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Abstract

We characterize the optimal linear tax on capital in an Overlapping Gener-
ations model with two period lived households facing uninsurable idiosyncratic
labor income risk. The Ramsey government internalizes the general equilibrium
feedback of private precautionary saving. For logarithmic utility our full ana-
lytical solution of the Ramsey problem shows that the optimal aggregate saving
rate is independent of income risk. The optimal time-invariant tax on capital
is increasing in income risk. Its sign depends on the extent of risk and on the
Pareto weight of future generations. If the Ramsey tax rate that maximizes
steady state utility is positive, then implementing this tax rate permanently
generates a Pareto-improving transition even if the initial equilibrium is dy-
namically efficient. We generalize our results to Epstein-Zin-Weil utility and
show that the optimal steady state saving rate is increasing in income risk if
and only if the intertemporal elasticity of substitution is smaller than 1.
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1 Introduction

How should a benevolent government tax capital in a neoclassical production economy
when households face uninsurable idiosyncratic labor income risk? Partial answers
to this question have been given in Bewley-Huggett-Aiyagari style general equilib-
rium models with neoclassical production and infinitely lived consumers, starting
from Aiyagari (1995)’s characterization of the optimal steady state capital income
tax rate, and continuing with recent work providing partial, and often numerical,
characterizations of the optimal path of capital income taxes by Panousi and Reis
(2015, 2017), Açikgöz (2015), Gottardi et al. (2015), Hagedorn et al. (2015), Dyrda
and Pedroni (2016), Chen et al. (2017) and Chien and Wen (2017).

In this paper we complement this literature by providing a complete analytical
characterization of taxes on capital in a canonical Diamond (1965) style Overlapping
Generations model with uninsurable idiosyncratic labor income risk in the second
period of life. We characterize the optimal linear tax on capital chosen by a Ramsey
government (Ramsey 1927) that uses the tax revenues to finance lump-sum transfers
to households. The Ramsey government places arbitrary Pareto weights on differ-
ent generations born into this economy, and has to respect equilibrium behavior of
households. For logarithmic utility we provide a complete analytical solution of the
optimal dynamic Ramsey tax policy problem, and for more general preference struc-
tures in the Epstein-Zin-Weil class we still obtain a full analytical characterization of
optimal taxes on capital when the Ramsey government maximizes lifetime utility of
generations living in the steady state, and thus places all weight in the social welfare
function on generations living in the long run.

For logarithmic utility the Ramsey allocation is characterized by a constant (over
time) aggregate saving rate, the share of aggregate (labor) income devoted to cap-
ital accumulation. This constant saving rate is independent of the magnitude of
idiosyncratic income risk, and can be implemented as a competitive equilibrium with
a proportional tax on capital that is also constant over time, but strictly increasing
in the extent of income risk. Our complete analytical characterization of the solution
to the Ramsey problem allows us to show explicitly that the optimal constant saving
rate is shaped by three distinct forces: i) a standard precautionary savings force in
partial equilibrium, ii) a general equilibrium current generations effect through which
a change in the household saving rate today when young impacts wages and interest
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rates tomorrow when the same generation is old, and iii) a general equilibrium fu-
ture generations effect, in that higher saving rates by current generations increase the
future capital stock, future wages in general equilibrium and thus welfare of future
generations in the economy. By characterizing all three effects in closed form we show
analytically that with logarithmic utility income risk does not affect the optimal sav-
ing rate chosen by the Ramsey planner, because a general equilibrium effect exactly
offsets the standard partial equilibrium precautionary savings effect.

To understand this finding, first turn to the current generations effect, i.e., assume
for now that future generations do not receive any weight in the Ramsey planner’s
objective function. In the absence of income risk the current generations effect simply
captures that the Ramsey government chooses the optimal saving rate, internalizing
how this allocation affects wages and interest rates. In the presence of income risk,
private households also do not internalize that increasing savings raises wages and
thus the risky income component in the next period. Since this wage risk is unin-
surable by assumption, this additional wage risk is welfare reducing. The Ramsey
planner internalizes this negative side effect from private precautionary saving when
setting tax rates on capital which in turn impact the saving rate chosen by private
households, and through it, factor prices in general equilibrium.1 With logarithmic
utility, this general equilibrium effect exhibits exactly the opposite effect on the op-
timal saving rate as the partial equilibrium precautionary savings effect so that the
two effects of idiosyncratic income risk precisely cancel out. The benevolent Ramsey
government implements the optimal allocation by offsetting the negative precaution-
ary savings externality through taxes on capital, thereby reducing the saving rate
and capital formation. Hence, more broadly, our optimal tax result is shaped by the
Pigouvian taxation principle (Pigou 1920) aimed at correcting externalities. Since
the individually chosen (socially suboptimal) saving rate is increasing in income risk,
so is the tax rate on capital correcting the externality from these choices.

Now assume that the Ramsey government additionally values future generations.
As with the own generations effect, the general equilibrium future generations ef-
fect reflects that the Ramsey planner internalizes the general equilibrium feedback
on wages and returns for future generations and, in general, how this affects their

1A subset of the literature emphasizes that private precautionary savings behavior creates a
pecuniary externality that has first order welfare implications in models with incomplete markets,
see e.g. Davila et al. (2012) or Park (2017). In this paper we consistently refer to this effect, both
on current as well as on future factor prices, as general equilibrium effects.
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exposure to idiosyncratic wage risk. With logarithmic utility, however, all risk terms
again cancel out, and the optimal allocation is not affected by risk at all. With
logarithmic utility future generations therefore unambiguously benefit from a higher
capital stock which pushes up the optimal saving rate desired by the Ramsey plan-
ner. In the presence of the future generations effect the tax rate implementing the
optimal allocation may therefore by positive or negative, depending on how strongly
the Ramsey government values current and future generations.

A perhaps surprising finding emerges when the government maximizes steady
state utility, i.e., when the future generations effect has maximum potency. If the
associated optimal long-run Ramsey tax rate is positive (which is true if income risk
is sufficiently high), then a government implementing this constant tax rate along
the transition generates a Pareto-improving, policy induced transition from the un-
regulated steady state equilibrium. This holds true even if the original equilibrium
is dynamically efficient and thus the tax on capital reduces aggregate consumption
along the transition path. The optimal saving rate (and capital tax) which maximizes
steady state utility of course acknowledges the welfare losses induced by the crowding
out of capital. Since the capital stock monotonically decreases along the transition,
welfare losses from this crowding out effect monotonically increase from zero (in the
first period of the transition when the capital stock is predetermined) to the long-run
maximum along the transition. At the same time, the utility gains from a reduction
of the saving rate are constant for all cohorts that live through the transition. Con-
sequently, setting the tax rate in all periods to the long-run welfare maximizing rate
induces welfare gains for all transitional generations and thus constitutes a Pareto
improvement. This result therefore builds a natural bridge between the thus far quite
separate literatures on capital taxation and dynamic inefficiency of equilibrium in
OLG economies on the one hand, and uninsurable income risk and capital income
taxation in Bewley style economies on the other hand.

In the last part of the paper we extend our results concerning the steady state
welfare maximizing policy to arbitrary Epstein-Zin-Weil utility (EZW utility, see
Epstein and Zin (1989, 1991) and Weil (1989)) and show that the optimal steady state
saving rate is increasing in the amount of income risk if and only if the intertemporal
elasticity of substitution (IES) is smaller than 1. The intuition is that with EZW
utility the objective of households (and thus the Ramsey government) is to maximize
utility from safe consumption when young and from the certainty equivalent of utility
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from risky consumption when old. When risk increases, the certainty equivalent from
consumption when old decreases. In response the Ramsey government finds it optimal
to increase mean old age consumption by increasing the saving rate if the willingness
to inter-temporally substitute consumption is relatively low. The reverse is true if
the IES is relatively high, with an IES of unity serving as the watershed case. The
associated optimal steady state tax rate implementing this saving rate is increasing
in income risk unless both the IES and risk aversion (RA) are large2, in which case
the Ramsey tax rate might be declining in income risk. A necessary condition for
this to happen is that households in the competitive unregulated equilibrium decrease
their saving rate in response to an increase in income risk. They may choose to do
so if they have high RA and high IES because of the low utility value from old-
age consumption (high RA) and the high willingness to inter-temporally substitute
consumption (high IES) in response to an increase of risk. Unlike households, the
Ramsey government internalizes the associated feedback on capital formation through
the future generations effect and may therefore find it optimal to dampen the private
household saving reaction by cutting the tax on capital.

This paper contributes to various strands of the literature that study optimal al-
locations and optimal Ramsey capital income tax policies in models with uninsurable
idiosyncratic income risk. The first strand analyzes the role of uninsurable idiosyn-
cratic labor income risk for capital accumulation and optimal capital income taxation
in variants of infinite horizon Aiyagari (1994), Bewley (1986), İmrohoroğlu (1989) and
Huggett (1993) economies. Within this literature, the paper by Davila et al. (2012)
is most relevant for our approach. The authors characterize constrained efficient al-
locations in which the planner can directly choose allocations, but cannot transfer
resources across households with different idiosyncratic shock realizations to provide
direct insurance against the idiosyncratic risk.3 Davila et al. (2012) emphasize three
drivers of the optimal allocation: how uninsurable risk affects precautionary savings
of private individuals, how general equilibrium prices affect the total income risk of
a consumer as well as how the distribution of incomes, in particular the income com-
position of consumption- and wealth-poor agents in the economy, affect aggregate

2Thus, this result never emerges with standard CRRA utility.
3The notion of constrained efficiency follows Diamond (1967) who also studies a social planner

problem in which the planner cannot directly overcome a friction in the economy implied by missing
markets. A similar approach is taken by Geanakoplos and Polemarchakis (1986).

4



welfare.4 In contrast to their work we study an overlapping generations economy,
where, rather than the cross-sectional distribution of factor incomes at a given point
of time, it is the distribution of factor incomes across generations that is crucial for
the determination of optimal policy. To obtain closed form solutions we deliberately
shut down within-generation heterogeneity so that the inter-generational distribution
effect is the only distributional effect in the model. In addition, we characterize the
optimal solution of the Ramsey tax problem with linear taxes on capital, rather than
focusing on constrained efficient allocations as they do. However, we show that with
our choice of policy instruments (linear capital income taxes and lump-sum transfers),
the Ramsey government can in fact implement constrained efficient allocations.

The work on Ramsey taxation in Aiyagari-Bewley-Huggett-İmrohoroǧlu models
starts with Aiyagari (1995). He assumes that government spending is endogenous,
that the optimal Ramsey allocation converges to a stationary equilibrium, and finds
that in this stationary equilibrium the capital income tax is positive and restores the
modified golden rule.5 Recent work by Chen et al. (2017) reassesses Aiyagari (1995)’s
main finding of positive capital income taxes in models where government spending is
exogenous, as in the standard Ramsey optimal taxation literature. The paper argues
that treating government spending as exogenous has fundamental consequences for
Aiyagari (1995)’s analysis. Depending on the IES there either is no Ramsey steady
state with interest rate lower than the discount rate, or if it exists, the Lagrange
multiplier on the resource constraint diverges in that steady state. In both cases
Aiyagari (1995)’s argument establishing an optimal positive capital income tax in the
long run in the economy with endogenous government spending does not extend to
the canonical infinite horizon incomplete markets model with exogenous government

4In Davila et al. (2012) asset-income poor households benefit from an increase of the capital stock
and thus wages. Park (2017) introduces endogenous human capital accumulation to this environment
so that welfare of human-capital poor households might be improved by lower wages, which adds an
additional distribution effect, with welfare implications of changing factor incomes opposite to those
studied by Davila et al. (2012).

5Building on this work Chamley (2001) develops a partial equilibrium model to clarify that the
Chamley-Judd (Judd 1985; Chamley 1986) result of zero optimal capital taxes depends on the
assumption of complete markets and breaks down if households face income risk and a borrowing
constraint. In Chamley (2001)’s partial equilibrium analysis, the general equilibrium effects that are
crucial to our results are missing by construction.
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spending.6,7 We can characterize, at least for the log-utility case, the entire time
path of optimal Ramsey allocations analytically in the OLG model with idiosyncratic
income risk, and thus we can demonstrate that the allocation indeed converges to a
steady state. Furthermore we obtain a complete characterization of optimal capital
tax rates not only in the steady state, but along the entire transition path.

Quantitative work in infinite horizon economies by Dyrda and Pedroni (2016)
analyzes optimal fiscal policy along the economy’s transition from the status quo
to the long-run optimum. They find that the capital income tax is positive and
decreasing along the transition, with a long-run optimum of 45 percent.8 A similar
finding is obtained by Gottardi et al. (2015) in a model with risky human capital
originally proposed by Krebs (2003). Açikgöz (2015) also compares optimal long-run
with optimal transitional policies.9 Whereas idiosyncratic labor income risk plays
a key role in these papers, none of them emphasizes how the general equilibrium
price effects affect the optimal allocation chosen by the Ramsey planner as we do. A
related literature studies optimal capital income taxes in models with idiosyncratic
investment risk, see Evans (2014), Panousi (2015), and Panousi and Reis (2017). The
key focus of this work is on the role of capital income taxes in providing insurance
or redistribution; none of these papers emphasizes the role of general equilibrium
feedback from precautionary saving behavior on optimal capital income taxation.

Our work also contributes to the literature on optimal capital income taxation
in life-cycle economies. The early literature by Pestieau (1974) and Atkinson and
Sandmo (1980) studies optimal taxation with two-period lived households in deter-
ministic general equilibrium models. In extensions to multi-period, deterministic
models, Erosa and Gervais (2001, 2002) and Garriga (2017) emphasize that capital

6In related work, Chien and Wen (2017) develop a tractable Aiyagari-Bewley-Huggett model with
preference rather than productivity shocks to address the impact of precautionary saving, through
the general equilibrium interest rate, on the fraction of households at the borrowing constraint. Such
effects are absent in our work with two period lived ex-ante identical households because borrowing
constraints would never be binding in equilibrium.

7Heathcote, Storesletten, and Violante (2017) also develop an analytically tractable model with
idiosyncratic income risk. They focus on characterizing the optimal progressivity of labor income
taxation in a model with infinitely lived households, endogenous labor supply but without capital,
rather than on capital income taxes in OLG models with capital, as we do.

8In a similar setting Hagedorn et al. (2015) obtain comparable results but argue for a significantly
lower level of the capital income tax rate.

9These papers extend the work by Domeij and Heathcote (2004) analyzing the welfare con-
sequences of abolishing capital income taxes in a Aiyagari-Bewley-Huggett economy taking into
account the transition.
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income taxes will only be zero under strong assumptions on preferences, or if labor
income tax rates are permitted to depend on household age.10 Building on these
insights, Conesa et al. (2009) develop an overlapping generations model with unin-
surable idiosyncratic labor income risk, and argue that their main finding of strongly
positive optimal capital income taxes is driven by the life-cycle structure of th model
and the absence of age-dependent labor income taxes. The general equilibrium price
effects on the optimal Ramsey policy in general, and of precautionary savings on
prices in particular, are not addressed in this body of work.

Finally, our analysis connects to the literature on optimal capital taxation in the
Mirrleesian tradition. In models with idiosyncratic risk, the optimal Mirrleesian insur-
ance arrangement calls for a positive capital income tax, see, e.g., Farhi and Werning
(2012). Note that the concept of constrained efficiency differs between the litera-
ture on exogenously incomplete markets in general equilibrium (as in Davila et al.
(2012) and Park (2017)) and the Mirrleesian literature. In the Mirrleesian tradition,
constrained efficiency refers to incentive-compatibility constraints that arise from the
asymmetry of information between the planner and agents. Constrained efficiency in
our context instead refers to the constraint that the planner by assumption cannot
directly overcome the frictions implied by missing markets. Thus, the planner can
neither redistribute inter-generationally nor intra-generationally. In our two-period
set-up with exogenous labor supply and labor income risk in the second period only,
the absence of intra-generational redistribution across individuals with different in-
come realizations would also emerge in a Mirrleesian analysis income is private in-
formation and the Mirrleesian planner designs incentive compatible allocations. If
the Mirrleesian planner is also restricted not to redistribute inter-generationally, the
optimal Ramsey allocation coincides with a Mirrleesian optimum, and our results can
also be interpreted as optimal taxes in the New Dynamic Public Finance tradition.

The next section 2 presents our model and Section 3 characterizes the competitive
equilibrium. Section 4 lays out the solution to the Ramsey problem and presents the
analytical solution for logarithmic utility. Section 5 discusses the efficiency properties
of the Ramsey equilibrium and gives conditions under which implementing the long-
run optimal policy induces a Pareto improving transition. Section 6 presents the
generalization of our results to Epstein-Zin-Weil utility and Section 7 concludes.

10Similar findings are obtained by Peterman (2016) in a quantitative human capital model with a
learning by doing mechanism.
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2 Model

Time is discrete and extends from t = 0 to t = ∞. In each period a new generation
is born that lives for two periods. Thus at any point in time there is a young and
an old generation. We normalize household size to 1 for each age cohort. In addition
there is an initial old generation that has one remaining year of life.

