Numerical Dynamic Programming

Jesús Fernández-Villaverde
University of Pennsylvania
Introduction

- In the last set of lecture notes, we reviewed some theoretical background on numerical programming.

- Now, we will discuss numerical implementation.

- Two issues:
 1. Finite versus infinite time.
 2. Discrete versus continuous state space.
Finite Time

- Problems where there is a terminal condition.

- Examples:
 1. Life cycle.
 2. Investment.

- Why are finite time problems nicer? Backward induction.
Infinite Time

- Problems where there is no terminal condition.

- Examples:
 1. Industry dynamics.
 2. Business cycle dynamics.

- However, we will need the equivalent of a terminal condition: transversality condition.
Discrete State Space

- We can solve problems up to floating point accuracy.

- Why is this important?
 1. ε-equilibria.
 2. Estimation.

- However, how realistic are models with a discrete state space.
Infinite State Space

- More common cases in economics.
- Problem: we will always have to rely on a numerical approximation.
- Interaction of different approximation errors.
- Bounds?
Different Strategies

1. Value Function Iteration.

2. Policy Function Iteration.

3. Projection.

4. Perturbation.
Value Function Iteration

- Well known, basic algorithm of dynamic programming.

- We have tight convergence properties and bounds on errors.

- Well suited for parallelization.

- It will always (perhaps quite slowly) work.
How Do We Implement The Operator?

- We come back to our two distinctions: finite versus infinite time and discrete versus continuous state space.

- Then we need to talk about:

 1. Initialization.

 2. Discretization.
Value Function Iteration in Finite Time

- We begin with the Bellman operator:

$$\Gamma (V^t) (s) = \max_{a \in A(s)} \left[u(s, a) + \beta \int V^{t'} (s') p(ds'|s, a) \right]$$

- Specify V^T and apply Bellman operator:

$$V^{T-1}(s) = \max_{a \in A(s)} \left[u(s, a) + \beta \int V^T (s') p(ds'|s, a) \right]$$

- Iterate until first period:

$$V^1(s) = \max_{a \in A(s)} \left[u(s, a) + \beta \int V^2 (s') p(ds'|s, a) \right]$$
Value Function Iteration in Infinite Time

- We begin with the Bellman operator:

\[\Gamma (V)(s) = \max_{a \in A(s)} \left[u(s, a) + \beta \int V(s') p(ds'|s, a) \right] \]

- Specify \(V^0 \) and apply Bellman operator:

\[V^1(s) = \max_{a \in A(s)} \left[u(s, a) + \beta \int V^0(s') p(ds'|s, a) \right] \]

- Iterate until convergence:

\[V^T(s) = \max_{a \in A(s)} \left[u(s, a) + \beta \int V^{T-1}(s') p(ds'|s, a) \right] \]
Normalization

- Before initializing the algorithm, it is usually a good idea to normalize problem:

\[
V(s) = \max_{a \in A(s)} \left[(1 - \beta) u(s, a) + \beta \int V(s') p(ds'|s, a) \right]
\]

- Two advantages:

1. We save one iteration.
2. Stability properties.
3. Convergence bounds are interpretable.
Initial Value in Finite Time Problems

- Usually, economics of the problem provides natural choices.

- Example: final value of an optimal expenditure problem is zero.

- However, some times there are subtle issues.

- Example: what is the value of dying? And of bequests? OLG.
Initial Guesses for Infinite Time Problems

• Theorems tell us we will converge from any initial guess.

• That does not mean we should not be smart picking our initial guess.

• Several good ideas:

 1. Steady state of the problem (if one exists). Usually saves at least one iteration.

 2. Collapsing one or more dimensions of the problem. Which one?
Discretization

- In the case where we have a continuous state space, we need to discretize it into a grid.

- How do we do that?

- Dealing with curse of dimensionality.

- Do we let future states lie outside the grid?
New Approximated Problem

- Exact problem:

\[
V(s) = \max_{a \in A(s)} \left[(1 - \beta) u(s, a) + \beta \int V(s') p(ds'|s, a) \right]
\]

- Approximated problem:

\[
\hat{V}(s) = \max_{a \in \hat{A}(s)} \left[(1 - \beta) u(s, a) + \beta \sum_{k=1}^{N} \hat{V}(s'_k) p_N(s'_k|s, a) \right]
\]
Grid Generation

- Huge literature on numerical analysis on how to efficiently generate grids.

- Two main issues:
 1. How to select points s_k.
 2. How to approximate p by p_N.

- Answer to second issue follows from answer to first problem.

- We can (and we will) combine strategies to generate grids.
Uniform Grid

- Decide how many points in the grid.

- Distribute them uniformly in the state space.

- What is the state space is not bounded?

- Advantages and disadvantages.
Non-uniform Grid

- Use economic theory or error analysis to evaluate where to accumulate points.

- Standard argument: close to curvatures of the value function.

- Problem: this an heuristic argument.

- Self-confirming equilibria in computations.
Quadrature Grid

- Motivation: quadrature points in integrals

\[
\int f(s) p(s) \, ds \simeq \sum_{k=1}^{N} f(s_k) w_k
\]

- Gaussian quadrature: we require previous equation to be exact for all polynomials of degree less than or equal to \(2N - 1\).
Stochastic Grid

- Randomly chosen grids.

- Rust (1995): it breaks the curse of dimensionality. Why?

- How do we generate random numbers?
Interpolation

- Discretization also generates the need for interpolation.

- Simpler approach: linear interpolation.

- Problem: in one than more dimension, linear interpolation may not preserve concavity.

- Shape-preserving splines: Schumaker scheme.
Multigrid Algorithms

- Old tradition in numerical analysis.

- Basic idea: solve first a problem in a coarser grid and use it as a guess for more refined solution.

- Examples:

 1. Differential equations.

 2. Projection methods.

Applying the Algorithm

- After deciding initialization and discretization, we still need to implement each step:

\[
V^T(s) = \max_{a \in A(s)} \left[u(s, a) + \beta \int V^{T-1}(s') p(ds'|s, a) \right]
\]

- Two numerical operations:

 1. Maximization.

 2. Integral.
Maximization

- We need to apply the max operator.

- Most costly step of value function iteration.

- Brute force (always works): check all the possible choices in the grid.

- Sensibility: using a Newton or quasi-Newton algorithm.
Brute Force

- Some times we do not have any other alternative. Examples: problems with discrete choices, constraints, non-differentiabilities, etc.

- Even if brute force is expensive, we can speed things up quite a bit:
 1. Previous solution.
 2. Monotonicity of choices.
 3. Concavity (or quasi-concavity) of value and policy functions.
Newton or Quasi-Newton

- Much quicker.

- However:
 1. Problem of global convergence.
 2. We need to compute derivatives.

- We can mix brute force and Newton-type algorithms.
Accelerator

- Maximization is the most expensive part of value function iteration.

- Often, while we update the value function, optimal choices are not.

- This suggests a simple strategy: apply the max operator only from time to time.

- How do we choose the optimal timing of the max operator?
How Do We Integrate?

- Exact integration.

- Approximations: Laplace's method.

- Quadrature.

- Monte Carlo simulations.
Convergence Assessment

- How do we assess convergence?

- By the contraction mapping property:

\[\| V - V^k \|_\infty \leq \frac{1}{1 - \beta} \| V^{k+1} - V^k \|_\infty \]

- Relation of value function iteration error with Euler equation error.
Error Analysis

- We can use errors in Euler equation to refine grid.

- How?

- Advantages of procedure.

- Problems.