PIER Working Paper 12-037

“On the Origin(s) and Development of the Term “Big Data”

by

Francis X. Diebold

http://ssrn.com/abstract=2152421
On the Origin(s) and Development of the Term “Big Data”*

Francis X. Diebold
University of Pennsylvania
fdiebold@sas.upenn.edu

First Draft, August 2012
This Draft, September 21, 2012

Abstract: I investigate the origins of the now-ubiquitous term “Big Data,” in industry and academics, in computer science and statistics/econometrics. Credit for coining the term must be shared. In particular, John Mashey and others at Silicon Graphics produced highly-relevant (unpublished, non-academic) work in the mid-1990s. The first significant academic references (independent of each other and of Silicon Graphics) appear to be Weiss and Indurkhya (1998) in computer science and Diebold (2000) in statistics/econometrics. Douglas Laney of Gartner also produced insightful work (again unpublished and non-academic) slightly later. Big Data the term is now firmly entrenched, Big Data the phenomenon continues unabated, and Big Data the discipline is emerging.

Key words: Massive data, computing, statistics, econometrics

JEL codes: C81, C82

Contact Info: fdiebold@sas.upenn.edu

*For useful communications I thank – without implicating in any way – Larry Brown, Xu Cheng, Flavio Cunha, Susan Diebold, Dean Foster, Michael Halperin, Steve Lohr, John Mashey, Tom Nickolas, Lauris Olson, Mallesh Pai, Marco Pospiech, Frank Schorfheide, Minchul Shin, and Mike Steele. I also thank, again without implicating, Stephen Feinberg, Douglas Laney and Fred Shapiro, with whom I have not had the pleasure of communicating, but who are friends of friends, and whose insights were valuable. All referenced web addresses are clickable from pdf.
1 Introduction

The now-ubiquitous term Big Data is important because it captures the essence of an important phenomenon in science and business. Premier scientific groups are intensely focused on it, as evidenced for example by the August 2012 “Big Data Special Issue” of *Significance*, a joint publication of the American Statistical Association and the Royal Statistical Society. Business and society at large are also intensely focused on it, as documented by major reports in the business and popular press, such as Steve Lohr’s “How Big Data Became so Big” (*New York Times*, August 12, 2012).

My interest was piqued when Marco Pospiech, a Ph.D. student studying the Big Data phenomenon at the Technical University of Freiberg, informed me in private correspondence that he had traced the use of the term (in the modern sense) to my paper, “‘Big Data’ Dynamic Factor Models for Macroeconomic Measurement and Forecasting.” What turns out to be true with precision and near certainty is that my paper is the first academic reference to Big Data (in the modern sense) in a title or abstract in the statistics, econometrics, or additional x-metrics (insert your favorite x) literatures. The claim has so far withstood scrutiny by top research librarians at Penn and Yale, and top technology journalists, not to mention numerous colleagues energetically trying to disprove it. Moreover, as progressively more searches find nothing, it’s becoming progressively more likely that it’s the first reference of real relevance in those literatures, whether in the title, abstract or elsewhere.

Indeed an earlier draft of this missive was titled “I Coined the Term ‘Big Data’.” I adopted it from Xavier Sala-i-Martin’s well-known paper, “I Just Ran Two Million Regressions” (Sala-i-Martin (1997)). The cleverness of Sala-i-Martin’s title stems, of course, from its hinting at his theme in a slyly funny way, effectively mocking those who would boast of something

4In particular, with the help of several reference librarians I have searched titles, abstracts and keywords in, among others, ABI/Inform (business journals), Dow Jones FACTIVA (business newspapers and journals), EBSCO Mega File (general journal literature), Google Scholar (scholarly articles), ISI Web of Science, Google Books, Hein Online (Law), JSTOR (backfiles of journals in all disciplines), Lexis Academic (law, business and general news and journals), PsycInfo SCOPUS (science/social science journals), and WorldCat (books).

