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Abstract

I study endogenous learning dynamics for people expecting systematic reversals
from random sequences — the “gambler’s fallacy.” Biased agents face an optimal-
stopping problem, such as managers conducting sequential interviews. They are un-
certain about the underlying distribution (e.g. talent distribution in the labor pool)
and must learn its parameters from previous agents’ histories. Agents stop when early
draws are deemed “good enough,” so predecessors’ histories contain negative streaks
but not positive streaks. Since biased learners understate the likelihood of consecu-
tive below-average draws, histories induce pessimistic beliefs about the distribution’s
mean. When early agents decrease their acceptance thresholds due to pessimism, later
learners will become more surprised by the lack of positive reversals in their predeces-
sors’ histories, leading to even more pessimistic inferences and even lower acceptance
thresholds — a positive-feedback loop. Agents who are additionally uncertain about
the distribution’s variance believe in fictitious variation (exaggerated variance) to an
extent depending on the severity of data censoring. When payoffs are convex in the
draws (e.g. managers can hire previously rejected interviewees), variance uncertainty
provides another channel of positive feedback between past and future thresholds.
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1 Introduction

The gambler’s fallacy is widespread. Many people believe that a fair coin has a higher
chance of landing on tails after landing on heads three times in a row, think a son is “due”
to a woman who has given birth to consecutive daughters, and, in general, expect too much
reversal from sequential realizations of independent random events. Studies have documented
the gambler’s fallacy in lottery games where the bias is strictly costly (Terrell, 1994; Suetens,
Galbo-Jørgensen, and Tyran, 2016) and in incentivized lab experiments (Benjamin, Moore,
and Rabin, 2017). Recent analysis of field data by Chen, Moskowitz, and Shue (2016) shows
this bias also affects experienced decision-makers in high-stakes decisions, such as judges in
asylum courts. Section 1.3 surveys more of this empirical literature.

This paper highlights novel implications of the gambler’s fallacy in optimal-stopping
problems when agents are uncertain about the underlying distributions. As a running exam-
ple, consider an HR manager (Alice) recruiting for a job opening, sequentially interviewing
candidates. In deciding whether to hire a candidate, Alice needs to form a belief about the
labor pool with regard to the distribution of potential future applicants should she keep the
position open. She consults with other managers who have recruited for similar positions
to learn about the distribution of talent in the labor pool, then decides on a stopping strat-
egy for her own hiring problem. Suppose all managers believe in the gambler’s fallacy —
that is, they exaggerate how unlikely it is to get consecutive above-average or consecutive
below-average applicants (relative to the labor pool mean). This error stems from the same
psychology that leads people to exaggerate how unlikely it is to get consecutive heads or
consecutive tails when tossing a fair coin. What are the implications of this bias for the
managers’ beliefs and behavior over time?

In this example and other natural optimal-stopping problems, agents tend to stop when
early draws are deemed “good enough,” leading to an asymmetric censoring of experience.
When a manager discovers a very strong candidate early in the hiring cycle, she stops her
recruitment efforts and future managers do not observe what alternative candidates she
would have found for the same job opening with a longer search. This endogenous censoring
effect interacts with the gambler’s fallacy bias and leads to pessimistic inference about the
labor pool. Suppose Alice’s predecessors held the correct beliefs about the labor pool, and
the qualities of different candidates are objectively independent. Predecessors with below-
average early interviewees continue searching, but they are systematically surprised because
their subsequent interviewees also turn out to be below-average half of the time, contrary
to their (false) expectations of positive reversals after bad initial outcomes. When these
managers communicate their disappointment to Alice, she becomes overly pessimistic about
the labor pool. This pessimism informs Alice’s stopping strategy and affects the kind of
(censored) experience that she communicates to future managers in turn.

2



This paper examines the endogenous learning dynamics of a society of agents believing
in the gambler’s fallacy. All agents face a common stage game: an optimal-stopping problem
with draws in different periods independently generated from fixed yet unknown distribu-
tions.1 They take turns playing the stage game, with the game’s outcome determining each
agent’s payoff. Agents are Bayesians, except for the statistical bias. That is, they start with
a prior belief over a class of feasible models about the joint distribution of draws. Feasible
models are Gaussian distributions indexed by different unconditional means of the draws (the
fundamentals). Reflecting a mistaken belief in reversals, all feasible models specify the same
negative correlation between draws. Biased agents dogmatically believe that worse earlier
draws lead to better distributions of later draws, conditional on the fundamentals. Before
playing her own stage game, each agent observes the stage-game histories of her predeces-
sors, then applies Bayes’ rule to update her beliefs about the fundamentals. This inference
procedure amounts to misspecified Bayesian learning in the class of feasible models, a class
that excludes the true draw-generating distribution.

I consider two social-learning environments. When agents play the stage game one at a
time, the stochastic processes of their beliefs and behavior almost surely converge globally to
a unique steady state in which agents are over-pessimistic about the fundamentals and stop
too early relative to the objectively optimal strategy. This result formalizes the intuition
about how the gambler’s fallacy interacts with the censoring effect to produce pessimistic
inference.

When agents arrive in large generations, with everyone in the same generation playing
simultaneously, society converges to the same steady state as the previous environment. This
large-generations model features deterministic learning dynamics and illustrates a positive-
feedback cycle between distorted beliefs and distorted stopping strategies. More severely
censored datasets lead to more pessimistic beliefs, while more pessimistic beliefs lead to ear-
lier stopping and, as a consequence, heavier history censoring. Mapping back to the hiring
example, suppose a firm appoints HR managers in cohorts. Upon arrival, each junior man-
ager learns the recruiting experience of all previous managers. If managers in the first cohort
start with correct beliefs about labor-market conditions, then the average hiring outcome
monotonically deteriorates across all successive cohorts. After Alice and others in her co-
hort consult with their predecessors and end up with over-pessimistic inferences, their beliefs
lead them to be less “choosy” when hiring and only keep searching if their first interviewees
prove to be truly unsatisfactory. On average, managers in Alice’s cohort who reject their

1Using panel data, Conlon, Pilossoph, Wiswall, and Zafar (2018) find that unemployed workers make
inferences about the wage distribution in the labor market using previously received (and rejected) offers, an
empirical example of agents using histories to learn about the draw-generating distributions of an optimal-
stopping problem. Interestingly, their paper also documents overinference from small samples, suggesting
workers exhibit a “law of small numbers” psychology that underlies the gambler’s fallacy.
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early applicants under these newly lowered acceptance standards become disappointed by
the quality of their later interviewees, even given these managers’ already pessimistic beliefs
about the labor pool. This is because biased agents expect more positive reversal follow-
ing worse early outcomes, so for a fixed realization of later interviewee’s quality, managers
experience greater disappointment following worse earlier applicants. The pessimism that
managers in Alice’s generation started with thus becomes amplified in the next generation,
leading to a further lowering of acceptance thresholds and a further decrease in the average
quality of the hired candidate.

The endogenous-data setting leads to novel comparative statics predictions about how the
payoff parameters of the stage game affect learning outcomes under the gambler’s fallacy.
For instance, suppose managers become more impatient, incurring a larger waiting cost
when they decide to continue searching. If data is exogenous or if agents are correctly
specified, then learning outcomes are independent of the details of the decision problem.
When agents believing in the gambler’s fallacy learn from endogenously censored histories,
however, lower patience in the stage game leads to more distorted long-run beliefs about
the fundamentals. This result is another expression of the positive feedback between actions
and beliefs. Impatient managers use lower acceptance thresholds, so they tend to be more
disappointed by the lack of reversals in the search process compared to their more patient
(and therefore choosier) counterparts. This implies that more impatient agents also become
more pessimistic about the fundamentals, thus compounding their initial lowering of the
cutoff threshold (due to impatience) with a further change in the same direction (due to
beliefs).

Finally, I expand the set of feasible models and consider agents who are uncertain about
both the means and variances of the draw-generating distributions. I show that in this joint
estimation, agents make the same misinference about the means as in the baseline model.
However, they exaggerate the variances in a way that depends on the censoring of histories
in their dataset. In the hiring example, this exaggeration corresponds to Alice believing
that applicants for different vacancies come from different labor pools that vary in average
quality, when in reality applicants for all vacancies originate from the same pool with a
fixed quality distribution. Alice’s belief in vacancy-specific fixed effects helps her explain the
experience of her predecessors who had consecutive below-average interviewees, reasoning
that it must have been especially difficult to find good candidates for these particular job
openings. The severity of censoring in Alice’s dataset determines her belief about the vari-
ance in average candidate quality across different vacancies, a belief that also influences her
stopping strategy. I derive two results that illustrate how this belief in fictitious variation
interacts with endogenous learning. First, when the stage-game payoff function is convex in
draws (such as when previously rejected candidates can be recalled with some probability
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in the sequential interviewing problem), the positive-feedback cycle of the baseline environ-
ment strengthens. This is because a more severely censored dataset not only makes future
agents more pessimistic about the fundamentals due to the usual censoring effect, but also
decreases their belief in fictitious variation. Due to the convexity of the optimal-stopping
problem, both forces encourage earlier stopping, leading to even heavier data censoring in
the future. Second, a society where agents are uncertain about the variances can end up
with a different long-run belief about the means than another society where agents know the
correct variances. This is despite the fact that agents in both societies would make the same
(mis)inference about the means given the same dataset of histories.

While I focus on (misspecified) Bayesian agents estimating parameters of a Gaussian
model, my main results remain robust to a range of alternative specifications. These include
a non-Bayesian method-of-moments inference procedure and general distributional assump-
tions.

1.1 Key Contributions

This work contributes to two strands of literature: the behavioral economics literature on
inference mistakes for biased learners, and the theoretical literature on the dynamics of
misspecified endogenous learning.

As a contribution to behavioral economics, I highlight a novel channel of misinference for
behavioral agents — the interaction between psychological bias and data censoring. In many
natural environments, agents learn from censored data. The economics literature has recently
focused on the learning implications of selection neglect in these settings, where agents act as
if their dataset is not censored.2 My work points out that other well-documented behavioral
biases can also interact with data censoring in interesting ways, producing important and
novel implications in these environments. Mislearning in my model stems precisely from
this interaction, not from either censored data or the gambler’s fallacy alone. If agents
were correctly specified (i.e. they do not suffer from the statistical bias), then they would
correctly learn the fundamentals even from a dataset of censored histories. On the other
hand, consider an “uncensored” environment where agents observe what their predecessors
would have drawn in each period of the optimal-stopping problem, regardless of the actual
stopping decisions of these predecessors. In such a counterfactual scenario, even biased
agents would learn the fundamentals correctly. The intuition is that the gambler’s fallacy
is a “symmetric” bias. The “asymmetric” outcome of over-pessimism only occurs when the
bias interacts with an (endogenous) asymmetric censoring mechanism that tends to produce
data containing negative streaks but not positive streaks.

2See, for example, Enke (2017) and Jehiel (2018).
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As a theoretical contribution, I prove convergence of beliefs and behavior in a non-self-
confirming misspecified setting with a continuum of states of the world. Economists study
many kinds of misspecifications with the property that even the “best-fitting” feasible belief
does not match data exactly — that is to say, no feasible self-confirming belief exists. The
gambler’s fallacy falls into this family, since all feasible models imply a negative correlation
absent in the data. I analyze the stochastic processes of belief and behavior under this
statistical bias, proving their global almost-sure convergence to a unique steady state. This
is a technically challenging problem. For biased agents facing a large dataset of histories
generated from a fixed censoring threshold, the “best-fitting” feasible belief3 depends on the
threshold. But in the environment where agents act in a sequence, histories of predecessors
are generated one at a time based on their ex-ante random and correlated stopping strategies,
which may start arbitrarily far away from the steady-state stopping behavior. In related
work, Heidhues, Koszegi, and Strack (2018) study learning dynamics under a different bias:
overconfidence about one’s own ability. Despite being biased, agents in their setting always
have some feasible belief that exactly rationalizes data, and so their learning steady-state
is a self-confirming equilibrium. By contrast, the steady state in my paper is not self-
confirming. In addition, I prove my convergence result in a setting with multiple dimensions
of uncertainty (the distributional parameters for different periods of the stage game), whereas
Heidhues, Koszegi, and Strack (2018) consider convergence of misspecified learning with one-
dimensional uncertainty. Fudenberg, Romanyuk, and Strack (2017) study a continuous-time
model of active learning under misspecification, but their learning problem has an even more
restricted state space. The agent’s belief is binary, that is to say her prior is supported on
exactly two feasible models. In my setting, agents’ prior belief about each distributional
parameter is supported on a continuum of feasible values.

As another contribution to the theoretical literature on misspecified learning dynamics,
my project studies a new mechanism of endogeneity: the censoring effect in a dynamic stage
game. A dynamic stage game is essential for studying learning under the gambler’s fallacy,
a behavioral bias concerning the serial correlation of data. The censoring effect relies on the
dynamic structure of the decision problem and has no analog in the static stage-games of
Heidhues, Koszegi, and Strack (2018) and Fudenberg, Romanyuk, and Strack (2017). In my
setting, the type of data that an agent generates depends on her beliefs. To understand the
distinction from the existing literature, consider the classic paper in this area, Nyarko (1991),
who studies a monopolist setting a price on each date and observing the resulting sales. No
matter what action the monopolist takes, she observes the same type of data: quantity sold.
Similarly, the agent in Fudenberg, Romanyuk, and Strack (2017) always observes payoffs

3More precisely, the feasible model whose implied history distribution has the minimum (though still
positive) Kullback-Leibler divergence relative to the observed history distribution, given the history censoring
threshold.
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and the agent in Heidhues, Koszegi, and Strack (2018) always observes output levels, after
any action. Endogenous learning in these other papers takes the form of agents attributing
different meanings to the same type of data, when interpreted through the lenses of different
actions. On the other hand, we may think of stage-game histories censored with different
thresholds as different types of data about the fundamentals. The distinction is that these
different types of data, by themselves, lead to different beliefs about the fundamentals for
biased learners. Actions play no role in inference except to generate these different types of
data, since the likelihood of a (feasible) history does not depend on the censoring threshold
that produced it.

1.2 Other Related Theoretical Work

Rabin (2002) and Rabin and Vayanos (2010) are the first to study the inferential mistakes
implied by the gambler’s fallacy. Except for an example in Rabin (2002), discussed below,
all such investigations focus on passive inference, whereby learners observe an exogenous
information process. By contrast, I examine an endogenous learning setting where the actions
of predecessors censor the dataset of future learners. This setting allows me to ask whether
the feedback loop between learners’ actions and biased beliefs will attenuate or exaggerate
the distortions caused by the fallacy over the course of learning. In addition, relative to this
existing literature, the present paper uniquely focuses on the dynamics of mislearning under
the gambler’s fallacy. I prove that the stochastic process of beliefs and behavior almost
surely converges when biased agents act one at a time, and I trace out the exact trajectory
of beliefs and behavior when agents act in generations.

Section 7 of Rabin (2002) discusses an example of endogenous learning under a finite-urn
model of the gambler’s fallacy. The nature of Rabin (2002)’s endogenous data, however,
is unrelated to the censoring effect central to my paper.4 In Appendix E, I modify that
example to induce the censoring effect. I find a misinference result in his finite-urn model of
the gambler’s fallacy, similar to what I find in the continuous Gaussian model of this paper.
This exercise shows the robustness of my results within different modeling frameworks of the
same statistical bias.

My steady state corresponds to Esponda and Pouzo (2016)’s Berk-Nash equilibrium.
Rather than focusing only on equilibrium analysis, however, I focus on non-equilibrium
learning dynamics and prove global convergence. That is, in the environment with agents

4In Rabin (2002)’s example, biased agents (correctly) believe that the part of the data which is always
observable is independent of the part of the data which is sometimes missing. However, what I term
the “censoring effect” is about misinference resulting from agents wrongly believing in negative correlation
between the early draws that are always observed and the later draws that may be censored, depending on
the realizations of the early draws. Therefore, my central mechanism highlights a novel interaction between
data censoring and the gambler’s fallacy bias that is absent in the previous literature.
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acting one at a time, society converges to the steady state for all prior beliefs satisfying
regularity conditions. In the environment where agents act in large generations, society
converges for all initial conditions of the first generation. The large-generations environment
also allows me to study how the positive feedback between beliefs and stopping strategies
leads to monotonic convergence.

Although my learning framework involves short-lived agents learning from predecessors’
histories, the social-learning aspect of my framework is not central to the results. In fact,
the environment where a sequence of short-lived agents acts one at a time is equivalent to
the environment where a single long-lived agent plays the stage game repeatedly, myopically
maximizing her expected payoff in each iteration of the stage game. In the growing literature
on social learning with misspecified Bayesians (e.g., Eyster and Rabin (2010); Gaurino and
Jehiel (2013); Bohren (2016); Bohren and Hauser (2018); Frick, Iijima, and Ishii (2018)),
agents observe their predecessors’ actions but make errors when inverting these actions to
deduce said predecessors’ information about the fundamentals. This kind of action inversion
does not take place in my framework: later agents observe all the information that their
predecessors have seen, so actions of predecessors are uninformative.

The econometrics literature has also studied data-generating processes with censoring —
for example, the Tobit model and models of competing risks.5 This literature has primarily
focused on the issue of model identification from censored data (Cox, 1962; Tsiatis, 1975;
Heckman and Honoré, 1989). In my setting, there is no identifiability problem for correctly
specified agents, since censored histories can identify the mean and the covariance matrix of
the draws. Instead, I study how agents make wrong inferences from censored data when they
have a family of misspecified models. Another contrast is that the econometrics literature
has focused on exogenous data-censoring mechanisms, but censoring is endogenous in my
setting and depends on the beliefs of previous agents. As discussed before, this endogeneity
is central to my results.

1.3 Empirical Evidence on the Gambler’s Fallacy

Bar-Hillel and Wagenaar (1991) review classical psychology studies on the gambler’s fallacy.
The earliest lab evidence involves two types of tasks. In “production tasks,” subjects are
asked to write down sequences using a given alphabet, with the goal of generating sequences
that resemble the realizations of an i.i.d. random process. Subjects tend to produce sequences
with too many alternations between symbols, as they attempt to locally balance out symbol
frequencies. In “judgment tasks” where subjects are asked to identify which sequence of
binary symbols appears most like consecutive tosses of a fair coin, subjects find sequences

5References can be found in Amemiya (1985) and Crowder (2001).
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with an alternation probability of 0.6 more random than those with an alternation probability
of 0.5. While most of these studies are unincentivized, Benjamin, Moore, and Rabin (2017)
have found the gambler’s fallacy with strict monetary incentives, where a bet on a fair
coin continuing its streak pays strictly more than the bet on the streak reversing. Barron
and Leider (2010) have shown that experiencing a streak of binary outcomes one at a time
exacerbates the gambler’s fallacy, compared with simply being told the past sequence of
outcomes all at once.

Other studies have identified the gambler’s fallacy using field data on lotteries and casino
games. Unlike in experiments, agents in field settings are typically not explicitly told the
underlying probabilities of the randomization devices. In state lotteries, players tend to
avoid betting on numbers that have very recently won. This under-betting behavior is
strictly costly for the players when lotteries have a pari-mutuel payout structure (as in the
studies of Terrell (1994) and Suetens, Galbo-Jørgensen, and Tyran (2016)), since it leads to a
larger-than-average payout per winner in the event that the same number is drawn again the
following week. Using security video footage, Croson and Sundali (2005) show that roulette
gamblers in casinos bet more on a color after a long streak of the opposite color. Narayanan
and Manchanda (2012) use individual-level data tracked using casino loyalty cards to find
that a larger recent win has a negative effect on the next bet that the gambler places, while
a larger recent loss increases the size of the next bet. Finally, using field data from asylum
judges, loan officers, and baseball umpires, Chen, Moskowitz, and Shue (2016) show that
even very experienced decision-makers show a tendency to alternate between two decisions
across a sequence of randomly ordered decision problems. This can be explained by the
gambler’s fallacy, as the fallacy leads to the belief that the objectively “correct” decision
is negatively auto-correlated across a sequence of decision problems. The authors rule out
several other explanations, including contrast effect and quotas.

As Rabin (2002) and Rabin and Vayanos (2010) have argued, someone who dogmatically
believes in the gambler’s fallacy must attribute the lack of reversals in the data to the funda-
mental probabilities of the randomizing device, leading to overinference from small samples.
This overinference can be seen in the field data. Cumulative win/loss (as opposed to very re-
cent win/loss) on a casino trip is positively correlated with the size of future bets (Narayanan
and Manchanda, 2012). A player who believes in the gambler’s fallacy rationalizes his per-
sistent good luck on a particular day by thinking he must be in a “hot” state, where his
fundamental probability of winning in each game is higher than usual. In a similar vein, a
number that has been drawn more often in the past six weeks, excluding the most recent past
week, gets more bets in the Denmark lottery (Suetens, Galbo-Jørgensen, and Tyran, 2016).
This kind of overinference resulting from small samples persists even in a market setting
where participants have had several rounds of experience and feedback (Camerer, 1987). In
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line with these studies, the model I consider involves agents who dogmatically believe in
the gambler’s fallacy and misinfer some parameter of the world as a result — though the
misinference mechanism in my model is further complicated by the presence of endogenous
data censoring.

2 Overview

This section presents the basic elements of the model, previews my main results, and provides
intuition for how the censoring effect drives my conclusions. I describe a class of optimal-
stopping problems serving as the (single-player) stage game. Agents are uncertain about
the distribution of draws in the stage game. They entertain a prior belief over a family
of distributions that they find plausible, the feasible models of how draws are generated.
All feasible models specify the same negative correlation between the draws, even though
draws are objectively independent: an error reflecting the gambler’s fallacy. Sections 3 and
4 embed these model elements into social-learning environments. In each environment, a
society of agents takes turns playing the stage game, making inferences over feasible models
using others’ stage-game histories. Section 5 contains a number of extensions that verify the
robustness of my main results with regard to different specifications.

2.1 Basic Elements of the Model

2.1.1 Optimal-Stopping Problem as a Dynamic Stage Game

The stage game is a two-period optimal-stopping problem. In the first period, the agent
draws x1 ∈ R and decides whether to stop. If she stops at x1, her payoff is u1(x1) and the
stage game ends. Otherwise, she continues to the second period, where she draws x2 ∈ R.
The stage game then ends with the agent getting payoffs u2(x1, x2).

The payoff functions u1 : R → R and u2 : R2 → R satisfy some regularity conditions to
be introduced in Assumption 1. The following example satisfies Assumption 1 and will be
used to illustrate my results throughout this paper.

Example 1 (search with q probability of recall). Many industries have a regular hiring cycle
each year. Consider a firm in such an industry and its HR manager, who must fill a job
opening during this year’s cycle. In the early phase of the hiring cycle, she finds a candidate
who would bring net benefit x1 to the firm if hired. She must decide between hiring this
candidate immediately or waiting. Choosing to wait means she will continue searching in
the late phase of the hiring cycle, finding another candidate who would bring benefit x2

to the organization. Waiting, however, carries the risk that the early candidate accepts an
offer from a different firm in the interim. Suppose there is 0 ≤ q < 1 probability that the
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early candidate will remain available in the late hiring phase. This situation then has payoff
functions u1(x1) = x1 and u2(x1, x2) = q ·max(x1, x2) + (1− q)x2. That is, in the late phase,
there is q probability the manager gets payoff equal to the higher of the two candidates’
qualities, and 1− q probability that she only has the option to hire the second candidate.

I now present regularity conditions on the payoff functions that define the class of optimal-
stopping problems I study.

Assumption 1 (regularity conditions). The payoff functions satisfy :

(a) For x′1 > x
′′
1 and x′2 > x

′′
2 , u1(x′1) > u1(x′′1) and u2(x′1, x

′
2) > u2(x′1, x

′′
2).

(b) For x′1 > x
′′
1 and any x̄2, u1(x′1)− u1(x′′1) > |u2(x′1, x̄2)− u2(x′′1 , x̄2)|.

(c) There exist xg1, xb2, xb1, x
g
2 ∈ R so that u1(xg1)−u2(xg1, xb2) > 0, while u1(xb1)−u2(xb1, x

g
2) <

0.

(d) u1, u2 are continuous. Also, for any x̄1 ∈ R, x2 7→ u2(x̄1, x2) is absolutely integrable
with respect to any Gaussian distribution on R.

Assumption 1(a) says u1, u2 are strictly increasing in the draws in their respective periods.
Assumption 1(b) says a higher realization of the early draw increases first-period payoff more
than it changes second-period payoff. Under Assumption 1(a), Assumption 1(b) is satisfied
whenever u2 is not a function of x1, as in optimal-stopping problems where stopping in period
k gives payoff only depending on the k-th draw. More generally, Assumption 1(b) is satisfied
when u2(x1, x2) = z2,1(x1) + z2,2(x2) is separable across the draws of the two periods with
|z′2,1(x1)| < u

′
1(x1) at all x1 ∈ R. Assumption 1(c) says there exist a good enough realization

xg1 and bad enough realization xb2, so that the agent prefers stopping in period 1 after xg1 than
continuing when she knows for sure that her second draw will be xb2. Conversely, there are
xb1, x

g
2 so that she prefers continuing after xb1 if she knows she will get xg2 in the second period

for sure. Assumption 1(d) is a technical condition. The absolute integrability requirement
ensures that the expected payoff from choosing to continue is always well-defined. These
conditions are satisfied by my recurrent example.6

Claim 1. Example 1 satisfies Assumption 1.

I now define strategies and histories of the stage game.

Definition 1. A strategy is a function S : R→{Stop, Continue} that maps the realization
of the first-period draw X1 = x1 into a stopping decision.

Without loss I only consider pure strategies, because there always exists a payoff-maximizing
pure strategy under any belief about the distribution of draws.

6Omitted proofs from the main text can be found in Appendix A.
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Definition 2. The history of the stage game is an element h ∈ H := R × (R ∪ {∅}). If
an agent decides to stop after X1 = x1, her history is (x1,∅). If the agent continues after
X1 = x1 and draws X2 = x2 in the second period, her history is (x1, x2).

The symbol ∅ is a censoring indicator, emphasizing that the hypothetical second-period
draw is unobserved when an agent does not continue into the second period. In Example 1,
if the HR manager hires the first candidate, she stops her recruitment efforts early and the
counterfactual second candidate that she would have found had she kept the position open
remains unknown.

2.1.2 Feasible Models and the Objective Model

Objectively, draws X1, X2 in the stage game are independently distributed with Gaussian
distributions X1 ∼ N (µ•1, σ2) and X2 ∼ N (µ•2, σ2) for some σ2 > 0. The parameters
µ•1, µ

•
2 ∈ R are fixed and called true fundamentals. In Example 1, µ•1 and µ•2 stand for the

underlying qualities of the two applicant pools in the early and late phases of the hiring
season.

Agents are uncertain about the distribution of (X1, X2). The next definition provides a
language to discuss the set of distributions that a gambler’s fallacy agent deems plausible.

Definition 3. The set of feasible models {Ψ(µ1, µ2; γ) : (µ1, µ2) ∈ M} is a family of joint
distributions of (X1, X2) indexed by feasible fundamentals (µ1, µ2) ∈M ⊆ R2, for some bias
parameter γ > 0. Here Ψ(µ1, µ2; γ) refers to the subjective model

X1 ∼ N (µ1, σ
2)

(X2|X1 = x1) ∼ N (µ2 − γ(x1 − µ1), σ2),

where X2|(X1 = x1) is the conditional distribution of X2 given X1 = x1.

Every feasible model has the property that E[X2 | X1 = x1] decreases in x1, which reflects
the gambler’s fallacy. Conditional on the fundamentals, if the realization of X1 is higher than
expected, then the agent believes bad luck is due in the near future and the second draw
is likely below average.7 Conversely, an exceptionally bad early draw likely portends above-
average luck in the next period. This expected luck reversal is more obvious in the following

7I study gambler’s fallacy for continuous random variables, where the magnitude of X1 affects the agent’s
prediction about X2. Chen, Moskowitz, and Shue (2016)’s analysis of baseball umpire data provides support
for the continuous version of the statistical bias. They find that an umpire is more likely to call the current
pitch a ball after having called the previous pitch a strike, controlling for the actual location of the pitch.
Crucially, the effect size is larger after more obvious strikes, where “obviousness” is based on the distance of
the pitch to the center of the regulated strike zone. This distance can be thought of as a continuous measure
of the “quality” of each pitch.
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equivalent formulation of Ψ(µ1, µ2; γ):

X1 = µ1 + ε1

X2 = µ2 + ε2

where ε1 ∼ N (0, σ2) and ε2|ε1 ∼ N (−γε1, σ2). The zero-mean terms ε1, ε2 represent the
idiosyncratic factors, or “luck,” that determine how the realizations of X1 and X2 deviate
from their unconditional means µ1 and µ2 in the model Ψ(µ1, µ2; γ). The subjective model
stipulates reversal of luck, since ε1, ε2 are negatively correlated. Larger γ > 0 implies greater
magnitude in these expected reversals and thus more bias.

The set of feasible models is indexed by the set of feasible fundamentals, which correspond
to the unconditional means8 ofX1 andX2. Therefore, the agent’s prior belief over the feasible
models is given by a prior belief supported on the feasible fundamentals.

Remark 1. I will consider several specifications of M in this paper. I list them here and
provide interpretations below.

(a) M = R2. The agent thinks all values (µ1, µ2) ∈ R2 are possible.

(b) M = ♦, where ♦ is a bounded parallelogram in R2 whose left and right edges are
parallel to the y-axis, whose top and bottom edges have slope −γ. The agent is
uncertain about both µ1 and µ2, but her uncertainty has bounded support.9

(c) M = {µ•1} × [µ2, µ̄2]. The agent has a correct, dogmatic belief about µ1, but has
uncertainty about µ2 supported on a bounded interval.

(d) M = {(µ, µ) : µ ∈ R}. The agent is convinced that the first-period and second-period
fundamentals are the same, but is uncertain what this common parameter is.

While the agent can freely update her belief about the fundamentals onM, she holds a
dogmatic belief about γ > 0.10 This implies that the set of feasible models excludes the true
model, Ψ• = Ψ(µ•1, µ•2; 0), so the support of the agent’s prior belief is misspecified. I maintain
this misspecification to match the field evidence of Chen, Moskowitz, and Shue (2016), where
even very experienced decision-makers continue to exhibit a non-negligible amount of the
gambler’s fallacy in high-stakes settings. Another reason why agents may never question
their misspecified prior is that the misspecification is “attentionally stable” in the sense of

8Section 5.2 discusses the extension where agents are also uncertain about the variances and jointly
estimate means and variances from censored histories.

