∣ (Vη =Vη0 +Vη −Vη0)

:= BUL(i+ ii)

The first-order term is bounded by an L2-bound of the error Vη −Vη0

i = E|p⊤Vη0 |1{0<|p⊤Vη0 |≤|p⊤Vη−p⊤Vη0 |}
≤ E‖p⊤(Vη −Vη0)‖2 ≤ sup

p∈P
‖p‖E(Vη −Vη0)‖2.

The second-order term is bounded by Assumption (2):

ii = E|p⊤Vη − p⊤Vη0 |1{0<|p⊤Vη0 |≤|p⊤Vη−p⊤Vη0 |}
≤ E‖Vη −Vη0‖2
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Therefore, i+ ii . E‖Vη −Vη0‖2 = o(N−1/2).

Lemma 17 (From Zero Gateaux Derivative to Uniform Near Orthogonality). Let M(p) be a target function

defined by (7.10) on a compact set P. Suppose Assumption 4 holds on P. Moreover, the moment condition

(7.11) has zero Gateaux derivative for all vectors p in P. Then, the moment condition (7.11) satisfies

Assumption 4 uniformly on P.

Proof. We repeat the proof of Step 2, Lemma 6.3 in Chernozhukov et al. (2017a). Consider a Taylor

expansion of the function r → E[g(W, p,r(ξ (p)−ξ0(p))+ξ0(p))], r ∈ (0,1).

sup
p∈P

sup
ξ∈Ξn

|E[g(W, p,ξ (p))−g(W, p,ξ0(p))]|

≤ sup
p∈P

sup
ξ∈Ξn

|∂ξ0Eg(W, p,ξ0(p))[ξ (p)−ξ0(p)]|

+ sup
p∈P

sup
ξ∈Ξn

sup
r∈[0,1)

|
∫ 1

0
2−1

∂
2
r Eg(W, p,r(ξ (p)−ξ0(p))+ξ0(p))dr|

≤ rN = o(N−1/2).

Lemma 18 (Achieving Small Bias Assumption for Support Function). Suppose the conditions of Lemma 7

hold. Let m0(W, p,η) be a smoothened analog of the support function moment (3.6) defined as:

m0(W, p,η) := p⊤VηΓ(YL,η ,YU,η −YL,η , p⊤Vη0).

Let α0(W, p,ξ (p)) be a bias correction term for m0(W, p,η) such that m0(W, p,η)+α0(W, p,ξ (p)) obeys

orthogonality condition with respect to ξ at ξ0 for each p ∈ P. Then, the moment function

g(W, p,ξ (p)) := m(W, p,η)+α0(W, p,ξ (p))

satisfies Assumption 3.

Proof of Lemma 18. Let Ξ be a space of P-square integrable functions, ξ0(p,X) be a functional nuisance

parameter that depends on p, and Ξn be a sequence of realization sets around ξ0(p,X).
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sup
p∈P

sup
ξ∈Ξn

E[g(W, p,ξ (p))−g(W, p,ξ0(p))]

≤ sup
p∈P

sup
ξ∈Ξn

|E[p⊤V (η)Γ(YL,YU −YL, p⊤V (η))− p⊤V (η)Γ(YL,YU −YL, p⊤V (η0))]|

+ sup
p∈P

sup
ξ∈Ξn

|E[p⊤V (η)Γ(YL,YU −YL, p⊤V (η0))+α0(W, p,ξ (p))]|

≤ E‖Vη −Vη0‖2 + rN

where the bound on the first summand is by Lemma 7 and on the second one by Lemma 17.

Lemma 19 (Maximal Inequality for Support Function). Let R and C be positive constants. Assume there

exist c > 2 such that the vector (Vη ,YL,η ,YU,η) is LP,c-integrable: ‖(Vη ,YL,η ,YU,η)‖LP,c ≤C < ∞. Then, the

function class Fη = {p⊤V (η)Γ(YL,η ,YU,η −YL,η , p⊤V (η)), ‖p− p0(q)‖ ≤ RN−1/2,q ∈ Sd−1} satisfies

Assumption 4(1,2,3(a)). If, in addition, the function class

Aξ = {α0(W, p,ξ (p)), ‖p− p0(q)‖ ≤ RN−1/2,q ∈ Sd−1}

satisfies Assumption 4, so does the class Rg = {g(W, p,ξ (p)), ‖p− p0(q)‖ ≤ RN−1/2,q ∈ Sd−1}.

