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Abstract

We study a class of multi-round clock auctions for procurement

that reduce offered prices at each round according to some rule and

declare as winners the bidders that accept their final offers. For single-

minded bidders, every such auction is obviously strategy-proof and

group strategy-proof, sets prices equal to some Nash equilibrium win-

ning bids in the related first-price auction, preserves winner privacy

about values, and can be extended to ensure that it satisfies a budget

constraint. In simulations based on the US Incentive Auction, a clock

auction leads to nearly efficient outcomes at a lower cost and with less

computational effort than a Vickrey auction.
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1 Introduction

In April, 2017, the U.S. Federal Communications Commission concluded its

so-called “Incentive Auction,” which reallocated the radio frequencies previ-

ously used for UHF TV channels 38-51 to wireless broadband services. The

auction, authorized by a 2012 act of Congress,1 involved purchasing broad-

cast rights from some TV stations in a competitive “reverse auction” at a

cost of about $10.1 billion, retuning (“repacking”) the remaining over-the-

air broadcasters to operate in the remaining channels, and selling wireless

broadband licenses in the cleared spectrum in a “forward auction” for about

$19.8 billion. This paper reports theoretical and simulation analyses related

to the design of the reverse auction.2,3

One characteristic that made FCC’s reverse auction design particularly

challenging was the computational complexity of the underlying economic

problem. The TV stations remaining on air after the auction (which turned

out to be all but 175 of the 2,990 pre-auction U.S. and Canadian stations)

needed to be repacked in a way that satisfies more than a million constraints.

Each constraint precludes some pair of (geographically close) stations from

broadcasting on the same or adjacent channels to avoid excessive interference

between them, or limits the set of channels that a station may use. Just

checking whether it is feasible to repack any given set of stations into any set

of TV channels is an NP-hard problem, which means roughly that for any

algorithm, the worst-case computation time grows exponentially with the

problem size.4 FCC computational experiments showed that the problem of

1Middle Class Tax Relief and Job Creation Act of 2012, Pub. L. No. 112-96, §§ 6402,
6403, 125 Stat. 156 (2012).

2For information about the forward auction and how the forward and reverse auctions
interact, see Milgrom and Segal (2017).

3A related descending-clock auction design, which also uses a declining “base clock
price” to set different prices for individual items in a series of rounds, has now been used
by the FCC for its Connect America Fund “CAF II” auction which began in July 2018.
That auction was not to buy spectrum, but to procure commitments to supply broadband
services to underserved areas of the United States.

4This problem is referred to as the “frequency assignment” problem, and is a gen-
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identifying the maximum-value feasible subset of stations could not be solved

exactly in reasonable time.5

The intractability of exact computations poses a challenge for traditional

auction designs. For example, it is tempting in this context to use a Vickrey

auction, because of its well-known efficiency and incentive properties. How-

ever, the Vickrey auction proved deficient in several ways, not least of which

is that the difficulty of optimization in this problem made computing even

approximate Vickrey prices impossible. With 2000 stations, a 1% error in

computing one of the two maximum values in the pricing equation would

lead to a pricing error equal to 20 times the average station value, which is

far too high for a practical auction mechanism.

To overcome the computational and other disadvantages of the Vickrey

auction design, the U.S. Federal Communications Commission (2015) in-

stead adopted a descending-clock auction design (proposed by Milgrom et

al. 2012). This multi-round auction proposes a series of tentative prices,

reducing some prices at each round and leaving others unchanged. When-

ever a bidder’s price is reduced, that bidder may exit the auction and be

repacked into the TV band. When the auction stops, the bidders that have

not exited become winners and receive their last clock price. To ensure that

the final set of losing bidders can be feasibly packed into the available chan-

nels, the FCC auction reduced the price offer to a bidder only if it could

identify a feasible assignment that adds the bidder to the set of stations to

be repacked in the TV band. As described above, each feasibility checking

step requires solving a large-scale NP-hard problem and the auction required

eralization of the “graph coloring problem.” See Aardal et al. (2007) for a survey of
computational approaches to this problem. The exponential time claim depends on a
widely believed but still unproven hypothesis in complexity theory, namely, that P 6= NP .

5The problem of designing computationally feasible economic mechanisms is studied in
the field of “Algorithmic Mechanism Design” (Nisan and Ronen (1999)). While economists
have long been concerned about computational constraints of economic allocation mecha-
nisms, the formal economic literature, motivated by Hayek (1945) has focused on modeling
communication costs (e.g., Hurwicz 1977, Mount and Reiter 1974, Segal 2007), which are
trivial in the setting of single-minded bidders considered in this paper.
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about 75,000 such steps, so it was expected that the checker would some-

times fail to determine, in the allotted time, whether a set of stations can be

feasibly repacked.6 When the checker fails to prove that a set of stations can

be feasibly repacked, the auction treats it as if the repacking were infeasible.

Within this general description, one can vary the price-setting rule and

the information revealed to bidders to design an auction that balances mul-

tiple objectives, including efficiency, cost minimization, computational fea-

sibility, budget balance and others. This paper formulates the general class

of these auctions and examines their theoretical properties and how a par-

ticular auction can be tailored for an application like the Incentive Auction.

For concreteness, we focus on a procurement auction like the FCC’s reverse

auction, which offers descending prices to sellers, but the same analysis also

applies with obvious sign adjustments to selling auctions that offer ascending

prices to buyers, as well as to double auctions that offer prices to both buyers

and sellers.

We call these mechanisms “deferred-acceptance (DA) clock auctions” to

highlight their connection to the famous deferred acceptance algorithm of

Gale and Shapley (1982), in which rejections are irreversible but final accep-

tance is deferred to the end of the process.7 In a DA clock auction, a price

reduction to a seller amounts to irreversible rejection of the offer to sell at the

previous price, but permits the seller to remain active by agreeing to a new,

lower price.8 For brevity, we will sometimes use the term “DA auction” to

6Using recent advances in machine learning and certain problem-specific innovations,
Frechette at al. (2015) developed a feasibility checker that solves more than 99% of the
problems in auction simulations within 2 seconds, ensuring that time-outs would be rare.

7As noted by Hatfield and Milgrom (2005), the Gale-Shapley algorithm modified to
a setting with monetary transfers (as in Kelso and Crawford (1982) and Demange et al.
(1986)) and applied to the case of a single buyer and multiple sellers can be viewed as a
clock auction.

8We do not consider clock-based auctions that are not DA auctions. One example of
those is the “Dutch clock auction” – a descending-price selling auction, which is strate-
gically equivalent to a pay-as-bid auction and is not strategy-proof. Another is Ausubel
and Milgrom’s (2002) “cumulative-offer” clock auction, which sometimes “recalls” exited
bids, and is not strategy-proof. A third example is the heuristic “clock auction” proposed
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refer to a DA clock auction, although we will later introduce corresponding

direct mechanisms to be called “direct DA auctions.”

Most previous studies of clock auctions have focused on settings in which

the auctioneer’s optimization is computationally tractable, bidders are sub-

stitutes and all provisionally losing bidders are offered nearly the same price.

The substitutes condition implies that the auctioneer would never regret re-

jecting an offer after other offers are improved, and therefore a DA clock

auction that decrements prices slightly at each round to some or all provi-

sionally losing bidders eventually results in an allocation that is efficient and

stable. This paper considers a wider set of clock auctions, generating a wider

set of mappings from values to allocations (“allocation rules”), including ones

in which bidders are sometimes complements, but our incentive analysis is

narrower in limiting attention to single-minded bidders. As an example of

complements, a DA auction can be designed so that the auctioneer will buy

from either both bidders A and B or from neither.9 We show that any DA

auction rule like that one, which does not satisfy the substitutes condition,

cannot exactly maximize welfare or minimize expected costs. Nevertheless,

even when DA clock auctions are not optimizing, they may still have a num-

ber of appealing properties.

One such property is a strengthening of traditional strategy-proofness:

not only is it a dominant strategy for a bidder in the auction to bid truthfully

(that is, to keep bidding while its price offer is at least its value and exit

immediately afterwards), but truthful bidding is optimal even if the bidder

does not understand the auctioneer’s price reduction rule or does not trust

the auctioneer to adhere to the rule. To conclude that truthful bidding is

optimal, all a bidder needs to know is that its clock price can never be

increased, and that it can exit any time the price is reduced. One way to

by Lehmann et al. (2002), in which truthful bidding is a Nash equilibrium but not an
obviously dominant strategy.

9A clock auction can guarantee this by specifying that if either A or B exits, the other’s
clock price falls to zero, ensuring that it will exit, too.
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formalize this strong property is using Li’s (2017) notion of an “obviously

dominant strategy,” which requires that for any alternative strategy, at any

information set in the game for which the alternative strategy prescribes a

different action, the best-case payoff from the alternative strategy against

possible strategies of the other players must be no greater than the worst-

case payoff from the obviously dominant strategy. In a DA auction, truthful

bidding guarantees a nonnegative payoff starting from any information set,

while any deviation from it involves either exiting at a price weakly above

value or continuing at a price below value, so the payoff starting from that

information set is nonpositive.10

The obvious dominance of truthful bidding implies a second valuable

property: that no coalition of bidders could deviate from truthful bidding in

a way that makes all of its members strictly better off. For proof, note that

obvious dominance implies that the first coalition member to deviate from

truthful bidding cannot benefit strictly from the coalitional deviation. Thus,

truthful bidding is a strong Nash equilibrium of a DA auction, and the social

choice function implemented by the auction is weakly group strategy-proof.11

This observation extends the results of Moulin (1999), Juarez (2009), Mehta

et al. (2007), and Demange and Gale (1985), Demange et al. (1986), and

Hatfield and Milgrom (2005) to a broader class of mechanisms.

A third property is that any DA auction can be modified to respect the

auctioneer’s budget constraint by adding rounds in which prices continue to

fall. In the Incentive Auction, the budget constraint was that the cost of

buying broadcast rights could not exceed the forward auction revenue net

10In contrast, in a sealed-bid Vickrey auction, truthful bidding is not obviously domi-
nant. The auction has just one information set, and the best payoff from any bid above
value is strictly positive while the worst payoff from a truthful bid is zero. The failure of
obviousness may explain why in laboratory experiments involving even the simplest single-
object Vickrey auctions, bidders often fail to bid truthfully, while they do bid truthfully
in the English auction (see Kagel et al. (1987)).

11It is not strongly group strategy-proof: since winners’ price are determined by losing
bids, thus a weakly Pareto-improving deviation could be achieved by a loser deviating to
raise a winner’s price.
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of certain expenses and targets. To ensure that the budget was satisfied,

the rules specified that if the constraint was not satisfied, then the number

of channels to be cleared would be reduced and bidding would resume. If

reducing the clearing target repeatedly still did not result in satisfying the

budget constraint, then the auction would be cancelled.12,13 In contrast to

the Vickrey auction, which cannot accommodate budget constraints, any DA

auction can be extended in this way to create a budget-respecting extension.

This extension, which is itself a DA clock auction with all the properties that

implies, results in the same outcome as the unextended auction whenever that

satisfies the budget constraint, but continues to ensure that the constraint

is eventually satisfied. This property of respecting the auctioneer’s budget

constraint with a strategy-proof mechanism generalizes the findings of several

other papers.14

A fourth property of DA auctions with both practical and theoretical

significance is that, in contrast to any direct mechanism, winning bidders in

a DA clock auction reveal only the minimal information about their values

needed to prove that they should be winning. We call this property “un-

conditional winner privacy (UWP).”15 The practical significance of UWP is

that it may alleviate winners’ concerns about misuse of the revealed infor-

mation, encourage participation by bidders who find it costly to figure out

12In the actual Incentive Auction, the clearing target was reduced three times before
the budget constraint was satisfied.

13Introducing a budget constraint causes the auctioneer’s substitutes condition to fail,
because if an auction is cancelled when a seller A raises its bid, then A’s price increase
can reduce the demand for other sellers.

14Other known mechanisms that satisfy a budget constraint include cost-sharing mech-
anisms of Moulin (1999), Juarez (2009), and Mehta et al. (2007), double auctions of
McAfee (1982), and procurement auctions by Ensthaler and Giebe (2009, 2014). All
of these mechanisms can be shown to be DA auctions. Building on an earlier version
of this paper, Duetting et al. (2014b) have constructed approximately optimal budget-
constrained DA double auctions, and Jarman and Meisner (2015) have shown that optimal
budget-constrained procurement auctions can be implemented as DA auctions.

15It is a variation of the notion of “unconditional privacy” used in computer science
(Brandt and Sandholm (2005)).
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their exact values, and allow the auctioneer to conceal winners’ politically

sensitive “windfalls.”16 The theoretical significance of UWP is conveyed by

the following characterization theorem: a monotonic allocation rule can be

computed by a communication protocol that preserves UWP if and only if it

can be computed by a DA clock auction.

DA auction allocation rules can also be characterized by the algorithms

to compute them. An allocation rule can be implemented by some DA clock

auction with truthful bidding if and only if it can also be implemented by

a “greedy rejection algorithm,” which iteratively rejects the least attractive

remaining bids according to some bid-ranking criterion that may depend

on the bid amount and information about the previously rejected bids and

bidders.17

When can DA clock auctions produce nearly efficient outcomes, that is,

ones that nearly minimize the total value of the acquired bidders? For our

answer, we call upon well known results about the performance of greedy

algorithms, and on simulations related to the Incentive Auction.

