PIER Working Paper 99-003

“Cigarette Money”

by

Kenneth Burdett, Alberto Trejos and Randall Wright
Cigarette Money*

Kenneth Burdett Alberto Trejos Randall Wright

July 13, 1998

Abstract

We study the circumstances under which commodities emerge endogenously as media of exchange – the way cigarettes apparently did, for example, in POW camps – both when there is fiat money available and when there is not. We characterize how specialization, the degree of trading frictions, intrinsic properties of commodities, and the amount of fiat money available determine whether a commodity serves as money and its exchange value. In some equilibria, the exchange value of commodity money is pinned down by its consumption value; in others, it is not. The value of fiat money may or may not be pinned down by that of commodity money, depending on circumstances. We also allow commodities to come in heterogeneous qualities and discuss the implications for Gresham’s Law.

*Burdett: Department of Economics, University of Essex (burdk@essex.ac.uk); Trejos: Department of Economics, Northwestern University (ajt623@nwu.edu); Wright: Department of Economics, University of Pennsylvania (rwright@econ.sas.upenn.edu).
1 Introduction

In this paper we study the circumstances under which certain commodities emerge endogenously as media of exchange, the way cigarettes did in prisoner-of-war camps, for example, as described by Radford (1945). Radford’s POW camp is an ideal laboratory in which to study the trading process and commodity money, for several reasons. First, the POW economy was relatively uncomplicated, with the central focus on the exchange process: “There can be little production; ... the emphasis lies in exchange and the media of exchange” (p.189). Second, trade was of considerable importance to the prisoner: “through his economic activity, the exchange of goods and services, his standard of material comfort is considerably enhanced. And this is a serious matter to the prisoner: he is not ‘playing at shops’” (p.189). Third, it is clear that cigarettes did serve as money: “Between individuals there was active trading in all consumer goods and in some services. Most trading was for food against cigarettes or other food stuffs, but cigarettes rose from the status of a normal commodity to that of currency. ... With this development everyone, including non-smokers, was willing to sell for cigarettes, using them to buy at another time and place. Cigarettes became the normal currency, though, of course, barter was never extinguished.” (pp.190-191).

Moreover, the use of commodities like cigarettes as money is not exclusive to POW camps. Another example is given by Friedman’s (1992, pp.12-13) discussion of the situation in post-war Germany:

After World War II the Allied occupational authorities exercised sufficiently rigid control over monetary matters, in the course of trying to enforce price and wage controls, that it was difficult to use foreign currency. Nonetheless, the pressure for a substitute currency was so great that cigarettes and cognac emerged as substitute currencies and attained an economic value far in excess of
their value purely as goods to be consumed. ... Foreigners often expressed surprise that Germans were so addicted to American cigarettes that they would pay a fantastic price for them. The usual reply was ‘Those aren’t for smoking; they’re for trading’.

Our objective is to develop a model that captures the phenomena described above, to help us understand when some individuals decide cigarettes are for trading rather than smoking, and hopefully to generate some insight into exchange institutions more generally. We proceed using a search-based model of the trading process because this allows one to endogenously determine the equilibrium pattern of exchange and, hence, to determine which objects are used as money. The model includes general goods that everyone consumes (cigarettes) as well as specialized goods that only certain individuals consume but that generate a lot of utility for those individuals (Brits love tea while the French enjoy coffee). Specialization generates gains from trade, but it may be hard to find someone who has a special good you want and also wants what you have. This double coincidence of wants problem leads to a natural role for money, and some individuals may stop consuming and start trading generally desired goods. We will show how the extent to which this happens depends on things like the nature of the trading process, the extent of the double coincidence problem, and the properties of general and special goods. We also show how it depends on the presence of fiat currency that may also be used as a medium of exchange.2

The paper differs from previous analyses of commodity money that have also used the search-theoretic framework in several ways, all motivated by the

1Moreover, we argue below that the random search assumption is not only a convenient abstraction, but also a reasonably accurate description of the actual trading process in situations like a POW camp.

2Radford reports that there was some fiat money (RMk.s) in the camp, but it “had no circulation save for gambling debts” (p.190). However, as we discuss further below, he also reports that the POW camp experimented with introducing its own paper currency.
issues at hand concerning cigarette money. Most significantly, in the present model the key economic decision facing an agent is whether to consume a general good now or, alternatively, store it in an attempt to trade for a preferred special good later. By contrast, in the model in Kiyotaki and Wright (1989) and its various extensions, an agent always consumes any good that he desires once he gets it, and his only decision is whether to trade one good that he does not desire for another good that he does not desire in an attempt to acquire a desired good more efficiently. There is no possibility that agents stop consuming a good. Here the central issue is to determine when people stop smoking cigarettes, either partially or completely, and begin to trade them. Another difference is that in this model commodities generate utility only when they are consumed, while in models like Kiyotaki and Wright (1989), commodities generate utility while in storage; that is, in the present model commodities get "used up" by consumption, like cigarettes, while in previous models they generate utility or disutility without depreciating at all.\footnote{Even ignoring gold and silver, there are of course many other cases of consumption goods serving as money, including salt in India, pigs in New Guinea, and drugs in modern prisons (see Neale 1975, for example). The model here is meant to be applicable to commodity money in general, but we think that it helps focus the analysis by making assumptions that seem appropriate for, and framing much of the discussion in terms of, cigarette money in particular.}

The rest of the paper and some of our results can be summarized as follows. We begin in Section 2 by describing a simple version of the model, where there is no fiat money, and where we make the assumption that all consumption goods are indivisible so that we can determine when general goods begin to circulate as money without having to determine the terms of trade. We show that there is always a unique equilibrium where, depending on parameters, either no agents, some agents, or all agents stop consuming the generally desired consumption good and start using it as money. As
we show, relevant parameters include the degree to which goods and tastes are specialized, the relative supply of general and special goods and their intrinsic properties, the rate of time preference, the rate of depreciation, and the nature of the trading frictions in the economy.

In Section 3 we extend the model to allow divisible consumption goods and let agents to bargain over the terms of trade. The basic insights of the simpler version go through, plus we have two other main results. First, as long as some general goods are used for consumption purposes their value in exchange will be tied down by their value in consumption; however, if parameter values are such the these goods are never consumed, but used only as money, they will trade at a premium over their consumption value, consistent with Friedman’s observation that the goods used as money in post-war Germany attained an exchange value “far in excess of their value purely as goods to be consumed.” Second, the economy can display some features, such as multiple equilibrium prices, reminiscent of models with intrinsically valueless fiat money even though the general goods in our model do have intrinsic value as commodities.

In Section 4 we incorporate genuine fiat currency. As long as we do not introduce too much fiat money we find that it does not affect the exchange process at all: each unit of fiat currency simply crowds out a unit of commodity money, and the economy proceeds as before except for a one-time welfare gain due to the fact that someone can now consume the commodities that were previously circulating as money. However, if we introduce too much fiat money we can drive commodity money from circulation completely and this will have real effects on the exchange process. One way to interpret this is that an endogenous means of payment emerges from the private sector if and only if fiat money is not provided in sufficient supply by the public sector. Moreover, we find that the introduction of fiat money introduces an additional possibility of multiple equilibria, in the sense that even when
the exchange value of commodity money is pinned down by its consumption value there can be more than one equilibrium value of fiat money.

In Section 5 we further extend the model to allow the general commodity to come in heterogenous qualities, in an attempt to capture some of Radford’s observations about good and bad cigarettes in the POW camp. In particular, we compare the implications of our model with those of Gresham’s Law, and perhaps surprisingly find that whether bad cigarettes end up circulating as money while good cigarettes are consumed, or vice-versa, actually depends on parameter values in interesting ways. Intuitively, while good cigarettes are better for smoking they are also better for trading, given that relative prices are endogenous and reflect the intrinsic properties of the different commodities. We also analyze a version of the model where private information implies that relative prices do not reflect true intrinsic differences in quality, and show that, under these assumptions, good money is necessarily driven out of circulation before bad, in conformance to the predictions of Gresham.