Proof. Let η ∈ Ξn be a fixed element of the nuisance realization set. Let Fη = λmax‖V‖η(|YL,η |+ |YU,η |)

be a measurable envelope. By the condition of the Lemma, there exists c > 2 such that ‖F‖LP,c ≤C. Next,

recognize that the function class

Fη = FL,η +FU−L,η ,

where

FL,η = {p⊤VηYL,η , ‖p− p0(q)‖ ≤ RN−1/2,q ∈ Sd−1}

and

FU−L,η = {p⊤Vη(YU,η −YL,η)1{p⊤Vη>0}, ‖p− p0(q)‖ ≤ RN−1/2,q ∈ Sd−1}.

First, the linear class Lη := {p⊤Vη , ‖p− p0(q)‖ ≤ RN−1/2,q ∈ Sd−1} and the class of the indicators:

Iη := {1{p⊤Vη>0}, ‖p− p0(q)‖ ≤ RN−1/2,q ∈ Sd−1}

have bounded uniform covering entropy (UCE), respectively:

logsup
Q

N(ε,Lη ,‖ · ‖Q,2)≤ d log(a/ε), for all 0 < ε ≤ 1,
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logsup
Q

N(ε,Iη ,‖ · ‖Q,2)≤ d log(a/ε), for all 0 < ε ≤ 1.

The conclusions below follow from Lemma 8.3 of Chandrasekhar et al. (2011). The multiplication of the

class Lη by a random variable YL,η preserves UCE. Third, the product of the classes Lη · Iη has bounded

UCE. Therefore, FL,η and FU−L,η have bounded UCE. Finally, the sum of the classes FL,η ,FU−L,η ,Aξ has

bounded UCE.

7.4 Proofs of Section 4

Proof of Theorem 8. The nuisance parameter η = {η1(X),η2(X),η3(u,X)} whose true value

η0 = {s(0,X),s(1,X),QY |D=1,S=1,X(u,X)}.

The notation η−k,0,k ∈ {1,2,3} stands for the true value of η−k obtained from η by excluding the k’th com-

ponent of the nuisance parameter. Step 1. Derivation of α1(W,η). The nuisance parameter s(0,X) appears

in (4.1) inside the quantile y{1−s(0,X)/s(1,X),X} and in the denominator of (4.1). The Gateaux derivative of the

function E[mU(W,η)|X ] with respect to η1 at η1,0 = s(0,X) is equal to:

∂η1E[mU(W,η1,0;η−1,0)|X ] =

∂η1E[Y 1Y≥QU |X (1−η1,0)/s(1,X),X)|X ,D = 1,S = 1]
s(1,X)Pr(D = 0|X)

Pr(S = 1,D = 0)

= y{1−s(0,X)/s(1,X)}
Pr(D = 0|X)

Pr(S = 1,D = 0)

The application of Lemma 4 gives the bias correction term:

α1(W,η) = γ1(X)

(
(1−D)S

Pr(D = 0|X)
−η1(X)

)
,

where the true value of γ1,0(X) equals to:

γ1,0(X) = y{1−s(0,X)/s(1,X)}
Pr(D = 0|X)

Pr(S = 1,D = 0)
.

Step 2. Derivation of α2(W,η). The nuisance parameter s(1,X) appears inside the quantile function in

Equation (4.1). The Gateaux derivative of the function E[mU(W,η)|X ] with respect to η2 at η2,0 = s(1,X)
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is equal to:

∂η2EmU(W,η2,0)|X ] =−
y{1−s(0,X)/s(1,X),X}s(0,X)Pr(D = 0|X)

s(1,X)Pr(S = 1,D = 0)
.

The application of Lemma 4 gives the bias correction term:

α2(W,η) = γ2(X)

(
DS

Pr(D = 1|X)
− s(1,X)

)
,

where the true value of γ2,0(X) is equal to:

γ2,0(X) =−
y{1−s(0,X)/s(1,X),X}s(0,X)Pr(D = 0|X)

s(1,X)Pr(S = 1,D = 0)
.

