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Abstract

This paper presents a new identification result for causal effects of group-level variables

when agents select into groups. The model allows for group selection to be based on individual

unobserved heterogeneity. This feature leads to correlation between group-level covariates and

unobserved individual heterogeneity. Whereas many of the existing identification strategies rely

on instrumental variables for group selection, I introduce alternative identifying conditions which

involve individual-level covariates that “shift” the distribution of unobserved heterogeneity. I

use these conditions to construct a valid control function. The key identifying requirements on

the observable “shifter” variables are likely to hold in settings where a rich array of individual

characteristics are observed. The identification strategy is constructive and leads to a semipara-

metric, regression-based estimator of group-level causal effects, which I show to be consistent

and asymptotically normal. A simulation study indicates good finite-sample properties of this

estimator. I use my results to re-analyze the effects of school/neighborhood characteristics on

student outcomes, following the work of Altonji and Mansfield (2018), and I find that moving

from a 10th to 90th percentile school/neighborhood increases wages by 17.58%.
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1 Introduction

Policy makers often design interventions to influence individual outcomes through group-level vari-

ables. For instance, a government may relocate disadvantaged children to higher quality schools

to improve their academic performance. Given their potential impact, many studies in economics

have sought to evaluate group-level policy interventions (see Durlauf, 2004; Durlauf and Ioannides,

2010; Graham, 2018, and references therein). Nevertheless, estimation of group-level treatment

effects is challenging. The problem is that individuals select into groups in part based on their

unobserved characteristics, and this sorting causes systematic dependence among group-level vari-

ables and those individual characteristics. Therefore, comparing outcomes across groups without

accounting for differences in unobserved heterogeneity is subject to selection bias.

This paper presents a novel identification result for group-level partial effects using observable

variables that “shift” the distribution of unobserved individual heterogeneity. Informally, a random

vector W is a “shifter” for another (unobservable) random vector Θ if the conditional distribution

of Θ, given W = w, varies sufficiently with w. A key insight of this paper is that controlling

for group-level distributions of observable shifters accounts for variation in unobserved individual

heterogeneity. Thus, if there remains enough variation in group-level variables conditional on the

control variables, group-level causal effects become identifiable.

For simplicity, suppose that unobserved individual heterogeneity Θ takes two values, “high”

and “low,” denoted by θH and θL. Then, an observable W is a shifter for Θ if Pr(Θ = θH |W = w)

is a non-constant function of w, or equivalently, if there exist w1, w2 such that the 2 × 2 matrix

Π = [Pr(Θ = θl|W = wk)]k=1,2;l=H,L is non-singular. The availability of a shifter is useful because

a group-level distribution of W can be written as a linear transformation of the distribution of

Θ within the same group, where the matrix of this linear transformation is Π. Since Π is non-

singular, there exists a one-to-one mapping between group-level distributions of the unobserved

variable Θ and the observable shifter W . Therefore, we can use an observable shifter to control for

across-group variation in unobserved heterogeneity distributions.

To fix ideas, consider a setting where students choose schools. Academically motivated students

may prefer high quality schools, and when they sort into schools based on this preference, there will

be a positive correlation between school-level teacher quality and the proportion of highly moti-
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vated students within the school. Here, student’s motivation corresponds to unobserved individual

heterogeneity and school-level teacher quality is the group-level variable of interest. A possible

shifter for academic motivation is educational attainment of a child’s mother. It seems reasonable

to assume that the higher is a mother’s educational attainment, the more motivated her child tends

to be.

Now suppose that student’s motivation takes two values, high and low. Then, mother’s educa-

tion serves as a shifter if a child of a college graduate mother has a larger probability of being highly

motivated than a student whose mother has only a high school diploma. Provided that mother’s

education is a valid shifter, there exists a one-to-one mapping between a school-level fraction of

college graduate mothers and the distribution of student types within the school, which enables

us to control for across-school variation in student’s motivation. If school-wide teacher quality has

independent variation from the school-level distribution of mother’s education, then ceteris paribus

effects of teacher quality are identifiable. Note that mother’s education is not an instrumental

variable (IV): a valid IV would be independent of student’s motivation and be related to teacher

quality.

To provide further intuition on the above argument, I describe it with simple equations. Denote

an outcome of interest by Yis (e.g., test score), where i and s index agent and group, respectively,

group-level covariates of interest by Xs (e.g., school-wide teacher quality), an observable shifter

by Wi (e.g., mother’s education), and unobserved individual heterogeneity by Θi (e.g., academic

motivation). Like the above discussion, assume Θi takes two values, θH and θL (e.g., high and low

motivation). Also, let Ji be individual i’s group choice. Here, the interest lies in the causal effect

of teacher quality on test scores. The regression equation turns out to be

YiJi = α+X ′Jiβ +W ′iγ + δ Pr(Θi = θH |XJi , Ji) + εiJi , E[εis|Xs,Wi, Ji = s] = 0 (1)

where subscript Ji is present because a researcher only observes the outcome for the group indi-

viduals selected in the data. Since Pr(Θi = θH |Xs, Ji = s) cannot be estimated, its dependence

on Xs hinders the identification of β. In the school example, Pr(Θi = θH |Xs, Ji = s) corresponds

to the fraction of highly motivated students in a school with teacher quality Xs. In this frame-

work, the inability to control for a fraction of high motivation types confounds naive estimates of
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teacher-quality effects.

As noted above, the observable shifter condition implies that there exists a linear map from the

distribution of the observable shifter to the unobserved heterogeneity distribution, i.e., Pr(Θi =

θH |Xs, Ji = s) =
∑2

l=1 dl Pr(Wi = wl|Xs, Ji = s) for some d1, d2 ∈ R. Then, (1) becomes

YiJi = α+X ′Jiβ +W ′iγ +
2∑
l=1

δdl Pr(Wi = wl|XJi , Ji) + εiJi

where the error term εiJi is uncorrelated with all the other right-hand side variables. Since [Pr(Wi =

wl|Xs, Ji = s)]l=1,2 is identifiable from the data (e.g., school-level fractions of college graduate and

high school graduate mothers), β becomes identifiable.

I generalize the argument based on the two-point supported distribution of Θ to one with a

general distribution. To formalize the idea of shifter, I use the notion of statistical completeness,

which has been applied in a wide range of nonparametric identification problems. I argue that the

availability of a shifter is a reasonable assumption, especially when a researcher observes a rich

array of individual-level characteristics.

When completeness is used for identification, estimation often faces ill-posed inverse problems,

which may lead to poor finite-sample properties of estimators. The estimator in this paper circum-

vents this problem by applying the completeness assumption to estimation of a nuisance parameter

of the model. By additive separability of the nuisance function from the parameter of interest, the

estimator for group-level partial effects converges at a rate of the square root of the sample size as

happens in partially linear regression models.

For implementation, a researcher first picks a set of basis functions and computes the group-

means of the observable shifters transformed by those basis functions. She then runs a linear regres-

sion of the outcome on the group-level covariates, individual-level regressors, and the group-means

computed in the first step. I show that this procedure leads to a consistent and asymptotically

normal estimator, and I provide a consistent variance estimator. Monte Carlo experiments demon-

strate that the proposed estimator has low mean squared errors and that the associated confidence

intervals have high coverage accuracy in samples of moderate size.

I apply this method to the problem of studying the effects of school/neighborhood characteristics

on years of post-secondary education and adulthood wages. I build on the analysis of Altonji and

3



Mansfield (2018), who also use a control function approach. This paper shows that the estimation

equation arising from my identification result encompasses that of Altonji and Mansfield. Thus,

my estimator is more robust to possible mis-specifications. I find that the two estimators produce

very similar estimates, which supports the results in Altonji and Mansfield.

This paper employs assumptions distinct from those of existing identification strategies. In

particular, I do not require natural/quasi experimental variation as often used in IV methods.

Instead, I use the observable shifter condition, which can hold in many applications of interest.

Thus, I provide an alternative approach to identifying group-level treatment effects. In addition, my

identification result has wide applicability since the argument based on the shifter condition extends

to non-linear and nonseparable models in a straightforward manner. From a theoretical perspective,

this paper achieves new identification results using unexploited yet empirically relevant features in

triangular models, such as group structures. Lastly, this paper applies statistical completeness in

a novel way to develop a control function approach. To elaborate on these contributions, I now

review the related literature.

1.1 Related Literature

This paper contributes to the large empirical literature that examines causal effects of neighborhood,

school, and, more generally, group-level characteristics.1 A non-trivial challenge in this literature

is how to control for endogeneity arising from agents selecting into groups (Durlauf, 2004; Graham,

2018). Many studies exploit exogenous variation in group selection via instrumental variables

(e.g., Angrist, Pathak, and Walters, 2013; Kling, Liebman, and Katz, 2007; Ludwig, Duncan, and

Hirschfield, 2001; Oreopoulos, 2003), some studies use detailed data on individual choice behavior

to control for selection bias (e.g., Abdulkadiroğlu, Pathak, Schellenberg, and Walters, 2017; Dale

and Krueger, 2002), and other studies use aggregation to mitigate influence of selection (e.g., Card

and Rothstein, 2007). In contrast, I take a control function approach that complements the existing

methods by exploiting a novel, yet empirically relevant identifying condition.

This paper is most closely related to recent work by Altonji and Mansfield (2018), who also

1A partial list includes Aaronson (1998); Abdulkadiroğlu, Pathak, and Walters (2018); Altonji, Elder, and Taber
(2005); Angrist and Lang (2004); Chetty and Hendren (2018); Chetty, Hendren, and Katz (2016); Dobbie and Fryer
(2011); Gould, Lavy, and Paserman (2004); Hanushek, Kain, and Rivkin (2009); Hoxby (2000). Also, Chetverikov,
Larsen, and Palmer (2016) study effects of group-level endogenous variables. They do not consider endogeneity from
selection and focus on other issues.
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employ a control function method. They show that group-means of individual covariates play

the role of control functions in their model. In contrast, I use group-means of transformations of

individual covariates as control functions, where these transformations are basis functions (e.g.,

polynomials and splines). Whereas Altonji and Mansfield exploit specific functional forms in their

model to justify their control function method, I use restrictions on the conditional distribution

of individual-level unobserved heterogeneity given observables to construct a control function. An

advantage of my approach is that the identification argument extends to non-linear, nonseparable

models in a relatively straightforward manner and thus my results apply to a wide class of models.

In addition, the estimation equation arising from my identification result encompasses that of

Altonji and Mansfield. In fact, when certain regression functions in the model are linear, the two

approaches produce effectively the same identification result.

Another strand of the related literature is the one on control function methods, which is also

connected to triangular models. A general triangular system takes the form

Y = m(X, ε)

X = h(Z, η)

where Y is the outcome of interest, X is potentially endogenous, and Z is an instrument indepen-

dent of the unobserved heterogeneity (ε, η). In his seminal work, Heckman (1974, 1979) develops

a control function approach where X is a binary variable, using additive separability and joint

normality of (ε, η). Subsequent papers (e.g., Dahl, 2002; Das, Newey, and Vella, 2003; Dubin and

McFadden, 1984; Lee, 1983) extend the model in different directions. Examples include allowing

for multinomial X and weakening parametric distributional assumptions. Also, Newey, Powell, and

Vella (1999) develop a control function method for nonparametric triangular systems and Blundell

and Powell (2004) use a control function to identify average partial effects in semiparametric limited

dependent variable models. Recently, Chesher (2003) and Imbens and Newey (2009) exploit strict

monotonicity of functions in unobserved heterogeneity to construct a control variate to identify

the ceteris paribus effect of X on Y (see also Matzkin, 2016, and references therein). I consider a

version of the triangular model that exploits availability of multiple measurements of groups as well

as an observable shifter to construct a control function. In contrast, the earlier literature seems
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to have largely focused on monotonicity restrictions and distributional assumptions on unobserved

heterogeneity as identifying conditions. The use of empirically relevant features such as multiple

measurements of groups offers a new approach to achieving identification in this class of models.