9Any prior belief over fundamentals (µ1, µ2) supported on a bounded set in R2 can be arbitrarily well-
approximated by a prior belief over a large enough ♦.

10Section 5.3 studies the extension where agents are uncertain about γ, but the support of their prior
belief about γ lies to the left of 0 and is bounded away from it.
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Gagnon-Bartsch, Rabin, and Schwartzstein (2018). Under the theory that the true model
falls within the feasible models, an agent finds it harmless to coarsen her dataset by only
paying attention to certain “summary statistics.” In large datasets, the statistics extracted
by the limited-attention agent do not lead her to question the validity of her theory. I discuss
this further in Appendix F.

I write EΨ and PΨ throughout for expectation and probability with respect to the sub-
jective model Ψ. When E and P are used without subscripts, they refer to expectation and
probability under the true model Ψ•.

Before stating my main results, I first establish a result about the optimal stage-game
strategy under any feasible model, which will motivate a slight strengthening of Assumption
1 that I need for some results. For c ∈ R, write Sc for the cutoff strategy such that Sc(x1) =
Stop if and only if x1 > c. That is, Sc accepts all early draws above a cutoff threshold c.

Proposition 1. Under Assumption 1 and for γ > 0,

• Under each subjective model Ψ(µ1, µ2; γ), there exists a cutoff threshold C(µ1, µ2; γ) ∈
R such that it is strictly optimal to continue whenever x1 < C(µ1, µ2; γ) and strictly
optimal to stop whenever x1 > C(µ1, µ2; γ).

• For every µ1 ∈ R, µ2 7→ C(µ1, µ2; γ) is strictly increasing.

• For every µ1 ∈ R, µ2 7→ C(µ1, µ2; γ) is Lipschitz continuous with Lipschitz constant
1/γ.

The content of this lemma is threefold.
First, it shows that the best strategy for the class of optimal-stopping problems I study

takes a cutoff form, regardless of the underlying distributions. This is because a higher x1

both increases the payoff to stopping and, under the gambler’s fallacy, predicts worse draws
in the next period. Both forces push in the direction of stopping. The optimality of cutoff
strategies leads to an endogenous, asymmetric censoring of histories, formalizing the idea
that agents stop after “good enough” draws.

Second, holding fixed µ1, the cutoff threshold is higher when µ2 is higher. In other words,
the definition of a “good enough” early draw x1 increases with µ2. This is because agents
can afford to be choosier in the first period when facing improved prospects in the second
period.

The third statement about Lipschitz continuity, on the other hand, gives a bound on how
quickly µ2 7→ C(µ1, µ2; γ) increases. To understand why it holds, suppose that one agent
believes draws are generated according to Ψ(µ1, µ2; γ), while another agent believes they are
generated according to Ψ(µ1, µ2 + 1; γ). Under any feasible model, when X1 increases by
1/γ, the predicted conditional mean of X2 falls by (1/γ) · γ = 1. Therefore, the indifference
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condition of the first agent at cutoff c implies the second agent prefers stopping after X =
c+ 1

γ
, since the expected reversal cancels out the relative optimism of the second agent about

the unconditional distribution of X2.
The Lipschitz constant 1/γ is guaranteed for every optimal-stopping problem satisfying

Assumption 1 and for every γ > 0. But, it may not be the best Lipschitz constant. My
results use the slightly stronger condition that µ2 7→ C(µ•1, µ2; γ) has a Lipschitz constant
strictly smaller than 1/γ. Intuitively this should be easy to satisfy, but instead of assuming
it directly, I consider the following condition on primitives that implies the desired infinites-
imally stronger Lipschitz continuity. It is a joint restriction on γ and the stage game.

Assumption 2 (`-Lipschitz continuity). There exists 0 < ` < 1
γ
so that for every x1, x2 ∈ R

and d > 0,

u1(x1 + `d)− u1(x1) ≥ u2(x1 + `d, x2 + (1− γ`)d)− u2(x1, x2)

This condition is satisfied for search with q probability of recall.

Claim 2. Example 1 satisfies Assumption 2 with ` = 1
1+γ for every probability of recall

0 ≤ q < 1 and every bias γ > 0.

Assumption 2 strengthens Assumption 1(b), which already implies u1(x1 +`d)−u1(x1) >
u2(x1 + `d, x2) − u2(x1, x2). For any 0 < ` < 1

γ
, (1 − γ`)d > 0, which makes the inequality

harder to satisfy as adding a positive term to the second argument of u2 makes the RHS
larger.

2.2 Main Results

I now state my two main results, which concern learning dynamics under the gambler’s fallacy
in two different social-learning environments. I defer precise details of these environments
to later sections.

In the first environment, short-lived agents arrive one per round, t = 1, 2, 3, .... All
agents start with the same full-support prior density g : ♦ → R>0, where ♦ is a bounded
parallelogram in R2 as in Remark 1(b). Agent t observes the stage-game histories of all
predecessors, updates her prior g to a posterior density g̃t, then chooses a cutoff threshold
C̃t to maximize her expected payoff based on this posterior belief. In this environment, the
sequences of cutoffs (C̃t) and posterior beliefs (g̃t) are stochastic processes whose randomness
derives from the randomness of draws. Draws are objectively independent, both between the
two periods in the same round of the stage game and across different rounds.

Theorem 1. Suppose Assumptions 1 and 2 hold and ∂g
∂µ1

and ∂g
∂µ2

are continuous on ♦. There
exists a unique steady state µ∞2 , c∞ ∈ R not dependent on g, so that provided (µ•1, µ∞2 ) ∈ ♦,
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almost surely limt→∞ C̃t = c∞ and limt→∞ E(µ1,µ2)∼g̃t [|µ1 − µ•1|+ |µ2 − µ∞2 |] = 0. The steady
state satisfies µ∞2 < µ•2 and c∞ < c•, where c• is the objectively optimal cutoff threshold.

In other words, almost surely behavior and belief converge in the society, and this steady
state is independent of the prior over fundamentals (provided its support is large enough).
In the steady state, agents hold overly pessimistic beliefs about the fundamentals and stop
too early, relative to the objectively optimal strategy.

In the second environment, short-lived agents arrive in generations, t = 0, 1, 2, ..., with a
continuum of agents per generation. Agents’ prior belief about the fundamentals is given by a
full-support density on R2, as in Remark 1(a). Each agent observes the stage-game histories
of all predecessors from all past generations to make inferences about the fundamentals. Due
to the large generations, cutoffs and beliefs are deterministic in generations t ≥ 1, which I
denote as c[t] and µ[t] = (µ1,[t], µ2,[t]) respectively. The society is initialized at an arbitrary
cutoff strategy Sc[0] in the 0th generation, the initial condition.

Theorem 2. Suppose Assumption 1 holds. Starting from any initial condition and any
g, cutoffs (c[t])t≥1 and beliefs (µ[t])t≥1 form monotonic sequences across generations. When
Assumption 2 also holds, there exists a unique steady state µ∞2 , c∞ ∈ R so that c[t] → c∞

and (µ1,[t], µ2,[t]) → (µ•1, µ∞2 ) monotonically, regardless of the initial condition and g. These
steady states are the same as those in Theorem 1.

The monotonicity of beliefs and cutoffs across generations reflects a positive-feedback
loop between changes in beliefs and changes in behavior. Suppose generation t is more
pessimistic than generation t− 1 about the second-period fundamental, µ2,[t] < µ2,[t−1]. The
monotonicity result implies that beliefs move in the same direction again in generation t+ 1,
that is µ2,[t+1] < µ2,[t]. The information of generation t + 1 differs from that of generation t
only in that agents in generation t+ 1 observe all stage-game histories of generation t. This
means generation t’s stopping behavior differs from that of generation t− 1 in such a way as
to generate histories that amplify, not dampen, the initial change in beliefs from generation
t− 1 to generation t.

2.3 Intuition for the Main Results

In the learning environments I study, each agent censors the data of future agents through
her stopping strategy, where the strategy choice depends on her beliefs. To build intuition
for how this censoring effect relates to the two main theorems, I first consider a biased agent
with feasible fundamentalsM = R2, facing a large sample of histories all censored according
to some cutoff threshold c ∈ R. I characterize her inference about fundamentals when the
sample size grows and analyze how her inference depends on the cutoff threshold c.
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For a cutoff strategy Sc and a subjective model Ψ, H(Ψ; c) refers to the distribution of
histories when draws are generated by Ψ and histories censored according to Sc, or more
precisely:

Definition 4. For c ∈ R and Ψ a subjective model, H(Ψ; c) ∈ ∆(H) is the distribution of
histories given by

H(Ψ; c)[E1 × E2] := PΨ [(E1 ∩ (c,∞))× E2] for E1, E2 ∈ B(R)
H(Ψ; c)[E1 × {∅}] := PΨ[(E1 ∩ (−∞, c])× R] for E1 ∈ B(R),

where B(R) is the collection of Borel subsets of R.

I abbreviate H(Ψ•; c) as simply H•(c), the true distribution of histories under the true
model of draws and the cutoff threshold c. The next definition gives a measure of how much
the implied distribution of histories under the feasible model with fundamentals (µ1, µ2)
differs from the true distribution of histories, both generated with the same censoring.

Definition 5. For c, µ1, µ2 ∈ R, theKullback-Leibler (KL) divergence fromH•(c) toH(Ψ(µ1, µ2; γ); c),
denoted by DKL(H•(c) || H(Ψ(µ1, µ2; γ); c) ), is

∫ ∞
c

φ(x1;µ•1, σ2) · ln
(
φ(x1;µ•1, σ2)
φ(x1;µ1, σ2)

)
dx1

+
∫ c

−∞

{∫ ∞
−∞

φ(x1;µ•1, σ2) · φ(x2;µ•2, σ2) · ln
[

φ(x1;µ•1, σ2) · φ(x2;µ•2, σ2)
φ(x1;µ1, σ2) · φ(x2;µ2 − γ(x1 − µ1), σ2)

]
dx2

}
dx1

where φ(x; a, b2) is Gaussian density with mean a and variance b2.
The minimizers of KL divergence with respect to cutoff c,

(µ∗1, µ∗2) ∈ arg min
µ1,µ2∈R

DKL(H•(c) || H(Ψ(µ1, µ2; γ); c) ),

are called the pseudo-true fundamentals with respect to c.

To interpret, the likelihood of the history h = (x1, x2) with x1 ≤ c is φ(x1;µ•1, σ2) ·
φ(x2;µ•2, σ2) under the true model Ψ•, φ(x1;µ1, σ

2) ·φ(x2;µ2− γ(x1−µ1), σ2) under the fea-
sible model Ψ(µ1, µ2; γ). The likelihood of the history h = (x1,∅) with x1 > c is φ(x1;µ•1, σ2)
under the true model, φ(x1;µ1, σ

2) under the feasible model. The likelihoods of all other
histories are 0 under both models. So the KL divergence expression in Definition 5 is the
expected log-likelihood ratio of the history under the true model versus under the feasible
model with fundamentals (µ1, µ2), where expectation over histories is taken under the true
model. In general, this optimization objective depends on the cutoff threshold c that deter-
mines how histories are censored. I will therefore denote the pseudo-true fundamentals as
µ∗1(c), µ∗2(c) to emphasize this dependence.
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The pseudo-true fundamentals correspond to the biased agent’s inference about the fun-
damentals in large samples (hence the name). More precisely, suppose an agent starts with
a prior belief on the fundamentals supported on R2 and observes a large but finite sample of
histories drawn from H•(c). Proposition A.1 in Appendix B shows that as the sample size
grows, her posterior belief almost surely converges in L1 to the point mass on (µ∗1(c), µ∗2(c)).

The next proposition explicitly solves the pseudo-true fundamentals in a simple closed-
form expression.11 This result makes much of the later analysis tractable and contains the
key intuition behind the two main theorems.

Proposition 2. For c ∈ R, the pseudo-true fundamentals are µ∗1(c) = µ•1 and

µ∗2(c) = µ•2 − γ (µ•1 − E [X1 | X1 ≤ c]) .

So µ∗2(c) < µ•2 for all c ∈ R and µ∗2(c) strictly increases in c.

The directional data censoring where histories only contain X2 following low values of X1

leads to over-pessimism, µ∗2(c) < µ•2 for all c. In every feasible model of draws Ψ(µ1, µ2; γ),
the realization of X2 depends on two factors: the second-period fundamental µ2, and a
reversal effect based on the realization of X1. Under the correct or over-optimistic belief
about µ2, a biased agent would be systematically disappointed by realizations of X2 in her
dataset. This is because X2 is only uncensored when X1 is low enough, a contingency where
the agent expects positive reversal on average.12 Over-pessimism can therefore be thought
of as “two wrongs making a right,” as the biased agent’s pessimism about the unconditional
X2 mean counteracts her false expectation of positive reversals in the dataset of censored
histories.

This mechanism explains the long-run pessimism in Theorem 1 and Theorem 2. In
fact, in the large-generations setting of Theorem 2, every generation t ≥ 1 holds strictly

11This result shows the pseudo-true fundamentals have a method-of-moments interpretation. Suppose
that instead of minimizing KL divergence, agents find µM

1 , µM
2 ∈ R so that H(Ψ(µM

1 , µM
2 ; γ); c) matches

H•(c) in terms of two moments: the means of the first- and second-period draws in the distribution of
censored histories. We can show that in fact, µM

1 (c) = µ∗1(c) and µM
2 (c) = µ∗2(c) for all c ∈ R. This provides

an alternative, non-Bayesian foundation for agents’ inference behavior. In Appendix C, I study the large-
generations learning dynamics for agents who apply this kind of method-of-moments inference to a family
of general, non-Gaussian feasible models of draws.

12This intuition presumes that agents understand selection in the dataset. Selection neglect is unlikely in
this environment due to the salience of censoring. In large datasets, agents observe both censored histories
with length 1 and uncensored histories with length 2, so the presence of censoring is highly explicit in
the data. By contrast, both intuition about selection neglect and experiments documenting it (e.g., Enke
(2017)) have focused on settings where the dataset does not contain “reminders” about censoring and could
be reasonably mistaken as a dataset without selection. Interestingly, Enke (2017) finds that the simple
hint “Also think about the players whom you do not communicate with!” reduces the fraction of selection
neglecters by 40%. This suggests the salience of censoring in my setting should mitigate selection neglect
even further. In Online Appendix OA 3.2, I show that the presence of a fraction of selection neglecters in
the population moderates the pessimism of the baseline gambler’s fallacy agents, but does not eliminate it.
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pessimistic beliefs, so over-pessimism is also a short-run phenomenon provided there are
enough predecessors per generation. The idea that asymmetric data censoring combined
with the gambler’s fallacy leads to pessimistic inference is highly robust. It continues to
hold when the feasible fundamentals reflect agents’ knowledge that µ1 = µ2 as in Remark
1(d) (Section 5.4), when agents are uncertain about variances (Section 5.2), under a joint
relaxation of Bayesian inference and Gaussian models (Appendix C), when the stage game
has more than two periods (Appendix D), under additional behavioral biases in inference
(Online Appendices OA 3.2 and OA 3.3), when higher draws bring worse payoffs (Online
Appendix OA 3.1), and with high probability after observing a finite dataset containing just
100 censored histories (Online Appendix OA 4.1).

Not only are the pseudo-true fundamentals always too pessimistic, the severity of censor-
ing also increases pessimism. To understand the intuition, consider two datasets of histories
from the distributions H•(c′) and H•(c′′), where c′′ < c

′
. The acceptance threshold is lower

in the second dataset, implying that uncensored values of X2 are preceded by worse val-
ues of X1 there, as the second draw is only observed when the first draw falls below the
threshold. A biased agent expects a greater amount of positive reversal in the dataset with
distribution H•(c′′) than the one with distribution H•(c′), but in truth uncensored X2 has
the same distribution in both datasets, since X1 and X2 are objectively independent. For
a fixed realization X2 = x2, an agent is more disappointed when she expects more positive
reversal, so inference about µ2 is pessimistic in the more heavily censored dataset.

The comparative static dµ∗2
dc

> 0 is central to the positive-feedback loop from Theorem 2.
In the large-generations model, Generation 1 observes a large dataset of histories drawn from
H•(c[0]) and chooses a cutoff c[1]. Generation 2 then observes histories from all predecessor
generations, that is histories drawn from both H•(c[0]) and H•(c[1]). If c[1] < c[0], then
Generation 2’s dataset features (on average) more severe censoring than Generation 1’s
dataset. Thus, Generation 2 comes to a more pessimistic inference about the second-period
fundamental. By Proposition 1, this leads to a further lowering of the cutoff threshold,
c[2] < c[1], and the pattern continues.

3 Convergence, Over-Pessimism, and Early Stopping

In this section, I study a social-learning environment where biased agents act one at a time,
inferring fundamentals from predecessors’ histories. I begin by defining the steady state of the
stage game for biased agents. The steady state depends on the optimal-stopping problem, the
true fundamentals (µ•1, µ•2), and the bias parameter γ > 0, but is independent of the details of
the agents’ prior density over fundamentals. I prove existence and uniqueness of the steady
state and show it features over-pessimism about fundamentals and early stopping. Then,
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I turn to the stochastic process of beliefs and behavior in the social-learning environment,
showing that this process almost surely converges to the steady state I defined.

3.1 Steady State: Existence, Uniqueness, and Other Properties

A steady state is a triplet consisting of fundamentals (µ∞1 , µ∞2 ) ∈ R and a cutoff threshold
c∞ ∈ R that endogenously determine each other. The cutoff strategy with acceptance
threshold c∞ maximizes expected payoff under the subjective model Ψ(µ∞1 , µ∞2 ; γ), while the
fundamentals are the pseudo-true fundamentals under data censoring with threshold c∞.
More precisely,

Definition 6. A steady state consists of µ∞1 , µ∞2 , c∞ ∈ R such that:

1. c∞ = C(µ∞1 , µ∞2 ; γ).

2. µ∞1 = µ∗1(c∞) and µ∞2 = µ∗2(c∞).

Steady states correspond to Esponda and Pouzo (2016)’s Berk-Nash equilibria for an
agent whose prior is supported on the feasible models with feasible fundamentalsM = R2,
under the restriction that equilibrium belief puts full confidence in a single fundamental
pair. The set of steady states depends on γ, since the severity of the bias changes both the
optimal cutoff thresholds under different fundamentals and inference about fundamentals
from stage-game histories.

The terminology “steady state” will soon be justified, as I will show the “steady state”
defined here almost surely characterizes the long-run learning outcome in the society where
biased agents act one by one. This convergence does not follow from Esponda and Pouzo
(2016), for their results only imply local convergence from prior beliefs sufficiently close
to the equilibrium beliefs, and only in a “perturbed game” environment where learners
receive idiosyncratic payoff shocks to different actions. I will show global convergence of the
stochastic processes of beliefs and behavior without payoff shocks.

Like almost all examples of Berk-Nash equilibrium in Esponda and Pouzo (2016), my
steady state generates data with positive KL divergence relative to the implied data distri-
bution under the steady-state beliefs. That is, H•(c∞) 6= H(Ψ(µ∞1 , µ∞2 ; γ); c∞), so the steady
state is not a self-confirming equilibrium.13 This is because for every censoring threshold c

13For example, under the history distribution H•(c∞),

E[h2|c∞ − 1 ≤ h1 ≤ c∞] = E[h2|c∞ − 2 ≤ h1 ≤ c∞ − 1]

since draws are objectively independent. However, under the history distribution driven by the steady-state
feasible model Ψ(µ∞1 , µ∞2 ; γ), we must have

E[h2|c∞ − 1 ≤ h1 ≤ c∞] < E[h2|c∞ − 2 ≤ h1 ≤ c∞ − 1]
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(and in particular for c = c∞), the KL divergences of the true history distribution to the
implied history distributions under different feasible models is bounded away from 0.

To prove the existence and uniqueness of steady state, I define the following belief itera-
tion map on the second-period fundamental.

Definition 7. For γ > 0, the iteration map I : R→ R is given by

I(µ2; γ) := µ•2 − γ (µ•1 − E [X1 | X1 ≤ C(µ•1, µ2; γ)]) .

Given the explicit expression of the pseudo-true fundamentals in Proposition 2, it is not
difficult to see that all steady states must have correct belief about µ1, and that steady-state
beliefs about µ2 are in bijection with fixed points of I.

Proposition 3. Under Assumptions 1 and 2, I is a contraction mapping with contraction
constant 0 < `γ < 1. Therefore, a unique steady state exists.

As hinted at in Section 2.1.2 the contraction mapping property of I comes from the
Lipschitz continuity of the indifference threshold implied by Assumption 2.

Lemma 1. Under Assumptions 1 and 2, µ2 7→ C(µ•1, µ2; γ) is Lipschitz continuous with
Lipschitz constant `.

Even under Assumption 1 alone, the basic regularity conditions we maintain throughout,
it turns out I is “almost” a contraction mapping for any γ > 0, in the sense that |I(µ′2) −
I(µ′′2)| < |µ′2 − µ

′′
2 | for every µ

′
2, µ

′′
2 ∈ R. But, there is no guarantee of a uniform contraction

constant strictly less than 1. The slight strengthening in Assumption 2 ensures such a uniform
contraction constant exists, providing the crucial step needed for existence and uniqueness
of a steady state.

Since µ∗2(c) < µ•2 for all c ∈ R by Proposition 2, this shows steady state belief about µ2

is exhibits over-pessimism. From the same Proposition, µ∞1 = µ•1.

Proposition 4. Every steady state satisfies µ∞2 < µ•2, µ∞1 = µ•1.

I now show the steady-state stopping threshold always features stopping too early. For
every µ•1, µ•2 ∈ R, the objectively optimal stopping strategy takes the form of a cutoff c• ∈
R ∪ {±∞}, where c• = −∞ means always stopping and c• = ∞ means never stopping.14 I
show that c• > c∞ for every steady-state cutoff c∞. (This result only requires Assumption 2
and does not require uniqueness of steady states.)

since γ > 0.
14This follows from Lemma A.2 in the Appendix, which shows even when γ = 0, the difference between

stopping payoff at x1 and expected continuation payoff after x1 is strictly increasing and continuous in x1.

21



This result does not directly follow from over-pessimism. In fact, short of the steady
state, there is an intuition that a biased agent may stop later than a rational agent, not
earlier. For a concrete illustration, consider Example 1 with q = 0, so there is no probability
of recall. Suppose the true fundamentals are µ•1 � µ•2, meaning the late applicant pool is
much worse than the early applicant pool. If a biased agent has the correct beliefs about
the fundamentals, she perceives a greater continuation value after X1 = µ•2 than a rational
agent with the same correct beliefs, since the former holds a false expectation of positive
reversals after a bad early draw. Even though c• = µ•2 and the rational agent chooses to
stop, the biased agent chooses to continue and has an indifference threshold strictly above
c•. By continuity, the biased agent’s cutoff threshold remains strictly above c• even under
slightly pessimistic beliefs about µ2.

Nevertheless, the next Proposition shows that in the steady state, it is unambiguous that
the biased agent stops too early relative to the objectively optimal threshold.

Proposition 5. Under Assumption 2, every steady-state stopping threshold c∞ is strictly
lower than the objectively optimal threshold, c•.

The early-stopping result strengthens the over-pessimism result. In the steady state,
agents must be sufficiently pessimistic as to overcome the opposite intuition about late
stopping that I discussed before.

3.2 Social Learning with Agents Acting One by One

This section shows the “steady state” defined and studied earlier warrants its name — it
corresponds to the long-run learning outcome for a society of biased agents acting one at a
time. I outline the convergence proof for a simpler variant of Theorem 1, where agents start
off knowing µ•1 and only entertain uncertainty over µ2. That is, the feasible fundamentals
are given by Remark 1(c) rather than Remark 1(b). This simplification is without much
loss: even when agents are initially uncertainty about µ1, they will almost surely learn it in
the long run regardless of the stochastic process of their predecessors’ stopping strategies.
Intuitively, this is becauseX1 can never be censored, so no belief distortion in µ1 is possible.15

Once agents have learned µ•1, the rest of the argument proceeds much like the case where µ•1
is known from the start. In the next section I comment on the key steps in extending the
proof to the case uncertainty over two-dimensional fundamentals (µ1, µ2), but will defer the
details to Online Appendix OA 2.

In the learning environment, time is discrete and partitioned into rounds16 t = 1, 2, 3, ...
One short-lived agent arrives per round. Agent t observes the stage-game histories of all

15This is similar to the intuition for why µ∗1(c) = µ•1 for every c.
16I use the term “rounds” to refer to different iterations of the stage game, reserving the term “periods”

for the dynamic aspect within the stage game.
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predecessors17 and forms a posterior belief G̃t about the fundamentals using Bayes’ rule.
Next, agent t chooses a cutoff threshold C̃t maximizing expected payoff based on expected
utility, plays the stage game, and exits. Her stage-game history, H̃t ∈ H, then becomes part
of the dataset for all future agents.

The sequences (G̃t), (C̃t), (H̃t) are stochastic processes whose randomness stem from ran-
domness of the stage-game draws realizations in different rounds. The convergence theorem
is about the almost sure convergence of processes (G̃t) and (C̃t). To define the probability
space formally, consider the R2-valued stochastic process (Xt)t≥1 = (X1,t, X2,t)t≥1, where Xt

and Xt′ are independent for t 6= t
′ . Within each t, X1,t ∼ N (µ•1, σ2), X2,t ∼ N (µ•2, σ2) are

also independent. Interpret Xt as the pair of potential draws in the t-th round of the stage
game. Clearly, there exists a probability space (Ω,A,P), with sample space Ω = (R2)∞

interpreted as paths of the process just described, A the Borel σ-algebra on Ω, and P the
measure on sample paths so that the process Xt(ω) = ωt has the desired distribution. The
term “almost surely” means “with probability 1 with respect to the realization of the infi-
nite sequence of all (potential) draws”, i.e. P-almost surely. The processes (G̃t), (C̃t), (H̃t)
are defined on this probability space and adapted to the filtration (Ft)t≥1, where Ft is the
sub-σ-algebra generated by draws up to round t, Ft = σ((Xs)ts=1).

Under Assumptions 1 and 2, by Proposition 3 there exists a unique steady state (µ•1, µ∞2 , c∞).
Following the specification of feasible models in Remark 1(c), let feasible fundamentals be
M = {µ•1} × [µ2,×µ̄2] and suppose agents’ prior belief over fundamentals is given by a
common prior density g : [µ2, µ̄2] → R>0. Theorem 1′ shows that, provided the support
of g contains µ∞2 and g′ is continuous, the stochastic processes (C̃t) and (G̃t) almost surely
converge to the steady state. This is a global convergence result since the bounded interval
[µ2, µ̄2] can be arbitrarily large and the prior density g can assign arbitrarily small probability
to neighborhoods around µ∞2 .

Theorem 1′. Suppose Assumptions 1 and 2 hold, µ2 ≤ µ∞2 ≤ µ̄2 where µ∞2 is the unique
steady-state belief, and agents have prior density g : [µ2, µ̄2] → R>0 with g

′ continuous.
Almost surely, limt→∞ C̃t = c∞ and limt→∞ Eµ2∼G̃t|µ2 − µ∞2 | = 0, where c∞ is the unique
steady-state cutoff threshold.

I will now discuss the obstacles to proving convergence and provide the outline of my
argument. In each round t, the cutoff choice of the t-th agent determines how history H̃t

will be censored. We can think of each c ∈ R as generating a different “type” of data.
As we saw in Proposition 2, different “types” of data (in large samples) lead to different
inferences about the fundamentals for biased agents. Yet this cutoff C̃t is an endogenous,
ex-ante random object that depends on the belief of the t-th agent, which complicates the
analysis of learning dynamics.

17Results are unchanged if agent t does not know the order in which her predecessors moved.
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To be more precise, the log-likelihood of all X2 data up to the end of round t under
fundamental µ2 ∈ [µ2, µ̄2] is the random variable

t∑
s=1

ln(φ(X2,s;µ2 − γ(X1,s − µ•1), σ2) · 1{X1,s ≤ C̃s}.

The s-th summand contains the indicator 1{X1,s ≤ Cs}, referring to the fact that X2,s would
be censored if X1,s exceeds the cutoff C̃s. The cutoff C̃s depends on histories in periods
1, 2, ..., s − 1, hence indirectly on (Xk)k<s. This makes the summands non-exchangeable:
they are correlated and non-identically distributed. So the usual law of large numbers does
not apply.

A first step to gaining traction on this problem is use a statistical tool from Heidhues,
Koszegi, and Strack (2018), a version of law of large numbers for martingales whose quadratic
variation grows linearly.

Proposition 10 from Heidhues, Koszegi, and Strack (2018): Let (yt)t be a martingale
that satisfies a.s. [yt] ≤ vt for some constant v ≥ 0. We have that a.s. limt→∞

yt
t

= 0.
After simplifying the problem with this result, I can establish a pair of mutual bounds

on asymptotic behavior and asymptotic beliefs. If we know cutoff thresholds are asymp-
totically bounded between cl and ch, cl < ch, then beliefs about µ2 must be asymptotically
supported on the interval [µ∗2(cl), µ∗2(ch)]. Conversely, if belief is asymptotically supported
on the subinterval [µl2, µh2 ] ⊆ [µ2, µ̄2], then cutoff thresholds must be asymptotically bounded
between C(µ•1, µl2; γ) and C(µ•1, µh2 ; γ).

Lemma A.11. For cl ≥ C(µ•1, µ2; γ), if almost surely lim inf
t→∞

C̃t ≥ cl, then almost surely

lim
t→∞

G̃t( [µ2, µ
∗
2(cl)) ) = 0.

Also, for ch ≤ C(µ•1, µ̄2; γ), if almost surely lim sup
t→∞

C̃t ≤ ch, then almost surely

lim
t→∞

G̃t( (µ∗2(ch), µ̄2]) = 0.

Lemma A.12. For µ2 ≤ µl2 < µh2 ≤ µ̄2, if limt→∞ G̃t([µl2, µh2 ]) = 1 almost surely, then
lim inft→∞ C̃t ≥ C(µ•1, µl2; γ) and lim supt→∞ C̃t ≤ C(µ•1, µh2 ; γ) almost surely.