Step 3. Derivation of α3(W,η). The nuisance parameter η3(u,x) = QY |D=1,S=1,X=x(u,x) appears in the

numerator of (4.1). The application of Lemma 5 gives the bias correction term:

α3(W,η) =−γ3(X)
1Y≤η3(1−s(0,X)/s(1,X),X)−1+ s(0,X)/s(1,X)

fY |D=1,S=1,X(y{1−s(0,X)/s(1,X),X})
,

where the true value of γ3,0(X) is equal to:

γ3,0(X) =−y{1−s(0,X)/s(1,X),X} fY |D=1,S=1,X(y{1−s(0,X)/s(1,X)})
s(1,X)Pr(D = 0|X)

Pr(D = 0,S = 1)
.

Therefore,

α3(W,η) = y{1−s(0,X)/s(1,X),X}
s(1,X)Pr(D = 0|X)

Pr(D = 0,S = 1)
(
1{Y≤η3(1−s(0,X)/s(1,X),X)}−1+ s(0,X)/s(1,X)

)
Step 4. Define the moment function mL(W,η) for the lower bound as:

mL(W,η) :=
D ·S ·Y 1{Y≤η3(η1/η2,X)} Pr(D = 0|X)

Pr(D = 0,S = 1)Pr(D = 1|X)
. (7.12)

The bias correction term αL(W,η) for βL is:

αL(W,η) =
6

∑
i=4

αi(W,η),
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where the bias correction terms for individual components are:

α4(W,η) = γ4(X)

(
(1−D)S

Pr(D = 0|X)
−η1(X)

)
,

α5(W,η) = γ5(X)

(
DS

Pr(D = 1|X)
−η2(X)

)
,

α6(W,η) =−γ6(X)
(
1{Y≤η3(p0(X),X)}− p0(X)

)
,

and the true values of the nuisance parameters above are:

γ4,0(X) = y{s(0,X)/s(1,X),X}
Pr(D = 0|X)

Pr(S = 1,D = 0)

γ5,0(X) =− y{s(0,X)/s(1,X),X}s(0,X)

s(1,X)
Pr(D=0|X)

Pr(S=1,D=0) and γ6,0(X) = yp0(X)
s(1,X)Pr(D=0|X)

Pr(D=0,S=1) . Define the Neyman-orthogonal

moment functions for the upper and the lower bound as

gU(W,ξU) = mU(W,η)+αU(W,ξU), (7.13)

gL(W,ξL) = mL(W,η)+αL(W,ξL), (7.14)

where the nuisance parameter ξU consists of the original nuisance parameter η and the functions (γi)
3
i=1:

ξU = {η ,(γi)
3
i=1}; the nuisance parameter ξL consists of the original nuisance parameter η and the functions

(γi)
6
i=4: ξU = {η ,(γi)

6
i=4}.

Step 5. To apply Lemma 17 and conclude that Assumption 3 holds, we should verify that the conditional

Hessian of the moment function with respect to η(X) is bounded a.s. in X .

Step 6. Verification of Assumption 4(3(b)). The first derivative ∂ηE[mU(W,η0)|X ] is a composition of

the functions (t1, t2)→ t1/t2, t → t f (t), where f (·) is the conditional density of Y given D = 1,S = 1,X = x,

and the functional elements of ΞU
N : u → η3(u,x). By Assumption 7, each of these functions is bounded and

has a bounded first derivative. Therefore, Assumption 4 holds.

Having established the estimates of the bounds on the expected wage E[Y1|S1 = 1,S0 = 1], we proceed

to deriving the bounds on the actual Average Treatment Effect on the always-employed:

θ := E[Y1 −Y0|S1 = 1,S0 = 1].
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The sharp bounds θL,θU on θ are given by the following moment conditions:

θL = gL(W,η)− (1−D)SY
E[D = 0|X ]s(0,X)

−E[Y |S = 1,D = 0,X ]

(
(1−D)S

E[D = 0|X ]
− s(0,X)

)
,

θU = gU(W,η)− (1−D)SY
E[D = 0|X ]s(0,X)

− E[Y |S = 1,D = 0,X ]

s2(0,X)

(
(1−D)S

E[D = 0|X ]
− s(0,X)

)
,

where the term E[Y |S=1,D=0,X ]
s2(0,X)

( (1−D)S
1−E[D=1|X ] − s(0,X)) is correcting the bias of the estimation of the function

s(0,X).