2 The Basic Model

Time is continuous. The economy is populated by a continuum of agents who act as if the horizon is infinite (or is at least random) and discount at rate \(r > 0 \). There are many goods, all of which are assumed to be costlessly storable and for now indivisible. One of them is called the general good, to be thought of as cigarettes, and the others are called special goods. All agents derive utility \(u_g \) from consuming one unit of the general good. Every agent derives utility \(u_s \) from consuming one unit of a particular type of special good and can not consume other special goods. We assume \(u_s > u_g \). General goods are subject to depreciation, while specialized goods are not, but this is purely for simplicity. Thus, according to a Poisson process with parameter \(d \), a general good spoils, or simply disappears. New goods enter the economy in
the following way: after an agent consumes a general good, or after a general good depreciates, he always produces a special good other than the one that he likes to consume; but after he consumes his special good, he produces a special good with probability \(\sigma \) and a general good with probability \(1 - \sigma \). Agents can also freely dispose of inventories whenever they like, but they do not receive a new good if they do.\(^4\)

There are gains from trade due to specialized tastes and goods. Trade here does not occur through a centralized market, however, but between individuals. We assume that agents meet bilaterally according to an anonymous random matching process, and a pair trades if and only if this makes both agents strictly better off. Let the Poisson arrival rate of potential trading partners be denoted \(\alpha \). On meeting someone with a special good, let \(x \leq 1 \) be the probability (common to everyone) that his special good is the type you desire. Given this event, and given that you also have a special good, let \(y < 1 \) be the conditional probability that your special good is also the type he desires. Notice that \(y \) measures the extent of the double coincidence problem with direct barter and it is this, rather then random matching \textit{per se}, that delivers a potential role for a medium of exchange; that is, we can assume that agents always know where to find the sellers of the good they

\(^4\)This way of modeling production is meant to capture, more or less, the way the endowments of various objects arrived in a POW camp. As Radford (1945) reports, “Our supplies consisted of rations provided by the detaining power and (principally) the contents of Red Cross food parcels – tinned milk, jam, biscuits, bully, chocolate, sugar, etc., and cigarettes. . . . Private parcels of clothing, toilet requisites and cigarettes were also received” (p.190). We tried various other assumptions concerning exactly how general and special goods arrive, such as allowing either type to be produced at random after a general good is consumed (as well as after a special good is consumed), and the results were basically the same. We have not tried to endogenize the decision to produce general or special goods, since this was presumably not under the control of the prisoners; but note that the \textit{stocks} of general and special goods in the economy are still endogenous here via the decision to consume or store general goods.
desire (which amounts to setting \(x = 1 \)), but as long as they cannot be sure of having goods desired by these sellers (which means \(y < 1 \)) there will still be a role for a medium of exchange.\(^5\)

It is always rational for an agent to trade whatever he has for the special good that he desires for consumption and to consume it immediately. Also, in the symmetric equilibria considered here, an agent will never accept a special good other than the one he desires for consumption (see Kiyotaki and Wright [1991, 1993] for details). It is always rational to trade a special good for the general good since, at the very least, you can consume it and produce another special good costlessly. What needs to be decided is whether to consume the general good when one gets it, or store it to facilitate a future trade for one's favorite special good. To be precise, we will say that a fraction \(\theta \) of the population choose to \textit{always} consume the general good when they get it, while the remaining \(1 - \theta \) choose to \textit{never} consume it. We can also say that each agent makes the choice of consuming or storing the general good each time he gets it; this amounts to exactly the same thing because, in equilibrium, \(\theta = 1 \) when agents prefer consuming the general good, \(\theta = 0 \) when they prefer storing the general good, and \(\theta \in (0, 1) \) only when they are indifferent.

Given that \(\theta \) individuals consume the general good while \(1 - \theta \) store

\(^5\)According to Radford (1945), the actual process of exchange depended on circumstances. In the early stages, or in temporary camps, “people started by wandering though the bungalows calling their offers – ‘cheese for seven’ (cigarettes);” this seems about as close to a random search environment as one could imagine. In the permanent camps, eventually a Exchange and Mart board went up where notices could be posted listing “name,” “room number,” “wanted” and “offered;” although this is slightly more organized, it was clearly still random when someone would see your notice and whether he might have what you wanted and want what you offered. Later, in some permanent camps, public shops were set up where you could leave your goods until they were sold for cigarettes; while this is even more organized, for the same reasons we still think that it is reasonable to model things using a search framework.
it, and given the probability of producing the general good and its rate of depreciation, let G and $S = 1 - G$ denote the steady state proportions of the population holding general and special goods. The steady state condition (derived in the Appendix) is:

$$(1 - S)[d + \alpha x S \sigma] = [\alpha(1 - S)x + \alpha Sxy(1 - \sigma)](S - \theta).$$ \hspace{1cm} (1)

For any θ this implies a unique S. Alternatively, we can solve for the value of θ that generates a particular S,

$$\theta = \frac{Q(S)}{1 - S + y(1 - \sigma)S},$$ \hspace{1cm} (2)

where $Q(S) = -(1 - \sigma)(1 - y)S^2 + (1 - \sigma + d/\alpha x)S - d/\alpha x$. It is easy to see that θ is strictly increasing in S, that $\theta = 1$ if $S = 1$, and that $\theta = 0$ if $S = \hat{S}$, where \hat{S} solves $Q(\hat{S}) = 0$ and satisfies $\hat{S} \in [0,1)$ with $\hat{S} = 0$ if and only if $d = 0$. Hence, for any $S \in [\hat{S}, 1]$ we can find a unique fraction of general good consumers $\theta \in [0, 1]$ such that θ implies S will be the fraction of special good holders in steady state.

We now describe steady state payoffs. Let V_s and V_g be the value functions of agents with special goods and general goods in inventory. Consider first an agent with a special good. In principle, there are two types of such agents: those who always consume general goods and those who always store general goods. When someone who consumes the general good acquires it he consumes and produces a special good for a total payoff of $u_g + V_s$. When he acquires the special good he desires, he consumes, and with probability σ a new special good is produced and stored, while with probability $1 - \sigma$ a general good is produced and consumed, followed by a special good; hence, the payoff to acquiring the special good is $u_s + (1 - \sigma)u_g + V_g$. Consider next someone with a special good who never consumes the general good. When he gets the general good his payoff is simply V_g. When he gets the type of special good he desires, he consumes and stores whatever he produces, for a total payoff of $u_s + \sigma V_s + (1 - \sigma)V_g$.

Based on these observations, Bellman’s equation in flow terms for a special good holder is

\[rV_s = \alpha Gx[\theta u_g + (1 - \theta)(V_g - V_s)] \]
\[+ \alpha Sxy[u_s + (1 - \sigma)\theta u_g + (1 - \sigma)(1 - \theta)(V_g - V_s)], \] \hspace{1cm} (3)

where one should interpret \(\theta \) here as a dummy variable indicating that the agent chooses to consume or store the general good in order to maximize expected lifetime utility. Intuitively, (3) sets the flow return \(rV_s \) equal to the sum of two terms. The first term is the rate at which a special good holder meets a general good holder, \(\alpha G \), times the probability the latter desires the special good he holds, \(x \), times his gain from trade, which is the net payoff from consuming the general good with probability \(\theta \) and storing it with probability \(1 - \theta \). The second term is the rate at which he meets a special good holder, \(\alpha S \), times the probability they desire each other’s special goods, \(xy \), times his gain from trade, which in this case is the utility of consuming the special good, plus the probability he produces the general good, \(1 - \sigma \), times the net payoff to consuming it with probability \(\theta \) and storing it with probability \(1 - \theta \).