2.1 Household Preferences and Endowments

2.1.1 Endowments

Each household has one unit of time in both periods, supplied inelastically to the
market. Labor productivity when young is equal to (1 − κ), and, as in Harenberg
and Ludwig (2015), in the second period labor productivity is given by κηt+1, where
κ ∈ [0, 1) is a parameter that captures relative labor income of the old, and ηt+1 is
an idiosyncratic labor productivity shock. We assume that the cdf of ηt+1 is given by
Ψ(ηt+1) in every period and denote the corresponding pdf by ψ

(
ηt+1

)
. We assume

that Ψ is both the population distribution of ηt+1 as well as the cdf of the productivity
shock for any given individual (that is, we assume a Law of Large Numbers, LLN
henceforth). Whenever there is no scope for confusion we suppress the time subscript
of the productivity shock ηt+1. We make the following

Assumption 1. The shock ηt+1 takes positive values Ψ-almost surely and∫
ηt+1dΨ = 1.

Each member of the initial old generation is additionally endowed with assets equal
to a0, equal to the initial capital stock k0 in the economy. The asset endowment is
independent of the household’s realization of the shock η.

2.1.2 Preferences

A household of generation t ≥ 0 has preferences over consumption allocations cyt , cot+1(ηt+1)

given by

Vt = u(cyt ) + β

∫
u(cot+1(ηt+1))dΨ. (1)
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Lifetime utility of the initial old generation is determined as

V−1 =

∫
u(co0(η0))dΨ.

In order to obtain the sharpest analytical results in the first part of the paper we
will assume logarithmic utility:

Assumption 2. The utility function u is logarithmic, u(c) = log(c).

We will generalize our results to a general Epstein-Zin-Weil (Epstein and Zin 1989;
Epstein and Zin 1991; Weil 1989) utility function, which nests constant relative risk
aversion (CRRA) preferences, in Section 6 of the paper.

2.2 Technology

The representative firm operates the Cobb-Douglas production technology:

F (Kt, Lt) = Kα
t (Lt)

1−α .

Furthermore we assume that capital fully depreciates between two (30 year) periods.

2.3 Government

The government levies a potentially time varying capital tax τ t on capital, and rebates
the proceeds in a lump-sum fashion to all members of the current old generation as
a transfer Tt. We assume the government has the following social welfare function

SWF =
∞∑

t=−1

ωtVt,

where {ωt}∞t=−1 are the Pareto weights on different generations and satisfy ωt ≥ 0.

Since lifetime utilities of each generation will be bounded, so will be the social welfare
function as long as

∑∞
t=−1 ωt <∞. We will also consider the case ωt = 1 for all t, in

which case we will take the social welfare function to be defined as

SWF = lim
T→∞

∑T
t=−1 Vt

T
,

which is equivalent to maximizing steady state welfare.
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2.4 Competitive Equilibrium

2.4.1 Household Budget Set and Optimization Problem

The budget constraints in both periods read as

cyt + at+1 = (1− κ)wt (2)

cot+1 = at+1Rt+1(1− τ t+1) + κηt+1wt+1 + Tt+1, (3)

where wt, wt+1 are the aggregate wages in period t and t + 1, Rt+1 = 1 + rt+1 is the
gross interest rate between period t and t+ 1, and Tt+1 are lump-sum transfers to the
old generation, and ηt+1 is the age-2 period-t+ 1 idiosyncratic shock to wages.11

2.4.2 Firm Optimization

From the firms first order conditions we get

Rt = αkα−1
t (4)

wt = (1− α)kαt (5)

where
kt =

Kt

Lt
=

Kt

1− κ+ κ
∫
ηtdΨ

= Kt

is the capital-labor ratio. Since Lt = 1, we henceforth do not need to distinguish
between the aggregate capital stock Kt and the capital-labor ratio.

2.4.3 Equilibrium Definition

Definition 1. Given initial condition a0 = k0 an allocation is a sequence {cyt , cot (ηt), Lt, at+1, kt+1}∞t=0.

Definition 2. Given the initial condition a0 = k0 and a sequence of tax policies
11 Notice that instead of working with a tax on capital τ t, one could work, completely equivalently,

with a (standard) capital income tax τkt given by

1 + rt(1− τkt ) = (1 + rt)(1− τ t)

and thus
τkt = 1− Rt(1− τ t)− 1

Rt − 1
,

ignoring the knife-edge case Rt = 1.
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τ = {τ t}∞t=0, a competitive equilibrium is an allocation {cyt , cot , Lt, at+1, kt+1}∞t=0, prices
{Rt, wt}∞t=0 and transfers {Tt}∞t=0 such that

1. given prices {Rt, wt}∞t=0 and policies {τ t, Tt}∞t=0 for each t ≥ 0, (cyt , c
o
t+1(ηt+1), at+1)

maximizes (1) subject to (2) and (3) (for each realization of ηt+1);

2. consumption co0(η0) of the initial old satisfies (3) (for each realization of η0):

co0 = a0R0(1− τ 0) + κη0w0 + T0;

3. prices satisfy equations (4) and (5);

4. the government budget constraint is satisfied in every period: for all t ≥ 0

Tt = τ tRtkt;

5. markets clear

Lt = L = 1

at+1 = kt+1

cyt +

∫
cot (ηt)dΨ + kt+1 = kαt .

Denote by SWF (τ ) social welfare associated with an equilibrium for given tax
policy τ . As we will show below, for a given tax policy τ the associated competitive
equilibrium in our economy exists and is unique and thus the function SWF (τ ) is
well-defined as long as τ t ∈ (−∞, 1) for all t.

Definition 3. Given the initial condition a0 = k0, a Ramsey equilibrium is a sequence
of tax policies τ̂ = {τ̂ t}∞t=0 and equilibrium allocations, prices and transfers associated
with τ̂ (in the sense of the previous definition) such that

τ̂ ∈ arg max
τ

SWF (τ ).
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3 Analysis of Equilibrium for a Given Tax Policy

3.1 Partial Equilibrium

We first analyze the household problem for given prices and policies. We proceed
under the assumption that a unique solution characterized by the Euler equation
exists, and then make sufficient parametric assumptions to insure that this is indeed
the case.

The optimal asset choice at+1 satisfies

1 = β(1− τ t+1)

∫
Rt+1

[
u′(at+1Rt+1(1− τ t+1) + κηt+1wt+1 + Tt+1)

]
u′((1− κ)wt − at+1)

dΨ(ηt+1).

Defining the saving rate as
st =

at+1

(1− κ)wt

we can rewrite the above equation as

1 = β(1− τ t+1)

∫
Rt+1

[
u′(stRt+1(1− τ t+1)(1− κ)wt + κηt+1wt+1 + Tt+1)

]
u′ [(1− κ)wt(1− st)]

dΨ(ηt+1),

(6)
which defines the solution

st = st(wt, wt+1, Rt+1, τ t+1, Tt+1; β, κ,Ψ).

Note by assumption 1 that consumption in the second period is positive Ψ-almost
surely. Without further assumptions on the fundamentals we cannot make analytical
progress. Therefore now invoke assumption 2 that the utility function is logarithmic.
Then the Euler equation becomes:

1 = β(1− τ t+1)

∫
1− st

st(1− τ t+1) + κwt+1

(1−κ)wtRt+1
ηt+1 + Tt+1

(1−κ)wtRt+1

dΨ(ηt+1) (7)

Equation (7) implicitly defines the optimal partial equilibrium saving rate st =

s(wt, wt+1, Rt+1, τ t+1, Tt+1; β, κΨ).
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3.2 General Equilibrium

Now we exploit the remaining equilibrium conditions. In equilibrium factor prices
and transfers are given by

wt = (1− α)kαt (8)

wt+1 = (1− α)kαt+1 (9)

Rt+1 = αkα−1
t+1 (10)

Tt+1 = τ t+1Rt+1kt+1 (11)

From the definition of the saving rate st = at+1

(1−κ)wt
and market clearing in the asset

market, which implies at+1 = kt+1, we find that

kt+1 = at+1 = (1− κ)stwt

and thus
kt+1 = st(1− κ)(1− α)kαt (12)

In general, for a given sequence of capital taxes {τ t}∞t=0 the competitive equilibrium
is a sequence of capital stocks {kt+1}∞t=0 that solves, for a given initial condition k0,

the first order difference equation (7) when factor prices have been substituted

1 = αβ(1− τ t+1)kα−1
t+1

∫ ( [
κηt+1(1− α) + α

]
kαt+1

(1− κ)(1− α)kαt − kt+1

)−1

dΨ(ηt+1)

= αβ(1− τ t+1)

(
(1− κ)(1− α)kαt − kt+1

kt+1

)
Γ, (13)

where the constant

Γ =

∫ (
κηt+1(1− α) + α

)−1
dΨ(ηt+1) = Γ(α, κ; Ψ) (14)

fully captures the impact of idiosyncratic income risk on the equilibrium dynamics of
the capital stock.

Equation (13) implicitly defines the function kt+1 = Ω(kt, τ t+1). Alternatively, and
often more conveniently, instead of expressing the solution as kt+1 = Ω(kt, τ t+1), we
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can also express it in terms of the saving rate as

st =
kt+1

(1− α) (1− κ)kαt
=

Ω(kt, τ t+1)

(1− α) (1− κ)kαt
= Λ(kt, τ t+1) (15)

where the function st = Λ(kt, τ t+1) solves (using the definition of the saving rate in
equation (13)):

1 = αβ(1− τ t+1)

(
1− st
st

)
Γ. (16)

3.3 Characterization of the Saving Rate

Evidently, equation (16) has a closed form solution for the saving rate st in general
equilibrium, and we can give a complete analytical characterization of its comparative
statics properties.

Proposition 1. Suppose assumptions 1 and 2 are satisfied. Then for all kt > 0 and
all τ t+1 ∈ (−∞, 1] the unique saving rate st = Λ(kt, τ t+1; Γ) is given by

st =
1

1 + [(1− τ t+1)αβΓ(α, κ; Ψ)]−1 , (17)

which is strictly increasing in Γ, strictly decreasing in τ t+1 and independent of the
beginning of the period capital stock.

The next corollary assures that any desired saving rate st ∈ (0, 1] can be imple-
mented as part of a competitive equilibrium by appropriate choice of the capital tax
rate τ t+1. This corollary is crucial for our approach of solving the optimal Ramsey tax
problem, since we can cast that problem directly in terms of the government choosing
saving rates rather than tax rates.

Corollary 1. For each saving rate st ∈ (0, 1] there exists a unique tax rate τ t+1 ∈
(−∞, 1) that implements that saving rate st as part of a competitive equilibrium.

Finally we want to determine the influence of income risk on the saving rate in
general equilibrium. From proposition 1 we know that the saving rate depends on
income risk η exclusively through the constant Γ. Furthermore, Γ is a strictly convex
function of income risk η, and thus by Jensen’s inequality we have the following:

Observation 1. Assume that α ∈ (0, 1) and κ > 0. Then
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1. The constant Γ(α, κ; Ψ) is strictly increasing in the amount of income risk, in
the sense that if the distribution Ψ̃ over η is a mean-preserving spread of Ψ,

then Γ(α, κ; Ψ) < Γ(α, κ; Ψ̃).

2. Define the degenerate distribution at η ≡ 1 as Ψ̄, then for any nondegenerate Ψ

1 < Γ̄ := Γ(α, κ; Ψ̄) < Γ(α, κ; Ψ)

We can immediately deduce the following:

Corollary 2. The equilibrium saving rate is strictly increasing in the amount of
income risk.

The proof of this result follows directly from the fact that st = Λ(kt, τ t+1; Γ) is
strictly increasing in Γ and Γ is strictly increasing in the amount of income risk.
Equipped with this full characterization of the competitive equilibrium for a given
sequence of tax policies {τ t+1}∞t=0 we now turn to the analysis of optimal fiscal policy.

4 The Ramsey Problem

The objective of the government is to maximize social welfare W (k0) =
∑∞

t=−1 ωtVt

by choice of capital taxes {τ t+1}∞t=0 where Vt is the lifetime utility of generation t in
the competitive equilibrium associated with the sequence {τ t+1}∞t=0. We start with
general preferences and later again invoke assumption 2 that the utility function is
logarithmic. Making use of corollary 1 we can substitute out taxes to write lifetime
utility in terms of the saving rate st yielding

V (kt, st) = u((1−st)(1−κ) (1− α) kαt )+β

∫
u
(
κηt+1w(st) +R(st)st(1− κ)(1− α)kαt

)
dΨ(ηt+1),

(18)
where

w(st) = (1− α) [kt+1(st)]
α (19)

R(st) = α [kt+1(st)]
α−1 (20)

kt+1(st) = st(1− κ)(1− α)kαt . (21)
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We could of course substitute factor prices in the lifetime utility function, but for
the purpose of better interpretation of the results we refrain from doing so at this
moment.

Finally, remaining lifetime utility of the initial old generation is given by (with
factor prices already substituted out)

V−1 = V (k0, τ 0) =

∫
u ([α + κη0(1− α)] kα0 ) dΨ(η0) = V (k0) (22)

Note that τ 0 is irrelevant for welfare of the initial old generation (and all future gener-
ations) and can be set arbitrarily. This is due to the fact that τ 0 is nondistortionary,
is lump-sum rebated and (most crucially) that the government is assumed to have a
period-by-period budget balance. In fact, expression (22) shows that with the set of
policies we consider lifetime utility of the initial old cannot be affected at all, which
is useful since we therefore do not need to include it in the social welfare function.

By corollary 1 the Ramsey government can implement any sequence of savings
rates {st}∞t=0 as a competitive equilibrium and thus can choose private savings rates
directly. We therefore can restate the problem the Ramsey government solves as

W (k0) = max
{st}∞t=0

∞∑
t=0

ωtV (kt, st) (23)

subject to (19)–(21).
In the remainder of this section we now fully characterize the solution to the

Ramsey problem. We can do so for arbitrary social welfare weights {ωt}∞t=0 using
the sequential formulation of the problem, as Appendix B shows. In the main text
we exploit the recursive formulation of the problem, which requires a stationarity
assumption on the social welfare weights (Assumption 3 below), but allows us to
arrive at the solution rather immediately.

4.1 Recursive Formulation and Characterization of the Ram-

sey Problem

The Ramsey problem lends itself to a recursive formulation, under the following
assumption on the social welfare weights:
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Assumption 3. The social welfare weights satisfy, for all t ≥ 0, ωt > 0 and

ωt+1

ωt
= θ ∈ (0, 1).

Under this assumption, the recursive formulation of the problem reads as

W (k) = max
s∈[0,1)

u((1− s)(1− κ) (1− α) kα)

+β

∫
u (κηw(s) +R(s)s(1− κ)(1− α)kα) dΨ(η) + θW (k′(s))

s.t. (24)

k′(s) = s(1− κ)(1− α)kα (25)

R(s) = α [k′(s)]
α−1 (26)

w(s) = (1− α) [k′(s)]
α (27)

This perhaps unusual way of writing the problem clarifies the three effects the Ram-
sey government considers when choosing the saving rate s in the current period.12

First, there is the direct effect of reduced consumption when young and increased
consumption when old, henceforth denoted by PE(s). Second, there is the indirect,
general equilibrium effect on the current generation of changed wages and rates of
return when old, which we denote as GE(s). And third, there is the impact on future
generations from a changed capital stock induced by a change in the current saving
rate, denoted by FG(s).

Taking first order conditions yields

0 = (1− κ)(1− α)kα
[
−u′(cy) +R(s)β

∫
u′ (co(η)) dΨ(η)

]
+β

∫
u′ (co(η)) [κηw′(s) + (1− κ)(1− α)kαR′(s)s] dΨ(η)

+θW ′(k′(s))
dk′(s)

ds
= PE(s) +GE(s) + FG(s)

We make the following observations:
12Or equivalently, when choosing the tax rate τ ′ that then induces private households to choose

the saving rate s.
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1. Denote by sCE the saving rate households would choose in the competitive
equilibrium with zero capital taxes. Then PE(sCE) = 0.

2. In Appendix A we show that the general equilibrium effect can be written as

GE(s) = (1− α)α [(1− κ)(1− α)kα]α [s]α−1 β

∫
u′ (co(η)) [κη − 1] dΨ(η)

and thus the sign of the general equilibrium benefit of an extra unit of savings
for the current generation is determined by the term∫
u′ (co(η)) [κη − 1] dΨ(η) =

∫
u′ (κηw(s) +R(s)s(1− κ)(1− α)kα) [κη − 1] dΨ(η)

If κ = 0, then the old do not have labor income, and thus the impact of higher
savings and consequently a larger capital stock is unambiguously negative, due
to a lower return on saving when old. If, on the other hand, κ is large, wages
when old are important for this generation which calls, ceteris paribus, for
a larger saving rate. Note that the magnitude of a change in factor prices
induced by a change in saving rates is purely determined from the production
side of the economy. The utility value to the household and thus to the Ramsey
government of these factor price movements, however, depends on the utility
function since it determines the size of the covariance between u′(co(η)) and η
(which is negative). If households are risk-neutral (or there is no risk), then the
sign of GE(s) is given by κ−1 which is negative, leading to a reduced incentive
to save due to general equilibrium effects, and an associated extra incentive to
tax capital income. With risk the sign of GE(s) is determined by the sign of

E [u′(co(η))(κη − 1)] = (κ− 1)E [u′(co(η))] + Cov [u′(co(η)), (κη − 1)]

< (κ− 1)E [u′(co(η))] < 0

and thus there is an extra disincentive to save from the general equilibrium
effect: higher wages exacerbate idiosyncratic income and thus consumption risk
and thus it is optimal for the social planner to reduce labor income risk by
reducing savings incentives, other things equal.