Applying this pair of Lemmas to supp(g) = [µ2, µ̄2], we conclude that asymptotically
G̃t must be supported on the subinterval [I(µ2), I(µ̄2)], where I is the iteration map from
Definition 7 first used in analyzing the existence and uniqueness of steady states. Under
Assumptions 1 and 2, Proposition 3 implies that I is a contraction mapping whose iterates
converge to µ∞2 . Therefore by repeatedly applying the pair of Lemmas A.11 and A.12, we
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can refine the bound on asymptotic beliefs down to the singleton {µ∞2 }, since µ∞2 ∈ [µ2, µ̄2].
This shows the almost-sure convergence of beliefs to µ∞2 . The almost-sure convergence of
behavior follows easily from Lemma A.12.

3.3 Uncertainty About µ1

The hypotheses of Theorem 1 differ from those of Theorem 1′ just discussed in that agents
start off with uncertainty about µ1. I now comment on the key step to proving almost-sure
convergence of beliefs and behavior in the environment with two-dimensional uncertainty
about fundamentals.

The structure of the inference problem in my setting is such that I can separately bound
the agents’ asymptotic beliefs in two “directions,” thus reducing the task of proving a two-
dimensional belief bound into a pair of tasks involving one-dimensional belief bounds. To
understand why, consider a pair of fundamentals, (µ1, µ2) and (µ′1, µ

′
2) = (µ1 +d, µ2−γd) for

some d > 0, satisfying µ1, µ
′
1 ≤ µ•1. That is, (µ1, µ2) and (µ′1, µ

′
2) lie on the same line with

slope −γ. For any uncensored history (x1, x2) ∈ R2, the likelihood of second-period draw x2

is the same under both pairs of fundamentals,

φ(x2;µ2 − γ(x1 − µ1);σ2) = φ(x2;µ′2 − γ(x1 − µ
′

1);σ2).

This is because the subjective model Ψ(µ1, µ2; γ) has a lower first-period mean but also a
higher second-period unconditional mean, compared to the subjective model Ψ(µ′1, µ

′
2; γ).

An agent who believes in the first model feels less disappointed by the draw x1, since she
evaluates it against a lower expectation. This leads a weaker anticipation of positive reversal
under the gambler’s fallacy, compared to another agent who believes in the second model.
But, this difference canceled out by the more optimistic belief about the unconditional
distribution of second-period draw, µ2 > µ

′
2.

This argument shows that both pairs of fundamentals (µ1, µ2) and (µ′1, µ
′
2) explain X2

data equally well in all uncensored histories. This is important as it shows (µ1, µ2) and
(µ′1, µ

′
2) always lead to the same likelihood of second-period data regardless of how prede-

cessors have censored their histories. At the same time, (µ′1, µ
′
2) provides a strictly better fit

for X1 data on average than (µ1, µ2), since |µ′1 − µ•1| < |µ1 − µ•1|. This means in the long
run, fundamentals (µ1, µ2) should receive much less posterior probability than (µ′1, µ

′
2), as

the latter better rationalize the data overall.
This heuristic comparison of the asymptotic goodness-of-fit for two feasible models is

formalized by computing the directional derivative for data log-likelihood along the vector 1
−γ

 in the space of fundamentals. I establish an (almost-sure) positive lowerbound on

25



this directional derivative to the left of µ•1, and an analogous negative upperbound to the
right of µ•1. This allows me to show the region colored in red receives 0 posterior probability
asymptotically, by comparing each point in red with a corresponding point in blue along a
line of slope −γ. By repeating this argument (and applying the symmetric bound to the
right of µ•1), I show that belief is asymptotically concentrated along an ε-width vertical strip
containing the steady state beliefs, (µ•1, µ∞2 ).

slope = -𝛾

(𝜇1
•, 𝜇2

∞)

(𝜇1, 𝜇2)

(𝜇1’, 𝜇2’)

Having restricted the long-run belief to a small vertical strip, we have completed one
“direction” of the belief bounds and effectively reduced the dimensionality of uncertainty
back to one. The rest of the argument proceeds similarly to the case where agents know µ•1
discussed before, iteratively restricting agents’ asymptotic behavior and asymptotic belief
about µ2. These restrictions amount to “vertical” belief refinements within the ε-strip, so
eventually belief is restricted to the single point (µ•1, µ∞2 ), the unique steady-state beliefs.

4 The Positive-Feedback Loop

In this section, I turn to my second social-learning environment where agents arrive in large
generations and all agents in the same generation act simultaneously. I will prove Theorem
2, fully characterizing the learning dynamics in this environment. I will also discuss the
positive-feedback loop between distorted beliefs about fundamentals and distorted stopping
behavior.

4.1 Social Learning in Large Generations

There is an infinite sequence of generations, t ∈ {0, 1, 2, ...}. Each generation is “large” and
will be modeled as a continuum of short-lived agents, n ∈ [0, 1]. In the search problem of
Example 1, for instance, different generations refer to cohorts of HR managers working in
different hiring cycles. Each agent lives for one generation, so agent n from generation 1 is
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unrelated to agent n from generation 2. The realizations of draws X1, X2 are independent
across all stage games, including those from the same generation. Generation 0 agents play
some strategy Sc[0] , where c[0] ∈ R is the initial condition of social learning.

Write hτ,n ∈ H for the stage-game history of agent n from generation τ. Before playing
her own stage game, each agent in generation t ≥ 1 observes an infinite dataset consisting of
all histories (hτ,n)n∈[0,1] from each predecessor generation, 0 ≤ τ ≤ t−1. If all18 generation τ
predecessors used the stopping strategy Scτ for some cτ ∈ R, then the sub-dataset (hτ,n)n∈[0,1]

has the distributionH•(cτ ). Agents are told the stopping strategies of their predecessors from
all past generations19 and use the entire dataset of histories to infer fundamentals. The space
of feasible fundamentals isM = R2 as in Remark 1(a), so agents can flexibly estimate the
unconditional means of draws from different periods, subject to their dogmatic belief in
reversals.

Agents only infer from predecessors’ histories, not from their behavior. This is rational
as information sets are nested across generations. For t2 > t1, generation t2 observes all
the social information that generation t1 saw. In addition, generation t2’s dataset contains a
complete record of everything that happened in generation t1’s stage games. Since generation
t1 has no private information that is unobserved by generation t2, the behavior of these
predecessors is uninformative about the fundamentals beyond what generation t2 can learn
from the dataset of histories.

In the large-generations model, generation t agents infer fundamentals (µ1,[t], µ2,[t]) that
minimize the sum of the KL divergences between the implied history distribution under the
feasible model Ψ(µ1,[t], µ2,[t]; γ) on the one hand, and the t observed history distributions in
generations 0 ≤ τ ≤ t− 1 on the other hand. Then, these agents use the stopping strategy
optimal for the inferred subjective model. I formally define generation t’s minimization
objective below.

Definition 8. The large-generations pseudo-true fundamentals with respect to cutoff thresh-
olds (cτ )t−1

τ=0 solve

min
µ1,µ2∈R

t−1∑
τ=0

DKL( H•(cτ ) || H(Ψ(µ1, µ2; γ); cτ ) ), (1)

where DKL is KL divergence from Definition 5. Denote the minimizers as µ∗1(c0, ..., ct−1) and
µ∗2(c0, ..., ct−1).

I interpret the continuum of agents in each generation as an idealized, tractable modeling
device representing a large but finite number of agents. Appendix B provides a finite-
population foundation for inference and behavior in the continuum-population model. There,

18All generation τ predecessors had the same information about the fundamentals, so all of them would
have found the same stopping strategy subjectively optimal.

19These stopping rules can also be exactly inferred from the infinite dataset.
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I show that when an agent observe t finite sub-datasets of histories drawn from distributions
H•(cτ ) for 0 ≤ τ ≤ t−1, as these datasets grow large her inference and behavior almost surely
converge to the infinite-population analogs I study, under some regularity assumptions.

The next lemma relates the large-generations pseudo-true parameters to the pseudo-true
parameters of Definition 5.

Lemma 2. For any c0, ..., ct−1 ∈ R, the large-generations pseudo-true parameters are

µ∗1(c0, ..., ct−1) = µ•1

and
µ∗2(c0, ..., ct−1) = 1∑t−1

τ=0 P[X1 ≤ cτ ]

t−1∑
τ=0

P[X1 ≤ cτ ] · µ∗2(cτ ),

where µ∗2(cτ ) is the pseudo-true fundamental associated with the cutoff cτ .

Intuitively speaking, generation t’s inference has to accommodate t sub-datasets of his-
tories, which are censored using t potentially different cutoffs. While a biased agent would
draw the same inference about µ1 using any of these sub-datasets, different sub-datasets lead
to different beliefs about µ2. Her overall inference about µ2 is a weighted average between
these t different beliefs that the different sub-datasets would separately induce. The weight
of sub-dataset τ is proportional to P[X1 ≤ cτ ], the fraction of the observations with an
uncensored X2. That is, in estimating µ2, the agent puts more weight on those sub-datasets
where second-period draws are observed more frequently.

4.2 Learning Dynamics in Large Generations

Now I develop the proof of Theorem 2.

Theorem 2. Suppose Assumption 1 holds. Starting from any initial condition and any
g, cutoffs (c[t])t≥1 and beliefs (µ[t])t≥1 form monotonic sequences across generations. When
Assumption 2 also holds, there exists a unique steady state µ∞2 , c∞ ∈ R so that c[t] → c∞

and (µ1,[t], µ2,[t]) → (µ•1, µ∞2 ) monotonically, regardless of the initial condition and g. These
steady states are the same as those in Theorem 1.

Towards a proof, I first consider learning dynamics in an auxiliary environment. The
auxiliary environment is identical to the large-generations social-learning environment just
described, except that agents in each generation t ≥ 1 only infer from the histories of the im-
mediate predecessor generation, t−1.Write µA[t] and cA[t] for the inference and cutoff threshold
in generation t of the auxiliary environment, where the superscript “A” distinguishes them
from the corresponding processes of the baseline large-generations environment.
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We have µA1,[t] = µ•1 for every t ≥ 1 while (µA2,[t])t≥1 are iterates of the I map from Definition
7. The first claim comes from the fact that µ∗1(c) = µ•1 for every c, from Proposition 2. To
see the second claim, start at µA[t], cA[t] in generation t. The next generation observes a dataset
of histories with the distribution H•(cA[t]) and infers

µA[t+1] = (µ∗1(cA[t]), µ∗2(cA[t])) = (µ•1, µ•2 − γ(µ•1 − E[X1 | X1 ≤ cA[t]]),

again using Proposition 2. From the optimality of cA[t], we have cA[t] = C(µ•1, µA2,[t]; γ). So
altogether, µA2,[t+1] = I(µA2,[t]; γ).

The pair of comparative statics ∂C
∂µ2

> 0 and dµ∗2
dc

> 0 have the same sign and lead to
the positive-feedback loop in the auxiliary environment. Changes in beliefs across successive
generations are amplified, not dampened, by the corresponding changes in cutoff thresholds.

Proposition 6. Suppose Assumption 1 holds. In the auxiliary environment, starting from
any initial condition and any g, cutoffs (cA[t])t≥1 and beliefs (µA[t])t≥1 form monotonic se-
quences across generations. When Assumption 2 also holds, there exists a unique steady
state µ∞2 , c∞ ∈ R so that cA[t] → c∞ and (µA1,[t], µA2,[t])→ (µ•1, µ∞2 ) monotonically, regardless of
the initial condition and g. These steady states are the same as those in Theorem 1.

The monotonicity and convergence results of Theorem 2 follow from comparing the learn-
ing dynamics of the baseline large-generations environment to the dynamics of the auxiliary
environment. Suppose two societies in these two different environments start at the same
initial condition, c[0] ∈ R. First, we have µ2,[1] = µA2,[1]. This is because generation 1 only has
one generation of predecessors, so observing the histories of all past generations is equivalent
to observing the histories of the immediate predecessor generation. Suppose that µA2,[1] > µ∞2 ,

so that by Proposition 6 we have µA2,[t] ↘ µ∞2 . Consider the three inferences µA2,[2], µ2,[2], and
µ2,[1]. The first is based on the history distribution H•(c[1]), the second based on H•(c[1]) and
H•(c[0]), and the third based on just H•(c[0]).We have c[1] < c[0], for otherwise we would have
the contradiction µA2,[2] = µ∗2(c[1]) ≥ µ∗2(c[0]) = µA2,[1]. From Lemma 2, we may rank the three
inferences µA2,[2] < µ2,[2] < µ2,[1]. By continuing this argument, we can show that beliefs in
the baseline large-generations environment (µ2,[t])t≥1 decrease in t, but they decrease “more
slowly” than beliefs in the auxiliary environment, (µA2,[t])t≥1. Since (µA2,[t])t≥1 converges by
Proposition 6, (µ2,[t])t≥1 must also converge. To see why these two sequences have the same
limit, note that as beliefs converge across generations, the stopping thresholds converge as
well. For agents in late enough generations of the baseline large-generations environment,
most of the histories in their dataset are censored according to stopping thresholds very sim-
ilar to the limit threshold. So, observing sub-datasets of histories from all past generations
induces very similar inferences as observing just one dataset of histories from the immediate
predecessor generation.
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Dynamics of Beliefs in the First Four Generations
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Figure 1: The dynamics of beliefs about µ2 in the first four generations. The stage game
is search (without recall), with true fundamentals are µ•1 = µ•2 = 0, bias parameter γ > 0,
and initial condition is c[0] = 0. In both the baseline large-generations environment and the
auxiliary environment, beliefs are monotonic across generations, an illustration of Theorem
2 and Proposition 6. Beliefs in both environments converge to the same steady-state beliefs,
though the rate of convergence is faster in the auxiliary environment.

While the large-generations environment I set out to study has the same long-run learning
outcome as the auxiliary environment, the two environments may differ in their short-run
welfare. For example, in settings where learning leads generations further and further astray
from the objectively optimal strategy, the auxiliary environment speeds up this harmful
learning. This is because the less-censored histories from the earlier generations no longer
moderate the society’s descent into pessimism when agents only infer from the immediate
predecessor generation. In Figure 1, I plot the dynamics of beliefs in the first four generations
for a society playing the stage game from Example 1 with q = 0. Suppose µ•1 = µ•2 = 0,
γ = −0.5, and the society starts at the objectively optimal cutoff threshold, c[0] = 0. Society
mislearns monotonically in both the baseline large-generations environment and the auxiliary
environment. This mislearning is more exaggerated in the in the auxiliary environment, but
Proposition 6 and Theorem 2 imply that both environments lead to the same long-run
outcome.

The map I(·; γ) creates an interesting connection between the environment where large
generations of agents act simultaneously and the environment where agents act one by
one. We can think of I(·; γ) as the one-generation-forward belief map in the auxiliary
society, whose belief dynamics are closely related to the belief dynamics of the baseline
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large-generations environment. There are no large generations at all in the environment
where agents at one by one, but there I still plays a critical role in establishing the long-run
convergence of beliefs and behavior. Intuitively, in analyzing the long-run learning outcome
in the one-by-one environment, a large dataset containing the histories of one predecessor
from each of many past generations replaces a large dataset of histories from many agents
all belonging to the same past generation.

The long-run learning outcome is the same in the environment with large generations
and the environment where agents act one by one. This equivalence allows me to combine
the asymptotic early-stopping result of Theorem 1 with the monotonic learning dynamics of
Theorem 2 to deduce:

Corollary 1. Suppose Assumptions 1 and 2 hold. In the large-generations environment, if
society starts at the objectively optimal initial condition c[0] = c•, then expected payoff strictly
decreases across all successive generations.

This stark “monotonic” mislearning result relies crucially on the endogenous-data setting.
Each generation uses a lower acceptance threshold relative to their predecessors, a change
with the side effect of changing censoring threshold of their successors’ data. The new
“type” of censored data causes the next generation to become more pessimism about the
fundamentals than any past generation.

5 Extensions

In this section I explore a number of alternative model specifications to examine the robust-
ness of my main results. The Online Appendix OA 3 contains additional extensions.

5.1 Comparative Statics

In the first extension, I consider how learning dynamics change with changes in parameters of
the stage game. In general, when agents learn from exogenous data, their decision problem
does not influence learning outcomes. This observation holds independently of whether
agents are misspecified. On the other hand, correctly specified agents in my setting always
learn correctly in the long run, so the stage game is again irrelevant. With misspecified
learners in an endogenous-data setting, however, changes in the stage game have long-lasting
effects on agents’ beliefs about the fundamentals.

Definition 9. Given a pair of second-period payoff functions u′2, u
′′
2 , say u

′
2 payoff dominates

u
′′
2 (abbreviated u′2 � u

′′
2) if for every x1 ∈ R, u′2(x1, x2) ≥ u

′′
2(x1, x2) for every x2 ∈ R, and

also u′2(x1, x2) > u
′′
2(x1, x2) for a positive-measure set of x2.
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For instance, in Example 1, increasing q (the probability of recall) creates a new optimal-
stopping problem that payoff dominates the old one. More generally, starting from any stage
game with payoff functions u1 and u2, we can impose an extra waiting cost κwait > 0 for
continuing into the second period. This generates a new stage game with payoff functions u1

and u′′2 with u′′2 = u
′
2−κwait. The modified stage game is payoff dominated by the unmodified

one.
When u′2 � u

′′
2 , a society facing the problem (u1, u

′
2) always uses a higher stopping thresh-

old than a society facing the problem (u1, u
′′
2), given the same beliefs about fundamentals.

To state this formally, let Cu1,u2 be the optimal cutoff threshold function for the stage game
(u1, u2).

Lemma 3. Suppose stage games (u1, u
′
2) and (u1, u

′′
2) both satisfy Assumption 1, and u′2 � u

′′
2 .

For all µ1, µ2 ∈ R, γ > 0, Cu1,u
′
2
(µ1, µ2; γ) > Cu1,u

′′
2
(µ1, µ2; γ).

The next Proposition shows that when one stage game payoff dominated another in terms
of second-period payoffs, the dominated stage game has more pessimistic beliefs and lower
cutoff threshold in the steady state.

Proposition 7. Suppose both (u1, u
′
2) and (u1, u

′′
2) satisfy Assumptions 1 and 2, and that

u
′
2 � u

′′
2 . The steady state of (u1, u

′
2) features strictly more optimistic belief about the second-

period fundamental and a strictly higher cutoff threshold than the steady state of (u1, u
′′
2).

Combined with my main results on learning dynamics (Theorems 1 and 2), Proposition 7
illustrates the long-run inference implications of a change in the stage game payoff structure.
Consider two societies of gambler’s fallacy agents with the same bias parameter γ > 0, facing
stage games (u1, u

′
2) and (u1, u

′′
2) respectively, where u′2 payoff dominates u′′2 . Suppose prior

beliefs differ across these two societies and the latter starts with a much more optimistic
belief about µ2. Nevertheless, in the long run the second society ends up with a strictly
more pessimistic belief and uses strictly lower cutoff thresholds, both when agents act one
at a time and when agents arrive in large generations. Since steady-state beliefs are too
pessimistic in both societies, the second society’s long-run beliefs are more distorted.

This comparative statics result provides novel predictions about how parameters of the
decision problem affect mislearning for gambler’s fallacy agents. In the context of hiring
from Example 1, this result says when managers are more impatient or when they have a
lower chance of recalling previous applicants, then they will end up with more pessimistic
beliefs about the labor pool. The direction of the comparative statics is another expression
of the positive-feedback cycle between stopping threshold and inference. When managers
become more impatient, for instance, they use a lower acceptance threshold as they wish to
finish recruiting earlier. The lower cutoff intensifies the censoring effect on histories, leading
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to more pessimistic inference about the fundamentals. The extra pessimism, in turn, leads
future managers to further lower their acceptance threshold, amplifying the initial change in
behavior that came from an increase in waiting cost.

5.2 Fictitious Variation and Censored Datasets

So far, I have assumed agents hold dogmatic and correct beliefs about the variance of X1

and the conditional variance of X2|(X1 = x1). In this extension, I expand the set of feasible
models and consider agents who are uncertain about the variances of the draws and jointly
estimate means and variances using the histories of their predecessors. I show that agents
exaggerate variances in a way that depends on the severity of data censoring, and study how
this belief in fictitious variation strengthens the positive-feedback cycle between beliefs and
behavior.

For µ1, µ2 ∈ R, σ2
1, σ

2
2 ≥ 0, and γ ≥ 0, let Ψ(µ1, µ2, σ

2
1, σ

2
2; γ) refer to the joint distribution

X1 ∼ N (µ1, σ
2
1)

(X2|X1 = x1) ∼ N (µ2 − γ(x1 − µ1), σ2
2).

Objectively, X1, X2 are independent Gaussian random variables each with a variance of
(σ•)2 > 0, so the true joint distribution of (X1, X2) is Ψ• = Ψ(µ•1, µ•2, (σ•)2, (σ•)2; 0). Suppose
agents have a full-support belief over the class of feasible models

{
Ψ(µ1, µ2, σ

2
1, σ

2
2; γ) : µ1, µ2 ∈ R, σ2

1, σ
2
2 ≥ 0

}
for a fixed bias parameter γ > 0. For this extension, “fundamentals” refer to the four
parameters µ1, µ2, σ

2
1, σ

2
2.

Following Definition 5, I write DKL(H•(c) ‖ H(Ψ(µ1, µ2, σ
2
1, σ

2
2; γ); c)) ) to denote the

KL divergence between the true distribution of histories with censoring threshold c and the
implied history distribution under the fundamentals µ1, µ2, σ

2
1, σ

2
2. This divergence is given

by

∫ ∞
c

φ(x1;µ•1, (σ•)2) · ln
(
φ(x1;µ•1, (σ•)2)
φ(x1;µ1, σ2

1)

)
dx1 (2)

+
∫ c

−∞

{∫ ∞
−∞

φ(x1;µ•1, (σ•)2) · φ(x2;µ•2, (σ•)2) · ln
[

φ(x1;µ•1, (σ•)2) · φ(x2;µ•2(σ•)2)
φ(x1;µ1, σ2

2) · φ(x2;µ2 − γ(x1 − µ1), σ2
2)

]
dx2

}
dx1.

The next Proposition characterizes the pseudo-true fundamentals µ∗1, µ∗2, (σ∗1)2, (σ∗2)2 that
minimize Equation (2) in closed-form expressions.
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Proposition 8. The solutions of

min
µ1,µ2∈R,σ2

1 ,σ
2
2≥0

DKL(H•(c) ‖ H(Ψ(µ1, µ2, σ
2
1, σ

2
2; γ); c)) )

are µ∗1 = µ•1, µ
∗
2 = µ•2 − γ (µ•1 − E [X1 | X1 ≤ c]) , (σ∗1)2 = (σ•)2, and

(σ∗2)2 = (σ•)2 + γ2Var[X1 | X1 ≤ c].

Given a large dataset of histories with censoring threshold c, an agent’s inferences about
the means remain the same as in the case when she know the variances. This result shows
the robustness of the over-pessimism prediction, as the biased inferences about the means
are too low even when agents jointly estimate both means and variances.

A biased agent correctly estimate the first-period variance, (σ∗1)2 = (σ•)2, but her estimate
of the second-period variance is too high. The magnitude of this distortion increases in
the severity of the gambler’s fallacy but decreases with the severity of the censoring, as
Var[X1 | X1 ≤ c] is increasing in c for X1 is Gaussian.

The intuition for misinferring the second-period conditional variance is the following.
Whereas the objective conditional distribution of X2|(X1 = x1) is independent of x1, the
agent entertains a different subjective model for this conditional distribution for each x1.

The agent’s best-fitting belief about the second-period fundamental µ∗2 < µ•2 ensures her
subjective model about X2|X1 = x1 fits the data well following “typical” realizations of x1

under the restriction X1 ≤ c. However, following unusually high X1 the agent is surprised
by high values of X2, while following unusually low X1 she is surprised by low values of
X1. To better account for these surprising observations of X2, the agent increases estimated
conditional variance of X2|(X1 = x1) and attributes these surprises to “noise.” The extent
of variance overestimation increases in Var[X1|X1 ≤ c], for the frequency of these surprising
observations depends on how much X1 under the restriction X1 ≤ c tends to deviate from
its typical value, E[X1|X1 ≤ c]. And of course, the extent of overestimation increases in
severity of the gambler’s fallacy bias, which increases the size of these surprises.

An equivalent formulation of this result helps interpret the distorted (σ∗2)2.We may write
the subjective model Ψ(µ1, µ2, σ

2
1, σ

2
2; γ) with σ2

2 = σ2
1 + σ2

η, σ2
η ≥ 0 as

X1 = µ1 + ε1

X2 = µ2 + ζ + ε2

where ε1 ∼ N (0, σ2
1), ε2|ε1 ∼ N (−γε1, σ2

1), and ζ ∼ N (0, σ2
ζ ), with ζ independent of ε1, ε2.

In the context where X1 and X2 represent the quality realizations of two candidates from
the early and late applicant pools, ζ is a vacancy-specific shock to the average quality of the
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second-period applicant. A positive σ2
ζ means there are some vacancies for which the late

applicants are an especially poor fit and some others for which they are especially suitable.
Proposition 8 says that in an environment where all jobs are objectively homogeneous with
respect to the fit of the late applicants, biased managers who find it possible that jobs are
heterogeneous in this dimension will indeed estimate a positive amount of this heterogene-
ity, σ2

ζ > 0, from the censored histories of their predecessors. This added heterogeneity
allows agents to better rationalize histories (X1, X2) where both candidates have unusually
high/low qualities as vacancies that happen to be an especially good/bad fit for second-period
applicants (i.e. the realization of ζ, a vacancy-specific fixed effect, is far from 0.)

This phenomenon relates to findings in Rabin (2002) and Rabin and Vayanos (2010),
who refer to exaggeration of variance under the gambler’s fallacy as fictitious variation.
The key innovation of Proposition 8 is to show, in an endogenous-data setting, how the
degree of fictitious variation depends on the severity of the censoring. To highlight this
point, I now derive two results focusing on the interplay between fictitious variation and
the endogenous censoring. For simplicity, I derive these results using the auxiliary large-
generations environment defined in Section 4.1, where agents arrive in continuum generations
and only infer from the histories of the immediate predecessor generation.

The first result says that when the second-period payoff u2(x1, x2) is a linear or convex
function of x2, the positive-feedback cycle from Section 4 continues to obtain — cutoffs,
beliefs about fundamentals, and beliefs about variances form monotonic sequences across
generations. This includes the case of search with recall in Example 1 for any recall proba-
bility 0 ≤ q < 1. Also, when u2 is a convex function of x2, inference about variance provides
a new channel for amplifying changes in behavior across generations.

Definition 10. The optimal-stopping problem is convex if for every x1 ∈ R, x2 7→ u2(x1, x2)
is convex with strict convexity for x2 in a positive-measure set. The optimal-stopping problem
is concave if for every x1 ∈ R, x2 7→ u2(x1, x2) is concave with strict concavity for x2 in a
positive-measure set.

Proposition 9. Suppose the optimal-stopping problem is convex. Suppose agents start with
a full-support prior over {Ψ(µ1, µ2, σ

2
1, σ

2
2; γ) : µ1, µ2 ∈ R, σ2

1, σ
2
2 ≥ 0} and society starts at the

initial condition c[0] ∈ R. For t ≥ 1, denote the beliefs of generation t as (µ1,[t], µ2,[t], σ
2
1,[t], σ

2
2,[t])

and their cutoff threshold as c[t]. Then µ1,[t] = µ•1, (σ1,[t])2 = (σ•)2 for all t, while (µ2,[t])t≥1,

(σ2,[t])2
t≥1, and (c[t])t≥1 are monotonic sequences.

The intuition is straightforward. Suppose generation t uses a more relaxed acceptance
threshold c[t] < c[t−1] than generation t−1, resulting in a more severely censored dataset. By
the usual censoring effect with known variances, generation t+ 1 becomes more pessimistic
about second-period mean than generation t. In addition, by Proposition 8 we know that

35



generation t+1 suffers less from fictitious variation than generation t. This implies generation
t+1 agents would perceive less continuation value than generation t agents even if they held
the same beliefs about the means, for a larger variance inX2|(X1 = x1) improves the expected
payoff when continuing due to the convexity of u2 in x2. Combining these two forces, we
deduce c[t+1] < c[t].

The intuition just discussed shows that uncertainty about variance strengthens the mono-
tonicity result. To be more precise, suppose c[t] < c[t−1]. Consider a hypothetical genera-
tion t + 1 agent who dogmatically adopts generation t’s beliefs about variances, σ2

1,[t] and
σ2

2,[t], and infers from the class of models {Ψ(µ1, µ2, σ
2
1,[t], σ

2
2,[t]; γ) : µ1, µ2 ∈ R}. Based on

generation t′s histories, this hypothetical agent makes inferences about means and chooses
a cutoff threshold, µ̂1,[t+1], µ̂2,[t+1], ĉ[t+1]. By comparing Proposition 8 and Proposition 2,
µ̂1,[t+1] = µ1,[t+1], µ̂2,[t+1] = µ2,[t+1], but c[t+1] < ĉ[t+1] < c[t]. That is, while the cutoff
threshold of this hypothetical agent follows the monotonicity pattern in the previous two
generations, ĉ[t+1] < c[t] < c[t−1], the cutoff adjusts downwards by an even greater amount,
c[t+1] < ĉ[t+1], when agents are uncertain about variances.

The second result compares the learning dynamics of two societies facing the same
optimal-stopping problem and starting at the same initial condition. One society knows
the correct variances of X1 and X2|(X1 = x1). The other society is uncertain about the
variances and infers them from data. Proposition 10 shows that in generation 1, the two
societies hold the same beliefs about the means of the distributions, µ•1 and µ•2. But in
all later generations t ≥ 2, the society with uncertainty about variances ends up with a
more pessimistic/optimistic belief about the second-period fundamental compared with the
society that knows the variances, provided the optimal-stopping problem is convex/concave.
This divergence depends crucially on the endogenous-learning setting, for Proposition 8 im-
plies that the two societies make the same inferences about the means when given the same
dataset. But, since agents inferring variances end up believing in fictitious variation, they
perceive a different continuation value than their peers in the same generation from the so-
ciety that knows the variances. This causes the variance-inferring agents to use a different
cutoff threshold, which affects the dataset that their successors observe. In short, allowing
uncertainty on one dimension (variance) ends up affecting society’s long-run inference in
another dimension (mean).