In addition, this paper is related to the growing literature on nonparametric identification using

statistical completeness. Since the seminal work of Newey and Powell (2003), completeness has been

applied to a wide range of econometric identification problems. Examples include nonparametric

IV (e.g., Chernozhukov and Hansen, 2005; Darolles, Fan, Florens, and Renault, 2011; Hall and

Horowitz, 2005; Newey and Powell, 2003), errors-in-variables models (Hu and Schennach, 2008),

nonparametric discrete choice models with unobserved product characteristics (Berry and Haile,

2014), and nonseparable (dynamic) panel data models (e.g., Arellano, Blundell, and Bonhomme,

2017; Cunha, Heckman, and Schennach, 2010; Freyberger, 2018; Sasaki, 2015). See also the survey

article Hu (2017) and references therein. My paper applies the completeness assumption in a novel

way to construct a control function.

This paper shares with the literature on network formation the feature that agents form groups

endogenously within models (e.g., Blume, Brock, Durlauf, and Jayaraman, 2015; de Paula, 2017;

Graham, 2017, and see references therein). However, I consider a different group selection mech-

anism from those in the network literature. In particular, in my analysis, the utility function

for group selection does not depend on other individuals’ group choices and their characteristics.

Therefore, my model excludes certain selection patterns that are possible under network formation

models. Nonetheless, the model still covers many empirical settings of interest.

The remainder of the paper is organized as follows. Section 2 describes the econometric model

and provides a heuristic discussion of the identification strategy. In Section 3, I formalize the

identification idea. In Section 4, I propose a simple estimator of group-level partial effects and

study its asymptotic properties. Section 5 discusses the empirical application and Monte Carlo

experiments to examine finite-sample accuracy of the proposed estimator. Section 6 introduces two

extensions of the model described in Section 2. Section 7 concludes. Details of the proofs can be

found in the appendix.
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2 Setup and Overview of Results

In this section, I describe the econometric model. A researcher observes “cities,” indexed by

g = 1, . . . , G. Within each city, there exist groups and agents, indexed by s ∈ S ≡ {1, . . . , S} and

i = 1, 2, . . . , N , respectively. The outcome of interest, denoted by Yisg, takes the form

Yisg = β′Xsg + γ′Wig + χsg + ωig + εisg, E[εisg|Xsg,Wig, χsg, ωig] = 0 (2)

where {Xsg : s ∈ S} and Wig are observable variables for groups and individuals, respectively,

{χsg : s ∈ S} and ωig denote unobservable characteristics for groups and individuals, respectively,

and {εisg : s ∈ S} represents unobserved idiosyncratic terms. The focus of this paper is on group-

level causal effects, captured by β in (2). To identify this parameter, I require variation in group-

level variables. The presence of cities provides multiple measurements, or independent copies, of

groups and agents, which enables identifying the distribution of group-level covariates and within-

group distributions of individual variables. Below, I omit city index g to reduce notational burden

when appropriate.

To ground the discussion on concrete terms, consider the following examples.

Example 1 (Residential Segregation and Youth Outcomes). Graham (2018) surveys issues of

residential segregation and its consequence on youth outcomes. In one example, the outcome

Yis measures adulthood wage, Wi denotes the indicator of a resident being a minority, and Xs

represents the proportion of minorities in one’s neighborhood. Here a neighborhood corresponds

to a group. Unobservables that enter into the equation include resident’s innate cognitive ability

(ωi) and distance from the city center to one’s neighborhood (χs). The parameter of interest is

β, which measures how the proportion of minorities in one’s neighborhood affects an outcome of

interest. �

Example 2 (Effects of School District/Neighborhood on Student Performance). Altonji and Mans-

field (2018) examine effects of school district/neighborhood on various student outcomes. In one of

their empirical specifications, Yis is years of post-secondary education, Xs includes teacher-student

ratio and distance to four-year college, Wi contains student’s scores on standardized tests and par-

ents’ years of education, ωi includes how much parents value child’s academic learning, and χs
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represents unobserved characteristics of school. Here, a school district/neighborhood represents a

group. �

Example 3 (Effects of Hospital Ownership on Quality of Care). Sloan, Picone, Taylor, and Chou

(2001) study whether private, for-profit hospitals have lower quality of care. Since different types of

patients may select into for-profit hospitals compared to public ones, selection bias is of potential

concern. Here, a hospital corresponds to a group, the outcome Yis is patient’s condition after

hospitalization, Xs includes the indicator of whether the hospital is private and for-profit, and Wi

includes measures of health conditions before hospitalization. �

In these examples, a researcher observes the outcome variable only for the group an individual

selects into. To be precise, let Jig ∈ S be the group membership of agent i. Then, we only observe

Yig :=
∑

s∈S Yisg1{Jig = s}. I model the group membership determination as following.

Jig = J(Θig, A1g, . . . , ASg, ηi1g, . . . , ηiSg) (3)

where J(·) is an unknown function belonging to a nonparametric class, Θig is individual hetero-

geneity affecting the selection, {Asg : s ∈ S} are characteristics of groups affecting agents’ group

choice, and {ηisg : s ∈ S} are idiosyncratic terms. One example of the selection equation J(·) that

fits into this framework is the widely used random utility discrete choice model. In that setting,

J(Θi, A1, . . . , AS , ηi1, . . . , ηiS) = arg maxs∈S Vi(s) and Vi(s) = Θ′iAs + ηis, where Vi(s) represents

agent i’s utility choosing the group s, and the utility is specified as the group-level features As

weighted by the taste coefficient Θi plus the idiosyncratic term ηis. Random coefficient speci-

fication allows for heterogeneous tastes for group characteristics and accommodates complicated

selection patterns.

A key restriction on the selection function J(·) is that, loosely speaking, if a researcher were

to observe all the variables, she could compare groups with different Xs holding within-group

distributions of Θi constant. That is, there must exist separate variation in Xs from within-group

distributions of individual characteristics. This condition holds, for instance, in the random utility

discrete choice model satisfying the following: given x1, x2 ∈ supp(Xs), there exist ak ∈ supp({As :

s ∈ S}|Xs = xk), k = 1, 2 satisfying a1
s − a1

s′ = a2
s − a2

s′ for all pairs of (s, s′) ∈ S2. Alternative

conditions are possible, and I formalize this assumption as non-singularity of some conditional
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variance in Section 3. Also, I accommodate the possibility that any or all of (Θi, {ηis, As : s ∈ S})

in the selection equation is not observed, and instead I impose that the observable Wi has non-trivial

relationship with the preference heterogeneity Θi.

An important feature of the selection equation (3) is that it does not depend on choices and

characteristics of other individuals, which excludes the types of models considered in network

formation literature. Yet, this does not exclude equilibrium effects. For instance, Xs can include

features of the distribution of individual characteristics within group s, which can be empirically

important since the coefficients on such variables may represent “peer effects,” e.g., the effect of

school-level minority fraction on student performance. As I will outline below, the control function

method I propose uses group-level averages of (transformed) variables Wi. If Xs includes some

features of the within-group distribution of a subvector of Wi (e.g., mean), the subvector needs to

be excluded from the construction of the control functions.

Given the outcome and selection equations, I now state the following sampling assumptions to

complete the model description.2

(Xg,χg,Ag)
iid∼ F, (Wig, ωig,Θig, εig,ηig)

iid∼ H (4)

(Wig, ωig,Θig, εig,ηig) ⊥⊥ (Xg,χg,Ag) (5)

(Wig, ωig, εig) ⊥⊥ ηig|Θig (6)

where Xg = {Xsg : s ∈ S}, χg = {χsg : s ∈ S}, Ag = {Asg : s ∈ S}, εig = {εisg : s ∈ S},

ηig = {ηisg : s ∈ S}, and F and H are distribution functions. Restriction (4) states that the

group-level features are i.i.d. copies across cities and individual-level variables are a random draw

across individuals and cities.

Condition (5) requires independence between individual variables and group-level variables. One

way to rationalize this independence assumption is that “nature” first draws group-level character-

istics, then subsequently samples individual characteristics whose distributions are independent of

group-level variables, and finally individuals select into groups. In Example 1, this scenario means

that first neighborhoods are formed, then individuals are drawn from the distribution that does

not depend on neighborhood characteristics, and after the realizations of group- and individual-

2These conditions are slightly stronger than those in Section 3. I maintain them here for ease of exposition.
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level variables, agents make decisions on which neighborhood to live in. This assumption seems

reasonable under static frameworks.

Condition (6) states that the idiosyncratic term in the choice equation is independent of other

individual-level variables conditional on the taste variable Θi. Independence is a strong assumption,

but such restriction has been commonly used in the literature of discrete choice models (e.g., Briesch,

Chintagunta, and Matzkin, 2010). Also, here the independence only needs to hold conditioning on

the taste heterogeneity.

2.1 Identification Problem

In this subsection, I describe a challenge in identifying the group-level effect β. Specifically, there are

two sources of endogeneity, omitted variable bias and selection bias. The former occurs from unob-

servability of group-level characteristics χs and potential correlation between Xs and χs. Although

this issue is practically relevant, it is well understood in the literature and this paper has little new

insight to offer on this problem. Instead, I focus on selection bias and assume that there is no cor-

relation between Xs and χs except in Section 6.1. In particular, I impose E[χs|Wi, Xs, Ji = s] = 0

for all s in this section.

For selection bias, the problem arises because the distribution of ωi, the unobservable in the

outcome equation (2), varies across groups and this variation is systematically related to Xs. In

the school example, the unobservable ωi represents student’s motivation, and school characteristics

affecting selection As contain the school-level teacher quality variable Xs. If highly motivated

students prefer high quality educational programs, students with high ωi are then more likely to

be in schools with higher Xs. This sorting pattern will cause bias on the coefficient on Xs.

I now formalize selection bias in the model. Recall that we only observe the outcome for

one group, i.e., Yi =
∑

s∈S 1{Ji = s}Yis, and computing the regression function given observable

variables yields

E[Yi|Ji = s,Xs,Wi] = E[Yis|Ji = s,Xs,Wi] = β′Xs + γ′Wi + E[ωi|Ji = s,Xs,Wi].

Identifiability of β depends on whether the conditional expectation E[ωi|Ji = s,Xs,Wi] is constant

in Xs. This model implication is closely related to the characterization of selection bias in Heckman
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(1976). He formulates that E[Y |Z, {selection rule}] = Z ′β + E[ε|Z, {selection rule}], where Z is a

vector of covariates and ε is an error term. In my model {Ji = s} corresponds to the “selection rule.”

Heckman points out that many econometric models have this characterization and that agents’ self-

selection prevents identification of β when the term E[ε|Z, {selection rule}] is non-constant.

To gain some intuition on how the selection rule operates in my model, take As = Xs and

Ji = arg maxs∈S{Θ′iXs} (i.e., I set ηis = 0 for all i and s). Then, conditioning on {Ji = s} and

X implies Θi ∈ Rs(X) where Rs(X) = {Θ : (Xs − Xs′)
′Θ > 0 for all s′ 6= s} is a region formed

by intersections of half planes. See Figure 1 for a simple illustration. Then, for the conditional

expectation E[ωi|Ji = s,Xs,Wi],

E[ωi|Ji = s,Xs,Wi] = E[E[ωi|Ji = s,X,Wi]|Ji = s,Xs,Wi]

= E[E[ωi|Θi ∈ Rs(X),Wi]|Ji = s,Xs,Wi] (7)

where the second equality follows from (ωi,Θi,Wi) ⊥⊥ X. Now, to see implications of the last

display, suppose E[ωi|Θi,Wi] = E[ωi|Wi]. Then (7) implies E[ωi|Ji = s,Xs,Wi] = E[ωi|Wi] and

therefore no selection bias occurs. This result resembles the one in Heckman (1976): if unobserved

terms in outcome and selection equations (ωi and Θi in this model) are independent, there is no

endogeneity due to selection. On the other hand, if the conditional mean of ωi given Θi = θ and Wi

non-trivially changes with θ, then the term E[ωi|Ji = s,Xs,Wi] varies with Xs since the shape of

Rs(X) changes with Xs. The dependence of E[ωi|Ji = s,Xs,Wi] on Xs results in non-identification

of β.