3. The effect of a higher saving rate today on future generations through a higher
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capital stock from tomorrow on, k′(s), is encoded in the term

FG(s) = θW ′(k′(s))
dk′(s)

ds
= (1− κ)(1− α)kαθW ′(k′(s)) > 0

and depends on the relative social welfare weights of future generations θ = ωt+τ
ωt

.

Figure 1 plots the terms PE(s), GE(s), FG(s) as well as their sum against the
saving rate s for a parametric example, and fixing a current (or initial) capital stock
k.13 We observe that, as expected, FG(s) is always positive (the marginal benefit
from a higher saving rate on future generations through a higher capital stock is
always positive). Also, as argued in item 2 above, GE(s) is always negative, and
thus calls for a lower saving rate and higher capital income tax rate. Finally, the
PE(s) line shows where the competitive equilibrium saving rate absent government
policies is located (at the intersection between PE(s) and the zero line). The sum
PE(s)+GE(s)+FG(s) displays the optimal Ramsey saving rate s (intersection with
the zero line). In this example the FG effect dominates the GE effect and the saving
rate s∗ chosen by the Ramsey government exceeds that emerging in the unregulated
competitive equilibrium sCE. Of course this is not a general result; for example, if
θ = 0 and future generations are not valued at all, one would obtain s∗ < sCE.

4.2 Explicit Solution of the Ramsey Tax Problem

We now provide a complete analytical characterization of the Ramsey optimal policy
problem under the assumption 2 that utility is logarithmic. As in the standard neo-
classical growth model, the recursive version of the Ramsey problem with log-utility
has a unique closed-form solution, which can be obtained by the method of unde-
termined coefficients. To this end, guess that the value function takes the following
log-linear form:

W (k) = Θ0 + Θ1 log(k).

13We will show below that for the logarithmic case the Ramsey saving rate is independent of the
current capital stock, and since we display an example with σ = 1 in the plot, the dependence of s
on k is actually moot here.
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Figure 1: Decomposition of Optimal Saving Rate Determination

Notes: Decomposition of Ramsey planner’s first-order condition into PE(s), GE(s), and FG(s).
The intersection with the zero line gives the optimal saving rate s∗.

Using this guess and equations (25)-(27) rewrite the Bellman equation (24) as:

W (k) = Θ0 + Θ1 log(k) (28)

= max
s∈[0,1]

{log((1− s)(1− κ) (1− α) kα)

+β

∫
log (κηw(s) +R(s)s(1− κ)(1− α)kα) dΨ(η) + θW (k′)

}
= log((1− κ) (1− α)) + αβ log((1− κ)(1− α))

+

∫
log (κη(1− α) + α) dΨ(η) + θΘ0 + θΘ1 log [(1− κ)(1− α)]

+
[
α + α2β + αθΘ1

]
log(k) + max

s∈[0,1]
{log(1− s) + (αβ + θΘ1) log(s)} .

For the Bellman equation to hold, the coefficient Θ1 has to satisfy

Θ1 = α + α2β + αθΘ1
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or
Θ1 =

α(1 + αβ)

(1− αθ)
We also immediately recognize that the optimal saving rate chosen by the Ramsey
planner is independent of the capital stock k and determined by the first order con-
dition

1

1− s
=
αβ + θΘ1

s

and thus
s∗ =

αβ + θΘ1

1 + αβ + θΘ1

=
α(β + θ)

1 + αβ
. (29)

Plugging in s∗ and Θ1 into the Bellman equation (28) yields a linear equation in
the constant Θ0 whose solution completes the full analytical characterization of the
Ramsey optimal taxation problem, summarized in the following

Proposition 2. Suppose assumptions 1, 2 and 3 are satisfied. Then the solution of
the Ramsey problem is characterized by a constant saving rate

st = s∗ =
α(β + θ)

1 + αβ

and a sequence of capital stocks that satisfy

kt+1 = s∗(1− κ)(1− α)kαt

with initial condition k0. The associated value function is given by

W (k) = Θ0 +
α(1 + αβ)

(1− αθ)
log(k)

with derivative
W ′(k) =

α(1 + αβ)

(1− αθ)k
.

The Ramsey allocation is implemented with constant capital taxes τ = τ(β, θ, κ, α; Ψ)

satisfying

1− τ =
(θ + β)

(1− αθ) βΓ(α, κ; Ψ)
, (30)

where Γ is a positive constant that is defined in equation (14) and just depends on
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parameters.14

Corollary 3. The optimal saving rates are independent of the extent of income risk in
the economy and strictly increasing in the social discount factor θ and the individual
discount factor β.

Corollary 4. The optimal capital tax rates are strictly increasing in the extent of
income risk (as measured by Γ), strictly decreasing in θ, strictly increasing in β and
strictly decreasing in the labor income share κ of the old.

It is noteworthy that not only is the optimal saving rate constant and does not
depend on the level of the capital stock, but it also is independent of the extent of
income risk η. This is true despite the fact that for a given tax policy higher income
risk induces a higher individually optimal saving rate, as shown in section 3.3. The
Ramsey government finds it optimal to exactly offset this effect with a capital tax
that is increasing in the amount of income risk, cancelling out exactly the partial
equilibrium incentive to save more as income risk increases.

One advantage of the complete characterization of the recursive problem, relative
to the sequential formulation in Appendix B, is that we can now give a clean decom-
position of the three forces determining the optimal Ramsey saving rate. We now
find that

PE(s) =
−1

(1− s)
+
αβ

s
Γ(α, κ; Ψ)

GE(s) =
αβ

s
[1− Γ(α, κ; Ψ)]

FG(s) =
θα(1 + αβ)

(1− αθ)s
,

where we note that that

Γ(α, κ; Ψ) >
1

κ(1− α) + α
≥ 1

14Appendix B shows, using the sequential formulation of the problem, that for arbitrary welfare
weights the optimal saving rate is still independent of the capital stock and given by

st =
1

1 +
(
αβ + α (1 + αβ)

∑∞
j=1

ωt+j
ωt

αj−1
)−1 .

The saving rate in the proposition is a special case under the assumption ωt+1

ωt
= θ for all t.
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and where the first inequality is strict as long as Ψ is nondegenerate and κ > 0, and
the second inequality is strict as long as κ < 1. Thus [1− Γ(α, κ; Ψ)] ≤ 0, with strict
inequality if κ < 1. We find that

PE(s) R 0, PE ′(s) < 0

GE(s) < 0, GE ′(s) > 0

FG(s) > 0, FG′(s) < 0.

Recall that the saving rate sCE in the competitive equilibrium with zero taxes
satisfies PE(sCE) = 0. This implies that, starting from zero taxes, the only reason to
tax capital is the general equilibrium effect which unambiguously pushes the desired
saving rate down and the tax rate up (i.e. makes it positive). Against this works the
future generations effect (whose size is controlled by θ) and calls unambiguously for
a higher saving rate and thus a lower (i.e. negative) tax rate.

Also note that

PE(s) +GE(s) =
−1

(1− s)
+
αβ

s
Γ(α, κ; Ψ) +

αβ

s
[1− Γ(α, κ; Ψ)]

=
−1

(1− s)
+
αβ

s
(31)

and thus the partial equilibrium incentive to save more when income risk rises is
exactly cancelled out by the general equilibrium effect on factor prices. Thus the
simple solution with log-utility of the Ramsey problem masks the presence of a partial
equilibrium and a general equilibrium effect that turn out to exactly cancel each other
out.

4.3 Discussion of Optimal Tax Rates

In this section we use the sharp characterization of optimal Ramsey saving rates
and capital taxes from equation (30) to discuss further properties of the optimal
Ramsey capital tax rates. The following proposition, which follows immediately from
inspection of (30), gives conditions under which the optimal Ramsey capital tax is
positive, and, in contrast, conditions under which capital is subsidized. For the next
proposition, recall that for θ = 0 only the utility of the first generation receives weight
in the social welfare function, whereas θ = 1 amounts to the Ramsey government
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maximizing steady state welfare.

Proposition 3. There is a threshold social discount factor θ̄ such that for all θ ≥ θ̄

capital is subsidized in every period whereas for all θ < θ̄ it is taxed in every period.
This threshold is explicitly given as

θ̄ =
(Γ− 1) β

1 + αβΓ
> 0.

Corollary 5. If θ̄ ≥ 1, then capital is taxed even when the Ramsey government
maximizes steady state welfare. If θ̄ < 1 then the government should subsidize capital
when the Ramsey government maximizes steady state welfare. If the government
maximizes welfare of only the initial generation (θ = 0) it should unambiguously tax
capital.

Note that these results also apply to the model without income risk. In that case,
which provides a useful benchmark to interpret the general findings, note that the
optimal Ramsey capital tax from equation (30) is given by

τ = 1− (θ/β + 1) (1− (1− κ)(1− α))

(1− αθ)
.

If θ = 0 and the Ramsey government only values the first generation (as effectively,
in the simple model of Krusell et al. (2012)), the future generations term FG(s) is
absent, and the optimal capital tax is given by

τ = (1− κ)(1− α)

Thus capital is taxed at a strictly positive rate (recall that κ ∈ [0, 1)). Since taxes
with income risk are higher than without, the capital tax rate τ is strictly positive
for any degenerate distribution of the income shock if θ = 0.

At the other extreme, suppose that θ = 1. Then

τ = 1− (1/β + 1) (1− (1− κ)(1− α))

(1− α)

and we show in appendix C.3 that in this case τ < 0 if and only if the competitive
equilibrium without taxes is dynamically efficient (i.e. has an interest rate R > 1, or
equivalently, a capital stock below the golden rule capital stock kGR).
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This suggests the possibility that without income risk the competitive economy is
dynamically efficient and the government optimally subsidizes capital in the steady
state, but with sufficiently large income risk the result reverses and the Ramsey gov-
ernment finds it optimal to tax capital in the steady state. The following proposition,
again proved in appendix C.3, shows that this is indeed the case.

Proposition 4. Let θ = 1 such that the Ramsey government maximizes steady state
welfare, and denote by s∗ the associated optimal saving rate. Furthermore denote by
s0(η) the steady state equilibrium saving rate in the absence of government policy and
by sGR the golden rule saving rate that maximizes steady state aggregate consumption.
Finally assume that β <

[
(1− α)Γ̄− 1

]−1.

1. Let income risk be large: Γ > 1

β[(1−α)−1/Γ̄]
. Then the steady state competitive

equilibrium is dynamically inefficient, sGR < s0(η), and s∗ < s0(η), and the
optimal capital tax rate has τ > 0.

2. Let income risk be intermediate:

Γ ∈

(
1 + β

(1− α) β
,

1[
(1− α)− 1/Γ̄

]
β

)

Then the steady state competitive equilibrium is dynamically efficient, s∗ <
s0(η) < sGR, but optimal capital taxes are nevertheless positive.

3. Let income risk be small:
Γ ∈

[
Γ̄,

1 + β

(1− α) β

)
Then the steady state competitive equilibrium is dynamically efficient, s0(η) <

sGR, and s0(η) < s∗, and optimal capital taxes are negative.

Note that if condition β <
[
(1− α)Γ̄− 1

]−1 is violated, then the steady state
competitive equilibrium is dynamically inefficient and the optimal capital tax rate
is positive for all degrees of income risk. The interesting result is case 2: in the
presence of income risk the Ramsey government maximizing steady state welfare
might want to tax capital even though this reduces aggregate consumption (since the
equilibrium capital stock is not inefficiently high) because of the GE effect: a lower
capital stock shifts away income from risky labor income to non-risky capital income,
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and for moderate income risk this effect dominates the future generations effect as
parametrized by θ. Note that the bounds in the previous proposition can of course
be directly defined in terms of the variance of the idiosyncratic income shock η, to a
second order approximation of the integral defining Γ (see Appendix E.2).

4.4 Implications for Dynamics of the Capital Stock and Cap-

ital Income Taxes

The discussion in the previous section concerned the optimal, time-invariant saving
rate. The saving rate, together with the law of motion for the capital stock

kt+1 = st(1− κ)(1− α)kαt =
α(θ + β)(1− κ)(1− α)

1 + αβ
kαt

and the initial condition k0 determine the entire time path for the capital stock.
That sequence {kt}∞t=1 is independent of the amount of income risk and converges
monotonically to the steady state

k∗ =

[
α(θ + β)(1− κ)(1− α)

1 + αβ

] 1
1−α

,

either from above if k0 > k∗ or from below, if k0 < k∗. Again, the optimal tax policy
that implements this allocation depends on the extent of income risk, as shown above.

With this sharp analytical characterization of the optimal sequence of capital, we
can now also make precise the relation between the capital taxes τ t studied thus far,
and the implied optimal capital income taxes τ kt . These are related by the equation

1 + (Rt − 1)(1− τ kt ) = Rt(1− τ t)

and thus
τ kt =

Rt

Rt − 1
τ t,

where the gross return is given by Rt = α (kt)
α−1 . As long as Rt > 1 for all t, capital

taxes and capital income taxes have the same sign, and the two instruments are
equivalent. A sufficient condition for this is

Assumption 4. The initial capital stock satisfies k0 < α
1

1−α and the model parameters
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satisfy
1 + αβ

(θ + β)(1− κ)(1− α)
> 1

This assumption assures that net returns are strictly positive at all times in the
Ramsey equilibrium, since R0 = α (k0)α−1 > 1 and R∗ = α (k∗)α−1 > 1, (and because
the sequence of Rt along the transition is monotone) and thus the Ramsey allocation
can be supported by capital income taxes of the same sign as the original wealth
taxes. Under assumption 4 therefore all interpretations and qualitative results extend
without change to capital income taxes. If instead assumption 4 is not satisfied, and
(ignoring the knife edge case Rt = 1) thus for some t we have Rt < 1 as part of the
Ramsey allocation, then, since capital income is negative (the net return Rt−1 < 0),
the capital tax τ t and associated capital income tax τ kt are of opposite signs.

5 Efficiency Properties of the Ramsey Equilibrium

In this section we discuss the welfare properties of the Ramsey equilibrium character-
ized thus far. By construction, the Ramsey allocation is the best allocation, given the
weights in the social welfare function, that a government that needs to respect equi-
librium behavior of households and is restricted to proportional taxes on capital can
implement. In this section we establish three main results. First, defining constrained
efficient allocations as those chosen by a social planner that cannot directly transfer
consumption across households of different ages and with different idiosyncratic shocks
(as in Davila et al. (2012)), we show that the Ramsey equilibrium is constrained effi-
cient in this precise sense. Second, we relate our results to the dynamic public finance
literature by showing that the Mirrleesian optimum coincides with the Ramsey op-
timum if we restrict the Mirrleesian planner not to redistribute inter-generationally.
And third, we prove that if the optimal Ramsey saving rate s∗(θ = 1) that maximizes
steady state welfare is smaller than s0(η), the steady state saving rate in the compet-
itive equilibrium without government, then implementing s∗(θ = 1) through positive
capital taxes yields a Pareto-improving transition from the initial steady state equilib-
rium without government policy towards the steady state associated with s∗(θ = 1).
This is true even if s0(η) < sGR and thus the steady state equilibrium capital stock
is smaller than the golden rule capital stock.
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5.1 Constrained Efficiency of Ramsey Equilibria

Not surprisingly, the Ramsey government cannot, in general, implement Pareto ef-
ficient allocations.15 Can the government at least achieve constrained efficient allo-
cations with the set of instruments it has? A constrained efficient allocation is an
allocation of capital and consumption that maximizes social welfare subject to the
constraint that the allocation does not permit transfers across currently old house-
holds with different η realizations. Define the set of allocations that are feasible for
the constrained planner as

cyt +

∫
cot (ηt)dΨ + kt+1 = kαt (32)

cot (ηt) = ktMPK(kt) + κηtMPL(kt). (33)

The first constraint is simply the resource constraint. The second constraint has
extra bite as it restricts transfers across different η households: old age consumption
is required to equal capital income plus an η household’s share of labor income,
where the returns to capital and labor are equal to the factors’ relative productivities.
The constrained planner might find it optimal, however, to manipulate factor prices
by choosing a different sequence of capital stocks, relative to that of a competitive
equilibrium (without or with tax policy). Note that these constraints also imply that∫

cot (ηt)dΨ = ktMPK(kt) + κMPL(kt) (34)

cyt = (1− κ)MPL(kt)− kt+1 (35)

so that no intergenerational transfers are permitted either, relative to the competitive
equilibrium. A constrained efficient allocation is one that maximizes

SWF =
∞∑

t=−1

ωtVt

subject to (32) and (33).

The social planner may want to manipulate the capital stock so as to change rela-
tive factor prices, relative to the competitive equilibrium without taxes. The question
is whether the simple tax policy we consider is sufficient to offset the precautionary

15See Appendix C for a complete characterization of Pareto efficient allocations.
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savings externality on factor prices, and implement the constrained efficient alloca-
tion. The answer is yes, as the following proposition (proved in appendix C.2) shows.

Proposition 5. The Ramsey allocation is constrained-efficient.

