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ABSTRACT. We consider a risk-neutral, price-taking and value-
maximizing firm under demand uncertainty. The firm chooses op-
timal investment strategies; the investment is irreversible. For a
wide family of non-Gaussian processes, we derive an explicit for-
mula for the boundary of the inaction region by using the Wiener-
Hopf factorization method. As an application of the method, we
suggest a Marshallian-like form for the investment rule. It is ap-
plicable when the price can move in both directions, and uses the
infimum process of the price instead of the price process itself. We
also write down an analytic formula for the expected level of the
capital stock in terms of the infimum and supremum processes.
Both results are new even for the Gaussian case.

1. INTRODUCTION

Consider a risk-neutral, competitive firm, maximizing its present value
net of installation cost of capital, whose manager contemplates an in-
crease of the capital stock. Assume that G, the production function
of the firm, is differentiable, increasing, concave and satisfies the Inada
conditions, and that investment is irreversible. For simplicity, we as-
sume that all the uncertainty is on the demand side, i.e. the price of a
unit of the firm’s output, P, is stochastic, and the marginal cost of the
capital, C'(K), is constant and normalized to unity. A discount rate,
r, is set to be constant as well.

I am thankful to A. Dixit, D. Duffie, J. M. Harrison and R. Rob for their dis-
cussion and comments. I am especially grateful to J.M. Harrison for pointing out a
mistake in Equation (1) in the first version of the paper. All remaining errors are
mine.
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In the previous formulations, the price process P = {P,} was as-
sumed to be Gaussian, the leading example being the log-normal pro-
cess: P, = exp X;, where X is a Gaussian process. However it is well
documented (see, for example, Yang and Brorsen (1992) or Deaton and
Laroque (1992)) that Gaussian models do not give very good fit to em-
pirical data since the latter exhibit significant skewness and kurtosis,
nothing to say about apparent fat tails of probability distribution func-
tions. To capture these effects, several remedies have been suggested,
the most popular ones being stochastic volatility models and jump-
diffusion models (see Duffie (1996) and Dixit and Pindyck (1996)).

Stochastic volatility models introduce additional stochastic factors
which are unobservable and hence the models are somewhat arbitrary.
More severely, the addition of further stochastic factors increases the
dimensionality of the problem and encumbers computation implemen-
tation. In order that jump volatility models can be fitted well to empir-
ical data, many jumps must be incorporated, which makes the models
not very efficient from both the analytical and computational points of
view.

During the 90th, in Finance literature, there have appeared several
types of non-Gaussian models which are

(i) capable of capturing non-Gaussian properties of real data,
(ii) almost as tractable as Gaussian models, and
(iii) can be applied to models in the theory of Investment under Un-
certainty.

The first goal of this paper is to introduce this type of models, which
belong to a class of Lévy processes (i.e. processes with stationary
independent increments; for rigorous definition, see e.g. Bertoin (1996)
and Sato (1999)), into the field of Real Options and show that they are
tractable so that explicit analytical results can be obtained. The second
goal is to demonstrate that in the non-Gaussian world, an adequate
technique is the Wiener-Hopf factorization method.

Several useful results emerge when one uses the Wiener-Hopf method.
The most operational one from the standpoint of economic applications
is a modified version of the Marshallian law. About a century ago,
Marshall suggested a rule that a firm should

wnwvest as long as the expected marginal revenue s not
less than the marginal cost of investment.

However, as Dixit and Pindyck (1996) pointed it out, this rule does not
take into consideration option-like characteristics of investment oppor-
tunities.
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If the price process is non-decreasing almost surely, the irreversibility
effect does not matter, and the Marshallian law is correct. Similarly, if
the price process is non-increasing almost surely in ¢, the Marshallian
law is evidently correct: the firm contemplating entering the market,
installs the initial capital according to the standard Marshallian rule.
Here, the Inada conditions at zero ensure that the entrance is always
optimal, and since the current market conditions can only deteriorate,
the firm will never increase the capital stock further. Thus in the sequel,
we consider only processes, when the price can move in both directions
with non-zero probability'. We analyze the optimal investment rule for
a firm, which has too much capital for a current price level, since it
suffered an adverse shock in the past. Should the price increase, it may
become optimal to increase the capital. The methods we introduce in
this paper allow us to restate the Marshallian law as follows. Starting
with the original price process, define a new process, called the infimum
process for the price of the firm’s output: N; = info<;<; P;. Then H(K),
the current level of the price, which triggers the new investment for the
firm, is determined from