Note that the above argument continues to hold even if we deviate from the simplifying as-

sumption As = Xs, provided that As is related to Xs, which is likely the case. For example, Xs

measures school-level teacher quality, and students are likely to use it or its proxy as a basis of

their school choice decision. Also, the conditional mean independence of ωi given Θi is likely to fail

in applications if ωi contains unobserved heterogeneity that affects people’s preference for group

characteristics Θi, e.g., if student’s motivation affects preference for school quality.

Example 1 (Continued). Graham (2018) discusses potential sources of endogeneity that hinder

identification of causal effects of neighborhood segregation of minorities. Among the conditions he

discusses, the no sorting on (individual) unobservables condition is relevant to my paper. Roughly
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speaking, this condition requires that individuals with the same observed covariates are similar

across neighborhoods. It excludes, for example, racial minorities living in one neighborhood differ

substantially in their cognitive skills from minorities in another neighborhood.

To formalize the “no sorting” condition, redefine γ and ωi in (2) by projecting ωi onto Wi to

have Cov(Wi, ωi) = 0. This is little loss of generality since γ is a nuisance parameter. Then, the

no sorting condition can be represented as

E[ωi|Wi, Ji] = E[ωi|Wi],

where for Graham Wi is the indicator of whether the person is minority. This equation imposes

no systematic difference in the average of unobserved individual heterogeneity across neighbor-

hoods. In my model, this condition corresponds to E[ωi|Θi,Wi] = E[ωi|Wi] (i.e., no selection

bias condition in the above). To see this point, note E[ωi|Wi, Ji] =
∫
E[ωi|Wi, Ji,A,Θ]fΘA|W,J =∫

E[ωi|Wi,Θ]fΘA|W,J , where I use (5) and (6). If ωi and Θi are conditionally mean independent

given Wi, the integral integrates to one, which implies E[ωi|Wi, Ji] is independent of Ji. Therefore,

no selection bias in my model translates to the no sorting condition in Graham’s paper. Whereas

Graham explores scenarios under which this no sorting condition is plausible, I allow for failure of

this condition and instead use observable shifter variables to construct control functions. �

2.2 Heuristic Discussion of Identification Result

The previous subsection indicated the source of selection bias. Here, I discuss this paper’s approach

for identification emphasizing main ideas rather than technical details. For simplicity, assume finite

support of Θi, i.e., supp(Θi) = {θt : 1 ≤ t ≤ T}. We can view this discrete-valued heterogeneity Θi

as agents’ type and these types differ in preferences for group attributes As.

I can rewrite the outcome equation by decomposing ωi into its mean within group Ji and the

deviation.

Yi = β′Xi + γ′Wi + E[ωi|Ji,A] + εi, εi = εiJi , εis = ωi − E[ωi|Ji = s,A] + χs + εis (8)

where I write Xi ≡ XJi , εi ≡ εiJi to avoid double subscripts, and E[ωi|Ji = s,A] represents the
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expectation of ωi given that the individual selected group s and the underlying group features

are A. Conditioning on A is necessary because an agent observes and takes as given the group

features A when making group choice.3 In the above decomposition, Xi is uncorrelated with εi, and

therefore, endogeneity is present if and only if Xs has non-zero correlation with the within-group

mean E[ωi|Ji = s,A]. For this conditional expectation, we have

E[ωi|Ji = s,A] =

T∑
t=1

E[ωi|Ji = s,A,Θi = θt] Pr(Θi = θt|Ji = s,A)

=

T∑
t=1

E[ωi|A,Θi = θt] Pr(Θi = θt|Ji = s,A)

=

T∑
t=1

E[ωi|Θi = θt] Pr(Θi = θt|Ji = s,A). (9)

where the second equality follows from Ji = J(Θi,A,ηi) and independence ωi ⊥⊥ ηi|Θi, and the

third equality uses A ⊥⊥ (Θi, ωi).

The last equation indicates that across-group variation in E[ωi|Ji = s,A] comes from variation

in Pr(Θi = θ|Ji = s,A). The key insight of this paper is that Pr(Θi = θ|Ji = s,A) can be

expressed as a linear function of the conditional distribution of the observable shifter Wi given

(Ji,A), and therefore, accounting for across-group variation in observable shifter distributions

solves the endogeneity problem of Xs.

To sketch the identification argument, I assume finite support of Wi, i.e., supp(Wi) = {wl : 1 ≤

l ≤ L}. This is without loss of generality since I can always create a discrete random variable from

continuous one by binning. In the case of discretely distributed Θi, Wi is a shifter for Θi if the

matrix

Π =


Pr(Θi = θ1|Wi = w1) . . . Pr(Θi = θT |Wi = w1)

. . .

Pr(Θi = θ1|Wi = wL) . . . Pr(Θi = θT |Wi = wL)


is of full column rank. This condition formalizes the idea that the conditional distribution of Θi

given Wi = w exhibits enough variation in w. Also it requires that the cardinality of supp(Wi)

3Another way to see this point is that A is invariant across individuals given Ji = s. The sample group mean
is average over i, i.e.,

∑N
i=1 1{J(Θi,A,ηi) = s}ωi/

∑N
i=1 1{J(Θi,A,ηi) = s} and A is independent of i. Then,

the sample group means converges in probability to the expecatation conditional on A. This calculation is akin to
computing probability limits of sample means over long time horizon in panel data models. Given a variable Xit and
fixed effects αi, T

−1 ∑T
t=1Xit →P E[Xit|αi] under suitable conditions.

13



is larger than that of supp(Θi) since full column rank fails if L < T . This full rank condition

may be reasonable when a researcher observes a rich array of individual-level variables that are

related to individual taste for group-level attributes. In the neighborhood example, variables such

as education level, health status, type of occupation, and ethnicity are likely to have non-trivial

relationships with individual taste for various neighborhood characteristics.

Doing similar calculations to those for (9) and by Bayes’ rule,

Pr(Wi = w|Ji,A) =
T∑
t=1

Pr(Wi = w|Θi = θt) Pr(Θi = θt|Ji,A)

=
T∑
t=1

Pr(Θi = θt|Wi = w) Pr(Wi = w)
Pr(Θi = θt|Ji,A)

Pr(Θi = θt)

and dividing the both sides by Pr(Wi = w),

Pr(Wi = w|Ji,A)

Pr(Wi = w)
=

T∑
t=1

Pr(Θi = θt|Wi = w)
Pr(Θi = θt|Ji,A)

Pr(Θi = θt)

We can write this equation in matrix form

πw = Ππθ (10)

where πw = [Pr(Wi = wl|Ji,A)/Pr(Wi = wl)]
L
l=1 and πθ = [Pr(Θi = θt|Ji,A)/Pr(Θi = θt)]

T
t=1.

Since Π is of full column rank by the observable shifter assumption, we have πθ = Gπw where

G = (Π′Π)−1Π′, and the t-th element of this linear equation looks like

Pr(Θi = θt|Ji,A) = Pr(Θi = θt)
L∑
l=1

Gtl
Pr(Wi = wl|Ji,A)

Pr(Wi = wl)
≡

L∑
l=1

dtl Pr(Wi = wl|Ji,A)

where Gtl is the (t, l)th element of G and dtl is a constant independent of (Ji,A). Substituting this

last result into (9), we obtain

E[ωi|Ji,A] =
T∑
t=1

E[ωi|Θi = θt]
L∑
l=1

dtl Pr(Wi = wl|Ji,A)

=

L∑
l=1

δl Pr(Wi = wl|Ji,A), δl =

T∑
t=1

dtlE[ωi|Θi = θt]
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and finally the outcome equation becomes

Yi = β′Xi + γ′Wi +
L∑
l=1

δl Pr(Wi = wl|Ji,A) + εi

where Pr(Wi = wl|Ji,A) is identifiable from the data and Cov(Xi, εi) = 0. Therefore, the vector

[Pr(Wi = wl|Ji,A)]Ll=1 plays the role of a control function to account for the endogeneity of Xs

with respect to unobserved individual heterogeneity ωi.

3 Identification Result

In this section, I formalize the heuristics described in the preceding section. For that purpose, I

impose the following conditions on the model. Below, let Lp(µ) be the class of functions whose

pth power is integrable with respect to µ. For a random object V , I write FV for its distribution

function.

Assumption 1. Let Bg ≡ (Xg,χg,Ag).

(i) Bg is a random draw across g. Conditional on Bg, (Wig,Θig, ωig, εig,ηig) is i.i.d. across i,

and (Wig,Θig, ωig, εig,ηig) is independent across g.

(ii) (Wig, ωig,Θig) ⊥⊥ Bg and ηig ⊥⊥ (Wig, ωig)|Θig,Bg.

Assumption 2. The distribution of B is dominated by some measure. The random vectors (Wi,Θi)

have a joint density with respect to the product measure of some σ-finite measures µ and λ. The

densities fΘ|W , fΘ, fW are bounded.

Assumption 3. The following mapping Ψ defined on L2(FΘ) is injective;

(Ψh)(w) =

∫
h(θ)fΘ|W (θ|w)dλ(θ).

Also, {fΘ|J,B(θ|s,b)/fΘ(θ) : s ∈ S,b ∈ supp(B)} ⊂ L2(FΘ).

From this assumption, Theorem 15.16 in Kress (2014) implies that there exist {τj ≥ 0 : j ∈ N}

and an orthonormal basis {φj : j ∈ N} on L2(FΘ) such that τ2
j φj = Ψ∗Ψφj where Ψ∗ is the adjoint

operator of Ψ. Assume τj is ordered such that τj ≥ τj+1 for all j ≥ 1.
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Assumption 4. With {(τj , φj) : j ∈ N} defined above,

fΘ|J,B(·|s,b)/fΘ(·) ∈F1 =
{
f ∈ L2(FΘ) :

M∑
j=1

∣∣〈f, φj〉Θ∣∣ <∞} for all s ∈ S,b ∈ supp(B)

E[ωi|Θi = ·] ∈F2 =
{
f ∈ L2(FΘ) :

M∑
j=1

τ−1
j

∣∣〈f, φj〉Θ∣∣ <∞},
where M = sup{j : τj > 0} and 〈f, g〉Θ =

∫
fgdFΘ. M can be positive infinity.

Assumption 1 describes the sampling. Part (i) formalizes the idea that the distribution of

group-level variables and the within-group distribution of individual observables are identifiable

from the data. Part (ii) restates conditions (5) and (6) in a weaker form. Assumption 2 imposes

mild restrictions on the distribution of (Θi,Wi,B).

Assumption 3 is a generalization of the full column rank condition used in the previous sec-

tion. It ensures that the integral equation, which is the infinite-dimensional analogue of (10), is

“invertible” in a suitable sense. This injectivity condition, usually referred to as L2-completeness,

is a high-level assumption but has been widely used in the recent econometric literature on non-

parametric identification (see Section 1.1). Intuitively, injectivity requires the density of fΘ|W (·|w)

to sufficiently vary in the conditioning value w. One example of (Θ,W ) satisfying completeness is

Θ = ΓW +ν where ν given W is distributed as Normal(0,Σ), Σ is invertible, and Γ is of full column

rank. More sufficient conditions for different types of completeness can be found in the literature

(Andrews, 2017; D’Haultfoeuille, 2011; Hu, Schennach, and Shiu, 2017; Hu and Shiu, 2018; Mat-

tner, 1993). One way to justify this technical condition is to assume that in the population, there

are a finite number of agent types which differ in preferences. Under this assumption, injectivity

reduces to the full column rank of the conditional probability matrix as analyzed in the previous

section. The strategy of modeling unobserved heterogeneity as finite number of types has been em-

ployed in empirical studies. For instance, recent papers of Abowd, McKinney, and Schmutte (2018)

and Bonhomme, Lamadon, and Manresa (2018) study the consequence of worker-firm matching on

labor market earnings and model worker and/or firm heterogeneity as discrete types. Viewing un-

observed heterogeneity as finite types provides one way to rationalize Assumption 3. Nonetheless,

completeness is applicable more generally and the condition can hold with continuous heterogeneity

variable as well.
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Also, Assumption 3 imposes restrictions on the relative tail of fΘ|J,B and fΘ. In this model,

selection into groups allows the within-group distribution of Θ to differ from the original distribution

of Θ to the extent that this tail condition is satisfied. For instance, the model excludes the case

where Θ has a Gaussian tail and the within-group distribution has a polynomial tail. This is a

high-level condition since it is not straightforward to characterize the within-group distribution

from the model primitives. Also, note the conditioning on B. In Section 2, I impose stronger

independence assumptions and only condition on A, but here I slightly weaken the independence

assumptions and thus conditioning on B is necessary.