5.2 Relation to Mirrleesian Approach

Consider a Mirrleesian planner who chooses optimal allocations under the constraint
that η-shocks are private information of households. Assume that this Mirrleesian
planner additionally is not permitted to issue intergenerational transfers, i.e., impose
the constraints (34, 35). The Mirrleesian planner would want to implement transfers
across η̂-types (where η̂ denotes the productivity reports of households), and provide
insurance against low η̂ realizations. The resource constraint and assumed absence
of intergenerational transfers implies that these transfers have to net out to zero in
every period. However, under any such transfer scheme, all high-η households would
have an incentive to report low η̂ and therefore any transfer scheme across η̂-types
would not be incentive compatible. Furthermore the Mirrleesian planner has no other
means to incentivize truthful reporting (e.g. by making future consumption or labor
supply contingent on the η̂ reports). Thus, transfers across η̂-households are infeasible
and the constraint (33) would result as a consequence of incentive compatibility in
the Mirrleesian problem. The Mirrleesian planner would therefore implement the
constrained efficient allocation in the sense of the previous subsection 5.1, which
coincides with the Ramsey optimum as we had shown there.

5.3 Pareto-Improving Tax Transitions

In this section we show that under certain conditions, starting from the steady state
competitive equilibrium without taxes as initial condition, switching to the Ramsey
optimal savings and tax policy that maximizes steady state welfare yields a Pareto
improvement, that is, all generations, including those along the transition, are better
off. This is true, again under certain parametric restrictions, even if the original
competitive steady state equilibrium is dynamically efficient in the sense of satisfying
k0 < kGR (and thus R0 > 1), where kGR is the golden rule capital stock maximizing
steady state aggregate consumption (see Appendix C).
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Proposition 6. Let s0(η) denote the saving rate in a steady state competitive equi-
librium with zero taxes. Assume that s0(η) > s∗. Then a government policy that sets
τ t = τ ∗ > 0 leads to a Pareto improving transition from the initial steady state with
capital k0(η) towards the new steady state associated with tax policy τ ∗.

We provide the proof of this proposition in appendix C.4. The proof shows that
all generations benefit from the government implementing a saving rate that is lower
than the initial competitive equilibrium rate despite the fact that it lowers the capital
stock, thus aggregate production, wages and consumption along the transition. The
key step is to argue that this adverse effect of a lower capital stock is most severe in
the long run (the new steady state), and to show that by choice of s∗ the government
insures that even generations in the new steady state benefit, in terms of lifetime
utility, from the higher tax rate and associated lower saving rate. Note that this
argument is independent of the specific form of the utility function and thus holds
for arbitrary Epstein-Zin-Weil utility, although the conditions on fundamentals that
guarantee that the equilibrium saving rate s0(η) exceeds the optimal Ramsey steady
state saving rate s∗ evidently does depend on the specific form of the utility function.

Note that from proposition 4 the assumption s0(η) > s∗ is satisfied if and only
if income risk is sufficiently large, in the sense that Γ > 1+β

(1−α)β
. The result in the

previous proposition is of course not surprising if s0(η) is larger than the golden rule
implementing saving rate sSG and the initial steady state competitive equilibrium is
dynamically inefficient to start with. However, for intermediate risk, i.e. for

Γ ∈

(
1 + β

(1− α) β
,

1[
(1− α)− 1/Γ̄

]
β

)

the proposition shows that s∗ < s0(η) < sGR, and thus the steady state equilibrium
is dynamically efficient yet setting τ ∗ > 0 implements a Pareto-improving transition.

Finally, it is important to note that the converse of proposition 6 is not true:
even if s0(η) < s∗, implementing the Ramsey optimal (for θ = 1) savings subsidy
τ ∗ < 0 and associated higher saving rate s∗ does not lead to a Pareto improving
transition. We demonstrate this in Appendix C.5 by showing that the generation
born into the first period of this hypothetical policy-induced transition will lose from
this policy innovation. In fact, not only is implementing τ ∗ < 0 not Pareto improving
if s0(η) < s∗, any policy reform that induces a saving rate in period 1 above the
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competitive saving rate with zero taxes, s0(η), will not result in a Pareto improvement
(since it will make the first generation strictly worse off).

6 General Intertemporal Elasticity of Substitution ρ

and Risk Aversion σ

In this section we extend our results to a more general utility function with intertem-
poral elasticity of substitution ρ and risk aversion σ, as in Epstein and Zin (1989,
1991) and Weil (1989). While most of this analysis focusses on steady states, we
establish that our closed form results for the transition go through unchanged for an
IES ρ = 1. All details of formal derivations are relegated to Appendix D.

We now consider a utility function of the form

Vt =
(cyt )

1− 1
ρ − 1

1− 1
ρ

+ β

{[∫
cot+1(ηt+1)1−σdΨ

] 1
1−σ
}1− 1

ρ − 1

1− 1
ρ

.

The parameter ρ measures the IES and the parameter σ governs risk aversion.16 If
σ = 1

ρ
then the utility function takes the standard CRRA form, and as the IES ρ→ 1,

16This specification of Epstein-Zin-Weil preferences is often used in the literature, e.g., in Bommier
et al. (2017). Note that Vt is ordinally equivalent to the more commonly used specification

Ṽt =

(1− β̃)(cyt )1−
‘1
ρ + β̃

[∫
cot+1(ηt+1)1−σdΨ

] 1− 1
ρ

1−σ


1

1− 1
ρ

since one is a monotone transformation of the other:

Vt =
Ṽ

1− 1
ρ

t

(1− β̃)
(

1− 1
ρ

) − (1 + β)

1− 1
ρ

,

where β = β̃

1−β̃ . However, since the Ramsey problem is stated in terms of the weighted sum of
cardinal utilities, a monotone transformation of the utility function will in general alter the Ramsey
problem. When focusing on a steady state analysis, this concern does not arise, since the same
saving rate (and associated tax rate) maximizes steady state V and its monotone transformation Ṽ .
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the utility function becomes17

Vt = ln(cyt ) +
β

1− σ
ln

(∫
cot+1(ηt+1)1−σdΨ

)
.

As in section 4, equation (18) we can write lifetime utility of a generation born in
period t, in general equilibrium, as a function of the beginning of the period capital
stock kt and the saving rate st chosen by the Ramsey government and implemented
by the appropriate choice of the capital tax τ t+1. In addition, in the steady state the
saving rate and the associated capital stock are related by:

k = ((1− κ)(1− α)s)
1

1−α .

In Appendix D we show that the objective function of the Ramsey government
boils down to maximizing, by choice of the steady state saving rate, steady state
lifetime utility, which is given (for ρ 6= 1) by

V (s) = φ̃
(

(1− s)(1− 1
ρ) + βζ̃Γ̃2

)
s
α(1− 1

ρ)
1−α , (36)

where φ̃ and ζ̃ > 0 and Γ̃ > 0 are constants that depend on parameter values. We
find that the optimal steady state saving rate is defined implicitly as

s∗ =
α

1− α

[
(1− s∗) + βζ̃Γ̃2(1− s∗)

1
ρ

]
. (37)

Inspection of equation (37) (see Appendix D) we obtain

Proposition 7. Suppose that θ = 1 and thus the Ramsey government maximizes
steady state welfare. There exists a unique optimal Ramsey saving rate s∗ ∈ (0, 1)

solving equation (37). This saving rate can be implemented with a capital tax rate τ ∗

determined by the competitive equilibrium Euler equation:

1 = (1− τ ∗)αβ ((1− κ)(1− α))(
1
ρ
−1) (1− s∗)

1
ρ

s∗
Γ̃. (38)

Note that all comparative statics results, especially those with respect to an in-
crease in income risk, can be deduced from an analysis of equations (37, 38). Income

17Tallarini (2000) shows that this coincides with risk-sensitive utility of Hansen and Sargent (1995).
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risk affects the optimal Ramsey savings rate s∗ and associated implementing tax rate
τ ∗ only through the constants Γ̃, Γ̃2 which are given as:

Γ̃ = ce(η)(σ−
1
ρ)Γ (39)

Γ̃2 = ce(η)(1− 1
ρ) (40)

where we had defined Γ above for the log-case, which is now given by:

Γ =

∫ (
κηt+1(1− α) + α

)−σ
dΨ(ηt+1) (41)

and where the certainty equivalent of η is defined as, for σ 6= 1

ce(η) =


[∫

(α + (1− α)κη)1−σ dΨ(η)
] 1

1−σ for σ = 1

exp
(∫

ln (α + (1− α)κη) dΨ(η)
)

otherwise.
(42)

In appendix E.1 we prove the following result relating the extent of income risk to
the constants Γ̃, Γ̃2 which are in turn crucial for the comparative statics results we
will provide in section 6.2.

Lemma 1. An increase in income risk (again in the sense of a mean-preserving
spread of η), unambiguously reduces ce(η), increases Γ̃2 if and only if ρ < 1 and
increases Γ̃ if ρ < 1, or ρ > 1 and σ < 1/ρ.

Note that the condition that characterizes the relation between income risk and
Γ̃2 is necessary and sufficient whereas the two alternative conditions that characterize
the relation between income risk and Γ̃ are only sufficient.

6.1 Unit Elasticity of Substitution ρ = 1

Recognizing that for an IES of ρ = 1 we have ζ̃ = Γ̃2 = 1, direct calculations yield:

Proposition 8. Suppose that the IES ρ = 1. Then the solution of the Ramsey problem
is identical to that of the log-utility case analyzed in section 4. That is, the optimal,
constant saving rate is given by

s =
α(β + θ)

1 + αβ
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The optimal tax rate τ that implements this saving rate as a competitive equilibrium
is given by

1 = (1− τ)

(
1− s
s

)
αβΓ̃

and thus is strictly increasing in income risk measured by Γ̃.

Note that the optimal Ramsey saving rate does neither depend on income risk nor
on risk aversion, but that the optimal capital tax rate τ implementing this saving rate
is increasing in income risk, and does depend on risk aversion through the constant
Γ̃ =

∫
(κη(1−α)+α)−σdΨ(η)∫
(κ(1−α)η+α)1−σdΨ(η)

since σ controls the degree of precautionary saving in the
competitive equilibrium that needs to be offset with capital taxes.

Also note that although here we state this result for steady states only, Appendix
D.2 shows that the entire analysis of section 4 with log-utility (including the dynamic
programming formulation and the analysis of the transition path) goes through com-
pletely unchanged (by only replacing Γ by Γ̃) for general Epstein-Zin-Weil utility as
long as the IES is unity, ρ = 1.

6.2 The Impact of Risk on the Optimal Saving and Tax Rate:

Disentangling Risk Aversion and IES: 1
σ 6= ρ 6= 1

In the previous section we demonstrated that an IES of 1 is sufficient (and, as turns
out, necessary) for the result that the optimal Ramsey saving rate can be solved in
closed form, is constant over time and independent of the extent of income risk. In
this section we investigate how income risk impacts the optimal Ramsey saving rate
and implementing capital tax rate when we allow for general IES and risk aversion
(ρ, σ) where the standard CRRA case is nested for ρ = 1/σ.

From equation (37) we immediately observe that the optimal steady state saving
rate s is strictly increasing in the constant Γ̃2 that fully summarizes the impact of
income risk. The response of s to income risk then immediately follows from the
impact of an increase in income risk on Γ̃2 stated in Lemma 1. Thus we have

Proposition 9. An increase in income risk, that is, a mean-preserving spread in the
distribution of η, increases the optimal steady state Ramsey saving rate s∗ if and only
if ρ < 1 and decreases it if and only if ρ > 1.

Thus the direction of the change in s with respect to income risk is exclusively
determined by the IES ρ, with the log-case acting as a natural watershed. Of course

34



how strongly the saving rate responds to an increase in income risk is also controlled
by risk aversion through the term Γ̃2.

What is the intuition for this result? Suppose the economy is in the steady state
associated with a given extent of income risk and the optimal Ramsey tax policy,
and now consider an increase in income risk. The Ramsey government can neutralize
the response of private households’ savings behavior, by appropriate adjustment of
the tax rate on capital to implement the new optimal saving rate.18 The question is
then how the saving rate desired by the Ramsey government itself changes. House-
holds (and thus the Ramsey government) obtain utility from safe consumption when
young and risky consumption when old, and the desire for smoothing utility from
safe consumption when young and the certainty equivalent of consumption when old
is determined by the IES ρ. As risk increases, the certainty equivalent of old-age con-
sumption declines, for a given consumption allocation. Old age consumption is now
a less effective way to generate utility, and whether the Ramsey government wants to
prop up old-age consumption (by increasing the saving rate) or reduce it (by lowering
the saving rate) depends on how much households value a smooth life cycle utility
profile. In the log-case the two forces exactly balance out and the Ramsey saving rate
does not respond to income risk at all. In contrast, if households strongly desire a
smooth path of (the certainty equivalence of) consumption, then the Ramsey govern-
ment compensates for the loss of old-age certainty equivalent consumption induced
by larger income risk by saving at a higher rate. Thus s increases with income risk if
the IES ρ is small. The reverse is true for a high IES.

Finally, we can also determine the impact of income risk on optimal steady state
capital taxes. From equation (38) the optimal Ramsey tax rate is given by

1 = (1− τ ∗)αβ ((1− κ)(1− α))(
1
ρ
−1) (1− s∗)

1
ρ

s∗
Γ̃. (43)

We observe that income risk affects the optimal tax rate in two ways. First, for a
given target saving rate s∗, the direct impact of income risk depends on how Γ̃ (and
thus the private saving rate) responds to an increase in risk. Second, a change in

18We saw this explicitly in the decomposition of the first order condition of the Ramsey government
in section 4.2, where the risk term Γ from the competitive equilibrium optimality condition dropped
out because the government chooses, through taxes and the associated changes in factor prices, to
exactly offset the impact of higher risk on private household savings decisions. In the logic of that
section, an increase in Γ increases PE(s) but reduces GE(s) by precisely the same factor.
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income risk changes the optimal saving rate s∗ through Γ̃2, as characterized in the
previous proposition. The next proposition, proved in section D.4 of the appendix,
gives sufficient conditions on the IES and risk aversion (ρ, σ) under which the optimal
capital tax rate τ ∗ is increasing in income risk, and a necessary condition required
for the tax rate to be decreasing in income risk. The proof of the first proposition
exploits the fact that using equation (37) we can rewrite equation (43) as:

1 = (1− τ ∗)
(

1− α

s∗

) Γ̃

Γ̃2

. (44)

Proposition 10. If ρ ≤ 1, then an increase in income risk increases the optimal tax
rate on capital. Similarly, if ρ > 1 and σ ≤ 1/ρ, then an increase in income risk
increases the optimal tax rate on capital.

Proposition 11. If ρ > 1 and σ > 1/ρ then an increase in income risk might lead
to a strict reduction in the optimal tax rate on capital. A necessary condition for this
to happen is that the private saving rate in competitive equilibrium for given tax rate
τ ∈ (−∞, 1) is strictly decreasing in income risk.

The intuition for this last proposition is that, if ρ > max{1, 1/σ}, then private
households might decrease their saving rate too much in general equilibrium in re-
sponse to an increase in income risk since they do no internalize the impact of the
decline of the saving rate on the capital stock and thus on wages of future genera-
tions. For the capital tax to decrease in income risk this future generations effect
has to be sufficiently strong. To see this formally, we first derive in Appendix D.5
the decomposition of the first-order condition for the optimal saving rate into the
terms PE(s), GE(s) and FG(s), as for log utility in Section 4.1. In Appendix D.6
we use this decomposition to decompose the tax rate equation (44) as

1 = (1− τ ∗) Γ̃

Γ̃2︸ ︷︷ ︸
from PE(s)+GE(s)

− (1− τ ∗) α
s∗

Γ̃

Γ̃2︸ ︷︷ ︸
from FG(s)

.

Since Γ̃
Γ̃2

is unambiguously increasing in income risk, the optimal capital tax rate τ ∗

can only decrease in income risk when the last term, the future generations effect,
is quantitatively potent; note that this effect calls for a tax rate that decreases with
income risk since s∗ is decreasing in risk for ρ > 1.
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In the next section we characterize the optimal solution of the Ramsey tax problem
numerically outside the steady state. We use the results to demonstrate that there are
indeed robust regions of the preference parameter space in which the optimal sequence
of tax rates in the Ramsey equilibrium is indeed strictly decreasing in the extent of
income risk, uniformly over time, confirming that our last theoretical statement does
not characterize the empty set of Epstein-Zin-Weil utility functions.

6.3 Numerical Exploration of Optimal Ramsey Tax Transi-

tions for General IES ρ 6= 1 and Risk Aversion σ

In the previous subsection we provided a theoretical characterization of the optimal
Ramsey policy under the assumption that the government maximized steady state
utility, i.e. θ = 1. Since no analytical results are available outside the steady state
unless we assume an IES ρ = 1, in this section we solve for the optimal Ramsey tax
transition numerically. We take as initial condition the steady state capital stock in
the competitive equilibrium without taxes and characterize the sequences of saving
rates, capital stocks, capital tax rates as well as the lifetime utility consequences from
the transition for various generations, relative to the steady state without taxes.