Now consider an agent with a general good. Bellman’s equation is given by

\[rV_g = \alpha Sx[u_s + \sigma (V_s - V_g)] + d (V_s - V_g). \] \hspace{1cm} (4)

This sets the flow return \(rV_g \) equal to the rate at which he meets a special good holder with the desired special good, \(\alpha Sx \), times the gain from trade, plus the rate at which the general good depreciates, \(d \), times the capital loss \(V_s - V_g \).

\[^6 \text{One can also write the term in square brackets in (4) as } u_s + \sigma (V_s - V_g) + (1 - \sigma)\theta(u_g + V_s - V_g), \text{ to indicate that the agent chooses to consume or store a general good after it is produced, but here we have used the fact that any agent with a general good in inventory has already chosen to be a general good non-consumer and so } \theta = 0. \text{ This is merely a} \]
The net gain from consuming the general good and storing the special
good that one produces, rather than storing the general good, is given by
\[\Delta = u_g + V_s - V_g. \]
Then individual optimization with respect to \(\theta \) entails the
best response condition:

\[
\begin{align*}
\Delta > 0 & \Rightarrow \theta = 1; \\
\Delta < 0 & \Rightarrow \theta = 0; \\
\Delta = 0 & \Rightarrow \theta \in [0, 1].
\end{align*}
\]

Using (3) and (4), one can solve explicitly for

\[
\Delta = A[1 - S + \frac{r}{\alpha x} + (1 - \sigma)S y + \sigma + \frac{d}{\alpha x}]u_g - AS(1 - y)u_s,
\]

where \(A \) is a positive constant.

A **steady state equilibrium** may now be defined as a list \((S, V_s, V_g, \theta, \Delta)\)
satisfying (2)-(6), subject to \(V_g \geq 0, V_s \geq 0, 0 \leq S \leq 1, 0 \leq \theta \leq 1 \). In practice,
we simply look for pairs \((S, \theta)\) satisfying the steady state condition and
the best response condition. There are three types of possible outcomes,
depending on whether the general good is always consumed \((\theta = 1)\), sometimes
consumed \((0 < \theta < 1)\), or never consumed \((\theta = 0)\). If \(\theta < 1 \) the general good
circulates as a commodity money (indeed, they are a universally acceptable
commodity money, since all agents accept cigarettes, even though some may
accept them for smoking while others accept them for retraining).

The following Proposition establishes when each type of equilibrium ex-
ists. To reduce notation, from now on we let \(\rho = r/\alpha x \) and \(\delta = d/\alpha x \).

notational issue and has no effect on any results. The way we solve the agent’s problem
is by conjecturing a strategy and then checking that there is no profitable deviation, and
since we only look at steady state equilibria, it does not matter whether we check, for
example, that a general good non-consumer deviates by consuming a general good once,
or deviates by always consuming general goods.
Proposition 1 There exists \(y_1 < 1 \) and \(y_2 < y_1 \) such that: (i) if \(y \geq y_1 \) then \(\theta = 1 \) and \(S = 1 \); (ii) if \(y \in (y_2, y_1) \) then \(\theta \in (0, 1) \) and \(S \in (\hat{S}, 1) \); and (iii) if \(y \leq y_2 \) then \(\theta = 0 \) and \(S = \hat{S} \). These are all of the (steady state) equilibria.

Proof: First consider an equilibrium with \(\theta = 1 \) and \(S = 1 \), which requires \(\Delta \geq 0 \). Setting \(\theta = 1 \) and \(S = 1 \) in (6), it is immediate that \(\Delta \geq 0 \) if and only if \(y \geq y_1 \), where
\[
y_1 = \frac{u_s - (\rho + \sigma + \delta)u_g}{u_s + (1 - \sigma)u_g}.
\]
We conclude that an equilibrium with \(\theta = 1 \) and \(S = 1 \) exists if and only if \(y \geq y_1 \).

Next consider the case where \(0 < \theta < 1 \). We need to find \((S, \theta) \in (0, 1)^2 \) such that the steady state condition is satisfied and \(\Delta = 0 \). The method we pursue is to find a value of \(S \), call it \(S_\Delta \), for which \(\Delta = 0 \), and then identify conditions under which \(S_\Delta \in (\hat{S}, 1) \), as this is equivalent to \((S, \theta) \in (0, 1)^2 \) by virtue of (2). Using (6) we have
\[
S_\Delta = \frac{(1 + \rho + \delta)u_g}{(1 - y)[u_s + (1 - \sigma)u_g]}.
\]
Notice that \(\partial S_\Delta / \partial y > 0 \) and \(S_\Delta = 1 \) if \(y = y_1 \), and so \(S_\Delta < 1 \) if and only if \(y < y_1 \). Using the function \(Q(S) \) defined after (2), one shows that \(S_\Delta > \hat{S} \) if and only if \(y > y_2 \) where
\[
y_2 = \frac{[u_s - (\delta + \rho + \sigma)u_g][\delta u_s - (1 + \rho)(1 - \sigma)u_g]}{\delta [u_s + (1 - \sigma)u_g]^2}.
\]
We conclude that an equilibrium with \((S, \theta) \in (0, 1)^2 \) exists if and only if \(y_2 < y < y_1 \).

Finally, consider \(\theta = 0 \), which implies \(S = \hat{S} \), and requires \(\Delta \leq 0 \). We first note that \(\Delta \) is increasing in \(y \) (this is easily verified by showing \(\partial \Delta / \partial y > 0 \), \(\partial \Delta / \partial S < 0 \) and \(\partial \hat{S} / \partial y < 0 \)). Then, since \(\Delta = 0 \) when \(y = y_2 \) and \(S = \hat{S} \), it follows that this equilibrium exists if and only if \(y \leq y_2 \). This completes the proof. \(\blacksquare \)
The bounds defined in the proof satisfy $y_2 < y_1 < 1$. Notice, however, it is possible for y_1 or y_2 to be negative. For example, if $d = 0$ and general goods do not depreciate at all, then $y_2 < 0$ and we cannot have $y \leq y_2$; that is, if $d < 0$ then we cannot have an equilibrium with $\theta = 0$. Intuitively, $d = \theta = 0$ implies that in steady state everyone has cigarettes in inventory, which means that it is pointless trying to trade a cigarette for one’s special good, and so it cannot be a best response to store rather than smoke cigarettes.

Since $\theta < 1$ if and only if $y < y_1$, Proposition 1 tells us that general goods are more likely to be used as money when y is small, which means that barter is difficult because goods and tastes are highly specialized, or when y_1 is big. And y_1 is big when: general goods are not very desirable relative to special goods (u_g/u_s is low); people are patient (r is low); general goods do not depreciate very quickly (d is low); search frictions are not too severe (αx is big); or special goods are produced infrequently (σ is low). Figure 1 shows where the different equilibria exist in various regions of parameter space. Figure 2 shows θ, as well as the amount of commodity money in circulation, G, as functions of parameters: the top panel varies y, which measures the difficulty of barter; the second panel varies α, which inversely measures the search frictions; and the third panel varies x and y together since the case $y = x$ is one that is often analyzed in the literature (see, e.g., Kiyotaki and Wright [1993]).

3 Prices

Up to this point we have determined when general goods like cigarettes will be used as money, but we did not try to determine their purchasing power as all goods were assumed to be indivisible. Following Shi (1995) and Trejos and Wright (1995), we now endogenize prices by assuming that special goods
are perfectly divisible and allowing agents to bargain over the amount of a special good that they trade for an indivisible unit of the general good. It will still be the case in this model that all agents always have either 1 unit or 0 units of the general good. While this is obviously an abstraction—cigarettes, or at least packages or cartons of cigarettes, are in fact divisible and multiple units can be accumulated—modeling price formation in this way turns out to be an order of magnitude more tractable than proceeding under the assumption that everything is perfectly divisible (see, e.g., Molico 1997).