Formally, consider two societies of agents, A and B. Agents in society A start with a full-
support prior over {Ψ(µ1, µ2, (σ•)2, (σ•)2; γ) : µ1, µ2 ∈ R}. Agents in society B start with a
full-support prior over {Ψ(µ1, µ2, σ

2
1, σ

2
2; γ) : µ1, µ2 ∈ R, σ2

1, σ
2
2 ≥ 0}. Fix the same generation

0 initial condition c[0] ∈ R for both societies. For t ≥ 1, denote the beliefs of generation t in
society k ∈ {A,B} as (µ1,[k,t], µ2,[k,t], (σ1,[k,t])2, (σ2,[k,t])2) and their cutoff threshold as c[k,t].

Proposition 10. In the first generation, µ1,[A,1] = µ1,[B,1] and µ2,[A,1] = µ2,[B,1]. If the
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optimal-stopping problem is convex, then µ2,[B,t] > µ2,[A,t] and c[B,t] > c[A,t] for every t ≥ 2.
If the optimal-stopping problem is concave, then µ2,[B,t] < µ2,[A,t] and c[B,t] < c[A,t] for every
t ≥ 2.

5.3 Objectively Correlated (X1X2) and Uncertainty About γ

So far I have assumed that draws (X1, X2) within the stage game are objectively independent,
and that agents have a dogmatic γ > 0, interpreted as the severity of the gambler’s fallacy
bias. This extension considers a joint relaxation of these two assumptions.

Suppose the true model is (X1, X2) ∼ Ψ(µ•1, µ•2; γ•), where γ• ∈ R is possibly non-zero.
Agents jointly estimate (µ1, µ2, γ) ∈ R3, with a prior supported on R×R× [γ, γ̄] where [γ, γ̄]
is a finite interval. The next result generalizes Proposition 2. It shows that when γ• /∈ [γ, γ̄],
the KL-divergence minimizing inference involves γ∗ equal to γ̂ ∈ {γ, γ̄}, boundary point of
the support of γ that is the closest to γ•. Given the estimated pseudo-true parameter γ̂,
the estimates of the first- and second-period fundamentals take similar forms to those in
Proposition 2.

Proposition 11. Suppose γ• /∈ [γ, γ̄]. Let γ̃ = γ̄ if γ• > γ̄, otherwise γ̃ = γ when γ• < γ.
The solution of the KL-divergence minimization problem

min
µ1,µ2∈R,γ∈[γ,γ̄]

DKL(H(Ψ(µ•1, µ•2; γ•); c) || H(Ψ(µ1, µ2; γ); c))

is given by µ∗1(c) = µ•1, µ
∗
2(c) = µ•2 + (γ• − γ̃) ·

(
µ•1 − EΨ(µ•1,µ•2;γ•)[X1|X1 ≤ c]

)
, γ∗(c) = γ̃.

Intuitively, we may expect the closest distance (in the KL divergence sense) from the set
of subjective models {Ψ(µ1, µ2; γ̂) : µ1, µ2 ∈ R} to the objective distribution Ψ(µ•1, µ•2; γ•) to
decrease in |γ̂ − γ•|. Proposition 11 confirms this intuition, showing that the pseudo-true
model from the set {Ψ(µ1, µ2; γ) : µ1, µ2 ∈ R, γ ∈ [γ, γ̄]} lies in the subset {Ψ(µ1, µ2; γ) :
µ1, µ2 ∈ R, γ = γ̃}, where γ̃ is the closest point (in the Euclidean sense) to γ• in the interval
[γ, γ̄].

When γ• = 0 and γ̄ < 0, this result shows that over-pessimism in inference is robust
to agents learning the correlation of X1 and X2, provided the support of their uncertainty
about correlation lies to the left of 0 and excludes 0. In this case, it is also easy to see that
the learning dynamics in the large-generations auxiliary environment are exactly the same
as when agents start with a dogmatic belief in γ = γ̄.
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5.4 Inference under the Constraint µ•1 = µ•2

I now consider the special case where the true fundamentals are time-invariant, µ•1 = µ•2 =
µ• ∈ R. If agents’ feasible fundamentals areM = R2 as in Remark 1(a), then Proposition
2 continues to apply. But now suppose agents know the fundamentals are time-invariant
and only have uncertainty over this common value, so the set of feasible fundamentals is
the diagonalM = {(x, x) : x ∈ R}, as in 1(d). I investigate inference in this setting when
agents’ prior belief over subjective models is supported on {Ψ(µ, µ; γ) : µ ∈ R}.

Let µ∗M(c) ∈ R stand for the common fundamental that minimizes the KL divergence
relative to the history distribution H•(c), that is

µ∗M(c) := arg min
µ∈R

DKL(H•(c) ‖ H(Ψ(µ, µ; γ); c))

The next lemma characterizes µ∗M(c).

Proposition 12. µ∗M(c) = 1
1+P[X1≤c]·(1+γ)2µ

◦
1(c) + P[X1≤c]·(1+γ)2

1+P[X1≤c]·(1+γ)2µ
◦
2(c), where µ◦1(c) = µ• and

µ◦2(c) = µ• − γ
1+γ (µ• − E[X1 | X1 ≤ c]).

Agents face two kinds of data about the common fundamental: observations of first-
period draws and observations of second-period draws. Subjective models Ψ(µ◦1(c), µ◦1(c); γ)
and Ψ(µ◦2(c), µ◦2(c); γ) minimize the KL divergence of these two kinds of data, respectively.20

The overall KL-divergence minimizing estimator is a certain convex combination between
these two points. Through the term P[X1 ≤ c], the relative weight given to µ◦2(c) increases
as the cutoff c increases, because the second-period data is observed more often if previous
agents have used a more stringent cutoff in the first period.

For any censoring threshold c generating the history distribution, agents underestimates
the common fundamental. We have µ◦2(c) < µ• while µ◦1(c) = µ•. This shows the robustness
of the over-pessimism result from the setting with M = R2. However, the extent of over-
pessimism about µ2 is dampened relative to agents who can flexibly estimate different µ1

and µ2 for the two periods. Compared with the unconstrained pseudo-true fundamentals
from Proposition 2, we have µ◦2(c) > µ∗2(c) since γ

1+γ < γ, hence µ∗M(c) > µ∗2(c). This makes
intuitive sense: when unconstrained, agents come to two different beliefs about µ1 and µ2,
even though they are objectively the same. They hold correct beliefs about µ1 but pessimistic
beliefs about µ2. When constrained to a common inference across two fundamentals, agents
distort their belief about µ1 downwards and their belief about µ2 upwards, relative to the
unconstrained environment.

20Note that µ◦2(c) differs from the pseudo-true fundamental µ∗2(c) from Proposition 2. The estimator µ◦2(c)
minimizes the KL divergence of second-period draws under the constraint that the same fundamental must
be inferred for both periods, whereas µ∗2(c) minimizes this divergence when first-period fundamental is fixed
at its true value, µ•1.
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6 Concluding Remarks

This paper studies endogenous learning dynamics of misspecified agents. I focus on the
gambler’s fallacy, a non-self-confirming misspecification where no feasible beliefs of the biased
agents can exactly match the data. In natural optimal-stopping problems, agents tend to stop
after “good enough” early draws, where the threshold for “good enough” evolves as agents
update their beliefs about the underlying distributions. Stopping decisions thus impose an
endogenous censoring effect on the data of later agents, who use their predecessors’ histories
to learn about the distributions. The statistical bias interacts with data censoring, generating
over-pessimism about the fundamentals and resulting in stopping too early in the long run.
These asymptotic mistakes are driven by a positive-feedback loop between distorted beliefs
and distorted behavior.

I have studied a particular behavioral bias (the gambler’s fallacy) in a natural environ-
ment where censoring happens (histories in optimal-stopping problems), leaving open the
interaction of other kinds of behavioral learning with other censoring mechanisms to future
work.
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Appendix

A Omitted Proofs from the Main Text

A.1 Proof of Claim 1

Proof. For Example 1, clearly u1 and u2 are strictly increasing functions of x1 and x2 re-
spectively. We also have that |u2(x′1, x̄2) − u2(x′′1 , x̄2)| ≤ q(x′1 − x

′′
1) for x′1 > x

′′
1 and any

x̄2, while u
′
1(x1) = 1. This shows Assumption 1(b) holds. If x1 > 0 and x2 < 0, then

u2(x1, x2) = q · x1 + (1 − q)x2 < x1 = u1(x1), and conversely x1 < 0, x2 > 0 imply
u2(x1, x2) > u1(x1). This shows Assumption 1(c) holds. It is clear that u1, u2 are con-
tinuous. We have |u2(x̄1, x2)| ≤ |x̄1| + |x2|, and E(|X2|) exists whenever X2 is Gaussian.
This shows Assumption 1(d) holds.

A.2 Proofs of Proposition 1 and Lemma 1

I prove three lemmas (A.1, A.3, and A.4) which correspond to the three statements in
Proposition 1. Along the way, I will also prove Lemma 1.

A.2.1 The Optimal Strategy Has a Cutoff Form

In the first part, I prove the lemma:

Lemma A.1. Under Assumption 1 and the subjective model Ψ(µ1, µ2; γ) for any γ > 0,
there exists a cutoff C(µ1, µ2; γ), such that: (i) the agent strictly prefers stopping after
any x1 > C(µ1, µ2; γ); (ii) the agent is indifferent between continuing and stopping after
x1 = C(µ1, µ2; γ); (iii) the agent strictly prefers continuing after any x1 < C(µ1, µ2; γ).

Suppose X1 = x1. Consider the payoff difference between accepting it and continuing
under the subjective model Ψ(µ1, µ2; γ) for γ ≥ 0:

D(x1;µ1, µ2, γ) := u1(x1)− EΨ[u2(x1, X2)|X1 = x1],

where EΨ means expectation with respect to (X1, X2) ∼ Ψ(µ1, µ2; γ). I abbreviate this as
D(x1) when Ψ is fixed. Lemma A.1 follows from three properties of D.

Lemma A.2. D is strictly increasing and continuous. If γ > 0, then there are x′1 < x
′′
1 so

that D(x′1) < 0 < D(x′′1).

Proof. Step 1: D is strictly increasing.

42



Suppose x′1 > x̄1. Then,

EΨ[u2(x̄1, X2)|X1 = x̄1] = EX̃2∼N (µ2−γ(x̄1−µ1),σ2)[u2(x̄1, X̃2)],

while

EΨ[u2(x̄1, X2)|X1 = x
′

1] = E ˜̃X2∼N (µ2−γ(x′1−µ1),σ2)[u2(x̄1,
˜̃X2)]

= EX̃2∼N (µ2−γ(x̄1−µ1),σ2)[u2(x̄1, X̃2 − γ(x′1 − x̄1))].

Since u2 is strictly increasing in its second argument by Assumption 1(a), we get

EX̃2∼N (µ2−γ(x̄1−µ1),σ2)[u2(x̄1, X̃2 − γ(x′1 − x̄1))] ≤ EX̃2∼N (µ2−γ(x̄1−µ1),σ2)[u2(x̄1, X̃2)]

seeing that γ(x′1 − x̄1) ≥ 0. Also, at any x2 ∈ R, by Assumption 1(b) we know that

u1(x′1)− u1(x̄1) > u2(x′1, x2)− u2(x̄1, x2).
⇒ u1(x′1)− u2(x′1, x2) > u1(x̄1)− u2(x̄1, x2).

This then shows

u1(x′1)− EX̃2∼N (µ2−γ(x̄1−µ1),σ2)[u2(x′1, X̃2 − γ(x′1 − x̄1))]
> u1(x̄1)− EX̃2∼N (µ2−γ(x̄1−µ1),σ2)[u2(x̄1, X̃2 − γ(x′1 − x̄1))]
≥ u1(x̄1)− EX̃2∼N (µ2−γ(x̄1−µ1),σ2)[u2(x̄1, X̃2)]

that is D(x′1) > D(x̄1).
Step 2: D is continuous.
Fixing some x̄1 ∈ R, I show D is continuous at x̄1. Since u1 is continuous, find δ > 0 so

that whenever |x1− x̄1| < 1, |u(x1)−u(x̄1)| < δ. Consider the function f : R→ R≥0 defined
by f(x2) := |u2(x̄1, x2 + γ)|+ |u2(x̄1, x2 − γ)|+ δ.
Claim A.1. Whenever |x1 − x̄1| < 1, |u2(x1, x2 + γ(x̄1 − x1))| ≤ f(x2) for every x2 ∈ R.

Proof. Since u2 is increasing its second argument by Assumption 1(a), if u2(x1, x2 + γ(x̄1 −
x1)) ≥ 0, then |u2(x1, x2 + γ(x̄1 − x1))| ≤ |u2(x1, x2 + γ)| since |x1 − x̄1| < 1. Otherwise, if
u2(x1, x2 + γ(x̄1 − x1)) < 0, then |u2(x1, x2 + γ(x̄1 − x1))| ≤ |u2(x1, x2 − γ)|. But we have

|u2(x1, x2 + γ)| ≤ |u2(x̄1, x2 + γ)|+ |u2(x1, x2 + γ)− u2(x̄1, x2 + γ)|

for every x2. By Assumption 1(b), |u2(x1, x2 + γ) − u2(x̄1, x2 + γ)| ≤ |u1(x1) − u1(x̄1) < δ
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whenever |x1 − x̄1| < 1. Similarly,

|u2(x1, x2 − γ)| ≤ |u2(x̄1, x2 − γ)|+ |u2(x1, x2 − γ)− u2(x̄1, x2 − γ)| ≤ |u2(x̄1, x2 − γ)|+ δ.

Claim A.2. The function f is absolutely integrable with respect to the Gaussian distribution
N (µ2 − γ(x̄1 − µ1), σ2).

Proof. This is because x2 7→ u2(x̄1, x2) is absolutely integrable with respect to each of the
two Gaussian distributions N (µ2 − γ(x̄1 − µ1) + γ, σ2) and N (µ2 − γ(x̄1 − µ1) − γ, σ2), by
Assumption 1(d).

Together, these two claims show that for the family of functions x2 7→ u2(x1, x2 + γ(x̄1−
x1)) for |x1 − x̄1| < 1, f is an integrable dominating function with respect to the Gaussian
distribution N (µ2 − γ(x̄1 − µ1), σ2). Consider a sequence (x(n)

1 )n∈N with x
(n)
1 → x̄1. By

continuity, u1(x(n)
1 )→ u1(x̄1). For all large enough n, the functions

x2 7→ u2(x(n)
1 , x2 + γ(x̄1 − x(n)

1 ))

falls within the family mentioned before. Since these functions converge pointwise in x2 to
x2 7→ u2(x̄1, x2), the existence of the dominating function f implies the convergence of the
integrals by dominated convergence theorem,

EX̃2∼N (µ2−γ(x̄1−µ1),σ2)[u2(x(n)
1 , X̃2 + γ(x̄1 − x(n)

1 )]→ EX̃2∼N (µ2−γ(x̄1−µ1),σ2)[u2(x̄1, X̃2)].

But

EΨ[u2(x(n)
1 , X2)|X1 = x

(n)
1 ] = E ˜̃X2∼N (µ2−γ(x(n)

1 −µ1),σ2)[u2(x(n)
1 , ˜̃X2]

= EX̃2∼N (µ2−γ(x̄1−µ1),σ2)[u2(x(n)
1 , X̃2 + γ(x̄1 − x(n)

1 )],

which shows

lim
n→∞

EΨ[u2(x(n)
1 , X2)|X1 = x

(n)
1 ] = EX̃2∼N (µ2−γ(x̄1−µ1),σ2)[u2(x̄1, X̃2)]

= EΨ[u2(x̄1, X2)|X1 = x̄1].

This establishes that D(x(n)
1 )→ D(x̄1), so D is continuous at x̄1.

Step 3: If γ > 0, then there are x′1 < x
′′
1 so that D(x′1) < 0 < D(x′′1).

I show D is not always negative; the other statement is symmetric.
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From u1(xg1)− u2(xg1, xb2) > κ > 0, we get that for any x′1 ≥ xg1, x
′
2 ≤ xb2,

u1(x′1)− u2(x′1, x
′

2) ≥ u1(xg1)− u2(xg1, x
′

2)
≥ u1(xg1)− u2(xg1, xb2) > κ

where the first inequality comes from Assumption 1(b) and the second one comes from
Assumption 1(a). We have for any x1,

D(x1) =u1(x1)− EΨ[u2(x1, X2)|X1 = x1]
=PΨ[X2 ≤ xb2|X1 = x1] · (u1(x1)− EΨ[u2(x1, X2)|X1 = x1, X2 ≤ xb2])

+ PΨ[X2 > xb2|X1 = x1] · (u1(x1)− EΨ[u2(x1, X2)|X1 = x1, X2 > xb2]).

When x1 ≥ xg1, u1(x1)− EΨ[u2(x1, X2)|X1 = x1, X2 ≤ xb2] > κ. Also, for x1 ≥ xg1,

u1(x1)− EΨ[u2(x1, X2)|X1 = x1, X2 > xb2] ≤ u1(xg1)− EΨ[u2(xg1, X2)|X1 = x1, X2 > xb2].

But

PΨ[X2 > xb2|X1 = x1] · EΨ[u2(xg1, X2)|X1 = x1, X2 > xb2]
=EΨ[1{X2 > xb2} · u2(xg1, X2)|X1 = x1]

=E ˜̃X2∼N (µ2−γ(x1−µ1);σ2)[1{
˜̃X2 > xb2} · u2(xg1, ˜̃X2)]

=EX̃2∼N (µ2;σ2)[1{X̃2 − γ(x1 − µ1) > xb2} · u2(xg1, X̃2 − γ(x1 − µ1))]
≤EX̃2∼N (µ2;σ2)[1{X̃2 − γ(x1 − µ1) > xb2} · |u2(xg1, X̃2)|]

when x1 > µ1. Since EX̃2∼N (µ2;σ2)[|u2(xg1, X̃2)|] exists and is finite by Assumption 1(d), as
x1 →∞ we must have

EX̃2∼N (µ2;σ2)[1{X̃2 − γ(x1 − µ1) > xb2} · |u2(xg1, X̃2)|]→ 0

as the indicator converges to 0 everywhere, given that γ > 0. So this shows for all large
enough x1, D(x1) ≥ κ/2 > 0.

The desired Lemma A.1 follows readily from Lemma A.2.

Proof. Applying Lemma A.2 and using the fact that γ > 0, D changes sign and is strictly
increasing and continuous. So, there exists a unique c∗ ∈ R satisfying D(c∗) = 0. It is clear
that the best stopping strategy under Ψ is the cutoff strategy that stops after every x1 > c∗

and continues after every x1 < c∗. This establishes property (ii) of the optimal strategy.
Properties (i) and (iii) follow from the fact that D is strictly increasing.
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A.2.2 Cutoff Threshold Increasing in µ2

In the second part, I prove the lemma:

Lemma A.3. Under Assumption 1, for any µ1 ∈ R and γ > 0, the indifference threshold
C(µ1, µ2; γ) is strictly increasing in µ2.

Proof. Let µ̂1, µ̂2, ˆ̂µ2 ∈ R with ˆ̂µ2 > µ̂2. I show that C(µ̂1µ̂2; γ) < C(µ̂1 ˆ̂µ2; γ).
By Lemma A.1, the threshold C(µ̂1, µ̂2; γ) is characterized by the indifference condition,

u1(C(µ̂1, µ̂2; γ)) = EX̃2∼N (µ̂2−γ(C(µ̂1,µ̂2;γ)−µ̂1),σ2)[u2(C(µ̂1, µ̂2; γ), X̃2)]

But if agent were to instead believe (µ̂1 ˆ̂µ2) where ˆ̂µ2 > µ̂2, then the conditional distribution
of X2 given X1 = C(µ̂1, µ̂2; γ) would be N (ˆ̂µ2 − γ(C(µ̂1, µ̂2; γ)− µ̂1), σ2). We have

u1(C(µ̂1, µ̂2; γ)) < EX̃2∼N (ˆ̂µ2−γ(C(µ̂1,µ̂2;γ)−µ̂1),σ2)[u2(C(µ̂1, µ̂2; γ), X̃2)]

by Assumption 1(a). This means C(µ̂1, µ̂2; γ) < C(µ̂1, ˆ̂µ2; γ) by Lemma A.1, as only values
of X1 below C(µ̂1, ˆ̂µ2; γ) lead to strict preference for continuing.

A.2.3 Proof of Lemma 1

Proof. In fact, this lemma holds for any µ1 ∈ R.
For µ′′2 > µ

′
2, write the corresponding optimal cutoffs as c′′ := C(µ1, µ

′′
2 ; γ) and c

′ :=
C(µ1, µ

′
2; γ). I show that |c′′ − c′| < `|µ′′2 − µ

′
2|.

Under the model Ψ(µ1, µ
′′
2 ; γ), the expected continuation payoff after X1 = c

′+`(µ′′2−µ
′
1)

is

E ˜̃X2∼N (µ′′2−γ(c′+`(µ′′2−µ
′
1)−µ1)σ2)[u2(c′ + `(µ′′2 − µ

′

1), ˜̃X2]

=EX̃2∼N (µ′2−γ(c′−µ1)σ2)[u2(c′ + `(µ′′2 − µ
′

1), X̃2 + (µ′′2 − µ
′

1)− γ`(µ′′2 − µ
′

1)]

=EX̃2∼N (µ′2−γ(c′−µ1)σ2)[u2(c′ + `d, X̃2 + (1− γ`)d)]

where we put d = |µ′′2 − µ
′
2| > 0. From Assumption 2, for every x2 ∈ R, u2(c′ + `d, x2 + (1−

γ`)d)− u2(c′ , x2) < u1(c′ + `d)− u1(c′). This means

EX̃2∼N (µ′2−γ(c′−µ1)σ2)[u2(c′ + `d, X̃2 + (1− γ`)d)− u2(c′ , X̃2)] < u1(c′ + `d)− u1(c′)

EX̃2∼N (µ′2−γ(c′−µ1)σ2)[u2(c′ + `d, X̃2 + (1− γ`)d)]− u1(c′ + `d) < EX̃2∼N (µ′2−γ(c′−µ1)σ2)[u2(c′ , X̃2)]− u1(c′).

The cutoff c′ satisfies the indifference condition,

u1(c′) = EX̃2∼N (µ′2−γ(c′−µ1),σ2)[u2(c′ , X̃2)],
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so RHS is 0. But LHS is the difference between expected continuation payoff and stopping
payoff at X1 = c

′ + `(µ′′2 − µ
′
1) under the model Ψ(µ1, µ

′′
2 ; γ), which shows the agent strictly

prefers stopping. This means c′′ < c
′ + `(µ′′2 − µ

′
1). But µ2 7→ C(µ1, µ2; γ) is increasing

by Lemma A.3, which means c′′ > c
′
. Together, these two inequalities imply |c′′ − c

′ | <
`(µ′′2 − µ

′
1).

A.2.4 Lipschitz Continuity with Constant 1/γ

Now I prove the lemma:

Lemma A.4. Under Assumption 1, for every γ > 0 and µ1 ∈ R, µ2 7→ C(µ1, µ2; γ) is
Lipschitz continuous with Lipschitz constant 1/γ.

Proof. The proof of Lemma 1 also applies when ` = 1
γ
, which implies that when the inequality

in Assumption 2 is satisfied with ` = 1
γ
, µ2 7→ C(µ1, µ2; γ) is Lipschitz continuous with

Lipschitz constant 1/γ. But this reduces the inequality to u1(x1 + 1
γ
d) − u1(x1) ≥ u2(x1 +

1
γ
d, x2)− u2(x1, x2), which is true by Assumption 1(b).

A.3 Proof of Claim 2

Proof. For d > 0,
u1(x1 + 1

1 + γ
d)− u1(x1) = 1

1 + γ
d

while

u2(x1 + 1
1 + γ

d, x2 + (1− γ

1 + γ
)d)− u2(x1, x2)

=u2(x1 + 1
1 + γ

d, x2 + 1
1 + γ

d)− u2(x1, x2)

=qmax(x1 + 1
1 + γ

d, x2 + 1
1 + γ

d) + (1− q)(x2 + 1
1 + γ

d)

− qmax(x1, x2)− (1− q)x2

=q 1
1 + γ

d+ (1− q) 1
1 + γ

d = 1
1 + γ

d.

This shows that when ` = 1
1+γ , we have u1(x1 + `d)− u1(x1) = u2(x1 + `d, x2 + (1− γ`)d)−

u2(x1, x2) for every x1, x2 ∈ R, d > 0.
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A.4 Proof of Proposition 2

Proof. Rewrite Definition 5 as

∫ ∞
c

φ(x1;µ•1, σ2) · ln
(
φ(x1;µ•1, σ2)
φ(x1;µ1, σ2)

)
dx1

+
∫ c

−∞
φ(x1;µ•1, σ2) ·

∫ ∞
−∞

φ(x2;µ•2, σ2) · ln
[
φ(x1;µ•1, σ2)
φ(x1;µ1, σ2)

]
dx2dx1

+
∫ c

−∞
φ(x1;µ•1, σ2) ·

∫ ∞
−∞

φ(x2;µ•2, σ2) · ln
[

φ(x2;µ•2, σ2)
φ(x2;µ2 − γ(x− µ1), σ2)

]
dx2dx1

which is:
∫ ∞
−∞

φ(x1;µ•1, σ2) · ln
(
φ(x1;µ•1, σ2)
φ(x1;µ1, σ2)

)
dx1

+
∫ c

−∞
φ(x1;µ•1, σ2) ·

∫ ∞
−∞

φ(x2;µ•2, σ2) ln
[

φ(x2;µ•2, σ2)
φ(x2;µ2 − γ(x1 − µ1), σ2)

]
dx2dx1

The KL divergence between N (µtrue, σ
2
true) and N (µmodel, σ

2
model) is

ln σmodel

σtrue
+ σ2

true + (µtrue − µmodel)2

2σ2
model

− 1
2 ,

so we may simplify the first term and the inner integral of the second term:

(µ1 − µ•1)2

2σ2 +
∫ c

−∞
φ(x1;µ•1, σ2) ·

[
σ2 + (µ2 − γ(x1 − µ1)− µ•2)2

2σ2 − 1
2

]
dx1.

Dropping constant terms not depending on µ1 and µ2 and multiplying by σ2, we get a
simplified expression of the objective,

ξ(µ1, µ2) := (µ1 − µ•1)2

2 +
∫ c

−∞
φ(x1;µ•1, σ2) ·

[
(µ2 − γ(x1 − µ1)− µ•2)2

2

]
dx1

We have the partial derivatives by differentiating under the integral sign,

∂ξ

∂µ2
=
∫ c

−∞
φ(x1;µ•1, σ2) · (µ2 − γ(x1 − µ1)− µ•2)dx1

∂ξ

∂µ1
= (µ1 − µ•1) + γ

∫ c

−∞
φ(x1;µ•1, σ2) · (µ2 − γ(x1 − µ1)− µ•2)dx1

= (µ1 − µ•1) + γ
∂ξ

∂µ2
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By the first order conditions, at the minimum (µ∗1, µ∗2), we must have:

∂ξ

∂µ2
(µ∗1, µ∗2) = ∂ξ

∂µ1
(µ∗1, µ∗2) = 0⇒ µ∗1 = µ•1

So µ∗2 satisfies ∂ξ
∂µ2

(µ•1, µ∗2) = 0, which by straightforward algebra shows

µ∗2(c) = µ•2 − γ (µ•1 − E [X1 | X1 ≤ c]) .

A.5 Proof of Proposition 3

Proof. Consider the map I as discussed in the text,

I(µ2) := µ•2 − γ (µ•1 − E [X1|X1 ≤ C(µ•1, µ2; γ)]) .

If µ̂2 is a fixed point of I, then there is a steady state with µ∞1 = µ•1, µ
∞
2 = µ̂2, c

∞ =
C(µ•1, µ̂2; γ). This follows readily from definition of I and the closed-form expression of
pseudo-true fundamentals from Proposition 2. So, existence of steady states follows from
existence of fixed points of I.

Conversely, suppose (µ∞1 , µ∞2 , c∞) is a steady state. From Proposition 2, µ∞1 = µ∗1(c∞) =
µ•1, µ

∞
2 = µ∗2(c∞) = µ•2 − γ (µ•1 − E [X1|X1 ≤ c∞]), and c∞ = C(µ∞1 , µ∞2 ; γ) = C(µ•1, µ∞2 ; γ).

That is to say, µ∞2 = µ•2−γ (µ•1 − E [X1|X1 ≤ C(µ•1, µ∞2 ; γ)]) = I(µ∞2 ), so µ∞2 is a fixed point
of I. So, uniqueness of steady states follows from uniqueness of fixed points of I.

I show I is a contraction mapping with modulus `γ. We have

I(µ′2)− I(µ′′2) = γ ·
(
E
[
X1|X1 ≤ C(µ•1, µ

′

2; γ)
]
− E

[
X1|X1 ≤ C(µ•1, µ

′′

2 ; γ)
])
.

By formula of the mean of a truncated Gaussian random variable, when X1 ∼ N (µ•1, σ2) and
c ∈ R, we get E[X1|X1 ≤ c] = µ•1 −

(
φ((c−µ•1)/σ)
Φ((c−µ•1)/σ)

)
σ. Therefore,

I(µ′2)− I(µ′′2) = γ ·
((

µ•1 −
φ((C(µ•1, µ

′
2; γ)/σ))

Φ((C(µ•1, µ
′
2; γ)/σ)) · σ

)
−
(
µ•1 −

φ((C(µ•1, µ
′′
2 ; γ)/σ))

Φ((C(µ•1, µ
′′
2 ; γ)/σ)) · σ

))

= −γσ ·
(
φ(C(µ•1, µ

′
2; γ)/σ)

Φ(C(µ•1, µ
′
2; γ)/σ) −

φ(C(µ•1, µ
′′
2 ; γ)/σ)

Φ(C(µ•1, µ
′′
2 ; γ)/σ)

)
.

The function z 7→ φ(z)
1−Φ(z) is the Gaussian inverse Mills ratio and its derivative is bounded

by 1 in magnitude21. By symmetry this also applies to the function z 7→ φ(z)
Φ(z) . This means

21See for example Corollary 1.6 in Pinelis (2018)
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∣∣∣∣ φ(z′ )
Φ(z′ ) −

φ(z′′ )
Φ(z′′ )

∣∣∣∣ ≤ |z′ − z′′ |. So we have

∣∣∣∣∣φ(C(µ•1, µ
′
2; γ)/σ)

Φ(C(µ•1, µ
′
2; γ)/σ) −

φ(C(µ•1, µ
′′
2 ; γ)/σ)

Φ(C(µ•1, µ
′′
2 ; γ)/σ)

∣∣∣∣∣ ≤ 1
σ
·
∣∣∣C(µ•1, µ

′

2; γ)− C(µ•1, µ
′′

2 ; γ)
∣∣∣ ≤ 1

σ
· ` · |µ′2−µ

′′

2 |

by Lemma 1. This then showing |I(µ′2) − I(µ′′2)| ≤ γ` · |µ′2 − µ
′′
2 | for all µ′2, µ

′′
2 ∈ R. So Υ

is a contraction mapping with contraction constant γ` ∈ (0, 1) and the proposition readily
follows from properties of contraction mappings.