• When the sets of bids that can be feasibly rejected are the independent

sets of a matroid, a greedy rejection algorithm achieves the optimum.

This outcome is replicated by a descending DA clock auction that offers

the same price to all the bidders that can still be feasibly rejected.18

16For discussions of the importance of privacy in auctions, see Ausubel (2004) and
McMillan (1994).

17These greedy rejection heuristics are similar to the heuristic previously proposed to
create computationally feasible incentive-compatible mechanisms in the field of “Algo-
rithmic Mechanism Design” (as pioneered by Lehmann et al. (2002), and also used by
Mu’alem and Nisan (2008), Babaioff and Blumrosen (2008), and others), but with a crucial
difference: the previously proposed heuristics greedily accept the most attractive bids as
determined by some ranking criterion. Both greedy acceptance and greedy rejection algo-
rithms, when paired with threshold pricing, lead to computationally simple strategy-proof
auction mechanisms, but these two kinds of auctions have different strategic properties:
auctions based on greedy acceptance do not have an obviously strategy-proof implementa-
tion and are not group strategy-proof. See Appendix A for a simple example illustrating
these points.

18This finding is related to, but distinct from, the “forward” clock auction proposed
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• When the only constraints are ones to limit the sum of the “sizes” of the

rejected bidders, then the problem of optimally rejecting the highest

cost bidders is a “knapsack problem,” for which optimization is NP-

hard. However, the maximum can often be well approximated using the

Dantzig greedy heuristic, and the same outcome can be implemented

by a DA auction, as illustrated in the next section.

• Following an earlier draft of this paper, Duetting et al. (2014a) and

Kim (2015) have explored other cases in which the DA auctions lead

to “high” efficiency.

• In five simulations of a scaled-down version of the FCC’s problem by

Newman et al. (2017), described in Section 9, we find that a DA

auction with the pricing rule and feasibility checker used by the FCC

achieved within 10% of the minimal value loss from repacking (average

approximation was 5%), while incurring 14%-30% lower costs than the

Vickrey auction (average cost savings was 24%), and using only a small

fraction of the Vickrey auction’s computation time.19

By seeking to minimize the total virtual costs of acquired stations, in-

stead of their total values, DA auctions can also sometimes achieve exact

or approximate expected cost minimization. We show that if bidders’ values

are independently drawn from known “regular” distributions and the feasible

sets of rejected bids are the independent sets of a matroid, then there exists

a DA auction that minimizes the expected total payment by the auctioneer.

If bidders’ values are instead independently drawn from an unknown dis-

tribution, then a DA clock auction can incorporate “yardstick competition”

among bidders to reduce expected costs, as in Segal (2003). In follow-on

by Bikhchandani et al. (2011) for selling the bases of a matroid, which uses a greedy
acceptance algorithm.

19Even on the scaled-down problem, the average Vickrey computation took on average
over 90 CPU days, while an FCC auction simulation took less than 1.5 CPU hours.
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work, Loertscher and Marx (2015) construct a sequence of DA clock auc-

tions that achieves asymptotically optimal profits for a broker in a two-sided

market with unknown distributions of values and costs, as the number of

participants grows.

Another way to assess the cost performance of a DA auction is to com-

pare its prices to those of a related competitive equilibrium, and to those

of a related paid-as-bid auction. To evaluate problems with computational

constraints that may make optimization intractable, we compute the auc-

tioneer’s demand at any given vector of prices by applying the auction’s

allocation rule. Then, a competitive equilibrium is an allocation and prices

such that (i) each seller whose price strictly exceeds its cost sells its good,

(ii) each seller whose price is strictly less than its cost does not sell, and (iii)

the sellers from whom the auctioneer chooses to buy are the same as those

that choose to sell. We show that the DA clock auction allocation coupled

with the winners’ auction prices and prices for losing bidders equal to their

values is a competitive equilibrium, and in fact a maximal-price equilibrium

sustaining the auction’s allocation. These competitive equilibrium prices are

also a full-information Nash equilibrium bid profile of the sealed, paid-as-

bid auction that selects winners in the same way.20,21 In contrast, Vickrey

prices are not generally the prices of any competitive equilibrium, and may

be higher than the winning bids in any Nash equilibrium of the associated

20A stronger version of this equivalence obtains when the auction rule prescribes the
set of winners is unchanged when losers’ bids are increased. (This property, which holds
when winners are selected by optimization, also holds for various other allocation rules.)
We show in an Appendix that the full-information paid-as-bid auction using a DA alloca-
tion rule with this property is dominance-solvable: iterated deletion of weakly dominated
strategies in any order yields a unique outcome. Furthermore, this dominance-solvability
characterizes DA allocation rules.

21When bidders are substitutes, the Vickrey outcome can be implemented by a DA
auction. Hence, our equivalence result can be viewed as extending the finding by Bernheim
and Whinston (1986) that the coalition-proof equilibrium outcome of an optimizing paid-
as-bid auction coincides with the Vickrey (and DA auction) outcome when bidders are
substitutes.
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paid-as-bid auction.22

The paper is organized as follows: Section 2 contrasts the performance of

DA clock auctions and the Vickrey auction in a simple three-bidder example

in which bidders may not be substitutes. Section 3 gives a formal definition of

DA clock auctions and shows that, for any mechanism in this class, truthful

bidding strategies are obviously dominant, and truthful bidding is a strong

Nash equilibrium of the game. Section 4 characterizes the DA clock auctions

as the set of auctions that preserve winners’ unconditional privacy. Section

5 introduces direct-revelation deferred-acceptance auctions and shows that

they are strategically equivalent to DA clock auctions. Section 6 provides ex-

amples of DA auctions that may be useful in practice. Section 7 shows that if

some DA auction optimizes an objective resembling efficiency or cost, then it

treats bidders as substitutes. Consequently, the treatment of complementary

bidders is always a heuristic, non-optimizing one. Section 8 compares the cost

performance of DA auctions to two theoretical standards: competitive equi-

librium and full information equilibrium of paid-as-bid auctions. Section 9

describes simulations of the performance of the FCC’s reverse auction rules.

Section 10 discusses multi-minded bidders and their roles in the Incentive

Auction. Section 11 concludes.

2 A Simple Example

Here, we illustrate properties of DA auctions with a simple example with

three TV stations (labelled 1,2,3) and a single channel available in which to

assign losing bidders. The three stations’ values for their broadcast rights are

22For example, all the full-information Nash equilibria selected by the criteria of Bern-
heim and Whinston (1986) in the selling version of their problem have weakly lower prices
than the Vickrey prices, and may have strictly lower prices when bidders are not substi-
tutes. This low revenue/high cost problem of the Vickrey auction, observed by Ausubel
and Milgrom (2006), motivated the use of “core-selecting auctions” (Day and Milgrom
2008), which sacrifice strategy-proofness. The present paper proposes a different solution
to the problem, which preserves strategy-proofness but sacrifices outcome efficiency.
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denoted v1, v2, v3, respectively. We consider two possible cases, correspond-

ing to different sets of constraints on the stations that can be assigned to

continue broadcasting. An efficient assignment maximizes the total value of

the stations that continue to broadcast, or equivalently minimizes the total

value of the stations whose rights are purchased.

In the first case, no two stations can be assigned to the same channel, so

the efficient outcome is for the most valuable station to be assigned and for

the broadcast rights of the other two to be purchased. The Vickrey auction

accomplishes that while paying the two less valuable stations a price equal

to the value of the most valuable station. A descending DA clock auction

that offers the same price to all stations and reduces it until some station

exits replicates the Vickrey outcome: the most valuable station exits at a

price equal to its value, and the other two stations are then acquired at that

price. More generally, this single-price DA auction replicates the Vickrey

outcome when stations are substitutes or, equivalently, when the feasible sets

of rejected bidders are the independent sets of a matroid (Milgrom, 2017).

In the second case, the three stations are arrayed in order along a line

segment. The peripheral stations 1 and 3 can both broadcast on a channel

without interfering with each other, but neither can share a channel with

station 2. Thus, it is feasible to either acquire station 2 or stations 1 and

3 together. Notice that this example can be viewed as a special case of

the knapsack problem, if a station’s “size” is defined to be the number of

interference links it has (so that stations 1 and 3 each has size 1 and station

2 has size 2), and a collection of stations can be feasibly assigned to continue

broadcasting if and only if the sum of their sizes does not exceed 2 (the “size

of the knapsack”).23

In this example, a simple DA auction similar to the FCC’s auction might

operate as follows. The auction is guided by a single base clock price of q that

23The “knapsack problem” is the problem of maximizing the sum of values of selected
items subject to the single constraint that the sum of the “sizes” of the items may not
exceed some constant (the size of the knapsack).
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starts high and declines continuously. Each station i is offered a price equal to

wiq, where the “weight” wi is set by the auctioneer as some function of the

station’s observable characteristics. Assuming that stations bid truthfully,

then if v2/w2 > max(v1/w1, v3/w3), station 2 exits first and the auctioneer

buys stations 1 and 3; while if the inequality is reversed, either station 1

or station 3 exits first, at which point station 2 can no longer be feasibly

assigned, so its price is “frozen.” The third station is then induced to exit

by running its price down to zero. In particular, if we let w1 = w3 = 1 and

w2 = 2, then the auction implements Dantzig’s (1957) greedy algorithm for

the knapsack problem.

Clearly, there is no vector of weights (w1, w2, w3) for which the DA auc-

tion would be guaranteed to yield an efficient outcome, which in this simple

example is easy to compute: buy stations 1 and 3 if v1 + v3 < v2 and buy

station 2 if the inequality is reversed. While the Vickrey auction is efficient

and the DA auction is not, the latter also has some advantages. First, any

DA auction is obviously strategy-proof and weakly group strategy-proof. In

contrast, the Vickrey auction is not group strategy-proof: for example, when

it acquires stations 1 and 3, it pays them prices v2 − v3 and v2 − v1, respec-

tively, and bidders 1 and 3 could cooperate to increase those by bidding less

than their station values. Also, unlike the DA auction, the Vickrey price

for each winner depends on the other winner’s value, so implementing the

Vickrey payment requires full revelation of the winners’ values.

Depending on the values, DA auctions can also have a cost advantage

over the Vickrey auction. For example, when the Vickrey auction acquires

stations 1 and 3, it pays a total cost of 2v2 − v1 − v3 > v2. This outcome

is not in the core (it would be blocked by the coalition consisting of the

buyer and bidder 2), and it is more costly than any full-information pure

Nash equilibrium of the associated first-price auction.24 It follows that the

24In the general setting, Vickrey payments to bidders are sometimes higher, but never
lower, than those in the full-information equilibrium of the corresponding paid-as-bid
(“menu”) auction (Ausubel and Milgrom (2006)).
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prices are inconsistent with any competitive equilibrium. In contrast, when

the DA auction buys stations 1 and 3, its cost is w1+w3

w2
v2 ≤ v2, provided

that w1 + w3 ≤ w2, so this outcome is in the core. When bidder 2 wins the

DA auction, its cost could sometimes be higher than that of Vickrey, but

we will show that the price is nevertheless “competitive” in the sense that if

the auctioneer used its (inefficient) allocation rule to select items at the last

auction prices that bidders had accepted, it would make the same choices.

Furthermore, DA auctions can be geared towards minimizing the expected

procurement cost in the style of Myerson (1981). For assume that bidder val-

ues are independently distributed with known distributions Fi, and for each

bidder i, construct the virtual cost function γi(v) = v + Fi(v)/F ′i (v) and

assume that each is increasing. In the first example, in which any one of

the three stations can be assigned, the following DA auction is an “opti-

mal auction.” There is a continuously declining base clock price q and the

corresponding clock price for each station i is γ−1
i (q). If the auction begins

with a high value of q, then the bidder with the highest virtual cost will

be the first to exit, and so the mechanism will exactly minimize expected

procurement cost. This construction has some generality: a similar auction

minimizes expected costs when the stations that are feasible to repack are

the independent sets of a matroid. In the second (“knapsack problem”) ex-

ample, we could similarly set i’s clock price to be γ−1
i (q/wi) so long as i can

feasibly exit. This auction is not optimal, but it replicates the performance

of the Dantzig greedy algorithm in approximately minimizing the sum of the

winning bidders’ virtual costs for each value realization, and therefore the

sum of their expected payments.25

Like every DA auction, this one can also be modified to satisfy a bud-

get constraint or to cancel the auction if that is impossible. For example,

25In the actual FCC Incentive Auction, when the “base clock price” was q, the price
offered to any feasible UHF television station i was pi(q) = q(wi · Popi)1/2, where Popi
is the station’s broadcast area (used as a proxy for its value distribution) and wi is its

interference count, with w
1/2
i used as a proxy for the station’s “size.”
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suppose that the total procurement budget is B. If the total prices in some

DA auction exceeds B, then the auction can simply be extended so that

prices continue to fall until the total does not exceed B. If the offers at

those prices are unacceptable, then prices can continue to decrease until the

outcome is satisfactory or all prices are zero (and all stations exit). The

budget-respecting extension is still a DA auction. In contrast, if the Vickrey

auction must be cancelled when the total cost exceeds B, the resulting auc-

tion is not strategy-proof: if bidders 1 and 3 would be winners but for the

budget constraint, each of them could profitably increase its own bid, thereby

reducing the other’s Vickrey price and making cancellation less likely.