To implement the simulations we need to choose parameters. To exploit the dy-
namic programming solution of the Ramsey problem with a social discount factor
θ < 1, but to retain the steady state results as useful benchmark for comparison, we
choose θ = 0.9. The main focus of this section is to characterize how the extent of
income risk affects the optimal Ramsey tax transition, and how households’ prefer-
ences towards that risk (as measured by σ) and their willingness to inter-temporally
substitute (as measured by ρ) shape this transition. In the main text we focus on
a parameter constellation for which changes in income risk have a potentially non-
monotonic impact on the optimal tax rate in steady state. Recall that this requires
large σ and ρ, together with the restriction that σ > 1/ρ. Thus, here we choose
ρ = 20 and σ = 50; in Appendix F we also present quantitative results for lower,
more commonly used values of both parameters. To vary the degree of idiosyncratic
income risk we assume that η is distributed log-normally and consider four levels of
risk: ση ∈ {0, 0.25, 1, 2}, and by adjusting µη such that E(η) = 1 for all risk param-
eterizations.19 Note that the purpose of the simulations is to illustrate qualitative

19We approximate the distribution with n = 21 Gaussian quadrature nodes. Other parameters
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properties of the Ramsey solution when analytical results are not available, rather
than making firm quantitative statements.

Figure 2: Policy Functions for ρ = 20, σ = 50 and Log Utility (σ = ρ = 1)

(a) s∗(k) (b) k′
∗
(k)

Notes: Optimal saving rate and next period capital stock as function of current k; for ρ = 20, σ = 50

as well as for logarithmic utility (ρ = σ = 1).

Figure 2 plots the optimal Ramsey saving rate (Panel (a)) and the implied capital
stock carried into the next period (Panel (b)) against the capital stock today, for
various degrees of income risk (and ρ = 20, σ = 50). The figure also displays the policy
functions for logarithmic utility (ρ = σ = 1) for σ2

η ∈ {0, 2} and confirms that for
ρ = 1 the optimal saving rate is independent of income risk and of the current capital
stock. Relative to this benchmark, and consistent with our steady state findings in
proposition 9, for an IES ρ > 1 the saving policy function is decreasing in income
risk. Thus, as shown theoretically in the steady state with a high IES the Ramsey
government optimally shifts consumption towards the first period of individuals’ lives
when income risk rises. Panel (a) also shows that the saving rate is a decreasing
function of the current capital stock if ρ > 1 since an increase in the capital stock
raises wages and thus labor income risk when old, thereby leading to a reduction
in the saving rate when households are very willing to intertemporally substitute
consumption. As a consequence, the optimal capital stock tomorrow is less elastic to
capital today with a high IES, relative to the log-case, as shown in Panel (b).

include α = 0.2, β = 0.8 and κ = 0.5. This choice of α and κ implies that the golden rule saving
rate in this economy is sGR = 0.5.
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Table 1: Saving Rates in Competitive Equilibrium and Optimal Long-Run Saving &
Capital Income Tax Rates: EZW-Preferences with ρ = 20, σ = 50

s0(η) s∗∞ τ k
∗
∞

ση = 0 0.38 0.41 -0.13
ση = 0.25 0.48 0.34 0.52
ση = 1 0.44 0.28 0.60
ση = 2 0.42 0.27 0.56
Log Utility (ρ = σ = 1)
ση = 0 0.21 0.29 -0.88
ση = 2 0.36 0.29 0.39

Notes: Saving rates in the initial competitive equilibrium, s0(η), and optimal long-run saving, s∗∞,
and capital income tax rates τk

∗

∞ for α = 0.2, β = 0.8, κ = 0.5, ση ∈ {0, 0.25, 1, 2}, θ = 0.9

and ρ = 20, σ = 50 as well as for logarithmic utility (σ = ρ = 1).

From an initial capital stock k0, assumed to be the steady state capital stock absent
tax policy, we now determine the optimal time sequence of saving rates, capital, and
capital tax rates starting from period t = 1. Thus, the Ramsey government determines
the optimal sequence of saving rates from period 1 onwards, and implements them
with capital income taxes from period 2 onwards. For the various parameterizations,
the initial competitive equilibrium saving rate, s0(η), the optimal saving rate in the
long-run, s∗∞, and the optimal long-run capital income tax rate, τ k∗∞ are shown in
Table 1.20 We observe that for our parameterization with a high IES the steady state
competitive equilibrium saving rate s0(η) is inverse U-shaped in income risk, initially
increasing but eventually declining in ση when income risk exceeds some threshold.21

In proposition 11 we showed that when the Ramsey government maximizes steady
state utility (θ = 1), a necessary condition for optimal capital taxes to decline with
income risk is that the competitive equilibrium saving rate absent taxes falls with
income risk. This result is also apparent in Table 1 in that s0(η) starts to decline
with income risk after ση exceeds 0.32, and the optimal long-run Ramsey tax rate also
eventually decreases with income risk, but not until after ση surpasses 1. Finally, no-
tice that only in the deterministic economy with ση = 0, the competitive equilibrium

20Notice that all economies considered here are dynamically efficient in that the saving rate s0(η)
is always less than the golden rule saving rate of sGR = 0.5 Consequently gross real rates of return
are always positive, and taxes on capital, and on capital income have the same sign.

21For our parameterization the threshold is at σ̄η ≈ 0.32.
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saving rate is lower than the long-run optimum saving rate; in all other economies it
is higher, and optimal taxes on capital income are positive in these cases.22

Figure 3: Policy Transition for ρ = 20, σ = 50 and Log Utility (σ = ρ = 1)

(a) st (b) kt

(c) τkt (d) ∆vt

Notes: Initial and optimal saving rate, capital stock, optimal capital income tax rate and changes
in lifetime utility in transition for for α = 0.2, β = 0.8, κ = 0.5, ση ∈ {0, 0.25, 1, 2}, θ = 0.9

and ρ = 20, σ = 50 as well as for logarithmic utility (ρ = σ = 1).

Figure 3 shows, in panels (a) and (b), the optimal dynamic Ramsey equilibrium
allocation {st, kt} and associated tax policy {τ t+1}, see panel (c), both for log-utility
and high risk aversion and high IES ρ = 20, σ = 50. Recall that, for each parameter-

22As comparison, Table 1 also reports results for log utility for σ2
η ∈ {0, 1}. For σ2

η = 0 the optimal
long-run saving rate exceeds the saving rate in the initial competitive equilibrium, whereas for σ2

η = 2
it is lower, corresponding to cases 3 and 2 of proposition 4, respectively. Consistent with corollary 4,
the long-run optimal capital income tax rate τ∗∞ is increasing in risk.
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ization, the initial condition is the steady state capital stock absent capital income
taxes. From panels (a) and (c) we observe that the optimal policy in the presence
of income risk (σ2

η > 0) is to implement a lower saving rate (through a positive
capital income tax23) in the initial period of the transition than would emerge in
the unregulated competitive equilibrium, but also relative to the long-run optimum,
i.e., s∗1 < s∗∞. With this policy the Ramsey government brings down the capital stock
quite strongly in the initial period (see panel (b)). Also note that for all periods
t along the transition, optimal capital income taxes are inverse u-shaped in income
risk, showing that the long-run results of table 1 extend to the entire transition path.

Finally, panel (d) of the figure shows the difference in lifetime utility of a generation
born in period t of the optimal tax transition, relative to living in the unregulated
steady state equilibrium. It illustrates that for all economies with ση ≥ 0.25 the
optimal Ramsey tax transition constitutes a Pareto improvement relative to the com-
petitive equilibrium without taxes. Hence our analytical results on Pareto improving
tax transitions from maximizing steady state utility (θ = 1) from section 5.3 carries
over to these calibrated example economies.

The illustrative quantitative findings in this section were derived under an ar-
guably fairly extreme preference parametrization (σ = 50, ρ = 20), which permitted
the possibility that optimal tax rates are (eventually) decreasing in the amount of
income risk. Appendix F shows that the main conclusions in this section (apart from
this inverse U-shape in income risk) are robust to more common values of risk aver-
sion and of the IES (e.g., the CRRA specification with σ = 2 and ρ = 0.5). For
these parameterizations the optimal tax rate is monotonically increasing in income
risk, and tends to be negative unless income risk is sufficiently large. If income risk
is sufficiently large, a tax reform from the status quo of no capital taxation to the
optimal Ramsey policy with positive capital income taxes again constitutes a Pareto
improvement.24

23Left y-axis of Panel (c): ρ = 20, σ = 50 case. Right y-axis: Log-utility, ρ = σ = 1.
24We also consider σ = 2 and ρ = 20 to show that the non-monotonicity of the tax rate with

respect to income risk disappears when we lower risk aversion.
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7 Conclusion

In this paper we have analyzed optimal capital taxes in a canonical OLG model with
idiosyncratic labor income risk. The problem permits a full analytical characteri-
zation of the Ramsey allocation and associated tax policy along the transition to a
steady state in case the intertemporal elasticity of substitution is unity. The optimal
aggregate saving rate is independent of idiosyncratic income risk, and is implemented
by a tax rate that is increasing in income risk (unless both the IES and risk aversion
are large), and positive if and only if income risk is sufficiently large.

By showing that the Ramsey government can implement constrained efficient allo-
cations through a proportional tax on capital we confirm that capital income taxation,
in the context of our model, is the appropriate fiscal tool to deal with the external-
ity on equilibrium factor prices induced by private precautionary savings behavior
against uninsurable idiosyncratic income risk. However, we also demonstrate that
capital should not necessarily be taxed, and should be subsidized when the govern-
ment cares strongly about future generations. Judiciously chosen assumptions permit
us to make these points in a fully analytically tractable and transparent manner. The
next, and complementary step in this area of research would be, in our view, to inves-
tigate numerically, whether in richer life cycle models with idiosyncratic income risk
and thus heterogeneity in income and wealth within generations the optimal Ramsey
tax policy is well approximated by the simple linear and time-constant tax on capital
that we have shown theoretically to be optimal in our simple OLG economy.

References

Açikgöz, O. (2015). Transitional Dynamics and Long-Run Optimal Taxation under
Incomplete Markets. Working Paper.

Aiyagari, S. R. (1994). Uninsured Idiosyncratic Risk and Aggregate Saving. Quar-
terly Journal of Economics 109, 659–684.

Aiyagari, S. R. (1995). Optimal Capital Income Taxation with Incomplete Mar-
kets, Borrowing Constraints, and Constant Discounting. Journal of Political
Economy 103, 1158–1175.

Atkinson, A. B. and A. Sandmo (1980). Welfare Implications of the Taxation of
Savings. The Economic Journal 90, 529–549.

42



Bewley, T. F. (1986). Stationary Monetary Equilibrium with a Continuum of In-
dependently Fluctuating Consumers. In W. Hildenbrand and A. Mas-Colell
(Eds.), Contributions to Mathematical Economics in Honor of Gerard Debreu,
pp. 79–102. Amsterdam: North-Holland.

Bommier, A., D. Harenberg, and F. Le Grand (2017). Recursive Preferences, the
Value of Life, and Household Finance. Working Paper.

Chamley, C. (1986). Optimal Taxation of Capital Income in General Equilibrium
with Infinite Lives. Econometrica 54, 607–622.

Chamley, C. (2001). Capital Income Taxation, Wealth Distribution and Borrowing
Constraints. Journal of Public Economics 79, 55–69.

Chen, Y., Y. Chien, and C. Yang (2017). Aiyagari Meets Ramsey: Optimal Capital
Taxation with Incomplete Markets. Working Paper.

Chien, Y. and Y. Wen (2017). Optimal Ramsey Capital Income Taxation — A
Reappraisal. Federal Reserve Bank of St. Louis Working Paper 2017-024C.

Conesa, J.-C., S. Kitao, and D. Krueger (2009). Taxing Capital? Not a Bad Idea
After All! American Economic Review 99, 25–48.

Davila, J., J. H. Hong, P. Krusell, and J. V. Rios-Rull (2012). Constrained effi-
ciency in the neoclassical growth model with uninsurable idiosyncratic shocks.
Econometrica 80 (6), 2431–2467.

Diamond, P. A. (1965). National Debt in a Neoclassical Growth Model. American
Economic Review 55 (Vol. 55, No. 5, Part 1 (Dec., 1965)), 1126–1150.

Diamond, P. A. (1967). The Role of a Stock Market in a General Equilibrium Model
with Technological Uncertainty Author. American Economic Review 57 (4),
759–776.

Domeij, D. and J. Heathcote (2004). On the Distributional Effects of Reducing
Capital Taxes. Internation Economic Review 45 (2), 523–554.

Dyrda, S. and M. Pedroni (2016). Optimal Fiscal Policy in a Model with Uninsur-
able Idiosyncratic Shocks. Working Paper.

Epstein, L. G. and S. E. Zin (1989). Substitution, Risk Aversion, and the Temporal
Behavior of Consumption and Asset Returns: A Theoretical Framework. 57 (4),
937–969.

43



Epstein, L. G. L. and S. Zin (1991). Substitution, Risk Aversion, and the Temporal
Behavior of Consumption and Asset Returns: An Empirical Analysis. Journal
of Political Economy 99 (4), 263–286.

Erosa, A. and M. Gervais (2001). Optimal Taxation in Infinitely-Lived Agent and
Overlapping Generations Models: A Review. Federal Reserve Bank of Richmond
Economic Quarterly 87(2), 23–44.

Erosa, A. and M. Gervais (2002). Optimal Taxation in Life-Cycle Economies. Jour-
nal of Economic Theory 105, 338–369.

Evans, D. (2014). Optimal Taxation with Persistent Idiosyncratic Investment Risk.
Working Paper.

Farhi, E. and I. Werning (2012). Capital Taxation: Quantitative Explorations of
the Inverse Euler Equation. Journal of Political Economy 120 (3), 398–445.

Garriga, C. (2017). Optimal Fiscal Policy in Overlapping Generations Models. Pub-
lic Finance Review (DOI: 10.1177/1091142117735601).

Geanakoplos, J. D. and H. M. Polemarchakis (1986). Existence, Regularity, and
Constrained Suboptimality of Competitive Allocations when the Asset Market
is Incomplete. In W. P. Heller, R. M. Starr, and D. A. Starrett (Eds.), Un-
certainty, Information and Communication: Essays in Honor of Kenneth J.
Arrow, Chapter 3, pp. 65–96. Cambridge University Press.

Gottardi, P., A. Kajii, and T. Nakajima (2015). Optimal Taxation and Debt with
Uninsurable Risks to Human Capital Accumulation. American Economic Re-
view 105 (11), 3443–3470.

Hagedorn, M., H. Holter, and Y. Wang (2015). The Optimum Quantity of Capital
and Debt. Working Paper.

Hansen, L. P. and T. J. Sargent (1995). Discounted Linear Exponential Quadratic
Gaussian Control. IEEE Transactions on Automatic Control 40 (5), 968–971.

Harenberg, D. and A. Ludwig (2015). Social Security in an Analytically Tractable
Overlapping Generations Model with Aggregate and Idiosyncratic Risk. Inter-
national Tax and Public Finance 22 (4), 579–603.

Heathcote, J., K. Storesletten, and G. L. Violante (2017). Optimal Tax
Progressivity: An Analytical Framework. Quarterley Journal of Eco-
nomics (doi:10.1093/qje/qjx018), 1693–1754.

44



Huggett, M. (1993). The Risk-Free Rate in Heterogeneous-Agent Incomplete-
Insurance Economies. Journal of Economic Dynamics and Control 17, 953–969.

Judd, K. (1985). Redistributive Taxation in a Perfect Foresight Model. Journal of
Public Economics 28, 59–84.

Krebs, T. (2003). Human Capital Risk and Economic Growth. Quarterly Journal
of Economics 118, 709–745.

İmrohoroğlu, A. (1989). Cost of Business Cycles with Indivisibilities and Liquidity
Constraints. Journal of Political Economy 97(6), 1364–1383.

Panousi, V. (2015). Capital Taxation with Entrepreneurial Risk. accepted for pub-
lication in: Journal of Monetary Economics.

Panousi, V. and C. Reis (2015). Optimal Taxation with Idiosyncratic Investment
Risk. Working Paper.

Panousi, V. and C. Reis (2017). A Unified Framework for Optimal Taxation with
Undiversiable Risk. Working Paper.

Park, Y. (2017). Constrained Efficiency in a Risky Human Capital Model. American
Economic Journal: Macroeconomics (Forthcoming).

Pestieau, P. (1974). Optimal Taxation and Discount Rate for Public Investment in
a Growth Setting. Journal of Public Economics 3, 217–235.

Peterman, W. B. (2016). The Effect of Endogenous Human Capital Accumulation
on Optimal Taxation. Review of Economic Dynamics 21, 46–71.

Pigou, A. C. (1920). The Economics of Welfare. London: Macmillan.

Ramsey, F. (1927). A Contribution to the Theory of Taxation. Economic Jour-
nal 37, 47–61.

Tallarini, T. D. J. (2000). Risk-Sensitive Real Business Cycles. Journal of Monetary
Economics 45 (3), 507–532.

Weil, P. (1989). The Equity Premium Puzzle and the Risk-Free Rate Puzzle. Jour-
nal of Monetary Economics 24 (3), 401–421.

