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Abstract

The US Census Bureau will deliberately corrupt data sets derived from the 2020
US Census, enhancing the privacy of respondents while potentially reducing the
precision of economic analysis. To investigate whether this trade-off is inevitable, we
formulate a semiparametric model of causal inference with high dimensional corrupted
data. We propose a procedure for data cleaning, estimation, and inference with
data cleaning-adjusted confidence intervals. We prove consistency and Gaussian
approximation by finite sample arguments, with a rate of n−1/2 for semiparametric
estimands that degrades gracefully for nonparametric estimands. Our key assumption is
that the true covariates are approximately low rank, which we interpret as approximate
repeated measurements and empirically validate. Our analysis provides nonasymptotic
theoretical contributions to matrix completion, statistical learning, and semiparametric
statistics. Calibrated simulations verify the coverage of our data cleaning-adjusted
confidence intervals and demonstrate the relevance of our results for Census-derived
data.

Keywords: disclosure avoidance, heterogeneous treatment effect, principal component analy-
sis
JEL: C81, C14, C38

∗We thank Alberto Abadie, Isaiah Andrews, Joshua Angrist, David Autor, Abhijit Banerjee, David
Bruns-Smith, Victor Chernozhukov, Avi Feller, Guido Imbens, Anna Mikusheva, Ismael Mourifie, Sendhil
Mullainathan, Whitney Newey, Elizabeth Ogburn, James Robins, Devavrat Shah, Vasilis Syrgkanis, Panos
Toulis, Suhas Vijaykumar, and many seminar participants for helpful comments, particularly the UC
Berkeley community. We thank Leon Deng, Ajinkya Gundaria, William Liu, and Caleb Rollins for excellent
research assistance. Rahul Singh thanks the Jerry Hausman Dissertation Fellowship. Part of this work was
done while both authors visited the Simons Institute for the Theory of Computing.

1

ar
X

iv
:2

10
7.

02
78

0v
6 

 [
ec

on
.E

M
] 

 1
2 

Fe
b 

20
24



1 Introduction

The 2010 US Census inadvertently revealed too much information. In a simulated hack,

researchers at the Census Bureau could re-identify between 52 and 179 million respondents

from anonymous summary tables [Hawes, 2021]. To protect privacy, the Bureau will inject

synthetic noise into summary tables of the 2020 Census and coarsen wage microdata in

the Current Population Survey (CPS). Techniques like these, called privacy mechanisms

in computer science, guarantee a property called differential privacy via deliberate data

corruption [Dwork et al., 2006]. Differential privacy is widely implemented in the technology

sector, e.g. Apple iOS and Google Chrome data. Due to its recent adoption in the government

sector, several economists have warned of a looming trade-off: the privacy of respondents

versus the precision of economic analysis [Abowd and Schmutte, 2019, Hotz et al., 2022].

We study differential privacy and discretization as modern challenges for causal inference.

Economic data continue to suffer from classical data corruptions such as missing values and

measurement error. Therefore, we analyze a class of data corruptions that encompasses both

modern and classical issues simultaneously, while remaining agnostic about their relative

magnitudes. Our research question is how (and when) it is possible to estimate typical

causal parameters using high dimensional economic data that suffer from measurement error,

missing values, discretization, and differential privacy mechanisms. An answer requires

nonasymptotic analysis because differential privacy is defined as a finite sample property.

We study a broad class of causal parameters, including semiparametric scalars such as

the average treatment effect, the local average treatment effect, and the average elasticity,

as well as nonparametric functions such as heterogeneous treatment effects, in a nonlinear

and high dimensional setting. Our main contribution is a procedure for automatic data

cleaning, causal estimation, and inference with confidence intervals that account for the

bias and variance consequences of data cleaning. The procedure is simple. It essentially

combines principal component analysis, ordinary least squares, and sample splitting in new

ways.

Our key assumption is that the true covariates are approximately low rank, which we

validate for US Census-derived data and interpret from a causal perspective. We argue

that covariates collected from the Census include approximate repeated measurements—e.g.
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disability benefits, medical benefits, and unemployment benefits—which implies that they

are approximately low rank. There are three key aspects of our contribution.

First, our simple procedure adapts to the type and level of data corruption. The same

code works in a variety of settings, allowing for classical types such as measurement error

and missing values as well as modern types such as discretization and differential privacy

mechanisms, across variance levels. Crucially, the researcher does not need exact knowledge

of the corruption distribution, e.g. its parametric form or covariance structure, and in this

way we depart from the error-in-variable Lasso and Dantzig literatures; see Section 2. We

depart from previous work on principal component regression by proposing new variants

that involve “implicit” data cleaning—i.e. prediction on a test observation without cleaning

it—and inference in nonlinear, heterogeneous causal models. We propose an error-in-variable

balancing weight that adapts to the causal parameter of interest, which is a natural yet

original solution for cross sectional data. Our theory of implicit data cleaning and our

error-in-variable balancing weight appear to be new. The former is of independent interest.

Second, our theoretical analysis allows the rate of data cleaning to be slower than

the rate of causal inference, so an analyst can use matrix completion for automatic data

cleaning of covariates. We extend the classic semiparametric framework, where the goal is

to obtain n−1/2 convergence for the causal parameter despite a slower rate of convergence

for a nonparametric “nuisance” regression. Our goal is to obtain n−1/2 convergence for the

causal parameter despite a slower rate of convergence for high dimensional data cleaning,

which is a “nuisance” task. Since our data cleaning guarantees only hold on-average, we are

unable to use previous semiparametric results; instead, we generalize semiparametric and

nonparametric debiased machine learning theory to i.n.i.d. corrupted data, with new results

on nominal and conservative variance estimation. Altogether, our framework translates slow,

on-average data cleaning guarantees into fast causal estimation and inference guarantees.

Third, our empirical results suggest that there exist scenarios in which the trade-off

between privacy and precision can be overcome, and others in which it cannot. We replicate

and extend [Autor et al., 2013]’s seminal paper on the effect of import competition in US

labor markets. To begin, we demonstrate the plausibility of our key assumption: Census

data products contain many variables that are approximate repeated measurements. Next,

we corrupt the data, injecting synthetic noise calibrated to the privacy level mandated for
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the 2020 US Census. We implement differential privacy and discretization in a way that

belongs to our class of data corruptions, which can therefore be cleaned and adjusted for in

the confidence interval. We recover the main results of [Autor et al., 2013] without losing

statistical precision. In this representative setting for economic research, it appears to be

possible to achieve both privacy at the individual level and precision at the population level.

Section 2 situates our contributions within the context of related work. Section 3

formalizes our class of data corruptions and our key assumption. Section 4 proposes our

procedure and demonstrates its performance in simulations. Section 5 theoretically justifies

our procedure, and verifies the key assumption for nonlinear factor models. Section 6

presents the semi-synthetic exercise and discusses limitations. Section 7 concludes.

2 Related work

Semiparametrics. We use two insights from classic [Hasminskii and Ibragimov, 1979,

Klaassen, 1987, Robinson, 1988, Bickel et al., 1993, Andrews, 1994, Newey, 1994, Robins and Rotnitzky, 1995,

Ai and Chen, 2003, Van der Laan and Rubin, 2006, Hahn and Ridder, 2013] and modern

[Zheng and Van der Laan, 2011, Athey et al., 2018, Chernozhukov et al., 2018, Hirshberg and Wager, 2021,

Chernozhukov et al., 2022a, Chernozhukov et al., 2023] semiparametric theory. First, a

causal parameter typically has regression and balancing weight representations, and both

appear in the semiparametrically efficient asymptotic variance. We directly build on this

insight: an error-in-variable regression and an error-in-variable balancing weight appear

in our data cleaning-adjusted confidence intervals. Second, sample splitting eliminates

restrictive conditions on the data generating process and estimation procedure. We combine

these two classic ideas with implicit data cleaning, which appears to be a new idea.

Error-in-variable regression. We provide a framework to repurpose error-in-variable

regression estimators for downstream causal inference. Error-in-variable regression has a

vast literature spanning econometrics, statistics, and computer science studying the model

Yi = γ0(Xi,·) + εi, Zi,· = Xi,· +Hi,· (Xi,· is the i-th row of matrix X and so on) (1)

where (Xi,·, εi, Hi,·) are mutually independent and (εi, Hi,·) are mean zero. We consider a

generalization of this setting with missingness, and we define our causal parameter as a scalar
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summary of nonlinear γ0. Methods in econometrics typically assume auxiliary informa-

tion for identification: repeated measurements [Hausman et al., 1991, Li and Vuong, 1998,

Schennach, 2004], instrumental variables [Schennach, 2007, Hu and Schennach, 2008], and

negative controls [Miao et al., 2018, Deaner, 2018]. Similar in spirit to repeated measure-

ments, we assume X is approximately low rank. Methods in statistics extend the Lasso and

Dantzig selector to high dimensional error-in-variable regression [Loh and Wainwright, 2012,

Rosenbaum and Tsybakov, 2013, Datta and Zou, 2017]. However, these methods require

linearity and exact sparsity of γ0, as well as knowledge of the covariance of measure-

ment error Hi,·. By contrast, we assume Hi,· are subexponential; the analyst does not

need to know the measurement error covariance, and therefore can be agnostic about

the type and level of corruption. We propose new variants of principal component

regression (PCR) for the error-in-variable regression and balancing weight. Previous

work studies PCR for error-in-variable regression only, explicitly cleaning all observa-

tions [Stock and Watson, 2002a, Bai and Ng, 2006, Agarwal et al., 2020a]. We develop a

technique of implicit data cleaning that avoids mixing together signal and noise across ob-

servations, which aids with downstream statistical inference of nonlinear models. Moreover,

our error-in-variable balancing weight for cross sectional data appears to be new.

PCA for large factor models. The initial step of PCR is PCA. A vast literature

studies the identification, estimation, and inference of latent factors (λi, µj) in models of

the form

Zi,· = Xi,· +Hi,·, Xij = λTi µj (Xi,· is the i-th row of matrix X and so on) (2)

where Zi,· is observed, the ambient dimension dim(Xi,·) is high, and the latent dimension

dim(λi) is fixed [Bai, 2003, Bai and Ng, 2013]. Our interest in downstream causal inference

allows us to bypass the issue of identifying latent factors, and to relax the linear factor model;

instead, we require that the approximate rank of X diverges more slowly than dim(Xi,·).

The nonlinear factor model Xij = g(λi, µj), where dim(λj) may slowly diverge and g is

smooth, is sufficient but unnecessary for our analysis. Like the factor model literature, we

allow weak correlation and heteroscedastity of measurement errors within units.

Low rank causal models. Whereas we study treatment effects, policy effects, and

elasticities in cross sectional data, a rich literature studies treatment effects, in panel data,

4



via a low rank factor model for potential outcomes [Athey et al., 2021, Bai and Ng, 2019,

Xiong and Pelger, 2023, Fernández-Val et al., 2021, Agarwal et al., 2020b, Feng, 2020]. By

contrast, we study a more general class of causal parameters, in cross sectional data, when

covariates are approximately low rank. The only previous work to consider both measurement

error and missingness in cross sectional treatment effects appears to be [Kallus et al., 2018].

The authors study average treatment effect and prove consistency, without inference, for a

parametric linear model where the true covariates are low dimensional Gaussians and the

measurement error distribution is correctly specified. By contrast, we study a broad class

of semiparametric and nonparametric causal parameters and provide inference, with data

cleaning-adjusted confidence intervals. We do not require exact distributional knowledge of

(high dimensional) true covariates or measurement error.

Privacy in econometrics. Our research question complements others in a recent litera-

ture on private econometrics. One strand considers how to disclose estimates obtained with

private data access [Dwork and Lei, 2009, Smith, 2011, Komarova and Nekipelov, 2020].

Another considers how to conduct estimation after linking public and private records, where

privacy considerations constrain linkage [Komarova et al., 2018]. We ask a complementary

question motivated by empirical economic research using public, Census-derived data prod-

ucts: how to conduct causal inference in the presence of simultaneous data corruptions,

including canonical privacy mechanisms applied to the data before estimation.

3 Model overview

Causal parameter. For readability, we focus on one causal parameter in the main text: the

average treatment effect (ATE) with i.n.i.d. data θ0 = 1
n

∑n
i=1 θi, where θi = E[Y (1)

i − Y
(0)
i ].

Here, Y (d)
i is the potential outcome for unit i under intervention D = d. θ0 is a sample

average because different units may be drawn from different distributions—a challenging yet

plausible scenario when data are corrupted. With i.i.d. data, θ0 simplifies to the familiar

ATE. Appendix E considers a general class of semi- and nonparametric causal parameters

e.g. the local average treatment effect, average elasticity, and heterogeneous treatment

effects.

We denote the actual outcome by Yi ∈ R, the assigned treatment by Di ∈ {0, 1}, and
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the covariates that determine treatment assignment by Xi,· ∈ Rp. In order to express θ0 in

terms of (Yi, Di, Xi,·), we impose some additional structure on the problem. Generalizing a

classic assumption in the literature on distribution shift, we assume that the conditional

distributions P(Yi|Di, Xi,·) and P(Di|Xi,·) are common across units; distribution shift is

only in the marginal distributions of covariates Pi(Xi,·).

Imposing these conditions as well as selection on Xi,·, we recover two classic formulations

of the treatment effect. The outcome formulation is in terms of the outcome mechanism

γ0(Di, Xi,·) = E[Yi|Di, Xi,·], also called the regression, which is common across units: θi =

E[γ0(1, Xi,·)−γ0(0, Xi,·)]. The treatment formulation is in terms of the treatment mechanism

E[Di|Xi,·], which is also common across units, and which appears in the denominator of

the balancing weight α0(Di, Xi,·) =
Di

E[Di|Xi,·] −
1−Di

1−E[Di|Xi,·] : here, θi = E[Yi · α0(Di, Xi,·)]. Our

estimation and analysis combine both classic formulations.

Data corruption. The crux of our problem is that we observe (Yi, Di, Zi,·) instead:

Yi = γ0(Di, Xi,·) + εi, Zi,· = (Xi,· +Hi,·)⊙ πi,·. (3)

Though the outcome Yi is generated from treatment Di and true covariates Xi,·, we do

not observe Xi,·; instead, we observe the corrupted covariates Zi,·, which are the true

covariates Xi,· plus conditionally mean zero corruption Hi,·, multiplied elementwise by an

independent masking vector πi,· ∈ {NA, 1}p. Our concise model (3) generalizes the models (1)

and (2), and it encompasses all four types of corruption. For example, to encode classical

measurement error, let Zi,· equal Xi,· plus a vector of Gaussian noise. To encode missing

values, let Zi,· = Xi,· ⊙ πi,·. In Appendix E, we accommodate corruption of the outcome Yi

and treatment Di, under restrictions.

Discretization is a process by which a continuous vector Xi,· maps to a discrete vector Zi,·,

and our class encodes variants where E[Zi,·|Xi,·] = Xi,·. For example, the covariate of interest

may be a vector of probabilities Xi,·, yet we observe actual occurrences Zi,· ∼ Bernoulli(Xi,·).

Another example is randomized rounding, where continuous values are randomly rounded to

nearby integers, e.g. Zi,· = sign(Xi,·)Poisson(|Xi,·|). Our class does not include deterministic

rounding. Instead, it provides guidance on which types of rounding can be handled well

in downstream causal inference. As such, it suggests alternative types of discretization for

wage data in the CPS which are more favorable for economic research.
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Differential privacy is a concept from computer science which means plausible deniability

that any individual contributed their data to tabular summaries. The canonical mechanism

that ensures differential privacy is to release Zi,· equal to Xi,· plus a vector of Laplacian noise,

calibrating the variance of the Laplacian to a priori bounds on the true values and other

properties of the tabular summary statistics [Dwork et al., 2006]. Our framework allows for

other canonical privacy mechanisms where E[Zi,·|Xi,·] = Xi,·, e.g. discrete Gaussian, piece

wise uniform, and bounded mechanisms. In the context of the Census, we consider adding

Laplacian noise to data on aggregate units, which we formalize in Section 6. Injecting

synthetic noise in this way helps to prevent the kind of attack simulated on the 2010 Census.

Across examples, Hi,· is subexponential, i.e. its tails are no worse than an exponential

distribution’s. So are compositions of various types of data corruption since the class of

subexponential distributions is closed under addition. Therefore our class of data corruptions

includes classical and modern issues simultaneously. It allows us to address the trade-off

between privacy and precision in the context of heteroscedastic measurement error—a major

aspect of the problem often overlooked [Chetty and Friedman, 2019, Steed et al., 2022].

What corruptions do we exclude? Our definition of Hi,· rules out nonseparable or

endogeneous measurement error. Our definition of πi,· rules out endogenous missingness,

i.e. sample selection. We also rule out deterministic rounding, i.e. interval censoring.

However, our class includes canonical privacy mechanisms as well as randomized rounding,

itself a privacy mechanism. Therefore we study this class, which we formalize in Section 5.

Importantly, we allow heteroscedastic corruptions that are dependent within a unit.

Key assumption: Approximate repeated measurements. Our key assumption is

that the true covariates are approximately low rank: the rank of the matrix X ∈ Rn×p is

approximately r ≪ (n, p). Among the p covariates in the data set, there are approximately

only r latent types of covariates. For intuition, consider repeated measurements. In the

classic repeated measurement model, we have two noisy measurements of one signal. In

our model, we have p noisy measurements (Zi1, ..., Zip) that are approximately repeated

measurements of only r signals, where both (r, p) grow with sample size n, yet r ≪ (n, p).

We place this assumption because it seems plausible in Census-derived data. Consider the

commuting zone (CZ) level data set of [Autor et al., 2013]. Each CZ is a local economy with

a vector of covariates Xi,· ∈ R30 if we use variables from the authors’ preferred specification
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as well as additional variables from their appendix. The variables include average disability,

unemployment, and medical benefits, which are not precisely repeated measurements but

approximately so. We compute the singular value decomposition of X then visualize its

singular values, also called its principal components, in Figure 1. We see that only about

five principal components are significantly positive; r = 5 while p = 30.

Figure 1: Key assumption in Census data

Our key assumption admits a causal

interpretation in the running example of

ATE. Consider the special case where the

true covariates are exactly low rank, i.e.

r = rank(X). The singular value decom-

position is X = UΣV T where U ∈ Rn×r,

Σ ∈ Rr×r, and V ∈ Rp×r. V consists of r

vectors in Rp, called the right singular vec-

tors of X, which are also the eigenvectors of the empirical covariance n−1XTX. The span

of these vectors is an r dimensional subspace of Rp, i.e. a low dimensional subset of a

high dimensional ambient space. In this scenario, we assume that treatment assignment is

determined by the subspace. More generally, when covariates are approximately low rank,

X = X(lr) + E(lr), where X(lr) = UΣV T is a rank r approximation to X, and E(lr)

is the approximation residual. We can either assume (i) selection is determined by X(lr)

only, i.e. the treatment assignment for unit i depends on the projection of Xi,· onto the

subspace spanned by V ; or (ii) selection is determined by both X(lr) and E(lr). To handle

the latter, we keep track of ∆E = ∥E(lr)∥max in our theoretical analysis. Our analysis is

robust to small violations of the exactly low rank assumption from statistical and causal

perspectives.

4 Data cleaning-adjusted confidence interval

We would like a procedure that estimates parameters in nonlinear, heterogeneous causal

models as if data were uncorrupted, yet adjusts for data cleaning in the confidence interval.

Moreover, we would like a procedure that does not require knowledge of the corruption

covariance structure in advance, departing from previous work. If such a procedure were to
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exist, it would in some sense preempt the looming trade-off between privacy and precision.

Figure 2: Key assumption in simulated data

Why is inference hard? We illustrate

our procedure with an average treatment

effect simulation. By construction, the treat-

ment effect is θ0 = 2.2. We consider a data

generating process (DGP) which satisfies

our key assumption: one sample involves a

matrix of covariates X ∈ R100×100 with rank

r = 5. See Appendix L for details and for

similar results using alternative dimensions of X. The DGP has nonlinear outcome and

treatment mechanisms. Figure 2 plots the principal components of true covariates X in red.

As expected, five principal components are nonzero and the rest are zero since rank(X) = 5.

As a first pass, we implement ordinary least squares (OLS) of Yi on (Di, Xi,·). Running

OLS on clean data 1000 times, the point estimates θ̂ (Figure 3a) center around the true

value 2.2, and appear Gaussian. OLS works well in the absence of data corruption; there is

nothing hidden in the DGP for clean data. We repeat this exercise introducing measurement

error with variance that is 20% of the variance of the covariates. Inversion of the empirical

covariance matrix n−1ZTZ becomes numerically unstable, manifesting in point estimates

that are erratic (Figure 3b) and standard errors that are typically NA’s. Notably, data

corruption flips the sign about a quarter of the time, a phenomenon we verify for 2SLS

and for settings closer to [Autor et al., 2013] in Appendix L. OLS is not well-suited to the

combination of high dimensional covariates, (approximate) low rank, and measurement error.

Indeed, any estimator that ignores covariate measurement error in a nonlinear, heterogeneous

causal model suffers from bias of a complicated form [Battistin and Chesher, 2014].

Data corruption can derail causal inference, which motivates filling the NA’s, reigning in

the extremes, and otherwise de-noising the values in Z in hopes of recovering X. These are

precisely the goals of matrix completion applied to the matrix Z [Candès and Recht, 2009,

Candès and Tao, 2010, Keshavan et al., 2009, Hastie et al., 2015, Chatterjee, 2015] . Our

goal is to automate data cleaning via matrix completion, then to adjust for data cleaning

in the confidence interval. To select an appropriate matrix completion method, we return

to Figure 2 to visualize the principal components of the corrupted covariates Z = X +H
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(a) OLS succeeds on clean data (b) OLS fails on corrupted data

Figure 3: First pass — OLS

for various noise-to-signal ratios (i.e. the noise variance divided by the signal variance).

The initial five principal components remain virtually unchanged, while the lower principal

components are amplified; signal remains spectrally concentrated while noise is spectrally

diffuse. Therefore a natural way to clean the covariates is to discard the lower principal

components—in essence, to perform principal component analysis (PCA).1

Why is inference hard after data cleaning? Several challenges arise. First, data cleaning

may mix together signal and noise across observations; yet, we wish to prove Gaussian

approximation via a central limit theorem. Our solution is to break dependence via both

sample splitting, which is a classic idea [Klaassen, 1987], and implicit data cleaning, which

is a new idea. Second, if we turn to automated data cleaning, the best rates of convergence

to the true matrix X are slower than n−1/2; yet, we wish to obtain a standard error of

order σ̂n−1/2 for θ0. Our solution is to use a doubly robust estimating equation and to

generalize double rate robustness [Chernozhukov et al., 2018, Van der Laan and Rose, 2018,

Rotnitzky et al., 2021]. The third issue is a theoretical one to which we will return in

Section 5: the best rates of matrix completion are not for recovering specific matrix entries

but rather averages across matrix entries; yet, we wish to obtain downstream semiparametric

inference. Our solution is to develop an algorithmic and analytic framework that forges a

connection.

Overview of the procedure. Split the observations (Yi, Di, Zi,·) into equally sized

train and test sets, each with m = n/2 observations. Our procedure consists of four

steps, which we state at a high level before filling in the details: (i) data cleaning: X̂ using
1Alternative choices include canonical correlation analysis and partial least squares, which clean Z using

Y . We leave these directions to future research.
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train; (ii) error-in-variable regression: γ̂ using train; (iii) error-in-variable balancing: α̂

using train; (iv) causal parameter: θ̂ ± 1.96σ̂n−1/2 using test. We opt for simplicity at

each step, essentially combining PCA and OLS (albeit in new ways). We view these high

level steps a template for more complex procedures in future work.

Step 1: Data cleaning. The automated data cleaning procedure is extremely simple: fill

in missing values as zeros, scale appropriately, then perform PCA.

For any mathematical operation to be well defined, the NA’s must be filled in somehow.

To begin, we tally the likelihood of non-missingness for each covariate j ∈ [p] in train:

ρ̂j = max
{

1
m

∑
i∈train 1(Zij ̸= NA), 1

m

}
, and ρ̂ = diag(ρ̂1, ..., ρ̂p) ∈ Rp×p. Next, we fill in

missing values with a fill operator defined such that fill(Zij) =
Zij
ρ̂j

if Zij ̸= NA and

fill(Zij) = 0 if Zij = NA. Let Ztrain be rows of Z where i ∈ train. The fill operator

may act on Ztrain or Ztest, but it always uses the likelihoods ρ̂ calculated from Ztrain.

Proposition 4.1 (Filling with zeros is unbiased and simple). For i ∈ test,

E[fill(Zij)|Xij,train] = Xij
ρj
ρ̂j
.

The alternative procedure of filling missing values with averages from train, denoted by

Z̄train
j , gives

E[fill-as-means(Zij)|Xij,train] = Xijρj + Z̄train
j (1− ρj).

fill-as-means gives a convex combination of the signal Xij and of the noisy average

Z̄train
j . The noisy average introduces additional correlations that our procedure avoids.

After filling train, we project it onto its own principal subspace to calculate the cleaned

training covariates X̂: fill(Ztrain) = ÛΣ̂V̂ T , and X̂ = Û kΣ̂kV̂
T
k . We truncate the SVD

of fill(Ztrain) to include only the top k principal components, where k is a hyperparameter.

Figure 2 suggests a choice of k. Below, we empirically verify that our results are robust

to different choices of k > r. Future work may derive a data driven procedure k = r̂

[Stock and Watson, 2002b, Bai and Ng, 2002, Onatski, 2009]. We preserve the ambient

dimension p.