3 Clock Auctions and Truthful Bidding

We consider procurement mechanisms with N bidders, in which each bidder

can either “win” (which means that his bid to supply a given good or bundle

of goods is “accepted”) or “lose” (which means that his bid is rejected). We

restrict attention to mechanisms in which winning bidders receive payments

but losing bidders do not, which we henceforth refer to as “auctions.”

The preferences of each bidder i depend on whether he wins or loses, and,

if he wins, on the payment pi. We assume that these preferences are strictly

increasing in the payment and that there exists some payment vi ∈ R+ that

makes him indifferent between winning and losing; we call vi his “value.”26

Informally, a Deferred Acceptance (“DA”) clock auction is a dynamic

mechanism that, in a sequence of rounds, presents a nonincreasing sequence

of prices to each bidder. Each bidder whose price is reduced in a round

may choose to exit or continue. Bidders that have not exited are called

“active.”Bidders who choose to continue when their prices are reduced are

said to “accept” the lower price. When the auction ends, the remaining

26For unmixed outcomes, such a preference can be expressed by a quasilinear utility
pi − vi when the bidder wins and zero when he loses.
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active bidders become the winners and are paid their last (lowest) accepted

prices. Different DA auctions are distinguished by their pricing functions,

which determine the sequence of prices presented.27

To avoid technical complications, we restrict attention to auctions with

discrete time periods, indexed by t = 1, ... The set of active bidders in period t

is denoted by At ⊆ N . A period-t history consists of the sets of active bidders

in all periods up to period t: At = (A1, ..., At) such that At ⊆ ... ⊆ A1. Let

H denote the set of all such histories for all possible t ≥ 1. A descending

DA clock auction is described by a price mapping p : H → RN such that

p (At) ≤ p (At−1) for all t ≥ 2 and all At.

The DA auction gives rise to an extensive-form game among the registered

participants, as follows. The bidders who register for the auction comprise

the initially active set: A1 = N . These bidders are committed to accept

the opening prices, which are p (N). In each period t ≥ 1, given history

At, the auction offers a profile of prices p (At) to the bidders. If t ≥ 2 and

p (At) = p (At−1), the auction stops; bidder i is then a winner if and only if

i ∈ At and in that case i is paid pi (A
t). If t ≥ 2 and pi (A

t) < pi (A
t−1),

then i may either exit or accept the new price. Letting Et ⊆ At denote the

set of bidders who exit, the auction continues in period t + 1 with the new

set of active bidders At+1 = At\Et and the new history At+1 = (At, At+1).

We restrict attention to auctions, in which the set {p (At)}h∈H of possible

price offers is finite (ensuring that the auction ends in a bounded number of

periods).

To complete the description of the extensive-form game, we need to de-

scribe bidders’ information sets, given by functions Ii : H → Si. We allow

arbitrary information sets except that we require that each bidder i observe

his current price. Formally, for any two histories h, h′ ∈ H, if Ii (h) = Ii (h
′),

then pi (h) = pi (h
′).

27The described descending-clock auctions for the procurement setting are the mirror
image of the ascending clock auctions for the selling setting, which in turn generalize the
classic English auction for selling a single item.
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The truthful strategy of agent i with value vi in a DA auction accepts at

history h if and only if pi (h) ≥ vi. Given our assumptions, this strategy

is measurable with respect to the agent’s information. We can prove that

the truthful strategy is not only a dominant strategy, but also an obviously

dominant strategy in the sense of Li (2017):

Definition 1 (Li 2017) Strategy σi of agent i is obviously dominant if, for

any alternative strategy σ′i, at any information set Ii of the agent at which σ′i

and σi prescribe different actions, the agent’s payoff achieved by σi and any

strategy profile σ−i of other players such that (σi, σ−i) visits Ii is at least as

high as his payoff achieved by σ′i and any strategy profile σ′−i of other players

such that
(
σ′i, σ

′
−i
)

also visits Ii.

Proposition 1 The truthful strategy is an obviously dominant strategy in a

DA clock auction.28

Proof. A deviation from the truthful strategy involves either exiting at a

price weakly above value or continuing at a price below value. Either devia-

tion yields a nonpositive payoff for any behavior of others that is consistent

with the information set, while the truthful strategy yields a nonnegative

payoff for any behavior of others.

This proposition also implies that coalitional deviations from truthful

bidding cannot be strictly Pareto improving:

Corollary 1 In a DA auction, for every strategy profile σ, if all members of

a coalition S ⊆ N switch to truthful strategies then at least one member of S

will receive a weakly higher payoff.

Proof. Consider the first history h ∈ H at which a player i ∈ N bids non-

truthfully under strategy profile σ. If all members of S switch to truthful

28This proposition corresponds to an informal statement in an early version of this
paper, which has been formalized by Li (2017) using his definition of obviously dominant
strategies.
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strategies, then history h will also be reached, and agent i’s payoff will be

weakly increased according to Proposition 1.

Thus, truthful strategies form a strong Nash equilibrium of any DA auc-

tion. Since truthful strategies do not condition on other bidders’ values, it

is an “ex post” strong Nash equilibrium, that is, a strong Bayesian-Nash

equilibrium no matter what information bidders have about others’ values.29

4 Winners’ Privacy

Here we formalize the notion that DA clock auctions are the only incentive-

compatible communication protocols that preserve the privacy of winners.

For this purpose, let Vi ⊆ R+ denote the set of bidder i’s possible values,

and define a “communication protocol” to be an extensive-form game form,

with each terminal node mapped to a set of auction winners, coupled with

a mapping from each agent’s value vi ∈ Vi to his strategy in the game form.

The protocol implements an allocation rule that can be described by α :

Πi∈NVi → 2N , where α (v) ⊆ N is the set of winning bidders in state v ∈ V .

Computer scientists (e.g., Brandt and Sandholm (2005)) say that a pro-

tocol satisfies “unconditional privacy” if no coalition of agents can infer any

information about the other players’ values in the course of the protocol

besides the information implicit in the final allocation.30 We modify this

definition in two ways. First, we weaken it by focusing only on winners’ pri-

vacy. DA auctions do not preserve losers’ privacy, since their drop-out points

29Like Vickrey auctions, DA clock auctions may also have Nash equilibria in which some
bidders do not play their dominant strategies (for a description of the full set of equilibria of
the Vickrey auction, see Blume, Heidhues, Lafky, Munster, and Zhang (2009)). However,
we would not expect bidders to play weakly dominated strategies if they have sufficient
uncertainty about each other.

30This notion is also known as “non-cryptographic privacy,” since it permits neither pri-
vate communication channels (as in private-key cryptography) nor agents’ computational
constraints (as in public-key cryptography). A definition of privacy that allows such cryp-
tographic tricks would not much restrict what can be implemented (see Izmalkov et al.
(2005)).
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can reveal a lot of information about their values. Second, we strengthen the

definition to require that no information could be inferred about a winner’s

value beyond that needed to establish that he himself should win (rather

than establish the whole set of winners), even when the other N − 1 players

pool their information:

Definition 2 A communication protocol satisfies Unconditional Winner Pri-

vacy (UWP) if for any player i, any pair of his possible values vi, v
′
i ∈ Vi ,

and any values v−i ∈ V−i of the other players such that the protocols results

in bidder i winning in both states (i ∈ α(vi, v−i) ∩ α (v′i, v−i)), the protocol

finishes in the same terminal node in states (vi, v−i) and (v′i, v−i).

Definition 3 A communication protocol is Ex-Post Incentive Compatible

(EPIC), if the prescribed strategies form a Nash equilibrium even if each

bidder can observe the whole state V = Πi∈NVi.

Proposition 2 A DA clock auction with truthful bidding satisfies UWP.

Furthermore, any allocation rule on a finite state space V that is imple-

mentable with an EPIC communication protocol satisfying UWP is also im-

plementable with a DA clock auction with truthful bidding.

Proof. For the first statement, for player i to win in a DA clock auction

with truthful bidding for two different values vi, v
′
i ∈ Vi given any strategy

profile of the other players, player i must not exit in either case, and so the

protocol must finish in the same terminal node in both cases.31

For the second statement, starting with an EPIC UWP protocol P imple-

menting allocation rule α, we construct a DA auction with truthful bidding

that also implements α. First, we note that since P is EPIC, the direct

mechanism for α is dominant-strategy incentive compatible, and therefore

31This argument actually establishes a somewhat stronger property than UWP: that
even if the other players use non-truthful strategies (in computer science lingo, they are
“Byzantine” rather than “selfish”), they still cannot learn additional information about
player i’s value without causing him to lose.
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α must be monotonic (see Section 5 below). Then, we construct the DA

auction by induction on the histories of P , in such a way that the DA auc-

tion reveals at least as much information about players at each history as

P does at its corresponding history. We initialize the opening price of each

bidder i at pi (N) = maxVi for each i (so that all types truthfully accept it).

Then, at any history h of P , let V̄ ⊆ V denote the set of states in which h

is reached in P . By the usual “communication complexity” argument (e.g.,

Kushilevitz and Nisan (1997), Segal (2007)), this set must be a product set:

V̄ = V̄1 × ... × V̄N . Let i be the player who sends a message at history h

in P . We replace his message with several rounds of the DA auction that

reduce bidder i’s price pi to p′i = max
{
vi ∈ V̄i ∪ {−1} : vi < pi

}
for as long

as i /∈ ∪v−i∈V̄−i
α (pi, v−i) – that is, as long as bidder i with value pi could

never win at history h in P .

At the end of the price reductions, all bidder i types who could not win

at history h in P fully reveal themselves in the DA auction by exiting. If

pi < min V̄i, then i /∈ ∪v∈V̄ α (v), that is, bidder i could never win at history

h in P , and is sure to exit in the DA clock auction as his price is reduced to

pi. If instead pi ≥ min V̄i, there exists v−i ∈ V̄−i such that i ∈ α (pi, v−i), and

by monotonicity of α we also have i ∈ α (vi, v−i) for any type vi ≤ pi, who

has not exited the clock auction at this point, and therefore by UWP of P

any such type must send the same message as type pi at history h.

Thus, when bidder i responds truthfully to the price reductions, all bidder

i types with values not exceeding the new price pi do not reveal themselves

in either the original protocol or the constructed DA auction, while all types

with values above pi fully reveal themselves in the DA auction by exiting.

Hence the clock auction reveals at least as much information as P at the

corresponding history. In each round of the clock auction, only bidders who

could never win in P exit. At any terminal history h of P , α
(
V̄
)

must be

a singleton, and so any bidders who could still win (that is, who have not

exited the clock auction) must be winners. Thus, the constructed DA auction
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implements allocation rule α.

5 Equivalent Direct Mechanisms

Appealing to the Revelation Principle and the strategy-proofness of DA auc-

tions, we can construct an equivalent direct revelation mechanism as follows.

Let Vi ⊆ R+ denote the set of bidder i’s possible values. In the direct

mechanism, each bidder reveals his value, and the mechanism implements an

allocation rule α : Πi∈NVi → 2N and a payment rule π : Πi∈NVi → RN such

that losing bidders are not paid, that is, πi(v) = 0 for all i ∈ N\α (v). Such

triples 〈V, α, π〉 may be called “direct auctions.”

Definition 4 Allocation rule α is monotonic if i ∈ α (vi, v−i) and v′i < vi

imply i ∈ α (v′i, v−i).

Definition 5 A direct auction 〈V, α, π〉 is a threshold auction if α is mono-

tonic and the price paid to any winning bidder i ∈ α(v) is given by the

threshold pricing formula:

πi(v−i) = sup {v′i ∈ Vi : i ∈ α (v′i, v−i)} . (1)

The following characterization of strategy-proof direct auctions is well

known:

Proposition 3 Any threshold auction is strategy-proof. Conversely, any

strategy-proof direct auction has a monotonic allocation rule, and, if V = RN
+ ,

it must be a threshold auction.

We may describe the direct deferred-acceptance (DA) algorithm on value

spaces V by a collection of scoring functions
(
sAi
)
A⊆N,i∈A, where for each

A ⊆ N and each i ∈ A, the function sAi : Vi×VN\A → R+ is nondecreasing in

its first argument. The input to the algorithm is a value vector v ∈ V and the
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algorithm processing works as follows: Let At ⊆ N denote the set of “active

bidders” at the beginning of iteration t. We initialize the algorithm with

A1 = N . In each iteration t ≥ 1, if sAt
i

(
vi, vN\At

)
= 0 for all i ∈ At then stop

and output α(v) = At; otherwise, let At+1 = At\ arg maxi∈At s
At
i

(
vi, vN\At

)
and continue. In words, the algorithm iteratively rejects the least desirable

(highest-scoring) bids until only zero scores remain. We say that the DA

algorithm computes allocation rule α if for every value profile v ∈ V , when

the algorithm stops the set of active bidders is exactly α (v).

By inspection, every DA algorithm computes a monotonic allocation rule.

Thus, we can define a DA threshold auction as a sealed-bid auction which

computes its allocation using a DA algorithm and makes the corresponding

threshold payments to the winners. This auction, like any threshold auction,

is strategy-proof. Furthermore, the threshold prices can be computed in the

course of the DA algorithm, by initializing the prices as p0
i = +∞ for all i,

and then updating them in each round t ≥ 1 as follows:

pti = min
{
pt−1
i , sup

{
v′i ∈ Vi : sAt

i

(
v′i, vN\At

)
< sAt

j

(
vj, vN\At

)
for j ∈ At\At+1

}}
for every bidder i ∈ At+1. In the final round of the algorithm, for every

winner i ∈ AT , pTi is the winner’s threshold price.