A.6 Proof of Proposition 5

Proof. Suppose (µ•1, µ∞2 , c∞) is a steady state. If c• =∞, then c∞ < c• trivially as c∞ ∈ R.
Now suppose c• 6=∞. By Lemma 1, agent is indifferent between stopping and continuing

after X1 = c∞ under the subjective model Ψ(µ•1, µ∞2 ; γ). This implies

u1(c∞) = EΨ(µ•1,µ∞2 ;γ)[u2(c∞, X2)|X1 = c∞]
= EX̃2∼N (µ∞2 −γ(c∞−µ•1),σ2)[u2(c∞, X̃2)]

By the definition of steady state, µ∞2 = µ∗2(c∞) = µ•2−γ (µ•1 − E [X1|X1 ≤ c∞]). But we have

µ∞2 − γ(c∞ − µ•1) < µ∞2 − γ(E [X1|X1 ≤ c∞]− µ•1) = µ•2

since c∞ > E [X1|X1 ≤ c∞].
Therefore, N (µ∞2 − γ(c∞ − µ•1), σ2) is first-order stochastically dominated by N (µ•2, σ2).

Since u2 is strictly increasing in its second argument by Assumption 1(a), we therefore have

u1(c∞) < EX̃2∼N (µ•2,σ2)[u2(c∞, X̃2)].

The LHS is the objective payoff of stopping at c∞ while the RHS is the objective expected
payoff of continuing at c∞. Since the best stopping strategy under the objective model Ψ•

has the cutoff form, we must have c∞ < c•.22

A.7 Proof of Theorem 1′

The hypotheses of Theorem 1′ will be maintained throughout this section.
22In particular this implies if there exists at least one steady state, then c• 6= −∞.
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A.7.1 Optimality of Cutoff Strategies

I first develop an extension of Lemma A.1. I show that for an agent who knows µ•1 and has
some belief over µ2 with supported bounded by [µ2, µ̄2], there exists a cutoff strategy that
uniquely maximizes payoff across all cutoff strategies, so the “myopically optimal” cutoff
strategy is well defined. Furthermore, this myopically optimal cutoff strategy also achieves
weakly larger expected payoff compared to any arbitrary stopping strategy23. So, restriction
to cutoff strategies is without loss.

Lemma A.5. For an agent who knows µ•1 and who holds some belief ν ∈ ∆([µ2, µ̄2]) about
second-period fundamental, there exists c∗ ∈ R such that: (i) the cutoff strategy Sc∗ achieves
weakly higher expected payoff than any other (not necessarily cutoff-based) stopping strategy
S : R → {Stop, Continue}; (ii) for any other c′ 6= c∗, Sc∗ achieves strictly higher expected
payoff than Sc′ .

A.7.2 The Log Likelihood Process

Next, I define the processes of data log likelihood (for a given fundamental). For each
µ2 ∈ [µ2, µ̄2], let `t(µ2)(ω) be the log likelihood that the true second-period fundamental is
µ2 and histories (H̃s)s≤t(ω) are generated by the end of round t. It is given by

`t(µ2)(ω) := ln(g(µ2)) +
t∑

s=1
ln(lik(H̃s(ω);µ2))

where lik(x1,∅;µ2) := φ(x1;µ•1, σ2) and lik(x1, x2;µ2) := φ(x1;µ•1, σ2) · φ(x2;µ2 − γ(x1 −
µ•1);σ2).

I record a useful decomposition of `′t(µ2), the derivative of the log-likelihood process.
Define two stochastic processes:

ϕs(µ2) := σ−2 · (X2,s − µ2 + γ(X1,s − µ•1)) · 1{X1,s ≤ C̃s}

ϕ̄s(µ2) := σ−2P[X1 ≤ C̃s] · (µ•2 − µ2 − γ(µ•1 − E[X1|X1 ≤ C̃s])),

with a slight abuse of notation, P[X1 ≤ x] means the probability that each first-period
draw falls below x, and E[X1|X1 ≤ x] the conditional expectation of the first draw given
that it falls below x. Note that ϕ̄s(µ2) is measurable with respect to Fs−1, since (Ct) is
a predictable process. Write ξs(µ2) := ϕs(µ2) − ϕ̄s(µ2) and yt(µ2) := ∑t

s=1 ξs(µ2). Write
zt(µ2) := ∑t

s=1 ϕ̄s(µ2).

Lemma A.6. `′t(µ2) = g
′ (µ2)
g(µ2) + yt(µ2) + zt(µ2)

23One can construct other stopping strategies with the same expected payoff by, for example, modifying
the stopping decision of the optimal cutoff strategy at finitely many x1.
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Proof. We may expand `t(µ2) as

ln(g(µ2)) +
t∑

s=1
ln(φ(X1,s;µ•1, σ2)) +

t∑
s=1

ln(φ(X2,s;µ2 − γ(X1,s − µ•1);σ2)) · 1{X1,s ≤ C̃s}.

The derivative of the first term is g
′ (µ2)
g(µ2) . The second term does not depend on µ2. In the

third term, we substitute the Gaussian density to get:

t∑
s=1

ln((2πσ2)−1/2) · 1{X1,s ≤ C̃s}+
t∑

s=1
−(X2,s − µ2 + γ(X1,s − µ•1))2

2σ2 · 1{X1,s ≤ C̃s}.

Its derivative with respect to µ2 is ϕs(µ2). So in sum, `′t(µ2) = g
′ (µ2)
g(µ2) + ∑t

s=1 ϕs(µ2). The
lemma then follows from simple rearrangements.

Now I derive two results about the ξt(µ2) processes for different values of µ2.

Lemma A.7. There exists κξ < ∞ so that for every µ2 ∈ [µ2, µ̄2] and for every t ≥ 1,
ω ∈ Ω, E[ξ2

t (µ2)|Ft−1](ω) ≤ κξ.

Proof. Note that ϕ̄t(µ2) is measurable with respect to Ft−1. Also, ϕt(µ2)|Ft−1 = ϕt(µ2)|C̃t,
because by independence of Xt from (Xs)t−1

s=1, the only information that Ft−1 contains about
ϕt(µ2) is in determining the cutoff threshold Ct.

At a sample path ω so that C̃t(ω) = c ∈ R,

E[ϕt(µ2)|Ft−1](ω) = E[σ−2 · (X2 − µ2 + γ(X1 − µ•1))1{X1 ≤ c}]
= σ−2(E[(X2 − µ2) · 1{X1 ≤ c}] + E[γ(X1 − µ•1) · 1{X1 ≤ c}])
= σ−2P[X1 ≤ c] · (µ•2 − µ2 − γ(µ•1 − E[X1|X1 ≤ c])),

where we used the fact thatX1,t andX2,t are independent. This shows that E[ϕt(µ2)|Ft−1](ω) =
ϕ̄t(µ2)(ω). Since this holds regardless of c, we get that E[ϕt(µ2)|Ft−1] = ϕ̄t(µ2) for all ω,
that is to say

E[ξ2
t (µ2)|Ft−1] = Var[ϕt(µ2)|Ft−1]

≤ E[ϕ2
t (µ2)|Ft−1]

= σ−4 · E[(X2,s − µ2 + γ(X1,s − µ•1))2 · 1{X1,s ≤ C̃s}]
≤ σ−4 · E[(X2 − µ2 + γ(X1 − µ•1))2]

The RHS of the final line is independent of ω and t, while µ2 7→ E[(X2−µ2 +γ(X1−µ•1))2]
is a continuous function on [µ2, µ̄2]. Therefore it is bounded uniformly by some κξ <∞, which
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also provides a bound for E[ξ2
t (µ2)|Ft−1](ω) for every t, ω and µ2 ∈ [µ2, µ̄2].

Lemma A.8. For every t ≥ 1, µ2 ∈ [µ2, µ̄2] and ω ∈ Ω, |ξ′t(µ2)(ω)| ≤ 2/σ2.

Proof. We have |ξ′t(µ2)| = |σ−2 · 1{X1,t ≤ C̃t} + σ−2P[X1 ≤ C̃t]| ≤ 2/σ−2 since the terms
1{X1,t ≤ C̃t} and P[X1 ≤ C̃t] are both bounded by 1 at every ω.

A.7.3 Heidhues, Koszegi, and Strack (2018)’s Law of Large Numbers

I use a statistical result from Heidhues, Koszegi, and Strack (2018) to show that the yt term
in the decomposition of `′t almost surely converges to 0 in the long run, and furthermore
this convergence is uniform on [µ2, µ̄2]. This lets me focus on summands of the form ϕ̄s(µ2),
which can be interpreted as the expected contribution to the log likelihood derivative from
round s data. This lends tractability to the problem as ϕ̄s(µ2) only depends on C̃s, but not
on X1,s or X2,s.

Lemma A.9. For every µ2 ∈ [µ2, µ̄2], limt→∞ |yt(µ2)
t
| = 0 almost surely.

Proof. Heidhues, Koszegi, and Strack (2018)’s Proposition 10 shows that if (yt) is a martin-
gale such that there exists some constant v ≥ 0 satisfying [y]t ≤ vt almost surely, where [y]t
is the quadratic variation of (yt), then almost surely limt→∞

yt
t

= 0.
Consider the process yt(µ2) for a fixed µ2 ∈ [µ2, µ̄2]. By definition yt = ∑t

s=1 ϕs(µ2) −
ϕ̄s(µ2). As established in the proof of Lemma A.7, for every s, ϕ̄s(µ2) = E[ϕs(µ2)|Fs−1]. So
for t′ < t,

E[yt(µ2)|Ft′ ] =
t
′∑

s=1
ϕs(µ2)− ϕ̄s(µ2) + E[

t∑
s=t′+1

ϕs(µ2)− ϕ̄s(µ2)|Ft′ ]

=
t
′∑

s=1
ϕs(µ2)− ϕ̄s(µ2) +

t∑
s=t′+1

E[E[ϕs(µ2)− ϕ̄s(µ2)|Fs−1] | Ft′ ]

=
t
′∑

s=1
ϕs(µ2)− ϕ̄s(µ2) + 0

= yt′ (µ2).

This shows (yt(µ2)) is a martingale. Also,

[y(µ2)]t =
t−1∑
s=1

E[(ys(µ2)− ys−1(µ2))2|Fs−1]

=
t−1∑
s=1

E[ξ2
s (µ2)|Fs−1]

≤ κξ · t
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by Lemma A.7. Therefore Heidhues, Koszegi, and Strack (2018) Proposition 10 applies.

Lemma A.10. limt→∞ supµ2∈[µ2,µ̄2] |
yt(µ2)
t
| = 0 almost surely.

Proof. From the proof of Lemma 11 in Heidhues, Koszegi, and Strack (2018), it suffices to
find a sequence of random variables Bt such that supµ2∈[µ2,µ̄2] |ξ

′
t(µ2)| ≤ Bt almost surely,

supt≥1
1
t

∑t
s=1 E[Bs] < ∞, and limt→∞

1
t

∑t
s=1(Bs − E[Bs]) = 0. But Lemma A.8 establishes

the constant random variable Bt = 2/σ2 as a bound on ξ′t(µ2) for every t, µ2, ω, which satisfies
these requirements.

A.7.4 Bounds on Asymptotic Beliefs and Asymptotic Cutoffs

For each t, let G̃t be the (random) posterior belief induced by the (random) posterior density
g̃t after updating prior g using t rounds of histories.

Lemma A.11. For cl ≥ C(µ•1, µ2; γ), if almost surely lim inf
t→∞

C̃t ≥ cl, then almost surely

lim
t→∞

G̃t( [µ2, µ
∗
2(cl)) ) = 0.

Also, for ch ≤ C(µ•1, µ̄2; γ), if almost surely lim sup
t→∞

C̃t ≤ ch, then almost surely

lim
t→∞

G̃t( (µ∗2(ch), µ̄2]) = 0.

Proof. I first show that for all ε > 0, there exists δ > 0 such that almost surely,

lim inf
t→∞

inf
µ2∈[µ2,µ

∗
2(cl)−ε]

`
′
t(µ2)
t
≥ δ.

From Lemma A.6, we may rewrite LHS as

lim inf
t→∞

inf
µ2∈[µ2,µ

∗
2(cl)−ε]

[
1
t

g
′(µ2)
g(µ2) + yt(µ2)

t
+ zt(µ2)

t

]
,

which is no smaller than taking the inf separately across the three terms in the bracket,

lim inf
t→∞

inf
µ2∈[µ2,µ

∗
2(cl)−ε]

1
t

g
′(µ2)
g(µ2) + lim inf

t→∞
inf

µ2∈[µ2,µ
∗
2(cl)−ε]

yt(µ2)
t

+ lim inf
t→∞

inf
µ2∈[µ2,µ

∗
2(cl)−ε]

zt(µ2)
t

.

Since g′ is continuous and g is strictly positive (and continuous) on [µ2, µ̄2] by the hypothe-
ses of Theorem 1′ , g′/g is bounded on [µ2, µ̄2], so we in fact have limt→∞ infµ2∈[µ2,µ

∗
2(cl)−ε]

1
t
g
′ (µ2)
g(µ2) =
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0. To deal with the second term,

lim inf
t→∞

inf
µ2∈[µ2,µ

∗
2(cl)−ε]

yt(µ2)
t
≥ lim inf

t→∞
inf

µ2∈[µ2µ̄2]

yt(µ2)
t

= − lim inf
t→∞

sup
µ2∈[µ2µ̄2]

−yt(µ2)
t

.

Lemma A.10 gives limt→∞ supµ2∈[µ2µ̄2]
−yt(µ2)

t
= 0 almost surely, so this second term is non-

negative almost surely.
It suffices then to find δ > 0 and show lim inft→∞ infµ2∈[µ2,µ

∗
2(cl)−ε]

zt(µ2)
t
≥ δ almost surely.

Since zt is the sum of ϕ̄s terms that are decreasing functions of µ2, the inner inf is always
achieved at µ2 = µ∗2(cl)− ε. So we get

lim inf
t→∞

inf
µ2∈[µ2,µ

∗
2(cl)−ε]

zt(µ2)
t

= lim inf
t→∞

zt(µ∗2(cl)− ε)
t

= lim inf
t→∞

1
t

[
t∑

s=1
ϕ̄s(µ∗2(cl)− ε)

]
.

The definition of µ∗2(cl) is such that , µ•2 − µ∗2(cl) − γ(µ•1 − E[X1|X1 ≤ cl]) = 0. So for any
c̃ ≥ cl, since γ > 0,

µ•2 − µ∗2(cl)− γ(µ•1 − E[X1|X1 ≤ c̃]) ≥ 0
µ•2 − (µ∗2(cl)− ε)− γ(µ•1 − E[X1|X1 ≤ c̃]) ≥ ε.

So at any c̃ ≥ cl,

σ−2P[X1 ≤ c̃] · (µ•2 − (µ∗2(cl)− ε)− γ(µ•1 − E[X1|X1 ≤ c̃])) ≥ σ−2P[X1 ≤ cl] · ε

Along any ω where lim inft→∞ C̃t ≥ cl, we therefore have lim inft→∞ ϕ̄s(µ∗2(cl) − ε) ≥
σ−2P[X1 ≤ cl] · ε. Put δ = σ−2P[X1 ≤ cl] · ε. This shows almost surely,

lim inf
t→∞

1
t

[
t∑

s=1
ϕ̄s(µ∗2(cl)− ε)

]
≥ δ.

From here, it is a standard exercise to establish that limt→∞ G̃t( [µ2, µ
∗
2(cl) − ε) ) = 0

almost surely. Since the choice of ε > 0 is arbitrary, this establishes the first part of the
lemma.

The proof of the second part of the statement is exactly symmetric. To sketch the
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argument, we need to show that for all ε > 0, there exists δ > 0 such that almost surely,

lim sup
t→∞

sup
µ2∈[µ∗2(ch)+ε,µ̄2]

`
′
t(µ2)
t
≤ −δ.

This essentially reduces to analyzing

lim sup
t→∞

1
t

[
t∑

s=1
ϕ̄s(µ∗2(ch) + ε)

]
.

For any c̃ ≤ ch, since γ > 0,

µ•2 − µ∗2(ch)− γ(µ•1 − E[X1|X1 ≤ c̃]) ≤ 0
µ•2 − (µ∗2(ch) + ε)− γ(µ•1 − E[X1|X1 ≤ c̃]) ≤ −ε.

For every t and along every ω, C̃t(ω) ≥ C(µ•1, µ2; γ), as cutoffs below this value cannot
be myopically optimal given any belief about second-period fundamental supported on
[µ2, µ̄2]. So along any ω such that lim supt→∞ C̃t ≤ ch, we have lim supt→∞ ϕ̄s(µ∗2(ch) +
ε) ≤ σ−2P[X1 ≤ C(µ•1, µ2; γ)] · (−ε). Setting δ := σ−2P[X1 ≤ C(µ•1, µ2; γ)] · (ε), we get
lim supt→∞ 1

t

[∑t
s=1 ϕ̄s(µ∗2(ch) + ε)

]
≤ −δ almost surely.

Lemma A.12. For µ2 ≤ µl2 < µh2 ≤ µ̄2, if limt→∞ G̃t([µl2, µh2 ]) = 1 almost surely, then
lim inft→∞ C̃t ≥ C(µ•1, µl2; γ) and lim supt→∞ C̃t ≤ C(µ•1, µh2 ; γ) almost surely.

Proof. I show lim inft→∞ C̃t ≥ C(µ•1, µl2; γ) almost surely . The argument establishing
lim supt→∞ C̃t ≤ C(µ•1, µh2 ; γ) is symmetric.

Let cl = C(µ•1, µl2; γ), c = C(µ•1, µ2; γ), c̄ = C(µ•1, µ̄2; γ). Fix some ε > 0. Since c 7→
U(c;µ•1, µ2) is single peaked for every µ2, and since cl ≤ C(µ•1, µ2; γ) for all µ2 ∈ [µl2, µh2 ], we
get U(cl;µ•1, µ2)− U(cl − ε;µ•1, µ2) > 0 for every µ2 ∈ [µl2, µh2 ]. As

µ2 7→
(
U(cl;µ•1, µ2)− U(cl − ε;µ•1, µ2)

)
is continuous, there exists some κ∗ > 0 so that

U(cl;µ•1, µ2)− U(cl − ε;µ•1, µ2) > κ∗

for all µ2 ∈ [µl2, µh2 ]. In particular, if ν ∈ ∆([µl2, µh2 ]) is a belief over second-period fundamen-
tal supported on [µl2, µh2 ], then∫

U(cl;µ•1, µ2)− U(cl − ε;µ•1, µ2)dν(µ2) > κ∗.
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Now , let κ̄ := supc∈[c,c̄] supµ2∈[µ2,µ̄2] U(c;µ•1, µ2), κ := infc∈[c,c̄] infµ2∈[µ2,µ̄2] U(c;µ•1, µ2).
Find p ∈ (0, 1) so that pκ∗ − (1 − p)(κ̄ − κ) = 0. At any belief ν̂ ∈ ∆([µ2, µ̄2]) that assigns
more than probability p to the subinterval [µl2, µh2 ], the optimal cutoff is larger than cl − ε.
To see this, take any ĉ ≤ cl−ε and I will show ĉ is suboptimal. If ĉ < c, then it is suboptimal
after any belief on [µ2, µ̄2]. If c ≤ ĉ ≤ cl − ε, I show that

∫
U(cl;µ•1, µ2)− U(ĉ;µ•1, µ2)dν̂(µ2) > 0.

To see this, we may decompose ν̂ as the mixture of a probability measure ν on [µl2, µh2 ]
and another probability measure νc on [µ2, µ̄2]\[µl2, µh2 ]. Let p̂ > p be the probability that ν
assigns to [µl2, µh2 ]. The above integral is equal to:

p̂
∫
µ2∈[µl2,µh2 ]

U(cl;µ•1, µ2)− U(ĉ;µ•1, µ2)dν(µ2) + (1− p̂)
∫
µ2∈[µ2,µ̄2]\[µl2,µh2 ].

U(cl;µ•1, µ2)− U(ĉ;µ•1, µ2)dνc(µ2)

Since cl is to the left of the optimal cutoff for all µ2 ∈ [µl2, µh2 ] and ĉ ≤ cl − ε, then
U(ĉ;µ•1, µ2) ≤ U(cl − ε;µ•1, µ2) for all µ2 ∈ [µl2, µh2 ]. The first summand is no less than

p̂
∫
µ2∈[µl2,µh2 ]

U(cl;µ•1, µ2)− U(cl − ε;µ•1, µ2)dν(µ2) ≥ p̂κ∗.

Also, the integrand in the second summand is no smaller than−(κ̄−κ), therefore
∫
U(cl;µ•1, µ2)−

U(ĉ;µ•1, µ2)dν̂(µ2) ≥ p̂κ∗ − (1 − p̂)(κ̄ − κ). Since p̂ > p, we get p̂κ∗ − (1 − p̂)(κ̄ − κ) > 0 as
desired.

Along any sample path ω where limt→∞ G̃t([µl2, µh2 ])(ω) = 1, eventually G̃t([µl2, µh2 ])(ω) >
p for all large enough t, meaning lim inft→∞ C̃t(ω) ≥ cl − ε. This shows lim inft→∞ C̃t ≥
C(µ•1, µl2; γ) − ε almost surely. Since the choice of ε > 0 was arbitrary, we in fact conclude
lim inft→∞ C̃t ≥ C(µ•1, µl2; γ) almost surely.

A.7.5 The Contraction Map

I now combine the results established so far to prove Theorem 1′.

Proof. Let µl2,[1] := µ2, µ
h
2,[1] := µ̄2. For k = 2, 3, ..., iteratively define µl2,[k] := I(µl2,[k−1]; γ)

and µh2,[k] := I(µh2,[k−1]; γ).
From Lemma A.12, if limt→∞ G̃t([µl2,[k], µ

h
2,[k]]) = 1 almost surely, then lim inft→∞ C̃t ≥

C(µ•1, µl2,[k]; γ) and lim supt→∞ C̃t ≤ C(µ•1, µh2,[k]; γ) almost surely. But using these conclusions
in Lemma A.11, we further deduce that limt→∞ G̃t([µ∗2(C(µ•1, µl2,[k]; γ)), µ∗2(C(µ•1, µh2,[k]; γ))]) =
1 almost surely, that is to say limt→∞ G̃t([µl2,[k+1], µ

h
2,[k+1]]) = 1 almost surely.
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Under Assumptions 1 and 2, µ2 7→ I(µ2; γ) is a contraction mapping. Since µ2 < µ∞2
and µ̄2 > µ∞2 , (µl2,[k])k≥1 is a sequence whose limit is µ∞2 , and (µh2,[k])k≥1 is a sequence whose
limit is µ∞2 . Thus, agent’s posterior converges in L1 to µ∞2 almost surely (since the support
of the prior is bounded).

In addition, µ2 7→ C(µ•1, µ2; γ) is continuous, so the sequences of bounds on asymptotic
cutoffs also converge, limk→∞C(µ•1, µl2,[k]; γ) = c∞ and limk→∞C(µ•1, µh2,[k]; γ) = c∞. This
means limt→∞ C̃t = c∞ almost surely.

A.8 Proof of Lemma 2

Proof. By the same algebraic manipulations as in the proof of Proposition 2, we may rewrite
the objective in Equation (1) as:

(µ1 − µ•1)2

2σ2 +
t−1∑
τ=0

{∫ cτ

−∞
φ(x1;µ•1, σ2) ·

[
σ2 + (µ2 − γ(x1 − µ1)− µ•2)2

2σ2 − 1
2

]
dx1

}
.

Dropping terms not dependent on µ1, µ2 and multiplying through by σ2, we get the simplified
objective

ξ(µ1, µ2) := (µ1 − µ•1)2

2 +
t−1∑
τ=0

{∫ cτ

−∞
φ(x1;µ•1, σ2) ·

[
(µ2 − γ(x1 − µ1)− µ•2)2

2σ2

]
dx1

}

The same argument as in the proof of Proposition 2 gives µ1 = µ•1 as the only value satisfy-
ing the first-order conditions, and following this the minimizing µ2 must satisfy ∂ξ

∂µ2
(µ•1, µ2) =

0. We now compute:

∂ξ

∂µ2
(µ•1, µ2) =

t∑
τ=0

P[X1 ≤ cτ ] · (µ2 − µ•2 − γ (E [X1|X1 ≤ cτ ]− µ•1)) .

Since the derivative ∂ξ
∂µ2

is a linear function of µ2, when ∂ξ
∂µ2

(µ•1, µ∗2) = 0 we can rearrange to
find

µ∗2 = 1∑t−1
τ=0 P[X1 ≤ cτ ]

·
t−1∑
τ=0

P[X1 ≤ cτ ] {µ•2 − γ (µ•1 − E [X1|X1 ≤ cτ ])}

= 1∑t−1
τ=0 P[X1 ≤ cτ ]

t−1∑
τ=0

P[X1 ≤ cτ ] · µ∗2(cτ ).

This shows µ∗1(c0, ..., ct−1) = µ•1 and

µ∗2(c0, ..., ct−1) = 1∑t−1
τ=0 P[X1 ≤ cτ ]

t−1∑
τ=0

P[X1 ≤ cτ ] · µ∗2(cτ ).
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A.9 Proof of Proposition 6

Proof. Suppose µA2,[2] ≥ µA2,[1]. Under Assumption 1, Lemma 1 applies, so C is strictly in-
creasing in its second argument. This shows cA[2] = C(µ•1, µA2,[2]; γ) ≥ C(µ•1, µA2,[1]; γ) = cA[1].
But by Proposition 2, µ∗2(c) increases in c, so µA2,[3] = µ∗2(cA[2]) ≥ µ∗2(cA[1]) = µA2,[2]. Continu-
ing this argument shows that (µA2,[t])t≥1 is a monotonically increasing sequence. Since C is
strictly increasing in its second argument, (cA[t])t≥1 must also form a monotonically increasing
sequence.

Conversely if µA2,[2] < µA2,[1], then the analogous arguments show that (µA2,[t])t≥1 and (cA[t])t≥1

are monotonically decreasing sequences.
When Assumption 2 also holds, I(·; γ) is a contraction mapping by Proposition 3. Since

(µA2,[t])t≥1 are the iterates of I(·; γ), this implies limt→∞ µ
A
2,[t] = µ∞2 . Also, since µ2 7→

C(µ•1, µ2; γ) is a continuous function by Lemma 1, we may exchange the limit:

lim
t→∞

cA[t] = lim
t→∞

C(µ•1, µA2,[t]; γ) = C(µ•1, lim
t→∞

µA2,[t]; γ) = C(µ•1, µ∞2 ; γ) = c∞.

So the monotonic sequence (cA[t])t≥1 converges to c∞.

A.10 Proof of Theorem 2

Proof. For the first step of the proof, suppose Assumption 1 holds.
Step 1: If c[1] > c[0], then (µ2,[t])t≥1 and (c[t])t≥0 are two increasing sequence, whereas

c[1] ≤ c[0] implies (µ2,[t])t≥1 and (c[t])t≥0 are two decreasing sequences.
Suppose c[1] > c[0]. Note that by Lemma 2, µ2,[1] = µ∗2(c[0]), whereas µ2,[2] is a weighted

average between µ∗2(c[0]) and µ∗2(c[1]) where the latter is larger because c[1] > c[0] and µ∗2(c)
is strictly increasing. This shows we have µ2,[2] > µ2,[1] and hence c[2] > c[1] as the cutoff is
strictly increasing in its second argument by Lemma 1. Now assume the partial sequences
(c[τ ])Tτ=0 and (µ2,[τ ])Tτ=1 are both increasing. We show that µ2,[T+1] > µ2,[T ], which would also
imply c[T+1] > c[T ]. By comparing expressions for µ2,[T+1] and µ2,[t] given by Lemma 2,

µ2,[T+1] = δ · µ∗2(c[T ]) + (1− δ) · µ2,[t]

where δ = P[X1≤c[T ]]∑T

τ=0 P[X1≤c[τ ]]
> 0 and µ2,[t] is itself a weighted average of the collection {µ∗2(c[τ ])}0≤τ≤T−1

by Lemma 2. Now by the first part of the inductive hypothesis, (c[τ ])Tτ=0 is strictly increas-
ing, meaning µ∗2(c[T ]) > µ∗2(c[τ ]) for any τ < T , which are the components making up µ2,[t].
Since the weight δ on µ∗2(c[T ]) in the expression of µ2,[T+1] is strictly positive, this shows
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µ2,[T+1] > µ2,[t]. So by induction, we have shown Step 1. (The other case of c[1] < c[0] is
symmetric.)

For the rest of this proof, suppose Assumption 2 also holds.
Step 2: (µ2,[t])t≥1 is bounded and converges.
In the case that c[1] ≥ c[0] (so µ2,[2] ≥ µ2,[1]), Step 1 implies that (µ2,[t])t≥1 forms an

increasing sequence. Since µ∗2(·) is bounded above by µ•2 by Proposition 2 and µ2,[t] for any
t ≥ 1 is a convex combinations of such terms, we also have µ2,[t] ≤ µ•2 for every t. So in this
case the sequence (µ2,[t])t≥1 is bounded between µ2,[1] and µ•2.

In the case that c[1] ≤ c[0] (so µ2,[2] ≤ µ2,[1]), we notice that c[0] = cA[0], c[1] = cA[1],
so by Proposition 6 the auxiliary environment has the dynamics µA2,[t] % µ∞2 , c

A
[t] % c∞,

where (µ∞2 , c∞) are associated with the unique steady state. So we have µ2,[1] = µA2,[1] while
µ2,[2] ≥ µA2,[2] since µ2,[2] is a convex combination between µ∗2(c[0]) and µ∗2(c[1]) = µA2,[2], with
the latter being lower. This means c[2] ≥ cA[2]. In the third generation,

µ∗2(c[0], c[1], c[2]) ≥ µ∗2(c[2]) ≥ µ∗2(cA[2]).