Step 2: Error-in-variable regression. Our error-in-variable regression is also simple:

after cleaning train, perform ordinary least squares (OLS) on train, then use this OLS

coefficient on the filled test for prediction. We only fill, and do not clean, the test set.
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We introduce nonlinearity into the regression to allow treatment effect heterogeneity,

which is crucial for causal inference. Appendix F characterizes what nonlinearity is allowed.

Here, we focus on the interacted dictionary b(Di, X̂i,·) = (DiX̂i,·, (1 − Di)X̂i,·). Then

the OLS coefficient β̂ = {(β̂treat)T , (β̂untreat)T}T equals [{b(Dtrain, X̂)}T b(Dtrain, X̂)]†

[{b(Dtrain, X̂)}TY train], where † means pseudoinverse.

The subtlety is in how predictions are constructed from β̂. Out of sample prediction

does not involve cleaning the test set: for i ∈ test, γ̂(Di, Zi,·) = b{Di, fill(Zi,·)}β̂.

Proposition 4.2 (Implicit data cleaning preserves independence). For i ∈ test, γ̂(Di, Zi,·) =

b(Di, Zi,·)β̃, where β̃ = {(ρ̂−1 β̂treat)T , (ρ̂−1 β̂untreat)T}T and we replace NA with 0 in Zi,·.

Therefore for (i, j) ∈ test, γ̂(Di, Zi,·) |= γ̂(Dj, Zj,·)|train.

Remarkably, post-multiplying b(Di, Zi,·) by β̃ handles the measurement error, missingness,

discretization, and differential privacy of Zi,· while also producing high quality nonlinear

predictions of Yi. We call this phenomenon “implicit” data cleaning. Moreover, since β̃ is

learned exclusively from train, it is deterministic conditional on train, so predictions

for observations (i, j) ∈ test preserve their independence. This property of implicit data

cleaning will be essential for our inferential theory.

Our new variant of PCR has broader use outside of causal inference. In online learning,

a corrupted test observation Zi,· does not need to be explicitly cleaned with respect to

test or even train. Instead, it may be implicitly cleaned by post multiplying it with the

coefficient β̃. For test observations, data cleaning and prediction can be combined into one

step.

Step 3: Error-in-variable balancing. Our error-in-variable balancing weight generalizes

our error-in-variable regression. It avoids the estimation and inversion of propensity scores,

which may be numerically unstable in high dimensions. Pleasingly, it achieves exact balance

for any finite sample size, in a sense that we formalize below. Moreover, it adapts to the

causal parameter of interest, as we explain in Appendix I.

The only difference from the error-in-variable regression is that we replace the sufficient

statistic [{b(Dtrain, X̂)}TY train] ∈ Rp′ with another sufficient statistic that we call the

counterfactual moment M̂ ∈ Rp′ . The counterfactual moment resembles the expression

θi = E[γ0(1, Xi,·) − γ0(0, Xi,·)], and it is the only aspect of the algorithm that changes
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for different causal parameters. Formally, η̂ = [{b(Dtrain, X̂)}T b(Dtrain, X̂)]†M̂ and M̂ =

[{b(1, X̂)}T − {b(0, X̂)}T ]1m where 1m ∈ Rm is a vector of ones. As before, we do not

clean the test set: for i ∈ test, α̂(Di, Zi,·) = b{Di, fill(Zi,·)}η̂.

Proposition 4.3 (The balancing weight exactly balances covariates). For any finite sample,

1

m

∑
i∈train

X̂i,· =
1

m

∑
i∈train

DiX̂i,·ω̂
train
i =

1

m

∑
i∈train

(1−Di)X̂i,·ω̂
untreat
i ,

where (ω̂treat
i , ω̂untreat

i ) ∈ R are balancing weights computed from η̂ = {(η̂treat)T , (η̂untreat)T}T

as ω̂treat
i = X̂i,·η̂

treat and ω̂untreat
i = −X̂i,·η̂

untreat.

Deterministically, the error-in-variable balancing weight exactly balances the full popu-

lation, the treated subpopulation, and the untreated subpopulation with respect to their

cleaned covariates. It is precisely the reweighting that would ensure comparability of treated

and untreated groups in a stratified sampling design. We articulate a more general balancing

property for generic causal parameters in Appendix I. We also clarify the sense in which

the error-in-variable regression and balancing weight coincide on train but not test.

Step 4: Causal estimation and inference. The final step uses the error-in-variable

regression γ̂ and error-in-variable balancing weight α̂ learned from train, and evaluates

them on test according to the doubly robust estimating equation: for i ∈ test, ψ̂i =

γ̂(1, Zi,·)−γ̂(1, Zi,·)+α̂(Di, Zi,·){Yi−γ̂(Di, Zi,·)} is the empirical influence of that observation.

This process generates a vector ψ̂ ∈ Rm. Reversing the roles of train and test, we generate

another such vector. Slightly abusing notation, we concatenate the two to obtain a vector

ψ̂ ∈ Rn. We estimate the causal parameter as θ̂ = mean(ψ̂), its variance as σ̂2 = var(ψ̂),

and its data cleaning-adjusted confidence interval as CI = θ̂ ± 1.96σ̂n−1/2.

Our procedure deals with measurement error bias by cleaning the data. For the special

case of ATE, the measurement error bias has a closed form solution in terms of the regression,

propensity score, covariate density, and derivatives thereof [Battistin and Chesher, 2014].

We avoid estimation of the propensity scores, covariate density, and derivatives, which would

be challenging in high dimensions. Instead, we simply combine PCA and OLS.

The way we impute missing values modifies multiple imputation [Rubin, 1976]. In

multiple imputation, the analyst makes, say, two copies of the original data set, then

imputes missing values (with some randomness so each imputation may be different).

13



Estimates and standard errors from each copy are then averaged. Our procedure splits

the sample into two folds: train and test. We clean train and compute estimates and

standard errors with test, then reverse the roles and take the average. We opt for sample

splitting, rather than copying, and we additionally consider measurement error.

Adapting to the type and level of corruption. Next, we demonstrate that our

four step procedure performs well in simulations with a broad variety of data corruptions.

We run the same code in every setting; the procedure adapts to the type and level of data

corruption, without prior knowledge of the corruption covariance structure.

To begin, we consider measurement error Zi,· = Xi,· + Hi,·, where Hi,· is Gaussian

noise, in the average treatment effect simulation described above. Recall that θ0 = 2.2,

X ∈ R100×100, and r = 5. We implement our procedure on corrupted data 1000 times,

collecting 1000 point estimates θ̂ and 1000 standard errors σ̂. For a 20% noise-to-signal

ratio, we visualize the studentized point estimates (θ̂ − θ0)/σ̂ in Figure 4a.i. Qualitatively,

the histogram closely resembles the standard normal density.

We quantify performance in coverage tables. In Table 4a.ii, different rows correspond

to different noise-to-signal ratios. Initially, we consider the oracle tuning of the PCA

hyperparameter k = r. For each noise-to-signal ratio, we record the average point estimates,

which are close to θ0 = 2.2. Next, we record the average standard errors, which adaptively

increase in length to higher noise levels. Impressively, a 100% noise-to-signal ratio setting

corresponds to a confidence interval that is only about 10% longer. These confidence

intervals are the correct length, since about 950 of them include the true value θ0 = 2.2.

Table 4a.ii revisits the issue of tuning the hyperparameter k. This time, we fix the

noise-to-signal ratio to 20%. Different rows correspond to different tunings: k = r, k = r+2,

and k = r + 5. Point estimates remain close to the true value θ0 = 2.2. The standard errors

adaptively increase in length when k deviates from r, though the length only increases about

10%. The confidence intervals are again the correct length, attaining nominal coverage.

We repeat this exercise with other types of data corruption: missing values (Figure 4b.i),

discretization (Figure 4c.i), and differential privacy (Figure 4d.i). For missing values,

Zi,· = Xi,· ⊙ πi,· and we consider non-response of 10%, 30%, and 50% of all covariate

entries. In Census Bureau surveys, key variables such as income are missing 40% of the

time. Fortunately, our procedure performs well even with this high level of missingness.
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For discretization, we consider randomized rounding Zi,· = sign(Xi,·)Poisson(|Xi,·|), which

corresponds to a 33% noise-to-signal ratio. Finally, for differential privacy, Zi,· = Xi,· +Hi,·

where Hi,· is Laplacian noise, and we obtain results that are nearly identical to measurement

error. Across settings, our results are robust to hyperparameter tuning.

(a.i) Measurement error inference

Meas. Err. PCA ATE SE 80% CI 95% CI

20% k=5 2.22 0.35 0.81 0.96

60% k=5 2.23 0.37 0.81 0.96

100% k=5 2.28 0.39 0.82 0.95

20% k=5 2.22 0.35 0.81 0.96

20% k=7 2.21 0.36 0.84 0.96

20% k=10 2.22 0.39 0.83 0.97

(a.ii) Measurement error coverage

(b.i) Missing values inference

Miss. Val. PCA ATE SE 80% CI 95% CI

10% k=5 2.20 0.35 0.81 0.96

30% k=5 2.24 0.37 0.81 0.94

50% k=5 2.35 0.41 0.79 0.94

10% k=5 2.20 0.35 0.81 0.96

10% k=7 2.19 0.37 0.81 0.95

10% k=10 2.19 0.42 0.82 0.96

(b.ii) Missing values coverage

(c.i) Discretization inference

Discret. PCA ATE SE 80% CI 95% CI

33% k=5 2.23 0.36 0.81 0.96

33% k=7 2.23 0.37 0.80 0.95

33% k=10 2.23 0.41 0.81 0.95

(c.ii) Discretization coverage

(d.i) Differential privacy inference

Diff. Priv. PCA ATE SE 80% CI 95% CI

20% k=5 2.19 0.35 0.84 0.97

60% k=5 2.23 0.37 0.81 0.96

100% k=5 2.29 0.39 0.81 0.95

20% k=5 2.19 0.35 0.84 0.97

20% k=7 2.20 0.36 0.84 0.97

20% k=10 2.19 0.39 0.86 0.97

(d.ii) Differential privacy coverage

Figure 4: Our approach adapts to the type and level of corruption.
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5 Finite sample analysis

In the previous section, we articulate three reasons why inference after data cleaning is

hard. First, data cleaning mixes signal and noise across observations. We introduce implicit

data cleaning as an algorithmic solution, yet we still need to provide a theory of implicit

data cleaning: why is it okay to not clean the test covariates? Second, the best rates of data

cleaning are slower than n−1/2. We incorporate the doubly robust estimating equation in

the hope of achieving double rate robustness, yet we still need to prove that it works: how

is causal inference still possible with standard errors of order σ̂n−1/2? Third, data cleaning

recovers averages across matrix entries. How can we translate guarantees about recovering

averages into guarantees about the coverage of data cleaning-adjusted confidence intervals?

In this section, we answer these three theoretical questions with finite sample analysis.

We prove four theorems, each corresponding to a step in the procedure: (i) data cleaning:

X̂ converges to Xtrain; (ii) error-in-variable regression: γ̂ converges to γ0; (iii) error-in-

variable balancing weight: α̂ converges to α0; (iv) causal parameter: P{θ0 ∈ (θ̂±1.96σ̂n−1/2)}

converges to 0.95. We have already verified that our key assumption is reasonable in practice

for US Census-derived data. In a corollary, we verify that it is reasonable in theory: it holds

for a broad class of linear and nonlinear factor models.

Step 1: Data cleaning. For the data cleaning guarantee, we place four assumptions

on the corrupted data. To lighten notation, we suppress indexing by train.

Assumption 5.1 (Bounded signal). There exists an absolute constant Ā <∞ such that

for all i ∈ [m] and j ∈ [p], |Xij| ≤ Ā.

Bounded true values are standard in the matrix completion literature.

Assumption 5.2 (Measurement error). Each row of measurement error Hi,· is conditionally

mean zero and subexponential, i.e. E[Hi,·|Xi,·] = 0 and there exists a ≥ 1 and Ka <∞ such

that ∥Hi,·|Xi,·∥ψa ≤ Ka. Hence there exists κ2 > 0 such that ∥E[HT
i,·Hi,·|Xi,·]∥op ≤ κ2. We

assume measurement error is independent across rows.

Measurement error may be dependent within a given row. If each coordinate of Hi,· ∈ Rp

is independent, then Ka and κ2 are constants (i.e. they do not scale with p) [Vershynin, 2018,
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Lemma 3.4.2]. More generally, (Ka, κ) quantify the level of dependence among the entries

of Hi,· within a row. Our model allows for a great deal of heteroscedasticity. In particular,

the results to follow are conditional on X, so the distribution of Hij may depend on Xij as

long as it is conditionally mean zero and has tails no wider than those of an exponential

distribution. Assumption 5.2 encompasses discretization and differential privacy.

Assumption 5.3 (Missing values). Each πij is 1 with probability ρj and NA otherwise.

Identifying NA with 0, we assume there exists K̄ <∞ such that ∥πi,·−(ρ1, ..., ρp)|Xi,·∥ψ2 ≤ K̄.

Missingness πi,· is independent of Hi,· given Xi,·, and independent across rows.

Our missingness model generalizes the standard missingness model in the PCR error-

in-variable literature in two ways: (i) the missingness of one variable may depend on the

missingness of another, and (ii) different variables may be missing with different probabilities.

These additional degrees of flexibility are crucial for Census data, where non-responses for

different variables are often correlated and where non-response rates of different variables

can be vastly different. As with measurement error, missingness is independent across rows,

but it may be dependent within a given row. If each coordinate of πi,· ∈ Rp is independent,

then K̄ is constant. More generally, K̄ quantifies the level of dependence among the entries

of πi,· within a row. Our model allows for different probabilities of missingness for different

variables, which may depend on the signal in a weak sense: the proof is conditional on X, so

the probability ρj may depend on X·,j . We define the additional notation ρmin := minj∈[p] ρj

and ρ = diag(ρ1, ..., ρp) ∈ Rp×p.

Assumption 5.4 (Concentrated signal). Consider the approximation X(lr) to X, with

singular values s1, ..., sr. Assume that s1, ..., sr ≥ C
√

mp
r

, where C is an absolute constant.

Assumption 5.4 is analogous to incoherence-style conditions in econometrics and the

notion of pervasiveness in matrix completion. Similar to a strong factor assumption, it

ensures that the explanatory power of X(lr) dominates the explanatory power of various

error terms. It requires signal to be spectrally concentrated. A natural setting in which

Assumption 5.4 holds is whenX(lr)
ij = Θ(1) and s1, ...sr = Θ(τ). Then, for absolute constants

C,C ′, C ′′ > 0, C · r · τ 2 =
∑

k s
2
k = ∥X(lr)∥2Fr = C ′ ·mp which implies τ = C ′′√mp

r
. Future

work may extend our results to different spectral assumptions on X(lr).
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Remark 5.1. We parametrize our rates by the quality of low rank approximation.

Without loss of generality, X = X(lr)+E(lr), where X(lr) is a low rank approximation

to X, and E(lr) is the approximation residual. The two key quantities are r = rank{X(lr)}

and ∆E = ∥E(lr)∥max. It is with loss of generality that r and ∆E are simultaneously well

behaved. Intuitively, as r decreases, ∆E increases (and vice-versa). Indeed, if X(lr) = X

then trivially r ≤ (m, p) and ∆E = 0; if X(lr) = 0, then r = 0 but ∆E = Ā. Our corollary

shows that, under a nonlinear factor model, both r and ∆E behave well: r ≪ (m, p) and

∆E → 0. Until that corollary, we parameterize rates by (r,∆E), which may be non-unique.2

Theorem 5.1 (Finite sample data cleaning rate). Suppose Assumptions 5.1, 5.2, 5.3,

and 5.4 hold, k = r, and ρmin >
23 log(mp)

m
. Then for an absolute constant C > 0,

1

m
E∥X̂ −X∥22,∞ ≤ C1 ·

r ln5(mp)

ρ4min

(
1

m
+

1

p
+∆2

E

)
,

where C1 = C · Ā4(Ka + K̄)2(κ+Ka + K̄)2.

The norm of convergence is called the (2,∞) norm: 1
m
∥X̂ −X∥22,∞ = maxj∈[p]

1
m
∥X̂i,· −

X·,j∥22 = maxj∈[p]
1
m

∑m
i=1(X̂ij −Xij)

2 i.e. a maximum across columns and an average across

rows. For any given variable j ∈ [p], Theorem 5.1 guarantees that data cleaning performs

well on average across observations i ∈ [m]. Our rate requires both m and p to increase:

more repeated measurements improve the quality of data cleaning. For the bound to be

meaningful, (r,∆E) must be simultaneously well behaved, which is our key assumption.

Recall that (Ka, κ, K̄) quantify the level of corruption dependence within a row. As long as

the dependence is weak, e.g. (Ka, κ, K̄) scale as some power of ln(mp), this dependence

in negligible. Our downstream results for the error-in-variable regression and balancing

weight build on this data cleaning guarantee. Signal is spectrally concentrated, while noise

is spectrally diffuse, so we can concentrate out the noise.

Step 2: Error-in-variable regression. We place three additional assumptions.

Assumption 5.5 (Response noise). We have E[εi|Xi,·] = 0 and V[εi|Xi,·] ≤ σ̄2. Response

noise εi is independent of Hi,· and πi,· given Xi,·, and independent across rows.

2Since r may be non-unique, there may be multiple valid choices of the hyperparameter k.
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This condition permits measurement error and differential privacy of the outcome Yi.

Next we assume train and test each contains a sufficient variety of observations. For a

matrix M ∈ Rm×p, we define its row space as row(M ) = span{Mi,·}.

Assumption 5.6 (Row space inclusion). row[b{X(lr),train}] = row[b{X(lr),test}].

This property permits X(lr),train ̸= X(lr),test, and also permits the two matrices to

have different SVDs. In Appendix H, we verify that Assumption 5.6 holds with high

probability under weak auxiliary conditions. Finally, we place a weak technical condition.

Assumption 5.7 (Well conditioned estimators). Let ŝ′k′ be the smallest non-zero singular

value of b(Dtrain, X̂). Assume that ŝ′k′ ≳
ε̄

polynomial(m,p) where E[ε8i ] ≤ ε̄8.

For (β̂, η̂) to be well conditioned, the singular value ŝ′k′ should not be too small. In

particular, it must be bounded below by an arbitrary negative power of m and p.

Before stating the result, we introduce a theoretical device β∗ as the coefficient of

the best low rank nonlinear approximation to γ0. In particular, we write γ0(Di, Xi,·) =

b(Di, X
(lr)
i,· )β∗ + ϕ

(lr)
i where ϕ(lr)

i is the approximation error. It will be convenient to keep

track of this approximation error by defining ϕi := γ0(Di, Xi,·)− b(Di, Xi,·)β
∗. There will

be a trade-off: a richer dictionary b leads to a smaller approximation error in terms of ∥ϕ∥22,

but more compounding of measurement error and missingness. The following result helps to

characterize how the compounded data corruption magnifies (ρ−1
min, r,∆E) but nothing else.

Remark 5.2. Our results hold for a broad class of dictionaries, with the dictionary-specific

constant C ′
b and the concise notation (ρ′min, r

′,∆′
E) in Theorems 5.2 and 5.3. Appendix F

proves that

C ′
b ≤ 2dmax · Ā2dmax

max · ∥X̂∥2dmax
max ,

1

ρ′min

≤ dmaxĀ
dmax

ρmin

,

r′ ≤ rdmax , and ∆′
E ≤ CĀdmax · dmax∆E,

where dmax is the degree of the polynomial dictionary. Appendix F articulates restrictions

on the class of dictionaries. For the interacted dictionary, dmax = 2.

Remark 5.3. Under further incoherence-style assumptions, we bound ∥X̂∥max ≤ C
√
r in

Appendix G. Alternatively, one can bound

∥X̂∥max ≤ ∥X̂ −X∥max + ∥X∥max ≤ ∥X̂ −X∥22,∞ + Ā
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then appeal to Theorem 5.1 with high probability. Doing so for C ′
b does not affect the powers

of (m, p) but does increase the complexity of the pre-factors.

Theorem 5.2 (Finite sample error-in-variable regression rate). Suppose that the condi-

tions of Theorem 5.1 hold, as well as Assumptions 5.5, 5.6, and 5.7. If we have that

ρ′min ≫ C̃
√
r′ ln

3
2 (mp)

{
1√
p
∨ 1√

m
∨∆E

}
, where C̃ := CĀ

(
κ+ K̄ +Ka

)
, then

R(γ̂) ≤ C ′
bC1C2 · σ̄2 · (r

′)3 ln8(mp)

(ρ′min)
6

∥β∗∥21
(

1

m
+

p

m2
+

1

p
+
(
1 +

p

m

)
(∆′

E)
2 + p(∆′

E)
4

)
+ C2 ·

(r′)2 ln3(mp)

(ρ′min)
2

∆ϕ

(
1 + (∆′

E)
2
)
,

where ∆ϕ =
1
m
∥ϕtrain∥22 ∨ 1

m
∥ϕtest∥22,

C1 = CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2, and C2 = C · Ā4(κ+ K̄ +Ka)

2.

Corollary 5.1 (Simplified regression rate). Suppose the conditions of Theorem 5.2 hold.

Further suppose γ0 is exactly linear in signal, which is exactly low rank. Then

R(γ̂) ≤ C1C2 · σ̄2 · r
3 ln8(mp)

ρ6min

∥β∗∥21
(

1

m
+

p

m2
+

1

p

)
.

The norm of convergence is R(γ̂) = E
[
1
m

∑
i∈test{γ̂(Di, Zi,·)− γ0(Di, Xi,·)}2

]
, a relax-

ation of mean square error, where the expectation is over randomness in train and test.

Two aspects of our problem necessitate this norm: (i) given the on-average data cleaning

guarantee in Theorem 5.1, this is the best we can do; and (ii) for i.n.i.d. data, a population

risk is otherwise not well defined.3 Since the estimator γ̂ does not involve cleaning test,

Theorem 5.2 provides the theory of implicit data cleaning. The bound requires both m

and p to increase, p ≪ m2, and ρmin ≫ p−1/2 ∨m−1/2 ∨∆E. For the bound to be mean-

ingful, (r,∆E) must be simultaneously well behaved and the corruption dependence must

be weak. Finally, the bound includes the nonlinear approximation error ∆ϕ and the size

of the theoretical device ∥β∗∥1, which is well behaved if β∗ is approximately sparse. In

summary, we keep track of the low rank approximation error ∆E and the nonlinear sparse

approximation error ∆ϕ. To deal with ∆E, we demonstrate that nonlinear factor models

admit low rank approximation below. Due to our doubly robust approach, estimation of

the causal parameter θ0 is robust to non-vanishing ∆ϕ—a discussion we revisit later.
3Interestingly, even with i.i.d. data, (i) necessitates this norm.
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We make several innovations relative to previous work on PCR. First, we propose an

error-in-variable regression estimator that does not clean the test covariates, and we develop

a new theory of implicit data cleaning. Second, we define a new norm of convergence which

we subsequently use in causal inference. Appendix H compares our norm with those in

previous work. Third, we allow for dependence of missingness across variables and for

different probabilities of missingness across variables. This flexibility is realistic for Census

data. Fourth, we consider a nonlinear regression function γ0 that is approximated by a

nonlinear dictionary of basis functions b. The dictionary of basis functions is important for

causal inference because it allows for treatment effect heterogeneity, and it requires a novel

characterization of which nonlinearities do not compound data corruption too much.

Step 3: Error-in-variable balancing. We place one additional assumption.

Assumption 5.8 (Row space inclusion). M̂ ∈ row{b(Dtrain, X̂)}.

Whereas Assumption 5.6 is about the low rank approximation of the signal across train

and test, Assumption 5.8 is about the counterfactual moment in relation to train after

cleaning. With M̂ = [{b(Dtrain, X̂)}TY train], which reverts to error-in-variable regression,

Assumption 5.8 immediately holds. In other cases, it limits the counterfactual queries

that an analyst may ask. Because it concerns empirical quantities, it may be viewed as a

diagnostic tool to determine whether the counterfactual can be extrapolated.

As before, we introduce a theoretical device η∗ as the coefficient of the best low rank

nonlinear approximation to α0. In particular, we write α0(Di, Zi,·) = b(Di, X
(lr)
i,· )η∗ + ζ

(lr)
i

where ζ(lr)
i is the approximation error, and we study this approximation error by defining

ζi := α0(Di, Zi,·)− b(Di, Xi,·)η
∗.4 Again, there will be a trade-off: a richer dictionary b leads

to a smaller approximation error in terms of ∥ζ∥22, but amplification of (ρ−1
min, r,∆E).

Remark 5.4. Our results hold for a broad class of causal parameters, with parameter-specific

constants (C ′
m, C

′′
m) in Theorem 5.3. Appendix I characterizes (C ′

m, C
′′
m) for several examples.

For ATE with the interacted dictionary, C ′
m = 1 and C ′′

m = Ā.