The next two results show that the direct mechanisms corresponding

to clock auctions with truthful strategies are exactly direct DA threshold

auctions.

Proposition 4 The direct mechanism for a finite DA clock auction with

state space V = RN
+ (more generally, such that {pi (h) : h ∈ H} ⊆ Vi ⊆ R+)

and truthful bidding is a DA threshold auction.

Proof. Given a finite DA clock auction p, we construct the scoring rule for

the direct DA auction in the following manner: Holding fixed a set of bidders

S ⊆ N and their values vS ⊆ RS, let ASt (vS) denote the set of active bidders

in round t of the clock auction if every bidder from S bids truthfully and
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every bidder from N\S never exits.32 Now for any given A ⊆ N and i ∈ A,

define the score of agent i as the inverse of how long he would remain active

in clock auction if he bids truthfully with value vi and all bidders from N\A
bid truthfully with values vN\A, while bidders in A\ {i} never quit:

sAi
(
vi, vN\A

)
= 1/ sup

{
t ≥ 1 : i ∈ A{i}∪(N\A)

t

(
vi, vN\A

)}
.

(Note that the score is 1/∞ = 0 if agent i remains active for the remainder

of the auction.) This score is by construction nondecreasing in vi. Also

by construction, given a set A of active bidders, the set of bidders to be

rejected by the algorithm in the next round (arg maxi∈A s
A
i

(
vi, vN\A

)
) is the

set of bidders who would quit the soonest in the clock auction under truthful

bidding. If no more bidders would ever exit the auction, then all active

bidders have the score of zero, so the DA algorithm stops. Finally, each

winner’s final clock auction prices is its threshold price: it would have lost by

bidding any higher value in Vi in the DA auction, since this would correspond

to rejecting the final price in the clock auction.

Proposition 5 Every direct DA threshold auction with a finite state space V

is a direct mechanism for some finite DA clock auction with truthful bidding.

Proof. Given a direct DA threshold auction with a scoring rule s and a

finite state space V , we construct an equivalent clock auction as follows. We

begin with notation. Let p−i = max (Vi ∩ (−∞, pi) ∪ {minVi − 1}) and p+
i =

min (Vi ∩ (pi,+∞) ∪ {maxVi + 1}). These denote the result of decrementing

or incrementing a price pi by a minimal amount.

The auction then operates as follows. Set the opening prices to pi (N) =

maxVi for each i, so that all truthful bidders participate. In each subsequent

round, set

32Formally, initialize AS
1 (vS) = N and iterate by setting AS

t+1(vS) =

AS
t (vS) \

{
j ∈ S : vj > pj

(
AS

t (vS)
)}

. The sequence
(
AS

t (vS)
)∞
t=1

must start repeating
eventually (when the clock auction stops).
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pi
(
At
)

=

{
pi (A

t−1)
−

if i ∈ arg maxj∈At s
At
j

(
pj (At−1) , pN\At (At)

+)
,

pi (A
t−1) otherwise.

This decrements the price to every highest-scoring active bidder, where the

scoring function is applied to the last accepted price. Because the auction

maintains pi (A
t) = pi (A

t−1) for all i ∈ N\At, it remembers the prices re-

jected by the bidders who exited, which are one decrement below their values.

Then equivalence is easy to see: First, for every history of the clock

auction, under truthful bidding, the next set of bidders to exit consists of

the bidders who have the maximum scores among the active bidders, and

iterating this argument establishes that the final set of winners is the same

in both auctions. Second, for each bidder who has not exited by the auction’s

end and thus became a winner, his final clock price is his highest value that

would be still winning, that is, his threshold price.

These results imply that direct DA threshold auctions inherit strategy-

proofness and weak group strategy-proofness from their clock auction coun-

terparts (see Proposition 1 and Corollary 1, respectively).33,34 On the other

hand, direct auctions lose obvious strategy-proofness and winners’ privacy,

making them less attractive for some applications.35 At the same time, direct

DA threshold auctions are a useful theoretical construct for understanding

the objectives that may be achieved by means of clock auctions.

33Note that such auctions are not generally strongly group strategy-proof, because a
weak Pareto improving coalitional deviation may be obtained by a change in losing bids
that increases a winner’s threshold price.

34The immediate implication is for DA threshold auctions on finite value spaces, but
the arguments are easily extended to infinite value spaces.

35A downside of clock auctions is that they are slower, often requiring many rounds
to achieve good precision. It is also possible to specify “hybrid” designs that achieve a
compromise between the speed of sealed-bid auctions and the attractive features of clock
auctions. These hybrid designs include, for example, clock auctions with sealed intra-
round bids (restricted to be between “start-of-round” and “end-of round” prices), and the
“survival auctions” of Fujishima et al. (1999).

24



6 Examples of Deferred-Acceptance Auctions

In this section we describe some examples that shed light on potential ap-

plications. These examples expand on the examples of section 2 as well as

some observations made in the earlier literature and in follow-up work to an

earlier version of this paper.

Example 1 (Ensuring Feasible Outcomes) Suppose that it is only fea-

sible for the auctioneer to accept bids of a subset of bidders A ∈ F , where

F ⊆ 2N is a given family of sets, with N ∈ F (so that feasibility is achiev-

able).36 A DA clock auction maintains feasibility if it only reduces prices to

stations i if A\ {i} ∈ F , and only to one such station at a time.

In the reverse auction of the FCC’s Incentive Auction, checking whether

a given set N\A of the rejected bidders could be assigned to the available

channels in a way that satisfies all interference constraints was an NP-hard

problem which could not always be solved in the allotted time.37 When the

feasibility checker timed out without producing a “yes” or “no” answer, the

time-out was treated as a “no” and the price offer for the station was not re-

duced. This guaranteed both feasibility and strategic simplicity for the bidders

regardless of the precision of computations.

Example 2 (Optimization with Matroid Constraints) Suppose that the

goal is to find an “efficient” (social cost-minimizing) set of winning bids sub-

ject to a feasibility constraint, as follows:

α (v) ∈ arg min
A∈F

∑
i∈A vi. (2)

Suppose further that we have a perfect feasibility checker, which can compute

whether A ∈ F . The simplest relevant scoring function is: sAi
(
vi, vN\A

)
= vi ·

36E.g., in the example of Section 2, F = {{1, 2} , {3} , {1, 3} , {2, 3} , {1, 2, 3}}.
37In auction simulations, the customized feasibility-checking software developed for the

incentive auction obtained the exact answer in 99.9% of the feasibility checking problems
(Frechette et al. 2017).
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1A\{i}∈F . Set aside the issue of ties by assuming that the sets of possible values

are disjoint: Vi ∩ Vj = ∅ for i 6= j. Then, by a classical result in matroid

theory (see Oxley (1992)), the resulting greedy rejection algorithm computes

an efficient allocation rule α if and only if the feasible sets of rejected bids

({R ⊆ N : N\R ∈ F}) are the independent sets of a matroid with ground set

N . This algorithm is implemented by a clock auction that offers the same

descending price to all the active bidders who could still be feasibly rejected,

and “freezes” a bidder’s price when it can no longer be feasibly rejected.38

The matroid property in Example 2 captures a notion of “one-for-one

substitution”among bidders (in particular, it implies that all the maximal

feasible sets of rejected bids – the “bases” of the matroid – have the same

cardinality.) This substitution pattern does not hold, even approximately, in

the FCC setting, which involves a trade-off between acquiring a larger number

of stations with smaller coverage areas and a smaller number of stations with

larger coverage areas, as illustrated in Section 2. One way to accommodate

that in the auction is illustrated in the following stylized example:

Example 3 (Knapsack Problem) Suppose that the family of feasible sets

takes the form

F =
{
A ⊆ N :

∑
i∈N\Awi ≤ 1

}
.

The problem of maximizing
∑

i∈N vi subject to
∑

i∈N wi ≤ 1 is known as the

“knapsack problem.” Interpreting wi > 0 as the “size” of bidder i, this

38This is related to the analysis of Bikhchandani et al. (2011), who consider “selling”
auctions in which the family of sets of bids that could be feasibly accepted is a matroid.
Their proposed efficient clock auction increments prices for bidders who could still possibly
lose, that is, ones whose rejection would preserve the spanning property of the set of active
bidders. (This generalizes the clock auction proposed by Ausubel (2004).) Their auction
implements the “greedy worst-out” heuristic algorithm, while our proposed reverse auction
implements the “greedy best-in” heuristic algorithm. While either algorithm would yield
efficient allocations in both the procurement and selling matroid auctions, only one of
them constitutes a DA algorithm: in the procurement auction it is the best-in algorithm,
and in the selling auction it is the worst-out algorithm.
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problem is equivalent to problem (2) with the specified choice of F .39 This

formulation generalizes the example of Section 2, so we again appeal to the

famous “greedy” heuristic of Dantzig (1957), which, setting aside ties, cor-

responds to the direct DA algorithm with sAi (vi, vN\A) = vi/wi1A\i∈F . This is

equivalent to the clock auction in which a descending base clock price q de-

termines the current price offer wiq to each active bidder i, and in which the

price for bidder i “freezes” when the bidder can no longer be feasibly rejected.

It can be shown that the inefficiency is no larger than the remaining empty

space in the knapsack when the first item i is rejected multiplied by vi/wi.

For the FCC reverse-auction, one goal was to keep total procurement cost

low: lower procurement costs contributed to more spectrum being cleared.

That makes it interesting to generalize our section 2 example, showing how

a DA auction can approximately minimize expected costs.

Example 4 (Expected Cost Minimization with Independent Values)

Suppose that bidders’ values vi are independently drawn from distributions

Fi(v) = Pr{vi ≤ v} on Vi = [0, v̄i] for each i. Following the logic of My-

erson (1981), the expected cost of a threshold auction that implements allo-

cation rule α can be expressed as E
[∑

i∈α(v) γi (vi)
]
, where γi (vi) = (vi +

Fi(vi)/F
′
i (vi)) (bidder i’s “virtual cost function”). Assume that the virtual

cost functions are strictly increasing. Then, if we are given a DA algorithm

with scoring rule s that exactly or approximately minimizes the expected social

cost subject to feasibility constraints as in the above examples, it can be mod-

ified to yield a DA threshold auction that exactly or approximately minimizes

the total expected cost of procurement subject to the constraints. The modified

auction uses the scoring rule ŝAi
(
bi, bN\A

)
= sAi

(
γi (bi) ,

(
γj (bj)

)
j∈N\A

)
.

39In follow-work, Duetting, Gkatzelis and Roughgarden (2014) consider instead the “sell-
ing” problem in which the accepted bids must fit into a knapsack, and examine the ap-
proximation power of DA algorithms for this problem.
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Example 5 (Expected Cost Minimization with Correlated Values)

Suppose that the auctioneer again cares about minimizing the expected total

cost, but relax the assumption that bidders’ values are statistically indepen-

dent. In such cases, as noted in Segal (2003), the auctioneer would optimally

condition the price offered to one bidder on the bids of the others, including

those that no longer have a chance of winning. Thus, in contrast to the pre-

ceding examples, in this context it can be helpful to condition scores on the

values of already-rejected bids.

For a simple example, if the auctioneer values acquiring each bidder at π

and faces no feasibility constraints, it might use scoring functions sAi
(
vi, vN\A

)
=

max
{
vi − p∗A

(
vN\A

)
, 0
}

, where p∗A
(
vN\A

)
= arg maxp (π − p) Pr

{
vi ≤ p|vN\A

}
is the optimal monopsony price for the posterior distribution of values given

the rejected bids. In follow-up work to an earlier version of this paper, Lo-

ertscher and Marx (2015) show that the optimal expected profits can be ap-

proximated asymptotically with a DA clock auction for a large number of

bidders whose values are drawn i.i.d. from an unknown distribution.

Another important objective in FCC’s “incentive auction” is satisfaction

of a budget constraint: the reverse auction’s cost must be at least covered by

the forward auction’s revenues. In general, rather than being fixed as in our

example in Section 2, the available budget may depend on the set of items

purchased.

Example 6 (Auctioneer’s Budget Constraint) Suppose that the budget

constraint is that when the set of winning bidders is A, the auctioneer is not

permitted to pay more than R(A) in total, with R (∅) = 0. Any DA clock

auction p can be modified to one that always satisfies the budget constraint

and produces the same outcome as the original auction when the latter would

satisfy the constraint, and otherwise may reduce the set of winning bidders

or cancel the auction, if necessary. For this purpose, one simply changes p
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so that p(At) < p(At−1) whenever
∑

i∈At
pi(A

t−1) > R(At).40 The modified

auction is still a DA auction, with all the properties that implies.

In the mirror-image formulation of “selling” goods, budget-constrained

“cost-sharing” DA clock auctions have been proposed by Moulin (1999) and

Mehta et al. (2009). Their clock auctions always offer prices to all ac-

tive bidders that exactly cover the cost of serving them (in our notation,∑
i∈At−1

pi (A
t−1) = R (At−1) for all histories At−1), and stops as soon as

all active bidders accept their prices (that is, At = At−1). A different kind

of budget-constrained (sealed-bid and clock) DA auction for procurement is

proposed by Ensthaler and Giebe (2009, 2014) for the case where the target

revenue R (A) does not depend on the set of winners A. In a follow-up to our

work, Jarman and Meisner (2017) study optimal budget-constrained auctions

for this case, and show that they can be implemented as DA auctions.