Agents who receive q units of their special good in trade enjoy utility $u_s = U_s(q)$, while agents who produce q units suffer disutility $c(q)$. We assume that $U_s(0) = 0$, $U_s'(q) > 0$, $U_s''(q) < 0$, and that there is a $\hat{q} \in [0, 1]$ such that $U_s(\hat{q}) = \hat{q}$. With no loss in generality, we normalize $c(q) = q$. Note that the interpretation from now on is that with probability σ agents get an opportunity to produce a special good later, rather than an actual unit of output; i.e., they do not actually produce until they trade, since we do not want the cost to be a sunk cost at the time of bargaining. Denote by Ω the expected net utility from bartering one special good for another (to be determined below), and by q the amount of special good that one gets for a general good. Recall that $\rho = r/\alpha x$ and $\delta = d/\alpha x$. Then, for any q and Ω, Bellman’s equations are given by the following generalization of (3) and (4):

\[
\rho V_s = (1 - S) [-q + \theta u_g + (1 - \theta)(V_g - V_s)] + S \gamma (\Omega + (1 - \sigma)\theta u_g + (1 - \sigma)(1 - \theta)(V_g - V_s))
\]

\[
\rho V_g = S [U_s(q) + \sigma(V_s - V_g)] + \delta(V_s - V_g).
\]

For direct barter transactions between two special good holders we adopt the symmetric Nash bargaining solution, which implies that both agents produce q^* units where q^* satisfies $U_s'(q^*) = c'(q^*) = 1$, and therefore $\Omega =$
For trades of general goods for special goods, it turns out to simplify the analysis significantly to assume that the agent with the general good gets to make a take-it-or-leave-it offer. This implies that

\[q = \theta u_g + (1 - \theta) (V_g - V_s), \tag{9} \]

as this is the greatest \(q \) that a special good holder would be willing to produce in exchange for a general good. Notice that (9) implies that the first term in the Bellman equation for \(V_s \) vanishes, which is natural because special goods holders do not get any of the gains from trade with general goods holders.

An equilibrium is defined as before, except that we make \(q \) endogenous and add the bargaining solution as an equilibrium condition. Thus, we now look for combinations \((S, \theta, q)\) satisfying (2), (5) and (9). Proposition 2 will show that at long as at least some general goods are used for consumption purposes (i.e., as long as \(\theta > 0 \)) their value in exchange is pegged to their intrinsic value in consumption, \(q = u_g \). However, when \(\theta = 0 \) general goods will trade at a premium over their intrinsic value, \(q > u_g \), as Friedman (1992) observed happening when cigarettes were used as money in post-war Germany. Further, we show that there is a range of parameter values such that are multiple equilibrium values of \(\theta \), and there can also be more than one equilibrium value of \(q \) for a given equilibrium value of \(\theta \).

Proposition 2 There exist \(\bar{y}_1 \) and \(\bar{y}_2 < \bar{y}_1 \) such that: (i) if \(y \geq \bar{y}_1 \) then there is an equilibrium with \(\theta = 1 \) and \(q = u_g \); (ii) if \(y \in (\bar{y}_2, \bar{y}_1) \) then there is an equilibrium with \(\theta \in (0, 1) \) and \(q = u_g \); and (iii) if \(y < \bar{y}_2 \) then there is an equilibrium with \(\theta = 0 \) and \(q > u_g \). Moreover, there is a \(z > 0 \) such that: if \(u_g > z \) then these are the only equilibria; but if \(u_g < z \) then \(\bar{y}_2 > 0 \) and there exists \(\bar{y}_3 > \bar{y}_2 \) such that when \(y \in (\bar{y}_2, \bar{y}_3) \) there are two other equilibria.

\(^7\)Nothing really depends on this assumption, however. All that happens when we change the bargaining solution in a barter opportunity is that \(\Omega \) changes, and we allow \(\Omega \) to take on any value here.
both having \(\theta = 0 \) but different values of \(q > u_g \). These are all of the (steady state) equilibria.

Proof: First consider equilibrium with \(\theta = 1 \), which implies \(q = u_g \) by (9), and
\[
\Delta = \frac{[\rho + \sigma + \delta + (1 - \sigma) y] u_g + y \Omega - U_s(u_g)}{\rho + \sigma + \delta}.
\]
This equilibrium exists if and only if \(\Delta \geq 0 \), which holds if and only if \(y \geq \bar{y}_1 \) where
\[
\bar{y}_1 = \frac{U_s(u_g) - (\rho + \sigma + \delta) u_g}{\Omega + (1 - \sigma) u_g}.
\]

Next consider \(\theta \in (0, 1) \), which implies \(u_g = V_g - V_s \), and therefore again implies \(q = u_g \) by (9). As in Proposition 1, we solve \(\Delta = 0 \) for \(S = \bar{S}_\Delta \), where
\[
\bar{S}_\Delta = \frac{(\rho + \delta) u_g}{U_s(u_g) - y \Omega - [\sigma + (1 - \sigma) y] u_g},
\]
and then check when \(\bar{S}_\Delta \) is in \((\hat{S}, 1) \). One can show \(\bar{S}_\Delta < 1 \) if and only if \(y < \bar{y}_1 \). Also, notice that \(\bar{S}_\Delta \) is increasing in \(y \) while \(\hat{S} \) is decreasing in \(y \). Furthermore, there is a value \(\bar{y}_2 \) such that \(\bar{S}_\Delta = \hat{S} \). Hence, \(\bar{S}_\Delta > \hat{S} \) if and only if \(y > \bar{y}_2 \).

Now consider equilibria where \(\theta = 0 \), which implies \(S = \hat{S} \), and requires \(\Delta \leq 0 \). We can combine (8) and (9) into the single condition \(T(q) = 0 \), where
\[
T(q) = \hat{S} u_s(q) - \hat{S} \Omega y - \left[\rho + \delta + \sigma \hat{S} + (1 - \sigma) y \hat{S} \right] q.
\]
A solution to \(T(q) = 0 \) is an equilibrium if and only if it satisfies \(q \geq u_g \), since this is equivalent \(\Delta \leq 0 \). Note that \(T'(0) > 0 \), \(T''(q) < 0 \) for all \(q \), and \(T(q) < 0 \) for large \(q \), as shown in Figure 3. Also, if \(y = 0 \) then \(T(q) \) has two roots, \(q = 0 \) and \(q > 0 \). As \(y \) increases, one can show that \(T(q) \) shifts down, and therefore has two positive roots, until we reach a point \(y = \hat{y}_3 \) where \(T(q) \) is tangent to the horizontal axis. Consequently, if \(y > \hat{y}_3 \) there are no
solutions to $T(q) = 0$. Let z denote the value of q at which $T(q)$ is tangent to the axis when $y = \bar{y}_3$.

Notice that when $y = \bar{y}_2$, where \bar{y}_2 was defined above by $\bar{S}_\Delta = \bar{S}$, one solution to $T(q) = 0$ is always given by $q = u_g$ (which implies that $\bar{y}_3 > \bar{y}_2$).

There are two possible cases. The first case is $u_g > z$. This implies that when $y = \bar{y}_2$, $q = u_g$ is the higher root of $T(q) = 0$. Then for all $y \in (0, \bar{y}_2)$ the higher root of $T(q) = 0$ is the unique solution such that $q > u_g$, and for $y > \bar{y}_2$ there is no solution to $T(q) = 0$ such that $q \geq u_g$. The second case is $u_g < z$. This implies that $\bar{y}_2 > 0$, because $T(u_g) > 0$ when $y = 0$. It also implies that when $y = \bar{y}_2$, $q = u_g$ is the lower root of $T(q) = 0$. Then for all $y \in (0, \bar{y}_2)$ the higher root of $T(q) = 0$ is the unique solution such that $q > u_g$, for $y \in (\bar{y}_2, \bar{y}_3)$ both roots of $T(q) = 0$ satisfy $q > u_g$, and for $y > \bar{y}_3$ there is no solution to $T(q) = 0$.