Theorem 5.3 (Finite sample error-in-variable balancing weight rate). Suppose the con-

ditions of Theorem 5.1 hold, as well as Assumptions 5.6, 5.7, and 5.8. If ρ′min ≫
4A further assumption that the treatment mechanism only depends on signal, i.e. E[Di|Xi,·, Hi,·, πi,·] =

E[Di|Xi,·], implies α0(Di, Zi,·) = α0(Di, Xi,·) = b(Di, X
(lr)
i,· )η∗ + ζ

(lr)
i .
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C̃
√
r′ ln

3
2 (mp)

{
1√
p
∨ 1√

m
∨∆E

}
and ∥α0∥∞ ≤ ᾱ, then

R(α̂) ≤ C3 ·
(r′)5 ln13(mp)

(ρ′min)
10

∥η∗∥21 ·
{

1

m
+

1

p
+

p

m2
+
m

p2
+

(
1 +

p

m
+
m

p

)
(∆′

E)
2

+ (m+ p)(∆′
E)

4 +mp(∆′
E)

6

}
+ 2∆ζ ,

where ∆ζ =
1
m
∥ζtrain∥22 ∨ 1

m
∥ζtest∥22 and

C3 = CĀ14(C ′
b +
√
C ′
m + C ′′

m + ᾱ + Ā)2(Ka + K̄)4(κ+ K̄ +Ka)
6.

Corollary 5.2 (Simplified balancing weight rate). Suppose the conditions of Theorem 5.3

hold. Further suppose α0 is exactly linear in signal, which is exactly low rank. Then

R(α̂) ≤ C̃3 ·
r5 ln13(mp)

ρ10min

∥η∗∥21 ·
{

1

m
+

1

p
+

p

m2
+
m

p2

}
,

where C̃3 is C3 but with C ′
b replaced by 1.

The norm of convergence R(α̂) = E
[
1
m

∑
i∈test{α̂(Di, Zi,·)− α0(Di, Zi,·)}2

]
relaxes mean

square error as before. Theorem 5.3 imposes a stronger condition on p than Theorem 5.2:

now, we need m1/2 ≪ p ≪ m2. Once again, our bound keeps track of the low rank

approximation error ∆E and the nonlinear sparse approximation error ∆ζ . Nonlinear factor

models imply that the former vanishes, and our doubly robust approach allows the latter

not to vanish, as we make precise below.

Theorem 5.3 innovates in several ways. Most importantly, it analyzes a new estimator

for a new estimand: the error-in-variable balancing weight in cross sectional data. A rich

literature proposes balancing weight estimators for causal inference with clean data, but

to our knowledge, ours is the first error-in-variable balancing weight estimator for causal

inference with corrupted cross sectional data. Appendix I shows that Theorem 5.3 holds for

a broad class of counterfactual moments and therefore a broad class of causal parameters.

The counterfactual moment M̂ = [{b(Dtrain, X̂)}TY train] recovers error-in-variable

regression. We choose not to simply subsume Theorem 5.2 by Theorem 5.3 for two reasons.

First, doing so would require that Yi and εi are bounded, which rules out differential privacy

for the outcome. Second, Theorem 5.2 has lower powers of (r, ρ−1
min) and avoids the term m

p2

so it is typically a tighter bound. If we are willing to accept these costs, then the application
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of Theorem 5.3 to error-in-variable regression relaxes εi |= Hi,·, πi,·|Xi,· in Assumption 5.5.

Both approaches allow for heteroscedasticity of V[εi|Xi,·] in the traditional sense.

Step 4: Causal estimation and inference. The corrupted data problem is an

extended semiparametric problem. Let Wi,· = (Di, Xi,·, Hi,·, πi,·) concatenate the sig-

nal and the noise, so that L2(W) consists of square integrable functions of the form

γ : (Di, Xi,·, Hi,·, πi,·) → R. Both the true regression γ0(Di, Xi,·) and our error-in-variable

estimator γ̂(Di, Zi,·) belong to this space, which serves as our hypothesis space for semi-

parametric analysis.

Assumption 5.9 (Distribution shift). The extended outcome and treatment mechanisms,

E[Yi|Di, Xi,·, Hi,·, πi,·] and E[Di|Xi,·, Hi,·, πi,·], do not vary across observations.

Assumption 5.9 implies that γ0(Wi,·) and α0(Wi,·) do not vary across observations,

though the marginal distributions Pi(Wi) may vary. Our corruption model implies γ0(Wi,·) =

γ0(Di, Xi,·), and we are agnostic about whether α0(Wi,·) = α0(Di, Xi,·) for the extended

hypothesis space.5 Our final assumption mildly strengthens common support.

Assumption 5.10 (Bounded propensity). The extended propensity score is bounded below

and above, i.e. 1− ϕ̄ ≤ E[Di|Xi,·, Hi,·, πi,·] ≤ ϕ̄.6

We introduce some additional notation to state the finite sample Gaussian approximation.

Define the oracle influences ψi = ψ(Wi,·, θi, γ0, α0), where the influence function is

ψ(Wi,·, θ, γ, α) = γ(1, Xi,·, Hi,·, πi,·)− γ(0, Xi,·, Hi,·, πi,·) + α(Wi,·){Yi − γ(Wi,·)} − θ.

E[ψi] = 0 since E[γ0(1, Xi,·)− γ0(0, Xi,·)] = θi and E[α0(Wi,·){Yi − γ0(Wi,·)}] = 0 by law of

iterated expectations. We define the higher moments and average higher moments by

σ2
i = E[ψ2

i ], ξ3i = E[|ψi|3], χ4
i = E[ψ4

i ];

σ2 =
1

n

n∑
i=1

σ2
i , ξ3 =

1

n

n∑
i=1

ξ3i , χ4 =
1

n

n∑
i=1

χ4
i .

5If E[Di|Xi,·, Hi,·, πi,·] = E[Di|Xi,·], then α0(Wi,·) = α0(Di, Xi,·).
6Our finite sample analysis allows ϕ̄ ↑ 1, and more generally Q̄ ↑ ∞ in Remark 5.5, as the sample size

n ↑ ∞.
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Remark 5.5. Our results hold for a broad class of causal parameters, with parameter-specific

constants (Q̄, q̄) in Theorems 5.4 and 5.5. For ATE, Q̄ = 2
(

1
ϕ̄
+ 1

1−ϕ̄

)
and q̄ = 1 under

Assumptions 5.9 and 5.10. Appendix J characterizes (Q̄, q̄) for several other examples under

generalizations of Assumptions 5.9 and 5.10. Q̄ may be a diverging sequence.

Theorem 5.4 (Finite sample Gaussian approximation). Suppose Assumptions 5.9 and 5.10

hold, V[εi | Wi,·] ≤ σ̄2, ∥α0∥∞ ≤ ᾱ, and for (i, j) ∈ test, γ̂(Wi,·) |= γ̂(Wj,·)|train and

α̂(Wi,·) |= α̂(Wj,·)|train. Then with probability 1− ϵ,

sup
z∈R

∣∣∣∣P{n1/2

σ
(θ̂ − θ0) ≤ z

}
− Φ(z)

∣∣∣∣ ≤ 0.56

(
ξ

σ

)3

n− 1
2 +

∆

(2π)1/2
+ ϵ,

where Φ(z) is the standard Gaussian distribution function and

∆ =
3L

ϵσ

[
(Q̄1/2 + ᾱ){R(γ̂)}q̄/2 + σ̄{R(α̂)}1/2 + {nR(γ̂)R(α̂)}1/2

]
.

Theorem 5.5 (Finite sample variance estimation). Suppose Assumptions 5.9 and 5.10 hold,

V[εi | Wi,·] ≤ σ̄2, and ∥α̂∥∞ ≤ ᾱ′. Then with probability 1− ϵ′,

∣∣σ̂2 − (σ2 + bias)
∣∣ ≤ ∆′ +∆′′ + 3

[
(∆′)1/2

{
(∆′′)1/2 + σ +∆1/2

out

}
+ (∆′′)1/2

{
∆1/2

out + (∆′)1/4∆1/4
out

}
+ (∆′)1/4∆1/4

outσ
]
,

where

bias = ∆out + 2∆1/2
outσ, ∆out =

1

n

n∑
i=1

[(θi − θ0)
2],

∆′ = 4(θ̂ − θ0)
2 +

24L

ϵ′
[{
Q̄+ (ᾱ′)2

}
R(γ̂)q̄ + σ̄2R(α̂)

]
, and ∆′′ =

(
2

ϵ′

)1/2

χ2n− 1
2 .

Corollary 5.3 (Confidence interval coverage). Suppose the conditions of Theorems 5.4

and 5.5 hold. Further assume (i) moment regularity: {(ξ/σ)3 + χ2}n− 1
2 → 0; (ii) error-in-

variable regression rate:
(
Q̄1/2 + ᾱ/σ + ᾱ′){R(γ̂)}q̄/2 → 0; (iii) error-in-variable balancing

weight rate: σ̄{R(α̂)}1/2 → 0; (iv) product of rates is fast: {nR(γ̂)R(α̂)}1/2/σ → 0. Then

θ̂
p→ θ0, σ̂2 p→ σ2 + bias, and P{θ0 ∈ (θ̂ ± 1.96σ̂n−1/2)} → 0.95 + c where bias, c ≥ 0. If

in addition ∆out → 0, i.e. there are not too many outliers, then θ̂
p→ θ0, σ̂2 p→ σ2, and

P{θ0 ∈ (θ̂ ± 1.96σ̂n−1/2)} → 0.95.

Remark 5.6. Corollary 5.3 holds for a broad class of semiparametric estimands such as

the average elasticity and nonparametric estimands such as heterogeneous treatment effects.
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Moreover, it holds for not only the data cleaning and estimation procedure that we propose,

but for any data cleaning and estimation procedure satisfying its weak conditions.

The rate conditions R(γ̂) → 0, R(α̂) → 0 , and {nR(γ̂)R(α̂)}1/2 → 0 suffice for

Gaussian approximation with standard deviation σn−1/2, generalizing the main result in

[Chernozhukov et al., 2023] to the harder setting with corrupted and i.n.i.d. data. These

rate conditions are in terms of a more general norm than previous work because of matrix

completion in the data cleaning step. Nonetheless, we recover a familiar product rate

condition from semiparametric theory. The conditions solve the two remaining theoretical

challenges. First, they provide a framework to translate an on-average data cleaning

guarantee into a data cleaning-adjusted confidence interval for the causal parameter, by

using generalized norms. Second, they ensure that the standard deviation is σn−1/2 as long

as the product of error-in-variable rates (and hence the product of data cleaning rates) is

of order n−1/2. In summary, they allow for causal inference at rates faster than matrix

completion, which is essential to achieving precision for the population while maintaining

privacy for individuals.

A technical innovation is semiparametric variance estimation in the i.n.i.d. setting, which

is essential to the validity of confidence intervals. We define ∆out to quantify the frequency

of outliers. Since θi = E[γ0(1, Xi,·)− γ0(0, Xi,·)], ∆out quantifies the shift in the marginal

distributions of true covariates Pi(Xi,·). At best, ∆out = 0 in the i.i.d. case. At worst, ∆out

is a constant (when individual treatment effects are bounded). The condition ∆out → 0, i.e.

relatively few outliers, suffices for consistent variance estimation and nominal confidence

intervals. When ∆out ̸→ 0, our variance estimator is asymptotically biased upwards by

bias = ∆out +2∆
1/2
outσ, implying conservative confidence intervals. At worst, our confidence

intervals are valid but conservative by a theoretically quantifiable amount.

Our exact characterization of bias may have broader consequences for design-based

inference. Future work may study properties of our procedure in randomized experiments.

Data corruption only appears in the asymptotic variance σ2 via the error-in-variable

balancing weight α0. In the ATE example, noise appears in the asymptotic variance when

the treatment mechanism depends on both signal and noise. If the treatment mechanism

depends on signal alone, then our causal estimator implemented on corrupted data is

asymptotically as efficient as our causal estimator implemented on clean data.
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Key assumption holds for nonlinear factor models. Finally, we tie together our

various results and revisit our key assumption that covariates are approximately low rank.

We show that nonlinear factor models (i) encode the intuition of approximate repeated

measurements; (ii) imply that covariates are approximately low rank; and (iii) satisfy the

rate conditions for causal inference. In a nonlinear factor model, Xij = g(λi, µj) where

(λi, µj) are latent factors corresponding to units and covariates, respectively. We assume

that the function g is smooth in its second argument, formalizing the repeated measurement

intuition.

Assumption 5.11 (Generalized factor model). Assume X is generated as Xij = g(λi, µj),

where λi, µj ∈ [0, 1)q and g(λi, ·) ∈ H(q, S, CH). Here, H(q, S, CH) is the Hölder class of

functions g : [0, 1)q → R whose partial derivatives satisfy∑
s:|s|=⌊S⌋

1

s!
|∇sg(µ)−∇sg(µ

′)| ≤ CH∥µ− µ′∥S−⌊S⌋
max , ∀µ, µ′ ∈ [0, 1)q,

where ⌊S⌋ is the largest integer below S.

A linear factor model is a special case where g(λi, µj) = λTi µj , satisfying Assumption 5.11

for all S ∈ N and some CH = C < ∞. Assumption 5.11 also allows for smooth nonlinear

factor models, and it implies joint control over (r,∆E) as desired. Intuitively, as latent

dimension q increases, the rank r increases. As smoothness S increases, the approximation

error ∆E decreases. Our final result demonstrates that, as long as the ratio q/S is small

enough, the data cleaning adjusted confidence intervals are valid.

Remark 5.7. Our results hold for a broad class of dictionaries, with the concise notation

q′ in Corollary 5.4. Appendix K proves that q′ ≤ dmaxq, where dmax is the degree of the

polynomial dictionary. For the interacted dictionary, dmax = 2.

Corollary 5.4. Suppose the conditions of Theorems 5.2, 5.3, 5.4 and 5.5 hold, as well

as Assumption 5.11. For simplicity, consider the semiparametric case where σ, σ̄, ᾱ, ᾱ′, Q̄

are bounded above and q̄ = 1. Suppose in addition (i) moment regularity: {(ξ/σ)3 +

χ2}n− 1
2 → 0; (ii) weak dependence: (Ka, κ, K̄, ρ

−1
min) scale polynomially in ln(np); (iii)

nonlinear sparse approximation: m∆ϕ ≤ ∥β∗∥21 <∞ and m∆ζ ≤ ∥η∗∥21 <∞; (iv) enough

repeated measurements: n
2
3 ≲ p ≲ n

3
2 , i.e. n = pυ or p = nυ for υ ∈ [1, 3

2
]; (v) small latent

dimension to smoothness ratio: q′

S
< 3

4
− υ

2
. Then the conclusions of Corollary 5.3 hold.
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In summary, we allow either n > p or p > n as long as (n, p) increase at similar rates.

Given (n, p), the ratio of the latent dimension q over smoothness S in the generalized factor

model must be sufficiently low. For example, if n = p and q′ = q then we require q < S
4
:

the latent dimension must be less than a quarter of the smoothness. A sufficiently low
q
S

ratio ensures sufficiently fast learning rates R(γ̂) and R(α̂) for causal inference with

standard error σ̂n−1/2. For the special case of a linear factor model, the q
S

ratio constraint

becomes vacuous, and there is no restriction on the latent dimension q. The same is true

for a polynomial factor model where g(λi, µj) = polynomial(λi, µj). The doubly robust

framework allows us to slightly relax the conditions stated above and still obtain consistent

estimation for θ0: either ∆ϕ ̸→ 0 or ∆ζ ̸→ 0, i.e. γ0 or α0 may be incorrectly specified.

6 Case study: Effect of import competition using Census

data

Can we recover the same effects with data corruption? Equipped with theoretical

guarantees, we return to the motivating real world issue: measurement error, missing values,

discretization, and differential privacy in US Census data. We replicate a seminal paper in

labor economics [Autor et al., 2013] that uses Census-derived data to ask: what is the effect

of import competition on local labor markets in the US? We ask an additional question: can

we recover the same effects after introducing various types and levels of synthetic corruption?

In particular, we implement differential privacy at a level calibrated to the 2020 Census.

Our empirical results represent a realistic use case of Census-derived data, yet an idealized

data setting where the corruptions belong to our class. The causal parameter is the partially

linear instrumental variable regression parameter described in Appendix E.

[Autor et al., 2013] use Census data at the commuting zone (CZ) level. A CZ is an

aggregate unit interpretable as a local economy, and 722 CZs make up the mainland

US. CZ data are constructed from individual microdata published by the US government.

The outcome Yi is percent change in US manufacturing employment; the treatment Di is

percent change in imports from China; the instrument Ui is percent change in imports from

China to other countries; and the covariates Xi,· are CZ characteristics. In the augmented

27



specification, the covariates Xi,· ∈ R30 include approximate repeated measurements such as

average disability, medical, and unemployment benefits, and appear to be approximately

low rank in Figure 1.

Figures 5a, 5b, and 5c present our initial semi-synthetic exercises. For reference, we

visualize in red the 2SLS point estimate and confidence interval of [Autor et al., 2013], using

clean data. Immediately next to [Autor et al., 2013]’s results, we visualize our own point

estimate and confidence interval with clean data. We recover essentially the same point

estimate and a somewhat smaller confidence interval. The true covariates are approximately

low rank, our procedure exploits this fact, and therefore it has an advantage. Subsequently,

we implement our procedure with increasing levels of measurement error: 20%, 40%, 60%,

80%, and 100% noise-to-signal ratio. Our point estimates remain stable, and the confidence

intervals subtly increase in length. We obtain similar results with missing values and

discretization: point estimates remain stable and the confidence intervals adaptively increase

in length for higher noise-to-signal ratios, similar to Figure 4. Appendix L confirms similar

results when standardizing the true covariates before the semi-synthetic exercises.

(a) Measurement error (b) Missing values

(c) Discretization (d) Differential privacy (calibrated)

Figure 5: Synthetic corruption

Formalizing privacy. Next, we calibrate our semi-synthetic exercise to privacy levels

mandated by the US Census Bureau. To do so, we clarify how our model of causal inference
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with corrupted data accommodates differential privacy mechanisms. With these formal

results, we calibrate the variance of the Laplacian noise appropriately. In what follows, we

focus on a one-off data release (formally called the non-interactive setting).

We maintain the following thought experiment: we are the Census Bureau, and our goal

is to publish [Autor et al., 2013]’s CZ-level aggregated data set while protecting the privacy

of individuals within CZs. In particular, we have access to the individual-level microdata,

which we will not publicly share; we will only publish the CZ-level summaries for aggregate

units. Consider a particular commuting zone i ∈ [n] with Li individuals, and denote its

individual-level microdata by M (i) ∈ RLi×p. We wish to publish p summary statistics Xi,·

for this CZ, where Xij =
1
Li

∑Li
ℓ=1M

(i)
ℓj , however we wish to maintain plausible deniability

that each individual ℓ ∈ [Li] contributed their data. The simulated attack on the 2010

Census found that Census block summary tables did not maintain this plausible deniability.

Definition 6.1 (Differential privacy for summary tables). A randomized mechanism M

confers differential privacy with privacy loss ϵ if and only if for any two possible individual-

level data sets M and M ′ differing in a single row, and for all events E in the range of

M, P(M(M)∈E)
P(M(M ′)∈E)

≤ eϵ where the randomness is with respect to M.

The canonical mechanism that achieves differential privacy is to publish M(M (i)) =

Xi,· + Hi,· instead of Xi,·, where Hi,· is Laplacian noise with an appropriately calibrated

variance.7 In addition to the Laplace mechanism, the discrete Gaussian, piece wise uniform,

and bounded mechanisms induce measurement error that is subexponential and conditionally

mean zero, which fits within our framework. For simplicity, we focus on the Laplace

mechanism when relating privacy to our theoretical results.8

Proposition 6.1 (Strong protections for aggregate data). Suppose (i) each entry of

microdata is bounded, i.e. |M (i)
ℓj | ≤ Āi; (ii) no individual appears in two commuting zones.

Then the mechanism Zij = Xij +Hij where Hij
i.i.d.∼ Laplace

(
2Āi
ϵ

p
Li

)
confers ϵ differential

privacy and the measurement error parameters satisfy Ka, κ ≤ maxi∈[n]
23/2Āi
ϵ

p
Li
. This privacy

guarantee is immune to data cleaning.
7More precisely, Mi : RLi×p → Rp.
8Bureau policies mandate “zero concentrated” differential privacy, which is a closely related privacy

concept for which our implementation suffices. See Appendix M for details.
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Corollary 6.1 (Safety in numbers). Suppose the conditions of Proposition 6.1 hold and

maxi∈[n]
p
Li

≲ ln(np). Then the measurement error parameters satisfy Ka, κ ≲ ln(np), and

therefore our rates of data cleaning and error-in-variable estimation translate into data

cleaning adjusted confidence intervals.

In summary, the calibrated Laplacian variance depends on the privacy loss ϵ, the most

extreme true value Āi, the number of covariates p, and number of individuals Li per

aggregate unit. The auxiliary condition p
Li

≲ ln(np) is a practical diagnostic: roughly

speaking, the number of published covariates should not greatly exceed the number of

individuals per aggregate unit. It sheds light on limitations because it is plausible for CZs,

but implausible for Census blocks. Much empirical economic research studies CZs, which we

study in our semi-synthetic exercise. Future research may empirically investigate, through

simulated attacks, how vulnerable various data releases may be for different p
Li

regimes.

Figure 5d implements differential privacy for [Autor et al., 2013]’s CZ-level aggregated

data set while protecting the privacy of individuals within CZs. We calibrate the Laplacian

variance according to Proposition 6.1, where ϵ is based on Bureau memos, p = 30 in the

augmented specification, and (Āi, Li) are calculated from the microdata for each CZ; see

Appendix M for details. To study the robustness of our results to the privacy loss parameter,

we consider (100ϵ, 10ϵ, ϵ, 0.1ϵ, 0.01ϵ), which corresponds to privacy below and above the

mandated level. Across levels, our point estimates and confidence intervals remain stable.

7 Conclusion

Recent developments in how the US Census Bureau publishes economic data motivate us to

study a class of corruptions that is rich enough to encompass classical types of corruption,

such as measurement error and missingness, as well as modern types, such as discretization

and differential privacy mechanisms. Abstractly, our goal is to learn parameters in nonlinear,

heterogeneous causal models from corrupted data; concretely, our goal is to characterize

some scenarios in which it is possible to achieve both privacy and precision. To do so, we

propose new data cleaning-adjusted confidence intervals that are computationally simple,

statistically rigorous, and empirically robust in settings calibrated to empirical economic

research. We build a framework to use matrix completion as data cleaning for downstream
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causal inference, bridging two rich literatures. Future work may extend our results to

confounded noise and sample selection bias.
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A Data cleaning

In this appendix, we replace the symbol Xi,· with the symbol Ai,·. We suppress indexing by

the folds (train,test) to lighten notation. As in Assumption 5.3, we identify NA with 0

in Z hereafter. We slightly abuse notation by letting n be the number of observations in

train, departing from the notation of the main text. The entire section is conditional on

A, which we omit. We write ∥ · ∥ = ∥ · ∥op and let C be an absolute constant.

Recall A = A(lr) +E(lr) and r = rank{A(lr)}. We denote the SVDs A(lr) = UΣV T ,

Â = Û kΣ̂kV̂
T
k , and Z ρ̂−1 = ÛΣ̂V̂ T . The first k left singular vectors of A(lr) are U k. We

denote sk = Σkk and ŝk = Σ̂kk.

Recall that Âtrain is constructed by taking train covariates then filling and cleaning

them using train alone. As a theoretical device we also study Âtest, obtained by taking

test covariates, filling them using train, and cleaning them using test. The analysis

does not depend on whether ρ̂train or ρ̂test is used when filling in missing values.

Consider a matrix B ∈ Rn×p with SVD B =
∑n∧p

i=1 σiuiv
T
i . We define the linear function

φB
λ : Rn → Rn as φB

λ (w) =
∑n∧p

i=1 1(σi ≥ λ)uiu
T
i w. We use the shorthand φB = φB

0 .

Define the events:

E1 =
{
∥Z −Aρ∥ ≤ (

√
n+

√
p)∆H,op

}
, E2 =

{
max
j∈[p]

∥Z·,j − ρjA·,j∥22 ≤ n∆H

}
,

E3 =
{
max
j∈[p]

∥U kU
T
k (Z·,j − ρjA·,j)∥22 ≤ k∆H

}
, E4 =

{
∀j ∈ [p],

1

δ
ρj ≤ ρ̂j ≤ δρj

}
,

E5 =

{
max
j∈[p]

|ρ̂j − ρj| ≤ C

√
ln(np)

n

}
,

where

∆H,op = CĀ(κ+Ka + K̄) ln
3
2 (np), ∆H = C(Ka + ĀK̄)2 ln2(np), δ =

1

1−
√

22 ln(np)
nρmin

.

The Online Appendix shows that under Assumptions 5.1, 5.2, and 5.3, P(Ec) ≤ 10
n10p10

, where

E := ∩5
k=1Ek.
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Lemma A.1. Set k = r. Then,

∥Zρ̂ρρ−1 −A(lr)∥
∣∣∣ {E1, E4, E5} ≤ C

δ

ρmin

(
(
√
n+

√
p)∆H,op + ∥E(lr)∥+

√
ln(np)

n
∥A(lr)∥

)
;

∥UUT − Û rÛ
T
r ∥
∣∣∣ {E1, E4, E5} ≤ C

δ

ρminsr

(
(
√
n+

√
p)∆H,op + ∥E(lr)∥+

√
ln(np)

n
∥A(lr)∥

)
;

∥V V T − V̂ rV̂
T
r ∥
∣∣∣ {E1, E4, E5} ≤ C

δ

ρminsr

{
(
√
n+

√
p)∆H,op + ∥E(lr)∥+

√
ln(np)

n
∥A(lr)∥

}
;

|sr − ŝr|
∣∣∣ {E1, E4, E5} ≤ C

δ

ρmin

{
(
√
n+

√
p)∆H,op + ∥E(lr)∥+

√
ln(np)

n
∥A(lr)∥

}
.