(1) E [ /0 T e TtNGH (Kt | No = H(K)| = C'(K),

i.e., this is the same Marshallian law but with the infimum process
started at the current level of the price instead of the initial price
process. Thus, the correct investment rule is:

in the formula for the profit function, replace the price
process with the infimum process started at the current
level of the price and invest as long as the expected mar-
ginal revenue is not less than the marginal cost of in-
vestment.

Notice that this investment rule reflects the “bad news principle”,
which was first spelled out by Bernanke (1983). The critical price
which triggers new investment depends on downward moves, because
the ability to avoid the consequences of “bad news” leads us to wait.
The main advantage of our investment rule is that it obviates the need
to introduce a correction factor, which solves the so-called “fundamen-
tal quadratic” equation, like in Dixit and Pindyck (1996). In other
words, the firm’s manager may remain in the Marshallian world, pro-
vided she has in mind infimum processes instead of real ones.

IThis assumption was missing from the first draft of the paper, and I am grateful
to J. M. Harrison for pointing out that the corrected Marshallian law does not hold
for a deterministic process with a negative drift.
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This implies, in particular, that the initial Marshallian law is the cor-
rect prescription either for a very gloomy world where there is no hope
for future price increases and hence, for further increases of the capital,
or for very cheerful one, where only price increases are anticipated.

The suggested form shows that in making the investment decisions
under uncertainty, the anticipation about future negative shocks mostly
matter. In addition, it allows us to separate two effects of the increas-
ing uncertainty on the capital accumulation, working in the opposite
directions: the increase of the downward uncertainty, measured by the
infimum process, increases the investment threshold thereby decreasing
the optimal level of the capital stock, but the increase of the upward un-
certainty, measured by an increasing function of the supremum process,
My = supy<,<; P, increases the expected capital stock each instant the
investment threshold is crossed. We obtain an analytical formula for
the expected value E[K;| of the capital stock at time ¢, K;, in which
these contributions are factored out. We assume that the firm is new-
born, the price process P starts at Py = 1, the marginal cost is constant,
and normalized to unity, and the production function is G(K) = dK?,
where 0 < § < 1. Then

(2) E[K)] = (0aW )/C=OW, (v),

where W_ and W, (t) are determined by the infimum process and supre-
mum one, respectively:

+o0o
WzE[/ e " Nydt | Ny =11,
0

W (t) = B[M" | My =1];

both processes are assumed to be non-trivial. For a similar factorization
formula, in different terms, in a model of a firm which chooses both
capital and labor under the Gaussian process, see Abel and Eberly
(1999). As in Abel and Eberly (1999), we obtain explicit formulas for
W_ and W, (t); the formula for W, (¢) is fairly complicated but we
show that for large ¢ a good approximate formula is valid

W, (t) = HE(co)e + O(e),

where H F(oco) is given by a much simpler expression than W, (¢) itself,
€ > 0 is arbitrary, and ¢ = ¢t~ 'In E[Ptl/(l_o) | Py = 1]; a is assumed
positive. If the last condition fails, then in the model of the completely
reversible investment the expected level of the capital decreases with
time. We study the dependence of E[K;], W_, W, (t), a and HE(c0)
on parameters of the process.
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Following Abel and Eberly (1999), we compare (2) with the corre-
sponding formula for the capital accumulation in the case of completely
reversible investment

EIKf] = (0dW)/=OW (1),
where

+o0
WE=F [/ e Pdt | Py=1|,
0

W) = B[P0 | Py=1] = e,
by considering the ratio of the expected levels of accumulated capital

| BIK)
") = BIRA]

=UC-HE(t),
where

UC = (W_/Wh/a=0)

is the user-cost effect, and

e - EMYO 0y = 1
()_ 1/(1-9) _
E[P, | Py =1]

— the hangover effect of the irreversibility, and study how both these
effects and the ratio x(t) itself depend on parameters of the process.
Clearly, UC < 1 (unless the process is non-decreasing), and HE(t) > 1
(unless the process is non-increasing), so the both effects work in the
opposite directions, and the joint effect on the capital accumulation is
ambiguous: k(t) can be larger or smaller than 1, depending on param-
eters of the process.