We conclude the following. On the one hand, for $u_g > z$, for all $y \in (0, \bar{y}_2)$ there is a unique equilibrium with $\theta = 0$, and for $y > \bar{y}_2$ there are no equilibria with $\theta = 0$. On the other hand, for $u_g < z$, for all $y \in (0, \bar{y}_2)$ there is a unique equilibrium q with $\theta = 0$, for $y \in (\bar{y}_2, \bar{y}_3)$ there are two equilibria with $\theta = 0$ and different values of q, and for $y > \bar{y}_3$ there are no equilibria with $\theta = 0$.

This completes the proof. ■

Figure 4 shows the regions in (y, u_g) space where the different equilibria exist. Notice in particular that there are multiple equilibria when $u_g < z$ and $y \in (y_2, y_3)$: there are two equilibria with $\theta = 0$ and different values of q, both greater than u_g, and also an equilibrium with $q = u_g$ and either $\theta = 1$ or $\theta \in (0,1)$, depending on whether $y > y_1$ or $y < y_1$. We know that q can never be less than u_g, since otherwise no one would use the general good as money. What is interesting here is that q can be greater than u_g, as Freidman (1992) observed, although only if $\theta = 0$ and no one ever consumes the general good. It is tempting to say that when $\theta = 0$ the general good acts a lot like a fiat money, at least in the sense that it’s exchange value is not pinned down by
it’s intrinsic value, even though it is clearly a commodity money in the sense that \(u_g > 0 \). In the next section we introduce genuine fiat money.

4 Fiat Money

We now introduce a second potential money in the form of fiat currency.\(^8\) We assume that fiat currency can neither be produced nor consumed by an individual, and an exogenous fraction \(M \) of the population are simply endowed with it. Following the method in the previous section, we assume that both fiat money and general goods are indivisible, and determine relative prices by letting special goods be divisible. Also, we restrict attention here to the case where general goods do not depreciate \((d = 0)\). This implies that there can be no equilibrium with \(\theta = 0 \), and so without fiat money the equilibrium would be unique and satisfy \(q = u_g \). Any multiplicities that occur in this section are therefore due to the existence of the fiat object. Moreover, due to its intrinsic uselessness, it is clear that there is always an equilibrium in which the value of fiat money is \(V_m = 0 \). In this case the

\(^8\)Radford (1945) reports that around D-Day, during relatively good economic times, the camp introduced paper currency. The paper money was backed 100 percent by food at the shop and restraint – hence its name, the “Bully Mark” – and so it was not exactly fiat money. “Originally one BMk. was worth one cigarette and for a short time both circulated freely inside and outside the restraint.” However, “The BMk. was tied to food, but not to cigarettes: as it was issued against food, say 45 for a tin of milk and so on, any reduction in the BMk. prices of food would have meant that there were unbacked BMk.s in circulation.” (p.197). Hence, even though BMk.s were partially backed, it still seems interesting to consider fiat money in the model. For the record, “In August parcels and cigarettes were halved and the camp was bombed. The restraint closed for a short while and sales of food became difficult. ... The BMk. fell to four-fifths of a cigarette and eventually farther still, and it became unacceptable save in the restraint. There was a flight from the BMk., no longer convertible into cigarettes or popular foods. The cigarette reestablished itself.”
model reduces to the one analyzed above, and so from now on we focus on equilibria where $V_m > 0$.

Let the steady state proportions of the population holding special goods, general goods, and money be given by S, G and M. A generalized version of the steady condition from the model without fiat money can be used to show that S varies monotonically between 0 and $1 - M$ as θ varies between 0 and 1. Let q_g and q_m be the amount of special good one can get for a unit of general good and a unit of fiat money, respectively. Then Bellman’s equations are

\[
\begin{align*}
\rho V_s &= S y [\Omega + (1 - \sigma)\theta u_g + (1 - \sigma)(1 - \theta)(V_g - V_s)] \\
&\quad + G [-q_g + \theta u_g + (1 - \theta)(V_g - V_s)] + M [-q_m + V_m - V_s] \\
\rho V_g &= S [U_s(q_g) + \sigma(V_s - V_g)] \\
\rho V_m &= S[U_s(q_m) + \sigma(V_s - V_m)] \\
&\quad + (1 - \sigma)\theta(u_g + V_s) + (1 - \sigma)(1 - \theta)V_g - V_m].
\end{align*}
\]

(12)

Assuming that agents with either general goods or fiat money get to make take-it-or-leave-it offers, bargaining implies

\[
\begin{align*}
q_g &= \theta u_g + (1 - \theta)(V_g - V_s) \\
q_m &= V_m - V_s.
\end{align*}
\]

(13)

(14)

Notice that (13) and (14) imply that both the second and third terms in Bellman’s equation for V_s vanish.

An equilibrium is defined as the obvious generalization of the previous section. Thus, we now look for combinations (S, θ, q_g, q_m) satisfying the relevant conditions. One thing we will show below is that, provided M is not too large, there is an equilibrium where fiat money simply crowds out commodity money one-for-one and $q_m = q_g = u_g$. Hence, the creation of a small amount of fiat money can have no effect at all, except for a one-time seigniorage
gain because someone can now consume the stock of general goods that are replaced as money by the fiat object. However, once M is sufficiently big so as to completely drive general goods from circulation, there will be a change in trading frequencies and prices. One way to interpret this is that when the stock of fiat money is too small the private sector will respond by creating commodity money to fill the void.

Addition findings are as follows. The economy with fiat money may display multiple equilibria even when M is small (e.g., fiat and commodity money can coexist and trade at the same or at different values). However, while there may be multiple equilibrium values of q_m, there is a unique equilibrium value of q_g, although this depends on the special assumption made in this section that $d = 0$. Finally, there are parameter values for which there cannot be any commodity money in circulation because everyone always immediately consumes general goods, but there can still be valued fiat money.

Proposition 3 There exists $\bar{y}_1 < 1$ such that: (i) if $y \geq \bar{y}_1$ then $\theta = 1$; and (ii) if $y < \bar{y}_1$ then $\theta \in (0, 1)$. In any equilibrium $q_g = u_g$, while q_m depends on parameter values. On the one hand, if $y < y_1$, there is a value $\bar{y}_A < 1$ such that, when $y < \bar{y}_A$ the unique equilibrium has $q_m = u_g$, and when $y > \bar{y}_A$ there are two equilibrium values of q_m, one equal to and one lower than u_g. On the other hand, if $y > y_1$, there is a value $\bar{y}_B \in (\bar{y}_A, 1)$ such that: when $y < \bar{y}_A$ there is a unique equilibrium $q_m < u_g$; when $y \in (\bar{y}_A, \bar{y}_B)$ there are two equilibrium values of q_m, both lower than u_g; and when $y > \bar{y}_B$ there are no equilibrium with $q_m > 0$. These are all of the (steady state) equilibria with valued fiat money.