Proof. To begin, write ∥Zρ̂ρρ−1 − A(lr)∥ ≤ ∥ρ̂ρρ−1∥∥Z −A(lr)ρ̂ρρ∥ = ∥Z−A(lr)ρ̂ρρ∥
minj ρ̂j

. By triangle

inequality ∥Z −A(lr)ρ̂ρρ∥ ≤ ∥Z −A(lr)ρρρ∥+ ∥A(lr)∥∥ρρρ− ρ̂ρρ∥. Applying E1 to the first term,

E5 to the second term, and E4 to the denominator yields the first result. From the first

result, Wedin’s sinΘ Theorem yields the second and third results while Weyl’s inequality

yields the fourth result.

Lemma A.2 (Eq. 43 of [Agarwal et al., 2021]). Take λ∗ = ŝk. Then Â·,j =
1
ρ̂j
φZρ̂ρρ−1

λ∗ (Z·,j).

Lemma A.3. Suppose k = r, Assumptions 5.1 and 5.4 hold, and ρmin >
23 ln(np)

n
. Then∥∥∥Â−A

∥∥∥2
2,∞

∣∣∣ E ≤ CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2 · r ln

5(np)

ρ4min

(
1 +

n

p
+ n∆2

E

)
.

Proof. Fix a column index j ∈ [p]. Observe that Â·,j − A·,j =
{
Â·,j − φZρ̂ρρ−1

λ∗

(
A·,j
)}

+{
φZρ̂ρρ−1

λ∗

(
A·,j
)
− A·,j

}
. Recall that φZρ̂ρρ−1

λ∗ projects onto the span of the top r left singular

vectors {û1, ..., ûr} of Z ρ̂−1, which are are also the top r left singular vectors of Z since

ρ̂−1 is diagonal. Hence φZρ̂ρρ−1

λ∗ (A·,j) − A·,j ∈ span{û1, . . . , ûr}⊥. By Lemma A.2, Â·,j −

φZρ̂ρρ−1

λ∗ (A·,j) =
1
ρ̂j
φZρ̂ρρ−1

λ∗ (Z·,j) − φZρ̂ρρ−1

λ∗ (A·,j) ∈ span{û1, . . . , ûr}. Therefore
∥∥∥Â·,j − A·,j

∥∥∥2
2
=∥∥∥Â·,j − φZρ̂ρρ−1

λ∗

(
A·,j
)∥∥∥2

2
+
∥∥∥φZρ̂ρρ−1

λ∗

(
A·,j
)
− A·,j

∥∥∥2
2
. Again applying Lemma A.2,

∥∥∥Â·,j − φZρ̂ρρ−1

λ∗ (A·,j)
∥∥∥2
2
=

∥∥∥∥ 1

ρ̂j
φZρ̂ρρ−1

λ∗ (Z·,j − ρjA·,j) +
ρj − ρ̂j
ρ̂j

φZρ̂ρρ−1

λ∗ (A·,j)

∥∥∥∥2
2

≤ 2

∥∥∥∥ 1

ρ̂j
φZρ̂ρρ−1

λ∗ (Z·,j − ρjA·,j)

∥∥∥∥2
2

+ 2

∥∥∥∥ρj − ρ̂j
ρ̂j

φZρ̂ρρ−1

λ∗ (A·,j)

∥∥∥∥2
2

≤ 2δ2

ρ2j

∥∥∥φZρ̂ρρ−1

λ∗ (Z·,j − ρjA·,j)
∥∥∥2
2
+ C

δ2

ρ2j

ln(np)

n
∥A·,j∥22
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where the last line uses E4 and E5. Note that
∥∥∥φZρ̂ρρ−1

λ∗ (Z·,j − ρjA·,j)
∥∥∥2
2
≤ 2

∥∥∥φZρ̂ρρ−1

λ∗ (Z·,j −

ρjA·,j)−φA(lr)
(Z·,j−ρjA·,j)

∥∥∥2
2
+2
∥∥∥φA(lr)

(Z·,j−ρjA·,j)
∥∥∥2
2
. Since k = r, φZρ̂ρρ−1

λ∗ (w) = Û rÛ
T
r w

and φA(lr)
(w) = UUTw for w ∈ Rn. By Lemma A.1,∥∥∥φZρ̂ρρ−1

λ∗ (Z·,j − ρjA·,j)− φA(lr)
(Z·,j − ρjA·,j)

∥∥∥
2
≤ ∥UUT − Û rÛ

T
r ∥
∥∥Z·,j − ρjA·,j

∥∥
2

≤ C
δ

ρminsr

(
(
√
n+

√
p)∆H,op + ∥E(lr)∥+

√
ln(np)

n
∥A(lr)∥

)∥∥Z·,j − ρjA·,j
∥∥
2
.

Combining the inequalities together, we have
∥∥∥Â·,j − φZρ̂ρρ−1

λ∗

(
A·,j
)∥∥∥2

2
is bounded by

Cδ4

ρ2min

(
(
√
n+

√
p)∆H,op

ρminsr
+

∥E(lr)∥
ρminsr

+

√
ln(np)/n∥A(lr)∥

ρminsr

)2∥∥Z·,j − ρjA·,j
∥∥2
2

+
4δ2

ρ2min

∥∥∥φA(lr)
(Z·,j − ρjA·,j)

∥∥∥2
2
+ C

δ2

ρ2min

ln(np)

n
∥A·,j∥22.

Since A = A(lr) +E(lr),∥∥∥φZρ̂ρρ−1

λ∗

(
A·,j
)
− A·,j

∥∥∥2
2
≤ 2

∥∥∥φZρ̂ρρ−1

λ∗

(
A

(lr)
·,j
)
− A

(lr)
·,j

∥∥∥2
2
+ 2

∥∥∥φZρ̂ρρ−1

λ∗

(
E

(lr)
·,j
)
− E

(lr)
·,j

∥∥∥2
2

≤ 2 ∥UUT − Û rÛ
T
r ∥2
∥∥∥A(lr)

·,j

∥∥∥2
2
+ 2

∥∥∥E(lr)
·,j

∥∥∥2
2

≤ Cδ2

(
(
√
n+

√
p)∆H,op

ρminsr
+

∥E(lr)∥
ρminsr

+

√
ln(np)/n∥A(lr)∥

ρminsr

)2∥∥∥A(lr)
·,j

∥∥∥2
2
+ 2

∥∥∥E(lr)
·,j

∥∥∥2
2
,

where the final inequality appeals to Lemma A.1. To conclude, substitute the bounds on

each term, appeal to E2 and E3, then simplify using Assumptions 5.1 and 5.4.

Lemma A.4. Suppose Assumptions 5.1, 5.2, and 5.3 hold. Then E
[
∥Â−A∥22,∞ 1{Ec}

]
≤

∆adv
1

n2p5
, where ∆adv := C

{
Ā2 +K2

a ln
2(np)

}
.

Proof. By Cauchy-Schwarz, E
[
∥Â−A∥22,∞ 1{Ec}

]
≤
√
E
[
∥Â−A∥42,∞

]√
E
[
1
2{Ec}

]
.

Within the first factor, maxj∈[p] ∥Â·,j∥2 ≤ maxj∈[p]
1
ρ̂j
∥Z·,j∥2 ≤ n ·

√
n(Ā+maxi,j |Hij|), so

E
[
∥Â−A∥42,∞

]
≤ E[{n

3
2 (Ā+max

i,j
|Hij|) +

√
nĀ}4] ≤ Cn6{Ā4 +K4

a ln
4(np)}.

The final inequality holds since E[maxi,j |Hij|4] ≤ CK4
a ln

4
a (np). Since P(Ec) ≤ C

n10p10
, we

conclude that

E
[
∥Â−A∥22,∞ 1{Ec}

]
≤ C

√
n6(Ā4 +K4

a ln
4(np))

√
1

n10p10
.
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Proof of Theorem 5.1. The result follows from Lemmas A.3 and A.4. By the law of iterated

expectations, results conditional on A imply the same unconditional on A.

B Error-in-variable regression

We write the proofs without nonlinear dictionaries for clarity.

Recall that the fill operator rescales using ρ̂ calculated from train. Denote the SVDs

A(lr),train = UΣV T , fill(Ztrain) = Ztrain ρ̂−1 = ÛΣ̂V̂ T , Âtrain = Û kΣ̂kV̂
T
k . In this

notation, V is an orthonormal basis for row{A(lr),train}. Let V ⊥ be an orthonormal

basis for its orthogonal complement. Likewise we define V̂ k,⊥. Define sk and ŝk as

the k-th singular values of A(lr),train and Âtrain, respectively. Next, denote the SVDs

A(lr),test = U ′Σ′(V ′)T , fill(Ztest) = Ztest ρ̂−1 = Û ′Σ̂′(V̂ ′)T , Âtest = Û ′
kΣ̂

′
k(V̂

′
k)
T . We

define V ′
⊥ and V̂ ′

⊥ analogously to V ⊥. Define s′k and ŝ′k as the k-th singular values of

A(lr),test and Âtest, respectively. Finally, denote the SVD of the row-wise concatenation

of A(lr),train and A(lr),test as ŨΣ̃Ṽ T . We define Ṽ ⊥ analogously to V ⊥ but with respect

to the row-wise concatenation of A(lr),train and A(lr),test.

We define β∗ ∈ Rp as the unique solution to the following optimization problem across

train and test: minβ∈Rp ∥β∥2 such that β ∈ argmin

∥∥∥∥∥∥
γ0(Atrain)

γ0(A
test)

−

A(lr),train

A(lr),test

β
∥∥∥∥∥∥
2

2

.

β∗ is not the quantity of interest, but rather a theoretical device. It defines the unique,

minimal-norm, low-rank, linear approximation to the regression γ0.

Recall Yi = A
(lr)
i,· β∗ + ϕ

(lr)
i + εi. Denote by Y train ∈ Rn the concatenation of (Yi)i∈train.

Likewise for εtrain and ϕ(lr),train. In the argument for train error, all objects correspond

to train. For this reason, we suppress superscipt train when possible. For i ∈ test, let

γ̂i = Zi,· ρ̂
−1 β̂ and γi = γ0(Ai,·) which form the vectors γ̂,γ0 ∈ Rn.

Define the events:

Ẽ1 :=
{
∥Âtest −Atest∥22,∞, ∥Âtrain −A(lr),train∥22,∞,≤ ∆̃1

}
,

∆̃1 := C1 ·
r ln5(np)

ρ4min

(
1 +

n

p
+ n∆2

E

)
and C1 = CĀ4(Ka + K̄)2(κ+ K̄ +Ka)

2;

Ẽ2 :=
{
∥Ztest ρ̂−1−A(lr),test∥2 ≤ ∆̃2

}
, ∆̃2 := CĀ2(κ+K̄+Ka)

2 ln
3(np)

ρ2min

(
n+ p+ np∆2

E

)
;
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Ẽ3 :=
{
∥V V T − V̂ rV̂

T
r ∥2, ∥V ′(V ′)T − V̂ ′

r(V̂
′
r)
T∥2 ≤ ∆̃3

}
, ∆̃3 :=

r

np
∆̃2;

Ẽ4 := {ŝr ≳ sr};

Ẽ5 :=
{
⟨Â(β̂ − β∗), ε⟩ ≤ ∆̃5

}
, ∆̃5 := Cσ̄2 ln(np)

{
r + ∥ϕ(lr)∥2 + ∥β∗∥1(

√
nĀ+ ∆̃

1/2
1 )
}
.

The Online Appendix uses the results in Appendix A to show that if the conditions of

Theorem 5.1 hold and ρmin ≫ C̃
√
r ln

3
2 (np)

(
1√
p
∨ 1√

n
∨∆E

)
, where C̃ := CĀ

(
κ+K̄+Ka

)
,

then P(Ẽc) ≤ C
n10p10

where Ẽ := ∩5
k=1Ẽk.

Lemma B.1. If Assumption 5.6 holds then V̂ T
k,⊥β̂ = 0 and V T

⊥β
∗ = (V ′

⊥)
Tβ∗ = 0.

Proof. We generalize [Agarwal et al., 2020a, Property 4.1], using our new definition of β∗

and noting that row(V T ) = row{(V ′)T} = row(Ṽ T ).

Lemma B.2. Deterministically, ∥Âβ̂−A(lr)β∗∥22 ≤ C
{
∥Â−A(lr)∥22,∞∥β∗∥21 ∨ ∥ϕ(lr)∥22 ∨

⟨Â(β̂ − β∗), ε⟩
}
.

Proof. To begin, write ∥Âβ̂−Y ∥22 = ∥Âβ̂−A(lr)β∗−ϕ(lr)∥22+∥ε∥22−2⟨Âβ̂−A(lr)β∗, ε⟩+

2⟨ϕ(lr), ε⟩. By optimality of β̂, we have ∥Âβ̂−Y ∥22 ≤ ∥Âβ∗−Y ∥22 = ∥(Â−A(lr))β∗−ϕ(lr)∥22+

∥ε∥22−2⟨(Â−A(lr))β∗, ε⟩+2⟨ϕ(lr), ε⟩. Combining these results, ∥Âβ̂−A(lr)β∗−ϕ(lr)∥22 ≤

∥(Â −A(lr))β∗ − ϕ(lr)∥22 + 2⟨Â(β̂ − β∗), ε⟩. Moreover, since ∥Âβ̂ −A(lr)β∗ − ϕ(lr)∥22 =

∥Âβ̂ − A(lr)β∗∥22 + ∥ϕ(lr)∥22 − 2⟨Âβ̂ − A(lr)β∗, ϕ(lr)⟩ and ∥(Â − A(lr))β∗ − ϕ(lr)∥22 =

∥(Â−A(lr))β∗∥22+∥ϕ(lr)∥22− 2⟨(Â−A(lr))β∗, ϕ(lr)⟩ we conclude that ∥Âβ̂−A(lr)β∗∥22 ≤

∥(Â−A(lr))β∗∥22 +2⟨Â(β̂ − β∗), ϕ(lr)⟩+2⟨Â(β̂ − β∗), ε⟩. By Cauchy-Schwarz and triangle

inequalities, ⟨Â(β̂ − β∗), ϕ(lr)⟩ ≤ (∥Âβ̂ −A(lr)β∗∥2 + ∥Âβ∗ −A(lr)β∗∥2) · ∥ϕ(lr)∥2.

In summary, for a = ∥Âβ̂−A(lr)β∗∥22, b = ∥Âβ∗−A(lr)β∗∥22, and c = b+2
√
b∥ϕ(lr)∥2+

2⟨Â(β̂ − β∗), ε⟩, we have shown a ≤ 2
√
a∥ϕ(lr)∥2 + c, which we now analyze. Since a ≥ 0,

there are three possible cases: (i) c ≥ 0, 2
√
a∥ϕ(lr)∥2 ≥ c, so a ≤ 4

√
a∥ϕ(lr)∥2 implies

a ≤ 16∥ϕ(lr)∥22; (ii) c ≥ 0, 2
√
a∥ϕ(lr)∥2 < c, so a ≤ 2c; (iii) c < 0, so a < 2

√
a∥ϕ(lr)∥2

implies a < 4∥ϕ(lr)∥22. The three cases imply a ≤ 2c ∨ 16∥ϕ(lr)∥22.

Finally, let d := 2b + 4
√
b∥ϕ(lr)∥2 + 2∥ϕ(lr)∥22. Then d = 2{

√
b + ∥ϕ(lr)∥2}2 ≤ 4{b +

∥ϕ(lr)∥22}. Note 2c ≤ d + 4⟨Â(β̂ − β∗), ε⟩. Together with the earlier results, this implies

a ≤ C
{
b ∨ ∥ϕ(lr)∥22 ∨ ⟨Â(β̂ − β∗), ε⟩

}
. Finally note b ≤ ∥Â−A(lr)∥22,∞∥β∗∥21.
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Proposition B.1 (Projected train error). Suppose conditions of Theorem 5.1 hold. Fur-

ther suppose Assumptions 5.5 and 5.6 hold. Let k = r and ρmin ≫ C̃
√
r ln

3
2 (np)

(
1√
p
∨ 1√

n
∨∆E

)
.

Then with probability at least 1−O{(np)−10}, ∥V̂ rV̂
T
r (β̂ − β∗)∥22 is bounded by

CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2 σ̄2

ρ4min

· r ln6(np) ·
{

1

np
∥ϕ(lr)∥22 + ∥β∗∥21

( √
n

∥β∗∥1np
+

r

np
+

r

p2
+
r

p
∆2
E

)}
.

Proof. We show that for any k, ∥V̂ kV̂
T
k (β̂−β∗)∥22 ≤ C

ŝ2k

{
∥Â−A(lr)∥22,∞∥β∗∥21 ∨ ∥ϕ(lr)∥22 ∨

⟨Â(β̂ − β∗), ε⟩
}

. Appealing to P(Ẽc) ≤ C
n10p10

yields the result. Since V̂ k is an isometry,

∥V̂ kV̂
T
k (β̂−β∗)∥22 = ∥V̂ T

k (β̂−β∗)∥22. Therefore ∥Â(β̂−β∗)∥22 = (β̂−β∗)T V̂ kΣ̂
2
kV̂

T
k (β̂−β∗) ≥

ŝ2k∥V̂ T
k (β̂−β∗)∥22. Next, consider ∥Â(β̂−β∗)∥22 ≤ 2∥Âβ̂−A(lr)β∗∥22+2∥A(lr)−Â∥22,∞∥β∗∥21.

Combining, ∥V̂ kV̂
T
k (β̂ − β∗)∥22 ≤ 2

ŝ2k

{
∥Âβ̂ − A(lr)β∗∥22 + ∥A(lr) − Â∥22,∞∥β∗∥21

}
. Bound

∥Âβ̂ −A(lr)β∗∥22 by Lemma B.2.

Proposition B.2 (train error). Suppose conditions of Proposition B.1 hold. Then with

probability at least 1−O{(np)−10}, ∥β̂ − β∗∥22 is bounded by

CĀ4(Ka + K̄)2(κ+ K̄ +Ka)
2 σ̄2

ρ4min

· r ln6(np) ·
{ 1

np
∥ϕ(lr)∥22 + ∥β∗∥22

(
r

n
+
r

p
+ r∆2

E

)}
.

Proof. We show ∥β̂ − β∗∥22 ≤ C
[
∥V V T − V̂ kV̂

T
k ∥2∥β∗∥22 + 1

ŝ2k

{
∥Â − A(lr)∥22,∞∥β∗∥21 ∨

∥ϕ(lr)∥22 ∨ ⟨Â(β̂ − β∗), ε⟩
}]
. Appealing to P(Ẽc) ≤ C

n10p10
yields the result. Write ∥β̂ −

β∗∥22 = ∥V̂ kV̂
T
k (β̂ − β∗)∥22 + ∥V̂ k,⊥V̂

T
k,⊥(β̂ − β∗)∥22. Proposition B.1 bounds the former. By

Lemma B.1, the latter equals ∥V̂ k,⊥V̂
T
k,⊥β

∗∥22 = ∥(V̂ k,⊥V̂
T
k,⊥β

∗ − V ⊥V
T
⊥)β

∗∥22, which we

bound by ∥V̂ k,⊥V̂
T
k,⊥ − V ⊥V

T
⊥∥2∥β∗∥22 = ∥V V T − V̂ kV̂

T
k ∥2∥β∗∥22.

Proposition B.3 (test error). Let the conditions of Theorem 5.2 hold. Then E[∥Âtestβ̂−
Atestβ∗∥22 1{Ẽ}] is bounded by

C1C2 · σ̄2 ·
r3 ln8(np)

ρ6min

∥β∗∥21
{
1 +

p

n
+
n

p
+ (n+ p)∆2

E + np∆4
E

}
+ C2 ·

r2 ln3(np)

ρ2min

(
1 + ∆2

E

)
∥ϕtrain∥22.

Proof. We show ∥Âtestβ̂−Atestβ∗∥22 ≤ C
∑3

m=1 ∆m where ∆1 :=
{
∥Ztest ρ̂−1−A(lr),test∥2+

∥A(lr),test∥2∥V V T−V̂ rV̂
T
r ∥2
}
∥β̂−β∗∥22, ∆2 :=

∥A(lr),test∥2
ŝ2r

{
∥Âtrain−A(lr),train∥22,∞∥β∗∥21 ∨

∥ϕ(lr),train∥22 ∨ ⟨Âtrain(β̂− β∗), ε⟩
}

, and ∆3 := ∥Âtest −Atest∥22,∞∥β∗∥21. Appealing to Ẽ

yields the result. To begin, write ∥Âtestβ̂ −Atestβ∗∥22 ≤ 2∥Âtest(β̂ − β∗)∥22 + 2∥(Âtest −

Atest)β∗∥22. We bound the latter term by matrix Hölder: ∥(Âtest −Atest)β∗∥22 ≤ ∥Âtest −

Atest∥22,∞∥β∗∥21. In what remains, we analyze the former term using ∥Âtest(β̂ − β∗)∥22 ≤
2∥
{
Âtest −A(lr),test}

(
β̂ − β∗)∥22 + 2∥A(lr),test(β̂ − β∗)∥22.
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By Weyl’s inequality, we have ∥Âtest−Ztest ρ̂−1 ∥ = ŝ′r+1 = ŝ′r+1−s′r+1 ≤ ∥Ztest ρ̂−1−A(lr),test∥.

In turn, this gives ∥Âtest −A(lr),test∥ ≤ 2∥Ztest ρ̂−1−A(lr),test∥ and hence ∥
{
Âtest −

A(lr),test}
(
β̂ − β∗)∥22 ≤ 4∥Ztest ρ̂−1−A(lr),test∥2 · ∥β̂ − β∗∥22.

Assumption 5.6 implies (V ′)TV ⊥ = 0 and hence A(lr),testV ⊥V
T
⊥ = 0. As a result,

∥A(lr),test(β̂ − β∗)∥22 = ∥A(lr),test(V V T + V ⊥V
T
⊥)
(
β̂ − β∗)∥22

= ∥A(lr),testV V T
(
β̂ − β∗)∥22 ≤ ∥A(lr),test∥2 ∥V V T

(
β̂ − β∗)∥22

where ∥V V T
(
β̂ − β∗)∥22 ≤ 2∥V V T − V̂ rV̂

T
r ∥2∥β̂ − β∗∥22 + 2∥V̂ rV̂

T
r

(
β̂ − β∗)∥22. Finally

appeal to the proof of Proposition B.1.

Proposition B.4 (Implicit cleaning). Let the conditions of Theorem 5.2 hold. Then

E[∥Ztest ρ̂−1 β̂ − Âtestβ̂∥22 1{Ẽ}] has the same bound as Proposition B.3.

Proof. We show ∥Ztest ρ̂−1 β̂ − Âtestβ̂∥22 ≤ C∥Ztest ρ̂−1−A(lr),test∥2 ·
{
∥β̂ − β∗∥22 +

∥V̂ ′
r(V̂

′
r)
T − V ′(V ′)T∥2∥β∗∥22

}
. Appealing to Ẽ yields the result. Using the definitions

Ztest ρ̂−1 = Û ′Σ̂′(V̂ ′)T , Âtest = Û ′
rΣ̂

′
r(V̂

′
r)
T , and Âtest

⊥ = Û ′
r,⊥Σ̂

′
r,⊥(V̂

′
r,⊥)

T , write

Ztest ρ̂−1 = Âtest + Âtest
⊥ . Therefore ∥Ztest ρ̂−1 β̂ − Âtestβ̂∥2 ≤ ∥Û ′

r,⊥∥ · ∥Σ̂′
r,⊥∥ ·

∥(V̂ ′
r,⊥)

T β̂∥2 = ∥Σ̂′
r,⊥∥ · ∥(V̂ ′

r,⊥)
T β̂∥2. By Weyl’s inequality, ∥Σ̂′

r,⊥∥ = ŝ′r+1 = ŝ′r+1 − s′r+1 ≤
∥Ztest ρ̂−1−A(lr),test∥. Moreover, ∥(V̂ ′

r,⊥)
T β̂∥2 = ∥V̂ ′

r,⊥(V̂
′
r,⊥)

T β̂∥2 ≤ ∥V̂ ′
r,⊥(V̂

′
r,⊥)

T (β̂ −
β∗)∥2 + ∥V̂ ′

r,⊥(V̂
′
r,⊥)

Tβ∗∥2. Focusing on the former term, ∥V̂ ′
r,⊥(V̂

′
r,⊥)

T (β̂ − β∗)∥2 ≤
∥β̂ − β∗∥2. By Lemma B.1, the latter term equals

∥V̂ ′
r,⊥(V̂

′
r,⊥)

TV ′(V ′)Tβ∗∥2 ≤ ∥{V̂ ′
r,⊥(V̂

′
r,⊥)

T − V ′
⊥(V

′
⊥)

T }V ′(V ′)Tβ∗∥2 + ∥V ′
⊥(V

′
⊥)

TV ′(V ′)Tβ∗∥2

= ∥{V̂ ′
r,⊥(V̂

′
r,⊥)

T − V ′
⊥(V

′
⊥)

T }V ′(V ′)Tβ∗∥2 = ∥{V̂ ′
r,⊥(V̂

′
r,⊥)

T − V ′
⊥(V

′
⊥)

T }β∗∥2

= ∥{V̂ ′
r(V̂

′
r)
T − V ′(V ′)T }β∗∥2 ≤ ∥V̂ ′

r(V̂
′
r)
T − V ′(V ′)T ∥∥β∗∥2,

which is dominated by the former term by the proof of Proposition B.2.