Assumption 4 restricts the permissible classes for fW |J,B and E[ωi|Θi]. It requires that

fΘ|J,B(θ|s,b)/fΘ(θ) =
∞∑
j=1

cj(s,b)φj(θ),
∞∑
j=1

|cj(s,b)| <∞,

E[ωi|Θi = θ] =
∞∑
j=1

djφj(θ),
∞∑
j=1

|dj/τj | <∞,

for some cj(s,b) ∈ R, dj ∈ R, j ∈ N. A restrictive, yet easily interpretable sufficient condition

is that there exist integers M and L, possibly dependent on (s,b), such that cj(s,b) = 0 for all

j > L and dj = 0 for all j > M . This condition implies that fΘ|J,B/fΘ and E[ωi|Θi = ·] can be

represented as finite linear combinations of the L2-basis {φj : j ∈ N}.

Now, I state a key lemma for the identification of group-level partial effects.

Lemma 1. Suppose Assumptions 1-4 hold. Then, there exists some function ψ such that

E[ωi|Ji = s,B] =

∫
ψ(w)dFW |J,B(w|s,B)

where FW |J,B is the conditional distribution function of Wi given Ji,B and
∫
ψ2dFW <∞.

This lemma suggests a way to control for the selection bias. To see the implication, from (8),

Yi = β′Xi + γ′Wi +

∫
ψ(w)dFW |J,B(w|Ji,B) + {ωi − E[ωi|Ji,B]}+ χi + εi

= β′Xi + γ′Wi +

∞∑
k=1

δkE[pk(Wi)|Ji,B] + εi (11)

where χi = χJi , εi = εiJi , εi = εiJi , εis = ωi − E[ωi|Ji,B] + χs + εis, {pk : k ∈ N} is a basis
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for L2(FW ), and {δk : k ∈ N} satisfies
∫

(ψ −
∑K

k=1 δkpk)
2dFW → 0 as K → ∞. The class of

approximating functions is chosen by the researcher and the conditional distribution of Wi given

Ji and B is just a within group distribution of Wi, which is identifiable from the data. Since εi is

uncorrelated from Xi, inclusion of {E[pk(Wi)|Ji,B] : k ∈ N} controls for endogeneity arising from

selection.

Example 2 (Continued). Altonji and Mansfield (2018) also use a control function approach to

address selection bias under a very similar econometric model. Despite some differences in imposed

conditions,4 Lemma 1 generalizes their result. In particular, Proposition 1 in Altonji and Mansfield

states

E[ωi|Ji,B] = π′E[Wi|Ji,B]

for some π. By taking ψ(w) = π′w, Lemma 1 in this paper and their Proposition 1 coincide.

Lemma 1 encompassing their Proposition 1 has an important implication for estimation. The

estimation method considered in this paper approximates ψ using a series basis expansion. Suppose

a researcher chooses polynomial or spline basis functions. Then, the estimation equation based on

Lemma 1 specializes to the version used by Altonji and Mansfield if series expansion terminates

after the constant and linear terms. Therefore, we can view the series-based estimation proposed

in this paper as a robustified version of Altonji and Mansfield’s control function method. �

3.1 Main Result

Now I formally state the identification of group-level partial effects. The object FW |J,B(·|Ji,B) is a

random distribution function, i.e., a function-valued random element. Thus, there exists a σ-field

generated by FW |J,B(·|Ji,B) and the conditional expectation given FW |J,B(·|Ji,B) is well defined.

Assumption 5. (i) For s ∈ S, E[εig|Jig = s, FW |J,B(·|Jig,Bg)] = 0 and E[Vigεig] = 0 where

εig = εiJigg and Vig = (X ′igW
′
ig)
′.

(ii) The matrix

E[{Vig − E[Vig|FW |J,B(·|Jig,Bg)]}{Vig − E[Vig|FW |J,B(·|Jig,Bg)]}′]
4I elaborate on different assumptions between the two papers in Section 5.1.1.
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is invertible.

Assumption 5 (i) imposes exogeneity of χs and excludes the case of omitted variable bias. It

also assumes that Wi is uncorrelated with {ωi − E[ωi|Ji,B]}. Since γ is not the parameter of

interest, I can rewrite the regression equation by projecting {ωi − E[ωi|Ji,B]} onto Wi to make

them uncorrelated. Part (ii) is a version of the key identification condition for partially linear

models. In the regression equation (11), the interest lies in β and we want to “partial out” the

nuisance parameter
∫
ψdFW |J,B. Here the within-group distribution of Wi, denoted by FW |J,B, is

estimable from the data and conditional on the value of FW |J,B,
∫
ψdFW |J,B is a constant and thus

differencing eliminates this nuisance parameter.

Part (ii) requires that Xs does not include functions of the within-group distribution of Wi, e.g.,

the within-group mean of Wi. This follows from E[h(Wi)|FW |J,B(·|Ji,B)] = E[h(Wi)|Ji,B] for every

measurable function h.5 Sometimes it is desirable to include within-group distributional features in

Xs since they represent “peer effects” as in Example 1. To accommodate such situations, it suffices

to have a subvector W sub
i of Wi that satisfies Assumption 3, i.e., (Θi,W

sub
i ) is L2-complete. Then,

a researcher can include distributional features of Wi in Xs provided that the included elements

are not part of W sub
i .

Building on Lemma 1, the following theorem formalizes the identification of coefficients on

group-level variables.

Theorem 1. Suppose that Assumptions 1-5 hold. Then, β in the equation (2) is identified.

4 Estimation and Inference

Lemma 1 suggests an estimation method by series approximation. If a researcher observed within-

group distributions of Wig, then the estimator based on least squares is

β̂oracle = S(P′KPK)−1PKY

5This claim follows if E[h(Wi)|Ji,B] is measurable with respect to σ(FW |J,B), the σ-field generated by
FW |J,B(·|Ji,B). A σ-field on the space of distribution functions can be defined by the σ-field generated by maps
h →

∫
hdF where h ≥ 0 is a measurable function from Rk → R and F is a random distribution function (see

e.g., Kallenberg, 2017). The measurability of E[h(Wi)|Ji,B] follows from the representation E[h(Wi)|Ji,B] =∫
h(w)dFW |J,B(w|Ji,B).
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where PK = [PK11PK21 . . . PKNG]′, PKig = (X ′ig,W
′
ig,E[p1(Wig)|Jig,Bg], . . . ,E[pK(Wig)|Jig,Bg])

′,

K represents the number of series terms, Y = (Y11, . . . , YNG)′, and S = [IdxOdx×(dx+dw+K)] where

dx, dw denote the dimensions of X,W , respectively, Id is the d × d identity matrix, and Od1×d2 is

the d1 × d2 matrix with all elements equal to zero.

In practice, a researcher needs to estimate within-group distributions. Define the following

object

Ê[pk(Wig)|Jig,Bg] =

N∑
j=1

pk(Wjg)1{Jjg = Jig}
/ N∑

j=1

1{Jjg = Jig}.

Then, the feasible version of the above estimator is

β̂ = S(P̂′KP̂K)−1P̂KY

where P̂K = [P̂K11 . . . P̂KNG]′ and P̂Kig = (X ′ig,W
′
ig, Ê[p1(Wig)|Jig,Bg], . . . , Ê[pK(Wig)|Jig,Bg])

′.

To analyze asymptotic properties of β̂, I impose additional assumptions. To state the conditions,

write λmax(·), λmin(·) for the maximum and minimum of eigenvalues of the argument. Let ‖ · ‖ be

the Euclidean norm for vectors and the induced norm for matrices. Also, write εig = εiJigg to avoid

double subscripts.

Assumption 6. The basis functions {pk : k ∈ N} are uniformly bounded and the eigenvalues of the

matrix QK = E[PKigP
′
Kig] are bounded and bounded away from zero uniformly in K. In addition,

the class {pk : k ∈ N} is a subset of some VC-class of functions as defined in van der Vaart and

Wellner (1996). In addition, for some mx,mw > 4, E[‖Wig‖mw ] + E[‖Xsg‖mx ] <∞ for all s ∈ S.

Assumption 7. Write Aig for the σ-field generated by {Wig, Xig, Jig,E[pk(Wig)|Jig,Bg] k ∈ N}.

Then, E[εig|Aig] = 0, and there exist fixed constants c1, c2, C1, C2 such that, with probability one,

0 < c1 ≤ E[εigεjg|Aig,Ajg] ≤ C1, E[ε4
ig|Aig, Jig] ≤ C2, and λmin(E[PKigP

′
Kjgεigεjg]) ≥ c2 > 0 for

all K.

Assumption 8. Let rKig =
∑∞

k=K+1 δkE[pk(Wig)|Jig,Bg]. There exists some b > 0 such that

E[r2
Kig] = O(K−2b).

The above assumptions are relatively standard in the series estimation literature. However, the

“basis functions” used in this procedure are conditional expectations of basis functions. Therefore,
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there are no general sufficient conditions for λmax(QK) to be bounded above and for λmin(QK)

and λmin(E[PKigP
′
Kjgεigεjg]) to be bonded away from zero. Since these high-level conditions may

not be easily verifiable, one approach is to take a “flexible parametric” view, which is to assume

that the function ψ in Lemma 1 can be approximated by finitely many but unknown number of

basis functions. In that case, the model is essentially parametric and verifications of the conditions

become straightforward.

The boundedness of basis functions in Assumption 6 holds for most of basis functions used

in practice if the support of Wig is compact. The unbounded support case would require use of

different norms. For its second part, I assume that the second moment matrix of PKig is positive

definite for all K and, in particular, that the eigenvalues are bounded above and away from zero.

However, as mentioned above, there are no general primitive conditions for bounded eigenvalues

as the series terms are the conditional expectations of original basis functions. In the proof, I

make it explicit how the estimator depends on the minimum/maximum eigenvalues to understand

how eigenvalues tending to zero/infinity may affect the asymptotic distributional properties of the

estimator.

Assumption 7 imposes boundedness of the conditional variance of εisg from above and below and

boundedness of the conditional fourth moment. The restriction on the conditional variance seems

to be standard in the literature and I use the finite fourth moment to verify Lindberg condition for

central limit theorem. Assumption 8 controls the bias term in series approximation. This condition

can be verified for specific {pk : k ∈ N} if the function ψ has enough smoothness (see e.g., Belloni,

Chernozhukov, Chetverikov, and Kato, 2015, and references therein).

Now, I formally state the asymptotic properties of β̂. Define ξK = supw ‖(p1(w), . . . , pK(w))′‖,

and ζK = ξK + (NG)1/mw + G1/mx where mw,mx are defined in Assumption 6. In practice, this

quantity ζK is at least as large as
√
K, and below I take ζK ≥

√
K.

Theorem 2. Suppose β is identified in (11) and for some c > 0, Pr(Nsg/Ng ≥ c for all s ∈

S and g) → 1 where Nsg =
∑N

i=1 1{Jig = s} and Ng =
∑S

s=1Nsg. Under Assumptions 1, 6-8, if

ζ2
K logK/G→ 0 and G/K2b = o(1), then

√
G(β̂oracle − β) = SQ−1

K

1√
G

G∑
g=1

ψNg + oP(1)
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where

ψNg =
1

N

N∑
i=1

PKigεig.

Furthermore, if Var(χsg − E[ωig|Jig = s,Bg]) > 0 for each s and ζ4
K/G→ 0, then

Ω
−1/2
K SQ−1

K

1√
G

G∑
g=1

ψNg  Normal(0, Idx)

where

ΩK = SQ−1
K E[ψNgψ

′
Ng]Q

−1
K S′

and ‖Ω−1
K ‖ is uniformly bounded. Finally, if ζK

√
K log(NG)/N → 0, then

√
G(β̂ − β̂oracle) = oP(1).