Proof: First note that there is no equilibrium with $\theta = 0$ and $S = 0$, since this implies $\Delta > 0$ and this contradicts $\theta = 0$. Now suppose $\theta = 1$ and
\(S = 1 - M \). Then (13) implies \(q_g = u_g \), and
\[
\Delta = \frac{\left[\frac{\rho}{(1 - M)} \sigma + (1 - \sigma) y \right] u_g + y \Omega - U_s(u_g)}{\rho/(1 - M) + \sigma}.
\]
This equilibrium requires \(\Delta \geq 0 \), which holds if and only if \(y \geq \bar{y}_1 \) where
\[
\bar{y}_1 = \frac{U_s(u_g) - [\rho/(1 - M) + \sigma] u_g}{\Omega + (1 - \sigma) u_g}.
\]

Now suppose \(\theta \in (0, 1) \). This requires \(\Delta = 0 \), which again implies \(q_g = u_g \) by (13). We need to solve \(\Delta = 0 \) for \(S \) and check when \(S \in (0, 1 - M) \). The value of \(S \) that solves \(\Delta = 0 \) is given by the same \(\bar{S}_\Delta \) that makes \(\Delta = 0 \) in the model without fiat money, given in (11) above, which is obviously independent of \(M \). From this one can easily check that \(\bar{S}_\Delta \in (0, 1 - M) \) if and only if \(y < \bar{y}_1 \).

It remains to determine \(q_m \). We can combine (14) and (12) into the single condition \(q_m = \bar{T}(q_m) \), where
\[
\bar{T}(q) = S \left[U_s(q) - y \Omega + (1 - y)(1 - \sigma) u_g \right] - (\rho + S)q,
\]
and \(S = 1 - M \) when \(\theta = 1 \) and \(S = S_\Delta \) when \(\theta < 1 \). Note that \(\bar{T}'(0) > 0 \), \(\bar{T}''(q) < 0 \) for all \(q \), and \(\bar{T}(q) < 0 \) for large \(q \); hence \(\bar{T} \) is qualitatively the same as the function \(T \) shown previously in Figure 3. The zeros of \(\bar{T} \) depend on \(y \).

First consider the case where \(y > \bar{y}_1 \), and let
\[
\bar{y}_A = \frac{(1 - \sigma) u_g}{\Omega + (1 - \sigma) u_g}.
\]
Then \(y < \bar{y}_A \) implies \(\bar{T}(0) > 0 \) and so there is a unique solution to \(\bar{T}(q_m) = 0 \). As \(y \) increases, \(\bar{T}(q) \) shifts down, until we reach \(\bar{y}_B > \bar{y}_A \) where \(\bar{T} \) is tangent to the horizontal axis, given by
\[
\bar{y}_B = \frac{U_s(\bar{q}) - (\rho + 1 - M)/(1 - M) \bar{q} + (1 - \sigma) u_g}{\Omega + (1 - \sigma) u_g}.
\]
where \bar{q} solves $(1 - M)u'(\bar{q}) = \rho + 1 - M$. Then $y \in (\bar{y}_A, \bar{y}_B)$ implies there are 2 solutions to $q_m = \bar{T}(q_m)$ and $y > \bar{y}_B$ implies there is no solution. Moreover, one checks that $q_m < u_g$ for all $y > 0$ by showing $\bar{T}(u_g) \leq 0$ at $y = 0$, that \bar{T} is decreasing in y.

Now consider $y < y_1$. In this case, one can easily check that one solution to $\bar{T}(q) = 0$ is given by $q = u_g$ for any y. For $y < \bar{y}_A$, since $\bar{T}(0) > 0$, $q = u_g$ is the only solution. For $y > \bar{y}_A$, since $\bar{T}(0) < 0$, there is also a solution with $q < u_g$. This completes the proof. ■

The set of equilibria in (y, u_g) is shown in Figure 5.9 Notice that is more likely that $y < \bar{y}_1$, and hence it is more likely that an equilibrium with $\theta \in (0, 1)$ exists, if M is small. However, $S = \bar{S}_\Delta$ is independent of M. This implies that as the quantity of fiat money M increases, the endogenous quantity of commodity money G decreases dollar for dollar, at least as long as we stay in an equilibrium with $\theta < 1$. Another way to say this is that, given a relatively small stock of fiat money, the private sector will respond by creating commodity money, and the total amount of money $G + M$ will be independent of M. However, as M gets bigger, eventually we must have $y \geq \bar{y}_1$, which means that $\theta = 1$ and $G = 0$. Once everyone is consuming the general good, G cannot fall any further, and additional increases in M must decrease S. Moreover, for small M and small y the value of fiat money must be the same as that of commodity money, $q_m = q_g = u_g$. For higher values of y the value of fiat money may or may not be the same as that of commodity money. For higher values of M, the value of fiat money is necessarily less than u_g.

9The figure is drawn using the following easily verified results: \bar{y}_1, \bar{y}_A and \bar{y}_B are 0 when $u_g = 0$; \bar{y}_1 increases with u_g for small u_g, then decreases and becomes negative as u_g gets big; and \bar{y}_A and \bar{y}_B increase monotonically to 1 as u_g gets big.
5 Heterogeneous Goods

Radford describes how heterogeneous cigarettes traded at different prices in the POW camp. As one might expect from Gresham’s Law, while certain brands were regularly used for consumption, other presumably inferior cigarettes (including hand-rolled ones made from pipe tobacco) were used mainly as money. Moreover, the inferior cigarettes tended to circulate at a premium over their intrinsic value; as Radford put it, “certain brands were more popular than others as smokes, but for currency purposes a cigarette was a cigarette” (p. 194-95). In this section we consider a generalization of the model designed to address these issues.

Suppose that general goods come in two qualities, good cigarettes and bad cigarettes, and the probability of producing a special good, a good cigarette, and a bad cigarette are given by σ, γ, and β. The steady state proportions of agents holding these objects are S, G, and B. The probability of consuming a good cigarette upon acquiring it is θ_g and the probability of consuming a bad cigarette upon acquiring it is θ_b. The utilities of consuming a good cigarette or a bad cigarette are u_g or u_b. Cigarette holders make take-it-or-leave offers to special good holders, and the amount of the special good that a good or a bad cigarette commands is q_g or q_b. Assume for now no depreciation (although the more general case might be interesting, especially if the depreciation rates d_g and d_b differed), and assume there is no fiat money.

Bellman’s equations are

$$
\rho V_s = S \gamma [\Omega + \gamma \theta_g u_g + \gamma (1 - \theta_g)(V_g - V_s) + \beta \theta_b u_b + \beta (1 - \theta_b)(V_b - V_s)]
$$

$$
\rho V_g = S [U_s(u_g) + \sigma(V_s - V_g) + \beta \theta_b (u_b + V_s - V_g) + \beta (1 - \theta_b)(V_b - V_g)]
$$

$$
\rho V_b = S [U_s(u_b) + \sigma(V_s - V_b) + \gamma \theta_g (u_g + V_s - V_b) + \gamma (1 - \theta_g)(V_g - V_b)].
$$

In writing these in this way we have used the fact that a special good holder
gets no surplus from trading with cigarette holders, and that anyone holding a
good cigarette must not be a good cigarette consumer, although he may be a
bad cigarette consumer, and vice-versa. We have also inserted the bargaining
solution \(q_j = u_j \), which holds here for the same reason that it held in the
previous sections.

There are steady state conditions generalizing those in the homogenous
general good model that determine \((S, G, B)\); but it turns out that we will not
need to analyze them explicitly. The reason is as follows. There are exactly
four possible types of equilibria corresponding to the four combinations of
\(\theta_j = 1 \) or \(\theta_j \in (0, 1) \), for \(j = g, b \) (since \(\theta_j = 0 \) cannot be an equilibrium with
no depreciation, exactly as in the simpler model with homogenous general
goods). We will see below that generically there is no equilibrium where \(\theta_g \)
and \(\theta_b \) are both less than 1, and as long as one \(\theta_j \) equals 1 there will be no
type \(j \) general goods circulating in steady state, so we can use the steady
state condition for the model with only one type of general good.