Remark 1 (Asymptotic Theory for the Average Treatment Effect in Endogenous Sample Selection of Lee

(2008)). Suppose Assumption 7 holds. In addition, suppose the function γ0(X) := E[Y |S = 1,D = 0,X ] is a

P-square integrable function γ(X) such that ‖γ − γ0‖LP,2 ≤ o(N−1/4). Then, the Bounds Estimator obeys:

√
N

 θ̂L −θL

θ̂U −θU

⇒ N (0,Ω) , (7.15)

where Ω is a positive-definite covariance matrix.

Proof of Theorem 10. Step 1. Verification of Assumption 3(1). Consider the original moment function:

m(W, p,η) = p⊤(D−η(X))Γ(YL,YU −YL, p⊤(D−η(X))).

First, we apply Lemma 7 (verified in Step 2) to shift to a smoothened moment function

m0(W, p,η) = p⊤(D−η(X))Γ(YL,YU −YL, p⊤(D−η0(X))).

Second, we apply Lemma 4 to the moment function m0(W, p,η) and derive the bias correction term

α0(W, p,η) =−γ(p,X)[D−η(X)],

where for each p ∈ P the function γ(p, ·) is a P-square integrable function.The true value of the nuisance

parameter ξ (p,X) = {η(X),γ(p,X)} is:

ξ0(p,X) = {E[D|X ],E[(YU −YL)1{p⊤(D−η0(X))>0}|X ]}.
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Therefore,

g(W, p,ξ (p)) = p⊤(D−η(X))[Γ(YL,YU −YL, p⊤(D−η(X)))− γ(p,X)]

has zero Gateaux derivative with respect to ξ (p). Since the function m0(W, p,η) is linear in η , its second

derivative w.r.t η is equal to zero. Therefore, Assumption 4 holds. Assumption 17 implies that Assumption

3 is satisfied. Step 2. Verification of Lemma 7. Assumption 1 of Lemma 7 follows from Assumption 7 (3).

Assumptions 3 and 4 follows from the Assumption 7 (6). Assumption 2 is verified below:

sup
p∈P

sup
η∈TN

E|p⊤Vη − p⊤Vη0 |10<|p⊤Vη0 |<|p⊤Vη−p⊤Vη0 |

= sup
p∈P

sup
η∈TN

E|p⊤(η(X)−η0(X))|10<|p⊤(D−η0(X))|<|p⊤(η(X)−η0(X))|

≤ EX |p⊤(η(X)−η0(X))|
∫ |p⊤(η(X)−η0(X))|

0
ρp⊤(D−η0(X))|X(t,X)dt (E[·] = EX [·]EX [·|X ])

≤ KhEX(p⊤(η(X)−η0(X)))2 (Assumption 7 (4))

≤ Kh‖p‖2EX‖η(X)−η0(X)‖2 (Cauchy Schwartz)

. o(N−1/2). (Assumption 7 (6))

Step 3. Verification of Assumption 3(2). The moment condition for Σ is insensitive to the biased estimation

of η :

∂ηEA(W,η0) = 2∂ηE(D−η0(X))(η(X)−η0(X))⊤ = 0.

Step 4. Verification of Assumption 5. The moment function g(W, p,ξ (p)) takes the form:

g(W, p,ξ (p)) = p⊤(D−η(X))(Γ(YL,YU −YL, p⊤(D−η(X)))− γ(p,X)).