Budget constraints may be combined with various feasibility constraints

on the set of accepted bids. For example, McAfee (1992) proposes a budget-

constrained DA clock double auction for a homogeneous-good market with

unit buyers and unit sellers, in which the feasibility constraint dictates that

the number of the accepted buy bids (“demand”) must be equal to the number

of the accepted sell bids (“supply”).41 The FCC’s “Incentive Auction” is sim-

ilarly a double auction for spectrum sellers (TV broadcasters) and spectrum

buyers (mobile broadband companies) that is constrained to generate a certain

amount of net revenue, but subject to the added complication that buyers de-

mand and sellers supply different kinds of differentiated goods and the feasible

combinations of accepted bids are quite complicated. Nevertheless, the FCC’s

setting also admits a double clock auction that, in the manner of McAfee’s

40The equivalent direct DA threshold auction must use scoring that is contingent on
already-rejected bids, since it is those bids that determine the current threshold prices of
the still-active stations.

41McAfee’s clock auction offers the same ascending “buy”price to all buyers and the same
descending “sell” price to all sellers, “freezing” the price to a “short” side of the market
to keep demand within 1 of supply, and stopping as soon as both (i) the “sell”price falls
weakly below the “buy” price and (ii) demand equals supply.
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double auction, sets a sequence of possible targets for the number of channels

to clear, starting with the largest number and then reducing it whenever the

revenue constraint cannot be satisfied with the current clearing target.42

7 Optimization, Substitutes and Clock Auc-

tions

A substantial literature on many-to-one matching (Gale and Shapley (1982),

Kelso and Crawford (1982), Demange et al. (1986), Hatfield and Milgrom

(2005)) has demonstrated that a stable allocation can be found using a

deferred-acceptance algorithm in settings with an appropriate “substitutes”

property, which guarantees that the responding agent will never regret re-

jecting a provisionally losing offer when other available offers have improved.

(See Ausubel (2004) and Bikhchandani et al. (2007) for similar results for

auctions.) In our setting, which is a special case of the ones considered in

the literature (it has is a single responding agent, and the proposing agents

are single-minded), allocation rule α has substitutes if i ∈ α (v) and v′j > vj

for some j 6= i implies i ∈ α
(
v′j, v−j

)
.

An allocation rule α that has substitutes on a finite state space can be

implemented by a DA clock auction that decrements prices minimally only

to those active bidders who wouldn’t be accepted in α given current best

offers (the active bidders’ current prices and the exited bidders’ last accepted

prices), and continues until no such bidders can be found. Furthermore, in

Appendix C we show that implementability with any clock auction satisfying

those conditions on any finite product subspace characterizes the substitutes

property.

While the substitute property is satisfied in some classical examples (such

42Duetting, Roughgarden, and Talgam-Cohen (2014) consider the approximation power
of balanced-budget DA double auctions for settings in which buyers and sellers must be
matched one-to-one subject to some constraints.
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as Example 2 above), it is known to be quite restrictive (see, e.g., Hatfield and

Milgrom (2005), Milgrom (2009), Ostrovsky and Leme (2015)). As discussed

above, DA clock auctions can also achieve good performance for some prac-

tically important settings in which bidders cannot be treated as substitutes

(such as settings with knapsack feasibility constraints, budget constraints,

correlation in expected cost minimization). However, the proposed DA auc-

tions for those settings were not exactly optimal, and we now show that this

is not accidental: DA auctions are inconsistent with optimizing any objective

function in a natural class. Thus, the handling of complements by DA clock

auctions is always heuristic, not optimizing.

An allocation rule α is “optimizing” if

α (v) ∈ arg max
A⊆N

F (A)−
∑

i∈A γi (vi) (3)

for some function F : 2N → RN ∪ {−∞} and functions γi : R → R. For

example, (3) is a surplus maximization problem when γi (vi) ≡ vi and F (A)

is the auctioneer’s gross benefit from accepting bid combination A (with in-

feasible combinations assigned F (A) = −∞). Alternatively, (3) can describe

maximization of the auctioneer’s expected profit, or minimization of its ex-

pected cost (as in Example 4), when bidders’ values are independently drawn

from regular distributions whose virtual values are given by γi (vi).

Proposition 6 Suppose that allocation rule α : RN
+ → 2N solves (3) for

each v ∈ RN
+ , for some nondecreasing continuous functions γi for each i.

Further suppose that α restricted to any finite state space V = Πi∈NVi ⊆ RN
+

is implementable with a DA clock auction. Then, α has substitutes on any

such state space V on which the objective in (3) has no ties.

The proof of the proposition is given in Appendix D.
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8 Competitiveness of DA Auction Payments

In this section, we compare the prices in DA auctions with two notions of

competitive prices, corresponding to competitive equilibrium and the full-

information Nash equilibrium of the related paid-as-bid auction. For each of

the concepts, the auctioneer uses the same DA allocation rule α to map bids

to outcomes.

Definition 6 Let A ⊆ N and p ∈ V . We say that 〈A, p〉 is an α-competitive

equilibrium in state v ∈ V if (i) vi ≤ pi for all i ∈ A, (ii) vi ≥ pi for all

i ∈ N\A, and (iii) A = α (p).

The following proposition establishes, for any DA allocation rule α, a

three-way equivalence between (a) the winners’ threshold prices (π(v))i∈A

(which are also the DA auction prices), (b) the maximal competitive equi-

librium prices supporting the winning allocation, and (c) winning bids in a

full-information Nash equilibrium of the related first-price auction.

Proposition 7 Let α be a DA allocation rule, and let v ∈ V , A ⊆ N and

pA ∈ VA. Then the following three statements are equivalent:

(a) A = α (v) and for each i ∈ A, pi = πi (v−i),

(b)
(
pA, vN\A

)
is a maximal price vector such that (A, pA, vN\A) is an

α-competitive equilibrium in state v,

(c) bid profile
(
pA, vN\A

)
is a full-information Nash equilibrium of the

paid-as-bid auction in state v, yielding allocation A.

Proof. (b) implies (a): We must have A = α (v) = α
(
pA, vN\A

)
by equilib-

rium condition (iii) and UWP. Thus, by (1), pi ≤ πi (v−i) for all i ∈ A. This

must hold with equality for the equilibrium to be maximal.

(a) and (b) imply (c): By (b), all bidders have nonnegative payoffs at

bid profile
(
pA, vN\A

)
. It is trivial that bid reductions are not profitable for

either a winner or a loser in the paid-as-bid auction. Since each winner is
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bidding its threshold price, any bid increase by a winner would cause him to

lose. By monotonicity of α, a loser also cannot gain by increasing his bid.

(c) implies (b): Take any Nash equilibrium bid profile p ∈ V with pN\A =

vN\A and let A = α (p). Then 〈A, p〉 satisfies competitive equilibrium condi-

tions (ii) and (iii) by construction, and satisfies condition (i) due to winners’

best response condition. Now, take any p′ ≥ p such that 〈A, p′〉 is a compet-

itive equilibrium in state v. Competitive equilibrium condition (ii) requires

that p′N\A ≤ vN\A = pN\A, and so p′N\A = vN\A. But we must also have

p′A ≤ pA, for otherwise a bidder i ∈ A with p′i > pi would have a profitable

deviation to p′i from bid profile p, remaining winning due to Unconditional

Winners’ Privacy.

As noted previously, there is no corresponding equivalence for the Vickrey

auction: Vickrey prices may be neither competitive equilibrium prices nor

consistent with any equilibrium of the corresponding paid-as-bid auction.

Proposition 7 leaves open the possibility that there may exist multiple

competitive equilibrium outcomes, including ones in which losers’ equilib-

rium prices are below their values. There could also be multiple Nash equi-

librium outcomes of the first-price auction. In Appendix E we show that if

the allocation rule α is non-bossy, these problems mostly vanish: there is a

unique α-competitive allocation, which is also the unique allocation among

undominated strategies in the related first-price auction game. In addition,

the first-price auction game is then dominance solvable.

9 Simulations of the FCC Reverse Auction

The usefulness of the DA auctions introduced in this paper depends on their

performance in complex applications. One way to examine that is to use

simulations based on the FCC design and compare the outcomes to those of

the VCG mechanism. Since fully optimizing the repacking of the 2,990 U.S.

and Canadian stations to compute VCG allocations and prices has proven

33



to be computationally intractable, in work with collaborators (Newman et

al. 2017) we conducted auction simulations using a small enough set of sta-

tions for exact efficient channel assignments to be computed. The subset

consists of 202 U.S. UHF stations starting with seven UHF stations in New

York City and including all the UHF stations that are within two links from

them in the interference graph, assuming that UHF stations are not inter-

ested in switching to VHF. This subset covers one of the densest areas of the

U.S.: the average number of neighbors (stations with which a given station

shares an interference constraint) in the subset is 46.1, and overall there are

70,384 channel-specific interference constraints (which are posted by FCC

on site http://data.fcc.gov/download/incentive-auctions/Constraint Files/).

We simulated the problem of clearing 21 broadcast channels (126 MHz of

spectrum), which was FCC’s initial clearing target in the Incentive Auction.

Stations values for our simulations were drawn randomly using the method-

ology proposed by Doraszelski et al. (2016) based on publicly available data.

The total value of the 202 stations in the dataset is $13,309 billion.

We simulated both the VCG outcome and the outcome of the FCC auc-

tion, under the assumption that each station is owned separately and bids

truthfully. For the FCC auction, we scored stations using the volumes used

by FCC in the auction (posted in http://wireless.fcc.gov/auctions/incentive-

auctions/Reverse Auction Opening Prices 111215.xlsx ).

We used the same computational environment (described in Newman et

al. (2017)) for both approaches. On the scaled-down setting, the average

VCG run took over 90 days of aggregate CPU time (the computation of

VCG prices to the winners could be parallelized).

Then we simulated FCC’s auction for the same dataset, using the SATFC

feasibility checking software developed by Auctionomics, Inc. (described by

Frechette et al. (2015)). We used SATFC version 2.3.1 (publicly released on

https://github.com/FCC/SATFC/releases), which was also used by FCC in

the actual auction. In contrast, the average FCC auction on the scaled-down
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setting took 1.5 hours of aggregate CPU time.43

Since the VCG outcome minimizes the total value of stations taken off

air, the corresponding value for the FCC auction design must necessarily be

higher. We defined the value loss ratio of the DA mechanism as the sum

of values of stations winning (and hence going off air) under the mechanism

divided by the corresponding sum of values of winning stations in the efficient

(VCG) allocation. In our simulations, the FCC auction design had efficiency

loss ratios of between 0.8% and 10.0% (the average ratio was 5%). On the

other hand, the costs (total payments to broadcasters) of the FCC auction

were 14% to 30% lower than the costs paid by VCG (the average cost savings

was 24%).

In addition, the FCC design proved to be computationally tractable and

could be scaled up to the true size with roughly proportional increase in com-

putation time: indeed, a nationwide computation could be run using about

6 CPU hours.44 In contrast, sufficiently precise nationwide VCG computa-

tions were found to be impossible even in a matter of CPU weeks. Thus, the

simulations established that, in contrast to the VCG auction, a heuristic DA

auction with good feasibility checking is computationally feasible and can

achieve significant cost savings by reducing stations’ information rents, with

smaller losses of allocative efficiency.

10 Multi-Minded Bidders

Our analysis has restricted bidders to be single-minded, that is, to bid for a

single pre-determined option. The problem of algorithmic design of strategy-

proof mechanisms for multi-minded bidders in computationally difficult en-

43With feasibility checking parallelized among 18 SATFC workers using 8 cores per
worker, an actual simulation computing both the allocation and prices took about 7 min-
utes.

44Even though nationwide simulations necessitated using time-outs on some feasibility
checking problems, these were found to have no substantial effects on the overall efficiency
and cost.
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vironments is substantially more challenging. For example, in the DA al-

gorithms of Gale and Shapley (1962) and Hatfield and Milgrom (2005), as

well as their practical adaptations such as the Simultaneous Multi-Round

Ascending Auctions used by the F.C.C. (Milgrom 2000, Gul and Stachetti

(2000)), multi-unit buyers have incentives to engage in demand reduction

(and similarly, multi-unit sellers have incentives to engage in supply reduc-

tion). While for some settings sophisticated DA clock auctions have been

proposed in which truthful bidding is an ex post Nash equilibrium (Ausubel

(2004), Ausubel et al. (2006), de Vries et al. (2007), Bikhchandani et al.

(2011)), in those settings bidders are substitutes, computations are corre-

spondingly easy, and the outcomes coincide exactly with the Vickrey out-

come. For computationally challenging combinatorial-auction settings, pro-

posed DA auctions include versions of sequential serial dictatorship (Bartal

et al. 2003), randomized mechanisms that are “truthful in expectation” (Lavi

and Swami 2011), and mechanisms that implement in undominated strate-

gies (Babaioff et al. 2009). However, the approximation guarantees of these

mechanisms shrink in the number of objects, so these mechanisms may not

have worked well for the FCC reverse auction problem.