5I hasten to add that by use of Big Data “in the modern sense” I mean reference to the recent phenomenon of explosive data growth. Diebold (2003) not only used the term extensively in precisely that way, but also defined it, noting that “Recently much good science, whether physical, biological, or social, has been forced to confront – and has often benefited from – the Big Data phenomenon. Big Data refers to the explosion in the quantity (and sometimes, quality) of available and potentially relevant data, largely the result of recent and unprecedented advancements in data recording and storage technology.” Hence, for example, trivial sentences like “I have a big data file” do not constitute references to Big Data!
like running two million regressions.\footnote{Sala-i-Martin’s paper deals with the millions of possible econometric “grown regression” specifications, and the problems associated with naive interpretations of the corresponding millions of empirical results.} Related, I was loath to boast about something like coining a catchy term, so I was happy with a title that both staked my claim and mocked it. The mockery emphasized, among other things, that no one could ever stake a complete and credible claim. But I have now adopted a broader title, as there is more to discuss than I initially realized: the origins of the term are intriguing and a bit murky, involving both industry and academics, computer science and statistics/econometrics. I play a role, but I am hardly alone.

2 Thoughts on the Past

I stumbled on the term Big Data innocently enough, via discussion of two papers that took a new approach to macro-econometric dynamic factor models (DFMs), Reichlin (2003) and Watson (2003), presented back-to-back in an invited session of the 2000 World Congress of the Econometric Society.\footnote{http://www.econometricsociety.org/meetings/wc00/Invited.pdf.} Older dynamic factor analyses included just a few variables, because parsimony was essential for tractability of numerical likelihood optimization. The new work by Reichlin and Watson, in contrast, showed how DFMs could be estimated using principal components, thereby dispensing with numerical optimization and opening the field to analysis of much larger datasets while nevertheless retaining a likelihood-based approach. My discussion had two overarching goals. First, I wanted to contrast the old and new macro-econometric DFM environments. Second, I wanted to emphasize that the driver of the new macro-econometric DFM developments matched the driver of many other recent scientific developments: explosive growth in available data. To that end, I wanted a concise term that conjured a stark image. I came up with “Big Data,” which seemed apt and resonant and intriguingly Orwellian (especially when capitalized), and which helped to promote both goals.

But there really is nothing new under the sun, and credit must be shared. Precisely how is open to debate, as there are issues of Big Data interpretation and context, and things get murkier if one includes unpublished and/or non-academic references. A few pre-2000 references to Big Data, both academic and non-academic, are intriguing but ultimately unconvincing, using the term but not thoroughly aware of the phenomenon.\footnote{Conversely, academics were aware of the emerging Big Data phenomenon but not the term. See, for example, Massive Data Sets: Proceedings of a Workshop, Committee on Applied and Theoretical Statistics, National Research Council (National Academies Press, 1997), http://www.nap.edu/catalog.php?record_id=5505.} On the academic
side, Tilly (1984) mentions big data, but his article is not about the Big Data phenomenon and demonstrates no awareness of it; rather, it is a discourse on whether statistical data analyses are of value to historians. On the non-academic side, the margin comments of a computer program posted to a newsgroup in 1987 mention a programming technique called “small code, big data.” Fascinating, but off-mark. Next, Eric Larson provides an early popular-press mention in a 1989 *Washington Post* article about firms that assemble and sell lists to junk-mailers. He notes in passing that “The keepers of big data say they do it for the consumer’s benefit.” Again fascinating, but again off-mark. Finally, a 1996 PR Newswire, Inc. release mentions network technology “for CPU clustering and big data applications...” Still off-mark, neither reporting on the Big Data phenomenon nor demonstrating awareness of it, instead reporting exclusively on a particular technology, the so-called high-performance parallel interface.

There is, however, some pre-2000 (non-academic, unpublished) activity that is spot-on. In particular, Big Data the term, coupled with awareness of Big Data the phenomenon, was clearly percolating at Silicon Graphics (SGI) in the mid 1990s. John Mashey, retired former Chief Scientist at SGI, produced a 1998 SGI slide deck entitled “Big Data and the Next Wave of InfraStress,” which demonstrates clear awareness of Big Data the phenomenon. Related, SGI ran an ad that featured the term Big Data in *Black Enterprise* (March 1996, p. 60), several times in *Info World* (starting November 17, 1997, p. 30), and several times in *CIO* (starting February 15, 1998, p. 5). Clearly then, Mashey and the SGI community were on to Big Data early, using it both as an advertising hook and as a unifying theme for technical seminars.