The expectation of g(W, p,ξ (p)) evaluated at ξ0(p) = {η0(X),γ0(p,X)} is equal to:

L(p) := Eg(W, p,ξ0(p)) = p⊤E(D−η0(X))(Γ(YL,YU −YL, p⊤(D−η0(X))),

since Eγ0(p,X)(D−η0(X)) = 0. According to Lemma 3 of Chandrasekhar et al. (2011), the function L(p)

is differentiable on P with a uniformly continuous derivative:

∇L(p) := E(D−η0(X))(Γ(YL,YU −YL, p⊤(D−η0(X))) =: G(p).
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Moreover, the gradient G(p) is uniformly continuous on P. Verification of (3.14). The intermediate Value

Theorem implies:

L(p)−L(p0) = ∇L(p′0)(p− p0) = G(p′0)(p− p0),

where p′0 is a point on the interval [p0, p]. Therefore,

G(p′0)(p− p0) = G(p0)(p− p0)+(G(p′0)−G(p0))(p− p0)

= G(p0)(p− p0)+o(‖p− p0‖),

where the last equality follows from the uniform continuity of G(p) that is established in Lemma 3 of

Chandrasekhar et al. (2011).

Step 5. Verification of Assumption 4. Consider the setting of Lemma 19. Consider the function class

Aξ = {p⊤(D−η(X))γ(p,X), p ∈ P}. Consider an envelope function Fg(X) = ‖p‖‖D−η(X)‖BUL. By

Assumption 10, this function is integrable. Since the class is obtained by multiplying a linear function

p→ p⊤(D−η(X)) by a Lipshitz function γ(p,X), its uniform covering entropy is bounded. The application

of Lemma 19 with the function class Aξ implies that Assumptions 4(4) hold.

Step 6. Verification of Assumption 4. We use the following notation: Yp,η := Γ(YL,YU −YL, p⊤(D−

η(X))), p ∈ P,η ∈ TN . Let us decompose the difference of g(W, p,ξ (p)) and g(W, p,ξ0(p))

g(W, p,ξ (p))−g(W, p,ξ0(p)) := p⊤(D−η(X))(Yp,η − γ(p,X))− p⊤(D−η0(X))(Yp,η0 − γ0(p,X))

= p⊤(η(X)−η0(X))γ(p,X)︸ ︷︷ ︸
I1

+ p⊤(D−η0(X))(γ0(p,X)− γ(p,X))︸ ︷︷ ︸
I2

+ p⊤(D−η0(X))(Yp,η −Yp,η0)︸ ︷︷ ︸
I3

+ p⊤(η0(X)−η(X))(Yp,η −Yp,η0)︸ ︷︷ ︸
I4

.

Under Assumptions 7, the terms Ik,k ∈ {1,2,3,4} exhibit mean square convergence with the rate o(N−1/4):

(EI2
1 )

1/2 . λ
−1
minYUL‖η −η0‖LP,2 = o(N−1/4),

(EI2
2 )

1/2 . λ
−1
minD‖ξ (p)−ξ0(p)‖LP,2 = o(N−1/4),

(EI2
3 )

1/2 . E(p⊤(D−η0(X)))210<|p⊤(D−η0(X)))|<|p⊤(η(X)−η0(X))|BUL

≤ (E|p⊤(η(X)−η0(X))|2)1/2 = o(N−1/4),

(EI2
4 )

1/2 . λ
−1
min2YUL‖η −η0‖LP,2 .
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Under Assumption 7, the terms Sk,k ∈ {1,2,3,4} exhibit mean square convergence:

g(W, p,ξ0(p))−g(W, p0,ξ0(p0)) := p⊤(D−η0(X))(Yp,η0 − γ0(p,X))− p′0(D−η0(X))(Yp0,η0 − γ0(p0,X))

=− p⊤0 (D−η0(X))(γ0(p,X)− γ0(p0,X))︸ ︷︷ ︸
S1

−(p− p0)
⊤(D−η0(X))γ0(p,X)︸ ︷︷ ︸

S2

+ p⊤0 (D−η0(X))(Yp,η0 −Yp0,η0)︸ ︷︷ ︸
S3

+(p− p0)
⊤(D−η0(X))Yp,η0 .︸ ︷︷ ︸

S4

By Assumption 7(9),

(ES2
1)

1/2 . g′N : g′N log(1/g′N) = o(1)

holds. The bound on the mean square convergence of the other terms is as follows:

(ES2
2)

1/2 . ‖p− p0‖DYUL = O(N−1/2),

(ES2
3)

1/2 ≤ (E[p′0(D−η0(X))]210<|p⊤(D−η0(X))|<|(p−p0)⊤(D−η0(X)|)
1/2

≤ ‖p− p0‖D = O(N−1/2),

(ES2
4)

1/2 . ‖p− p0‖DYUL = O(N−1/2).