In the FCC reverse auction setting, a number of participants were po-

tentially multi-minded: namely, they could have been interested in selling

more than one station, or in switching to a VHF channel rather than giv-

ing up their licenses outright. Our recommendation to the FCC was based

on our assessment that the crucial challenge of the auction was to attract

participation of the hundreds of broadcasters with the lowest values, who

would be the sellers in an efficient outcome. From the perspective of these

mostly smaller bidders, this was an extremely complicated resource alloca-

tion, in which the rules for winner determination were barely comprehensible

and certainly not computable. Few of these bidders would be likely to hire

expensive consultants to advise their bidding. Most would plan to sell at

most one station in any given market, and have only a single option in mind:
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selling their broadcast rights if the price was high enough. For such bidders,

the obviously strategy-proof DA clock auction would make it easy to decide

to participate and bid.45

11 Conclusion

The analysis and results reported in this paper were developed in connection

with our engagement to advise the FCC on the design of its “Incentive Auc-

tion.” The search for pricing algorithms to lead to the best possible results

inspired simulations that eventually led to the pricing rule described ear-

lier. DA clock auctions have the huge advantage for this application that,

in contrast to sealed-bid auctions, they are obviously strategy-proof and, in

contrast to Vickrey auctions, are computable, weakly group strategy-proof,

and compatible with auction budget constraints. Obvious strategy-proofness

is important because it reduces the cost of participation, especially for small

local broadcasters whose participation was believed to be critical for a suc-

cessful Incentive Auction.46

Our competitive pricing results highlight the good news that the obvious

strategy-proofness that might attract participation by small broadcasters

need not raise acquisition costs above the levels of competitive equilibrium

45Given the DA clock auction design, market power by broadcasters was a potential
problem which grew in importance after the auction design was substantially completed,
as investors bought multiple television stations in individual markets. The significance of
market power that may have resulted is an empirical question. By law, bids in the auction
cannot be revealed and that limits our ability to assess the impact of supply withholding
strategies in the actual reverse auction.

46Two additional advantages make a DA clock auction particularly suitable for FCC’s
problem and account for broad popularity of clock auctions in practice. First, clock
auctions with information feedback can help bidders aggregate common-value information
and thereby improve efficiency and revenues (as in Milgrom and Weber 1982). Second,
clock auctions allow bidders to express their preferences for multiple bidding options (e.g.,
auction bundles) by switching among those options (expressing such preferences in a sealed
bid may require a larger message space). However, modeling these advantages is beyond
the scope of this paper.
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prices or above the bids in a Nash equilibrium of the related paid-as-bid

auction. This is important for efficiency as well, because the full Incentive

Auction was a two-sided mechanism, in which the revenues from the forward

auction portion must be sufficient to pay the costs the broadcasters incur

in moving to new broadcast channels (as well as meeting certain other gross

and net revenue goals). High costs could lead to less clearing, less trade, and

a loss of efficiency.47

Roth (2002) has observed that “Market design involves a responsibility

for detail, a need to deal with all of a market’s complications, not just its

principal features.” Over the past two decades, variants of the original DA

algorithm have had remarkable success in accommodating the diverse details

and complications of a wide set of matching market design problems. In this

paper, we extend that success to a new class of auction designs and reaffirm

the deferred-acceptance idea as the basis for some of the most successful new

market mechanisms.
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12 Appendix A: Greedy-Acceptance Auctions

In this appendix, we illustrate the greedy-acceptance auctions of Lehmann,

O’Callaghan and Shoham (2002). To be consistent with their setting, we

consider a three-bidder “forward” (selling) auction (although it is also pos-

sible to construct a corresponding reverse auction) in which it is feasible to

satisfy either both bidders 1 and 2 or bidder 3. (Say, bidder 3 desires a bun-

dle of two objects while bidders 1 and 2 each desire a single object from the

bundle.) For a simple example, the bidders’ scores could be defined as their

bids. The auction iterates accepting the highest bid that is still feasible to

accept. The winners are paid their threshold prices, which are the minimal

bids that would have been accepted.

Consider the case in which both bidders 1 and 2 bid above bidder 3’s

bid. In this case they both win and pay zero, since each of them would

have still won by bidding zero, letting the other bid be accepted in the

first round, which makes bid 3 infeasible to accept. This implies that the

auction is not weakly group strategyproof: when the true values of bidders

1,2 are below bidder 3’s value but strictly positive, they would both strictly

benefit from both bidding above bidder 3’s value, so that they both win

and pay zero. Also, the auction’s revenue in this case is zero, while any

full-information Nash equilibrium of the corresponding paid-as-bid auction

could not sell to bidders 1 and 2 at a total price below bidder 3’s value, since

otherwise bidder 3 could have profitably deviated to win the auction. Finally,

this allocation rule cannot be implemented with a DA clock auction, which

is an ascending-price clock auction in the selling-auction setting, since the

allocation is completely determined by which bidder has the highest value,

while the first bidder exiting in a clock auction has the worst (lowest) value

according to some scoring criterion.48

48Lehmann et al. (2002) propose a descending-price “clock” auction, in which, when
bidder 3 buys first and the allocation is determined, the prices of bidders 1 and 2 must
continue descending to determine the winner’s threshold payment. Note that in this
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13 Appendix B: A Near-Optimal DA Algo-

rithm for TV Spectrum Repurchasing

Consider a setting in which the bidders are television stations who bid to

relinquish their broadcast rights. Broadcast channels must be assigned to

the stations whose bids are rejected in a way that satisfies non-interference

constraints. In this simplified model, those constraints are represented by an

interference graph Z: a set of two-elements subsets of 2N (“edges”). We inter-

pret {i, j} ∈ Z to mean that stations i and j cannot both be assigned to the

same channel without causing unacceptable interference. Letting {1, ..., n}
denote the set of channels left after the auction. Then, the feasible sets of

accepted bids for the FCC’s repacking problem can be written as

F = {A ⊆ N : (∃c : N\A→ {1, ..., n})(∀i, j ∈ N\A)({i, j} ∈ Z ⇒ c(i) 6= c(j)}.
(4)

Proposition 8 Suppose there exists an ordered partition of the set N of

stations into m disjoint sets N1, ..., Nm such that

(i) for each k = 1, ...,m and each i, j ∈ Nk, {i, j} ∈ Z (that is, each Nk

is a “clique”),

(ii) there exists some d < n such that for each k = 1, ...,m and each

S ⊆ Nk satisfying |S| ≤ n− d, we have

|S|+ |∩i∈S ∪l<k {j ∈ Nl : {i, j} ∈ Z}| ≤ n.

Consider a DA algorithm that iterates rejecting the most valuable bid in each

partition element Nk as long as that is feasible and there are no more than

n − d stations rejected from each element, and then continues in any way.

“clock auction,” in contrast to the deferred-acceptance clock auctions studied in this paper,
truthful bidding stragegies are not dominant strategies (although they do form a Nash
equilibrium).
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The total value of stations assigned by such an algorithm is at least a fraction

1− d/n of the optimal value.

Proof. Let

FZn = {S ⊆ N : (∃c : S → {1, ..., n})(∀s, s′ ∈ S)({s, s′} ∈ Z =⇒ c(s) 6= c(s′)},

F d
mn = {S ⊆ N : (∀j) |S ∩Nj| ≤ n− d}, and F d

Zmn = FZn ∩ F d
mn.

For each S ⊆ N , define Sj = S ∩ (∪j′≤jNj′), S
′
j = S ∩ Nj, and Z∗(S ′j) =

∩s∈S′j{s
′ ∈ Sj−1 : {s, s′} ∈ Z} – that is, the set of stations in Sj−1 that

interfere with all of the stations in S ′j. If Z∗(S ′j) ⊆ Nj−1, then to avoid

interference it is necessary to assign a different channel to each station in

S ′j∪Z∗(S ′j). A necessary condition for this is
∣∣S ′j ∪ Z∗(S ′j)∣∣ =

∣∣S ′j∣∣+|Z∗(S ′j)| ≤
n, which is assumption (ii) of the proposition. Less obviously, Hall’s Marriage

theorem49 implies that this condition is also sufficient, allowing us to prove

the following lemma.

Lemma 1 F d
Zmn = F d

mn.

Proof. It is obvious that F d
Zmn ⊆ F d

mn (the first set imposes all the same

within-area constraints plus additional ones). For the reverse inclusion, con-

sider any S ∈ F d
mn. We will establish that S ∈ F d

Zmn by showing the pos-

sibility of constructing the required channel assignment function c : S →
{1, ..., n}.

Begin the construction by assigning a different channel c(s) to each station

s ∈ S1, which is possible because |S1| ≤ n. Then, c is feasible for S1.

49Hall’s Marriage Theorem concerns bipartite graphs linking two sets – “men” and
“women.” Given any set of women S, let A(S) be the set of men who linked (“acceptable”)
to at least one woman in S. Hall’s theorem asserts that there exists a one-to-one match in
which every woman is matched to some acceptable man (some men may be unmatched)
if and only if for every subset S′ of the women, |S′| ≤ |A(S′)|.

In our application, Hall’s theorem is used to show that channels can be assigned to the
stations in each area without violating the channel constraints implied by the assignments
in the lower indexed areas.
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Inductively, suppose that the channel assignment c has been constructed to

be feasible for stations Sj−1. We show how to extend c to a feasible channel

assignment for Sj = Sj−1 ∪ S ′j.
For any S ′′j ⊆ S ′j, define J(S ′′j ) = {1, ..., n} − c(Z∗(S ′′j )) and notice that

|J(S ′′j )| = n−|c(Z∗(S ′′j ))|. According to Hall’s Marriage Theorem (informally,

think of the stations in S ′j as the women and the n channels as the men),

there exists a one-to-one map c : S ′j → {1, ..., n} with the property that (∀s ∈
S ′j)c(s) ∈ J({s}) if and only if (∀S ′′j ⊆ S ′j), |J(S ′′j )| ≥ |S ′′j |. Substituting for

|J(S ′′j )|, this last inequality is equivalent to |c(Z∗(S ′′j ))|+
∣∣S ′′j ∣∣ ≤ n.

For all S ′′j ⊆ S ′j, since S ∈ F d
mn, we have

∣∣S ′′j ∣∣ ≤ n − d. Then, since

S ′′j ∪ Sj−1 ∈ F d
mn, it follows from assumption (ii) of the Proposition that

|S ′′j |+
∣∣Z∗(S ′′j )

∣∣ ≤ n. Combining that inequality with
∣∣c(Z∗(S ′′j ))

∣∣ ≤ |Z∗(S ′′j )|,
we obtain the condition required by Hall’s Marriage theorem, implying the

existence of a one-to-one function c : S ′j → {1, ..., n} such that (∀s ∈
S ′j)c(s) ∈ J({s}). This extends c to a feasible channel assignment for the

expanded domain Sj = S ′j ∪ Sj−1.

Finally, to establish the proposition, consider the following DA algorithm.

At any round t, if the set of stations already assigned is T , then any station

that is essential gets a score of zero. Among inessential stations at round t,

the score for any station s with m(s) = j is n − |T ∩Nj| + v(s)/(1 + v(s)).

(Intuitively, this algorithm tries to keep the number of stations assigned in

each area roughly equal at every round.) By the above Lemma, this algorithm

will first assign the most valuable station in each area, then the second most

valuable station in each area, and so on until at least the n−d most valuable

stations in each area are assigned.

Intuitively, the Proposition applies to the setting in which the stations

can be partitioned into m “metropolitan areas” in such a way that (i) no

two television stations in the same area can be assigned to the same channel

and (ii) the cross-area constraints are limited in the sense that if we have

a set S of no more than n − d stations in one metropolitan area, there are
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no more than n − |S| stations in lower-indexed areas that have interference

constraints with all the stations in S.50 Using an argument based on Hall’s

Marriage Theorem, condition (ii) ensures that it is possible to select any

arbitrary n − d stations in each area independently of each other and still

be able to find a feasible assignment of these stations to channels. Since the

optimal value is bounded above by assigning the n most valuable stations in

each area (which would be feasible if there were no inter-area constraints),

the worst-case fraction of efficiency loss is bounded above by (n− d) /n.

We make several observations.

1. It is possible to satisfy condition (ii) while having several times more

inter-area constraints than within-area constraints. To illustrate, sup-

pose that all stations are arranged from north to south on a line and

that each station interferes with its n−1 closest neighbors to the north

as well as its n−1 closest neighbors to the south. Suppose that each suc-

cessive group of n stations is described as a metropolitan area. Then,

it is possible to assign all stations (d = 0) to channels without creating

interference just by rotating through the n channel numbers. In this ex-

ample, there are just x = n(n−1)/2 constraints among stations within

an area but 2x constraints between those stations and ones in the next

lower indexed area and another 2x constraints involving stations in the

next higher indexed area.

2. In general, there may be many ways to partition stations into cliques,

and many ways to order any given partition. The Proposition formally

applies to each partition, but the number d and therefore the approx-

imation guarantee will vary depending on which partition is selected

and how it is ordered.

50While we assume that the partition is totally ordered for notational simplicity, the
proposition can also be extended to cases in which partition elements form an ordered
acyclic graph, by interpreting < and ≤ as referring to a precedence relation.
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3. The worst-case bound applies over all possible station values and in-

corporates both a conservatively high estimate of the optimum and a

conservatively low estimate of the DA algorithm performance. To ap-

proach the worst-case bound, the optimum must be similar to assigning

the n most valuable stations in each area, and the DA algorithm must

be unable to assign any other stations after the n − d most valuable

stations have been assigned in each area.