45



A Details of the General Ramsey Problem

From equations (26) and (27) we find that

w′(s) = (1− α)α [k′(s)]
α−1 dk

′(s)

ds
= (1− α)α [(1− κ)(1− α)kα]α [s]α−1

(45)

R′(s) = α(α− 1) [k′(s)]
α−2 dk

′(s)

ds
= α(α− 1) [(1− κ)(1− α)kα]α−1 [s]α−2

(46)

and thus

(1− κ)(1− α)kαR′(s)s = α(α− 1) [(1− κ)(1− α)kα]α [s]α−1 (47)

κηw′(s) + (1− κ)(1− α)kαR′(s)s = (1− α)α [(1− κ)(1− α)kα]α [s]α−1 [κη − 1]

(48)

which leads to the equation in the main text:

GE(s) = (1− α)α [(1− κ)(1− α)kα]α [s]α−1 β

∫
u′ (co(η)) [κη − 1] dΨ(η)

B Derivation for Log-Utility

In this section we provide a full solution to the Ramsey optimal taxation problem
for the case of logarithmic utility in its sequential formulation, for an arbitrary set of
social welfare weights. We first recognize from the aggregate law of motion that

log(kt+1) = log(1− α) + log(1− κ) + α log(kt) + log(st)

= κ + log(st) + α [α log(kt−1) + log(st−1)]

= κ +
t∑

τ=0

ατ log(st−τ ) + αt+1 log(k0)

= κt+1 +
t∑

τ=0

ατ log(st−τ )
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or

log(kt) = κt +
t−1∑
τ=0

ατ log(st−1−τ ) = κt +
t∑

τ=1

ατ−1 log(st−τ )

Therefore the objective of the Ramsey is given by (suppressing maximization-irrelevant
constants)

∞∑
t=0

ωtV (kt, st) =
∞∑
t=0

ωt [log(1− st) + αβ log(st) + α (1 + αβ) log(kt)]

= χ+
∞∑
t=0

ωt

[
log(1− st) + αβ log(st) + α (1 + αβ)

∞∑
τ=1

ατ−1 log(st−τ )

]

= χ+
∞∑
t=0

[
ωt log(1− st) + log(st)

(
αβωt + α (1 + αβ)

∞∑
τ=t+1

ωτα
τ−(t+1)

)]

and thus the social welfare function can be expressed purely in terms of saving rates
as

SWF ({st}∞t=0) = χ+
∞∑
t=0

ωt

[
log(1− st) + log(st)

(
αβ + α (1 + αβ)

∞∑
j=1

ωt+j
ωt

αj−1

)]
,

where χ is a constant that depends positively on the initial capital stock k0, but is
again irrelevant for maximization.

Taking first order conditions with respect to st and setting it to zero delivers the
optimal saving rate

st =
1

1 +
(
αβ + α (1 + αβ)

∑∞
j=1

ωt+j
ωt
αj−1

)−1 .

C Characterization of (Unconstrained) Efficient Al-

locations

C.1 Characterization of Pareto Efficient Allocations

In this section we derive the solution to the unconstrained social planner problem
and study whether the Ramsey government implements Pareto efficient allocations.
The obvious answer is no, since an unconstrained social planner would provide full
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insurance against idiosyncratic η shocks, which, given the market structure, is ruled
out in any competitive equilibrium. We again invoke assumption 2 of logarithmic
utility. The planner maximizes social welfare

ω−1

∫
log(co0(η0))dΨ(η0) +

∞∑
t=0

ωt

[
log(cyt ) + β

∫
log(cot+1(ηt+1))dΨ(ηt+1)

]

subject just to the sequence of resource constraints

cyt +

∫
cot (ηt)dΨ(ηt) + kt+1 = kαt .

As before, we restrict attention to geometrically declining welfare weights such that
ωt+1/ωt = θ ≤ 1.

Trivially, the social planner provides full insurance against idiosyncratic income
risk so that cot (η) = cot for all η and all t. Thus the problem simplifies to

max
{cyt ,cot ,kt+1}

ω−1 log(co0) +
∞∑
t=0

ωt
[
log(cyt ) + β log(cot+1)

]
s.t.

cyt + cot + kt+1 = kαt

with k0 > 0 given. The first order conditions are given by

ωt
cyt

= λt

βωt−1

cot
= λt

λt = λt+1αk
α−1
t+1

cyt + cot + kt+1 = kαt

Thus the optimal allocation of consumption across the two generations at a given
point of time is given by

cot
cyt

=
βωt−1

ωt
=
β

θ

48



and thus from the resource constraint

cyt =
θ

θ + β
(kαt − kt+1)

cot =
β

θ + β
(kαt − kt+1) .

Define, similarly to the Ramsey problem, the saving rate of the social planner as

st =
kt+1

(1− κ)(1− α)kαt

or
(1− κ)(1− α)st =

kt+1

kαt
.

Then from the first order conditions we get

1

cyt
=

β

cot+1

αkα−1
t+1

kt+1

(kαt − kt+1)
=

αθkαt+1(
kαt+1 − kt+2

)
(1− (1− κ)(1− α)st+1) = αθ

(
1

(1− κ)(1− α)st
− 1

)
.

As in the neoclassical growth model we can show that the only solution to the first or-
der difference equation that does not eventually violate the non-negativity constraint
of consumption and does not violate the TVC is the constant saving rate s solving

(1− (1− κ)(1− α)s) = αθ

(
1

(1− κ)(1− α)s
− 1

)
Define s̃ = (1− κ)(1− α)s then we have

1− s̃ = αθ

(
1

s̃
− 1

)
with solutions s̃ = 1 and s̃ = αθ and thus

sSP =
αθ

(1− κ)(1− α)
.

The optimal sequence of capital stocks, starting from initial capital stock k0, is there-
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fore given by

kt+1 = (1− κ)(1− α)stk
α
t

= αθkαt .

Since
kαt − kt+1 = (1− αθ)kαt

we immediately have

Proposition 12. The solution to the social planner problem, for any k0 > 0, is given
by a constant saving rate

sSP =
kt+1

(1− κ)(1− α)kαt
=

αθ

(1− κ)(1− α)

and associated sequence of capital stocks

kt+1 = αθkαt

and consumption levels

cyt =
θ(1− αθ)kαt

θ + β

cot =
β(1− αθ)kαt

θ + β

Corollary 6. If θ = 1 (associated with a steady state analysis), then the social planner
chooses the golden rule saving rate

sSP = sGR =
α

(1− κ)(1− α)

and the capital stock converges, in the long run, to

kGR = α
1

1−α

which satisfies
α
[
kGR

]α−1
= 1
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and associated consumption levels

cy =
(1− α)

1 + β
α

α
1−α

cot =
β(1− α)

1 + β
α

α
1−α

Thus the social planner chooses the golden rule capital stock kGR that maximizes net
output yGR =

(
kGR

)α−kGR and splits it efficiently between cy and co according to the
rule co = βcy.

The next corollary states an obvious result:

Corollary 7. The Ramsey equilibrium is not Pareto efficient because it does not
provide full consumption insurance against idiosyncratic income risk.

Of course this result is fully expected and not noteworthy at all, since the Ramsey
government has no powers to affect or offset the market incompleteness inherent in
our model. What is more remarkable is that even though the optimal Ramsey saving
rate is independent of income risk (and the same as in a model where income risk is
absent), it is in general different from the saving rate optimally chosen by the social
planner (who fully insures the idiosyncratic income risk). This result is summarized
in the next

Corollary 8. For a fixed social discount factor θ ∈ [0, 1], the optimal Ramsey saving
rate equals the saving rate chosen by the social planner if and only if the following
knife edge condition is satisfied:

(1− κ) =
θ(1 + αβ)

(1− α)(β + θ)

Note that the Ramsey government can surely implement the saving rate desired
by the social planner through an appropriate choice of taxes, but unless the condition
above is satisfied, it is suboptimal to do so. The reason is that the Ramsey govern-
ment has no instruments to transfer resources across generations and thus forcing the
planner saving rate onto households (by appropriate choice of the capital tax rate)
results in an equilibrium allocation of consumption across the young and the old that
is typically suboptimal.25

25Finally note that if one were to treat the social discount factor θ as a free parameter, then one
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C.2 Proof of Constrained Efficiency of Ramsey Allocation

Proof. Define the saving rate of the constrained planner as

st =
kt+1

(1− κ)MPL(kt)
=

kt+1

(1− α)(1− κ)kαt

and thus the law of motion for the effective capital stock for the constrained planner
is

kt+1 = st(1− α)(1− κ)kαt

as in the Ramsey problem. Furthermore, from the constraints on the constrained
planner

cyt = (1− κ)MPL(kt)− kt+1 = (1− st)(1− κ)(1− α)kαt

cot+1(ηt+1) = kt+1MPK(kt+1) + κηt+1MPL(kt+1)

= αkαt+1 + κηt+1(1− α)kαt+1

=
[
α + κηt+1(1− α)

]
kαt+1

=
[
α + κηt+1(1− α)

]
[st(1− α)(1− κ)kαt ]α

and thus consumption levels are the same as in the Ramsey equilibrium. Thus the
solution, in terms of saving rates, of the constrained planner problem is identical to
that of the Ramsey equilibrium.

C.3 Dynamic Inefficiency of the Competitive Equilibrium and

Positive Capital Taxation

In this section we provide the details of the steady state analysis of the Ramsey
problem and its connection with the dynamic efficiency of the steady state equilibrium
absent government policy. First, recall that the golden rule capital stock, saving rate

concludes that the Ramsey optimal saving rate is efficient, in that it is identical to the choice of the
social planner with a different social discount rate θSP

θSP =
(β + θ)(1− κ)(1− α)

1 + αβ
.
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and associated gross real interest rate are given by (see proposition 6)

kGR = α
1

1−α

sGR =
α

(1− κ)(1− α)

RGR = 1

Second, we note that the steady state gross interest rate is given by

R = αkα−1

and from the law of motion of capital (equation (12)) we have

k = s(1− κ)(1− α)kα

and thus
R =

α

s(1− κ)(1− α)
.

The steady state saving rate in turn is given by (see equation (17))

sτ (η) =
1

1 + [(1− τ)αβΓ]−1 =
(1− τ)αβΓ

1 + (1− τ)αβΓ

Thus we have a steady state relation between the real interest rate and the tax rate
determined by

R =

1
(1−τ)βΓ

+ α

(1− κ)(1− α)
= R(τ ; Γ)

and thus a higher tax rate reduces the saving rate, thus the capital stock and thus
increases the real interest rate. Furthermore, for a given τ , the steady state interest
rate is decreasing in the amount of income risk (unless β = 0). Therefore the steady
state interest rate in the absence of government policy is given by

R(τ = 0; Γ) =

1
βΓ

+ α

(1− κ)(1− α)

and thus the steady state competitive equilibrium without taxes is dynamically inef-
ficient, i.e.

R(τ = 0; Γ) < 1
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if and only if
1
βΓ

+ α

(1− κ)(1− α)
< 1

or if and only if

1

[(1− κ)(1− α)− α]Γ
< β (49)

Θ1(Γ) :=
1

(1− α)Γ− Γ/Γ̄
< β (50)

where Γ̄ ≤ Γ, with equality if η is degenerate at η = 1, and thus there is no income
risk.

The optimal Ramsey steady state (i.e., θ = 1) saving and tax rates (see equa-
tions (29) and (30)) are given by

s∗ =
α(1 + β)

1 + αβ

1− τ =
1 + β

(1− α) βΓ

and thus the optimal Ramsey tax rate is positive, τ > 0, if and only if

(1 + β)

(1− α) βΓ
< 1

or if and only if

Θ2 :=
1

(1− α) Γ− 1
< β. (51)

Since
Θ2(Γ) =

1

(1− α) Γ− 1
≤ 1

(1− α)Γ− Γ/Γ̄
= Θ1(Γ)

with equality if and only if η is degenerate at η = 1, we conclude that if the competitive
equilibrium absent taxes is dynamically inefficient, the optimal Ramsey steady state
capital tax rate is positive. The reverse is not true, however.
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Comparing saving rates we have

s∗ =
α(1 + β)

1 + αβ

s0(η) =
1

1 + [αβΓ]−1

sGR =
α

(1− κ)(1− α)

and thus s0(η) > sGR if and only if

β >
1

[(1− κ)(1− α)− α] Γ

and thus if and only if the steady state equilibrium is dynamically inefficient. Fur-
thermore s∗ < s0(η) if and only if Θ2(Γ) < β and thus if and only if τ > 0.

Stating inequalities (50) and (51) in terms of Γ gives proposition 4 in the main
text. Furthermore, here we collect the relationship between dynamic inefficiency and
a positive Ramsey steady state capital tax rate in the following

Proposition 13. Let θ = 1. If the steady state competitive equilibrium is dynami-
cally inefficient, then the optimal Ramsey tax rate τ is positive. If in addition η is
degenerate at η = 1, then the reverse is true as well: τ > 0 only if the steady state
competitive equilibrium is dynamically inefficient.

C.4 Proof of Pareto-Improving Tax-Induced Transition

Proof of Proposition 6. The capital stock evolves according to the law of motion

kt+1 = s(1− κ)(1− α)kαt

Therefore if the Ramsey government implements s∗ through positive capital taxes
in the first period of the transition this will lead to a falling capital stock along the
transition. Recall from (1) that utility of a generation born in period t is given by

Vt = ln(cyt ) + β

∫
ln(cot+1(ηt+1))dΨ.
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Now, suppose that the policy is implemented (as a surprise) in period 1 where k1 = k0.
The initial old are unaffected by and thus indifferent to the tax reform. Now we need
to characterize the utility consequences for all generations born along the transition.
Denoting by s0 = s0(η) the equilibrium saving rate in the initial steady state, we have

∆Vt = Vt(s
∗)− Vt(s0) = ln(cyt (s

∗))− ln(cyt (s0)) + β

∫ (
ln(cot+1(s∗))− ln(cot+1(s0))

)
dΨ.

where the consumption allocations can be written as

cyt (st) = (1− st)(1− κ)(1− α)kαt

cot+1(ηt+1; st) = st(1− κ)(1− α)kαt αk
α−1
t+1 + κηt+1(1− α)kαt+1

=
[
α + κηt+1(1− α)

]
kαt+1

Thus

∆Vt = ln(1− s∗)− ln(1− s0)︸ ︷︷ ︸
=Λ1>0

+α (ln(kt(s
∗))− ln(k0)) + αβ (ln(kt+1(s∗))− ln(k0))︸ ︷︷ ︸

=Λ2,t<0

Term Λ1 is positive because s∗ < s0, and constant in t. Term Λ2,t is negative for
all generations t because kt(s∗) ≤ k0 for all t and because kt+1(s∗) < k0 for all t.
Furthermore Λ2,t monotonically declines and converges from above to its minimum
for t → ∞ when the economy reaches the optimal steady state capital allocation
where

lim
t→∞

Λ2,t = α(1 + β) (ln(k∗)− ln(k0)) .

But because s∗ maximizes steady state utility and s0 6= s∗, we know that

lim
t→∞

∆Vt = Λ1 + lim
t→∞

Λ2,t > 0.

It then follows that
∆Vt ≥ lim

τ→∞
∆Vτ > 0

and thus all transition generations strictly benefit from the tax reform.
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C.5 Savings Subsidy Does Not Induce Pareto Improvement

In this section we show that even if s0(η) < s∗, implementing the Ramsey optimal
(for θ = 1) savings subsidy τ ∗ < 0 and associated higher saving rate s∗ does not lead
to a Pareto improving transition.

Exploiting the fact that in the first period of the transition the capital stock
k1 = k0 is predetermined, and the capital stock in period 2 satisfies

k2 = s(1− α)(1− κ)kα0

for any saving rate implemented by a given tax policy. Thus we can calculate lifetime
utility of the first transition generation, as a function of an implemented saving rate s,
as

V1(s) = ln ((1− s)(1− κ)(1− α)kα0 ) + β

∫
ln (α + κη2(1− α)) (s(1− α)(1− κ)kα0 )α dΨ(η)

= ln(1− s) + βα ln(s) + ln ((1− κ)(1− α)kα0 )

+ β

∫
ln (α + κη2(1− α)) ((1− α)(1− κ)kα0 )α dΨ(η)

and thus

V ′1(s) = − 1

1− s
+
αβ

s

V ′′1 (s) = − 1

(1− s)2
− αβ

s2
< 0

and thus V1(s) is strictly concave in s. Therefore, if V ′1(s = s0(η)) ≤ 0, then V (s =

s0(η)) > V (s) for all s > s0(η). We have

V ′1(s = s0(η)) = − 1

1− s0(η)
+ αβ

1

s0(η)
≤ 0

⇔ s0(η) ≥ αβ

1 + αβ

which is satisfied, exploiting expression (17) for the optimal competitive equilibrium
saving rate (with zero taxes).

Thus not only is implementing τ ∗ < 0 not Pareto improving if s0(η) < s∗, but in
fact any policy reform that induces a saving rate in period 1 above the competitive
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saving rate with zero taxes, s0(η), will not result in a Pareto improvement (since it
will make the first generation strictly worse off).