The first inequality follows because µ∗2(c[0], c[1], c[2]) is a weighted average between µ∗2(c[0]),
µ∗2(c[1]), and µ∗2(c[2]), with the last one being the lowest since c[t] decreases in t for t = 0, 1, 2.
This shows µ2,[3] ≥ µA2,[3] and c[3] ≥ cA[3]. Iterating this argument shows that µ2,[t] ≥ µA2,[t] for
every t in this case. Seeing as (µ2,[t])t≥1 forms a decreasing sequence by Step 1, it is bounded
between µ∞2 and µ2,[1].

Since (µ2,[t])t≥1 is a bounded, monotonic sequence, it must converge. I denote this limit
as µ2,[t] → µ̃2. Also, since µ2 7→ C(µ•1, µ2; γ) is continuous from Proposition 1, the sequence
c[t] must also converge. I denote this limit by c[t] → c̃.

Step 3: µ̃2 is a fixed point of I(·; γ), so in particular µ̃2 = µ∞2 and c̃ = c∞ since I(·; γ)
has a unique fixed point.

Proposition 3 shows that under Assumption 2, I(·; γ) is a contraction mapping and
hence must be continuous. Now let any ε > 0 be given. I show there exists t̄ so that
|I(µ2,[t]; γ) − µ2,[t]| < ε for all t > t̄. As this holds for all ε > 0, continuity of I(·; γ) then
implies I(µ̃2; γ)− µ̃2 = 0, that is µ̃2 is a fixed point of I(·; γ).

We may write by Lemma 2,

µ2,[t] = 1∑t−1
τ=0 P[X1 ≤ c[τ ]]

t−1∑
τ=0

P[X1 ≤ c[τ ]] · µ∗2(c[τ ]).

The probabilities P[X1 ≤ c[τ ]] are bounded below since the beliefs (µ2,[t])t≥1 are bounded by
Step 2. Also, since µ∗2(·) is continuous, there exists t̄1 so that |µ∗2(c[t]) − µ∗2(c̃)| < ε/2 for
all t > t̄1, that is to say |I(µ2,[t]; γ) − µ∗2(c̃)| < ε/2. When T → ∞, the sum of weights
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assigned to terms µ∗2(c[t]) with t ≥ t̄1 in the expression for µ2,[T ] grows to 1, which means
lim supT→∞ |µ2,[T ]−µ∗2(c̃)| < ε/2. Combining these facts give lim supt→∞ |I(µ2,[t]; γ)−µ2,[t]| <
ε as desired. This establishes that µ̃2 is a fixed point of I(·; γ). Since I(·; γ) has a unique
fixed point, µ̃2 = µ∞2 . By continuity of C in its second argument from Proposition 1,

c̃ = lim
t→∞

C(µ•1, µ2,[t]; γ) = C(µ•1, lim
t→∞

µ2,[t]; γ) = C(µ•1, µ̃2; γ) = C(µ•1, µ∞2 ; γ) = c∞.

A.11 Proof of Corollary 1

Proof. Suppose c[1] ≥ c[0]. Since µ∗2(c) is increasing, we have µ2,[2] = µ∗2(c[1], c[0]) ≥ µ∗2(c[0]) =
µ2,[1]. So we get c[2] ≥ c[1]. By Theorem 2, we deduce (c[t])t≥0 is an increasing sequence, so
in particular c∞ ≥ c•. But again by 2, c∞ is the same as the steady-state cutoff in Theorem
1. This is a contradiction because Theorem 1 implies c∞ < c•.

This shows c[1] < c[0] and similar arguments show (c[t])t≥0 is a strictly decreasing sequence.
Since c• is the objectively optimal cutoff threshold under the true model Ψ•, and since
expected payoff under the true model is a single-peaked function in acceptance threshold,
this shows expected payoff is strictly decreasing across generations.

A.12 Proof of Lemma 3

Proof. Indifference condition c′′ = Cu1,u
′′
2
(µ1, µ2; γ) implies that

u1(c′′) = EX̃2∼N (µ2−γ(c′′−µ1),σ2)[u
′′

2(c′′ , X̃2)].

Since u′2(c′′ , x2) ≥ u
′′
2(c′′ , x2) for all x2 ∈ R, with strict inequality on a positive-measure set,

this shows
u1(c′′) < EX̃2∼N (µ2−γ(c′′−µ1),σ2)[u

′

2(c′′ , X̃2)].

Because (u1, u
′
2) satisfy Assumptions 1, the best stopping strategy in the subjective model

Ψ(µ1, µ2; γ) has a cutoff form by Proposition 1. This shows Cu1,u
′
2
(µ1, µ2; γ) is strictly above

c
′′ .

A.13 Proof of Proposition 7

Proof. Under Assumptions 1 and 2, each of (u1, u
′
2) and (u1, u

′′
2) has a unique steady state,

(µ•1, µ∞2,A, c∞A ), (µ•1, µ∞2,B, c∞B ) respectively. Let IA, IB be the iteration maps corresponding to
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these two stage games, that is to say

IA(µ2) := µ•2 − γ(µ•1 − E[X1 | X1 ≤ Cu1,u
′
2
(µ•1, µ2; γ)])

IB(µ2) := µ•2 − γ(µ•1 − E[X1 | X1 ≤ Cu1,u
′′
2
(µ•1, µ2; γ)]).

From Proposition 3, both IA and IB are contraction mappings. Consider their iterates
with a starting value of 0. That is, put µ[0]

2,A = 0, µ[0]
2,B = 0 and let µ[t]

2,A = IA(µ[t−1]
2,A ),

µ
[t]
2,B = IB(µ[t−1]

2,B ) for t ≥ 1. By property of contraction mappings and since the fixed points
of the iteration maps are the steady state beliefs, µ[t]

2,A → µ∞2,A and µ[t]
2,B → µ∞2,B.

By induction, µ[t]
2,B ≤ µ

[t]
2,A for every t ≥ 0. The base case of t = 0 is true by definition. If

µ
[T ]
2,B ≤ µ

[T ]
2,A, then

Cu1,u
′′
2
(µ•1, µ

[T ]
2,B; γ) ≤ Cu1,u

′′
2
(µ•1, µ

[T ]
2,A; γ) < Cu1,u

′
2
(µ•1, µ

[T ]
2,A; γ).

The first inequality comes from C being increasing in the second argument and the inductive
hypothesis, while the second inequality is due to Lemma 3. Therefore, IB(µ[T ]

2,B) ≤ IA(µ[T ]
2,A),

so µ[T+1]
2,A ≤ µ

[T+1]
2,A .

Since weak inequalities are preserved by limits, we have µ∞2,A ≥ µ∞2,B. It is impossible to
have µ∞2,A = µ∞2,B, because this would lead to c∞A > c∞B by Lemma 3, which in turn implies
µ∞2,A = µ∗2(c∞A ) > µ∗2(c∞B ) = µ∞2,B. This inequality contradicts the equality µ∞2,A = µ∞2,B.
Therefore, we in fact have µ∞2,A > µ∞2,B. The conclusion that c∞A > c∞B follows from Lemma 3
and the fact that C is increases in its second argument.

A.14 Proof of Proposition 8

Proof. Rewrite Equation (2) as

∫ ∞
−∞

φ(x1;µ•1, (σ•)2) · ln
(
φ(x1;µ•1, (σ•)2)
φ(x1;µ1, σ2

1)

)
dx1

+
∫ c

−∞
φ(x1;µ•1, (σ•)2) ·

∫ ∞
−∞

φ(x2;µ•2, (σ•)2) ln
[

φ(x2;µ•2, (σ•)2)
φ(x2;µ2 − γ(x1 − µ1), σ2

2)

]
dx2dx1.

The KL divergence betweenN (µtrue, σ
2
true) andN (µmodel, σ

2
model) is ln σmodel

σtrue
+σ2

true+(µtrue−µmodel)2

2σ2
model

−
1
2 , so we may simplify the first term and the inner integral of the second term.

ln σ1

σ•
+ (µ1 − µ•1)2

2σ2
1

+ (σ•)2

2σ2
1
− 1

2

+
∫ c

−∞
φ(x1;µ•1, σ•) ·

[
ln σ2

σ•
+ (σ•)2 + (µ2 − γ(x1 − µ1)− µ•2)2

2σ2
2

− 1
2

]
dx1.
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Dropping terms not dependent on any of the four variables gives a simplified version of the
objective,

ξ(µ1, µ2, σ1, σ2) := ln σ1

σ•
+ (µ1 − µ•1)2

2σ2
1

+ (σ•)2

2σ2
1

+
∫ c

−∞
φ(x1;µ•1, (σ•)2) ·

[
ln σ2

σ•
+ (σ•)2 + (µ2 − γ(x1 − µ1)− µ•2)2

2σ2
2

]
dx1.

Differentiating under the integral sign,

∂ξ

∂µ2
=
∫ c

−∞
φ(x1;µ•1, (σ•)2) ·

[
(µ2 − γ(x1 − µ1)− µ•2)

σ2
2

]
dx1

∂ξ

∂µ1
= (µ1 − µ•1)

σ2
1

+ γ
∫ c

−∞
φ(x1;µ•1, (σ•)2) ·

[
(µ2 − γ(x1 − µ1)− µ•2)

σ2
2

]
dx1

= (µ1 − µ•1)
σ2

1
+ γ

∂ξ

∂µ2
.

At FOC (µ∗1, µ∗2, σ∗1, σ∗2), we have ∂ξ
∂µ2

(µ∗1, µ∗2, σ∗1, σ∗2) = 0, hence µ∗1 = µ•1. Similar arguments
as before then establish µ∗2 = µ•2− γ (µ•1 − E [X1 | X1 ≤ c]) , where expectation is taken with
respect to the true distribution of X1 (with the true variance (σ•)2). Then,

∂ξ

∂σ1
(µ∗1, µ∗2, σ∗1, σ∗2) = 1

(σ∗1) −
(σ•)2

(σ∗1)3 = 0,

this gives σ∗1 = σ• (since σ∗1 ≥ 0).
Finally, from the FOC for σ2,

∫ c

−∞
φ(x1;µ•1, (σ•)2) ·

[
1
σ∗2
− (σ•)2 + (µ∗2 − γ(x1 − µ∗1)− µ•2)2

(σ∗2)3

]
dx1 = 0.

Substituting in values of µ∗1, µ∗2 already solved for,

(σ∗2)2 = (σ•)2 + E[(µ∗2 − γ(X1 − µ•1)− µ•2)2|X1 ≤ c]
= (σ•)2 + E[(µ•2 − γ (µ•1 − E [X1 | X1 ≤ c])− γ(X1 − µ•1)− µ•2)2|X1 ≤ c]
= (σ•)2 + γ2E

[
[(X1 − µ•1)− (E [X1 | X1 ≤ c]− µ•1)]2 |X1 ≤ c

]
= (σ•)2 + γ2Var[X1 − µ•1|X1 ≤ c]
= (σ•)2 + γ2Var[X1|X1 ≤ c]

as desired.
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A.15 Proof of Proposition 9

I start with a lemma that says, depending on the convexity of the decision problem, a
stronger belief in fictitious variation either increases or decreases the subjectively optimal
cutoff threshold.

Lemma A.13. Suppose that under the subjective model Ψ(µ1, µ2, σ
2
1, σ

2
2; γ), the agent is

indifferent between stopping at c and continuing. Suppose σ̂2
2 > σ2

2. Then: (i) if x2 7→
u2(c, x2) is convex with strict convexity for x2 in a positive-measure set, then under the
subjective model Ψ(µ1, µ2, σ

2
1, σ̂

2
2; γ) the agent strictly prefers continuing at c; (ii) if x2 7→

u2(c, x2) is concave with strict concavity for x2 in a positive-measure set, then under the
subjective model Ψ(µ1, µ2, σ

2
1, σ̂

2
2; γ) the agent strictly prefers stopping at c.

Proof. Indifference at x1 = c under the model Ψ(µ1, µ2, σ
2
1, σ

2
2; γ) implies that

u1(c) = EX2∼N (µ2−γ(x1−µ1),σ2
2)[u2(c,X2)].

When hypothesis in (i) is satisfied,

EX2∼N (µ2−γ(x1−µ1),σ2
2)[u2(c,X2)] < EX2∼N (µ2−γ(x1−µ1),σ̂2

2)[u2(c,X2)]

since σ̂2
2 > σ2

2 implies thatN (µ2−γ(x1−µ1), σ̂2
2) is a strict mean-preserving spread ofN (µ2−

γ(x1−µ1), σ2
2). The RHS is the expected continuation payoff under model Ψ(µ1, µ2, σ

2
1, σ̂

2
2; γ),

so the agent strictly prefers continuing when X1 = c. The argument establishing (ii) is
analogous.

Now I give the proof of Proposition 9.

Proof. The result that µ1,[t] = µ•1, (σ1,[t])2 = (σ•)2 for all t follows from Proposition 8.
Suppose c[1] ≤ c[0]. From Proposition 8, µ2,[2] ≤ µ2,[1] and (σ2,[2])2 ≤ (σ2,[1])2. Let

c
′

[2] be the indifference threshold under the model Ψ(µ•1, µ2,[2], (σ•)2, (σ2,[1])2). By Lemma
1, c′[2] ≤ c[1]. Also, from Lemma A.13, c[2] ≤ c

′

[2] as generation 2 actually believes in the
subjective model Ψ(µ•1, µ2,[2], (σ•)2, (σ2,[2])2) where (σ2,[2])2 ≤ (σ2,[1])2. This shows c[2] ≤ c[1].

Continuing this argument shows that (c[t])t≥1 forms a monotonically decreasing sequence.
Since the pseudo-true parameters µ∗2 and (σ∗2)2 are monotonic functions of the censoring
threshold c, we have established the proposition in the case where c[1] ≤ c[0].

The argument for the case where c[1] ≥ c[0] is exactly analogous and therefore omitted.

A.16 Proof of Proposition 10

Proof. In the first generation, both societies A and B observe large datasets of histories with
distribution H•(c[0]). So, by Proposition 8, two societies make the same inferences about the

64



fundamentals.
Suppose the optimal-stopping problem is convex. Then due to fictitious variation in

generation 1 and the convexity of u2, it follows from Lemma A.13 that c[B,1] > c[A,1]. In
the second generation, µ2,[B,2] > µ2,[A,2] because the pseudo-true second-period fundamental
increases in the censoring cutoff. Together again with the existence of fictitious variation,
we conclude c[B,2] > c[A,2]. Continuing this argument establishes the proposition for the
case where the optimal-stopping problem is convex. The case of concave optimal-stopping
problems is analogous.

A.17 Proof of Proposition 11

Proof. In the true model, X2|(X1 = x1) ∼ N (µ•2 − γ•(x1 − µ•1), σ2), while the agents’ sub-
jective model Ψ(µ1, µ2; γ) has X2|(X1 = x1) ∼ N (µ2 − γ(x1 − µ1), σ2). So, we can write

DKL(H(Ψ(µ•1, µ•2; γ•); c) ‖ H(Ψ(µ1, µ2; γ); c))

as the following:

∫ ∞
c

φ(x1;µ•1, σ2) · ln
(
φ(x1;µ•1, σ2)
φ(x1;µ1, σ2)

)
dx1

+
∫ c

−∞


∫ ∞
−∞

φ(x1;µ•1, σ2) · φ(x2;µ•2 − γ•(x1 − µ•1), σ2)·
ln
[
φ(x1;µ•1,σ2)·φ(x2;µ•2−γ•(x1−µ•1),σ2)
φ(x1;µ1,σ2)·φ(x2;µ2−γ(x1−µ1),σ2)

] dx2

 dx1.

Performing rearrangements similar to those in the proof of Proposition 2 and using the
closed-form expression of KL divergence between two Gaussian distributions, the above can
be rewritten as

(µ1 − µ•1)2

2σ2 +
∫ c

−∞
φ(x1;µ•1, σ2) · (µ2 − γ(x1 − µ1)− µ•2 + γ•(x1 − µ•1))2

2σ2 dx1.

Multiplying through byσ2 and dropping terms not depending on µ1, µ2, γ, we get a simplified
objective with the same minimizers:

ξ(µ1, µ2, γ) = (µ1 − µ•1)2

2 +
∫ c

−∞
φ(x1;µ•1, σ2) · 1

2 · [µ2 − γ(x1 − µ1)− µ•2 + γ•(x1 − µ•1)]2dx1.

We have the partial derivatives by differentiating under the integral sign,

∂ξ

∂µ2
=
∫ c

−∞
φ(x1;µ•1, σ2) · [µ2 − γ(x1 − µ1)− µ•2 + γ•(x1 − µ•1)]dx1,
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∂ξ

∂µ1
= (µ1 − µ•1) + γ

∫ c

−∞
φ(x1;µ•1, σ2) · [µ2 − γ(x1 − µ1)− µ•2 + γ•(x1 − µ•1)]dx1

= (µ1 − µ•1) + γ
∂ξ

∂µ2
,

∂ξ

∂γ
= −

∫ c

−∞
φ(x1;µ•1, σ2) · [x1 − µ1] · [µ2 − γ(x1 − µ1)− µ•2 + γ•(x1 − µ•1)]dx1.

Suppose (µ∗1, µ∗2, γ∗) is the minimum. By the first-order conditions for µ1 and µ2, we have:

∂ξ

∂µ1
(µ∗1, µ∗2, γ∗) = ∂ξ

∂µ2
(µ∗1, µ∗2, γ∗) = 0⇒ µ∗1 = µ•1.

Substituting this into the first-order condition for µ2,

∂ξ

∂µ2
(µ•1, µ∗2, γ∗) = 0⇒ µ∗2 = µ•2 + (γ• − γ∗) · (µ•1 − E[X1|X1 ≤ c]) .

It remains to show γ∗ = γ̃. We have

∂ξ

∂γ
(µ∗1, µ∗2, γ∗) = −P[X1 ≤ c] · E[(X1 − µ∗1) · (µ∗2 − γ∗(X1 − µ∗1)− µ•2 + γ•(X1 − µ•1))|X1 ≤ c].

We rearrange the expectation term as:

E[(X1 − µ∗1) · (µ∗2 − γ∗(X1 − µ∗1)− µ•2 + γ•(X1 − µ•1))|X1 ≤ c]
=E[(X1 − µ∗1)|X1 ≤ c] · E[(µ∗2 − γ∗(X1 − µ∗1)− µ•2 + γ•(X1 − µ•1))|X1 ≤ c]

+ Cov(X1 − µ∗1, µ∗2 − γ∗(X1 − µ∗1)− µ•2 + γ•(X1 − µ•1)|X1 ≤ c].

The first-order condition for µ2 implies E[(µ∗2−γ∗(X1−µ∗1)−µ•2+γ•(X1−µ•1))|X1 ≤ c] = 0 at
the optimum (µ∗1, µ∗2, γ∗). Also, we may drop terms without X1 in the conditional covariance
operator, and we get:

∂ξ

∂γ
(µ∗1, µ∗2, γ∗) = P[X1 ≤ c] · (γ∗ − γ•) · Cov(X1, X1|X1 ≤ c).

We have P[X1 ≤ c] > 0 and Cov(X1, X1|X1 ≤ c) > 0, hence we conclude

∂ξ

∂γ
(µ∗1, µ∗2, γ∗)


> 0 for γ∗ > γ•

= 0 for γ∗ = γ•

< 0 for γ∗ < γ•

.
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In case that γ > γ•, at the optimum we must have ∂ξ
∂γ

(µ∗1, µ∗2, γ∗) > 0. By Karush-Kuhn-
Tucker condition, this means the minimizer is γ∗ = γ. Conversely, when γ̄ < γ•, at the
optimum we must have ∂ξ

∂γ
(µ∗1, µ∗2, γ∗) < 0. In that case, the minimizer is γ∗ = γ̄. So in both

cases, γ∗ = γ̃ as desired.

A.18 Proof of Proposition 12

Proof. I start with the expression for the KL divergence from H•(c) to H(Ψ(µ, µ; γ); c). As
in the proof of Proposition 2, this expression can be written as

(µ− µ•)2

2 +
∫ c

−∞
φ(x;µ•, σ2) ·

[
σ2 + (µ− γ(x1 − µ)− µ•)2

2 − 1
2

]
dx1.

Dropping constant terms not depending on µ, we get a simplified expression of the objective,

ξ(µ) := (µ− µ•)2

2 +
∫ c

−∞
φ(x;µ•, σ2) ·

[
(µ− γ(x1 − µ)− µ•)2

2

]
dx1.

Taking the first-order condition, ξ′(µ) = (µ − µ•) + (1 + γ) ·
∫ c
−∞ φ(x1;µ•, σ2) · ((1 + γ)µ −

γx1 − µ•)dx1.

The term
∫ c
−∞ φ(x1;µ•, σ2) · ((1 + γ)µ − γx1 − µ•)dx1 may be rewritten as P[X1 ≤ c] ·

E [(1 + γ)µ− γX1 − µ•|X1 ≤ c].
Setting the first-order condition to 0 and using straightforward algebra,

µ∗M(c) = 1
1 + P[X1 ≤ c] · (1 + γ)2µ

• + P[X1 ≤ c] · (1 + γ)2

1 + P[X1 ≤ c] · (1 + γ)2µ
◦
2(c).

B Foundation for Inference and Behavior in the Large-
Generation Environment

In Section 4, I introduced the large-generations social-learning environment with a continuum
of agents in each generation. When agents in generations τ = 0, 1, ..., t − 1 choose cutoff
thresholds c[0], c[1], ..., c[t−1], each generation t agent observes an infinite sample of histories
(hτ,n)n∈[0,1] drawn from the history distribution H•(cτ ) for each 0 ≤ τ ≤ t− 1. Agents infer
the large-generations pseudo-true fundamentals µ∗1(c[0], ..., c[t−1]), µ∗2(c[0], ..., c[t−1]) and choose
the stopping strategy that best responds to the feasible model with these parameters.

In this section, I provide a finite-population foundation for inference and behavior in
the large-generations environment. For K ≥ 1, let c† = (c(k)

† )Kk=1 ∈ RK be a list of cutoff
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thresholds. I show that when an agent starts with a full-support prior on the space of
fundamentals R2 and observes N < ∞ histories drawn i.i.d. from each of H•(c(k)

† ) for
1 ≤ k ≤ K, her posterior belief almost surely converges to the dogmatic belief on the large-
generations pseudo-true fundamentals µ∗1(c†), µ∗2(c†) as N → ∞. Also, if she chooses the
cutoff strategy Sc maximizing her posterior expected payoffs, then as N →∞ and provided
the stage-game payoff functions u1, u2 are Lipschitz continuous, her cutoff choice almost
surely converges to C(µ∗1(c†), µ∗2(c†); γ).

B.1 Setting up the Probability Space

Suppose an agent has a full-support prior density g : R2 → R>0 over fundamentals (µ1, µ2).
To formally define the problem, consider the R2K-valued stochastic process (Xn)n≥1 =
(X(k)

1,n, X
(k)
2,n)1≤k≤K,n≥1, where Xs and Xs′ are independent for s 6= s

′ . Here, Xn are i.i.d. R2K-
valued random variables with independent components, distributions as X(k)

1,n ∼ N (µ•1, σ2),
X

(k)
2,n ∼ N (µ•2, σ2) for each 1 ≤ k ≤ K. The interpretation is that there are K different pop-

ulations, who play the stage game using different cutoff thresholds. The random variables
(X(k)

1,n, X
(k)
2,n) are the potential draws in the n-th iteration of the stage game in population k,

(but X(k)
2,n may not be observed if X(k)

1,n is sufficiently large). Clearly, there is a probability
space (Ω,A,P), with sample space Ω = (R2K)∞ interpreted as paths of the process just de-
scribed, A the Borel σ-algebra on Ω, and P the measure on sample paths so that the process
Xn(ω) = ωn has the desired distribution. The term “almost surely” means “with probability
1 with respect to the realization of infinite sequence of all (potential) draws”, i.e. P-almost
surely.

For each n ≥ 1 and 1 ≤ k ≤ K, letH(k)
n be the (random) history given byH(k)

n = (X(k)
1,n,∅)

if X(k)
1,t ≥ c

(k)
† , H(k)

n = (X(k)
1,n, X

(k)
2,n) if X(k)

1,n < c
(k)
† . Let Hn = (H(1)

n , ..., H(K)
n ). After each finite

N, the agent Bayesian updates prior density g about the fundamentals, based on the finite
dataset of histories (Hn)n≤N . She ends up with a random, non-degenerate posterior density
g̃N = g(·|(Hn)n≤N), whose randomness comes from the randomness of the 2K ·N potential
draws.

B.2 Inference after Observing Large Samples

Proposition A.1 shows that as N → ∞, the random posterior g̃N converges to the large-
generations pseudo-true fundamentals in L1.

Proposition A.1. Suppose g : R2 → R>0 is integrable and has bounded magnitude. Almost
surely,

lim
N→∞

E(µ1,µ2)∼g̃N (|µ1 − µ•1|+ |µ2 − µ∗2(c†)|) = 0.
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Belief convergence in L1 is required to later establish convergence of behavior in Propo-
sition A.3. This convergence does not follow from Berk (1966), because his result only
establishes convergence in a weaker mode: for any open set containing the pseudo-true fun-
damentals, the mass that the posterior belief assigns to the open set almost surely converges
to 1. Crucially, the prior distribution in this setting has full support on an unbounded do-
main of feasible fundamentals, (µ1, µ2) ∈ M = R2. Indeed, one of the implications of my
central inference result, Proposition 2, is that the pseudo-true parameter becomes unbound-
edly pessimistic as censoring threshold decreases. So, the weak mode of convergence in Berk
(1966)’s conclusion leaves open the possibility that posterior beliefs for increasing N put
decreasing mass on increasingly extreme values of µ2. If the magnitudes of these extreme
values grow more quickly in N than the speed with which probability concentrates on the
open set around the pseudo-true fundamentals, then there can be a positive-probability event
where the agent’s behavior is bounded away from C(µ•1, µ∗2(c†); γ) for every N .

Instead, I apply Bunke and Milhaud (1998)’s results to derive the stronger convergence
in L1 that subsequently allows for convergence of payoffs and behavior as the agent’s sample
grows large. One technical challenge is that the results of Bunke and Milhaud (1998) only
apply in environments where observables are valued in some Euclidean space and given by
densities, but censored histories are valued in H and their distributions have a probability
mass on the missing data indicator ∅. So, I first consider a noise-added observation structure
where each history H(k)

n is replaced by the R2-valued pair (X(k)
n,1, Y

(k)
n ), where Y (k)

n = X
(k)
n,2 if

X
(k)
n,1 ≤ c

(k)
† . But if X(k)

n,1 > c
(k)
† , then Y (k)

n ∼ N (0, 1) is a white noise term that is independent
of the draws of any decision problem. The idea is that a censored draw is replaced by noise
that is uninformative about the fundamentals, so the distribution of each (X(k)

n,1, Y
(k)
n ) pair

is given by a density function on R2. After establishing the analogous belief convergence
result in the auxiliary environment, I map the result back into the environment of observing
censored histories. This translation is possible because in every finite dataset, the realiza-
tions of the white noise terms do not change the relative likelihoods of data under different
parameters (µ1, µ2), hence they do not affect the agent’s posterior belief over fundamentals.

I now formally define this noise-added observation structure that replaces censored X2’s
with white noise. Let PZ∞ be the measure on (R∞)K corresponding to product of K i.i.d.
sequence of N (0, 1) random variables. Consider the expanded probability space (Ω̄, Ā, P̄)
where Ω̄ = Ω× (R∞)K , Ā is the product σ-algebra on Ω̄ where (R∞)K is endowed with the
usual product Borel σ-algebra, and P̄ is the product measure P ⊗ PZ∞ on Ω̄. To interpret,
each element ω̄ = (ω, z) ∈ Ω̄ consists of the sample path of a sequence of potential draws
(Xn)∞n=1 as well as the sample path of a sequence of white noise realizations (Zn)∞n=1, where
each Zn is an RK-valued random variable.

On the expanded probability space, we can define two kinds of observations. The his-
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tory dataset of size N is (Hn(ω̄))n≤N = (Hn(ωn))n≤N , as the K round n histories only
depends on ωn (and not on the white noise zn). The noise-added dataset of size T is
(X1,n(ω), Yn(ω, z))n≤N = (X1,n(ωn), Yn(ωn, zn))n≤N . Write g̃HN as the posterior density from
history dataset of size N, g̃XYN as the posterior density from noise-added dataset of size N .

The next lemma formalizes the idea that replacing censored observations with white noise
does not affect posterior beliefs.

Lemma A.14. For every ω̄ ∈ Ω̄ and N ∈ N, g̃HN (ω̄) = g̃XYN (ω̄).

Proof. Suppose ω̄ = ((x1,n, x2,n)∞n=1, (zn)∞n=1) ∈ Ω× (R∞)K . The noise-added dataset of size
N is (x1,n, yn)Nn=1 where y(k)

n = z(k)
n for each n, k where x(k)

1,n ≥ c
(k)
† , and y(k)

n = x
(k)
2,n for each

n, k where x(k)
1,n < c

(k)
† . The history dataset of size N is (hn)Nn=1, where h(k)

n = (x(k)
1,n,∅) for

each n, k where x(k)
1,n ≥ c

(k)
† , and h(k)

n = (x(k)
1,n, x

(k)
2,n) for each n, k where x(k)

1,n < c
(k)
† .

The likelihood of the noise-added dataset under parameters µ1, µ2 is:

K∏
k=1


(

N∏
n=1

φ(x(k)
1,n;µ1, σ

2)
)
·

 ∏
n:x(k)

n ≤c
(k)
†

φ(y(k)
n ;µ2 − γ(x(k)

1,n − µ1), σ2)

 ·
 ∏
n:x(k)

n ≥c
(k)
†

φ(y(k)
n ; 1, 0)




The likelihood of the history dataset under parameters µ1, µ2 is:

K∏
k=1


(

N∏
n=1

φ(x(k)
1,n;µ1, σ

2)
)
·

 ∏
n:x(k)

n ≤c
(k)
†

φ(y(k)
n ;µ2 − γ(x(k)

1,n − µ1), σ2)




So, these likelihoods are equal up to a multiple of ∏K
k=1

(∏
n:x(k)

n ≥c
(k)
†
φ(y(k)

n ; 1, 0)
)
, which is

common across all parameters (µ1, µ2). So the posterior likelihood of parameters µ1, µ2 must
be the same under both g̃HN and g̃XYN , that is g̃HN (ω̄) = g̃XYN (ω̄).