Proof of Theorem 5.2. To begin, write E∥γ̂−γ0∥22 ≤ 2E
[
∥Ztest ρ̂−1 β̂ −Atestβ∗∥22 1{Ẽ}

]
+

2E
[
∥Ztest ρ̂−1 β̂ −Atestβ∗∥22 1{Ẽc}

]
+2∥ϕtest∥22. Consider the first term. Using the bound

E
[
∥Ztest ρ̂−1 β̂ −Atestβ∗∥22 1{Ẽ}

]
≤ 2E

[
∥Ztest ρ̂−1 β̂ − Âtestβ̂∥22 1{Ẽ}

]
+ 2E

[
∥Âtestβ̂ −Atestβ∗∥22 1{Ẽ}

]
,
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we may appeal to Propositions B.3 and B.4. Consider the second term. Write

E
[
∥Ztest ρ̂−1 β̂ −Atestβ∗∥22 1{Ẽc}

]
≤ 2E

[
∥Ztest ρ̂−1 β̂∥22 1{Ẽc}

]
+2E

[
∥Atestβ∗∥22 1{Ẽc}

]
.

Since ∥Atestβ∗∥22 ≤ ∥Atest∥22,∞∥β∗∥21 ≤ nĀ2∥β∗∥21, we have that E
[
∥Atestβ∗∥22 1{Ẽc}

]
≤

nĀ2∥β∗∥21P(Ẽc). By Cauchy-Schwarz inequality,

E
[
∥Ztest ρ̂−1 β̂∥22 1{Ẽc}

]
≤
√
E
[
∥Ztest ρ̂−1 β̂∥42

]√
P(Ẽc).

These expressions are dominated by the bound from Proposition B.3 under Assumption 5.7.

C Error-in-variable balancing weight

As before, we write the proofs without nonlinear dictionaries for clarity.

We define η∗ ∈ Rp as the unique solution to the following optimization problem across

train and test: minη∈Rp ∥η∥2 such that η ∈ argmin

∥∥∥∥∥∥
α0(W

train)

α0(W
test)

−

A(lr),train

A(lr),test

η
∥∥∥∥∥∥
2

2

.

η∗ is not the quantity of interest, but rather a theoretical device. It defines the unique,

minimal-norm, low-rank, linear approximation to the balancing weight α0.

M̂ is the counterfactual moment. Write Ĝ = 1
n
(Âtrain)T Âtrain as the covariance matrix

after data cleaning. In this notation, Ĝη̂ = M̂T , and these feasible objects are computed

from train. We analogously define M∗ and G∗ using the low rank approximation to

the signal. In this notation, G∗η∗ = (M∗)T , and these infeasible objects are defined from

train and test. See the Online Appendix for a more formal statement. Finally, let

∆RR := n ·
{
∥M̂T − (M∗)T∥max + ∥G∗ − Ĝ∥max∥η∗∥1

}
.

Define the event: Ẽ5 :=
{
∆RR ≤ ∆̃5

}
where ∆̃5 := CĀ5(

√
C ′
m+C

′′
m+ᾱ+Ā)

(Ka+K̄)2(κ+K̄+Ka)2

ρ4min
r·

ln5(np) · n∥η∗∥1
(

1
n
+ 1

p
+ n

p2
+∆2

E + n∆4
E

) 1
2
. Set Ẽ := ∩5

k=1Ẽk where the remaining events

are defined in Appendix B. The Online Appendix shows that if the conditions of Theorem 5.3

hold, then P(Ẽc) ≤ C
n10p10

.

Lemma C.1. If Assumptions 5.6 and 5.8 hold, V̂ T
k,⊥η̂ = 0 and V T

⊥η
∗ = (V ′

⊥)
Tη∗ = 0.

Proof. For the former result, η̂ is the unique solution to the program minη∈Rp ∥η∥2 such that

η ∈ argmin−2M̂η + ηT Ĝη where M̂ ∈ row(Âtrain) by Assumption 5.8 and row(Ĝ) =
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row{(Âtrain)T Âtrain} = row(Âtrain). Therefore η̂ ∈ row(Âtrain), so we can appeal to

the same reasoning as Lemma B.1. The latter result is similar.

Lemma C.2. ∥Âη̂ −A(lr)η∗∥22 ≤ C
{
∥V̂ kV̂

T
k (η̂ − η∗)∥1 ·∆RR ∨ ∥Â−A(lr)∥22,∞∥η∗∥21

}
.

Proof. To begin, write ∥Âη̂ −A(lr)η∗∥22 ≤ 2∥Â(η̂ − η∗)∥22 + 2∥(Â−A(lr))η∗∥22. We bound

the latter term by ∥Â−A(lr)∥22,∞∥η∗∥21. Hereafter, we focus on the former term:

1

n
∥Â(η̂ − η∗)∥22 =

1

n
(η̂ − η∗)T ÂT Â(η̂ − η∗) = (η̂ − η∗)T V̂ kV̂

T
k Ĝ(η̂ − η∗)

which is bounded by ∥V̂ kV̂
T
k (η̂ − η∗)∥1 · ∥Ĝ(η̂ − η∗)∥max. Using the first order conditions,

∥Ĝ(η̂ − η∗)∥max ≤ ∥Ĝη̂ − M̂T∥max + ∥M̂T − (M∗)T∥max + ∥(M∗)T −G∗η∗∥max + ∥G∗η∗ − Ĝη∗∥max

= 0 + ∥M̂T − (M∗)T∥max + 0 + ∥G∗ − Ĝ∥max∥η∗∥1.

Proposition C.1 (Projected train error). Suppose the conditions of Theorem 5.1 hold.

Further suppose Assumptions 5.6, 5.8, 5.9, and 5.10 hold, and ∥α0∥∞ ≤ ᾱ. Let k = r and

ρmin ≫ C̃
√
r ln

3
2 (np)

(
1√
p
∨ 1√

n
∨∆E

)
, where C̃ := CĀ

(
κ+ K̄ +Ka

)
. Then with probability

at least 1−O{(np)−10}, ∥V̂ rV̂
T
r (η̂ − η∗)∥22 is bounded by

CĀ10(
√
C ′
m + C ′′

m + ᾱ+ Ā)2(Ka + K̄)4(κ+ K̄ +Ka)
4 · r4 · ln10(np) · ∥η

∗∥21
ρ8min

(
1

np
+

1

p2
+
n

p3
+

1

p
∆2
E +

n

p
∆4
E

)
.

Proof. We show that for any k, ∥V̂ kV̂
T
k (η̂−η∗)∥22 ≤ C

{
1
ŝ2k
∥Â−A(lr)∥22,∞∥η∗∥21 + 1

ŝ4k
p ·∆2

RR

}
.

Appealing to P(Ẽc) ≤ C
n10p10

yields the result. As in the proof of Proposition B.1,

∥V̂ kV̂
T
k (η̂ − η∗)∥22 ≤ 2

ŝ2k

{
∥Âη̂ − A(lr)η∗∥22 + ∥A(lr) − Â∥22,∞∥η∗∥21

}
. Using Lemma C.2,

we conclude that ∥V̂ kV̂
T
k (η̂− η∗)∥22 ≤ C

ŝ2k

{
∥V̂ kV̂

T
k (η̂− η∗)∥1 ·∆RR∨∥A(lr) − Â∥22,∞∥η∗∥21

}
.

There are two cases. In the first case, ∥V̂ kV̂
T
k (η̂− η∗)∥22 ≤ C 1

ŝ2k
∥Â−A(lr)∥22,∞∥η∗∥21, giving

the first term. In the second case, ∥V̂ kV̂
T
k (η̂− η∗)∥22 ≤ C 1

ŝ2k
∥V̂ kV̂

T
k (η̂− η∗)∥1 ·∆RR. Bound-

ing ∥V̂ kV̂
T
k (η̂ − η∗)∥1 ≤ √

p∥V̂ kV̂
T
k (η̂ − η∗)∥2, dividing both sides by ∥V̂ kV̂

T
k (η̂ − η∗)∥2,

and squaring gives the second term.

Proposition C.2 (train error). Suppose the conditions of Proposition C.1 hold. Then

with probability at least 1−O{(np)−10}, ∥η̂ − η∗∥22 is bounded by

CĀ10(
√
C ′
m + C ′′

m + ᾱ+ Ā)2(Ka + K̄)4(κ+ K̄ +Ka)
4 · r4 · ln10(np) · ∥η

∗∥22
ρ8min

(
1

n
+

1

p
+
n

p2
+∆2

E + n∆4
E

)
.
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Proof. We show ∥V̂ kV̂
T
k (η̂ − η∗)∥22 ≤ C

{
1
ŝ2k
∥Â−A(lr)∥22,∞∥η∗∥21 + 1

ŝ4k
p ·∆2

RR

}
. Appealing

to P(Ẽc) ≤ C
n10p10

yields the result. The argument is similar to Proposition B.2, replacing

Lemma B.1 with Lemma C.1 and Proposition B.1 with Proposition C.1.

Proposition C.3 (test error). Let the conditions of Theorem 5.3 hold. Then E[∥Âtestη̂−
Atestη∗∥22 1{Ẽ}] is bounded by

C3 ·
r5 ln13(np)

ρ10min

· ∥η∗∥21
{
1 +

p

n
+
n

p
+
n2

p2
+

(
n+ p+

n2

p

)
∆2
E + (np+ n2)∆4

E + n2p∆6
E

}
.

Proof. The proof is similar to Proposition B.3, updating ∆2 = ∥A(lr),test∥2
ŝ2r

{
∥V̂ kV̂

T
k (η̂ −

η∗)∥1 ·∆RR ∨ ∥A(lr),train − Âtrain∥22,∞∥η∗∥21
}

. In particular, we bound ∥V̂ rV̂
T
r

(
η̂ − η∗

)
∥22

using Proposition C.1 instead of Proposition B.1.

Proposition C.4 (Implicit cleaning). Let the conditions of Theorem 5.3 hold. Then

E[∥Ztest ρ̂−1 η̂ − Âtestη̂∥22 1{Ẽ}] has the same bound as Proposition C.3.

Proof. The proof is analogous to Proposition B.4.

Proof of Theorem 5.3. The proof is analogous to Theorem 5.2, instead appealing to Propo-

sitions C.3 and C.4.

D Data cleaning-adjusted confidence intervals

Let ψi = ψ(Wi,·, θi, γ0, α0) where ψ(w, θ, γ, α) = m(w, γ) + α(w){y − γ(w)} − θ and γ 7→

m(w, γ) is linear. We take as given that (γ0, α0) exist, though the latter is implied by

Assumption 5.10. The Gateaux derivative of ψ(w, θ, γ, α) with respect to its argument γ in

the direction u is {∂γψ(w, θ, γ, α)}(u) = ∂
∂τ
ψ(w, θ, γ + τu, α)

∣∣∣∣
τ=0

.

Let L be the number of folds, with fold ℓ indexed by Iℓ. Train (γ̂ℓ, α̂ℓ) on observations

in Icℓ , which serves as train. Let m = |Iℓ| = n/L be the number of observations in Iℓ,

which serves as test. Denote by Eℓ[·] the average over observations in Iℓ. This generalized

notation allows us to reverse the roles of train and test, and to allow for more than two

folds. The target and oracle are θ̂ = L−1
∑L

ℓ=1 Eℓ[m(Wi,·, γ̂ℓ) + α̂ℓ(Wi,·){Yi − γ̂ℓ(Wi,·)}] and

θ̄ = L−1
∑L

ℓ=1 Eℓ[m(Wi,·, γ0) + α0(Wi,·){Yi − γ0(Wi,·)}]. For i ∈ Iℓ, let ψ̂i = ψ(Wi,·, θ̂, γ̂ℓ, α̂ℓ).
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Lemma D.1. Suppose Assumptions 5.9 and 5.10 hold, E[ε2i |Wi,·] ≤ σ̄2, ∥α0∥∞ ≤ ᾱ, and

that for (i, j) ∈ Iℓ, γ̂ℓ(Wi,·) |= γ̂ℓ(Wj,·)|Icℓ and α̂ℓ(Wi,·) |= α̂ℓ(Wj,·)|Icℓ . Then with probability

1− ϵ, n1/2

σ
|θ̂ − θ̄| ≤ ∆ = 3L

ϵσ

[
(Q̄1/2 + ᾱ){R(γ̂ℓ)}q̄/2 + σ̄{R(α̂ℓ)}1/2 + {nR(γ̂ℓ)R(α̂ℓ)}1/2

]
.

Proof. We generalize [Chernozhukov et al., 2023, Proposition S6] to the new norm, noting

that Jensen’s inequality and q̄ ∈ (0, 1] imply that Eℓ[E[m(Wi,·, u)
2|Icℓ ]] ≤ Q̄Eℓ[{E[u(Wi)

2|Icℓ ]}q̄] ≤

Q̄{Eℓ[E[u(Wi)
2|Icℓ ]]}q̄. Moreover, using the shorthand ui = u(Wi,·) and vi = v(Wi,·),

E[Eℓ{|u(Wi,·)v(Wi,·)|}] = 1
m
E[uTv] ≤ 1

m
(E[uTu])1/2(E[vTv])1/2 =

(
1
m
E[Eℓ[u2i ]]

)1/2( 1
m
E[Eℓ[v2i ]]

)1/2
=√

R(γ̂ℓ)
√

R(α̂ℓ).

Proof of Theorem 5.4. We generalize [Chernozhukov et al., 2023, Theorem 1] using Lemma D.1

and an i.n.i.d. Berry Esseen lemma for θ̄ − θ0 = Enψi [Shevtsova, 2010].

Lemma D.2. Suppose Assumptions 5.9 and 5.10 hold, E[ε2i |Wi,·] ≤ σ̄2, and ∥α̂ℓ∥∞ ≤

ᾱ′. Then with probability 1 − ϵ′/2, En{(ψ̂i − ψi + θ0 − θi)
2} ≤ ∆′ = 4(θ̂ − θ0)

2 +

24L
ϵ′

[
{Q̄+ (ᾱ′)2}R(γ̂ℓ)

q̄ + σ̄2R(α̂ℓ)
]
.

Proof. We generalize [Chernozhukov et al., 2023, Proposition S10] to the new norm, appeal-

ing to Jensen’s inequality and q̄ ∈ (0, 1] as in the proof of Lemma D.1.

Lemma D.3. With probability 1− ϵ′/2, |En(ψ2
i )− σ2| ≤ ∆′′ =

(
2
ϵ′

)1/2 χ2

n1/2 .

Proof. Let Bi = ψ2
i and B̄ = En[Bi] so that E[B̄] = 1

n

∑n
i=1 E[Bi] =

1
n

∑n
i=1 σ

2
i = σ2 and

V[B̄] =
∑n
i=1 V(Bi)
n2 ≤

∑n
i=1 E[B2

i ]

n2 =
∑n
i=1 χ

4
i

n2 = χ4

n
. By Markov inequality P(|B̄ − E[B̄]| > t) ≤

V[B̄]
t2

= ϵ′

2
. Solving gives t = ∆′′.

Proof of Theorem 5.5. To begin, write σ̂2−(σ2+bias) = {σ̂2−En(ψ2
i )−bias}+{En(ψ2

i )−
σ2} ≤ {σ̂2 − En(ψ2

i ) − bias} + ∆′′ where the inequality holds with probability 1 − ϵ′/2

by Lemma D.3. In what follows, we focus on the former term. In particular, we write

σ̂2 = En{(ψ̂i − ψi)
2}+ 2En{(ψ̂i − ψi)ψi}+ En(ψ2

i ), then solve for bias = bias1 + bias2 as

a function of ∆out in the decomposition σ̂2 − En(ψ2
i ) − bias = En{(ψ̂i − ψi)

2} − bias1 +

2En{(ψ̂i − ψi)ψi} − bias2. To derive bias1, open the square and write

En{(ψ̂i − ψi)
2} = En{(ψ̂i − ψi + θ0 − θi)

2}+ En{(θi − θ0)
2}+ 2En{(ψ̂i − ψi + θ0 − θi)(θi − θ0)}

≤ En{(ψ̂i − ψi + θ0 − θi)
2}+ En{(θi − θ0)

2}+ 2[En{(ψ̂i − ψi + θ0 − θi)
2}]1/2[En{(θi − θ0)

2}]1/2

≤ ∆′ +∆out + 2(∆′)1/2∆
1/2
out
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where the last line holds with probability 1− ϵ′/2 by Lemma D.2. Taking bias1 = ∆out,

we have shown En{(ψ̂i − ψi)
2} − bias1 ≤ ∆′ + 2(∆′)1/2∆

1/2
out. To derive bias2, write

En{(ψ̂i − ψi)ψi} ≤
[
En{(ψ̂i − ψi)

2}
]1/2{

|En(ψ2
i )− σ2|+ σ2

}1/2
≤ {∆′ +∆out + 2(∆′)1/2∆1/2

out}1/2 · {∆′′ + σ2}1/2

where the last line holds with probability 1− ϵ′ appealing to Lemmas D.2 and D.3 as well

as the analysis for bias1. In summary,

2En{(ψ̂i − ψi)ψi} ≤ 2{∆′ +∆out + 2(∆′)1/2∆1/2
out}1/2 · {∆′′ + σ2}1/2

≤ 2{(∆′)1/2 +∆1/2
out + 21/2(∆′)1/4∆1/4

out} · {(∆′′)1/2 + σ}.

Taking bias2 = 2∆
1/2
outσ, we have shown

2En{(ψ̂i−ψi)ψi}−bias2 ≤ 2(∆′)1/2{(∆′′)1/2+σ}+2∆1/2
out(∆

′′)1/2+23/2(∆′)1/4∆1/4
out{(∆′′)1/2+σ}.

Thus with probability 1− ϵ′, σ̂2 − (σ2 + bias) ≤ {σ̂2 − En(ψ2
i )− bias}+∆′′, equalling

En{(ψ̂i − ψi)
2} − bias1 + 2En{(ψ̂i − ψi)ψi} − bias2 +∆′′

≤ ∆′ + 2(∆′)1/2∆
1/2
out + 2(∆′)1/2{(∆′′)1/2 + σ}+ 2∆

1/2
out(∆

′′)1/2 + 23/2(∆′)1/4∆
1/4
out{(∆′′)1/2 + σ}+∆′′.

Combining terms yields the desired result.

E Additional examples

Semiparametric estimands. We consider causal parameters of the form θ0 =
1
n

∑n
i=1 θi,

where θi = E[m(Wi,·, γ0)], in an i.n.i.d. data generating process where Yi = γ0(Di, Xi,·) + εi,

Zi,· = (Xi,· + Hi,·) ⊙ πi,·, and Wi,· = (Di, Xi,·, Hi,·, πi,·). (Di, Xi,·) concatenate the various

arguments of γ0, which we hereby call regressors. This model includes the scenario in

which some variables are corrupted and other are not. Which regressors are corrupted

or uncorrupted constrains the construction of technical regressors; see Appendix F. We

concatentate signal and noise as Wi,·. Appendix J generalizes Assumption 5.9 to impose

invariance of the regression γ0 and generalized balancing weight α0 across observations.

Example E.1 (Average treatment effect). Let (Di, Xi,·) concatenate treatment Di ∈ {0, 1}

and covariates Xi,· ∈ Rp. Denote γ0(Di, Xi,·) := E[Yi|Di, Xi,·]. Under the assumption of
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selection on Xi,·, the average treatment effect is given by θi = E[γ0(1, Xi,·)−γ0(0, Xi,·)]. With

uncorrupted treatment and corrupted covariates, Wi,· = (Di, Xi,·, Hi,·, πi,·) where (Hi,·, πi,·)

are measurement error and missingness for the covariates.9

While the true regression γ0(Di, Xi,·) is only a function of signal (Di, Xi,·), our regression

estimator γ̂(Di, Zi,·) is a function of both signal and noise Wi,·. In other words, the

hypothesis space for estimation is the extended space of functions L2(W), and we must

define an extended functional over L2(W). In Example E.1, the extended functional is

γ 7→ E[γ(1, Xi,·, Hi,·, πi,·)− γ(0, Xi,·, Hi,·, πi,·)].

Example E.2 (Local average treatment effect). Let (Ui, Xi,·) concatenate instrument

Ui ∈ {0, 1} and covariates Xi,· ∈ Rp. Denote γ0(Ui, Xi,·) := E[Yi|Ui, Xi,·] and δ0(Ui, Xi,·) :=

E[Di|Ui, Xi,·]. Under standard instrumental variable assumptions, the local average treatment

effect for the subpopulation of compliers is given by β0 = θ0
θ′0

where θi = E[γ0(1, Xi,·) −

γ0(0, Xi,·)] and θ′i = E[δ0(1, Xi,·)− δ0(0, Xi,·)]. With uncorrupted instrument and corrupted

covariates, Wi,· = (Ui, Xi,·, Hi,·, πi,·) where (Hi,·, πi,·) are measurement error and missingness

for the covariates.

Example E.3 (Average policy effect). Let Xi,· ∈ Rp be the covariates. Consider the

counterfactual transportation of covariates xi,· 7→ t(xi,·). Denote γ0(Xi,·) := E[Yi|Xi,·]. The

average policy effect is θi = E[γ0{t(Xi,·)} − γ0(Xi,·)]. With corrupted covariates, Wi,· =

(Xi,·, Hi,·, πi,·) where (Hi,·, πi,·) are measurement error and missingness for covariates.

Example E.4 (Price elasticity of demand). Let Yi be price of a particular good. Let (Di, Xi,·)

concatenate quantities sold of the particular good Di and other goods Xi,· ∈ Rp. Denote

γ0(Di, Xi,·) = E[Yi|Di, Xi,·]. The average price elasticity of demand is θi = E[∇dγ0(Di, Xi,·)].

With uncorrupted quantity for the particular good and corrupted quantities for the other

goods, Wi,· = (Di, Xi,·, Hi,·, πi,·) where (Hi,·, πi,·) are measurement error and missingness for

the other goods.

Weighted estimands. In empirical economic research with aggregate units, it is

common to weight units by their size. It is also common to consider partially linear models.
9More generally, treatment observations may be corrupted as well. For readability, we exposit the simpler

and plausible case that treatment is uncorrupted.
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For example, the estimand of [Autor et al., 2013] may be viewed as a weighted partially

linear instrumental variable regression. To bridge theory with practice, we provide these

examples next. A weighted functional θ0 ∈ R is a scalar that takes the form θ0 =
1
n

∑n
i=1 θi

where θi = E[ℓim(Wi,·, γ0)] and ℓi is the weight for aggregate unit i. For simplicity, we take

the weights ℓi to be known, but their uncertainty can be incorporated as well.

Example E.5 (Weighted partially linear regression). Let (Di, Xi) concatenate treatment

D ∈ R and covariates Xi,· ∈ Rp. Denote γ0(Di, Xi,·) = E[Yi|Di, Xi,·]. The weighted

partially regression coefficient is given by θi = E[ℓi{γ0(d+ 1, Xi,·)− γ0(d,Xi,·)}]. With

uncorrupted treatment and corrupted covariates, Wi,· = (Di, Xi,·, Hi,·, πi,·) where (Hi,·, πi,·)

are measurement error and missingness for the covariates.

Example E.6 (Weighted partially linear instrumental variable regression). Let (Ui, Xi,·)

concatenate instrument Ui ∈ R and covariates Xi,· ∈ Rp. Denote γ0(Ui, Xi,·) := E[Yi|Ui, Xi,·]

and δ0(Ui, Xi,·) := E[Di|Ui, Xi,·]. Under standard instrumental variable assumptions, the

weighted partially linear instrumental variable regression coefficient is given by β0 = θ0
θ′0

,

where θi = E[ℓi{{γ0(u+1, Xi,·)−γ0(u,Xi,·)}] and θ′i = E[ℓi{δ0(u+1, Xi,·)−δ0(u,Xi,·)}]. With

uncorrupted instrument and corrupted covariates, Wi,· = (Ui, Xi,·, Hi,·, πi,·) where (Hi,·, πi,·)

are measurement error and missingness for the covariates.

Nonparametric estimands. A local functional θlim0 ∈ R is a scalar that takes the form

θlim0 = limh→0 θ
h
0 , where θh0 = 1

n

∑n
i=1 θ

h
i , θhi = E[mh(Wi,·, γ0)] = E[ℓh(Wij)m(Wi,·, γ0)]. Here,

ℓh is a Nadaraya Watson weighting with bandwidth h and Wij is a scalar component of

Wi,·. θlim0 is a nonparametric quantity. However, it can be approximated by the sequence

{θh0}. Each θh0 can be analyzed like a weighted functional as long as we keep track of how

certain quantities depend on h. By this logic, finite sample semiparametric theory for θh0
translates to finite sample nonparametric theory for θlim0 up to some approximation error.

In this sense, our analysis encompasses both semiparametric and nonparametric estimands.