4. The standard DA algorithm discussed in Example 2 is not among the

ones described in the Proposition, and does not achieve the same per-

formance guarantee. For example, suppose that there is some central

area – area 1 – such that the stations in any area are linked to all

other stations in that area and to the stations in area 1, but not to

any other stations. Suppose that there are 2 channels available. Then

the DA algorithms described in the proposition assign the single most

valuable station in each area, thus achieving at least half of the opti-

mal value. On the other hand, the standard DA algorithm could in

this case achieve as little as 1/(m− 1) of the optimal value: This could

happen if the two most valuable stations happen to be in area 1, in

which the standard DA algorithm assigns just those two stations and

no others. Thus, the example in this section demonstrates how it may

be possible to design a DA algorithm to improve upon the standard

DA algorithm by taking advantage of known properties of the feasible

set. In applications like the FCC auction, in which interference graph

is known before the auction, it may be possible to apply a variety of

analytical tools and simulations to find a DA algorithm that performs

much better than the standard one.
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14 Appendix C: Clock Auctions for Substi-

tutes

We say that a clock auction is consistent with allocation rule α on a finite

state space V if it initializes prices as pi (N) = maxVi for each i, and then

for every history At for t > 1, prices satisfy pi (A
t) ∈

{
pi (A

t) , pi (A
t−1)

−
}

,

with pi (A
t) = pi (A

t−1)
−

only for i ∈ At\α
(
pAt (At−1) , pN\At (At−1)

+
)

, and

p (At) = p (At−1) only if At ⊆ α
(
pAt (At−1) , pN\At (At−1)

+
)

. In words, the

auction (i) decrements prices (minimally) only to those active bidders who

wouldn’t be accepted in α given current best offers (the active bidders’ cur-

rent prices and the exited bidders’ last accepted prices), and (ii) continues

until no such bidders can be found. Note that (i) ensures that a member

of α (v) is not rejected when
(
pAt (At−1) , pN\At (At−1)

+
)

= v (that is, all

bidders’ current best offers are their exact values), while (ii) ensures that a

member of N\α (v) is not accepted when the auction stops in such a situa-

tion.

Proposition 9 Consider an allocation rule α : RN
+ → 2N . Allocation rule

α restricted to any finite state space V = Πi∈NVi ⊆ RN
+ is implemented by

any clock auction consistent with α on V if and only if α is monotonic, has

non-bossy winners, and has substitutes.51

Proof. The “if” part: First observe that an agent i ∈ α (v) could never exit

the clock auction under truthful bidding. Indeed, at any history At at which

i ∈ At and i faces price pi (A
t−1) = vi, while for the other (truthful) bidders

pAt\{i} (At−1) ≥ vAt\{i} and pN\At (At−1)
+

= vN\At , the substitute property

and i ∈ α(v) imply that i ∈ α
(
pAt (At−1) , pN\At (At−1)

+
)

, and so the auction

must set pi (A
t) = pi (A

t−1), ensuring that i ∈ At+1. Thus, we have α (v) ⊆
51If we did not require the myopic clock auction to work on any value subspace (ef-

fectively, for any opening prices), then, as shown by Hatfield and Kojima (2009), weaker
notions of substitutability may suffice.
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At throughout the auction under truthful bidding. In particular, this implies

that α
(
pAt (At−1) , pN\At (At−1)

+
)
⊆ At, and so when the auction stops in

period T we must have α
(
pAT

(
AT−1

)
, pN\AT

(
AT−1

)+
)

= AT . Since under

truthful bidding we have pN\AT

(
AT−1

)+
= vN\AT

and vAT
≤ pAT

(
AT−1

)
,

iteratively applying monotonicity and non-bossiness of winners for members

of AT yields α (v) = AT .

The “only if” part: Clearly, monotonicity and non-bossiness of winners

are necessary for α to be implementable by any clock auction. To see the

necessity of the substitutes condition, take any v ∈ RN
+ , any j ∈ N , and

any v′j such that v′j > vj. Consider value spaces Vj =
{
vj, v

′
j

}
and Vk =

{vk} for all k 6= j, and the clock auction that starts with prices p (N) =(
v′j, v−j

)
and then decrements the prices of all provisional losers (that is,

members of N\α (p (N))). In order to implement α in state v it cannot

decrement the price to any bidder from α (v) \ {j} in round 1, thus we must

have α (v) \ {j} ⊆ α (p (N)) \ {j} = α
(
v′j, v−j

)
\ {j}.

The assumptions of monotonicity and non-bossiness of winners are not

dispensable: that is, they are not implied by substitutes.52 On the other

hand, both assumptions are satisfied by any DA-implementable allocation

rule.53 Thus, an allocation rule that is implementable by some clock auction

is implementable by any clock auction consistent with it if and only if the

allocation rule has the substitute property.

52For an allocation rule that has substitutes but bossy winners, let N = 2, V1 = V2 =
{1, 2}, and α (v) = arg mini∈{1,2} vi on value spaces V1 = V2 = {1, 2} (so that in case
of a tie for the lowest value both tied bidders are winners). Then α satisfies substitutes,
but does not satisfy non-bossiness of winners: 1 ∈ α (1, 2) ∩ α (2, 2) but α (1, 2) = {1} 6=
{1, 2} = α (2, 2).

53In particular, non-bossines of winners follows from winners’ privacy, discussed in Sec-
tion 4.
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15 Appendix D: Proof of Proposition 6

Before proving the proposition, we prove a useful lemma. Say that allocation

rule α is non-bossy if for any i ∈ N , v ∈ V , and v′i ∈ Vi, α (v′i, v−i) ∩ {i} =

α (v) ∩ {i} implies α (v′i, v−i) = α (v) (that is, a bidder cannot affect the

allocation without changing his own winning status.)

Lemma 2 If allocation rule α : V → 2N is the unique solution to (3) for

each v ∈ V , for some nondecreasing functions γi : Vi → R for each i, then α

is monotonic and non-bossy.

Proof. For monotonicity, note that increasing bidder i’s value from vi to

v′i > vi does not increase the objective (3) on any A ⊆ N such that i ∈ A
and does not change the objective (3) on any A ⊆ N\ {i}.

For non-bossiness, note that (3) implies that for all i ∈ N , vi, v
′
i ∈ Vi, v−i

∈ V−i,

i /∈ α (vi, v−i) ∪ α (v′i, v−i) =⇒ {α (vi, v−i)} = arg max
A⊆N :i/∈A

F (A)−
∑
j∈A

γj (vj) = {α (v′i, v−i)} ,

i ∈ α (vi, v−i) ∩ α (v′i, v−i) =⇒ {α (vi, v−i)} = arg max
A⊆N :i∈A

F (A)−
∑

j∈A\{i}

γj (vj) = {α (v′i, v−i)} .

Proof of Proposition 6. Let Λ (v) ⊆ 2N denote the set of maxi-

mizers in (3) at value profile v ∈ RN
+ . Suppose in negation that α vio-

lates substitutes when there are no ties: for two agents i 6= j, for some

vi, v
′
i ∈ R+ such that vi < v′i, and some v−i ∈ RN−1

+ we have Λ (vi, v−i) = {A},
Λ (v′i, v−i) = {A′}, with j ∈ A\A′. Due to non-bossiness and monotonicity

established in Lemma 2, this is only possible if we also have i ∈ A\A′.
By monotonicity and continuity of γi, there exists v̂i ∈ (vi, v

′
i) such that

Λ (v̂i, v−i) = {A,A′}. Then, by continuity of γi, γj there exists ε > 0 small

enough so that Λ
(
v̂i + δi, vj + δj, v−{i,j}

)
⊆ {A,A′} whenever |δi| , |δj| ≤

ε. By monotonicity, we have Λ
(
v̂i − ε, vj − ε, v−{i,j}

)
= {A}, and using
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also continuity of γi, γj, there exists δ ∈ (0, ε) small enough such that

Λ
(
v̂i + δ, vj − ε, v−{i,j}

)
= Λ

(
v̂i − ε, vj + δ, v−{i,j}

)
= {A}. At the same

time, by monotonicity, we have Λ
(
v̂i + δ, vj + δ, v−{i,j}

)
= {A′}. But then α

cannot be implemented by any clock auction on value spaces

Vk =

{
{v̂k − ε, v̂k + δ} for k ∈ {i, j} ,
{vk} otherwise

(where we let v̂j = vj). Indeed,

the clock auction cannot stop while (pi (h) , pj (h)) ≥ (v̂i + δ, v̂j + δ), since

bidders i and j must both lose when their values are (v̂i + δ, v̂j + δ), but re-

ducing the price to a bidder k ∈ {i, j} below v̂k + δ would prevent him from

winning in state
(
v̂k + δ, v̂{i,j}\k − ε, v−{i,j}

)
.

16 Appendix E: Competitive Equilibria and

Paid-as-Bid Auctions with Non-Bossy Al-

location Rules

In this Appendix, we sharpen the relationship between competitive equilibria

and equilibrium of paid-as-bid auctions when the allocation rule is non-bossy.

For one class of non-bossy rules, recall optimizing allocation rules to which

Lemma 2 in Appendix D applies. For another, rules computed by DA algo-

rithm with fixed scoring and perfect feasibility checking are non-bossy:

Lemma 3 Suppose that F ⊆ 2N is a comprehensive family of feasible sets

(see Example 1), and that scoring is given by sAi
(
vi, vN\A

)
=

{
σi (vi) if A\ {i} ∈ F ,

0 otherwise,

where σi : Vi → R++ are strictly increasing functions that have no ties (so

feasibility is always maintained). The allocation rule computed by the result-

ing DA heuristic is non-bossy.

Proof. Every DA procedure satisfies non-bossiness of winners (this is a

corollary of Unconditional Winner Privacy established in Section 4). To

check that condition for the losers, too, we show that if given value profile
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v agent i is rejected in some round t, then replacing his value with some

v′i > vi does not affect the final outcome of the algorithm. Note that it

suffices to check situations in which the replacement results in bidder i is

rejected prior to round t: Indeed, otherwise he will be rejected in round t

and the replacement will not affect the behavior of the algorithm. Suppose

first that the replacement results in bidder i being rejected in round t − 1,

and thus does not affect the behavior of the algorithm prior to round t− 1.

Letting At−1 be the set of accepted bids in round t− 1, and letting bidder j

be the bidder rejected in round t− 1, we must have At−1\ {i, j} ∈ F , and

max
k∈At−1\{i,j}:At−1\{j,k}∈F

σk (vk) < σi (vi) < σj (vj) .

Using this and the comprehensiveness of F , we obtain

max
k∈At−1\{i,j}:At−1\{i,j,k}∈F

σk (vk) ≤ max
k∈At−1\{i,j}:At−1\{j,k}∈F

σk (vk) < σj (vj) ,

which implies that bidder j must be rejected in round t. Then after round t

the algorithm will be unaffected by the replacement of vi with v′i. Iterating

this argument, by induction on τ any increase in agent i’s bid, resulting in

it being rejected in some round t− τ , will not affect the allocation.

First, we show that for non-bossy rules, there is a (unique) maximum-

price competitive-equilibrium 〈A, p〉 in state v (that is, such that any other

competitive equilibrium 〈A′, p′〉 in that state has p′ ≤ p):

Proposition 10 Let α be a non-bossy DA allocation rule. Then, letting

A = α (v), pi = πi (v−i) for each i ∈ A, and pN\A = vN\A, 〈A, p〉 is the

maximum-price competitive equilibrium in state v ∈ V .

Proof. By Proposition 7, 〈A, p〉 is a competitive equilibrium in state v. Now,

let 〈A′, p′〉 be another competitive equilibrium in state v. Using equilibrium

conditions, monotonicity of α, non-bossiness, UWP, and (1), we have A′ =

α
(
p′A, p

′
N\A

)
= α

(
p′A, vN\A

)
= α

(
πi (v−i) , vN\A

)
= A. Then, equilibrium
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conditions and (1) imply p′i ≤ πi (v−i) = pi for all i ∈ A and p′i ≤ vi for all

i ∈ NA.

As for paid-as-bid auctions with non-bossy DA allocation rules, unique-

ness of Nash equilibrium outcome can be ensured upon ruling out bids below

values. To ensure that such bids are dominated strategies, we consider DA

allocation rules with finite bid spaces V , and value profiles v ∈ RN
+ that are

“generic,” defined as vi ∈ R+\Vi and vi < maxVi for each i. Then, any

bidder i’s bid below his “rounded-up value” v+
i = min {bi ∈ Vi : bi > vi} is

either dominated by bidding v+
i or never wins.

Upon ruling out such dominated strategies, we obtain a single Nash equi-

librium outcome. Furthermore, we can single out the same outcome by iter-

ated deletion of dominated strategies, and we can show that this dominant-

solvability in fact characterizes non-bossy DA rules.

Definition 7 An auction is dominance-solvable in state v if under full infor-

mation, there exists a unique payoff profile that remains after iterated deletion

of (weakly) dominated strategies, regardless of the order of elimination.

Intuitively, iterated deletion of weakly dominated strategies closely resem-

bles a deferred-acceptance procedure, because it works by iterated rejections

using a myopic criterion and finally accepting all strategies that are not re-

jected. We find that, for paid-as-bid auctions, iterated elimination of weakly

dominated bids is closely related to the iterated deletions of always-losing

bids that characterize DA auctions, and that this implies a similarly close

connection between dominance-solvable auctions and DA auctions:

Proposition 11 Consider a paid-as-bid auction with a monotonic, non-

bossy allocation rule α and finite bid spaces.