There is also at least one more relevant pre-2000 Big Data reference in computer science. It is subsequent to Mashey et al., but interestingly, it comes from the academic as opposed to industry part of the computer science community. Weiss and Indurkhya (1998) note that “...very large collections of data...are now being compiled into centralized data warehouses, allowing analysts to make use of powerful methods to examine data more comprehensively. In theory, ‘big data’ can lead to much stronger conclusions for data-mining applications, but in practice many difficulties arise.”

9https://groups.google.com/forum/?fromgroups#!msg/comp.sources.misc/d3EXP4D_VK8/x7WrVBMb5FgJ.
12Mashey notes in private communication that the deck was for a “living talk” and hence updated regularly, so that the 1998 version is not the earliest. The earliest deck of which he is aware (and hence I am aware) is from 1997.
Finally, subsequent to my 2000 discussion but also going beyond it in compelling ways, Laney (2001) highlighted the “Three V’s” of Big Data (Volume, Variety and Velocity) in an unpublished 2001 research note at META Group.13 Laney’s note is clearly relevant, and it goes beyond my exclusive focus on volume, producing a significantly enriched conceptualization of the Big Data phenomenon.14 In short, if Laney arrived slightly late, he nevertheless brought more to the table.

3 Thoughts on the Present

So much for the past; now let’s move to the present. Big Data is now not only an entrenched term and ongoing phenomenon, but also an emerging discipline.

3.1 Big Data the Phenomenon

Big Data the phenomenon continues unabated. Indeed the necessity of grappling with Big Data, and the desirability of unlocking the information hidden within it, is now a key theme in all the sciences – arguably the key scientific theme of our times. Parts of my field of econometrics, to take a tiny example, are working furiously to develop methods for learning from the massive amount of tick-by-tick financial market data now available.15 In response to a question like “How big is your dataset?” in a financial econometric context, an answer like “90 observations on each of 10 variables” would have been common fifty years ago, but now it’s comically quaint. A modern answer is likely to be a file size rather than an observation count, and it’s more likely to be 200 GB than the 50 kB (say) of fifty years ago. And the explosion continues: the “big data” to which my 2000 discussion referred were most definitely the smallest of small data by today’s standards, and moreover, someone reading this in twenty years will surely laugh at my current implicit assertion that a 200 GB dataset is large.16

13META is now part of Gartner.
14http://goo.gl/Bo3GS.
15For a recent overview, see Andersen et al. (2012).
16And of course the assertion that 200 GB is large by today’s standards is with reference to my field of econometrics. In other disciplines like physics, 200 GB is already small. The large hadron collider experiments that led to discovery of the Higgs boson, for example, produce a petabyte of data (10^{15} bytes) \textit{per second}. Talk about volume and velocity!
3.2 Big Data the Discipline

Now consider the emerging Big Data discipline. It leaves me with mixed, but ultimately positive, feelings. At first pass it sounds like frivolous fluff, as do other information technology sub-disciplines with catchy names like “artificial intelligence,” “data mining” and “machine learning.” Indeed it’s hard to resist smirking when told that Big Data has now arrived as a new discipline and business, and that major firms are rushing to create new executive titles like “Vice President for Big Data.” But as I have argued, the phenomenon behind the term is very real, so it may be natural and desirable for a corresponding new discipline to emerge, whatever its executive titles.

It’s not obvious, however, that a new discipline is required, or that Big Data is a new discipline. Skeptics will argue that traditional disciplines like computer science, statistics and x-metrics are perfectly capable of confronting the new phenomenon, so that Big Data as a discipline is redundant, merely drawing a box around some traditional disciplines. But it’s hard not to notice that the whole of the emerging Big Data discipline seems greater than the sum of its parts. That is, by drawing on perspectives from a variety of traditional disciplines, Big Data as a discipline is not merely taking us to bigger traditional places. Rather, it’s taking us to wildly new places, unimaginable only a short time ago, ranging from cloud computing and associated massively-parallel algorithms, to methods for controlling false-discovery rates when testing millions of hypotheses, with much in between. Indeed one could argue that, in a landscape littered with failed attempts at interdisciplinary collaboration, Big Data is emerging as a major interdisciplinary triumph.

4 Conclusion

References