Theorem 2 characterizes asymptotic distribution of β̂ and provides a set of sufficient conditions

under which β̂ is asymptotically equivalent to the oracle estimator β̂oracle. It also states that the

convergence rate of β̂ is
√
G rather than

√
GN . That N does not show up in the convergence rate

comes from within-group correlations of residuals. The residual εisg contains group-level unobserv-

able χsg, which causes within-group dependence. The within-group correlation is formalized by

the requirement Var(χsg − E[ωig|Jig = s,Bg]) > 0. As seen below, this within-group correlation

requires the standard error estimator clustered at group levels.

In the first part of the theorem, I assume that the number of individuals in each group grows

at a proportional rate with the city-wide number of individuals for every city. This requires that

the probability of selecting into a group is uniformly bounded away from zero for all groups. This

assumption guarantees that I can estimate the within-group means of pk(Wig) uniformly well across

groups and cities.

In the theorem, I also impose restrictions on (relative) growth rates of K, N, and G. The first

two are ζ2
K logK/N = o(1) and G/K2b → 0. These conditions are standard in the literature except

that I have ζ2
K , which includes terms related to the number of finite moments of Wig and Xsg.

The non-standard part of the requirement is ζ4
K/G → 0. This condition requires at least fourth

moments of Wig and Xsg to be finite. Particularly, it implies that E[‖Xsg‖mx ] <∞ with mx > 4 and
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E[‖Wig‖mw ] < ∞ with mw > 4 satisfying N4/G(mw−4) → 0. The finite moment condition allows

control of the rate at which the maximum of ‖Wig‖ and ‖Xig‖ over (i, g) grows. In addition, this

rate condition requires that ξ4
K/G→ 0, which is stronger than what is used in the literature (e.g.,

Cattaneo, Farrell, and Feng, 2018). Since this paper’s emphasis is on the constructive identification

result, I maintain this assumption and plan to improve on this aspect of the theoretical result in

the future research.

For inference, we need a consistent estimator of the variance. A natural estimator of ΩK is

Ω̂K = SQ̃−1
K Σ̂KQ̃−1

K S′

where Q̃K = P̂′KP̂K/GN , Σ̂K = 1
G

∑G
g=1 ψ̂Ngψ̂

′
Ng, ψ̂Ng = 1

N

∑N
i=1 P̂Kig(Yig − P̂ ′Kig θ̂), and θ̂ =

(P̂′KP̂K)−1(P̂′KY). The following theorem formalizes that this variance estimator is consistent.

Theorem 3. In addition to the hypothesis of Theorem 2, if ζ3
K

√
K/G+ ζ3

KK
−b → 0

and for some mε > 2, E[|εisg|mε ] <∞ and ζK
√

(GN)1/mε logK/G→ 0 hold, then

‖Ω̂−1/2
K −Ω

−1/2
K ‖ = oP(1).

5 Numerical Results

5.1 Empirical Application

I employ the results of this paper to study the neighborhood/school-district effects on student

outcomes. Particularly, I use the National Longitudinal Study of 1972 (NLS72), which was one of

the datasets analyzed by Altonji and Mansfield (2018).6 They consider an econometric model very

similar to (2)-(3). However, the selection equation in this paper is more general and I impose a

set of different conditions to achieve identification. Their Proposition 1 implies that the outcome

equation can be written as

Yis = X ′sβ +W ′iγ + π′E[Wi|Ji,B] + εis

6They analyze three other datasets in their paper, all of which are restricted-use. The dataset based on NLS72 is
publicly available.
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and the term π′E[Wi|Ji,B] plays the role of a control function to eliminate selection bias. Lemma 1

in this paper suggests that in general the control function may not be linear in within-group means

of observable shifter Wi. Since least squares estimation based on series expansions covers the general

nonlinear case and nests the linearity case, the estimation method proposed in this paper can test

whether the linear specification is a reasonable approximation of the data generating process.

An empirically relevant concern is that even after including control functions, there remains

“omitted variable bias” because Xs and χs are potentially correlated and a researcher does not ob-

serve χs. That is, the least squares estimate of β converges in probability to β̃ = β+E[XsX
′
s]
−1E[Xsχs],

which includes the coefficient of linear projection of χs on Xs. Altonji and Mansfield address this

concern by developing lower bounds for some measures of group-level effects on outcomes. They

look at the impact of shifting from the 10th to the 90th quantile of the school/neighborhood char-

acteristics, Q90(X ′sβ + χs)−Q10(X ′sβ + χs). If X ′sβ + χs is normally distributed, this difference in

quantile can be expressed as 2 ∗ 1.28 ∗
√

Var(X ′sβ + χs), and Altonji and Mansfield provide con-

ditions under which Var(X ′sβ̃) ≤ Var(X ′sβ + χs). Since Var(X ′sβ̃) is estimable from the data, this

approach produces feasible lower bounds for the object of interest.7

I follow the same lower bound approach to study the school/neighborhood contribution to early

adulthood wage earnings of students and years of post-secondary education. Table 1 displays es-

timates of measures of school/neighborhood effects on early adulthood log wage (with two sets of

regressors) and years of post-secondary education. For each outcome variable, I estimated the re-

gression model in two specifications. The first one uses group means of individual covariates, which

is the specification of Altonji and Mansfield, and the second contains group means of interaction and

squared terms as additional controls. In the table, “AM” denotes the first specification and “This

Paper” refers to the second. The first and second rows are the impact of moving a student from a

10th percentile neighborhood to a 90th/50th percentile one i.e., {Φ−1(q) − Φ−1(0.1)}
√

Var(X ′sβ),

q ∈ {0.9, 0.5} where Φ−1 denotes the inverse of the standard normal cumulative distribution func-

tion.

Across outcome variables and estimands, the linear and quadratic specifications produce very

similar estimates. For the log wage outcome, moving a student from a 10th percentile school to

7Altonji and Mansfield also look at the fraction of variance attributable to school/neighborhood quality. They
employ random effects modeling to estimate the variance of the school-level unobserved term and decompose the
variance to estimate the (lower bound of the) variance fraction.
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a 90th percentile increases the wage by 17.58% ≈ (100 ∗ exp(0.162) − 100) with post-secondary

education as a control and by 17.11% without the control. For the 10th versus the 50th percentile,

the increases are 8.44% and 8.22% for the two specifications. For years of post-secondary education,

the shift from a 10th to 90th/50th percentile school induces increases of 0.37 and 0.19 years,

which correspond to 0.22 and 0.11 standard deviation, respectively. These estimates suggest non-

trivial effects of school/neighborhood quality on how many years of education students attain after

graduating from high school.

The estimates in this paper differ from those in Altonji and Mansfield to some degree. For

instance, they report the point estimates of 0.121 and 0.125 for log wage increase by moving from

the 10th percentile to the 90th percentile, which contrast with 0.158 and 0.162 in this paper.

The discrepancy arises because Altonji and Mansfield use a random effects model to estimate the

variance of group-level unobservable term whereas I use the ordinary least squares (OLS) method.

When I employ the same estimation approach, the quadratic specification still produces estimates

very similar to the ones based on the specification of Altonji and Mansfield (see Table 3). I choose

the OLS results as my main estimates for consistency with the theoretical results proven in this

paper. However, one can expect that under appropriate conditions, methods based on random

effects models will be valid using the control function method.

5.1.1 Differences in Assumptions

In this subsection, I discuss the main differences between the assumptions in this paper and those

of Altonji and Mansfield (2018). Their key conditions include linearity of the regression func-

tions E[Wig|Θig],E[ωig|Θig] and what they term “spanning assumption.” To define the spanning

assumption, introduce the new random vector Uig and write

ωig = c′Uig

Θig = ΓWig + ∆Uig + νig

where c ∈ Rdu , Γ ∈ Rdθ×dw , and ∆ ∈ Rdθ+du are fixed parameters, and νig ∈ Rdθ is a random vector

uncorrelated with (W ′ig, U
′
ig)
′. Let ΠUW be the matrix of coefficients for linear projection of Uig

onto Wig. Then, the spanning assumption of Altonji and Mansfield is that there exists a matrix R
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such that

∆ = (Γ + ∆ΠUW )R.

Intuitively, the spanning assumption requires that for each element of As, if Ui influences the taste

coefficient for that element of As, then either one of them has to hold: Wi affects the taste coefficient

directly by Γ having non-zero elements or indirectly by non-zero correlation with Ui.

In this paper, I use an injectivity condition (Assumption 3) as well as restrictions on permissible

classes of densities and conditional expectations to construct a control function. Unlike Altonji and

Mansfield, I do not impose linearity in conditional expectations and instead use restrictions on

the distribution, which makes the spanning assumption and Assumption 3 quite different. In fact,

there are examples where one of the two holds but the other fails. However, if (W ′ig, U
′
ig, ν

′
ig)
′ are

jointly normal, the two conditions coincide. Despite the differences, Lemma 1 nests Proposition

1 in Altonji and Mansfield and therefore, the estimator proposed in this paper is generally more

robust than the one in their paper.

5.2 Monte Carlo Experiments

In this subsection, I present results of simulation studies to investigate finite-sample properties

of the proposed estimator. For the Monte Carlo experiments, I first generate characteristics of

individuals and groups based on distributions mimicking the empirical distributions of the NLS72

data. Then, for each individual, I compute utility functions of choosing different groups and then

assign people to groups to maximize the sum of utilities under group size constraints. This design

builds on Altonji and Mansfield, and the realized allocation can be viewed as an approximation to

the equilibrium of a competitive market through price mediation.

I consider three data generating processes (DGPs). The first design has E[ωi|Ji,A] = π′E[Wi|Ji,A]

for some non-stochastic vector π, and thus the linear specification of Altonji and Mansfield is cor-

rect. For the second DGP, I take ωi to be a linear combination of some normal random variable and

binary variable 1{W ′iτ > νi} where τ is a non-stochastic vector and νi is an independent normal

random variable. This design is meant to capture a more realistic scenario in which non-linearity

may be a issue. Here non-linearity arises due to discreteness of part of ωi, though ωi itself is con-

tinuously distributed. For the third DGP, I model E[ωi|Ji,A] = π1E[W 2
i |Ji,A] + π2E[W 3

i |Ji,A] to
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see how deviation from linearity affects the estimator. See Section B in the appendix for further

details of the DGPs.

Table 2 presents the mean squared error (MSE) and the coverage probability of the 95% confi-

dence intervals based on the proposed estimator for three different specifications: one with perfect

control on selection bias (i.e., “oracle” estimator), the linear specification of Altonji and Mansfield,

and the one including additional series approximation terms. For DGP 1, linear specification is

correct and including additional control variables does not alter the results much. For the second

DGP, the group-level expectation of ωi is Φ(W ′iτ) where Φ(·) is the standard normal cumulative dis-

tribution function, and both specifications are mis-specified. Yet, the estimator with cubic splines

controls outperforms the linear one. For the third design, I made the DGP particularly difficult

for the linear specification to see how deviation from linearity affects performance of the estimator.

The estimator based on cubic spline expansion performs much better in terms of MSE and cov-

erage probability than the linear specification. Although this Monte Carlo study is small-scale, it

indicates usefulness of including additional control variables to reliably estimate group-level partial

effects.

6 Extensions

6.1 Instrumental Variables for Omitted Variable Bias

In the previous sections, I assume away omitted variable bias by imposing exogeneity of χsg. If

instrument variables Zsg for χsg are available, combination of the control function and IV methods

identifies the partial effects of group-level covariates under the presence of both selection and

omitted variable biases.

Assumption 9. (i) In addition to {(Yig, X ′ig,W ′ig, Jig)′}1≤i≤N,1≤g≤G, a researcher observes {Zsg}s∈S,1≤g≤G

and, after redefining Bg by including Zg = {Zsg : s ∈ S}, Assumption 1 holds.

(ii) For all s ∈ S, E[εisg|FW |J,B(·|s,Bg), Jig = s] = 0 and E[Z̃igεisg|Jig = s] = 0 where Z̃ig =

(Z ′ig,W
′
ig)
′.

(iii) Recall Vig = (X ′ig,W
′
ig)
′. The matrix E[Z̃ig{Vig − E[Vig|FW |J,B(·|Jig,Bg)]}′] is of full column

rank.
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Theorem 4. Under the hypothesis of Lemma 1 and Assumption 9, β in (2) is identified.