Example E.7 (Heterogeneous treatment effect). Let (Di, Vi, Xi,·) concatenate treatment

Di ∈ {0, 1}, covariate of interest Vi ∈ R, and other covariates Xi,· ∈ Rp. Denote

γ0(Di, Vi, Xi,·) := E[Yi|Di, Vi, Xi,·]. Under the assumption of selection on (Vi, Xi,·) and identi-

cial distribution of Vi, the heterogeneous treatment effect for the subpopulation with subcovari-

ate value v is given by θi = E[γ0(1, Vi, Xi,·)−γ0(0, Vi, Xi,·)|Vi = v] = limh→0 E[ℓh(Vi){γ0(1, Vi, Xi,·)−
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γ0(0, Vi, Xi,·)}] where ℓh(Vi) = K{(Vi−v)/h}
ω

, ω = E[K{(Vi − v)/h}], and K is a standard ker-

nel function. With uncorrupted treatment, uncorrupted covariate of interest, and corrupted

other covariates, Wi,· = (Di, Vi, Xi,·, Hi,·, πi,·) where (Hi,·, πi,·) are measurement error and

missingness for the other covariates.

Appendix J formally defines our general class of semiparametric and nonparametric

estimands. Each example belongs to the class under generalizations of Assumption 5.10.

Missing outcomes. So far, Yi has been uncorrupted. Measurement error and differential

privacy of Yi are allowed by response noise εi. An important additional issue is outcome

attrition: for some observations, Yi is missing in a way that may depend on the true regressors.

The enriched observation model is Yi = γ0(Di, Xi,·, Si) + εi, Zi,· = [Xi,· +Hi,·] ⊙ πi,·, and

Ỹi = Yi · Si with Si ∈ {1, NA}. Instead of (Yi, Di, Xi,·), the analyst observes (Ỹi, Di, Zi,·).

Outcome Yi may be missing at random conditional on true regressors (Di, Xi,·), of which

Xi,· may be corrupted. The extended semiparametric model is E[Ỹi|Di, Xi,·, Hi,·, πi,·, Si =

1] = E[Yi|Di, Xi,·, Hi,·, πi,·, Si = 1] = E[Yi|Di, Xi,·, Si = 1] = γ0(Di, Xi,·, Si = 1). For this

extension, replace Yi with Ỹi and replace (D,Xi,·) with (Di, Xi,·, Si).

F Nonlinearity

We characterize the class of nonlinear dictionaries b : Rp → Rp′ for which our main results

go through. We discuss two classes of dictionaries and delay proofs to the end.

Polynomial dictionary. We refer to the following three simple properties as dictionary

continuity, since they imply that the data cleaning results for original regressors imply

similar data cleaning results for technical regressors constructed from the dictionary. We

state the properties then verify them for the polynomial dictionary of degree dmax.

Assumption F.1 (Dictionary continuity). (i) For any two matrices M (1),M (2) ∈ Rn×p,

∥b(M (1))− b(M (2))∥22,∞ ≤ C ′
b∥M (1) −M (2)∥22,∞; (ii) for any M ∈ Rn×p, rank{b(M)} ≤

{rank(M)}C
′′
b ; (iii) for any v ∈ Rp, ∥b(v)∥max ≤ (∥v∥max)

C′′′
b .

For much of our argument to go through, it suffices that the dictionary exhibits three

simple properties: clean original regressors imply clean technical regressors; low rank
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original regressors imply low rank technical regressors; and bounded original regressors

imply bounded technical regressors. Polynomial dictionaries have these properties.

Definition F.1 (Polynomial dictionary). Let v = (v1, v2, . . . , vp) ∈ Rp. Consider the

dictionary bpoly, where for k ∈ [p′], bpoly
k (v) =

∏d(k)
ℓ=1 vℓ with vℓ ∈ {v1, . . . , vp}.

That is, each basis function bpoly
k (v) in the dictionary is a polynomial of degree d(k) ≤

dmax constructed from coordinates of v, allowing for repeats. This class of dictionaries is

commonly used in empirical economic research. It nests as a special case the interacted

dictionary studied in the main text, which permits a rich model of heterogeneous treatment

effects. Pleasingly, for this class, the dictionary constants (C ′
b, C

′′
b , C

′′′
b ) do not depend on p′.

Rather, (C ′
b, C

′′
b , C

′′′
b ) depend on the maximum degree dmax of the polynomial dictionary.

Proposition F.1 (Verifying dictionary continuity). bpoly of degree dmax satisfies Assump-

tion F.1 with C ′
b ≤ 2dmax · ∥M (1)∥2dmax

max · ∥M (2)∥2dmax
max , C ′′

b ≤ dmax, and C ′′′
b ≤ dmax.

This class of dictionaries preserves the low rank approximation in the following sense.

Proposition F.2 (Low rank approximation is preserved). Suppose Assumption 5.1 holds

and the true covariates satisfy X = X(lr) + E(lr) where r = rank{X(lr)} and ∆E =

∥E(lr)∥max. Consider b = bpoly of degree dmax. Then r′ := rank{b(X(lr))} ≤ rdmax and

∆′
E := ∥b(X)− b(X(lr))∥max ≤ CĀdmax · dmax∆E.

The same logic applies for dictionaries applied to (Di, Xi,·) rather than Xi,·. The

generalization of Appendix A with nonlinear dictionaries is immediate from these results.

Polynomial dictionary with uncorrupted nonlinearity. Assumption F.1 suffices

to generalize our data cleaning results. For analysis of the error-in-variable estimators, we

impose a further assumption, which constrains which kinds of terms can appear as technical

regressors. Consider the polynomial dictionary of degree dmax, where the only source of

nonlinearity is powers and interactions with regressors known to be uncorrupted.

Definition F.2 (Polynomial dictionary with uncorrupted nonlinearity). Suppose the ob-

served regressors consist of one uncorrupted regressor Di and several corrupted regressors

Xi,·. Consider a polynomial dictionary bpoly of degree dmax such that each basis function

bpoly
k is at most linear in the corrupted regressors. By definition, p′ ≤ C · dmaxp.
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For example, in Example E.1 where Di is uncorrupted, the interacted dictionary b :

(Di, Xi,·) 7→ {DiXi,·, (1 − Di)Xi,·} satisfies this property. In Example E.4 where Di is

uncorrupted, the nonlinear dictionary b : (Di, Xi,·) 7→ (1, Di, Xi,·, DiXi,·, D
2
i ) satisfies this

property as well since it contains D2
i but does not contain X2

ij. Intuitively, this family of

dictionaries avoids compounding measurement error because the corrupted regressors are not

multiplied with each other. For readability, we focus on the case of one uncorrupted regressor,

which can be conceptualized as b : (Di, Xi,·) 7→ (1, Di, ..., D
dmax
i , Xi,·, DiXi,·, ..., D

dmax−1
i Xi,·)

where Di is uncorrupted and Xi,· are corrupted. Definition F.2 naturally generalizes to

the case of multiple uncorrupted regressors. We require three properties to hold after the

dictionary is applied to the data.

Assumption F.2 (Dictionary is non-collapsing). The dictionary does not collapse in the

following sense. (i) Recall that we set k := rank(X̂) equal to r := rank{X(lr)}. We further

assume k′ := rank{b(D, X̂)} is equal to r′ := rank[b{D,X(lr)}]. (ii) Assumption 5.4 posits

that the smallest singular value of X(lr) is sr ≥ C
√

np
r
. We further posit that the smallest

singular value of b{D,X(lr)} is s′r′ ≥ C
√

np
r′

. (iii) Using the notation of one uncorrupted

regressor, the technical regressors (1, Di, ...D
dmax
i ) are full rank.

The first property in Assumption F.2 ensures two matrices of equal rank get mapped to

two new matrices of equal rank. The second property imposes that singular values, after

dictionary mapping, remain well balanced. In particular, we allow for a weaker signal to

noise ratio for technical regressors since r′ ≥ r. We do not impose s′r′ ≥ C
√

np′

r′
, which

is a stronger and less plausible requirement since it implies that the signal to noise ratio

increases with the dictionary dimension p′. The third property is a technical assumption

which allows the theory of implicit data cleaning to generalize.

Appendices B and C generalize to accommodate nonlinear dictionaries under this

additional assumption. See the previous draft for explicit algebra. We turn to proofs.

Lemma F.1. For bpoly, C ′
b ≤ 2dmax · ∥M (1)∥2dmax

max · ∥M (2)∥2dmax
max .

Proof. We introduce the notation [bpoly(M)]ik =
∏

{j(k)}Mij(k), where j(k) ∈ [p], Mij(k) ∈

{Mi1, . . . ,Mip}, and |{j(k)}| = d(k). We will simplify notation in the following way.

Fix k. Let Miℓ refer to the ℓ-th element of the product, where ℓ ∈ [d(k)]. Therefore

55



[bpoly(M )]ik =
∏

{j(k)}Mij(k) =
∏d(k)

ℓ=1 Miℓ. Then for any column k ∈ [p′],

∥b(M (1))·,k − b(M (2))·,k∥22 =
n∑
i=1

d(k)∏
ℓ=1

M
(1)
iℓ −

d(k)∏
ℓ=1

M
(2)
iℓ

2

≤ 2
n∑
i=1

d(k)∏
ℓ=1

M
(1)
iℓ −M

(2)
i1

d(k)∏
ℓ=2

M
(1)
iℓ

2

+ 2
n∑
i=1

d(k)∏
ℓ=1

M
(2)
iℓ −M

(2)
i1

d(k)∏
ℓ=2

M
(1)
iℓ

2

.

The first term equals
∑n

i=1

(
M

(1)
i1 −M

(2)
i1

)2(∏d(k)
ℓ=2 M

(1)
iℓ

)2
≤ ∥M (1)∥2dmax

max

∑n
i=1

(
M

(1)
i1 −M

(2)
i1

)2
≤

∥M (1)∥2dmax
max ∥M (1)−M (2)∥22,∞. The second term equals

∑n
i=1

(
M

(2)
i1

(∏d(k)
ℓ=2 M

(2)
iℓ −

∏d(k)
ℓ=2 M

(1)
iℓ

))2
≤

∥M (2)∥2max

∑n
i=1

(∏d(k)
ℓ=2 M

(2)
iℓ −

∏d(k)
ℓ=2 M

(1)
iℓ

)2
. Recursing with

∑n
i=1

(∏d(k)
ℓ=2 M

(2)
iℓ −

∏d(k)
ℓ=2 M

(1)
iℓ

)2
gives the desired result.

Lemma F.2. For bpoly, C ′′
b ≤ dmax.

Proof. Fix M ∈ Rn×p with rank r. For notational simplicity, let Miℓ refer to the ℓ-th element

of the product in [bpoly(M)]ik. Observe that bpoly(M) can be equivalently represented as

bpoly(M ) = B(1)⊙, ...,⊙B(dmax), where ⊙ means Hadamard product, B(ℓ) ∈ Rn×p′ , and for

ℓ ∈ [dmax], i ∈ [n], k ∈ [p′], [B(ℓ)]ik = Miℓ if ℓ ≤ d(k) and [B(ℓ)]ik = 1 if ℓ > d(k). Since

each column of each B(ℓ) is either a column of M or a column of ones, it has rank at

most r. The rank of a Hadamard product is bounded by the product of ranks and so

rank{bpoly(M )} ≤
∏dmax

ℓ=1 r = rdmax .

Lemma F.3. For bpoly, C ′′′
b ≤ dmax.

Proof. Denote v ∈ Rp with ∥v∥∞ ≤ Ā. Then bpoly
k (v) =

∏d(k)
ℓ=1 vℓ ≤ Ādmax .

Proof of Proposition F.1. Immediate from Lemmas F.1, F.2, and F.3.

Lemma F.4. If Assumption 5.1 holds, then ∥X(lr)∥max ≤ 3Ā.

Proof. Suppose we have X(lr) with rank r such that ∥X(lr)∥max > 3Ā. By reverse triangle

inequality ∆E,X(lr) = ∥X(lr) − X∥max ≥ ∥X(lr)∥max − ∥X∥max > 2Ā. We construct

B(lr) with rank r such that ∥B(lr)∥max ≤ 3Ā and ∆E,B(lr) < ∆E,X(lr) . Set B(lr) =

Ā
∥X(lr)∥max

·X(lr). Clearly, rank{B(lr)} = rank{X(lr)}. By construction ∥B(lr)∥max ≤ Ā,

so ∆E,B(lr) = ∥B(lr) −X∥max ≤ ∥B(lr)∥max + ∥X∥max ≤ 2Ā.
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Proof of Proposition F.2. By definition, r = rank{X(lr)}. The first result follows directly

from Proposition F.1. To see the second result, consider the case where dmax = 2. Then

any higher order entry of b(X)− b(X(lr)) is of the form |XijXik−X
(lr)
ij X

(lr)
ik | ≤ |XijXik−

X
(lr)
ij Xik|+ |X(lr)

ij Xik −X
(lr)
ij X

(lr)
ik | ≤ Ā∆E + 3Ā∆E by Lemma F.4. More generally, there

are dmax such terms, and the largest is of the form (3Ā)dmax∆E.

G Data cleaning supporting details

Define the unit ball Bp = {v ∈ Rp : ∥v∥2 ≤ 1} and sphere Sp−1 = {v ∈ Rp : ∥v∥2 = 1}.

Proof of Proposition 4.1. Immediate from the law of iterated expectations.

Proposition G.1 (Bound on ∥Â∥max). Suppose k = r and ŝ1, ..., ŝr ≤ C
√

np
r
. Assume the

following incoherence conditions for the corrupted singular vectors: ∥Û r∥max ≤ Cn−1/2 and

∥V̂ r∥max ≤ Cp−1/2. Then ∥Â∥max ≤ Cr1/2.

The condition ŝ1, ..., ŝr ≤ C
√

np
r

holds with high probability under s1, ..., sr ≤ C
√

np
r

by

Weyl’s inequality, similar to Proposition H.2. The condition s1, ..., sr ≤ C
√

np
r

complements

Assumption 5.4. To interpret the incoherence conditions, note that U·,j ∈ Rn and V·,j ∈ Rp.

Proof. Write Âij =
∑r

ℓ=1 ÛiℓŝℓV̂jℓ. Hence |Âij| ≤
∑r

ℓ=1 |Ûiℓ| · |ŝℓ| · |V̂jℓ|.

Lemma G.1. Under Assumption 5.3, ∥E[(Z−Aρ)T (Z−Aρ)]∥ ≤ ρmax(1−ρmin)
(
maxj∈[p] ∥A·,j∥22+

∥diag(E[HTH ])∥
)
+ ρmax∥E[HTH ]∥, where ρmax := maxj∈[p] ρj ≤ 1.

Proof. Write E[(Z − Aρρρ)T (Z − Aρρρ)] =
∑n

ℓ=1 E[(Zℓ,· − Aℓ,·ρρρ) ⊗ (Zℓ,· − Aℓ,·ρρρ)]. Let X =

A + H. For any (ℓ, j) ∈ [n] × [p], E[Zℓj] = ρjAℓj and E[Z2
ℓj] = ρjE[X2

ℓj]. Fix a row

ℓ ∈ [n] and denote W (ℓ) = (Zℓ,· − Aℓ,·ρρρ) ⊗ (Zℓ,· − Aℓ,·ρρρ). By linearity of expecta-

tions, E[W (ℓ)
ij ] = E[ZℓiZℓj] − ρjE[Zℓi]Aℓj − ρiE[Zℓj]Aℓi + ρiρjAℓiAℓj. Suppose i = j, then

E[W (ℓ)
ii ] = ρiE[X2

ℓi] − ρ2iA
2
ℓi = ρi(1 − ρi)E[X2

ℓi] + ρ2iE[(Xℓi − Aℓi)
2]. On the other hand, if

i ̸= j, E[W (ℓ)
ij ] ≤ √

ρiρjE[(Xℓi − Aℓi)(Xℓj − Aℓj)] since E[ZℓiZℓj] = E[πiℓπℓj]E[XℓiXℓj] ≤√
E[π2

ℓi]
√

E[π2
ℓj]E[XℓiXℓj] =

√
ρiρjE[XℓiXℓj]. Therefore, we can bound W (ℓ) as the sum of

two matrices and hence E[W (ℓ)] ≤ ρmax(1− ρmin)E[diag(Xℓ,· ⊗Xℓ,·)] + ρmaxE[Hℓ,· ⊗Hℓ,·].

Summing over all rows ℓ ∈ [n] yields E[(Z−Aρρρ)T (Z−Aρρρ)] ≤ ρmax(1−ρmin)diag(E[XTX])+

ρmaxE[HTH ]. To complete the proof, we apply triangle inequality:
∥∥E[(Z −Aρρρ)T (Z −Aρρρ)]

∥∥ ≤
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ρmax(1−ρmin)
∥∥diag(E[XTX])

∥∥+ρmax

∥∥E[HTH ]
∥∥ and since H is zero mean,

∥∥diag(E[XTX])
∥∥ ≤∥∥diag(ATA)

∥∥+ ∥∥diag(E[HTH ])
∥∥.

Lemma G.2 (Lemma H.2 of [Agarwal et al., 2021]). Suppose that X ∈ Rn and P ∈ {0, 1}n

are random vectors. Then for any a ≥ 1, ∥X ⊙ P∥ψa ≤ ∥X∥ψa .

Lemma G.3. Under Assumptions 5.1, 5.2, and 5.3, ∥Zi,· − Ai,·ρ∥ψa ≤ Ka + ĀK̄.

Proof. To begin, write ∥Zi,· −Ai,·ρ∥ψa ≤ ∥(Xi,· −Ai,·)⊙ πi,·∥ψa + ∥Ai,· ⊙ πi,· −Ai,·ρ∥ψa . By

Lemma G.2 and Assumption 5.2, ∥(Xi,·−Ai,·)⊙πi,·∥ψa ≤ ∥(Xi,·−Ai,·)∥ψa = ∥Hi,·∥ψa ≤ Ka.

By the definition of ∥·∥ψa and Assumption 5.1, ∥Ai,·⊙πi,·−Ai,·ρ∥ψa = supu∈Bp
∥∥∥∑p

j=1 ujAij(πij − ρj)
∥∥∥
ψa

= Ā supu∈Bp
∥∥∥∑p

j=1 uj
Aij
Ā
(πij − ρj)

∥∥∥
ψa
. Let vj = uj

Aij
Ā

. Since v ∈ Bp, we have

sup
u∈Bp

∥∥∥∥∥
p∑
j=1

uj
Aij
Ā

(πij − ρj)

∥∥∥∥∥
ψa

≤ sup
v∈Bp

∥∥∥∥∥
p∑
j=1

vj(πij − ρj)

∥∥∥∥∥
ψa

= ∥πi,· − (ρ1, ..., ρp)∥ψa ≤ K̄,

using Assumption 5.3.

Lemma G.4 (Proposition H.1 of [Agarwal et al., 2021]). Let W ∈ Rn×p be a random matrix

whose rows W i,· are independent ψa-random vectors for some a ≥ 1. Then for any τ > 0,

with probability at least 1− 2
n1+τpτ

, ∥W ∥ ≤
∥∥EW TW

∥∥1/2+√(1 + τ)pmaxi∈[n]∥W i,·∥ψa
{
1+(

2 + τ
)
ln(np)

} 1
a√

ln(np).

Proposition G.2. Under Assumptions 5.1, 5.2, and 5.3 P(Ec1) ≤ 2
n11p10

< 2
n10p10

.

Proof. We show that for all τ > 0, with probability 1− 2
n1+τpτ

, ∥Z−Aρ∥ ≤ C
√
n
(
Ā+ κ+Ka

)
+

√
1 + τ

√
p(Ka + ĀK̄){1 + (2 + τ) ln(np)}

1
a

√
ln(np). Setting τ = 10 and simplifying the

bound yields the result. By Lemma G.1, ∥E[(Z −Aρ)T (Z −Aρ)]∥ ≤ maxj∈[p] ∥A·,j∥22 +

∥diag(E[HTH ])∥+∥E[HTH ]∥. We bound these terms as nĀ2, nCKa, and nκ2, respectively,

then plug them and Lemma G.3 into Lemma G.4.

Lemma G.5 (Lemma H.4 of [Agarwal et al., 2021]). Let X1, . . . , Xn be independent random

variables with mean zero. For a ≥ 1, ∥
∑n

i=1Xi∥ψa ≤ C
(∑n

i=1∥Xi∥2ψa
)1/2

.

Lemma G.6. Under Assumptions 5.1, 5.2, and 5.3, ∥Z·,j − ρjA·,j∥ψa ≤ C(Ka + ĀK̄).

Proof. Write ∥Z·,j − ρjA·,j∥ψa = supu∈Sn−1

∥∥uT (Z −Aρρρ
)
ej
∥∥
ψa

= supu∈Sn−1

∥∥∑n
i=1 ui

(
Zi,· −

Ai,·ρρρ
)
ej
∥∥
ψa

. By Lemma G.5, its bound is C supu∈Sn−1

(∑n
i=1 u

2
i

∥∥(Zi,· − Ai,·ρρρ
)
ej
∥∥2
ψa

)1/2 ≤

Cmaxi∈[n]∥(Zi,· − Ai,·ρρρ)ej∥ψa . The conclusion follows from Lemmas G.2 and G.3.

58



Lemma G.7 (Lemma I.7 of [Agarwal et al., 2021]). Let W1, . . . ,Wn be a sequence of ψa-

random variables for some a ≥ 1. For any t ≥ 0, P(
∑n

i=1W
2
i > t) ≤ 2

∑n
i=1 exp

{
−
(

t
n∥Wi∥2ψa

)a/2}
.

Proposition G.3. Under Assumptions 5.1, 5.2, and 5.3, P(Ec2) ≤ 2
n10p10

Proof. Fix j. Write ∥Z·,j − ρjA·,j∥22 =
∑n

i=1W
2
i , where Wi = eTi (Z·,j − ρjA·,j). By Lem-

mas G.2 and G.6, ∥Wi∥ψa ≤ ∥Z·,j − ρjA·,j∥ψa ≤ C(Ka + K̄Ā). By Lemma G.7 and the

union bound, we arrive at the conclusion.

Proposition G.4. Under Assumptions 5.1, 5.2, and 5.3, P(Ec3) ≤ 2
n10p10

.

Proof. The key equality is ∥U kU
T
k (Z·,j − ρjA·,j)∥22 =

∑k
i=1W

2
i , where Wi = uTi (Z·,j −

ρjA·,j). To see that it holds, set v = Z·,j − ρjA·,j. Then ∥U kU
T
k v∥22 = vTU kU

T
kU kU

T
k v =

vTU kU
T
k v = W TW. The rest is analogous to Proposition G.3.

Proposition G.5. Under Assumption 5.3, P(Ec4) ≤ 2
n10p10

.

Proof. Fix δ > 1. Define the event E(j) =
{

1
δ
ρj ≤ ρ̂j ≤ δρj

}
. By the Chernoff bound for bi-

nary variables, P(Ec(j)) ≤ 2 exp
(
− (δ−1)2

2δ2
nρj

)
≤ 2 exp

(
− (δ−1)2

2δ2
nρmin

)
. Hence by De Morgan’s

law and the union bound P(Ec4) = P
({⋂

j∈[p] E(j)
}c)

= P
(⋃

j∈[p] Ec(j)
)
≤ 2p exp

(
− (δ−1)2

2δ2
nρmin

)
.

Solve 2
n10p10

≥ 2
n11p10

= 2p exp
(
− (δ−1)2

2δ2
nρmin

)
for δ.

Proposition G.6. Under Assumption 5.3, P(Ec5) ≤ 2
n10p10

.

Proof. Define the event E(j) = {|ρ̂j − ρj| ≤ t}. By Hoeffding’s inequality for bounded

variables, P(Ec(j)) ≤ 2 exp(−2nt2). By De Morgan’s law and the union bound, P(Ec5) =

P
({⋂

j∈[p] E(j)
}c)

= P
(⋃

j∈[p] Ec(j)
)
≤ 2p exp(−2nt2). To arrive at the desired result, solve

2
n10p10

≥ 2
n11p10

= 2p exp(−2nt2) for t.

H Error-in-variable regression supporting details

We propose a new norm for error-in-variable regression analysis R(γ̂) (Theorem 5.2). Our

norm is essentially an on-average generalization error, and we demonstrate its compatibility

with semiparametric theory (Theorem 5.4). To prove the guarantee, we combine an

analysis of test error (Proposition B.3) with a new theory of implicit data cleaning

(Proposition B.4). The former builds on an analysis of train error (Proposition B.2).
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In the PCR literature, the norm called train error is standard. The norm called

test error is similar in spirit to [Agarwal et al., 2020a]. Our norm R(γ̂) extends these

ideas.

We also propose a new norm for error-in-variable balancing weight analysis R(α̂)

(Theorem 5.3) that is compatible with semiparametric theory (Theorem 5.4). Our definitions

of balancing weight train error (Proposition C.2), test error (Proposition C.3), and

implicit data cleaning (Proposition C.4) norms all appear to be conceptual innovations.

Proof of Proposition 4.2. For i ∈ test, γ̂(Di, Zi,·) = b(Di, Zi,· ρ̂
−1)β̂, which equals

[
DiZi,· ρ̂

−1 (1−Di)Zi,· ρ̂
−1
] β̂treat

β̂untreat

 =
[
DiZi,· (1−Di)Zi,·

] ρ̂−1 β̂treat

ρ̂−1 β̂untreat

.
Both (ρ̂, β̂) are calculated from train, while (Di, Zi,·) and (Dj, Zj,·) are i.n.i.d.

Lemma H.1 (Theorem 4.6.1 of [Vershynin, 2018]). Let U ∈ Rm×r whose rows are inde-

pendent, mean zero, subGaussian, and isotropic with ∥Ui,·∥ψ2 ≤ Ku. Then for any t ≥ 0,

with probability 1− 2e−t
2,

√
m− CK2

u(
√
r + t) ≤ sr(U) ≤ s1(U) ≤

√
m+ CK2

u(
√
r + t).