On the expanded probability space, inference from history dataset and inference from
noise-added dataset give the same posterior beliefs everywhere. If g̃XYN converges in L1 to
dogmatic belief on (µ•1, µ∗2(c†)) P̄-a.s., then g̃HN also converges in L1 to the same belief P̄-a.s.
Further, by relationship between the expanded probability space and the original probability
space, this would also show that g̃N converges in L1 to dogmatic belief on (µ•1, µ∗2(c†)) P-
a.s., which proves Proposition A.1. Therefore, to prove Proposition A.1 one just needs the
following on the expanded probability space.

Lemma A.15. g̃XYN converges in L1 to the dogmatic belief on (µ•1, µ∗2(c†)) P̄-a.s.

Proof. First, I write down the KL divergence objective in the noise-added observation struc-
ture and show its minimizers are exactly the large-generations pseudo-true fundamentals.
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Each observation (X(k)
1,n, Y

(k)
n )Kk=1 is an element of R(2K), whose distribution is given by a

K densities over K copies of R2. For 1 ≤ k ≤ K, the k-th such density is

f •,(k)(x, y) =

φ(x;µ•1, σ2) · φ(y;µ•2, σ2) if x < c
(k)
†

φ(x;µ•1, σ2) · φ(y; 0, 1) if x ≥ c
(k)
† .

Under the fundamentals (µ1, µ2) ∈ R2, the agent thinks the observations are distributed
according to the product of K densities where the k-th density is

f
(k)
µ̂1,µ̂2(x, y) =

φ(x; µ̂1, σ
2) · φ(y; µ̂2 − γ · (x− µ̂1), σ2) if x < c

(k)
†

φ(x; µ̂1, σ
2) · φ(y; 0, 1) if x ≥ c

(k)
† .

The log likelihood ratio of an observation (x, y) = (x(k)
1 , y(k))Kk=1 ∈ R2K is

ln
 K∏
k=1

f •,(k)(x(k)
1 , y(k))

f
(k)
µ̂1,µ̂2(x(k)

1 , y(k))

 =
K∑
k=1

ln
 f •,(k)(x(k)

1 , y(k))
f

(k)
µ̂1,µ̂2(x(k)

1 , y(k))

 .
So KL divergence is defined as

∫
R2K

 K∑
k=1

ln
 f •,(k)(x(k)

1 , y(k))
f

(k)
µ̂1,µ̂2(x(k)

1 , y(k))

 · ( K∏
k=1

f •,(k)(x(k)
1 , y(k))

)
d(x, y)

=
K∑
k=1

∫
R2K

ln
 f •,(k)(x(k)

1 , y(k))
f

(k)
µ̂1,µ̂2(x(k)

1 , y(k))

 ·
 K∏
j=1

f •,(j)(x(j)
1 , y(j))

 d(x, y).

But for each k, the integrand f•,(k)(x(k)
1 ,y(k))

f
(k)
µ̂1,µ̂2

(x(k)
1 ,y(k))

only depends on (x, y) ∈ R2K through two of its

coordinates, x(k)
1 and y(k). In addition, the density ∏K

j=1 f
•,(j)(x(j)

1 , y(j)) is a product density,
so in fact the k-th summand is just

∫
R2

ln
 f •,(k)(x(k)

1 , y(k))
f

(k)
µ̂1,µ̂2(x(k)

1 , y(k))

 · f •,(k)(x(k)
1 , y(k))d(x(k)

1 , y(k)).

This expression is, up to a constant not depending on µ̂1, µ̂2 (due to the white noise term),
equal to the KL divergence between H•(c(k)

† ) and H(Ψ(µ̂1, µ̂2; γ); c(k)
† ). Therefore the overall

KL divergence is off by a constant from

K∑
k=1

DKL( H•(c(k)
† ) || H(Ψ(µ̂1, µ̂2; γ); c(k)

† ) ),
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the objective defining large-generations pseudo-true fundamentals in Equation (1).
To finish the proof, Bunke and Milhaud (1998) show that provided the true density f •

and the family of subjective densities {fµ̂1,µ̂2 : µ̂1, µ̂2 ∈ R} satisfy a number of conditions,
then g̃XYN P̄-a.s. converges to its KL-divergence minimizers in L1, which I have shown to
be exactly (µ•1, µ∗2(c†)). I check the conditions of Bunke and Milhaud (1998) in the Online
Appendix for the case of K = 1, so both f • and fµ̂1,µ̂2 are densities on R2. Checking the
conditions for larger K is exactly analogous, because both f • and fµ̂1,µ̂2 can be separated as
the product of K densities on R2.

B.3 Behavior after Observing Large Samples

Next, I turn to the convergence of expected payoffs for different cutoff strategies as sample
size grows large. For any c ∈ R and N ∈ N, let UN(c) := E(µ1,µ2)∼g̃N [U(c;µ1, µ2, γ)] where
U(c;µ1, µ2, γ) is the expected payoff of using the stopping strategy Sc when (X1, X2) ∼
Ψ(µ1, µ2; γ). Note that UN(c) is a real-valued random variable representing the agent’s sub-
jective expected payoff for the stopping strategy Sc, under the (random) non-degenerate pos-
terior belief after observing a sample of size N . Proposition A.2 shows that UN(c) converges
almost surely to the subjective expected payoff of Sc with a dogmatic belief in the pseudo-
true fundamentals, provided the payoff functions u1, u2 of the optimal-stopping problem are
Lipschitz continuous. Furthermore, this convergence is uniform across all cutoff thresholds.

Proposition A.2. Suppose there are constants K1, K2 > 0 so that |u1(x′1) − u1(x′′1)| <
K1 ·|x

′
1−x

′′
1 | and |u2(x′1, x

′
2)−u2(x′′1 , x

′′
2)| < K2 ·(|x

′
1−x

′′
1 |+|x

′
2−x

′′
2 |) for all x

′
1, x

′′
1 , x

′
2, x

′′
2 ∈ R.

Then limN→∞ supc∈R |UN(c)− U(c;µ•1, µ∗2(c†))| = 0 almost surely.

The Lipschitz continuity conditions are satisfied in the search problem (Example 1) for
any q ∈ [0, 1). The Lipschitz condition implies the difference between expected payoffs of
Sc under the posterior belief g̃N and the dogmatic belief on the pseudo-true fundamental is
bounded by a constant multiple of the L1 distance between g̃N and the pseudo-true funda-
mentals, and furthermore this bound is uniform across all c. Proposition A.2 then follows
from the L1 convergence in beliefs given by Proposition A.1.

Towards a proof of Proposition A.2, I start with a lemma that shows when the optimal-
stopping problem’s payoff functions u1, u2 are Lipschitz continuous, then (µ1, µ2) 7→ U(c;µ1, µ2),
the expected payoff of the stopping strategy Sc under the subjective model Ψ(µ1, µ2; γ), is
locally Lipschitz continuous in (µ1, µ2).

Lemma A.16. Suppose there are constants K1, K2 > 0 so that |u1(x′1)−u1(x′′1)| < K1 · |x
′
1−

x
′′
1 | and |u2(x′1, x

′
2)− u2(x′′1 , x

′′
2)| < K2 · (|x

′
1 − x

′′
1 | + |x

′
2 − x

′′
2 |) for all x′1, x

′′
1 , x

′
2, x

′′
2 ∈ R. For

each center (µ◦1, µ◦2) ∈ R2, there corresponds a constant K > 0 so that for any µ1, µ2 ∈ R
and any c′ ∈ R, |U(c;µ1, µ2)− U(c;µ◦1, µ◦2)| < K · (|µ1 − µ◦1|+ |µ2 − µ◦2|).
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Now I prove Proposition A.2.

Proof. Let µ◦1 = µ•1, µ
◦
2 = µ∗2(c†). Lemma A.16 implies there is a constantK > 0, independent

of c, so that |U(c;µ1, µ2)− U(c;µ◦1, µ◦2)| ≤ K · (|µ1 − µ◦1|+ |µ2 − µ◦2|) for all µ1, µ2, c ∈ R. So
for ν a joint distribution about the fundamentals (µ1, µ2), we get

|E(µ1,µ2)∼ν [U(c;µ1, µ2)− U(c;µ◦1, µ◦2)] | ≤ E(µ1,µ2)∼ν [|U(c;µ1, µ2)− U(c;µ◦1, µ◦2)|]
≤ K · E(µ1,µ2)∼ν [|µ1 − µ◦1|+ |µ2 − µ◦2|]

for every c ∈ R, therefore we also get the uniform bound,

sup
c∈R
|E(µ1,µ2)∼ν [U(c;µ1, µ2)]− U(c;µ◦1, µ◦2)| ≤ K · E(µ1,µ2)∼ν [|µ1 − µ◦1|+ |µ2 − µ◦2|].

By Proposition A.1, almost surely

lim
T→∞

E(µ1,µ2)∼g̃T [|µ1 − µ◦1|+ |µ2 − µ◦2|] = 0.

But along any ω ∈ Ω where the above limit holds,

lim
T→∞

sup
c∈R
|UT (c)− U(c;µ◦1, µ◦2)| ≤ lim

T→∞
K · E(µ1,µ2)∼g̃T [|µ1 − µ◦1|+ |µ2 − µ◦2|]

= 0.

This shows that P-a.s., UT (c) converges to U(c;µ∗1(c†), µ∗2(c†)) uniformly across all c as T →
∞.

To reach my main result on convergence of behavior, suppose the agent chooses a cutoff
threshold after observing N histories (hn)n≤N . The choices are given by the functions C̃N :
HN → R, so the cutoff after a sample of size N is a random variable CN that depends on
the first N pairs of potential draws (Xn)n≤N .

Definition A.1. Cutoff choice functions (C̃N) are asymptotically myopic in N if

lim sup
N→∞

{
sup
c∈R

UN(c)− UN(C̃N)
}

= 0

almost surely.

A simple example is that C̃N chooses a cutoff whose expected payoff differs from supc∈R UN(c)
by no more than 1/N after every sample of size N .

Proposition A.3. Let c∗ = C(µ•1, µ∗2(c†); γ). Suppose cutoffs CN are generated using asymp-
totically myopic cutoff choice functions. Almost surely, CN → c∗ as N →∞.
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The expected payoff of different cutoff strategies under the pseudo-true fundamentals,
c 7→ U(c;µ•1, µ∗2(c†)), is single peaked and maximized at c∗. Therefore cutoffs outside an
open ball around c∗ have expected payoffs bounded away from the subjectively optimal
payoff under the model Ψ(µ•1, µ∗2(c†); γ).

Lemma A.17. For each µ1, µ2 ∈ R, let c∗ be the subjectively optimal cutoff threshold under
Ψ(µ1, µ2; γ). For every ε > 0, there exists δ > 0 so that whenever |c − c∗| ≥ ε, we have
U(c;µ1, µ2) ≤ U(c∗;µ1, µ2)− δ.

Proof. First, I show c 7→ U(c;µ1, µ2) is single peaked: it is strictly increasing up to c = c∗,

then strictly decreasing afterwards. Recall the cutoff form of the best stopping strategy
comes from the fact that u1(x1) < EΨ(µ1,µ2;γ)[u2(x1, X2)|X1 = x1] for x1 < c∗, but u1(x1) <
EΨ(µ1,µ2;γ)[u2(x1, X2)|X1 = x1] for x1 > c∗. For two cutoffs c1 < c2 < c∗, the two stopping
strategies Sc1 , Sc2 only differ in how they treat first-period draws in the interval [c1, c2], so
we can write the difference in their expected payoffs as∫ c2

c1

(
EΨ(µ1,µ2;γ)[u2(x1, X2)|X1 = x1]− u1(x1)

)
φ(x1;µ1, σ

2)dx1.

The integrand is strictly positive on [c1, c2], therefore U(c1;µ1, µ2) < U(c2;µ1, µ2). This
shows U(·;µ1, µ2) is strictly increasing up until c∗; a symmetric argument shows it is strictly
decreasing after c∗.

For a given ε > 0, let δ = U(c∗;µ1, µ2) −max(U(c∗ − ε;µ1, µ2), U(c∗ + ε;µ1, µ2)), where
δ > 0 as both cutoffs c∗ − ε and c∗ + ε must have a strictly positive loss relative to c∗. Since
U(·;µ1, µ2) is single peaked, every c more than ε away from c∗ must have a loss relative to c∗

at least as much as the loss of either c∗ − ε or c∗ + ε, so U(c∗;µ1, µ2)− U(c;µ1, µ2) ≥ δ.

This fact, combined with the uniform convergence UN(c) from Proposition A.2, estab-
lishes Proposition A.3.

Proof. Consider any sample path ω = (xn)∞n=1 where the conclusion of Proposition A.2
holds and the cutoff choice functions are asymptotically myopic. For every ε > 0, find
δ > 0 as in Lemma A.17 with µ1 = µ•1, µ2 = µ∗2(c†), and find large enough N̄1 so that
supc∈R |UN(c)(ω)− U(c;µ•1, µ∗2(c†))| < δ/3 for all N ≥ N̄1. This means for N ≥ N̄1,

sup
c∈R

UN(c)(ω) ≥ UN(c∗)(ω) ≥ U(c∗;µ•1, µ∗2(c†))− δ/3,

while
UN(c′)(ω) ≤ U(c∗;µ•1, µ∗2(c†))− (2δ)/3
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for c′ /∈ [c∗ − ε, c∗ + ε]. Find N̄2 so that for N ≥ N̄2, supc∈R UN(c)(ω) − UN(CN)(ω) < δ/3.
This shows for N ≥ max(N̄1, N̄2), CN(ω) ∈ [c∗ − ε, c∗ + ε]. Since ε > 0 was arbitrary, this
shows CN(ω)→ c∗.

Therefore, we conclude CN → c∗ along any sample path ω where the conclusion of
Proposition A.2 holds and the cutoff choice functions are asymptotically myopic. Since
these two events both happen almost surely, CN → c∗ almost surely.

C General Non-Gaussian Feasible Models and Method
of Moments Inference

In the analysis so far, both the true distribution of draws and the class of feasible models
come from the Gaussian family. The Gaussian distributional assumption makes the agents’
inference problem analytically tractable, since the KL divergence between a pair of Gaussian
random variables has a simple closed-form expression. But, the intuition behind my main
results—over-pessimism about the fundamentals and the positive-feedback loop between
beliefs and cutoffs—holds more generally. KL divergence minimization in the Gaussian
environment has a method of moments (MOM) interpretation, as mentioned in Footnote 11.
In this section, I consider agents using the same MOM procedure as a simpler but natural
alternative to Bayesian inference, but generalize the class of feasible models (and the true
distribution) of the draws substantially. Proposition A.5 and Corollary A.1 show that over-
pessimism and the positive-feedback loop remain robust to this joint relaxation of Bayesian
inference and Gaussian distributional assumption.

C.1 Feasible Models for (X1, X2)
Each agent starts with a family of feasible models {F (·; θ1, θ2) : θ1 ∈ Θ1, θ2 ∈ Θ2} for
the joint distribution of (X1, X2), with parameter spaces Θ1 ⊆ R and Θ2 ⊆ R. For each
(θ1θ2), F (·; θ1, θ2) is a full-support measure on the rectangle I1 × I2, where each I1, I2 is a
possibly infinite interval of R. By “full-support” I mean that for every open ball B ⊆ I1×I2,

F (B; θ1, θ2) > 0.
For each joint distribution F (·; θ1, θ2), let F1(·; θ1, θ2) denote its marginal on I1, and let

F2|1(·|θ1, θ2;x1) denote its conditional distribution on I2 given X1 = x1. I will make the
following assumptions on the family of feasible models:

Assumption A.1. The feasible models {F (·; θ1, θ2) : θ1 ∈ Θ1, θ2 ∈ Θ2} satisfy :

(a) F1(·; θ1, θ2) is only a function of θ1 and EF1(·;θ1,θ2)[X1] is strictly increasing in θ1.
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(b) For each x1 ∈ I1 and θ1 ∈ Θ1, EF2|1(·;θ1,θ2|x1)[X2] strictly increases in θ2.

(c) For any θ1 ∈ Θ1 and θ2 ∈ Θ2, EF2|1(·;θ1,θ2|x1)[X2] strictly decreases in x1.

In light of Assumption A.1(a), the marginal distribution on X1 can be just written
as F1(·; θ1), omitting θ2. Assumption A.1(c) is the substantive assumption capturing the
gambler’s fallacy psychology. Every subjective distribution in the family is such that the
agent predicts a lower mean for X2 after a higher realization of X1. The behavioral economics
literature has not settled on a general definition of the gambler’s fallacy that works under
all distributional assumptions, but Assumption A.1(c) seems like a reasonable first step.

Here are some examples satisfying these assumptions. The first example shows the family
of Gaussian distributions I have worked with in the main text satisfies Assumption A.1.

Example A.1. Let I1 = I2 = R and let Θ1 = Θ2 = R. Fixing some σ2 > 0, γ > 0,
let F (·; θ1, θ2) be Ψ(θ1, θ2, σ

2, σ2; γ) for each θ1, θ2 ∈ R. The marginal distribution on X1

is N (θ1, σ
2) and does not depend on θ2. Its mean is θ1 so it strictly increases in θ1. The

conditional mean of X2|X1 = x1 is θ2 − γ(x1 − θ1), which is strictly increasing in θ2 and
strictly decreasing in x1 since γ > 0. So all conditions in Assumption A.1 are satisfied.

The next example features bivariate exponential distributions supported on the half-line
[0,∞).

Example A.2. Gumbel (1960) proposes the following family of bivariate exponential distri-
butions, parametrized by α ∈ [−1, 1] : consider a joint distribution with the density function
(x̃1, x̃2) 7→ e−x̃1−x̃2 · [1 + α(2e−x̃1 − 1) · (2e−x̃2 − 1)] for x̃1, x̃2 ≥ 0. If (X̃1, X̃2) are random
variables with this density, then they have full support on [0,∞)× [0,∞) and each X̃j has
the marginal distribution of an exponential random variable with mean 1. The conditional
distribution of X̃2 given a realization of X̃1 is E[X̃2|X̃1 = x̃1] = 1 − 1

2α − αe−x̃1 . The
correlation between X̃1 and X̃2 is α/4.

Let I1 = I2 = [0,∞) and let Θ1 = Θ2 = (0,∞). Fixing some −1 ≤ α < 0, let F (·; θ1, θ2)
be the joint distribution generated by X1 = θ1 · X̃1 and X2 = θ2 · X̃2 where (X̃1, X̃2) have
the Gumbel bivariate distribution with parameter α. Since (X̃1, X̃2) have full support on
I1 × I2, the same holds for (X1, X2) for any θ1, θ2 > 0. The marginal distribution of X1 is
exponential with a mean of θ1, so Assumption A.1(a) is satisfied. The conditional mean of
X2|X1 = x1 is given by E[θ2X̃2|θ1X̃1 = x1] = θ2 ·E

[
X̃2|X̃1 = x1

θ1

]
= θ2 ·

(
1− 1

2α− αe
−(x1/θ1)

)
.

As α < 0, the term inside the bracket is strictly positive. So this conditional expectation is
strictly increasing in θ2, showing that Assumption A.1(b) is satisfied. Also, since θ1, θ2 > 0,
x1 7→ −αθ2e

−(x1/θ1) is strictly decreasing and so Assumption A.1(c) is satisfied.

I give a third example where I1 = I2 = [0, 1] are bounded intervals.
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Example A.3. Let Θ1 = Θ2 = (0,∞) and consider the family of distribution F (·; θ1, θ2)
such that under parameters (θ1, θ2), X1 ∼ Beta(θ1, 1) and X2|X1 = x1 ∼ Beta((1−x1)θ2, 1).
For any values of θ1, θ2 > 0, X1 has full support on [0, 1]. Conditional on any x1 ∈ (0, 1), X2

has full support on [0, 1]. This shows the distribution F (·; θ1, θ2) has full-support on [0, 1]2

for every (θ1, θ2) ∈ Θ1×Θ2. The mean of X1 is θ1
θ1+1 , which only depends on θ1 and is strictly

increasing in it. So Assumption A.1(a) is satisfied. The conditional mean of X2|X1 = x1 is
(1−x1)θ2

(1−x1)θ2+1 , which is strictly increasing in θ2 and strictly decreasing in x1. So, Assumptions
A.1(b) and A.1(c) are satisfied.

Finally, I give a general class of examples that allows any pair of given marginal distribu-
tions for X1 and X2 to be joined together using a copula as to induce negative dependence
for the joint distribution.

Example A.4. Consider two families of distribution functions Q1(·; θ1) : I1 → [0, 1],
Q2(·; θ2) : I2 → [0, 1], such Q1 and Q2 are supported on I1, I2 respectively for all θ1 ∈ Θ1

and θ2 ∈ Θ2 . Suppose the mean of Q1 is increasing in θ1, and Q2 is increasing in
stochastic dominance order with respect to θ2. Fix a differentiable copula: that is, a dif-
ferentiable function W : [0, 1]2 → [0, 1] so that W (u, 0) = W (0, v) = 0, W (u, 1) = u,
W (1, v) = v for all u, v ∈ [0, 1], and so that for u1 ≤ u2, v2 ≤ v2 ∈ [0, 1], we get
W (u2, v2) − W (u2, v1) − W (u1, v2) − W (u1, v1) ≥ 0. Consider the family of distribution
functions Q(·; θ1, θ2) on R2 generated by joining together Q1(·; θ1) with Q2(·; θ2) using the
copula W, namely

Q((−∞, x1]× (−∞, x2]; θ1, θ2) = W (Q−1
1 (x1|θ1), Q−1

2 (x2|θ2)).

Then Q(·; θ1, θ2) has marginal distributions on X1 and X2 given by distribution functions
Q1(·; θ1), Q2(·; θ2), and:

Lemma A.18. Suppose ∂W
∂u

(u, v) is an increasing function in u and that {Q1(·; θ1) : θ1 ∈
Θ1}, {Q2(·; θ2) : θ2 ∈ Θ2} satisfy the conditions of this example. Then, the conditions in
Assumption A.1 are satisfied for the family of distributions F (·; θ1, θ2) where F (·; θ1, θ2) has
the distribution function Q(·; θ1, θ2).

The condition that ∂W
∂u

(u, v) increases in u is satisfied by, for example, the Gaussian
copula with any negative correlation. The derivative of the Gaussian copula is given by
∂W
∂u

(u, v) = P[X2 ≤ Φ−1(v)|X1 = Φ−1(u)] where Φ is the standard Gaussian distribution
function and (X1, X2) are jointly Gaussian with correlation −1 < ρ < 0 and each with
an unconditional variance of 1. As it is known that X2|X1 = x1 ∼ N (ρx1, 1 − ρ2), it
is clear that X2|X1 = x1 decreases in FOSD order as x1 increases, so for any v we have
P[X2 ≤ Φ−1(v)|X1 = Φ−1(u)] increases in u.
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C.2 Method of Moments Inference

For a distribution of histories H ∈ ∆(H), let m1[H] represent the average first-period draw
under this distribution and let m2[H] represent the average second-period draw (when un-
censored). More precisely, m1[H] := Eh∼H[h1], m2[H] := Eh∼H[h2 | h2 6= ∅]. Suppose
that objectively X1, X2 are independent with a joint distribution F •, and denote the true
distribution of histories under censoring by cutoff stopping rule c ∈ R as H•(c). Then by
independence, m1[H•(c)] and m2[H•(c)] do not in fact depend on c.

Given the family of subjective models {F (·; θ1, θ2) : θ1 ∈ Θ1, θ2 ∈ Θ2} about the joint
distribution of (X1, X2), let H(θ1, θ2; c) := H(F (·; θ1, θ2); c) denote the distribution on histo-
ries under the model F (·; θ1, θ2) and censoring cutoff c. I now define the method of moments
estimator.

Definition A.2. Themethod-of-moments (MOM) estimator derived from an infinite dataset
of histories with the distribution H•(c) is any pair (θM1 , θM2 ) ∈ Θ1 ×Θ2 such that:

1. m1[H(θM1 , θM2 ; c)] = m1[H•(c)]

2. m2[H(θM1 , θM2 ; c)] = m2[H•(c)]

I will sometimes write θM1 (c), θM2 (c) to emphasize the dependence of the MOM estimators
on the censoring threshold c. The MOM estimator need not exist — for example, if all values
of θ1 ∈ Θ1 generate a marginal distribution on X1 that is smaller than m1[H•(c)]. However,
when it exists, it is unique under the assumptions I made.

Lemma A.19. When the family of feasible models satisfies Assumption A.1, the MOM
estimator is unique when it exists.

Now I show the MOM estimators have properties similar to the pseudo-true fundamentals.
First, the estimators are monotonic in c, that is MOM agents end up with more pessimistic
beliefs about the second-period distribution when the dataset is more severely censored. This
a key ingredient for the monotonicity learning dynamics in Theorem 2.

Proposition A.4. Suppose Assumption A.1 holds. Suppose c′ < c
′′ are two different interior

values in I1 and that MOM estimators (θM1 (c′), θM2 (c′)) and (θM1 (c′′), θM2 (c′′)) exist. Then
θM1 (c′) = θM1 (c′′) and θM2 (c′) < θM2 (c′′).

When (θ1, θ2) correspond to the unconditional means, the MOM estimators understate
the X2 mean of the objective distribution F •.

Proposition A.5. Suppose parameters (θ1, θ2) index the unconditional X1, X2 means in all
feasible models, that is EF (·;θ1,θ2)[X1] = θ1 and EF (·;θ1,θ2)[X2] = θ2. Suppose c ∈ R and the
MOM estimators θM1 (c), θM2 (c) exist. Let θ•1 = EF • [X1], θ•2 = EF • [X2] be the unconditional
means of the true distribution of draws. Then, θM1 (c) = θ•1, θ

M
2 (c) < θ•2.
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Proof. For any θ1 ∈ Θ1, θ2 ∈ Θ2, and c ∈ R, m1[H(θ1, θ2; c)] = θ1 since (θ1, θ2) are assumed
to parametrize means. Also, m2[H(θ1, θ2; c)] = EF (·;θ1,θ2)[X2 | X1 ≤ c] > θ2 = EF (·;θ1,θ2)[X2]
due to Assumption A.1(c). Finally, andm1[H•(c)] = θ•1, m2[H•(c)] = θ•2 due to independence
in F •.

This means if θM1 , θM2 are the MOM estimators under censoring threshold c, then θM1 = θ•1.
Also, we must havem2[H(θM1 , θM2 ; c)] = θ•2. At the same time we havem2[H(θM1 , θM2 ; c)] > θM2 ,

so this means θM2 < θ•2.

These conclusions show that the ideas behind my main results do not depend on the
Gaussian assumption or on full Bayesianism. Rather, the crucial assumption is the general-
ized notion of negative dependence between X1 and X2, as articulated by Assumption A.1(c)
for arbitrary joint distributions.

As a corollary, I characterize the large-generations learning dynamics for MOM agents
using a general class of feasible models. The key idea is that the positive feedback between
distorted stopping rules and distorted beliefs continue to hold, with the parametric version of
gambler’s fallacy interpreted as γ > 0 in a specific Gaussian setup replaced with the general
notion of negative dependence as in Assumption A.1(c).

To define the MOM estimators for agents who observe several sub-datasets of histo-
ries with different censoring thresholds, we extend the moment functions m1,m2 to take
as argument multiple history distributions. That is, m1(H(1), ...,H(K)) := Eh∼⊕K

k=1H(k) [h1]
and m2(H(1), ...,H(K)) := Eh∼⊕K

k=1H(k) [h2 | h2 6= ∅], where ⊕Kk=1H(k) is the mixture distri-
bution assigning 1

K
weight to each of the k history distributions, (H(k))Kk=1. After K sub-

datasets of censored histories with distributions H•(c[0], ..., c[K−1]), the MOM estimators
µM1 (c[0], ..., c[K−1]), µM2 (c[0], ..., c[K−1]) are such that

m1(H•(c[0]), ...,H•(c[K−1])) = m1(H(θM1 , θM2 ; c[0]), ...,H(θM1 , θM2 ; c[K−1]))

m2(H•(c[0]), ...,H•(c[K−1])) = m2(H(θM1 , θM2 ; c[0]), ...,H(θM1 , θM2 ; c[K−1])).

One caveat: we must now ensure the MOM estimator exists in each generation when the
previous generation uses any cutoff stopping rule that has a positive probability of continuing
into the next period. To guarantee existence, I impose an additional assumption on how the
feasible models relates to the true distribution F •.

Assumption A.2. (a) The supports of X1 and X2 under the true distribution F • are I1

and I2, respectively.

(b) The range of θ1 7→ EF1(·;θ1)[X1] is I1.
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(c) For every θ1 ∈ Θ1 and x1 ∈ I1, θ2 7→ EF2|1(·;θ1,θ2|x1)[X2] is continuous with a range of
I2.

Assumption A.2(a) is a consistency requirement, saying that the supports for the objec-
tive distributions of X1 and X2 match their supports under the agents’ subjective models.
Assumption A.2(b) and Assumption A.2(c) ensures the agents can always match the two
moment conditions. It is easily verified that Examples A.1, A.2, and A.3 satisfy Assump-
tion A.2 when the true joint distribution of (X1, X2) is supported on R2, [0,∞)2, and [0, 1]2

respectively.

Corollary A.1. Fix some objective, independent distribution F • for (X1, X2) and suppose
agents’ feasible models {F (·; θ1, θ2) : θ1 ∈ Θ1, θ2 ∈ Θ2} satisfy Assumptions A.1 and A.2.
Suppose the payoff function u2(x1, x2) in the optimal-stopping problem is linear in x2. Initiate
the 0th generation at an arbitrary cutoff c[0] in the interior of I1. Then, beliefs and cutoff
thresholds (µM1,[t])t≥1, (µM2,[t])t≥1, and (cM[t] )t≥1 form monotonic sequences.

This corollary establishes the monotonicity of the beliefs and cutoffs for MOM agents,
analogous to the monotonicity result of Theorem 2.

D Optimal-Stopping Problems with L Periods

D.1 An L-Periods Model of the Gambler’s Fallacy

In an optimal-stopping problem with L periods, the agent observes a draw x` ∈ R in each
period 1 ≤ ` ≤ L. At the end of period `, the agent must decide between stopping and
receiving a payoff u`(x1, ..., x`) that depends on the profile of draws (xi)`i=1 observed so far,
or continuing into the next period. If the agent continues into period L without stopping,
then his payoff will be uL(x1, ..., xL).

I first introduce notation for a class of joint distributions of the L possible draws (Xi)Li=1.