Proof of Theorem 9. Step 1. Verification of Assumption 3(1). Consider the original moment function:

m(W,q,η) = q⊤η(D,X)Γ(YL,YU ,q⊤η(D,X)).

First, we apply Lemma 7 (verified in Step 2) to shift to a smoothened moment function

m0(W,q,η) = q⊤η(D,X)Γ(YL,YU ,q⊤η0(D,X)).

Second, we apply Lemma 16 to the moment function m0(W,q,η) and derive the bias correction term

α0(W,q,ξ ) =−q⊤η(D,X)µq(D,X)+q⊤∂Dµq(D,X),

where the nuisance parameter ξ = ξ (X) = {η(D,X),γL(D,X),γU−L(D,X)} is a vector-valued P-square
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integrable function that does not depend on q. The true value ξ0 is:

ξ0(q,X) = {∂D log f (D|X),γL,0(D,X),γU−L,0(D,X)}.

For each q ∈ Sd−1 define the function

µq(D,X) := γL(D,X)+ γU−L(D,X)1{q⊤η(D,X)>0}.

Therefore,

g(W, p,ξ ) = m0(W,q,η)+α0(W,q,ξ )

has zero Gateaux derivative with respect to ξ at ξ0. Since the function m0(W,q,η) is linear in η(D,X), its

second derivative w.r.t η(D,X) is equal to zero. Therefore, Assumption 4 holds. Assumption 17 implies

that Assumption 3(1) is satisfied.

Step 2. Verification of the conditions of Lemma 7. Assumptions 1-4 of Lemma 7 follows from As-

sumptions 8 (1)-(3). Step 3. Verification of Assumption 4. Consider the setting of Lemma 19. Consider the

function class

Aξ = {−q⊤Vη µL(D,X)−q⊤Vη1{q⊤Vη}>0(µU(D,X)−µL(D,X))+q⊤∂Dµ(D,X),q ∈ Sd−1}.

This class is obtained in three steps:

1. The classes Lη and Iη are multiplied by random variables µL(D,X) and µU(D,X)− µL(D,X), re-

spectively.

2. The elements of the classes Lη · µL(D,X) and Iη · (µU(D,X)− µL(D,X)) are summed into Lη ·

µL(D,X)+ Iη · (µU(D,X)−µL(D,X)).

3. The class Lη · µL(D,X)+ Iη · (µU(D,X)− µL(D,X)) is added to a linear class {q⊤∂Dµ(D,X)}, q ∈

Sd−1}.

By Lemma 8 of Chandrasekhar et al. (2011), Steps 1,2 and 3 do not change the order of the uniform covering

entropy of the function class.

65



Step 4. Verification of Assumption 4.

g(W,q,ξ (q))−g(W,q,ξ0(q)) = q⊤(∂Dµq(D,X)−∂Dµq,0(D,X))︸ ︷︷ ︸
K1

+q⊤(η(D,X)−η0(D,X))(Yq,η(D,X)−µq(D,X))︸ ︷︷ ︸
K2

+q⊤η0(D,X)(Yq,η(D,X)−Yq,η0(D,X)︸ ︷︷ ︸
K3

+q⊤η0(D,X)(µq,0(D,X))−µq(D,X)︸ ︷︷ ︸
K4

.

By Assumption 8, the following bounds apply: ‖K1‖LP,2 ≤ gN , ‖K2‖LP,2 ≤ gN and ‖K4‖LP,2 ≤ gN where

gN = o(N−1/4). Furthermore, the bound on ‖K3‖LP,2 is as follows:

‖K3‖LP,2 ≤ (E|q⊤η0(D,X)|210<|q⊤η0(D,X)|<|q⊤(η(D,X)−η0(D,X))|)
1/2

≤ (E|q⊤(η(D,X)−η0(D,X))|2)1/2

. ‖η(D,X)−η0(D,X)‖LP,2 = o(N−1/4).

This step completes the proof of Theorem 9.
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