Proposition H.1 (Verifying row space inclusion). By hypothesis, rank{A(lr)} = r, so it

admits a representation A
(lr)
ij = ⟨ui, vj, ⟩ where ui, vj ∈ Rr. Suppose {ui} are independent,

mean zero, subGaussian, and isotropic with ∥ui∥ψ2 ≤ Ku. If m≫ K4
u · r ln(mp) then with

probability 1−O{(mp)−10}, row{A(lr),train} = row{A(lr),test}.

Proof. Consider A(lr),train. Let U have rows {Ui,·}. By Lemma H.1 with t = ln
1
2 (mp),

sr(U) ≥
√
m − CK2

u{
√
r + ln

1
2 (mp)} ≫ 0. With high probability, sr(U) ≫ 0, implying

that {Ui,·} are full rank: row(U) = Rr. Consider A(lr),test. Let U ′ have rows {U ′
i,·}.

Fix i ∈ test. Since U ′
i,· ∈ Rr = row(U), there exists some λ ∈ Rr such that U ′

i,· =∑r
k=1 λkUk,·. Therefore A(lr),test

ij = ⟨U ′
i,·, V·,j⟩ = ⟨

∑r
k=1 λkUk,·, V·,j⟩ =

∑r
k=1 λk⟨Uk,·, V·,j⟩ =∑r

k=1 λkA
(lr),train
kj . Thus for any i ∈ test, A(lr),test

i,· ∈ row{A(lr),train}. Therefore

row{A(lr),test} ⊂ row{A(lr),train}. Likewise for the other direction.

The results for Ẽ1, Ẽ2, Ẽ3 follow from the results for E . We focus on Ẽ4 and Ẽ5.

Proposition H.2. If Assumptions 5.1, 5.2, 5.3, and 5.4 hold, k = r, and ρmin ≫

C̃
√
r ln

3
2 (np)

(
1√
p
∨ 1√

n
∨∆E

)
, where C̃ := CĀ

(
κ+ K̄ +Ka

)
, then P(Ẽc4) ≤ C

n10p10
.
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Proof. By Lemma A.1, with probability at least 1 − O{1/(np)10}, |ŝr − sr| ≤ ∆. Hence

ŝr ≥ sr −∆. We want to show ∆ = o(sr), i.e. ∆ ≤ cnsr where cn → 0. It suffices to show
∆
sr

→ 0. In such case, ŝr ≥ sr −∆ ≥ sr − cnsr = (1 − cn)sr, i.e. ŝr ≳ sr as desired. We

upper bound ∆ using Lemma A.1 and lower bound sr ≥ C
√

np
r

using Assumption 5.4 to

derive the stated sufficient condition on ρmin.

Lemma H.2. If Assumption 5.5 holds then E[⟨Â(β̂ − β∗), ε⟩|A] ≤ σ̄2k.

Proof. Note that β̂ = Â†Y = Â†{A(lr)β∗ + ε+ ϕ(lr)}. Since ε is conditionally independent

of Â, A(lr), β∗, and ϕ(lr) we have E[⟨Â(β̂ − β∗), ε⟩|A] = E[⟨ÂÂ†ε, ε⟩A]. By properties of

trace algebra, conditional independence of ε from Â, Assumption 5.5, and the fact that

rank(Â) = k,

E[⟨ÂÂ†ε, ε⟩|A] = E
[
trace

(
ÂÂ†εεT

)
| A
]
= trace

(
E
[
ÂÂ† | A

]
E
[
εεT | A

])
≤ σ̄2trace

(
E
[
ÂÂ† | A

])
= σ̄2k.

Lemma H.3 (Lemma A.3 of [Agarwal et al., 2020a]). Let X ∈ Rn be random vector with

independent mean zero subGaussian random coordinates with ∥Xi∥ψ2
≤ K. Let a ∈ Rn be

another random vector that satisfies ∥a∥2 ≤ b almost surely for some constant b ≥ 0. Then

for all t ≥ 0, P
(∣∣∣∑n

i=1 aiXi

∣∣∣ ≥ t
)
≤ 2 exp

(
− ct2

K2b2

)
, where c > 0 is a universal constant.

Lemma H.4 (Lemma A.4 of [Agarwal et al., 2020a]). Let X ∈ Rn be a random vector with

independent mean zero subGaussian coordinates where ∥Xi∥ψ2
≤ K. Let B ∈ Rn×n be a

random matrix satisfying ∥B∥ ≤ a and ∥B∥2Fr ≤ b almost surely for some a, b ≥ 0. Then

for any t ≥ 0, P
(
|XTBX − E[XTBX]| ≥ t

)
≤ 2 · exp

{
− cmin

(
t2

K4b
, t
K2a

)}
.

Proposition H.3. If Theorem 5.1 conditions and Assumption 5.5 hold, P(Ẽc5) ≤ C
n10p10

.

Proof. We show that under Assumptions 5.1 and 5.5, with k = r, the following holds with

probability at least 1 − O{1/(np)10} with respect to randomness in ε: ⟨Â(β̂ − β∗), ε⟩ ≤

Cσ̄2 ln(np)
{
r + ∥ϕ(lr)∥2 + ∥β∗∥1(

√
nĀ+ ∥Â−A∥2,∞)

}
. Simplifying yields the desired

result.
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Recall that β̂ = V̂ kΣ̂
−1
k ÛT

k Y , Â = Û kΣ̂kV̂
T
k , and Y = A(lr)β∗ + ϕ(lr) + ε. Thus,

Âβ̂ = Û kΣ̂kV̂
T
k V̂ kΣ̂

−1
k ÛT

k Y = Û kÛ
T
kA

(lr)β∗ + Û kÛ
T
k ϕ

(lr) + Û kÛ
T
k ε. Therefore, ⟨Â(β̂ −

β∗), ε⟩ = ⟨Û kÛ
T
kA

(lr)β∗, ε⟩+ ⟨Û kÛ
T
k ϕ

(lr), ε⟩+ ⟨Û kÛ
T
k ε, ε⟩ − ⟨Âβ∗, ε⟩.

For the first, second, and fourth terms, we use Lemma H.3. Note that ∥Û kÛ
T
kA

(lr)β∗∥2 ≤

∥A(lr)β∗∥2 ≤ 3
√
nĀ∥β∗∥1 since Û kÛ

T
k is a projection matrix and ∥A(lr)∥2,∞ ≤ 3

√
nĀ due

to Lemma F.4. It follows that P
(
⟨Û kÛ

T
kA

(lr)β∗, ε⟩ ≥ t
)
≤ exp

(
− ct2

nĀ2∥β∗∥21σ̄2

)
. Similarly,

∥Û kÛ
T
k ϕ

(lr)∥2 ≤ ∥ϕ(lr)∥2 since Û kÛ
T
k is a projection matrix. Hence P

(
⟨Û kÛ

T
k ϕ

(lr), ε⟩ ≥ t
)
≤

exp
(
− ct2

∥ϕ(lr)∥22σ̄2

)
. Finally, ∥Âβ∗∥2 ≤

(
∥Â−A∥2,∞+∥A∥2,∞

)
∥β∗∥1. Therefore P

(
⟨Âβ∗, ε⟩ ≥ t

)
≤

exp

(
− ct2

σ̄2(nĀ2+∥Â−A∥22,∞)∥β∗∥21

)
.

For the third term, we use Lemma H.4. Recall that ε is conditionally independent of

Û k, Σ̂k, V̂ k since Â is determined by Z. Hence E
[
⟨Û kÛ

T
k ε, ε⟩|A

]
= E

[
εT Û kÛ

T
k ε|A

]
=

E
[
trace(εεT Û kÛ

T
k )|A

]
= trace(E

[
εεT |A

]
E
[
Û kÛ

T
k |A

]
) ≤ σ̄2trace(E

[
ÛT
k Û k|A

]
) = σ̄2k.

Since Û kÛ
T
k is a projection matrix, ∥Û kÛ

T
k ∥ ≤ 1 and ∥Û kÛ

T
k ∥2Fr = trace(Û kÛ

T
k Û kÛ

T
k ) =

trace(ÛT
k Û k) = k. Using Lemma H.4, it follows that for any t > 0 P

(
⟨Û kÛ

T
k ε, ε⟩ ≥ σ̄2k + t|A

)
≤

exp
{
− cmin

(
t2

kσ̄4 ,
t
σ̄2

)}
. Hence it also holds unconditionally.

Set each probability equal to 1/(np)10, solve for t, then combine terms.

I Error-in-variable balancing weight supporting details

Counterfactual moments. We describe the counterfactual moments for general parameters

and general dictionaries. In this appendix, we consider causal parameters of the form

θ0 = 1
2n

∑
i∈train,test θi, where θi = E[m(Wi,·, γ0)], Wi,· = (Ai,·, Hi,·, πi,·), and we slightly

abuse sample size notation to avoid overloading m. Given a dictionary b : Rp → Rp′ , define

bsignal(Wi,·) = b(Ai,·) and bnoise(Wi,·) = b(Zi,·).

Algorithm I.1 (Counterfactual moment with data cleaning). Given corrupted training

covariates Ztrain ∈ Rn×p, the dictionary b : Rp → Rp′, and the formula m : W × L2 → R:

(i) perform data cleaning on Ztrain to obtain Âtrain ∈ Rn×p; (ii) for i ∈ train calculate

mi,· = m(Wi,·, b
noise) ∈ Rp′; (iii) for i ∈ train, calculate m̂i,· from mi,· by overwriting Zi,·

with Âi,·; (iv) calculate M̂ = 1
n

∑
i∈train m̂i,·.

To specialize this procedure, it suffices to describe m̂i. We provide the explicit expressions
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for m̂i for each leading example in the proof of Proposition I.1 below.

As theoretical devices, we introduce several related objects. First, we define the

counterfactual vectors m̃i,·, m̂i,· ∈ Rp′ for observation i. The former vector uses clean

data, while the latter uses cleaned data. In particular, m̃i,· = m(Wi,·, b
signal), and

m̂i,· = m(Wi,·, b
noise) overwriting Zi,· with Âi,·. We concatenate the vectors m̃i,· as rows in

the matrix M̃ . We concatenate the vectors m̂i,· as rows in the matrix M̂ . We refer to

these objects as the counterfactual matrices. We also use the counterfactual vectors to de-

fine the counterfactual moments M∗, M̂ ∈ Rp′ : M∗ = 1
2n

∑
i∈train,test α0(Wi,·)b{A(lr)

i,· }

and M̂ = 1
n

∑
i∈train m̂i,·. Finally, we introduce notation for the covariance matrices

G∗, Ĝ ∈ Rp′×p′ : G∗ = 1
2n

∑
i∈train,test b{A

(lr)
i,· }T b{A(lr)

i,· } and Ĝ = 1
n
b(Âtrain)T b(Âtrain).

A desirable property is that data cleaning guarantees for the corrupted regressors imply

data cleaning guarantees of the counterfactual moments. We refer to this property as data

cleaning continuity, and verify that it holds for the leading examples.

Assumption I.1 (Data cleaning continuity). There exist C ′
m, C

′′
m < ∞ such that (i)

∥M̂ − M̃∥22,∞ ≤ C ′
m∥Â−A∥22,∞; (ii) maxj∈[p′] |m̃ij| ≤ C ′′

m.

Proposition I.1 (Verifying data cleaning continuity). Suppose Assumption 5.1 holds.

In Example E.1 with the interacted dictionary, C ′
m = 1 and C ′′

m = Ā. In Example E.2

with the interacted dictionary, C ′
m = 1 and C ′′

m = Ā in the numerator and denominator.

In Example E.3 with the identity dictionary, suppose the counterfactual policy is of the

form t : Ai,· 7→ t1 ⊙ Ai,· + t2 where t1, t2 ∈ Rp. Then C ′
m = (∥t1∥max + 1)2 and C ′′

m =

(∥t1∥max+1)Ā+∥t2∥max. In Example E.4 with the interacted quadratic dictionary, C ′
m = 4Ā2

and C ′′
m = 2Ā2.10 In Example E.5 with the partially linear dictionary, C ′

m = 0 and C ′′
m = 1.11

In Example E.6 with the partially linear dictionary, C ′
m = 0 and C ′′

m = 1 in the numerator

and denominator. In Example E.7 with the interacted dictionary, C ′
m = 1 and C ′′

m = Ā.12

Proof. In Example E.1, write mi,· = b(1, Zi,·)− b(0, Zi,·) = {Zi,·, 0}−{0, Zi,·} = (Zi,·,−Zi,·).
10Likewise for any polynomial of Di interacted with Zi,·.
11Recall that, to estimate a weighted balancing weight, we propose estimating an unweighted balancing

weight then applying the weighting. The verification here is for the unweighted balancing weight that will

be weighted.
12Recall that, to estimate a local balancing weight, we propose estimating a global balancing weight then

applying the localization. The verification here is for the global balancing weight that will be localized.
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Hence m̂i,· = (Âi,·,−Âi,·) and m̃i,· = (Ai,·,−Ai,·). Example E.2 is analogous. In Example E.3,

write mi,· = b{t(Zi,·)} − b(Zi,·) = t(Zi,·)− Zi,· = t1 ⊙ Zi,· + t2 − Zi,· = [(t1 − 1
T )⊙ Zi,·] + t2.

Hence m̂i,· = [(t1 − 1
T )⊙ Âi,·] + t2 and m̃i,· = [(t1 − 1

T )⊙Ai,·] + t2. In Example E.4, write

mi,· = ∇db(Di, Zi,·) = ∇d(1, Di, D
2
i , Zi,·, DiZi,·, D

2
iZi,·) = (0, 1, 2Di, 0, Zi,·, 2DiZi,·). Hence

m̂i,· = (0, 1, 2Di, 0, Âi,·, 2DiÂi,·) and m̃i,· = (0, 1, 2Di, 0, Ai,·, 2DiAi,·). In Example E.5, let

b(Di, Zi,·) = {Di, b̃(Zi,·)}. Write mi,· = b(1, Zi,·) − b(0, Zi,·) = {1, b̃(Zi,·)} − {0, b̃(Zi,·)} =

(1, 0, ..., 0). Hence m̂i,· = (1, 0, ..., 0) and m̃i,· = (1, 0, ..., 0). Example E.6 is analogous to

Example E.5. Example E.7 is analogous to Example E.1.

Properties. The error-in-variable balancing weight confers balance and equivalence.

Proposition I.2 (Finite sample balance). For any finite training sample size n, and any

dictionary b, the coefficient η̂ balances the cleaned actual regressors with the corresponding

cleaned counterfactuals in the sense that 1
n

∑
i∈train b(Âi,·)·ω̂i =

1
n

∑
i∈train m̂i,· where ω̂i ∈ R

are balancing weights computed from η̂: for each i ∈ train, ω̂i = b(Âi,·)η̂.

Proof. 1
n

∑
i∈train b(Âi,·)

T b(Âi,·)η̂ = Ĝη̂ = M̂T = 1
n

∑
i∈train(m̂i,·)

T .

In words, η̂ serves to balance actual observations with counterfactual queries.

Proof of Proposition 4.3. By Proposition I.2, 1
n

∑
i∈train b(Di, Âi,·) · ω̂i = 1

n

∑
i∈train m̂i,·.

By Proposition I.1, m̂i,· = (Âi,·,−Âi,·). Notice that b(Di, Âi,·) = {DiÂi,·, (1−Di)Âi,·} and

ω̂i = b(Di, Âi,·)η̂ = Di · ω̂treat
i − (1 − Di)ω̂

untreat
i . Therefore b(Di, Âi,·) · ω̂i = {DiÂi,· ·

ω̂treat
i , (1−Di)Âi,· · (−ω̂untreat

i )}. In summary, 1
n

∑
i∈trainDiÂi,· · ω̂treat

i = 1
n

∑
i∈train Âi,·

and 1
n

∑
i∈train(1−Di)Âi,· · (−ω̂untreat

i ) = 1
n

∑
i∈train(−Âi,·).

A well-known equivalence holds for treatment effects when using OLS with the interacted

dictionary (without data cleaning).13 We generalize it in three ways: (i) for our entire class

of semiparametric and nonparametric estimands, (ii) for any square integrable dictionary,

(iii) for estimation with or without data cleaning. We define, for i ∈ train, γ̃(Di, Zi,·) =

b(D, X̂i,·)β̂ and α̃(Di, Zi,·) = b(D, X̂i,·)η̂. We also define Etrain[·] = 1
m

∑
i∈train[·].

13We thank David Bruns-Smith and Avi Feller for suggesting this connection. See e.g.

[Ben-Michael et al., 2021] for a recent summary, and references therein.
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Proposition I.3 (Equivalence in train). If Assumption J.1 holds and b is square integrable,

then the outcome, balancing weight, and doubly robust estimators coincide on the training set:

Etrain[m(Wi,·, γ̃)] = Etrain[Yiα̃(Di, Zi,·)] = Etrain[m(Wi,·, γ̃) + α̃(Di, Zi,·){Yi − γ̃(Di, Zi,·)}].

The same result holds without data cleaning.

Proof. To prove the second equality, we appeal to the first order condition for η̂: η̂T Ĝ = M̂ .

Multiplying by β̂, we have η̂T Ĝβ̂ = η̂TEtrain[b(D, X̂i,·)
T b(D, X̂i,·)]β̂ = Etrain[α̃(Di, Zi,·)γ̃(Di, Zi,·)]

and M̂β̂ = Etrain[m̂i,·]β̂ = Etrain[m(Wi,·, γ̃)]. In summary, Etrain[α̃(Di, Zi,·)γ̃(Di, Zi,·)] =

Etrain[m(Wi,·, γ̃)] which implies the result. To prove the first equality, we appeal to

the first order condition for β̂: β̂T Ĝ = Etrain[Yib(Di, X̂i,·)]. Multiplying by η̂, we have

Etrain[Yib(Di, X̂i,·)]η̂ = Etrain[Yiα̃(Di, Zi,·)] and, appealing to the previous result, β̂T Ĝη̂ =

Etrain[α̃(Di, Zi,·)γ̃(Di, Zi,·)] = Etrain[m(Wi,·, γ̃)].

However, our estimator involves sample splitting and implicit data cleaning to break

dependence, motivated by our goal of inference after data cleaning.

Proposition I.4 (Non-equivalence in test). If Assumption J.1 holds and b is square

integrable, then the outcome, balancing weight, and doubly robust estimators generically

do not coincide on the test set: Etest[m(Zi,·, γ̂)] ̸= Etest[Yiα̂(Di, Zi,·)] ̸= Etest[m(Zi,·, γ̂) +

α̂(Di, Zi,·){Yi − γ̂(Di, Zi,·)}].

Proof. The first order conditions for (β̂, η̂) hold for train after data cleaning. They do not

hold for test, especially since we do not clean the test covariates.

High probability events. Define the events:

E6 =

{
max
j∈[p]

∣∣∣∣∣ 1n ∑
i∈train

{m̃ij − E[m̃ij]}

∣∣∣∣∣ ≤ C · C ′′
m

√
log(np)

n

}
;

E7 =

{
max
j∈[p]

∣∣∣∣∣ 12n ∑
i∈train,test

{α0(Wi,·)Aij − E[α0(Wi,·)Aij]}

∣∣∣∣∣ ≤ C · ᾱĀ
√

log(np)

n

}
;

E8 =

{
max
j,k∈[p]

∣∣∣∣∣ 1n ∑
i∈train

{AijAik − E[AijAik]}

∣∣∣∣∣ ≤ C · Ā2

√
log(np)

n

}
;

E9 =

{
max
j,k∈[p]

∣∣∣∣∣ 12n ∑
i∈train,test

{AijAik − E[AijAik]}

∣∣∣∣∣ ≤ C · Ā2

√
log(np)

n

}
.
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Lemma I.1. Under Assumption I.1, P(Ec6) ≤ 2
n10p10

. Under Assumption 5.1 and ∥α0∥∞ ≤ ᾱ,

P(Ec7) ≤ 2
n10p10

. Under Assumption 5.1, P(Ec8) ≤ 2
n10p10

and P(Ec9) ≤ 2
n10p10

.

Proof. By Assumption I.1, m̃ij ≤ C ′′
m. By Assumption 5.1, |α0(Wi,·)Aij| ≤ ᾱĀ and

|AijAik| ≤ Ā2. For E6, E7 we appeal to Hoeffding for any j ∈ [p], then take the union

bound. For E8, E9 we appeal to Hoeffding for any j, k ∈ [p], then take the union bound.

Lemma I.2. Suppose Assumptions 5.1, I.1, J.1, and J.2 hold, and ∥α0∥∞ ≤ ᾱ. Then

∥M̂ −M∗∥max|{E6, E7} ≤ ∆M =
√
C ′
m

1√
n
∥Â−A∥2,∞ + C · (C ′′

m + ᾱĀ)
√

ln(np)
n

+ ᾱ ·∆E.

Proof. Write M̂ −M∗ =
∑5

k=1R
(k), where {R(k)} are below. By triangle inequality, it

suffices to bound R(k)
j . Write

{R(1)
j }2 =

{
1

n

∑
i∈train

(m̂ij − m̃ij)

}2

≤ 1

n

∑
i∈train

(m̂ij−m̃ij)
2 ≤ 1

n
∥M̂−M̃∥22,∞ ≤ 1

n
C ′
m∥Â−A∥22,∞,

appealing to Assumption I.1. Write R(2)
j = 1

n

∑
i∈train{m̃ij − E[m̃ij]}, then appeal to E6.

Write R(3)
j = 1

n

∑
i∈train E[m̃ij ]− 1

2n

∑
i∈train,test E[α0(Wi,·)Aij ] = 0 by Riesz representation

and ex ante identical distribution of folds in the random partition (train,test). In

particular, since bsignal
j ∈ L2(W), E[m̃ij] = E[m(Wi,·, b

signal
j )] = E[α0(Wi,·)b

signal
j (Wi,·)] =

E[α0(Wi,·)bj(Ai,·)]. Write −R(4)
j = 1

2n

∑
i∈train,test{α0(Wi,·)Aij−E[α0(Wi,·)Aij ]} then appeal

to E7. Write |R(5)
j | =

∣∣∣ 1
2n

∑
i∈train,test α0(Wi,·)E

(lr)
ij

∣∣∣ ≤ ᾱ ·∆E where α0(Wi,·) ≤ ᾱ.

Lemma I.3. Suppose Assumptions 5.1 holds. Then ∥Ĝ − G∗∥max|{E8, E9} ≤ ∆G where

∆G = (Ā+ ∥Â−A∥2,∞) 1√
n
∥Â−A∥2,∞ + C · Ā2

√
ln(np)
n

+ C · Ā∆E.

Proof. Write Ĝ −G∗ =
∑7

ℓ=1 S
(ℓ), where {S(ℓ)} are below. By triangle inequality, it suf-

fices to bound S
(ℓ)
jk . Write S(1)

jk = 1
n

∑
i∈train Âij(Âik − Aik) ≤ ∥Â∥max · 1

n

∑
i∈train(Âik −

Aik) hence {S(1)
jk }2 ≤ ∥Â∥2max ·

{
1
n

∑
i∈train(Âik − Aik)

}2

≤ ∥Â∥2max · 1
n

∑
i∈train(Âik −

Aik)
2 ≤ ∥Â∥2max

1
n
∥Â −A∥22,∞. Then use ∥Â∥max ≤ ∥Â −A∥max + ∥A∥max. Write S(2)

jk =

1
n

∑
i∈train(Âij − Aij)Aik ≤ Ā · 1

n

∑
i∈train(Âij − Aij). By a similar argument, {S(2)

jk }2 ≤

Ā2 1
n
∥Â − A∥22,∞. Write S(3)

jk = 1
n

∑
i∈train{AijAik − E[AijAik]} then appeal to E8. Write

S
(4)
jk = 1

n

∑
i∈train E[AijAik]−

1
2n

∑
i∈train,test E[AijAik] = 0 by ex ante identical distribution

of folds in the random partition (train,test). Write −S(5)
jk = 1

2n

∑
i∈train,test{AijAik −

E[AijAik]} then appeal to E9. By Assumption 5.1, S(6)
jk = 1

2n

∑
i∈train,testAijE

(lr)
ik ≤ Ā∆E.
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By Assumption 5.1 and Lemma F.4. S(7)
jk = 1

2n

∑
i∈train,testE

(lr)A
(lr)
ik ≤ ∥E(lr)∥max∥A(lr)∥max ≤

3Ā∆E.

Proposition I.5. If the conditions of Proposition C.2 hold, then P(Ẽc5) ≤ C
n10p10

.

Proof. The result follows from Lemmas I.2 and I.3.

J Data cleaning-adjusted confidence intervals details

Riesz representation. We generalize Assumptions 5.9 and 5.10 from the ATE example to

the general case. In doing so, we also generalize the balancing weight to a Riesz representer.

Assumption J.1 (Linearity and mean square continuity). (i) The functional γ 7→ E[m(Wi,·, γ)]

is linear. (ii) There exists Q̄ < ∞ and q̄ ∈ (0, 1] such that for all γ ∈ Γ, E[m(Wi,·, γ)
2] ≤

Q̄ · {E[γ(Wi,·)
2]}q̄.

These restrictions generalize the usual propensity score assumptions; Assumption 5.10 is

a special case of Assumption J.1. Assumption J.1 implies that the balancing weight exists.