D Analysis of General Epstein-Zin Utility

Now consider general Epstein-Zin preferences, applied to our two period OLG model.
Households have preferences over deterministic consumption when young, cyt , and
the (deterministic) certainty equivalent over utility from consumption tomorrow,∫
cot+1(ηt+1)1−σdΨ. We assume that these preferences are represented by the lifetime

utility function

Vt =
(cyt )

1− 1
ρ − 1

1− 1
ρ

+ β

{[∫
cot+1(ηt+1)1−σdΨ

] 1
1−σ
}1− 1

ρ − 1

1− 1
ρ

(52)

Note that in the limit, as the IES ρ→ 1, the utility function becomes

Vt = ln(cyt ) +
β

1− σ
ln

(∫
cot+1(ηt+1)1−σdΨ

)
and as ρ→∞, we have

Vt = cyt + β

[∫
cot+1(ηt+1)1−σdΨ

] 1
1−σ

Finally, if in addition σ →∞, then

Vt = cyt + β inf
ηt+1

{
cot+1(ηt+1)

}
and indifference curves are linear in the time dimension and Leontieff in the state
dimension, where only the worst η state gets weight.26

We should point out that often in the literature Epstein-Zin preferences of the
26In this case we need to insure that infηt+1

cot+1(ηt+1) ≥ 0 under any distribution of risk we con-
sider (including those obtained by mean-preserving spreads of the original distribution). Evidently,
if ηt+1 is drawn from compact support then the inf can be replaced by the min .
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form

Ṽt =

(1− β̃)(cyt )
1− ‘1

ρ + β̃

[∫
cot+1(ηt+1)1−σdΨ

] 1− 1
ρ

1−σ


1

1− 1
ρ

(53)

are used. When it comes to ordinal rankings of allocations, we can take monotonic
transformations of (53) without changing preference rankings. Thus for all ordinal
purposes the formulations in (52) and (53) are equivalent since

Vt =
Ṽ

1− 1
ρ

t

(1− β̃)
(

1− 1
ρ

) − (1 + β)

1− 1
ρ

where β = β̃

1−β̃ .
However, also note that, in contrast to any analyses that only require ordinal

rankings (such as studying competitive equilibrium for a given tax system), when
moving from utility form Vt to Ṽt we are changing the Ramsey problem, since this
problem is based on cardinal weighted lifetime utilities. It is therefore not innocuous
whether we choose (53) or (52) when formulating the Ramsey optimal tax problem.27

If, however, we restrict attention to a steady state analysis, then this last concern
does not emerge, since the first order condition characterizing the optimal Ramsey
steady state saving rate is identical under any monotone transformation of steady
state lifetime lifetime utility (as effectively the only generation that is relevant for the
maximization is the long-run, steady state generation).

D.1 Competitive Equilibrium for Given Tax Policy

Household maximization delivers

(cyt )
− 1
ρ = β(1− τ t+1)Rt+1

[∫
cot+1(η̂t+1)1−σdΨ

] 1− 1
ρ

1−σ −1 ∫
cot+1(ηt+1)−σdΨ(ηt+1)

1 = β(1− τ t+1)Rt+1

[∫ (
cot+1(ηt+1)

cyt

)1−σ

dΨ(ηt+1)

]σ− 1
ρ

1−σ ∫ (
cot+1(ηt+1)

cyt

)−σ
dΨ(ηt+1).

27For both formulations the household is not indifferent to the resolution of income risk as long
as σ 6= 1

ρ .
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Now, we need to work out the ratio

cot+1(ηt+1)

cyt
=

stRt+1(1− τ t+1)(1− κ)wt + κηt+1wt+1 + Tt+1

(1− κ)wt(1− st)
=

[
α + (1− α)κηt+1

] st
1− st

kα−1
t+1

and thus

1 = β(1− τ t+1)Rt+1

[∫ (
cot+1(ηt+1)

cyt

)1−σ

dΨ(ηt+1)

]σ− 1
ρ

1−σ ∫ (
cot+1(ηt+1)

cyt

)−σ
dΨ(ηt+1)

1 = β(1− τ t+1)Rt+1

(
stk

α−1
t+1

1− st

)− 1
ρ

Γ̃

1 = αβ(1− τ t+1)
(
kα−1
t+1

)(1− 1
ρ)
(

st
1− st

)− 1
ρ

Γ̃

1 = αβ(1− τ t+1) (st(1− κ)(1− α)kαt )(α−1)(1− 1
ρ)
(

st
1− st

)− 1
ρ

Γ̃

1 = αβ(1− τ t+1) (st(1− κ)(1− α)kαt )(α−1)(1− 1
ρ)
(

st
1− st

)− 1
ρ

Γ̃

1 = αβ ((1− κ)(1− α))(α−1)(1− 1
ρ) (1− τ t+1)k

α(α−1)(1− 1
ρ)

t st
(α−1)(1− 1

ρ)
(

1− st
st

) 1
ρ

Γ̃.

In the main text we are mainly concerned with characterizing the Ramsey steady
state saving and associated tax rate. In steady state the Euler equation reads as

1 = αβ ((1− κ)(1− α))(α−1)(1− 1
ρ) (1− τ)kα(α−1)(1− 1

ρ)s(α−1)(1− 1
ρ)
(

1− s
s

) 1
ρ

Γ̃

where
k = [(1− κ)(1− α)s]

1
1−α

is the steady state capital stock. Inserting the steady state capital stock into the
Euler equation delivers

1 = (1− τ)αβ ((1− κ)(1− α))(
1
ρ
−1) s(

1
ρ
−1)
(

1− s
s

) 1
ρ

Γ̃ (54)
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or

1 = (1− τ)αβ ((1− κ)(1− α))(
1
ρ
−1) (1− s)

1
ρ

s
Γ̃ (55)

where

Γ̃ =

∫
(α + (1− α)κη)−σ dΨ(η)[∫

(α + (1− α)κη)1−σ dΨ(η)
] 1
ρ−σ
1−σ

= ce(η)(σ−
1
ρ)Γ.

Γ =

∫
(α + (1− α)κη)−σ dΨ(η)

and where the certainty equivalent of η is defined as, for σ 6= 1

ce(η) =

[∫
(α + (1− α)κη)1−σ dΨ(η)

] 1
1−σ

and for σ = 1

ce(η) = exp

(∫
ln (α + (1− α)κη) dΨ(η)

)
.

Note that this result is precisely the generalization of the log-case where ρ = σ = 1,

and where the Euler equation was given as

1 = (1− τ)αβ

(
1− s
s

)
Γ

Γ =

∫
(κη(1− α) + α)−1 dΨ(η)

Thus our previous analysis for log-utility is just a special case. Also note that if ρ = 1

but σ 6= 1, then the steady state Euler equation is given by

1 = (1− τ)αβ

(
1− s
s

) 1
ρ

Γ̃

but

Γ̃ =

∫
(α + (1− α)κη)−σ dΨ(η)[∫
(α + (1− α)κη)1−σ dΨ(η)

] 6= ∫ (κη(1− α) + α)−1 dΨ(η) = Γσ=1
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D.1.1 Precautionary Savings Behavior in the Competitive Equilibrium

In order to aid with the interpretation of the optimal Ramsey tax rate it is useful to
establish conditions under which, for a fixed tax rate constant, the saving rate in a
competitive general equilibrium is increasing in income risk.

Proposition 14. If Γ̃ is strictly increasing in income risk, then for any given tax rate
τ ∈ (−∞, 1) the steady state saving rate sCE(τ) in competitive equilibrium is strictly
increasing in income risk. If Γ̃ is strictly decreasing in income risk, then so is sCE(τ).

Proof. Rewrite equation (55) as

f(s) = (1− τ)αβ ((1− κ)(1− α))(
1
ρ
−1) (1− s)

1
ρ

s
− 1

Γ̃
.

Then a saving rate sCE(τ) that satisfies f(sCE(τ)) = 0 is a steady state equilibrium
saving rate. We readily observe that f is continuous and strictly decreasing in s, with

lim
s→0

f(s) = ∞

f(1) = − 1

Γ̃
< 0

and thus for each τ ∈ (−∞, 1) there is a unique s = sCE(τ) that satisfies f(sCE(τ)) =

0. Inspection of f immediately reveals that sCE(τ) is strictly increasing in Γ̃, from
which the comparative statics results immediately follow.

Corollary 9. For any given τ ∈ (−∞, 1), the steady state saving rate sCE(τ) in-
creases in income risk if either ρ ≤ 1, or 1 < ρ < 1

σ
.

Proof. Follows directly from the previous proposition and Lemma 1 characterizing
the behavior of Γ̃ with respect to income risk.

Proposition 14 establishes a sufficient condition for the private saving rate to in-
crease in income risk. But, for ρ > 1

σ
> 1 it might be possible that the combination of

individual precautionary savings behavior and general equilibrium factor price move-
ments lead to the result that, for fixed government policy, the equilibrium saving rate
is decreasing in income risk.28 We will show below that this in turn is a necessary
condition for the optimal Ramsey tax rate to decrease in income risk.

28Also observe that a parameter constellation 1 < ρ < 1
σ pairs a high IES with a preference

62



D.2 Ramsey Problem for Unit IES

Now suppose we use the formulation of lifetime utility in equation (52). Then it is
straightforward to show that for ρ = 1 the analysis of the Ramsey problem proceeds
exactly as before,

W (k) = Θ0 + Θ1 log(k)

= max
s∈[0,1]

{log((1− s)(1− κ) (1− α) kα)

+
β

1− σ
log

∫
(κηw(s) +R(s)s(1− κ)(1− α)kα)1−σ dΨ(η) + θW (k′)

}
= max

s∈[0,1]
{log((1− s)(1− κ) (1− α) kα)

+
β

1− σ
log

∫
([κη(1− α) + α] [s(1− κ)(1− α)kα]α)

1−σ
dΨ(η) + θW (s(1− κ)(1− α)kα)

}
= α [1 + θΘ1 + αβ] log(k) + log [(1− κ) (1− α)] + θΘ0 + θΘ1 log((1− κ)(1− α))

+βα log [(1− κ)(1− α)] +
β log

∫
[κη(1− α) + α]1−σ dΨ(η)

1− σ
+ max

s∈[0,1]
{log(1− s) + αβ log (s) + θΘ1 log(s)}

with an optimal saving rate as in the main text:

s =
α(β + θ)

1 + αβ
.

These results clarify that the closed form solution, and the fact that the optimal
saving rate is constant over time and independent of the level of capital, is driven by
an IES = ρ = 1 (and obtained for arbitrary risk aversion), whereas the size of the
capital tax needed to implement the optimal Ramsey allocation does depend on risk
aversion σ, since this parameter determines the degree of precautionary saving in the
competitive equilibrium that needs to be offset with capital taxes, see Section D.1.1.

for a late resolution of risk in a multi-period (more than two periods) model. Interestingly, the
competitive equilibrium saving rate may therefore decrease in income risk precisely when we pair a
high IES with a preference constellation for early resolution of risk.
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D.3 Steady State Analysis for Arbitrary IES

In the steady state we seek to maximize

V (s) =
(cyt )

1− ‘1
ρ + β

{[∫
cot+1(ηt+1)1−σdΨ

] 1
1−σ
}1− 1

ρ

1− 1
ρ

=
((1− κ)(1− s)(1− α)kα)1− ‘1

ρ

1− 1
ρ

+
β [s(1− κ)(1− α)kα]α(1− 1

ρ)
{[∫
{[κη(1− α) + α]}1−σ dΨ

] 1
1−σ
}1− 1

ρ

1− 1
ρ

=
((1− κ)(1− α))1− ‘1

ρ

1− 1
ρ

(1− s)(1− 1
ρ)kα(1− 1

ρ) +
β [(1− κ)(1− α)]α(1− 1

ρ) Γ̃2

1− 1
ρ

sα(1− 1
ρ)kα

2(1− 1
ρ)

where

Γ̃2 =

[∫
{[κη(1− α) + α]}1−σ dΨ

] 1− 1
ρ

1−σ

= Γ
σ− 1

ρ
1−σ

2 Γ2.

Exploiting that
k = ((1− κ)(1− α)s)

1
1−α

yields

V (s) =
((1− κ)(1− α))1− ‘1

ρ

1− 1
ρ

(1− s)(1− 1
ρ) ((1− κ)(1− α)s)

α(1− 1
ρ)

1−α

+
β [(1− κ)(1− α)]α(1− 1

ρ) Γ̃2

1− 1
ρ

(s)α(1− 1
ρ) ((1− κ)(1− α)s)

α2(1− 1
ρ)

1−α

=
((1− κ)(1− α))

1− 1
ρ

1−α

1− 1
ρ

[
(1− s)(1− 1

ρ) + β [(1− κ)(1− α)]−(1− 1
ρ) Γ̃2

]
s
α(1− 1

ρ)
1−α

= φ̃
(

(1− s)(1− 1
ρ) + βζ̃Γ̃2

)
s
α(1− 1

ρ)
1−α ,
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where

φ̃ =
((1− κ)(1− α))

1− 1
ρ

1−α

1− 1
ρ

ζ̃ =

(
1

(1− κ)(1− α)

)(1− 1
ρ

)

> 0

Γ̃2 =

([∫
{[κη(1− α) + α]}1−σ dΨ

] 1
1−σ
)1− 1

ρ

> 0

as before. Thus the steady state analysis in the main text carries through to Epstein-
Zin utility almost entirely unchanged, but with the constant that maps earnings risk
into the optimal saving rate now being affected both by risk aversion and the IES.

Hence, the optimal steady state saving rate is defined implicitly as

s

(1− s)
1
ρ

=
α

1− α
(1− s)(1− 1

ρ) + β
α

1− α
ζ̃Γ̃2 (56)

and rewriting this equation yields

LHS(s) = s =
α

1− α

[
(1− s) + βζ̃Γ̃2(1− s)

1
ρ

]
= RHS(s). (57)

We observe that the left hand side is linearly increasing in s, with LHS(0) = 0 and
LHS(1) = 1 and the right hand side is strictly decreasing in s, with RHS(0) > 0

and RHS(1) = 0. Since both sides are continuous in s, from the intermediate value
theorem it follows that there is a unique s∗ ∈ (0, 1) solving the first order condition
of the Ramsey problem (57). Since RHS(s) is strictly increasing in Γ̃2, the Ramsey
saving rate is strictly increasing in Γ̃2. The comparative statics of s∗ with respect to
income risk in the main text then directly follow from the properties of Γ̃2 stated in
Lemma 1.

For future reference we rewrite equation (57) as

1− α
α

=

[
(1− s)
s

+ βζ̃Γ̃2
(1− s)

1
ρ

s

]
or

(1− s)
1
ρ

s
=

1−α
α
− (1−s)

s

βζ̃Γ̃2

=
1
α
− 1

s

βζ̃Γ̃2

. (58)
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D.4 Implementation

The optimal steady state capital tax rate τ ∗ satisfies, as in equation (55)

1 = (1− τ ∗)αβ ((1− κ)(1− α))(
1
ρ
−1) (1− s∗)

1
ρ

s∗
Γ̃. (59)

We observe that the optimal tax rate is strictly increasing in Γ̃ and strictly decreasing
in the Ramsey saving rate s∗ that is to be implemented. Further, recall that the
Ramsey saving rate s∗ itself satisfies the first order condition (58)

(1− s∗)
1
ρ

s∗
=

1
α
− 1

s∗

βζ̃Γ̃2

(60)

and is impacted by income risk through Γ̃2. Plugging (60) into (59) and exploiting
the definition of ζ̃ yields

1 = (1− τ ∗)
(

1− α

s∗

) Γ̃

Γ̃2

. (61)

Lemma 1 establishes that Γ̃
Γ̃2

is strictly increasing in income risk, and proposition
9 of the main text establishes that an increase in income risk increases s∗ if and only
if ρ < 1 and decreases it if and only if ρ > 1. To sign the overall impact of income
risk on the capital tax rate it is therefore useful to consider the following cases:

D.4.1 Case ρ ≤ 1

This case gives clean results. From equation (61), since Γ̃
Γ̃2

is strictly increasing in
income risk, and since s∗ is increasing in income risk for ρ ≤ 1, strictly so if ρ < 1,

then τ ∗ is strictly increasing in risk.

D.4.2 Case ρ > 1 and σ ≤ 1/ρ

In this case Γ̃ is strictly increasing in risk (Lemma 1) and s∗ is strictly decreasing in
risk (see Proposition 9) It then directly follows from equation (59) that τ ∗ is strictly
increasing in income risk as well.
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D.4.3 Case ρ > 1 and σ > 1/ρ

Since ρ > 1, the Ramsey saving rate s∗ is strictly decreasing in income risk (which
by itself calls for a tax rate that is strictly increasing in income risk)., by equation
(59). However, now the direct impact of income risk on taxes through the term Γ̃

might call for lower taxes since Γ̃ might now be decreasing in income risk. If Γ̃ is
weakly increasing in income risk, then so is τ ∗. Thus a necessary condition for τ ∗ to
decrease with income risk is for Γ̃ to be strictly decreasing with income risk. This in
turn is a necessary and sufficient condition for the private saving rate in competitive
equilibrium to decrease with income risk (see Proposition 14). Thus the Ramsey tax
rate τ ∗ is strictly decreasing in income risk only if the private saving rate sCE(τ) is
strictly decreasing in income risk (for any given tax rate τ). The corresponding if
statement is not necessarily true, as the numerical illustrations in the main text show.

Finally, one might conjecture that, since ρ > 1 and σ > 1/ρ is required for the
capital tax to decrease in income risk, that as long as both parameters are large enough
the result will materialize. This conjecture turns out to be false, as an investigation
of the most extreme case ρ = σ =∞ shows. In this case lifetime utility is given by

Vt = cyt + βcot+1 (62)

where cot+1 is consumption in old age if the lowest possible labor productivity real-
ization η = η

t+1
materializes. In this case one can solve analytically for the optimal

interior Ramsey saving and tax rate, and show that the optimal tax rate is the higher
the lower is η

t+1
and thus the higher is income risk.29 In fact, as our numerical results

in the main text show, for the case ρ > 1 and σ > 1/ρ the Ramsey tax rate is an
increasing function of income risk once ρ and σ become sufficiently large.