It is worth stressing again that the method suggested here not only
provides a useful shortcut in the Gaussian case, which has already been
worked out with the help of different methods, but also in the non-
Gaussian case, where the investment rule has not been suggested so far,
and the capital accumulation has not been studied. It can be shown,
that similar arguments apply when one considers an investor assessing
a new project or a firm entering the market; or a firm, planning the exit
from the market; in all cases, the results can be formulated in terms of
the supremum and infimum processes. To sum up, we may conclude
that

the uncertainty relevant to tnvestment decision-making
15 better represented by a pair: supremum—infimum pro-
cesses than the process itself.
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This implies that attempts to find just one proxy for the uncertainty
are hopeless and explains why the influence of the uncertainty is am-
biguous.

Now we are going to explain in more detail the specifics of the new
approach. The first thing that must be said about realistic models for
shocks is that jumps of essentially any size have to be admitted, and
hence the distribution of jumps should be described by an appropriate
density. The concept of the density of jumps is well-defined for Lévy
processes. It is denoted F(dx) and called the Lévy density of a Lévy
process X;. The process can be uniquely defined by its generating
triplet (02, b, F(dz)), where o is the variance of the Gaussian diffusion
component of the process, b is the drift, and the Lévy density F(dz)
must satisfy

+o0
/ min{1, 2°} F(dz) < +oc.

o
Notice that the process is Gaussian if and only if the Lévy density is
zero. If the variance 02 = 0, then we have a pure non-Gaussian process.
Equivalently, a process can be defined by the characteristic expo-
nent, v, which appears in the formula E[e*Xt] = ¢ ®(*) The Lévy-
Khintchine formula

2 +o0
(3) (k)= %/ﬁ — bk +/ (1 — €™ +ikyly<i(y)) F(dy)
relates the characteristic exponent and the generating triplet (see e.g.
Bertoin (1996) and Sato (1999)).

The class of Lévy processes includes the Brownian motion and stable
Lévy processes. We have pointed out already several disadvantages of
the former, and the latter suggested as a model for stock returns by
Mandelbrodt (1963) (see also Fama (1965)), are inadequate because
their PDFs have too fat tails (polynomially decaying) and infinite sec-
ond moments. Much more realistic models can be obtained with expo-
nentially decaying Lévy densities, having a polynomial singularity at
the origin, and several groups of researchers used different models of
this sort in empirical studies of Financial Markets (see e.g. Barndorff-
Nielsen (1998), Cont et al (1997), Eberlein et al (1998) and Madan et
al (1999)). In Boyarchenko and Levendorskii (1999, 2000b, 2000c), we
described the main common properties these processes satisfy, and in-
troduced a general class containing all of them as special cases®. We will

2We used the name Generalized Truncated Lévy Processes then but recently,
Barndorff-Nielsen and Levendorskii (2000) introduced a similar class of Feller pro-
cesses, and suggested to call them regular Feller-Lévy processes of exponential type
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show that this family of processes is analytically tractable for problems
of investment under uncertainty.

We are going to solve the firm’s problem here by using essentially
the same approach as in Boyarchenko and Levendorskii (2000a, 2000b),
where the optimal exercise prices and rational prices of perpetual Amer-
ican options have been calculated; the formula (2) for the capital ac-
cumulation is an easy corollary. In the above paper, first, we establish
some general properties of the price of the option, next we take any
candidate for the exercise price and calculate the corresponding candi-
date for the price of the option by applying the Wiener-Hopf method,
then we show that there is only one candidate, for which certain con-
ditions can be satisfied, and finally, all the conditions are verified for
this candidate.?