Consider the case where \(\theta_g = \theta_b = 1 \), which implies \(S = 1 \) and \(B = G = 0 \).
Bellman’s equations reduce in this case to

\[
\begin{align*}
\rho V_s &= y (\Omega + \gamma u_g + \beta u_b) \\
\rho V_g &= U_g(u_g) + \sigma (V_s - V_g) + \beta (u_b + V_s - V_g) \\
\rho V_b &= U_b(u_b) + \sigma (V_s - V_b) + \gamma (u_g + V_s - V_b).
\end{align*}
\]

The equilibrium condition corresponding to \(\theta_j = 1 \) is \(\Delta_j \geq 0 \), where \(\Delta_j \) is
proportional to \(u_j + V_s - V_j \). Solving for the \(\Delta_j \), we obtain

\[
\begin{align*}
\Delta_g &= y \Omega + (\rho + \sigma + \beta + \gamma y) u_g - (1 - y) \beta u_b - U_s(u_g) \\
\Delta_b &= y \Omega + (\rho + \sigma + \gamma + \beta y) u_b - (1 - y) \gamma u_g - U_s(u_b).
\end{align*}
\]

It is easy to check that \(\Delta_j \geq 0 \) if and only if \(y \geq y_j \), where

\[
\begin{align*}
y_g &= \Sigma [U_g(u_g) + \beta u_b + \gamma u_g - (1 + \rho) u_g] \\
y_b &= \Sigma [U_b(u_b) + \beta u_b + \gamma u_g - (1 + \rho) u_b]
\end{align*}
\]
and \(\Sigma = 1/ (\Omega + \beta u_b + \gamma u_g) \).

Hence, \(\theta_g = \theta_b = 1 \) is an equilibrium if and only if \(y \geq \max\{y_g, y_b\} \). One might expect that \(y_g < y_b \), so that the equilibrium condition for smoking good cigarettes holds automatically as long as the equilibrium condition for smoking bad cigarettes holds; but this is not true. One can check that \(y_g < y_b \) if and only if

\[
\frac{U_s(u_g)}{1 + \rho} - u_g < \frac{U_s(u_b)}{1 + \rho} - u_b.
\] (16)

Notice that \(U_s(u_j)/(1 + \rho) - u_j \) can be interpreted as the gain from trading a type \(j \) cigarette next period rather than smoking it now, and \(y_g < y_b \) if and only if this gain is bigger for bad quality cigarettes. The point is that good cigarettes are not only better for smoking, they are also better for trading, and so it is not unambiguous whether the incentive condition to smoke rather than trade a cigarette is more severe for good or bad cigarettes.\(^{10}\)

Consider now an equilibrium where \(\theta_g = 1 \) and \(\theta_b < 1 \). Since good cigarettes are always consumed, only bad cigarettes and special goods circulate, and we can use the conditions from the homogeneous general good model (with \(B \) replacing \(G \)) to find the steady state. To construct an equilibrium of this sort, one proceeds as follows. First solve for the \(\Delta_j = u_j + V_s - V_j \) as functions of \(S \); then solve \(\Delta_b = 0 \) for the steady state \(S \) and check that it is in \((0,1)\); and finally substitute \(S \) into \(\Delta_g \) and check that it is nonnegative (one can recover \(\theta_b \) from \(S \) using the steady state condition, but it is not necessary to check anything else because \(0 < \theta_b < 1 \) if and only if \(0 < S < 1 \)). What one finds is that \(S \in (0,1) \) if and only if \(y < y_b \), where \(y_b \) was defined above.

\(^{10}\)A related observation is that \(\partial \theta_j / \partial u_j \) may be positive or negative. Again, two effects occur when we increase the intrinsic quality of an object: it becomes more desirable to consume the object; but, given that relative prices reflect quality, it also becomes more desirable to trade it. The net effect depends on the slope of \(U_s(q) \). This observation also applies to the model with only one type of general good.
and $\Delta_g \geq 0$ if and only if $y \leq \hat{y}$, where

$$
\hat{y} = \sum \left[\frac{u_g U_s(u_b) - u_b U_s(u_g)}{u_g - u_b} + \beta u_b + \gamma u_g \right].
$$

Next, consider an equilibrium where $\theta_g < 1$ and $\theta_b = 1$. Similar to the previous case, one shows that $S \in (0, 1)$ if and only if $y < y_g$, where y_g was defined above, and $\Delta_b \geq 0$ if and only if $y \geq \hat{y}$. Finally, consider the case where $\theta_g < 1$ and $\theta_b < 1$. This cannot be an equilibrium, except possibly for parameter values in a set of measure zero, because we would have to find a value of S that satisfies both $\Delta_g = 0$ and $\Delta_b = 0$. This completes the analysis of the different possible equilibria.

In terms of describing the results, we break things into two cases: $y_g < y_b$ and $y_g > y_b$, corresponding to whether condition (16) does or does not hold. When $y_g < y_b$, one can easily show $\hat{y} > y_b$, and so based on the above analysis we conclude the following: for $y > y_b$ the unique equilibrium is $\theta_g = 1$ and $\theta_b = 1$; and for $y < y_b$ the unique equilibrium is $\theta_g = 1$ and $\theta_b < 1$. When $y_g > y_b$, one can show $\hat{y} < y_b$, and so we conclude the following: for $y > y_g$ the unique equilibrium is $\theta_g = 1$ and $\theta_b = 1$; for $y \in (\hat{y}, y_g)$ the unique equilibrium is $\theta_g < 1$ and $\theta_b = 1$; and for $y < \hat{y}$ the unique equilibrium is $\theta_g = 1$ and $\theta_b < 1$. These results are all depicted in Figure 6.

In particular, when y is sufficiently big both good and bad cigarettes are smoked; when y is sufficiently small, good cigarettes are smoked and bad cigarettes are traded; and, as long as u_g is not too big relative to u_b, there is an intermediate range of y such that good cigarettes are traded while bad cigarettes are smoked. This last possibility – that for some parameter values good commodities circulate as money while bad commodities are consumed – seems to fly in the face of at least a naive version of Gresham’s Law, that “bad money drives out good”. The explanation here is that the relative price of good cigarettes makes them more desirable for trading, even though their intrinsic properties also make them more desirable for consumption, and the
net outcome of this tension depends on the difficulty of trade and the relative intrinsic values of the commodities \((y\) and \(u_g/u_b\)).

A more sophisticated version of Gresham’s Law says that it applies “only when there is a fixed rate of exchange between the two [candidate monies]” (Friedman and Schwartz 1963, 27n; see also Rolnick and Weber 1886). We can consider this possibility by introducing qualitative uncertainty. Following the literature, one can assume that there is some probability \(\eta\) that an agent who is offered an object in trade can distinguish its quality.\(^{11}\) For simplicity, here we consider only the case where \(\eta = 0\), so that agents being offered cigarettes have no idea whether they are good or bad until after a trade has been completed. Then obviously we must have \(q_g = q_b\). This implies that trading good and bad cigarettes has the same payoff: \(V_g = V_b\). Hence, given that \(u_g > u_b\), we have \(\Delta_g = u_g + V_s - V_g > u_b + V_s - V_b = \Delta_b\), and therefore it is not possible to have \(\theta_g < 1\) and \(\theta_b = 1\) (since that would require \(\Delta_g = 0 \leq \Delta_b\)). In other words, anyone who indifferent between smoking and trading a bad cigarette now must strictly prefer smoking to trading a good cigarette, because private information precludes relatives prices from adjusting. This “lemons” problem, à la Akerlof (1970), implies that we cannot have good money circulating while bad money is being consumed.