Definition A.3. Let σ2 > 0 be fixed. For every vector µ = (µi)Li=1 and triangular array
γ = (γi,j)2≤i≤L,1≤j≤i−1 with each γi,j ∈ R, the subjective model Ψ(µ;γ) denotes the joint
distribution of (Xi)Li=1 where X1 ∼ N (µ1, σ

2) and, for all i ≥ 2 and (xj)i−1
j=1 ∈ Ri−1,

Xi|(X1 = x1, ..., Xi−1 = xi−1) ∼ N (µi −
i−1∑
j=1

γi,j · (xj − µj), σ2).

Under Ψ(µ;γ), (Xi)Li=1 are jointly Gaussian,24 such that the conditional mean of Xi given
24An equivalent description of the subjective model Ψ(µ;γ) is to consider a set of L independent Gaussian

random variables Zi ∼ N (µi, σ
2) for 1 ≤ i ≤ L. Let X1 = Z1 and iteratively define Xi = Zi−

∑i−1
j=1 γi,j(Xj−

µj). Using induction, one can show that every Xi is a linear function of the Zi’s, so they are jointly Gaussian.
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the previous draws X1 = x1, ..., Xi−1 = xi−1 depends linearly on these realizations. I consider
agents who entertain a set of subjective models, {Ψ(µ;γ) : µ ∈ RL} for a fixed array γ where
each γi,j > 0. The positive γi,j capture the gambler’s fallacy, as higher realizations of earlier
draws lead agents to predict lower means for future draws. The greater the magnitude of
γi,j, the more that the agent’s prediction of Xi depends on realization of Xj. Agents hold
a dogmatic belief in the correlation structure between (Xi)Li=1, but can flexibly estimate
(µi)Li=1, the fundamentals of the environment. Objectively, (Xi)Li=1 are independent, so the
true joint distribution is Ψ• = Ψ(µ•; 0) for some (µ•i )Li=1.

A useful functional form to keep in mind is γi,j = α · δi−j−1 for α > 0, 0 ≤ δ ≤ 1, which
corresponds to Rabin and Vayanos (2010)’s specification of gambler’s fallacy in multiple
periods. Here, α relates to the severity of the bias and δ captures how quickly the influence
of past observations decay in predicting future draws.

D.2 Inference from Censored Datasets in L Periods

In general, a stopping strategy in an optimal-stopping problem over L periods is a set of
functions Si : Ri → {Stop,Continue} for 1 ≤ i ≤ L − 1, where Si(x1, ..., xi) maps the
realizations of the first i draws to a stopping decision. I consider stopping strategies where
Si is a cutoff rule in xi after each partial history (x1, ..., xi−1), that is there exist (ci)L−1

i=1 with
c1 ∈ R and for i ≥ 2, ci(x1, ..., xi−1) ∈ R for every (x1, ..., xi−1) ∈ Ri−1, so that the agent
stops after (x1, ...xi) if and only if xi ≥ ci(x1, ..., xi−1). A stopping strategy with stopping
regions characterized by a profile of cutoff rules c = (ci)L−1

i−1 will be abbreviated as Sc.
For subjective model Ψ and cutoff rule Sc, let H(Ψ;Sc) represent the distribution of

histories when applying rule Sc to draws (Xi) ∼ Ψ. More precisely, consider a procedure
where X1, X2, ..., XL is drawn according to Ψ and revealed one at a time. At the earliest
1 ≤ ī ≤ L − 1 such that Xī ≥ cī(X1, ..., Xī−1), the process stops and the history records
(X1, ..., Xī,∅, ...,∅), with L − ī instances of the censoring indicator ∅ replacing the unob-
served subvector (Xī+1, ..., XL). If no such ī exists, then history records the entire profile of
draws, (X1, ..., XL). The distribution of histories generated this way is denoted H(Ψ;Sc).

Definition A.4. For cutoff strategy Sc and fundamentals µ̂, the KL divergence between
objective distribution of histories and the predicted distribution under censoring is the sum
of L integrals,

DKL( H(Ψ•;Sc) || H(Ψ(µ;γ);Sc) ) :=
L∑
i=1

Ii,

where
I1 =

∫ ∞
c1

φ(x1;µ•1, σ2) ln
(
φ(x1;µ•1, σ2)
φ(x1;µ1, σ2)

)
dx1,
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and for 2 ≤ i ≤ L− 1, integral Ii is

∫ c1

−∞
...

∫ ci−1(x1,...,xi−2)

−∞

∫ ∞
ci(x1,...,xi−1)

i∏
k=1

φ(xk;µ•k, σ2) ln
( ∏i

k=1 φ(xk;µ•k, σ2)∏i
k=1 φ(xk;µk −

∑k−1
j=1 γk,j · (xj − µj), σ2)

)
dxi...dx1.

Finally, IL is given by

∫ c1

−∞
...
∫ cL−1(x1,...,xL−2)

−∞

∫ ∞
−∞
·

i∏
k=1

φ(xk;µ•k, σ2) ln
( ∏i

k=1 φ(xk;µ•k, σ2)∏i
k=1 φ(xk;µk −

∑k−1
j=1 γk,j · (xj − µj), σ2)

)
dxi...dx1.

To interpret, consider a history h = (x1, ..., xi,∅, ...,∅) where xk < ck(x1, ..., xk−1) for all
k ≤ i−1 and xi ≥ ci(x1, ..., xi−1). This history is possible under the stopping strategy Sc. It
has a likelihood of Πi

k=1φ(xk;µ•k, σ2) under Ψ• and a likelihood of Πi
k=1φ(xk;µk −

∑k−1
j=1 γk,j ·

(xj − µj), σ2) under Ψ(µ;γ). So, the integral Ii calculates the contribution of all possible
histories of length i to the KL divergence from H(Ψ(µ;γ);Sc) to H(Ψ•;Sc). In the case of
L = 2, this definition reduces to Definition 5, the KL divergence in the two-periods baseline
model, with γ = γ2,1 and c1 ∈ R as the censoring threshold.

The KL-divergence minimizers

min
µ∈RL

DKL( H(Ψ•;Sc) || H(Ψ(µ;γ);Sc) )

are the pseudo-true fundamentals with respect to stopping strategy Sc. The next proposition
gives an explicit characterization of them.

Proposition A.6. Let stopping strategy Sc be given. For each i ≥ 1, let Ri represent the
region

{(x1, ..., xi) : x1 < c1, x2 < c2(x1), ..., xi < ci(x1, .., xi−1)} ⊆ Ri.

The pseudo-true fundamentals with respect to Sc are µ∗1 = µ•1 and, iteratively,

µ̂∗i = µ•i −
i−1∑
j=1

γi,j · (µ∗j − EΨ• [Xj|(Xk)i−1
k=1 ∈ Ri−1]).

The expression for µ∗i in the general L-periods setting resembles the expression for µ∗2
in the two-period setting. Relative to the truth µ•i , the estimate µ∗i is distorted by the fact
that Xi is only observed when previous draws (X1, ..., Xi−1) fall into the continuation re-
gion Ri−1 ⊆ Ri−1 associated with Sc. The agent uses this censored empirical distribution of
(X1, ..., Xi−1, Xi) to infer the period-i fundamental, under a dogmatic belief about the corre-
lation structure between the draws given by γ. Importantly, whether a certain realization Xj

for j < i should be judged as below-average (and thus predict a higher Xi) or above-average
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(and thus predict a lower Xi) depends on agent’s belief about the period j fundamental, µ∗j ,
which gives the iterative structure of the expression for µ̂∗i .

The proof of this result follows two steps. First, recall thatDKL(H(Ψ•;Sc)||H(Ψ(µ;γ);Sc))
is defined as the sum ∑L

i=1 Ii, where Ii is the KL-divergence contribution from histories with
length i. I rewrite this expression as the sum of L different integrals, ∑L

i=1 Ji, where Ji is the
KL-divergence contributions from histories containing Xi. So, Ji is a function of µ1, ..., µi.
The second step is similar to the proof of Proposition 2, where I show ∂Ji

∂µj
is a linear multiple

of ∂Ji
∂µi

whenever j < i. First-order condition at µ∗ allows for a telescoping rearrangement,
yielding ∂Ji

∂µi
(µ∗) = 0 for every i. The proposition readily follows.

Now I turn to a special class of cutoff-based stopping rules where ck is independent of
history. So, a stopping rule of this kind Sc can be viewed simply as a list of L constants,
c1, ..., cL ∈ R, such that the agent stops after the draw X` = x` if and only if x` < c`. I
show that the expression for the pseudo-true fundamentals greatly simplifies and admits a
path-counting interpretation.

Definition A.5. For 1 ≤ j < i ≤ L, a path p from i to j is a sequence of pairs p =
((i0, i1), ..., (iM−1, iM)) with M ≥ 1, i0 = i, iM = j, and im+1 < im for all m = 0, 1, ...,M −1.
The length of p is #(p) := M . The weight of p is W (p) := Π0≤m≤M−1(−γi`,i`+1). Denote the
set of all paths from i to j as P [i→ j].

That is, we may imagine a network with L nodes, one per period of the optimal-stopping
problem. There is a directed edge with weight −γi,j for all pairs i > j. A path from i to j is
a concatenation of edges, starting with i and ending with j. Its weight is the product of the
weights of all the edges used.

The next proposition differs from Proposition A.6 in that the expression for the pseudo-
true fundamental µ∗i does not involve other pseudo-true fundamentals µ∗j . It shows that the
distortion of µ∗i from the true value µ•i depends on terms µ•j −EΨ• [Xj|Xj ≤ cj] and the total
number of paths from i to j in the network that γ defines.

Proposition A.7. For stopping strategy Sc = (c1, ..., cL) ∈ RL, the pseudo-true fundamen-
tals are given by

µ∗i = µ•i +
i−1∑
j=1

 ∑
p∈P [i→j]

W (p)
 · (µ•j − E[Xj|Xj ≤ cj]

)
.

As a corollary, suppose L ≥ 3 and γ have the Rabin and Vayanos (2010) functional form
of γi,j = α · δi−j−1 for α > 0, 0 ≤ δ ≤ 1. I show that all pseudo-true fundamentals are too
pessimistic in every dataset censored with Sc = (c1, ..., cL) ∈ RL if and only if δ > α. The idea
is the influence of the gambler’s fallacy psychology must not decay “too quickly” relative to
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the influence of the most recent observation. This condition is satisfied in all the calibration
exercises in Rabin and Vayanos (2010) and in the structural estimations of Benjamin, Moore,
and Rabin (2017). The result shows the over-pessimism from the 2-periods model extends
into the L periods model (provided the regularity condition on the parametrization of the
L-periods gambler’s fallacy holds).

Corollary A.2. Suppose L ≥ 3 and γi,j = α · δi−j−1 for α > 0, 0 ≤ δ ≤ 1. If δ > α, then for
all stopping strategies Sc = (c1, ..., cL) ∈ RL, the pseudo-true fundamentals satisfy µ∗i < µ•i
for all i. If δ < α, then there exists a stopping strategy Sc = (c1, ..., cL) ∈ RL such that
µ∗i > µ•i for at least one i.

To understand the intuition, consider an example that violates the condition of the
corollary, α = 0.5, δ = 0, so that γ2,1 = 0.5, γ3,2 = 0.5, and γ3,1 = 0. The agent expects
reversals between the pairs (X1, X2) and (X2, X3), but his expectation forX3|(X1 = x1, X2 =
x2) does not vary with x1. By the same logic as the two-periods censoring effect, inference
about the second-period fundamental µ∗2 decreases as c1 decreases, with limc1→−∞ µ

∗
2(c1) =

−∞. This has an important indirect effect on µ∗3, since a very pessimistic µ∗2 leads the
agent to interpret objectively typical draws of X2 as greatly above average. Expecting low
values of X3 after these surprisingly high draws of X2, the agent infers the fundamental µ∗3
to be above the sample mean of X3 in the dataset, hence overestimating it as c1 → −∞.
When δ is strictly positive, however, there is an opposite effect where lower sample mean of
X1 in observations containing uncensored X3 lead to more pessimistic inference about the
third-period fundamental. When δ > 0.5, overoptimistic inference never happens because
this second effect dominates.

E The Censoring Effect in a Finite-Urn Model

Rabin (2002) Section 7 discusses an example with endogenous observations. There is an
infinite population of financial analysts, each with quality θ ∈ {1

4 ,
1
2 ,

3
4}. Conditional on

quality θ, an analyst generates either a good (signal a) or bad (signal b) return each period,
with probabilities θ and 1−θ and independently across periods. The agent, however, believes
successive returns from the same analyst are generated through a finite-urn model. Consider
an urn with N balls where N is a multiple of 4. For an analyst with quality θ, initialize
the urn with θN balls labeled “a” and (1 − θ)N balls labeled “b”. Successive returns are
successive draws without replacement from the urn. The urn is refreshed every two draws.
Rabin (2002) calls an agent with this finite-urn model an “N -Freddy”. Since the urn is not
refreshed between draws 2k− 1 and 2k for k = 1, 2, 3, ..., such pairs of draw exhibit negative
correlation in agent’s subjective model, generating the gambler’s fallacy.
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Returning to Rabin (2002) Section 7’s example, objectively all financial analysts have
quality θ = 1

2 . The agent samples a financial analyst at random and observes his returns over
two periods. Depending on the realizations of these two returns, the agent either observes the
same analyst for two more periods before sampling a new analyst, or immediately samples
a new analyst. This procedure is infinitely repeated. Rabin (2002) investigates a 4-Freddy
agent’s long-run belief about the proportions of analysts with the three levels of quality in
the population.

The endogenous observation in the example is distinct from what I term the “censoring
effect” in this paper. The main mechanism behind the censoring effect is that the some rows
of the dataset omits signals (X2) which the biased agent judges to be negatively correlated
with signals that are always observed (X1). This then leads to distorted inference. However,
in Rabin (2002)’s finite-urn model, the urn is refreshed every two periods. This means
an N -Freddy agent judges the part of the data that is sometimes censored (the analyst’s
returns in periods 3 and 4) to be independent of the part of the data that is always observed
(the analyst’s returns in periods 1 and 2). Therefore the driving force behind Rabin (2002)
Section 7’s example is not the interaction between censoring and the gambler’s fallacy, but
rather between censoring and the Bayesian aspect of N -Freddy’s quasi-Bayesian inference.

In this section, I study a related problem where an N -Freddy agent observes each analyst
for either one or two periods, depending on whether the analyst generates a bad first-period
return. This setup features the censoring effect, because the finite-urn model generates
negative correlation between the first and second draws from each urn. I find that the
agent’s inference under this censoring structure tends to be too optimistic. This conclusion
is in line with predictions about the censoring effect in the baseline model of this paper,
for the basic inference result in Proposition 2 shows that when the dataset is censored in
the opposite way (i.e. censored when the first draw is good), the resulting inference is too
pessimistic25. That is, I demonstrate the robustness of my censoring effect to an alternative
model of the gambler’s fallacy in a binary-signals setting, showing that it is not an artifact
of the continuous-signals setup in my baseline model.

Table A.1 displays the likelihood of all signals of length 2 for the 4-Freddy and 8-Freddy
agents, for different values of θ ∈ {1

4 ,
1
2 ,

3
4}. The last row of each table also shows the

likelihoods of simply observing the signal b in the first period, under the censoring rule
that stops observing an analyst if his first return is bad. I first discuss inference without
censoring. After aa, Freddy exaggerates the relative likelihood of θ = 3

4 to θ = 1
2 compared

to a Bayesian, whereas after ab Freddy’s relative likelihoods of these two qualities are the
same as a Bayesian’s. Overall, given a sample with an equal number of aa and ab signals,

25Proposition OA.12 in the Online Appendix shows that when the dataset is censoring using a strategy
that stops when X1 ≤ c for some c ∈ R, inference about second-period fundamental is always too high.
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4-Freddy θ = 1
4 θ = 1

2 θ = 3
4

aa 0 1
6

1
2

ab 1
4

1
3

1
4

ba 1
4

1
3

1
4

bb 1
2

1
6 0

b∅ 3
4

1
2

1
4

8-Freddy θ = 1
4 θ = 1

2 θ = 3
4

aa 1
28

6
28

15
28

ab 6
28

8
28

6
28

ba 6
28

8
28

6
28

bb 15
28

6
28

1
28

b∅ 3
4

1
2

1
4

Table A.1: The likelihoods of observations under different analyst qualities, for 4-Freddy and
8-Freddy agents.

Freddy exaggerates the relative likelihood of θ = 3
4 to θ = 1

2 . This phenomenon is analogous
to the continuous version of gambler’s fallacy where a biased observer “partially forgives” a
mediocre outcome following an outstanding outcome. Here, even though the average outcome
in the second period is mediocre, the fact that they follow the best possible outcome a in
the first period lead to an overly optimistic estimate about the analyst’s ability. By the
same logic, observing an equal number of ba and bb signals would lead to exaggeration of the
likelihood of θ = 1

4 relative to θ = 1
2 .

However, now suppose the second observation is censored when the first observation is
b. The otherwise symmetric situation becomes asymmetric. Following the observation of b∅
(where the second draw is censored), Freddy’s inference is the same as a Bayesian’s. So we
have turned off the channel that exaggerates the probability of θ = 1

4 but kept the channel
that exaggerates the probability of θ = 3

4 . This is analogous to the censoring effect in my
model, where censoring second period draw following unfavorable first period draws would
lead to overly optimistic beliefs.

In the long-run, the agent observes a distribution of returns across different analysts:
25% of the time aa is observed, 25% of the time ab is observed, and 50% of the time b∅
is observed. To calculate the agent’s long-run beliefs, first suppose Freddy’s prior specifies
either all analysts have θ = 1

4 or all analysts have θ = 3
4 . Then Freddy’s long-run inference

is given by the parameter maximizing expected log-likelihood of the data. For 4-Freddy, the
log-likelihood likelihood under θ = 1

4 is −∞. For 8-Freddy, The log-likelihood under θ = 1
4

is
1
4 ln(1/28) + 1

4 ln(6/28) + 1
2 ln(3/4) ≈ −1.362

and the log-likelihood under θ = 3
4 is

1
4 ln(15

28) + 1
4 ln( 6

28) + 1
2 ln(1/4) ≈ −1.234.
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So in both cases, Freddy will come to believe θ = 3
4 over θ = 1

4 for all analysts.
Now consider a 4-Freddy who dogmatically believes some 1 − κ ∈ (0, 1) fraction of the

analysts have θ = 1
2 , but the remaining analysts either have θ = 1

4 or θ = 3
4 . So, the agent

estimates qa ∈ [0, 1 − κ], the fraction of analysts who have θ = 3
4 . Straightforward algebra

shows that the q∗a maximizing expected log-likelihood of the data is q∗a = 7
18κ+ 1

9 for κ ≥ 2
11 ,

q∗a = κ otherwise. Since 7
18κ + 1

9 > 1
2κ for all κ ∈ ( 2

11 , 1), we see that no matter what
fraction of analysts 4-Freddy believes to be average, he will end up believing there are more
above-average than below-average analysts in the population. That is, his overall belief will
be too optimistic.

F The Gambler’s Fallacy and Attentional Stability

Many investigations of behavioral learning, including this paper, can be phrased as agents
with a prior (or “misspecified theory”) over states of the world whose support excludes the
true, data-generating state. Agents in this paper start with a prior supported on the class
of subjective models {Ψ(µ1, µ2, σ

2, σ2; γ) : µ1, µ2 ∈ R} for some fixed γ > 0, with different
models viewed as different states of the world. But the true state of the world is the objective
distribution (X1, X2) ∼ Ψ(µ•1, µ•2, σ2, σ2; 0), which does not belong to the feasible set. As an
agent’s data size grows, her misspecified theory can appear infinitely less likely in the limit
than an alternative prior belief (or “light-bulb theory”) that includes the true state in its
support.

Gagnon-Bartsch, Rabin, and Schwartzstein (2018) offer an explanation for why such
misspecified theories persist with learning – attentional stability. Under a misspecified theory,
some coarsened information may be sufficient for decision-making. When agents only pay
attention to this coarsened information, the aspects of the data that they attend to may
be so coarse that their misspecified theory no longer appears infinitely less likely than the
light-bulb theory.

In this section, I investigate the attentional stability of the gambler’s fallacy bias in
my learning setting. The main intuition is that when agents are dogmatic about γ, they
are dogmatic about the correlation between X1 and X2. Therefore, under their misspecified
theory, agents do not find it necessary to separately keep track of the conditional distributions
X2|(X1 = x1) for different values of x1. Agents believe certain “statistics” of the dataset are
sufficient for decision-making, and this process of reducing the entire dataset into these
sufficient statistics removes features of the dataset that would otherwise have led the agents
to question the validity of their theory.

My setting differs in two ways from that of Gagnon-Bartsch, Rabin, and Schwartzstein
(2018). Each of my agents acts once (after observing a possibly large or even infinite dataset),
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while their agents observe one signal each period over an infinite number of periods. Another
distinction is that data is endogenous in my setting, whereas Gagnon-Bartsch, Rabin, and
Schwartzstein (2018) almost entirely focus on an exogenous-data environment. So, I begin
by defining the key concepts surrounding attentional stability in my setting.

F.1 A Definition of Attentional Stability in Large Datasets

In the learning environment where agents act one at a time, Theorem 1 implies that almost
surely behavior converges. As a consequence, late enough agents observe finite datasets of
histories whose distributions asymptotically resemble H•(c∞), where c∞ is the steady-state
censoring threshold.

In the learning environment where agents act in large generations, each agent in gen-
eration t observes t sub-datasets of infinitely many histories. The overall distribution of
histories in the dataset is H•(c[0], ..., c[t−1]) = ⊕t−1

k=0H•(c[k]), where the right-hand side refers
to the mixture between the t history distributions that assigns weight 1/t to each.

To develop a definition of attentional stability in large datasets, I consider an agent
who directly observes a distribution of histories (instead of a dataset with this distribution)
H•(c1, ..., cL) ∈ ∆(H). This corresponds to the asymptotic long-run observation in the
environment where agents act one at a time, by putting L = 1 and c = c∞. It also represents
the medium-run observations of agents in each generation t ≥ 1 of the large-generations
environment.

Definition A.6. Let π, λ be beliefs over the joint distribution of (X1, X2). Say π is inex-
plicable relative to λ, conditional on the true model Ψ• and censoring thresholds c1, ..., cL,
if H•(c1, ..., cL) = H(Ψ; c1, ..., cL) for some Ψ ∈ supp(λ), but H•(c1, ..., cL) 6= H(Ψ; c1, ..., cL)
for any Ψ ∈ supp(λ).

Each subjective model Ψ and list of censoring thresholds c1, ..., cL together induce a
distribution over histories. If the observed history distribution H•(c1, ..., cL) can be produced
by some subjective model of (X1, X2) in the support of the light-bulb theory λ, but not by
any distribution in the support of the misspecified theory π, then I call π inexplicable.

I now define a particular kind of limited attention. Given a distribution over histories,
the agent maps the entire distribution to finitely many real numbers. This is an extreme
form of data coarsening. If there is a strategy optimal under the misspecified theory π that
only makes use of these finitely many statistics, then we have a sufficient-statistics strategy.

Definition A.7. A sufficient-statistics strategy (SSS) for large generations consists of a
statistics map Λ : ∆(H) → RK for some finite K < ∞ and a cutoff map σ : Im(Λ) → R,
such that agents in each generation t ≥ 1 of the large-generations environment find it optimal
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(under the prior Ψ ∼ π) to use the stopping strategy with cutoff σ(Λ(H)) whenever H is a
dataset of predecessors’ histories H = H•(c[0], ..., c[t−1]).

An agent following the strategy (Λ, σ) first extracts K statistics (i.e. K real numbers)
from the infinite dataset of predecessors’ histories. Then, she applies σ to choose a cutoff
threshold that only depends on the dataset through its K extracted statistics, Λ(H) . The
idea is that the agent only pays attention to the finitely many statistics, a perhaps more
realistic behavior than paying full attention to the entire infinite dataset. If such a strategy
is optimal for an agent believing the true joint distribution of (X1, X2) is drawn according
to her (misspecified) prior Ψ ∼ π, I call the pair (Λ, σ) an SSS.

A related definition of sufficiency works with finite datasets instead of infinite datasets.
This corresponds to limited attention for agents in the environment where they act one at a
time.

Definition A.8. A sufficient-statistics strategy (SSS) in datasets of size N < ∞ con-
sists of a statistics map Λ(N) : HN → RK for some finite K < ∞ and a cutoff map
σ(N) : Im(Λ(N)) × N → R, such that the subjectively optimal cutoff threshold (under the
Bayesian posterior belief about the fundamentals after updating prior density g(µ1, µ2)) is
σ(N)(Λ(N)((hn)Nn=1), N1) after observing a dataset (hn)Nn=1 with sizeN and containingN1 ≤ N

instances of second-period draws.

Finally, I combine these concepts to define attentional stability. Roughly speaking, the
theory π is attentionally stable if we can find a (Λ, σ) pair that pays “fine” enough attention
to be an SSS under π, but “coarse” enough attention so that the resulting statistics can be
explained by some model in the support of π.

Definition A.9. Theory π is attentionally stable, conditional on the objective model Ψ•

and censoring thresholds c1, ..., cL, if there exists an SSS (Λ, σ) such that Λ(H•(c1, ..., cL)) =
Λ(H(Ψ; c1, ..., cL)) for some Ψ in the support of π.

F.2 The Gambler’s Fallacy is Inexplicable under Full Attention

Fix γ > 0. Let π be any full-support belief over {Ψ(µ1, µ2, σ
2, σ2; γ) : (µ1, µ2) ∈ M},

where M ⊆ R2 is any specification of feasible fundamentals. Let λ be any belief with
Ψ• = Ψ(µ•1, µ•2, σ2, σ2; 0) in its support. I first show that without channeled attention, agents
will come to realize that their misspecified theory π is wrong after seeing a large dataset.

Proposition A.8. π is inexplicable relative to λ, conditional on Ψ• and any censoring
thresholds c1, ..., cL ∈ R.
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Proof. This is because Ψ• ∈ supp(λ) but every Ψ ∈ supp(π) has KL divergence bounded
away from 0 relative to Ψ• in terms of the histories they generate under censoring by c1, ..., cL,
that is to say

inf
Ψ∈supp(π)

DKL(H•(c1, ..., cL) ‖ H(Ψ; c1, ..., cL))

= inf
(µ1,µ2)∈M

DKL(H•(c1, ..., cL) ‖ H(Ψ(µ1, µ2, σ
2, σ2; γ); c1, ..., cL)) > 0.

To see why this inequality holds, recall that the proof of Lemma 2 shows the above KL-
divergence minimization problem has a minimum strictly above 0 even over the unrestricted
domain (µ1, µ2) ∈ R2. The restriction to someM⊆ R2 can only make the minimum larger.

F.3 The Gambler’s Fallacy is Attentionally Stable

Now I exhibit a family of SSS for finite datasets of size N and another SSS for large gener-
ations that naturally corresponds to taking N → ∞. These SSS have the additional prop-
erty that they lead agents to the same beliefs about the fundamentals as the full-attention
Bayesianism assumed in the rest of the paper. So, not only do these SSS justify agents not
discarding their misspecified theory after seeing large datasets, they also provide a limited-
attention foundation for the learning dynamics that I investigate in the main text of the
paper.

In a dataset of size N, consider the statistics map with K = 2,

Λ(N)((hn)Nn=1) =
 1
N

N∑
n=1

h1,n,
1

#(n : h2,n 6= ∅)
∑

n:h2,n 6=∅
(h2,n + γh1,n)

 .
The first statistic is the sample mean of the first-period draws. The second statistic can
be thought of as a “re-centered” observation vn := h2,n + γh1,n for each history hn where
h2,n 6= ∅. The agent only pays attention to the sample averages of x1,n = h1,n and vn. Under
the subjective model Ψ(µ1, µ2; γ), we may write the distributions of X1, X2 as

X1 = µ1 + ε1

X2 = µ2 + γε1 + z2

where ε1, z2 ∼ N (0, σ2), are independent. Defining V := X2 + γX1, we see that under
Ψ(µ1, µ2; γ), V = µ2 + γµ1 + z2. So, observations of first-period draws are signals about µ1,

while observations of re-centered second-period V are signals about µ2 + γµ1.
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Proposition A.9. Λ(N) is part of an SSS in datasets of size N . The cutoff choice in this
SSS is the same as for the full-attention agent.

In the environment where full-attention Bayesian agents move one at a time, their be-
havior is indistinguishable from agents using this SSS. Roughly speaking, this is because
the subjective joint distribution between (X1, V ) is Gaussian and the mean of a sequence of
Gaussian random variables is a sufficient statistic for the likelihood of the entire sequence.
Even when agents are full-attention Bayesians, their posterior distribution only depends on
the histories data through these statistics. Therefore, the statistics are sufficient for any
decision problem.

Consider now the large-sample analog of the finite-sample SSS just defined. Again with
K = 2, consider the statistic map Λ sends each distribution H to Eh∼H[hi,1] and Eh∼H[hi,2 +
γhi,1 | hi,2 6= ∅]. I show that Λ makes π attentionally explicable whenever π has full-support
over the subjective models indexed by feasible fundamentalsM = R2.

Proposition A.10. For any list of censoring thresholds c1, ..., cL ∈ R and fundamentals
µ1, µ2 ∈ R,

Λ1(H(Ψ(µ1, µ2, γ); c1, ..., cL)) = µ1,

Λ2(H(Ψ(µ1, µ2, γ); c1, ..., cL)) = µ2 + γµ1.

Also,
Λ(H•(c1, ..., cL)) = Λ(H( Ψ(µ•1, µ∗2(c1, ..., cL); γ) ; c1, ..., cL))

The first two equations in this claim show that for any c1, ..., cL, Ψ 7→ Λ(H(Ψ; c1, ..., cL))
is a one-to-one function on the support of π, and furthermore any values of the statistics
s1, s2 can be rationalized through appropriate choices of µ1, µ2. We may put σ(s1, s2) =
C(s1, s2 − γs1; γ) to make (Λ, σ) an SSS, thus showing the gambler’s fallacy is attentionally
stable in large datasets. Another implication of this claim is that the limited-attention agent
comes to believe the large-generations pseudo-true fundamentals (µ•1, µ∗2(c1, ..., cL)) after see-
ing the history distributionH•(c1, ..., cL). Therefore, the large-generations SSS gives the same
behavior as the full-attention Bayesianism in the baseline large-generations environment.
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