This result is a straightforward extension of Theorem 1 but can have an important application.

For instance, if a policy intervention creates an exogenous variation in teacher assignment to dif-

ferent schools and households select schools after the intervention, then omitted variable bias (i.e.,

correlation between Xsg and χsg, where Xsg measures school-level teacher quality) can be resolved

through IV but selection bias remains problematic for identification of coefficients on Xsg. Theorem

4 establishes that the combination of IV and control function methods achieves identification of

group-level partial effects.

6.2 Nonparametric Identification

I extend the identification result to a more general outcome equation

Yisg = m(Xsg,Wig, εisg)

Jig = J(Bsg,Θig,ηig).

In the linear model, I distinguish among (ωig, χsg, εisg) but in this model εisg subsumes all the

unobservable components due to its nonseparability. In this model, a family of parameters can be

defined as

M(x) :=

∫
m(x,w, e)fWε(w, e)d(w, e) x ∈ X

where fWε is the joint density of (Wig, εisg) and X ⊂ supp(Xsg) is some non-empty set. This object

is called Average Structural Function (ASF) in the literature and it summarizes partial effects of a

covariate X on the outcome Y . For identification, I impose the following conditions.

Assumption 10. (i) (Wig, εisg) ⊥⊥ ηig|Θig,Bg and (Wig, εisg,Θig) ⊥⊥ Bg. Also, (Wig, εisg) has

identical distributions across s ∈ S.

(ii) sups∈S,b∈supp(Bg) E[|m(x,Wig, εisg)||Jig = s,Bg = b] <∞.

(iii) Given non-empty X ⊂ supp(Xsg), supp(fW |J,B(·|Jig,Bg)) is invariant conditional on Xig = x

for x ∈ X .
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Assumption (i) imposes independence between χsg and Xsg, stronger than mean exogeneity of

χsg given Xsg. Thus, I assume away omitted variable bias and focus on the issue of selection bias.

Imposition of identical distributions across s ∈ S simplifies some arguments and interpretation of

the parameter. Assumption (ii) is used to justify interchanging orders of certain integrations. The

requirement (iii), which states that the support of fW |J,B(·|Jig,Bg) is invariant conditional on Xig,

is referred to as support condition in the literature on triangular models, and it is considered to be

a stringent assumption. Still, it holds for some special case. If the conditional support of A given

Xs = x does not vary with x, then the support condition holds. This sufficient condition excludes,

among other things, that Xs is part of As. This may not be so restrictive if individuals only observe

a coarse version of Xs when they make group decision. That is, As is a noisy measure of Xs.

The following theorem states the identification result for the nonseparable model.

Theorem 5. If Assumptions 1, 2, 3, and 10 hold, M(x) is identified for x ∈ X .

If the support condition is not satisfied, we can still identify different versions of ASF as done

in the literature. For instance, a conditional version of ASF is

∫
m(x,w, e)fWε|fW |J,B(w, e|f)d(w, e) x ∈ X

where I condition on the random function fW |J,B(·|Jig,Bg). We can see this parameter as a measure

of the partial effect conditioning on a within-group distribution of individual characteristics. For

example, if εisg represents an unobservable measure of student’s motivation, then the conditional

ASF represents the average outcome for different levels of group-level covariate X, fixing the within-

school distribution of student’s motivation.

7 Conclusion

This paper presents a new identification result for group-level causal effects in a setting where

individuals select into groups partially based on their unobserved heterogeneity. I build an econo-

metric model that extends Heckman’s selection model to feature group-level variables and show

that group-level covariates correlate with the group-mean of the individual unobserved heterogene-

ity. As an alternative to instrumental variables, I exploit observable shifters to construct a valid
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control function and develop a formal identification result of group-level ceteris paribus effects in

a partially linear model. I propose a simple two-step semiparametric regression-based estimator,

prove its consistency and asymptotic normality, and provide a consistent variance estimator. Simu-

lation studies indicate good finite-sample properties of the proposed estimator. I also consider two

extensions of the control function method. First, I combine the control function method with IVs

to address another source of endogeneity, which I call omitted variable bias, and, second, I develop

a nonseparable version of the model to identify the average structural functions. Finally, I empir-

ically study the effects of school/neighborhood characteristics on student outcomes following the

work of Altonji and Mansfield (2018) and find that their linear specification is robust to inclusion

of additional controls.
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Figure 1: Support of Θ Partitioned by Group Choice

Notes. This is an example of partitioning of the support of Θi by {Ji = 1}, {Ji = 2}, and {Ji = 3} (S = 3). The
above figure is created based on A1 = (1, 3), A2 = (3, 2), and A3 = (4, 1) with Ji = arg maxs∈{1,2,3}{Θ′iAs}. If Θi

falls onto the red region, Ji = 1 will be chosen. Similarly, the blue region represents Ji = 2, and the green region
means Ji = 3.
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Table 1: Estimates of School/Neighborhood Effects on Wage and Years of Post Secondary
Education

Wage w/ PS. Ed. Wage w/o PS. Ed. Yrs. PS. Ed.

AM This Paper AM This Paper AM This Paper

Q10-90

0.157 0.162 0.153 0.158 0.352 0.369

(0.017) (0.017) (0.017) (0.017) (0.079) (0.089)

Q10-50

0.078 0.081 0.076 0.079 0.176 0.185

(0.009) (0.008) (0.009) (0.008) (0.039) (0.045)

Mean

2.878 2.878 1.836

Notes. The table shows various estimates for effects of school/neighborhood quality on early adulthood wage and
years of post-secondary education. The first and second row groups (“Q10-90” and “Q10-50”) correspond to the
impact of moving from the 10th percentile school/neighborhood to the 90th/50th percentile, respectively. The top
headers indicate outcome variables in regression. “Wage w/ PS. Ed.” and “Wage w/o PS. Ed.” refer to log wage
with/without post-secondary education as a control, respectively, and “Yrs. PS. ED.” denotes years of
post-secondary education. “AM” refers to the specification used in Altonji and Mansfield (2018) and “This Paper”
specification adds within-school means of interaction and squared terms of Wi variables. For each row group, the
number in the first line is the estimate and the number in parentheses represents the standard error estimate. The
last row is the average of dependent variables in the data sample.
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Table 2: Results of Monte Carlo Experiments

Specification

Oracle AM This Paper

DGP 1

MSE 1.00 1.69 1.75

Coverage 0.956 0.914 0.913

DGP 2

MSE 1.00 3.88 2.36

Coverage 0.942 0.876 0.951

DGP 3

MSE 1.00 23.32 4.45

Coverage 0.959 0.498 0.922

Notes. The table presents the results of simulation studies, particularly the mean squared error (MSE) and
coverage probability of the confidence interval for different specifications. The columns “Oracle” represents
infeasible regression with unobserved heterogeneity ωi, the column “AM” corresponds to the specification of Altonji
and Mansfield, and the column “This Paper” denotes the specification with group means of individual variables
using cubic polynomial splines. Each row group presents different data generating processes, the row “MSE”
presents (relative) MSE of the corresponding estimator divided by the MSE of the “oracle” specification, and the
row “Coverage” is the coverage probability of the 95% confidence interval constructed from the corresponding
estimator. The sample size is G = 1, 000 and for each city, N = 300 and S = 3 with each group’s size constraint
being no more than 115 people.

Table 3: Empirical Application: Random Effects Model

Yrs. PS. Ed. Wage w/o PS. Ed. Wage w/ PS. Ed.

AM This Paper AM This Paper AM This Paper

Q10-90

No Unobs. 0.215 0.267 0.121 0.123 0.125 0.122

w/ Unobs. 0.503 0.516 0.203 0.214 0.203 0.207

Q10-50

No Unobs. 0.107 0.134 0.061 0.061 0.063 0.061

w/ Unobs. 0.251 0.258 0.102 0.107 0.102 0.104

Sample Means

1.620 2.880 2.880

Notes. The estimates come from the random effects model assuming normality of the error terms. The column
header indicates dependent variable used and “Q10-90” and “Q10-50” refer to effects of shifting from the 10th
percentile neighborhood to the 90th/50th percentile neighborhood. The estimates are based on the lower bound on
variance as described in Section 5.1. “No Unobs” rows display variance lower bound estimates excluding the
random effect estimate from school/neighborhood contribution. “w/ Unobs” includes the random effect estimate as
part of school/neighborhood contribution.
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A Appendix: Proofs

Let Lp(µ) be the class of functions whose pth power is integrable with respect to µ. I write FW , FΘ

for the distribution of random vectors W,Θ, and so on.

A.1 Proof of Lemma 1

Inverse of Ψ

Recall

Ψh(w) =

∫
h(θ)fΘ|W (θ|w)dλ(θ).

Let H be the range of Ψ on L2(FΘ). I show that h ∈ H is square-integrable with respect to FW .

For any h ∈ L2(FΘ),

∫
(Ψh)2dFW =

∫ [ ∫
h(θ)fΘ|W (θ|w)dλ(θ)

]2
dFW (w)

=

∫ (
E[h(Θig)|Wig = w]

)2
dFW (w)

≤
∫ [

E[|h(Θig)|2|Wig = w]dFW (w)

= E[|h(Θig)|2] <∞.

By boundedness of fΘ|W , Ψ is a compact linear operator. Then, Theorem 15.16 in Kress (2014)

implies there exist non-negative reals {τj : j ∈ N} and orthonormal sequences {φj : j ∈ N},

{ϕj : j ∈ N} in L2(FΘ) and H, respectively, such that

Ψh =
∞∑
j=1

τj〈h, φj〉Θϕj

where 〈h, φ〉Θ =
∫
hφdFΘ. Also let 〈m,ϕ〉W =

∫
mϕdFW .

Without loss of generality, assume τj > 0 for all j. Define

Ψ†m =
∞∑
j=1

τ−1
j 〈m,ϕj〉Wφj .

By definition, Ψ†Ψh = h on L2(FΘ).

Integral with respect to fW |J,B
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fW |J,B/fW ∈ H because

fW |J,B(w|s,b) =

∫
fW |Θ,J,B(w|θ, s,b)fΘ|J,B(θ|s,b)dλ(θ)

=

∫
fW |Θ,B(w|θ,b)fΘ|J,B(θ|s,b)dλ(θ)

=

∫
fW |Θ(w|θ)fΘ|J,B(θ|s,b)dλ(θ)

= Ψ(fΘ|J,B/fΘ)(w)fW (w)

and fΘ|J,B/fΘ ∈ L2(FΘ), where the second equality holds by J = J(Θ,A,η) and η ⊥⊥ (W,Θ)|B

and the third follows from independence W ⊥⊥ B|Θ.

Then, Ψ†(fW |J,B/fW ) = fΘ|J,B/fΘ. Write m(θ) = E[ωig|Θig = θ]. If the interchange of integral

and infinite sum is permitted,

E[ωig|Jig = s,Bg = b] =

∫
E[ωig|Θig = θ, Jig = s,Bg = b]fΘ|J,B(θ|s,b)dλ(θ)

=

∫
E[ωig|Θig = θ]fΘ|J,B(θ|s,b)dλ(θ)

=

∫
m(θ)

fΘ|J,B(θ|s,b)

fΘ(θ)
dFΘ(θ)

=

∫
m(θ)

(
Ψ†fW |J,B(·|s,b)/fW (·)

)
(θ)dFΘ(θ)

=

∫
m(θ)

[ ∞∑
j=1

τ−1
j 〈fW |J,B(·|s,b)/fW (·), ϕj〉Wφj(θ)

]
dFΘ(θ)

=

∞∑
j=1

τ−1
j 〈fW |J,B(·|s,b)/fW (·), ϕj〉W

∫
m(θ)φj(θ)dFΘ(θ) (12)

=

∫ [ ∞∑
j=1

τ−1
j

∫
m(θ)φj(θ)dFΘ(θ)ϕj(w)

]
fW |J,B(w|s,b)dµ(w) (13)

where I use ωig ⊥⊥ Bg|Θig for the second equality. To justify (12), it suffices to show

∞∑
j=1

∫
τ−1
j

∣∣〈fW |J,B(·|s,b)/fW (·), ϕj〉W
∣∣|m(θ)φj(θ)|dFΘ(θ) <∞.
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Using fW |J,B/fW = ΨfΘ|J,B/fΘ,

〈fW |J,B(·|s,b)/fW (·), ϕj〉W = 〈Ψ(fΘ|J,B/fΘ), ϕj〉W

=
〈 ∞∑
`=1

λ`〈fΘ|J,B/fΘ, φ`〉Θϕ`, ϕj
〉
W

=
∞∑
`=1

λ`〈fΘ|J,B/fΘ, φ`〉Θ〈ϕ`, ϕj〉W

= τj〈fΘ|J,B/fΘ, φj〉Θ.