Given the above argument, the only possible equilibria are \(\theta_g = \theta_b = 1\) or \(\theta_g = 1\) and \(\theta_b \in (0,1)\), and in either case we have \(q = u_b\).\(^{12}\) One can

\(^{12}\)If \(\theta_b < 1\), rational expectations implies that when agents are offered cigarettes they “know” they are low quality, even though they cannot verify this by direct observation (in other words, equilibrium is fully revealing). When \(\theta_b = 1\), no cigarettes of either quality are ever traded, but we assume that agents understand that good cigarettes are not traded in any circumstances, so if they were offered a cigarette (off the equilibrium path) they would believe that it is bad.
easily verify that \(\theta_b = 1 \) if \(y \geq y_b \) and \(\theta_b \in (0,1) \) if \(y < y_b \). Hence, in Figure 6, all that matters now is whether \(y \) is above or below \(y_b \). In the region where we formerly had \(\theta_g \in (0,1) \) and \(\theta_b = 1 \) with no private information – i.e., the region where the equilibrium flew in the face of Gresham’s Law – good cigarettes are now driven from circulation because they are forced to trade at the same price as bad cigarettes. There are two different cases in this region: if \(y \geq y_b \) then good cigarettes are driven out of circulation and replaced by direct barter; and if \(y < y_b \) then good cigarettes are driven from circulation and replaced by bad cigarettes as money (although not one-for-one: it is easy to show that there are more bad cigarettes in circulation with private information that there were good cigarettes in circulation with full information).

We summarize the results of this section in the following proposition, the proof of which is contained in the above discussion.

Proposition 4 With full information, \(q_b = u_b \) and \(q_g = u_g \), and there exist \(y_b, y_g, \) and \(\hat{y} \) defined in the text such that the following is true: if \(y > \max\{y_b, y_g\} \) then \(\theta_b = \theta_g = 1 \); if \(y < \min\{y_b, \hat{y}\} \) then \(0 < \theta_b < 1 \) and \(\theta_g = 1 \); and for \(\theta \in (\hat{y}, y_g) \), which is nonempty if and only if \(u_g \) is not too big relative to \(u_b \), then \(\theta_b = 1 \) and \(0 < \theta_g < 1 \). With private information, \(q_g = q_b = u_b \) and \(\theta_g = 1 \) for all parameters, while \(\theta_b = 1 \) if and only if \(y \geq y_b \). These are all of the (steady state) equilibria.

6 Summary

This paper has analyzed when commodities are used as money, depending on the parameters of the economy, including those that measure the degree of specialization, trading frictions, depreciation rates, the amount of fiat money in the system, and so on. We solved for amount of commodity money in circulation and its value. When the commodity money is sometimes consumed,
its value in trade is pinned down by its utility value in consumption; when the good is used exclusively as money, however, it trades at a premium over its consumption value. When commodity and fiat money both circulate, for some parameter values – in particular, when the stock of fiat money is small – the only equilibria is one where it is a perfect substitute for commodity money. However, in other circumstances there is a multiplicity of equilibria, and it can be the case that fiat money is less valuable than commodity money. When a small amount of fiat money is introduced, it crowds out commodity money one-for-one with no real net effect on the trading process; when too much fiat money is introduced, it drives commodity money from circulation and this has real effects. We also studied the circumstances in which Gresham’s Law does and does not hold in a heterogeneous goods version of the model.

It seems that the model does fairly well at capturing some of the phenomena described by Radford (1945) concerning the exchange process in a primitive economy like a POW camp. There are several other interesting phenomena discussed by Radford that the model could in principle be used to address, but we have not considered them here in the interests of space (e.g., the effects of time-varying cigarette endowments). At a more general level, the model generates predictions about exchange institutions that we think also apply to more complicated economies. For example, it predicts that the private sector can create institutions like money without public sector intervention in terms of the provision of fiat currency. There may be some advantages to introducing fiat money, including the seigniorage gain from freeing up real commodities, and there can also be disadvantages, especially if too much fiat money is introduced. We leave a more detailed exploration of policy and welfare along these lines to future research.
7 Appendix

Here we derive (1). Begin by considering the probability that a general good holder becomes a special good holder. First, the general good can depreciate, which occurs with probability \(d \) per unit time. Second, he can trade for his desired special good, which happens with probability \(\alpha Sx \) per unit time, after which he produces a special good with probability \(\sigma \) (note that if he produces a general good he stores it, given he was holding a general good in the first place). Hence, the probability per unit time that a general good holder becomes a special good holder is \(P_{gs} = d + \alpha Sx \sigma \).

Next consider the probability that a special good holder becomes a general good holder. First he must get his hands on the general good, which can happen in two ways: by trading for the general good, which occurs with probability \(\alpha (1 - S)x \) per unit time; or by trading for his special good, which occurs with probability \(\alpha Sxy \) per unit time, and then producing the general good, which occurs with probability \(1 - \sigma \). In either case, we claim that conditional on having held the special good, he will store rather than consume the general good once he gets his hands on it with probability \(1 - \theta / S \) (which generally differs from the unconditional probability \(1 - \theta \)). This can be seen as follows. First note that general good consumers never store the general good. Now let \(\omega \) denote the probability that an agent consumes the general good given he currently has the special good. The total number of special good holders includes all the general good consumers, \(\theta \), plus the general good non-consumers who happen to hold the special good, \((1 - \omega)S \). Hence, \(S = \theta + (1 - \omega)S \), which means \(\omega = \theta / S \), which was our claim.

Therefore the probability per unit time that a special good holder becomes a general good holder is \(P_{sg} = \left[\alpha (1 - S)x + \alpha Sxy(1 - \sigma) \right] (S - \theta) / S \). Equating \(SP_{sg} = (1 - S)P_{gs} \), we get the steady state condition (1).
References

Miguel Molico (1997) ”The Distribustions of Money and Prices in Search Equilibrium,” manuscript.

Figure 1: Regions of parameter space where the different equilibria exist
Baseline values: \(u_e = 5, u_g = 1, \alpha = 1, x = 1, y = 0.475, \sigma = 0.75, \delta = 0.15, \rho = 0.01 \)
Figure 2: Equilibrium values of θ and G
Baseline values: u_s=5, u_g=1, α=1, x=1, y=0.475, σ=0.75, δ=0.15, ρ=0.01
Figure 3: The function $T(q)$
Baseline values: $u_x = 5$, $u_y = 1$, $\alpha = 1$, $x = 1$, $y = 0.475$, $\omega = 0.75$, $\delta = 0.15$, $\rho = 0.01$
Figure 4: Equilibria with endogenous prices
Baseline values: \(u(q)=\sqrt{q}, \alpha=1, x=1, \sigma=0.75, \delta=0.15, \rho=0.01 \)

\[y \]

\[\theta=1 \text{ only} \]
\[\theta=0 \text{ only} \]
\[0<\theta<1 \text{ only} \]

\[\theta=1, q=u_z \]
and
two equilibria
with \(\theta=0 \)

\[0<\theta<1, q=u_z \]
and
two equilibria
with \(\theta=0 \)
Figure 5: Equilibria with fiat money
Baseline values: $u_k(q) = \sqrt{q}$, $\alpha = 1$, $x = 1$, $\sigma = 0.75$, $\delta = 0.15$, $\rho = 0.01$

- $\theta = 1$, no equilibria with $q_m > 0$
- $\theta = 1$, two equilibria with $q_m \in (0, u_k)$
- $0 < \theta < 1$, one equilibrium with $q_m = u_k$, another with $q_m < u_k$
- $\theta = 1$, one equilibrium with $q_m \in (0, u_k)$
- $0 < \theta < 1$, one equilibrium with $q_m = u_k$
- $\theta = 1$, two equilibria with $q_m \in (0, u_k)$
Figure 6: Equilibria with heterogeneous quality
Baseline values: \(u_s(q) = \sqrt{q} \), \(\alpha = 1 \), \(\sigma = 0.7 \), \(\delta = 0.15 \), \(p = 0.01 \), \(\beta = 0.2 \), \(\gamma = 0.1 \), \(u_b = 0.1 \)