Part I. Consider an overlapping generations economy where all agents born at t have utility function $U(c_{t1}, c_{t2}) = \log(c_{t1}) + \beta \log(c_{t2})$ and endowment $e_t = (e_1, e_2)$, with $e_j > 0$. The stock of fiat money grows at rate γ, so that $M_{t+1} = (1 + \gamma)M_t$.

1. Describe the set of nonmonetary equilibria.

2. Describe the set of monetary equilibria.

Part II. Consider a worker searching for a job who receives an i.i.d. offer (w, λ) with probability α each period, where w is the wage and λ the probability of the job ending each period while employed. With probability $1 - \alpha$ he receives no offer. Assume an infinite horizon, a constant discount factor β, and a constant benefit to not working given by b. Also assume that quits are simply not allowed. Make other assumptions as you see fit.

1. Argue that the optimal strategy is to accept an offer iff $w \geq w^*(\lambda)$, and characterize the function $w^*(\lambda)$ as completely as you can.

2. Discuss the effect of an increase in α.

Part I. Consider an overlapping generations economy where all agents born at t have utility function $U(c_{t1}, c_{t2}) = c_{t1} + \beta c_{t2}^{\theta}$, where θ and β are parameters, and endowment $e_t = (e_1, e_2)$. The stock of fiat money is fixed and population grows at rate γ. Describe the set of equilibria. (Hint: Try to be careful with corner solutions.)

Part II. Describe as completely as you can Diamond’s search-equilibrium model and discuss how the set of steady state equilibria depends on returns to scale in the matching technology.