(i) The auction is pure-strategy dominance-solvable for all generic value

profiles if and only if α can be implemented with a DA algorithm.

(ii) If α can be implemented with a DA algorithm, then for every generic

value profile, the unique payoff profile surviving iterated deletion of dominated
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strategies is also the unique payoff profile associated with any (pure or mixed)

Nash equilibrium in undominated strategies.

(iii) If α can be implemented with a DA algorithm, then one strategy

profile that survives iterated deletion of dominated strategies and is a Nash

equilibrium in undominated strategies is bi = max
{
v+
i , πi

(
v+
−i
)}

for each

i ∈ N , resulting in the equilibrium allocation α (b) = α (v+) and payments

pi = πi
(
v+
−i
)

for all winners i ∈ α (b).

The equivalence of dominance solvability and implementation using a DA

algorithm – equivalently, using the results of Section 5, a clock-auction algo-

rithm – is constructive and intuitive. Indeed, note that in a round of iterated

deletion of dominated strategies in a paid-as-bid auction, a bid is dominated

by a lower bid if the former bid (and therefore any higher bid) would lose

against all remaining possible bid profiles of the other bidders (while the lat-

ter might still win and is still above the bidder’s value). Deletion of bids that

are dominated in this way corresponds to a clock auction’s decrementing of

the price to a bidder who could no longer win at that price, given the prices

already accepted by the other bidders. As for when a bid is dominated by

a higher bid, this happens if (i) the former bid is below the bidder’s value

(and so, this allows us to delete bids below value), or (ii) the two bids have

the same chances of winning against all remaining opponents’ bid profiles

(so, in partucular, this allows us to delete sure winners’ bids below their

threshold prices). Non-bossiness allows us to appeal to the results by Marx

and Swinkels (1997) to choose a convenient order of iterated deletion without

without affecting the final outcome.

16.1 Proof of Proposition 11

For the “if” direction of (i), recall from Proposition 5 that any assignment rule

α that is implementable via a DA threshold auction is also implementable

with a clock auction. Furthermore, we can compute the outcome of the paid-
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as-bid auction with assignment rule α using a “two-phase clock auction”

mechanism, as follows. In phase 1, the clock auction algorithm described

above is run to determine the set of winners. In phase 2, the payments to

the winners are determined by allowing prices to continue falling (through

points in Vi) until all bidders “quit,” and then paying each winning bidder

the last price it has accepted. In this two-phase clock auction game, if each

bidder i is restricted to use a truthful strategy corresponding to some value

profile bi ∈ Vi (that is, exit when his price falls below bi but not before), that

obviously leads to the same outcome as the paid-as-bid DA auction game

with bid profile b.

If the assignment rule is non-bossy, then for generic values the game satis-

fies the TDI condition of Marx and Swinkels (1997). Hence, by their results,

the payoff profiles surviving iterated deletion of weakly dominated strategies

do not depend on the order of deletion, and on whether we delete “very

weakly” dominated strategies (which include payoff-equivalent strategies to

a suriving strategy, in addition to those weakly dominated by it).54 Hence,

iterated deletion of either weakly or very weakly dominated strategies in any

order leads to the same set of possible outcomes.

We specify the following deletion process of very weakly dominated (hence-

forth, VW-dominated) strategies: Begin by deleting for each agent i all the

bids bi < v+
i (which are VW-dominated by the bid v+

i ). In the game that

remains after these initial deletions, every bidder strictly prefers any out-

come in which it wins to any in which it loses. We specify the next deletions

iteratively by referring to the sequence of prices {p(At)} that would emerge

during phase 1 if each bidder were to bid v+
i . At the beginning of each step

t = 1, 2, ... of our iterated deletion process, the set of strategies remaining to

each bidder i is B̂t−1
i = Bi∩ [v+

i ,max
{
v+
i , pi (A

t−1)
}

]. With just these strate-

gies remaining, when the clock auction offers new prices p (At) in iteration t,

54Note that in a non-bossy paid-as-bid auction, two bids of bidder i are payoff-equivalent
to each other against others’ bids from B̂−i if and only if they both make bidder i a sure
loser, that is, i /∈ α (bi, b−i) ∪ α (b′i, b−i) for all b−i ∈ B̂−i.
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for each bidder i, all the bids bi ∈ B̂t−1
i such that bi > max

{
v+
i , pi (A

t)
}

are

sure to lose and are therefore VW-dominated in the remaining subgame by

bidding v+
i . Deletion of these VW-dominated strategies yields new strategy

sets B̂t
i = Bi ∩ [v+

i ,max
{
v+
i , pi (A

t)
}

] for each i. These iterated deletions

continue until phase 1 ends at some iteration T , at which the set of winners

α(B̂T ) is uniquely determined. For each agent i, if B̂T
i is not a singleton,

then its largest element, max B̂T
i = max

{
v+
i , pi

(
AT
)}

, is dominant in the

remaining game with strategy sets B̂T (because it wins at the highest re-

maining price). So, we may perform one more round of deletions, taking

B̂T+1
i = {max(v+

i , pi
(
AT
)
)}. Hence, the only possible outcome of iterative

elimination of VW-dominated bids in any order is the outcome corresponding

to the bid profile (max(v+
i , pi

(
AT
)
))i∈N .

For (ii), fix an undominated mixed Nash equilibrium profile. For each

bidder i with a zero equilibrium payoff, all bids of v+
i or more must be always

losing. Hence, by non-bossiness, we may replace all bids of such bidder by

the pure strategy bid v+
i to obtain another mixed strategy profile σ with the

same distribution of outcomes.

For any bidder i with strictly positive equilibrium expected payoffs, all

bids in the support of σi have positive expected payoffs, so all must win with

a positive probability against σ−i. Consider the maximum bid profile in the

support of σ. Referring to the clock auction process, we infer that if any

positive-payoff bidder’s bid is losing for that profile, then it is losing for all

profiles in the support of σ, which contradicts positive expected payoffs. Since

reducing a winning bid in the clock auction does not affect the allocation,

for every bid profile in the support of σ, the positive-payoff players are the

winners. Since the highest always-winning bid earns strictly more than any

lower winning bid, this further implies that the winners’ equilibrium mixtures

are degenerate: winning bidders play pure strategies. Therefore, σ assigns

probability one to some single bid profile b.

Next, we claim that the iterative deletions described in the proof of (i)
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above do not delete any of the component bids in b. Phase I of the iterative

deletion procedure deletes only bids above v+
i for zero-payoff bidders and

only always-losing bids for positive-payoff bidders, so all the component bids

in b survive that phase. Phase II deletes all but the highest remaining bid

of each winning bidder: the lower bids are never best replies to the highest

surviving bids (they always win, but they are paid less). Hence, the full

procedure never deletes any component bid in the profile b. It follows that

b = (max
{
v+
i , pi

(
AT
)}

)i∈N and that the outcome of b is the outcome of

every undominated Nash equilibrium.

To prove (iii): in the surviving bid profile b, each agent i ∈ AT bids

its threshold price, which is pi
(
AT
)
≥ v+

i , while each i ∈ N\AT bids v+
i ,

which is by definition above its threshold price. Thus by Proposition ?? it

is a Nash equilibrium and it contains only undominated strategies, and as

argued above it survives iterated deletion of dominated strategies.

It remains to prove the “only if” direction of (i): we assume that the paid-

as-bid auction for allocation rule α is dominance solvable and construct a

clock-auction price mapping p : H → RN that implements α. For each possi-

ble clock auction history At of the auction and each bidder i, let B̂i (A
t) ⊆ Bi

denote the set of bidder i’s bids that are consistent with history At, that is,

B̂i

(
At
)

=

{
{bi ∈ Bi : bi ≤ pi (A

t−1)} for i ∈ At,
{(pi (At−1))+} for i ∈ N\At.

We will show by induction that, for each possible history At, the strategy sets

B̂i (A
t) have two important properties: (a) ∪b∈B̂(At)α (b) ⊆ At (only bidders

who are still active could become winners), and (b) the sets B̂ (At) can be

obtained by an iterative process that, at each step, deletes some bids that

are then always-losing bids for bidders in At or all bids below some cutoffs

for bidders in N\At.
To construct the clock auction p, we initialize the clock prices at the null

history N as p (N) = maxB, so that B̂i (N) = Bi for each i and properties
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(a) and (b) are trivially satisfied. For each clock round t = 1, 2, ..., given any

history At at which properties (a) and (b) are satisfied, we show that either

we can stop the auction at this point with the set of winners known to be At,

or we can reduce the price to a single bidder in such a way that properties

(a) and (b) are inherited by any history At+1 that could succeed At. We do

so using the following claim:

Claim 1 For all possible histories At ∈ H, either (i) α (b) = At for all b ∈
B̂ (At) (all active bidders must win), or (ii) there exists i ∈ At\ ∪b−i∈B̂−i(At)

α (pi (A
t−1) , b−i) (there is an active bidder whose highest remaining bid pi (A

t−1)

must lose).

Proof. We begin by noting that if, given some history At, the set of winners

is uniquely determined to be some Â ⊆ N (that is, Â = α(b) for all b ∈
B̂ (At)), then by inductive property (a), either Â = At and so we are in case

(i) of the claim, or we are in case (ii) of the claim for some bidder i ∈ At\Â.

Thus, it remains only to prove the claim for the case in which α(B̂ (At)) is

not a singleton.

Call two bids bi, b
′
i ∈ B̂i (A

t) of bidder i allocation-equivalent (at At) if

α (b′i, b−i) = α (bi, b−i) for all b−i ∈ B̂−i (At). For each bidder i, we construct

a strategy set B̄i ⊆ B̂i (A
t) by eliminating from B̂i (A

t) all of i’s allocation-

equivalent bids except for the highest one from each equivalence class. Note

that by construction max B̄i = max B̂i (A
t) = pi (A

t−1) for i ∈ At, and

B̄i = B̂i (A
t) =

{
(pi (A

t−1))
+
}

for i ∈ N\At. Note also that the elimination

of allocation-equivalent bids preserves the possible sets of winners: α
(
B̄
)

=

α(B̂ (At)), and that, by assumption, this is not a singleton.

Now consider a generic value profile v such that v+
i =

{
minBi for i ∈ At,
(pi (A

t−1))
+

for i ∈ N\At
(thus, bidders in At always prefer to win, and the other bidders preferred to

exit at the last prices they were offered). Observe that for this value profile,

inductive property (b) allows us to obtain strategy sets B̂ (At) by iterated

deletion of strategies that are VW-dominated by bidding v+
i , by deleting all
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bids below (pi (A
t−1))

+
for all bidders i ∈ N\At, and iteratively deleting

always-losing bids. Next, note that when a bid bi is allocation-equivalent

to a bid b′i > bi, then bi is VW-dominated by b′i. Iterated deletion of such

VW-dominated strategies from B̂ (At) yields B̄.

Dominance solvability for value profile v implies that if the set α
(
B̄
)

of winners is not uniquely determined, then for some bidder i ∈ At some

bid bi ∈ B̄i must be VW-dominated by some bid b′i ∈ B̄i\ {bi} against B̄−i.

If we had b′i > bi, then (by monotonicity) the two bids would have to win

against the same set of opposing bid profiles b−i ∈ B̄−i and hence (by non-

bossiness) they would be allocation-equivalent, which is impossible given our

construction of B̄.55 Hence, we must have b′i < bi. Furthermore, since B̄ was

obtained from B̂ (At) by deleting allocation-equivalent bids, bid b′i must also

VW-dominate bid bi against B̂−i (A
t). Since v+

i = minBi ≤ b′i < bi, such

VW-dominance is only possible if bi never wins against B̂−i (A
t), which, by

monotonicity, implies that the bid pi (A
t−1) = max B̄i ≥ bi also never wins

against B̂−i (A
t). This establishes the claim.

Now, if we are in case (i) of the claim, then the auction can be finished

in round t: if the bid profile is b ∈ B̂ (At), then the auction has found the

desired allocation α (b) = At.

If we are instead in case (ii) of the claim, then in iteration t of the

clock auction, our construction decrements the price to the bidder i iden-

tifed in the claim and leave the other prices unchanged, that is, we set

pj (At) =

{
(pi (A

t−1))
−

for i = j,

pj (At−1) for j 6= i.
. It remains to show that the two in-

ductive properties are inherited in iteration t+ 1 by both the history At+1 =

(At, At) in which bidder i accepts the reduced price and the history At+1 =

(At, At\ {i}) in which bidder i quits. For property (a), using the fact that

55This argument relies on the observation that deleting allocation-equivalent bids for
one player does not affect the allocation-equivalence of other players’ bids: hence, when
two bids of bidder i are allocation-equivalent against B̄−i, they must also be allocation-
equivalent against B̂−i (At).
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B̂(At+1) ⊆ B̂ (At) and the inductive hypothesis, we see that ∪b∈B̂(At+1)α (b) ⊆
∪b∈B̂(At)α (b) ⊆ At, which establishes the property for historyAt+1 = (At, At);

as for history At+1 = (At, At\ {i}), we use in addition the fact that i /∈
∪b∈B̂(At+1)α (b) since we are in case (ii) of the claim. For property (b), it

extends to history (At, At) since B̂i (A
t, At) = B̂i (A

t) \ {pi (At−1)} and we

are in case (ii) of the claim, and it extends to history (At, At\ {i}) since

B̂i (A
t, At\ {i}) =

{
bi ∈ B̂i (A

t) : bi ≥ pi (A
t−1)
}

.
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