Lemma J.1 ([Chernozhukov et al., 2022b]). Suppose Assumption J.1 holds and γ0 ∈ Γ,

which may be imposed in estimation. Then there exists a Riesz representer α0 ∈ L2(W)

such that for all γ ∈ Γ, E[m(Wi,·, γ)] = E[α0(Wi,·)γ(Wi,·)]. There exists a unique minimal

Riesz representer αmin
0 ∈ Γ satisfying this equation. Moreover, denoting by M̄ the operator

norm of γ 7→ E[m(Wi,·, γ)], {E[αmin
0 (Wi,·)

2]} 1
2 = M̄ ≤ Q̄

1
2 <∞.

The balancing weight is a special case of a Riesz representer. Hereafter, we refer to the

Riesz representer as a balancing weight nonetheless, since our estimator α̂ achieves balance

across examples; see Proposition I.2, which generalizes Proposition 4.3. To lighten notation,

we will typically consider the case where Γ = L2(W) and αmin
0 = α0. When we consider the

more general case, as in Example E.4, we will use the richer notation.

We impose that (γ0, α0) do not vary across observations, generalizing familiar distribution

shift assumptions. Assumption 5.9 is a special case of Assumption J.2, which we now state.

Assumption J.2 (Marginal distribution shift). For all observations i ∈ [n], (i) the regression

γ0 does not vary: E[γ0(Wi,·)v(Wi,·)] = E[Yiv(Wi,·)] for all v ∈ L2(W); (ii) the Riesz

representer α0 does not vary: E[α0(Wi,·)u(Wi,·)] = E[m(Wi,·, u)] for all u ∈ L2(W).
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Proposition J.1 (Verifying Assumptions J.1 and J.2). Assumptions J.1 and J.2 hold

under simple and interpretable conditions for the leading examples. Recall that ∥α0∥∞ ≤ ᾱ,

while (Q̄, q̄) are defined in Assumption J.1. In Example E.1, α0(Wi,·) =
Di

ϕ0(Xi,·,Hi,·,πi,·)
−

1−Di
1−ϕ0(Xi,·,Hi,·,πi,·) , where ϕ0(Xi,·, Hi,·, πi,·) := E[Di|Xi,·, Hi,·, πi,·]. Suppose 0 < ϕ ≤ ϕ0(Xi,·, Hi,·, ϕi,·) ≤

ϕ̄ < 1. Then ᾱ = 1
ϕ
+ 1

1−ϕ̄ , Q̄ = 2
ϕ
+ 2

1−ϕ̄ , and q̄ = 1 . We impose that the out-

come regression and treatment propensity score do not vary. In Example E.2, α0(Wi,·) =

Ui
ϕ0(Xi,·,Hi,·,πi,·)

− 1−Ui
1−ϕ0(Xi,·,Hi,·,πi,·) , where ϕ0(Xi,·, Hi,·, πi,·) := E[Ui|Xi,·, Hi,·, πi,·]. Suppose

0 < ϕ ≤ ϕ0(Xi,·, Hi,·, πi,·) ≤ ϕ̄ < 1. Then ᾱ = 1
ϕ
+ 1

1−ϕ̄ , Q̄ = 2
ϕ
+ 2

1−ϕ̄ , and q̄ = 1

. We impose that the outcome regression and instrument propensity score do not vary.

In Example E.3, α0(Wi,·) = ω(Xi,·, Hi,·, πi,·) − 1, where ω(Xi,·, Hi,·, πi,·) =
f{t(Xi,·,Hi,·,πi,·)}
f(Xi,·,Hi,·,πi,·)

.

Suppose ω(Xi,·, Hi,·, πi,·) ≤ ω̄ < ∞. Then ᾱ = ω̄ + 1, Q̄ = 2ω̄ + 2, and q̄ = 1 . We

impose that the outcome regression and covariate density ratio do not vary. In Example E.4,

α0(Wi,·) = −∇d ln f(Di | Xi,·, Hi,·, πi,·). Suppose −∇d ln f(Di | Xi,·, Hi,·, πi,·) ≤ f̄ < ∞.

Then ᾱ = f̄ , Q̄ = f̄(γ̄ + γ̄′), and q̄ = 1/2 for Γ that satisfies a Sobolev condition:

E[{∇dγ(Di, Xi,·, Hi,·, πi,·)}2] ≤ γ̄2 < ∞ and E[{∂2dγ(Di, Xi,·, Hi,·, πi,·)}2] ≤ (γ̄′)2 < ∞. We

impose that the outcome regression and conditional density of goods do not vary. In Ex-

ample E.5, α0(Wi,·) = ℓi
Di−ϕ0(Xi,·,Hi,·,πi,·)

E[{Di−ϕ0(Xi,·,Hi,·,πi,·)}2] , where ϕ0(Xi,·, Hi,·, πi,·) := E[Di|Xi,·, Hi,·, πi,·].

Suppose E[{Di − ϕ0(Xi,·, Hi,·, πi,·)}2] > ϕ and |ℓi| ≤ ℓ̄. Then ᾱ = 2ℓ̄Ā
ϕ

, Q̄ = 4ℓ̄2Ā2

ϕ2
, and q̄ = 1

. We impose that the outcome regression and treatment regression do not vary. In Ex-

ample E.6, α0(Wi,·) = ℓi
Ui−ϕ0(Xi,·,Hi,·,πi,·)

E[{Ui−ϕ0(Xi,·,Hi,·,πi,·)}2] , where ϕ0(Xi,·, Hi,·, πi,·) := E[Ui|Xi,·, Hi,·, πi,·]

. Suppose E[{Di − ϕ0(Xi,·, Hi,·, πi,·)}2] > ϕ and |ℓi| ≤ ℓ̄. Then ᾱ = 2ℓ̄Ā
ϕ

, Q̄ = 4ℓ̄2Ā2

ϕ2
,

and q̄ = 1 . We impose that the outcome regression and instrument regression do not

vary. In Example E.7, α0(Wi,·) = ℓh(Vi)
{

Di
ϕ0(Vi,Xi,·,Hi,·,πi,·)

− 1−Di
1−ϕ0(Vi,Xi,·,Hi,·,πi,·)

}
. Suppose

0 < ϕ ≤ ϕ0(Vi, Xi,·, Hi,·, πi,·) ≤ ϕ̄ < 1 and other regularity conditions hold given in

Lemma J.2 below. Then ᾱh ≤ C · 1
h

(
1
ϕ
+ 1

1−ϕ̄

)
, Q̄h ≤ C · 1

h2

(
2
ϕ
+ 2

1−ϕ̄

)
, q̄ = 1 . We

impose that the outcome regression and treatment propensity score do not vary.

Proof of Proposition J.1. The results follow from the law of iterated expectations and in-

tegration by parts. See [Chernozhukov et al., 2023, Lemmas S3 and S4] for mean square

continuity of Example E.4 and [Chernozhukov et al., 2023, Theorem 2] for the characteriza-

tion of (ᾱh, Q̄h) with localization.
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Nonparametrics. A local functional θlim0 ∈ R is a scalar that takes the form θlim0 =

limh→0 θ
h
0 , where θh0 = 1

n

∑n
i=1 θ

h
i and θhi = E[mh(Wi,·, γ0)] = E[ℓh(Wij)m(Wi,·, γ0)]. Here, ℓh

is a Nadaraya Watson weighting with bandwidth h and Wij is a scalar component of Wi,·.

θlim0 is a nonparametric quantity that we approximate by the sequence {θh0}, incurring the

nonparametric approximation error ∆h = n1/2σ−1|θh0 − θlim0 |. Each θh0 can be analyzed like

θ0 above as long as we keep track of how certain quantities depend on h

Lemma J.2 (Theorem 2 of [Chernozhukov et al., 2023]). If response noise has finite vari-

ance then σ̄2 <∞. Suppose bounded moment and heteroscedasticity conditions hold. Then

for global functionals ξ/σ ≲ σ ≍ M̄ < ∞, ξ, χ ≲ M̄2 ≤ Q̄ < ∞, and ᾱ < ∞. Suppose

bounded moment, heteroscedasticity, density, and derivative conditions hold. Then for local

functionals ξh/σh ≲ h−1/6, σh ≍ M̄h ≍ h−1/2, ξh ≲ h−2/3, χh ≲ h−3/4, ᾱh ≲ h−1, Q̄h ≲ h−2,

and ∆h ≲ n1/2hv+1/2 where v is the order of differentiability of the kernel K.

Equipped with this lemma, we prove validity of the data cleaning-adjusted confidence

interval for nonparametric quantities.

Corollary J.1 (Confidence interval coverage). Suppose the conditions of Corollary 5.3 and

Lemma J.2 hold. Update the rate conditions to be (i) bandwidth regularity: n−1/2h−3/2 →

0 and ∆h → 0; (ii) error-in-variable regression rate: (h−1 + ᾱ′){R(γ̂)}q̄/2 → 0; (iii)

error-in-variable balancing weight rate: σ̄h−1{R(α̂)}1/2 → 0; (iv) product of rates is fast:

h−1/2{nR(γ̂)R(α̂)}1/2 → 0. Then the conclusions of Corollary 5.3 hold, replacing (θ̂, θ0)

with (θ̂h, θlim0 ).

Proof of Corollary J.1. By Lemma J.2, the regularity condition on moments is
{
(κ/σ)3 + ζ2

}
n−1/2 ≲{(

h−1/6
)3

+ (h−3/4)2
}
n−1/2 ≲ h−3/2n−1/2. By Lemma J.2, the first learning rate condition is(

Q̄1/2 + ᾱ/σ + ᾱ′){R(γ̂)}1/2 ≲
(
h−1 + h−1/h−1/2 + ᾱ′){R(γ̂)}1/2 ≲ (h−1 + ᾱ′){R(γ̂)}1/2.

By [Chernozhukov et al., 2023, Lemma S.9], the second learning rate condition is σ̄{R(α̂h)}1/2 ≲

σ̄h−1{R(α̂)}1/2. By Lemma J.2 and [Chernozhukov et al., 2023, Lemma S.9], the third learn-

ing rate condition is {nR(γ̂)R(α̂h)}1/2/σ ≲ {nR(γ̂)R(α̂)}1/2h−1/h−1/2 = h−1/2{nR(γ̂)R(α̂)}1/2.
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K Nonlinear factor model

We denote Rγ = R(γ̂ℓ) and Rα = R(α̂ℓ) to lighten notation. The distinction between n

and m = n
2

is irrelevant in the context of (Rγ,Rα) due to the absolute constant C.

Lemma K.1 ([Agarwal et al., 2021]). Suppose Assumption 5.11 holds for some fixed

H(q, S, CH). Then for any small δ > 0, there exists A(lr) such that r = rank(A(lr)) ≤ C ·δ−q

and ∆E = ∥A−A(lr)∥max ≤ CH · δS, where C may depend on (q, S).

Proof of Corollary 5.4. From Lemma K.1, r ≤ C · δ−q and ∆E ≤ C · δS. The conditions of

Corollary 5.4 imply (σ, σ̄, ᾱ, ᾱ′, Q̄) are irrelevant. We verify simplified rate conditions from

Corollary 5.3: Rγ → 0, Rα → 0,
√
nRγRα → 0. The relevant terms in (Rγ,Rα) simplify

as well. From Theorem 5.2, these are Rγ ≤ Cr3
{

1
n
+ p

n2 +
1
p
+
(
1+ p

n

)
∆2
E+p∆4

E

}
. From The-

orem 5.3, these are Rα ≤ Cr5
{

1
n
+ 1

p
+ p

n2 +
n
p2

+
(
1 + p

n
+ n

p

)
∆2
E + (n+ p)∆4

E + np∆6
E

}
.

Suppose n = pυ with υ ≥ 1. Then Rγ ≤ Cr3
(

1
p
+∆2

E + p∆4
E

)
≤ Cδ−3q

(
1
p
+ δ2S + pδ4S

)
.

The three terms are equalized with δ2S = p−1. Hence Rγ ≤ Cδ−3q 1
p
= Cp

3q
2S

1
p
= Cp

3q
2S

−1. Sim-

ilarly Rα ≤ Cr5
(
n
p2

+ n
p
∆2
E + n∆4

E + np∆6
E

)
≤ Cδ−5q

(
n
p2

+ n
p
δ2S + nδ4S + npδ6S

)
. The

four terms are equalized with δ2S = p−1. Hence Rα ≤ Cδ−5q n
p2

= Cp
5q
2S

n
p2

= Cp
5q
2S

−2n.

To satisfy Rγ ≤ Rα → 0, it suffices that q
S
< 2

5
(2 − υ). To satisfy

√
nRγRα → 0, it

suffices that q
S
< 1

2

(
3
2
− υ
)
. In summary, a sufficient generalized factor model is one in which

q
S
< 2

5
(2− υ) ∧ 1

2

(
3
2
− υ
)

where υ ≤ 3
2
. The latter condition binds for 1 ≤ υ ≤ 3

2
.

If instead n = pυ with υ ≥ 1, then a similar argument arrives at the same condition.

When using a polynomial dictionary, the relevant terms in (Rγ,Rα) are as above,

instead using (r′,∆′
E). Let q′ = dmax · q. Then r′ ≤ C · rdmax ≤ C · δ−qdmax = C · δ−q′ and

∆′
E ≤ CĀdmax · dmax∆E ≤ C ·∆E ≤ C · δS. Hence the proof of Corollary 5.4 remains the

same.

L Simulation and application

Simulation design. We focus on average treatment effect (ATE) with corrupted covariates

(Example E.1). A single observation is a triple (Yi, Di, Zi,·) for outcome, treatment, and

corrupted covariates where Y ∈ R, Di ∈ {0, 1}, and Zi,· ∈ Rp are generated as follows.
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First, we generate signal from a factor model. Sample U ∼ N (0, In×r) and V ∼

N (0, Ip×r). Then set X = UV T . By construction,

E[Xij] = E

[
r∑
s=1

UisVsj

]
=

r∑
s=1

E[Uis]E[Vsj] = 0

and V[Xij] = V[
∑r

s=1 UisVsj] =
∑r

s=1V[Uis]V[Vsj] = r.

Draw response noise as εi
i.i.d.∼ N (0, 1). Define the vector β ∈ Rp by βj = j−2. Then

set Di ∼ Bernoulli{Λ(0.25XTβ)} and Yi = 2.2Di + 1.2Xi,·β + DiXi1 + εi where Λ(t) =

(0.95− 0.05) exp(t)
1+exp(t)

+ 0.05 is the truncated logistic function. The ATE is θ0 = 2.2.

We observe the corrupted covariate Zi,· = [Xi,· +Hi,·]⊙ πi,·. Hij
i.i.d.∼ FH is drawn i.i.d.

with mean zero and variance σ2
H . πij is 1 with probability ρ and NA with probability 1− ρ.

We consider different choices of the measurement error distribution FH to corresponding to

classical measurement error, discretization, and differential privacy. In summary, the three

data corruption parameters are (FH , σH , ρ). The remaining design parameters are (n, p, r)

corresponding to the sample size, dimension of covariates, and rank of the signal.

For classical measurement error, FH = N (0, σ2
H). For discretization, we generate

Zij = sign(Xij) · Poisson(|Xij|) and implicitly define FH by Hij = Zij − Xij. Note

that E[Zij|Xij] = sign(Xij)E[Poisson(|Xij|)|Xij] = Xij as desired. Below, we show that

σ2
H = V[Hij] = 1.7 in this construction. For differential privacy, FH = Laplace(0, σH√

2
).

Proposition L.1 (Discretization variance). Given some random variable X, define P =

Poisson(|X|), Z = sign(X) · P , and H = Z −X. Then E[H] = 0 and V[H] = E[|X|].

Proof. To begin, write E[Z|X] = sign(X) · E[P |X] = X. By the law of total variance,

V[H] = E[V[H|X]] + V[E[H|X]]. In the latter term, E[H|X] = E[Z − X|X] = 0. In the

former term, V[H|X] = V[Z|X] = E[Z2|X]− {E[Z|X]}2. Moreover, E[Z2|X] = E[P 2|X] =

V[P |X] + {E[P |X]}2 = |X|+X2. In summary, V[H|X] = |X|.

Robustness to data dimensions. In the main text, each sample from the simulated

data generating process produces a matrix of covariates X ∈ R100×100 with rank r = 5.

How robust is our end-to-end procedure across realistic dimensions of economic data? We

consider the following variations: X ∈ R50×200, R100×100, R200×50, R500×20, and R1000×10.

For each choice of (n, p), we set the rank r = {min(n, p)}1/3. Across data dimensions, we
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introduce measurement error with the fixed noise-to-signal ratio of 20%. We consider the

oracle tuning of the PCA hyperparameter k = r.

Meas. Err. n p ATE SE 80% CI 95% CI

20% 50 200 2.21 0.56 0.82 0.96

20% 100 100 2.21 0.35 0.82 0.95

20% 200 50 2.22 0.21 0.81 0.95

20% 500 20 2.23 0.12 0.78 0.94

20% 1000 10 2.23 0.08 0.76 0.93

20% 722 30 2.26 0.12 0.78 0.92

Table 1: Our approach adapts to data shape

Table 1 quantifies coverage performance.

Different rows correspond to different data

dimensions. We record the average point

estimates, which are close to θ0 = 2.2. Next,

we record the average standard errors, which

adaptively decrease in length for larger sam-

ple sizes. These confidence intervals are the

correct length, since coverage is close to the nominal level.

We repeat this exercise for the simulated data generating process with X ∈ R722×30 and

rank r = 5. Table 1 confirms that our procedure attains nearly nominal coverage.

Can data corruption flip signs? In the main text, we show that for the simulated

data generating process with X ∈ R100×100 and rank r = 5, OLS performs well with clean

data and performs poorly with corrupted data. We investigate two follow-up questions.

First, can data corruption flip the sign of OLS estimates, i.e. can it lead to negative

point estimates when the average treatment effect is θ0 = 2.2 > 0? Second, can can data

corruption flip the sign of OLS and 2SLS estimates in scenarios more similar to our real

world example?

We find that data corruption can flip the sign of OLS estimates some of the time. In

particular, measurement error with a 20% noise-to-signal ratio is enough to flip the sign

roughly one quarter of the time. We repeat this exercise for the simulated data generating

process with X ∈ R722×30 and rank r = 5. Flipping signs requires not only 20% measurement

error but also 10% missingness. A similar fraction of OLS estimates have flipped signs.

Finally, we conduct a semi-synthetic sign flipping exercise. We consider the covariates of

[Autor et al., 2013] at the commuting zone level. Rather than a synthetic ATE, the estimand

is the actual effect of import competition on manufacturing employment in a partially

linear instrumental variable model. Flipping signs requires not only 20% measurement error

but also 20% missingness. In this thought experiment, we take the reported effect from

[Autor et al., 2013] as the ground truth, we take the data set from [Autor et al., 2013] as

clean data, and we generate synthetic measurement error and missingness.
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Data Meas. Err. Miss. Val. Sign Flip

100× 100 20% 0% 27%

722× 30 20% 10% 22%

Census 20% 20% 9%

Table 2: Data corruption can flip signs

We summarize the results of these sign

flipping exercises in Table 2. The rows cor-

respond to (i) synthetic data with X ∈

R100×100; (ii) synthetic data with X ∈

R722×30; and (iii) semi-synthetic data from

[Autor et al., 2013]. We interpret the OLS and TSLS results as motivation for data cleaning

before data analysis. Our procedure may be viewed as an extension of OLS and TSLS with

simple data cleaning that we subsequently account for in our confidence intervals.

Empirical application. The variable definitions follow [Autor et al., 2013]. In the

authors’ original specification [Autor et al., 2013, Table 3, column 6], Xi,· ∈ R14 consists of: a

constant, an indicator for the 2000-2007 period, percentage of employment in manufacturing,

percentage of college educated population, percentage of foreign-born population, percentage

of employment among women, percentage of employment in routine occupations, average

offshorability index of occupations, and Census division dummies.

In our augmented specification, Xi,· ∈ R30 consists of variables from the original

specification as well as additional variables in [Autor et al., 2013, Appendix Table 2]. These

include percentages of the working age population: employed in manufacturing, employed in

non-manufacturing, unemployed, not in the labor force, receiving disability benefits; average

log weekly wages: manufacturing, non-manufactuing; average benefits per capita: individual

transfers, retirement, disability, medical, federal income assistance, unemployment, TAA;

and average household income per working age adult: total, wage and salary.

Figure 6 provides analogous results to Figure 5, where now we center and scale the

covariates Xi,· ∈ R30 before conducting the exercise. We arrive at similar conclusions.
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(a) Measurement error (b) Missing values

(c) Discretization (d) Differential privacy (calibrated)

Figure 6: Standardizing covariates before synthetic corruption

M Formalizing privacy

Proof of Proposition 6.1. Fix the commuting zone i ∈ [n]. We refer to the construction

of the summary statistic Xij = fj(M
(i)) = 1

Li

∑Li
ℓ=1M

(i)
ℓj as the j-th query fj about

M (i), where j ∈ [p]. To ensure privacy level ϵj for query fj, a possible mechanism is,

according to [Dwork et al., 2006, Proposition 3.3], Zij = Xij +Hij, where Xij = fj(M
(i))

and Hij
i.i.d.∼ Laplace(S(fj)/ϵj). S(fj) is the sensitivity of the query, to which we return

below. If no individual appears in two commuting zones, the Bureau can achieve privacy

level ϵ while publishing all j ∈ [p] variables for this commuting zone by setting ϵj = ϵ/p.

We wish to characterize the resulting subexponential parameters. They are, by in-

dependence of the Laplacians, Ka = ∥Hi,·∥ψa = maxj∈[p] ∥Hij∥ψa = maxj
√
2 · S(fj)/ϵj =

√
2/ϵ · pmaxj S(fj) and κ2 = ∥E[HT

i,·Hi,·]∥op = maxij V(Hij) = 2maxj S(fj)
2/ϵ2j = 2/ϵ2 ·

p2maxj S(fj)
2. What remains is to define and characterize the the sensitivity S(fj). The

sensitivity of the query fj is the most that the query may vary if one individual in the

microdata were replaced. Formally, maxM (i),M (i′) |fj(M (i))−fj(M (i′))| ≤ S(fj) where M (i)

and M (i′) are two possible data sets of Li individuals that differ in one individual.
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In what follows, we suppress indexing by i to lighten notation. By hypothesis, each

entry of microdata is bounded: |Mℓj| ≤ Ā. This fact, together with the fact that the

query fj is a sample mean, provides a bound on the sensitivity S(fj). To begin, write

fj(M) = 1
L

{∑L
ℓ=1Mℓj

}
= 1

L

{∑L−1
ℓ=1 Mℓj +MℓL

}
. Therefore without loss of generality

fj(M) − fj(M
′) = 1

L
(MℓL − M ′

ℓL) and hence S(fj) = maxM ,M ′ |fj(M) − fj(M
′)| =

maxM ,M ′
∣∣ 1
L
(MℓL −M ′

ℓL)
∣∣ ≤ 2Ā

L
. Lemma M.1 ensures that privacy is preserved.

Lemma M.1. Suppose the conditions of Proposition 6.1 hold. If Zi,· = Xi,· +Hi,· confers ϵ

differential privacy, then X̂i,· remains ϵ differentially private.

Proof. Extending the notation from the previous proof, let Zi,· = M(M (i)) = Xi,· +Hi,·

and Zi′,· = M(M (i′)) = Xi′,· +Hi,·. Recall that X̂i,· is a function of Zi,· and {Zj,·}j ̸=i, i.e.

X̂i,· = CLEAN[Zi,·; {Zj,·}j ̸=i]. Analogously, X̂i′,· = CLEAN[Zi′,·; {Zj,·}j ̸=i].

By hypothesis, for any event E,
PHi,· (Zi,·∈E)

PHi,· (Zi′,·∈E)
≤ eϵ where the subscript emphasizes the

source of randomness. We wish to show that, for any event F ,
PHi,·,{Hj,·}j ̸=i (X̂i,·∈F )

PHi,·,{Hj,·}j ̸=i (X̂i′,·∈F )
≤ eϵ. Fix

F and define G := {z ∈ R : CLEAN[z; {Zj,·}j ̸=i] ∈ F}. Then

PHi,·,{Hj,·}j ̸=i(X̂i,· ∈ F ) = PHi,·,{Hj,·}j ̸=i(CLEAN[Zi,·; {Zj,·}j ̸=i] ∈ F )

= PHi,·,{Hj,·}j ̸=i(Zi,· ∈ G) = E{Hj,·}j ̸=i [EHi,· [1(Zi,· ∈ G)|{Hj,·}j ̸=i]].

Moreover, EHi,· [1(Zi,· ∈ G)|{Hj,·}j ̸=i] = PHi,·(Zi,· ∈ G) ≤ eϵ · PHi,·(Zi′,· ∈ G) = eϵ ·

EHi,· [1(Zi′,· ∈ G)|{Hj,·}j ̸=i]. Reversing the steps above yields the conclusion.

Lemma M.2 ([Bun and Steinke, 2016]). If M is differentially private with parameter ϵ,

then it is zero concentrated differentially private with parameter ρ = ϵ2/2.

The Bureau’s global privacy loss budget for people, in terms of zero concentrated differen-

tial privacy, is 2.56 in 2020 Census redistricting data (P.L 94-171) [Abowd et al., 2022]. Of

this budget, 447/4, 099 is for counties. We use these numbers to calibrate a realistic privacy

budget of ρ = 2.56 · 447/4, 099 for a hypothetical data release concerning commuting zones.

Lemma M.2 demonstrates that a sufficient degree of differential privacy is ϵ = (2ρ)1/2.
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