29In this case it is possible that the Ramsey government will want to implement a saving rate of
s = 1 since households have linear preferences over consumption when young and minimum (across
η) consumption when old. As long as η is sufficiently small, however, the Ramsey government prefers
to implement an interior saving rate.
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D.5 Decomposition into PE(s), GE(s) and FG(s)

Proposition 15. For θ = 1, σ 6= 1
ρ
, terms PE(s), GE(s), FG(s) are given by

PE(s) = − 1

1− s

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ +

αβ

s
Γ̃k(s)α(1− 1

ρ)

GE(s) =
αβ

s
k(s)α(1− 1

ρ)
(

Γ̃2 − Γ̃
)

FG(s) =
α

s(1− α)

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ +

α2β

s(1− α)
k(s)α(1− 1

ρ)Γ̃2

where k(s) = (s(1− κ)(1− α))
1

1−α is the steady state capital stock.

Therefore,

PE(s) +GE(s) = − 1

1− s

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ +

αβ

s
k(s)α(1− 1

ρ)Γ̃2. (63)

and

PE(s)+GE(s)+FG(s) =

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ

(
α

s(1− α)
− 1

1− s

)
+

1

s
k(s)α(1− 1

ρ) αβ

(1− α)
Γ̃2.

(64)

Thus, compared to the expressions for these three effects we derived in section 4.2,
the partial equilibrium precautionary savings effect still cancels out with the general
equilibrium effect (Γ̃ cancels out when adding up PE(s) and GE(s)). However,
additionally risk enters through Γ̃2. With ρ < 1 an increase of risk increases Γ̃2

thereby pushing up the desired saving rate of the Ramsey planner. The reason is
that an increase of risk decreases the utility value of second period consumption of
current generations (effect in GE(s)) and of all future generations (effect in FG(s)).
With a low IES, it is optimal to compensate this with higher savings; vice versa for a
high IES where the Ramsey planner rather prefers increased first-period consumption,
respectively current generations consumption, over future consumption in response
to an increase in risk.
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Proof of proposition 15. Calculating the respective terms yields

PE(s) = (1− κ)(1− α)kα
[
− ((1− s)(1− κ) (1− α) kα)−

1
ρ +

αk′(s)
α−1

β

(∫
(κη(1− α) + α)1−σ dΨ

)σ− 1
ρ

1−σ

k′(s)
α(σ− 1

ρ)
∫

(κη(1− α) + α)−σ dΨk′(s)
−ασ


=

1

s

(
−
(

1− s
s

)− 1
ρ

k′(s)
1− 1

ρ + αβk′(s)
α(1− 1

ρ)Γ
σ− 1

ρ
1−σ

2 Γ

)

= − 1

1− s

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ +

αβ

s
Γ̃k(s)α(1− 1

ρ).

and for

GE(s) = β

(∫
co(η)1−σdΨ

)σ− 1
ρ

1−σ
∫ (

co(η)−σ
)

[κηw′(s) + (1− κ)(1− α)kαR′(s)s] dΨ(η)

= βΓ
σ− 1

ρ
1−σ

2 k′(s)
α(σ− 1

ρ)
∫

(κη(1− α) + α)−σ k′(s)
−ασ

α(1− α)s−1

×
[
κηk′(s)

α − (1− κ)(1− α)kαk′(s)
α−1

s
]
dΨ

=
αβ

s
k′(s)

α(1− 1
ρ)Γ

σ− 1
ρ

1−σ
2

∫
(κη(1− α) + α)−σ [κη(1− α) + α− 1] dΨ

=
αβ

s
k(s)α(1− 1

ρ)Γ
σ− 1

ρ
1−σ

2 (Γ2 − Γ)

=
αβ

s
k(s)α(1− 1

ρ)
(

Γ̃2 − Γ̃
)
.

When maximizing steady state utility, FG(s) is equivalent to the derivative of the
utility function with respect to the current period capital stock. Therefore:

FG(s) = ucyc
y
k(s)k(s)s + β

(∫
co(η)1−σdΨ

)σ− 1
ρ

1−σ
∫ (

co(η)−σ
)
cok′(s)k

′(s)k(s)k(s)sdΨ,

ucyc
y
k(s)k(s)s = ((1− s)(1− κ)(1− α)k(s)α)−

1
ρ (1− s)(1− κ)(1− α)αk(s)α−1(1− κ)k(s)α

=
α

s(1− α)

(
1− s
s

)1− 1
ρ

k′(s)
1− 1

ρ
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with (∫
co(η)1−σdΨ

)σ− 1
ρ

1−σ

= Γ
σ− 1

ρ
1−σ

2 k′(s)
α(σ− 1

ρ)

and

β

∫
c0−σcok′(s)k

′(s)k(s)k(s)sdΨ =

β

∫
(κη(1− α) + α)−σ k′(s)

−ασ
(κη(1− α) + α) dΨαk′(s)α−1k′(s)α(1− κ)k(s)α−1

=
α2β

s(1− α)
k′(s)

α(1−σ)
Γ2.

Therefore:

FG(s) =
α

s(1− α)

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ +

α2β

s(1− α)
k(s)α(1− 1

ρ)Γ̃2.

D.6 Decomposition of τ ∗

Corollary 10. τ ∗ can only be decreasing in risk if the effect of FG(s) is sufficiently
strong.

Proof. We know that the FOC for s∗ follows from

PE(s) +GE(s) + FG(s) = 0

Now set FG(s) = 0. Rewrite from (63)

PE(s) +GE(s) = 0 ⇔ s

(1− s)
1
ρ

= αβζ̃Γ̃2,

which uses k(s) = (s(1− κ)(1− α))
1

1−α and ζ̃ = ((1−α)(1−κ))
1
ρ
−1. Using the above

in (59) gives

1 = (1− τ ∗) Γ̃

Γ̃2

and Γ̃
Γ̃2

is unambiguously increasing in risk, see Appendix E.1. Using the above we
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can thus decompose equation (44) as

1 = (1− τ ∗) Γ̃

Γ̃2︸ ︷︷ ︸
from PE(s)+GE(s)

− (1− τ ∗) α
s∗

Γ̃

Γ̃2︸ ︷︷ ︸
from FG(s)

.

E Income Risk and Γ,Γ2, Γ̃, Γ̃2

E.1 General Case

In this section we prove Lemma 1 in the main text through two separate Lemmas.
For this, recall that the relevant expressions involving idiosyncratic income risk are
given by:

Γ =

∫
(κη(1− α) + α)−σ dΨ(η)

Γ2 =

∫
(κη(1− α) + α)1−σ dΨ(η)

Γ̃ = Γ
σ− 1

ρ
1−σ

2 Γ = ce(η)σ−
1
ρΓ

Γ̃2 = Γ
σ− 1

ρ
1−σ

2 Γ2 = Γ
1− 1

ρ
1−σ
2 = ce(η)1− 1

ρ

Γ̃

Γ̃2

=
Γ

Γ2

ce(η) ≡


[∫

(α + (1− α)κη)1−σ dΨ(η)
] 1

1−σ for σ 6= 1

exp
[∫

ln (α + (1− α)κη) dΨ(η)
]

for σ = 1

Furthermore, as in the main text we use the notion of a mean-preserving spread in
the random variable η when referring to an increase in risk, that is, formally, random
variable η is replaced by η̃ = η+ ν, where ν is a random variable with zero mean and
positive variance (and Assumption 1 applies to η̃ as well).

Lemma 2. The certainty equivalent ce(η) is decreasing in η-risk.

Proof. If σ > 1 (respectively σ < 1), then (α + (1− α)κη)1−σ is convex and downward
sloping (respectively, concave and upward sloping) in η. The certainty equivalent of
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a convex and downward sloping (respectively, concave and upward sloping) function
is decreasing in risk.

Lemma 3. The comparative statics of the other risk terms with respect to a mean-
preserving spread in η are given by:

1. Γ is increasing in η-risk.

2. Γ2 is increasing (respectively, decreasing) in η-risk if σ > 1 (respectively σ < 1).

3. Γ̃2 is increasing (decreasing) in η-risk if ρ < 1 (ρ > 1).

4. For ρ < 1, Γ̃ is increasing in η-risk. For ρ > 1 we have the following case
distinction:

(a) For 1
σ
> ρ > 1, Γ̃ unambiguously increases in income risk.

(b) For ρ > 1, ρ > 1
σ
> 0, i.e., σ <∞ the effect of η-risk on Γ̃ is ambiguous.

Proof. 1. Γ is increasing in η-risk because (κη(1− α) + α)−σ is a convex function
in η (with the degree of convexity increasing in σ).

2. Γ2 is increasing (decreasing) in η-risk if σ > 1 (σ < 1) because (κη(1− α) + α)1−σ

is a convex (concave) function of η.

3. Γ̃2 is increasing (decreasing) in η-risk if ρ < 1 (ρ > 1) because the certainty
equivalent ce(η) decreases in η-risk and because for ρ < 1 (ρ > 1) the exponent
1− 1

ρ
is negative (positive).

4. For ρ < 1, Γ̃ is increasing in η-risk (sufficient condition). To see this, rewrite Γ̃

as

Γ̃ =
Γ

Γ
−
−(1−σ)+(1− 1

ρ )

1−σ
2

=
Γ

Γ
1−

1− 1
ρ

1−σ
2

=
Γ

Γ2

Γ
1− 1

ρ
1−σ
2 =

Γ

Γ2

ce(η)1− 1
ρ (65)

Notice that for σ ≤ 1, Γ
Γ2

is the ratio of the expectation of a strictly convex
and a concave function. Hence, for σ ≤ 1 the term Γ

Γ2
is increasing in risk

by Jensen’s inequality. For σ > 1 term Γ
Γ2

is the ratio of the expectation
of two convex functions with the convexity of the function in the numerator,
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(κη(1− α) + α)−σ, being stronger than in the denominator, (κη(1− α) + α)1−σ

as long as σ <∞. Therefore, also for 1 < σ <∞ term Γ
Γ2

is increasing in risk.
For σ = ∞ term Γ

Γ2
is equal to 1. Finally, since the certainty equivalent ce(η)

is decreasing in η-risk, term ce(η)1− 1
ρ increases in η-risk if and only if ρ < 1.

For ρ > 1 we have the following case distinction:

(a) For 1
σ
> ρ > 1, Γ̃ unambiguously increases in η-risk because ce(η) decreases

in η-risk and σ − 1
ρ
< 0.

(b) For ρ > 1, ρ > 1
σ
> 0 the effect of η-risk on Γ̃ is ambiguous because ce(η)

is decreasing in η-risk and σ − 1
ρ
> 0 so that ce(η)σ−

1
ρ is decreasing in η-

risk whereas Γ is increasing in η-risk. Rewriting Γ̃ as in equation (65)
does not resolve this ambiguity because therm Γ

Γ2
is increasing in η-risk

whereas ce(η)1− 1
ρ is decreasing in η risk because 1− 1

ρ
> 0.

E.2 Expressing Γ-Intervals from Proposition 4 in Terms of

Variances

The bounds in proposition 4 can be defined in terms of the variances of the idiosyn-
cratic income shock η, to a second-order approximation of the integral defining Γ.
Notice that by a second-order Taylor series expansion around η = 1 we can approxi-
mate Γ as

Γ(α, κ, σ,Ψ) ≈ Γ̄ +
[κ(1− α)]2

[κ(1− α) + α]3
σ2
η.

From this it is straightforward to see that the interval for intermediate risk, see item 2
of proposition 4, is equivalent to

σ2
η ∈

(
σ2
η, σ

2
η

)
,
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where

σ2
η =

(κ(1− α) + α)3

(κ(1− α))2

(
1 + β

(1− α)β
− Γ̄

)
σ2
η =

(κ(1− α) + α)3

(κ(1− α))2

(
1(

(1− α)− 1
Γ̄

)
β
− Γ̄

)

and σ2
η > σ2

η > 0 under the maintained assumption that β <
[
(1− α)Γ̄− 1

]−1 so that
all intervals defined in proposition 4 can be expressed in terms of variances and are
non-empty. Also note that if the distribution Ψ is log-normal and thus exclusively
determined by its variance (given that the mean is pinned down by the maintained
assumption E(η) = 1), then no second order approximation is necessary in the above
argument, but the mapping between the variance bounds and the Γ bounds becomes
algebraically much more involved.

F Further Numerical Results

In Section 6.3 we show results for an extreme parameter constellation by taking ρ = 20

and σ = 50 to illustrate hump shaped saving rates in the competitive equilibrium and
hump shaped optimal capital income tax rates in the optimal policy. We here reduce
the values of both parameters.

Results for a lower risk aversion of σ = 2 (maintaining ρ = 20) are shown in
Figures 4–5 and Table 2. Given the lower risk aversion, the optimal policy for the
economy with σ2

η = 0.25 is now to implement a capital income subsidy. Also, while
the competitive equilibrium saving rate continues to be slightly decreasing in risk,
when ση increases from 1 to 2, the optimal tax rate is strictly increasing in risk
because risk aversion is too low so that the future generations effect is not powerful
enough to offset the increasing capital income tax.

Results for a lower risk aversion of σ = 2 and a lower IES of ρ = 0.5 are shown in
Figures 6–7 and Table 3. As the motive for inter-temporal shifting is now less strong,
policy functions for the optimal saving rate are increasing in risk and in the capital
stock. With this calibration, the competitive equilibrium saving rate is only too high
relative to the long-run optimum for the calibrations with a high risk of σ2

η = 2.
Consequently, only this economy will experience capital income taxation along the
transition. It also features a Pareto improvement from the tax reform.
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Figure 4: Policy Functions for ρ = 20, σ = 2 and Log Utility (σ = ρ = 1)

(a) s∗(k) (b) k′
∗
(k)

Notes: Policy function for optimal saving rate and next period capital stock for α = 0.2, β = 0.8,
κ = 0.5, ση ∈ {0, 0.25, 1, 2}, θ = 0.9 and ρ = 20, σ = 2 as well as for logarithmic utility (ρ = σ = 1).

Table 2: Saving Rates in Competitive Equilibrium and Optimal Long-Run Saving &
Capital Income Tax Rates: Low RA

s0(η) s∗∞ τ k
∗
∞

EZW-Preferences with ρ = 20, σ = 2
ση = 0 0.38 0.41 -0.13
ση = 0.25 0.39 0.4 -0.05
ση = 1 0.464 0.35 0.43
ση = 2 0.460 0.3 0.58
Log Utility
ση = 0 0.21 0.29 -0.88
ση = 2 0.36 0.29 0.39

Notes: Saving rates in the initial competitive equilibrium, s0(η), and optimal long-run saving, s∗∞,
and capital income tax rates τk

∗

∞ for α = 0.2, β = 0.8, κ = 0.5, ση ∈ {0, 0.25, 1, 2}, θ = 0.9

and ρ = 20, σ = 2 as well as for logarithmic utility (σ = ρ = 1).
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Figure 5: Policy Transition for ρ = 20, σ = 2 and Log Utility (σ = ρ = 1)

(a) st (b) kt

(c) τkt (d) ∆vt

Notes: Initial and optimal saving rate, capital stock, optimal capital income tax rate and changes
in lifetime utility in transition for α = 0.2, β = 0.8, κ = 0.5, ση ∈ {0, 0.25, 1, 2}, θ = 0.9

and ρ = 20, σ = 50 as well as for logarithmic utility (ρ = σ = 1).
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Figure 6: Policy Functions for ρ = 0.5, σ = 2 and Log Utility (σ = ρ = 1)

(a) s∗(k) (b) k′
∗
(k)

Notes: Policy function for optimal saving rate and next period capital stock for α = 0.2, β = 0.8,
κ = 0.5, ση ∈ {0, 0.25, 1, 2}, θ = 0.9 and ρ = 0.5, σ = 2 as well as for logarithmic utility (ρ = σ = 1).

Table 3: Saving Rates in Competitive Equilibrium and Optimal Long-Run Saving &
Capital Income Tax Rates: Low IES, Low RA

s0(η) s∗T τ ∗T
EZW-Preferences with ρ = 0.5, σ = 2
ση = 0 0.13 0.24 -2.02
ση = 0.25 0.14 0.24 -1.78
ση = 1 0.24 0.26 -0.26
ση = 2 0.36 0.29 0.55
Log Utility
ση = 0 0.21 0.29 -0.88
ση = 2 0.36 0.29 0.39

Notes: Saving rates in the initial competitive equilibrium, s0(η), and optimal long-run saving, s∗∞,
and capital income tax rates τk

∗

∞ for α = 0.2, β = 0.8, κ = 0.5, ση ∈ {0, 0.25, 1, 2}, θ = 0.9

and ρ = 0.5, σ = 2 as well as for logarithmic utility (σ = ρ = 1).
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Figure 7: Policy Transition for EZW with ρ = 0.5, σ = 2 and Log Utility

(a) kt (b) st

(c) τkt (d) ∆vt

Notes: Capital stock, saving rate, capital income tax rate and changes in lifetime utility in transition
for for α = 0.2, β = 0.8, κ = 0.5, ση ∈ {0, 0.25, 1, 4}, θ = 0.9 and σ = 2, ρ = 0.5 as well as for
logarithmic utility.
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