Thus, it suffices to have

∞∑
j=1

∣∣〈fΘ|J,B/fΘ, φj〉Θ
∣∣〈|m|, |φj |〉Θ ≤ ‖m‖Θ ∞∑

j=1

∣∣〈fΘ|J,B/fΘ, φj〉Θ
∣∣ <∞

where ‖ · ‖Θ is the norm induced by 〈·, ·〉Θ and I use ‖φj‖Θ = 1 for j ∈ N. For (13), it suffices to

show

∞∑
j=1

∫
τ−1
j |fW |J,B(w|s,b)ϕj(w)|

∣∣〈m,φj〉Θ∣∣dµ(w)

≤
∞∑
j=1

τ−1
j

∣∣〈m,φj〉Θ∣∣[ ∫ |fW |J,B(w|s,b)|2dµ(w)

∫
|ϕj(w)|2dµ(w)

]1/2

≤ C
∞∑
j=1

τ−1
j

∣∣〈m,φj〉Θ∣∣ <∞.
Thus, the interchageability follows from Assumption 4.

Since

ψ(w) =

∞∑
j=1

τ−1
j αjϕj(w), αj = 〈m,φj〉Θ,

{αj/τj : j ∈ N} is square-summable, and {ϕj : j ∈ N} is an orthonormal set with respect to FW , ψ

is square integrable with respect to FW .
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A.2 Proof of Theorem 1

By taking conditional expectations given FW |J,B(·|Jig,Bg),

E[YiJigg|FW |J,B(·|Jig,Bg)]

= E[XJigg|FW |J,B(·|Jig,Bg)]
′β + E[Wig|FW |J,B(·|Jig,Bg)]

′γ +

∫
ψ(w)dFW |J,B(w|Jig,Bg)

and subtracting this conditional expectation from the equation (11),

YiJigg − E[YiJigg|FW |J,B(·|Jig,Bg)]

=
{
XJigg − E[XJigg|FW |J,B(·|Jig,Bg)]

}′
β +

{
Wig − E[Wig|FW |J,B(·|Jig,Bg)]

}′
γ + εig.

Writing Vig = (X ′JiggW
′
ig)
′,

E[{Vig − E[Vig|FW |J,Bg ]}YiJigg] = E[{Vig − E[Vig|FW |J,Bg ]}{Vig − E[Vig|FW |J,Bg ]}
′]

 β

γ

 .

Then, the invertibility condition (ii) guarantees identifiability of β.

A.3 Proof of Theorem 2

Below, I use the following notational conventions. For two sequences of real numbers an and bn,

an . bn means there exists a constant C not dependent on n such that an/bn ≤ C for n large

enough. For sequences of random variables Xn and Yn, Xn .P Yn means that there exists a fixed

constant C satisfying Pr(Xn ≤ CYn)→ 1 as n→∞. Given a symmetric matrix X, I write λmax(X)

and λmin(X) for largest and smallest eigenvalues of the matrix X. Define λ̄K = λmax(QK) and

λ̃ = 1/λmin(QK).

Also, define

rK =
( ∞∑
k=K+1

δkE[ρk(W11)|J11,B1], . . . ,

∞∑
k=K+1

δkE[ρk(WNG)|JNG,BG]
)′

ε = (ε11, . . . , εNG)′.

Proof. Lemma 2 below implies the first part. By Var(χs − E[ωig|Jig = s,Bg]) > 0, E[εisgεjsg] > 0
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and the minimum eigenvalue of

E[ψNgψ
′
Ng] =

1

N
E[PKigP

′
Kigε

2
ig] + (1− 1/N)E[PKigP

′
Kjgεigεjg]

is bounded from below uniformly in K. In addition, ‖Q−1
K ‖ ≥ 1/λmax(QK), which is bounded away

from zero uniformly. Thus, λmin(ΩK) is bounded away from zero uniformly.

For the asymptotic normality of the oracle estimator, note ψNg is mean zero and independent

across t. I verify Lindberg’s condition. The variance matrix is the identity matrix by construction.

For any vector v, I want to show for all d > 0,

E[|v′Ω−1/2
K SQ−1

K ψNg|21{|v′Ω−1/2
K SQ−1

K ψNg| ≥ d
√
G}]→ 0.

Letting $ig = v′Ω
−1/2
K SQ−1

K PKig, we have v′Ω
−1/2
K SQ−1

K ψNg =
∑

i$igεig/N and |$ig| . ζK .

E[|v′Ω−1/2
K SQ−1

K ψNg|21{|v′Ω−1/2
K SQ−1

K ψNg| ≥ d
√
G}]

≤ E
1

N

N∑
i=1

|$ig|2
1

N

N∑
i=1

|εig|21
{∣∣∣ 1

N

N∑
i=1

|εig|2
∣∣∣1/2 ≥ d√G/ζK}

≤ E[|$ig|2] sup
PKg

E
[ 1

N

N∑
i=1

|εig|21
{∣∣∣ 1

N

N∑
i=1

|εig|2
∣∣∣1/2 ≥ d√G/ζK}∣∣∣PKg

]
≤ E[|$ig|2]

ζ2
K

d2G
sup
PKg

E
[( 1

N

N∑
i=1

|εig|2
)2∣∣∣PKg

]
. ζ4

K/G→ 0.

Now I prove the asymptotic (first-order) equivalency between the oracle and feasible estimators.

Let θ = (β′, γ′, δ1, . . . , δK) and we have

β̂ − β = SQ̃−1
K P̂′K(PK − P̂K)θ/NG+ SQ̃−1

K P̂′KrK/NG+ SQ̃−1
K P̂′Kε/NG

≡ I + II + III.

For I, Lemmas 2, 3, and 5 imply that it is OP(θ̃K max{ζK ,
√
K}
√
K log(NG)/NG). For II, the
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calculation done in Lemma 2 yields that it is OP(
√
λ̃KK

−b), and for III,

SQ̃−1
K P̂′Kε/NG = S{Q̃−1

K − Q̂−1
K }(P̂K −PK)′ε/NG+ S{Q̃−1

K − Q̂−1
K }P

′
Kε/NG

+ Q̂−1
K (P̂K −PK)′ε/NG+ Q̂−1

K P′Kε/NG

= Q̂−1
K P′Kε/NG+OP(λ̃2

K max{ζK ,
√
K}
√
K log(NG)/NG+ λ̃K

√
K/NG).

A.3.1 Lemmas for Proof of Theorem 2

Lemma 2. Assume ζ2
K λ̃

2
K λ̄K logK/G→ 0.

β̂oracle − β = SQ−1
K P′Kε/NG+OP((λ̃K)1/2K−b) +OP

( λ̃2
KζK λ̄K

√
logK

G

)
where ζK = (NG)1/mw +G1/mx + ξK .

Proof. By decomposition, β̂oracle = β + S(P′KPK)−1P′K(rK + ε) and

β̂oracle − β = SQ−1
K P′Kε/NG+ S(P′KPK)−1P′KrK + S

{
(P′KPK/NG)−1 −Q−1

K

}
P′Kε/NG.

First, Lemma 6.2 in Belloni et al. (2015) implies

‖(P′KPK/NG)−QK‖ = OP

(√ζ2
K λ̄K logK

G

)
. (14)

Thus, the smallest eigenvalue of Q̂K = (P′KPK/NG) is bounded below by λmin(QK){1 + oP(1)} if

ζ2
K λ̃

2
K λ̄K logK/G→ 0. Using Frobenius norm ‖ · ‖F ,

‖(P′KPK)−1P′KrK‖2F = r′KPKQ̂
−1/2
K Q̂−1

K Q̂
−1/2
K P′KrK/(NG)2

.P λ̃Kr
′
KPK(P′KPK)−1P′KrK/NG

. λ̃Kr
′
KrK/NG = OP(λ̃KK

−2b).

For S{(P′KPK/NG)−1−Q−1
K }P′Kε/NG, since εig is conditionally mean zero given PKig, it suffices
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to look at its variance. For the conditional variance given PK ,

N−2G−2
∥∥∥S{(P′KPK

NG

)−1
−Q−1

K

} G∑
g=1

P′KgE[εgε
′
g|PKg]PKg

{(P′KPK

NG

)−1
−Q−1

K

}′
S′
∥∥∥

≤ G−1
∥∥S{(P′KPK/NG)−1 −Q−1

K

} 1

NG

G∑
g=1

N∑
i=1

PKigP
′
Kig

{
(P′KPK/NG)−1 −Q−1

K

}′
S′
∥∥

= G−1
∥∥S{(P′KPK/NG)−1 −Q−1

K

}∥∥2‖P′KPK/NG‖ = OP

(
G−1λ̃4

K

ζ2
K λ̄

2
K logK

G

)
where I use A−1 −B−1 = B−1(B −A)A−1.

Lemma 3. Let Q̃K = (P̂′KP̂K/NG)−1. Under max{ζK ,
√
K}λ̃K

√
K log(NG)/NG→ 0,

‖Q̃−1
K ‖ .P ‖Q̂−1

K ‖

Proof. Using Lemma 5

‖P̂′KP̂K/NG−P′KPK/NG‖ ≤ ‖P̂K −PK‖2/NG+ 2‖(P̂K −PK‖/NG

= OP
(

max{ζK ,
√
K}
√
K log(NG)/NG

)
.

Lemma 4. If Assumption 6 holds, then

max
1≤g≤G
1≤i≤N

‖P̂Kig − PKig‖ = OP(
√
K/N).

Proof. By definition,

‖P̂Kig − PKig‖2 =

K∑
`=1

( 1

NJigg

N∑
j=1

ρ`(Wjg)1{Jjg = Jig} − E[ρ`(Wjg)|Jjg = Jig,Bg]
)2

and using Nsg/N ≥ c > 0 for all s ∈ S and t with probability approaching one,

1

NJigg

N∑
j=1

ρ`(Wjg)1{Jjg = Jig} − E[ρ`(Wjg)|Jjg = Jig,Bg]

= OP(1)
1

N

∑
j 6=i

(
ρ`(Wjg)1{Jjg = Jig} − E[ρ`(Wjg)|Jjg = Jig,Bg]

)
+
ρ(Wig)

N
OP(1).
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Conditional on Jig and Bg, the summand is independent across j and Corollary 4.3 in Pollard

(1989) implies that

sup
`∈N

∣∣∣ 1√
N

∑
j 6=i

(
ρ`(Wjg)1{Jjg = Jig} − E[ρ`(Wjg)|Jjg = Jig,Bg]

)∣∣∣ = OP(1).

The uniformity of the bound with respect to the conditioning variables (Jig,Bg) indicates that the

above bound hold uniformly in (i, g) ∈ {1, . . . , N} × {1, . . . , G}.

Lemma 5. Under the hypothesis of Lemma 4,

‖P′K(P̂K −PK)‖ = OP(
√
GNK log(NG) max{ζK ,

√
K}).

Proof.

P′K(P̂K −PK) =
G∑
g=1

N∑
i=1

PKig(P̂Kig − PKig)′ ≡
G∑
g=1

Ξg.

I use Theorem 1.6 in Tropp (2012). Using Lemma 4, ‖P̂Kig − PKig‖ ≤ C
√
K/N with probability

arbitrary close to one with some large constant C and

‖Ξg‖ ≤ C
N∑
i=1

∑
j 6=i
‖PKig‖

√
K/N ≤ CζK

√
NK

For the variance terms,

‖E[ΞgΞ
′
g]‖ =

∥∥∥∥ N∑
i=1

N∑
j=1

E[PKigP
′
Kjg(P̂Kig − PKig)′(P̂Kjg − PKjg)]

∥∥∥∥
.

N∑
i=1

N∑
j=1

E[‖PKigP ′Kjg‖]K/N ≤ N2ζ2
K(K/N) = ζ2

KNK

‖E[Ξ′gΞg]‖ =

∥∥∥∥ N∑
i=1

N∑
j=1

E[(P̂Kjg − PKjg)(P̂Kig − PKig)′P ′KigPKjg]
∥∥∥∥

≤
N∑
i=1

N∑
j=1

E[‖P̂Kjg − PKjg‖‖P̂Kig − PKig‖|P ′KigPKjg|] . N2(K/N)K = K2N.

Then, Theorem 1.6 in Tropp (2012) implies

Pr
(∥∥∥ G∑

g=1

Ξg

∥∥∥ ≥M) ≤ 2NG exp

(
−M2/2

NGK max{ζ2
K ,K}+ ζK

√
NKM/3

)
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and taking M =
√
TNK log(NG) max{ζK ,

√
K} shows the desired result.

Lemma 6. If Assumptions 6 and 8 hold,

‖(P̂K −PK)′ε/NG‖ = OP(
√
K/NG).

Proof.

E‖(P̂K −PK)′ε/NG‖2 = E
∥∥∥ 1

NG

G∑
g=1

N∑
i=1

(P̂Kig − PKig)εig
∥∥∥2

=
1

N2G2

G∑
g=1

N∑
i=1

N∑
j=1

E[(P̂Kig − PKig)(P̂Kjg − PKjg)εigεjg]

. G−1K

N

1

N2

N∑
i=1

N∑
j=1

E[|εigεjg|].

A.4 Proof of Theorem 3

Recall

Ω̂K = SQ̃−1
K Σ̂KQ̃−1

K S′

where Q̃K = P̂′KP̂K/NG,

Σ̂K =
1

G

G∑
g=1

ψ̂Ngψ̂
′
Ng ψ̂Ng =

1

N

N∑
i=1

P̂Kig(Yig − P̂ ′Kig θ̂)

and θ̂ = (P̂′KP̂K)−1(P̂′KY). Using the lemmas below,

‖Ω̂−1/2
K −Ω

−1/2
K ‖ ≤ ‖Ω̂−1/2

K ‖‖Ω̂1/2
K −Ω

1/2
K ‖‖Ω

−1/2
K ‖ ≤ λ̃K{2λ̄−1/2

K }−1‖Ω̂K −ΩK‖

and

‖Ω̂K −ΩK‖ = OP(‖Q̂−1
K −Q−1

K ‖‖Σ̂K‖‖Q̂−1
K ‖+ ‖Q̂−1

K ‖
2‖Σ̂K −ΣK‖),

which shows the result.
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Lemma 7. Under the hypothesis of Theorem 3,

∥∥∥Σ̂K −Σ
∥∥∥ = OP(ζ2

K(ζK
√
K/G+

√
K/N +K−α) + ζK

√
(NG)1/mε logK/G).

Proof.

‖Ω̂K −ΩK‖ ≤ ‖Ω̂K −
1

G

G∑
g=1

ψNgψ
′
Ng‖+ ‖ 1

G

G∑
g=1

ψNgψ
′
Ng −ΩK‖.

For the second term, Lemma 6.2 in Belloni et al. (2015) implies that it isOP(ζK
√

(NG)1/mε logK/G).

For the first term,

Σ̂K =
1

G

G∑
g=1

(
ψ̂Ng − ψNg

)
ψ̂′Ng +

1

G

G∑
g=1

ψNg
(
ψ̂Ng − ψNg

)′
+

1

G

G∑
g=1

ψNgψ
′
Ng

and

ψ̂Ng − ψNg =
1

N

N∑
i=1

(P̂Kig − PKig)(Yig − P̂ ′Kig θ̂)−
1

N

N∑
i=1

PKig(P̂
′
Kig θ̂ − P ′Kigθ) +

1

N

N∑
i=1

PKigrig

=
1

N

N∑
i=1

(P̂Kig − PKig)(εig + rig) +
1

N

N∑
i=1

(P̂Kig − PKig)(P ′Kigθ − P̂ ′Kig θ̂)

− 1

N

N∑
i=1

PKig(P̂
′
Kig θ̂ − P ′Kigθ) +

1

N

N∑
i=1

PKigrig.

Note ‖P̂Kig − PKig‖ = OP(
√
K/N) and ‖θ̂ − θ‖ = OP(

√
K/G). The latter follows from

‖θ̂ − θ‖ = ‖Q−1
K P′Kε/NG‖+ oP(G−1/2) = OP(

√
K/G).

Then,

‖P ′Kigθ − P̂ ′Kig θ̂‖ ≤ ‖PKig‖‖θ̂ − θ‖+ ‖P̂Kig − PKig‖θ̂‖

= OP(ζK
√
K/G+

√
K/N)
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and

∥∥∥ 1

N

N∑
i=1

(P̂Kig − PKig)(εig + rig)
∥∥∥ = OP(

√
K/N)

∥∥∥ 1

N

N∑
i=1

(P̂Kig − PKig)(P ′Kigθ − P̂ ′Kig θ̂)
∥∥∥ = OP(K/N + ζKK/

√
NG)

∥∥∥ 1

N

N∑
i=1

PKig(P̂
′
Kig θ̂ − P ′Kigθ)

∥∥∥ = OP(ζ2
K

√
K/G+ ζK

√
K/N)

∥∥∥ 1

N

N∑
i=1

PKigrig

∥∥∥ = OP(ζKK
−α).

Thus, ‖ψ̂Ng−ψNg‖ = OP(ζK(ζK
√
K/G+

√
K/N+K−α)) and the conclusion follows from ‖ψNg‖+

‖ψ̂Ng‖ = OP(ζK).

Lemma 8 (Lemma 2.2 in Schmitt (1992)). Let A and B two symmetric matrices satisfying A � µ2
aI,

B � µ2
bI, where A � B denotes A−B is positive definite. Then,

‖A1/2 −B1/2‖ ≤ {µa + µb}−1‖A−B‖.

A.5 Proof of Theorem 4

By taking conditional expectation give FW |J,B(·|Jig,Bg),

E[YiJigg|FW |J,B] = E[XJigg|FW |J,B]′β + E[Wig|FW |J,B]′γ +

∫
ψ(w)dFW |J,B(w|Jig,Bg).

Then, subtracting it from the original equation,

YiJigg − E[YiJigg|FW |J,B] = {Vig − E[Vig|FW |J,B]}′
 β

γ

+ εig

where Vig = (X ′Jigg,W
′
ig)
′. Then, letting Z̃ig = (Z ′Jigg,W

′
ig)
′,

E[Z̃ig{YiJigg − E[YiJigg|FW |J,B]}] = E[Z̃ig{Vig − E[Vig|FW |J,B]}′]

 β

γ


and full column rank of the matrix implies identifiability of β.
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A.6 Proof of Theorem 5

By the independence assumption

fW,ε|J,B(w, e|s,b) =

∫
fW,ε|J,B,Θ(w, e|s,b, θ)fΘ|J,B(θ|s,b)dθ

=

∫
fW,ε|Θ(w, e|θ)fΘ|J,B(θ|s,b)dθ

and similarly,

fW |J,B(w|s,b) =

∫
fW |Θ(w|θ)fΘ|J,B(θ|s,b)dθ.

By injectivity of Ψ, we have

Ψ†
(
fW |J,B(·|s,b)

)
(θ) = fΘ|J,B(θ|s,b).

Then, conditioning on FW |J,B(·|Jig,Bg), the function fW,ε|J,B is non-stochastic. Therefore,

E[YiJigg|XJigg = x, FW |J,B(·|Jig,Bg)]

= E[m(x,Wig, εiJig)|XJigg = x, FW |J,B(·|Jig,Bg)]

= E[E[m(x,Wig, εiJig)|XJigg = x, Jig,Bg]|XJigg = x, FW |J,B(·|Jig,Bg)]

= E
[ ∫

m(x,w, e)E[fW,ε|J,B(w, e|Jig,Bg)|XJigg = x,Bg]
∣∣XJigg = x, FW |J,B(·|Jig,Bg)

]
=

∫
m(x,w, e)E[fW,ε|J,B(w, e|Jig,Bg)|XJigg = x, FW |J,B(·|Jig,Bg)]d(w, e)

=

∫
m(x,w, e)E[fW,ε|J,B(w, e|Jig,Bg)|FW |J,B(·|Jig,Bg)]d(w, e)

where the third equality use the display below, the second-to-last equality uses the Fubini theorem to

interchange the order of integration, and the last equality uses fWε|J,B is non-stochastic conditional

on FW |J,B. For the third equality in the above display,

E[m(x,Wig, εiJigg)|Jig,Bg] =
S∑
s=1

E[m(x,Wig, εisg)|Jig = s,Bg] Pr(Jig = s|Bg)

=
S∑
s=1

∫
m(x,w, e)fW,ε|J,B(w, e|s,Bg)d(w, e) Pr(Jig = s|Bg)

=

∫
m(x,w, e)E[fW,ε|J,B(w, e|Jig,Bg)|Bg]d(w, e).
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Finally, letting ν be the measure corresponding to the distribution of FW |J,B, which is identifiable

from the data,

∫
E[YiJigg|XJigg = x, FW |J,B(·|Jig,Bg) = F ]dν(F )

=

∫
m(x,w, e)E[fW,ε|J,B(w, e|Jig,Bg)|FW |J,B(·|Jig,Bg) = F ]d(w, e)dν(F )

=

∫
m(x,w, e)E[fW,ε|J,B(w, e|Jig,Bg)]d(w, e)

=

∫
m(x,w, e)fW,ε(w, e)d(w, e).

B Details of DGPs for Monte Carlo Studies

The details of the DGPs used in the simulation studies are following. I use G = 1, 000 and for each

city, N = 300 and S = 3 with the constraint that each group can have at most 115 people. The

final sample from the NLS72 dataset contains 917 schools, which I treated as independent draws.

This assumption is valid if schools are geographically isolated from each other.

The econometric model generating the data is

Yis = Xsβ +W ′iγ + ωi + χs + εis

Ji = arg max
s∈{1,2,3}

{Θ′iAs + ηis}

where β = −0.15 and γ = (−0.0003, 0.06)′ are taken from an estimate in the NLS72. Also, Wi has

a bivariate normal distribution with mean (12.37, 10.92) and covariance matrix

 4.25 0.49

0.49 0.42

 .
The means and covariance matrix are based on the NLS72 data. The preference coefficient Θi is

generated by

Θi = Wi + ωi1 + νi

where 1 is 2 × 1 vector whose elements are unity and νi is a mean-zero bivariate normal with

covariance matrix

[
1 0.25

0.25 1

]
. For χs and εis, they have a mean-zero normal distribution with

standard deviation 0.446, which imitates the standard error of a regression from the data. The
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idiosyncratic term ηis is drawn from mean-zero normal distribution with standard deviation 2. For

Xs, I use the empirical distribution of a school-level variable observed in the NLS72 dataset; As

consists of Xs and a binary variable that takes value 1 with probability 0.29 and has correlation of

0.25 with Xs.

For ωi, each DGP generates this variable in different ways. For DGP1, ωi has a joint normal

distribution with Wi, its mean is 2.16, variance is 0.51, and the covariance with Wi is 0.051, 0.024.

The joint normality leads to the linear specification of the control function. For DGP2, I model

ωi = 0.1 ∗ ui + 2 ∗ 1{W1i +W2i − E[W1i +W2i] > vi}

where ui has the same distribution as ωi in DGP1 (jointly normal withWi) and vi =d Normal(0, 0.2).

For the third DGP,

ωi = 0.5 ∗W 2
1i + 0.5 ∗W 3

2i

where W1i and W2i represent the first and second component of Wi.

In terms of implementation, I generate the random variables and compute utilities of choosing

different groups for each individual. Then, I use linear programming to find an allocation that

maximizes the sum of utilities under the group size constraint. Altonji and Mansfield use this step

in their simulation and I follow their procedure.
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