The aforementioned conditions have been known for the optimal
stopping problem for perpetual American options for a long time. Here
to solve the firm’s problem we use sufficient conditions derived for the
case of a general Markov process in Oksendal (2000), who applied them
to diffusions in the one-dimensional case. We apply the same conditions
to the case of regular Lévy processes of exponential type.

The rest of the paper is organized as follows. In Section 2, we provide
the definition of the class of regular Lévy processes of exponential type
together with some examples. In Section 3, the firm’s problem for a
general Lévy process is solved by using the Wiener-Hopf factorization
theorem in a general stochastic form (Sato 1999), modulo some tech-
nical conditions, which are verified in the Appendix for regular Lévy
processes of exponential type. We show that in the Gaussian case, our
formula for the investment threshold coincides with the one in Dixit
and Pindyck (1996).

The result makes sense for any Lévy process, and it is plausible that
it can be proven in the full generality. On the other hand, the results
obtained in this full generality are essentially formulated in terms of
stochastic integrals of the supremum and infimum processes for the
underlying process, and hence can in no case be regarded as final. Still,
the stochastic version of the result allows one to state a modification
of the Marshallian law.

In Section 4, we study the capital accumulation. In Section 5, we dis-
cuss numerical results, and possible applications and extensions of the

and replace the name Generalized Truncated Lévy Processes with a new name
regular Lévy processes of exponential type.

3Notice that in exactly the same way one can solve corresponding problems in
Real Options theory.
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model. Section 6 concludes. Explicit formulas (involving Riemann not
stochastic integrals) for the investment threshold, the capital accumu-
lation and the user-cost and hangover effects are derived in the Appen-
dix by using analytical representation of the factors in the Wiener-Hopf
factorization formula.

2. REGULAR LEVY PROCESSES OF EXPONENTIAL TYPE

Probably, the most natural way to explain why one should expect
the appearance of non-Gaussian Lévy processes in economic reality, is
a concept of the random business time. One may easily notice that
relatively calm periods of business activity are randomly followed by
the ones of hectic activity, so one may presume that the time process
relevant for economics is not a usual one, and must be considered as a
stochastic process, call it Z; (for more discussion of this concept, see
Geman, Madan and Yor* (1998)). So, if one believes that underly-
ing process for the logarithm of the price of a unit of the output is a
Brownian motion in the business time, one should use as a real pro-
cess Xy = Yz, where Y; is the Brownian motion. In order that this
construction could work, Z; must be a subordinator, i.e. an increasing
process on R, which trajectories do not reach infinity in the finite
time almost surely (for the rigorous definition, see Bertoin (1996) and
Sato (1999)). Let ¥ be its Laplace exponent:

E[e—uZt] — e—t\II(u)'

Let Y; be a Lévy process with the characteristic exponent %, in-
dependent of Z;. Then (see e.g. Theorem 30.1 in Sato (1999)) a
process X; = Yz, is a Lévy process with the characteristic exponent

¢(k) = ¥ (Yo(k))-
By applying this construction with a subordinator having the Laplace
exponent W(u) = (d + u)*/? — d"/?, where d > 0, v € (0,2) and ; - a

—a

Brownian motion with the characteristic exponent t(§) = %-£> — ib§
— we obtain a process with the characteristic exponent

o2 v/2
o(k) = <d+ 7132 - ibk) e

4As early as in 1973, Clark (1973) suggested that the distribution of the price
change is subordinate to a normal distribution; he used the discrete time model.
Geman, Madan and Yor used essentially the same concept of random business time
in the continuous time model.
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By making simple algebraic transformations and introducing new pa-
rameters, we can derive

o(k) = d[(a” — (B+1k)*)"? — (o® - )",

where 6 > 0,a > |B|. Finally, by adding the drift, we arrive at a
characteristic exponent

(4) b(k) = —ipk + 0[(a® — (B +ik)2)"/? = (o® = B2)"/?]

When v = 1, (4) becomes the characteristic exponent of the Normal
Inverse Gaussian process constructed by Barndorff-Nielsen (1998).

The a — 3 describes the rate of exponential decay of the right tails
of PDF, and —a — 3 describes the rate of exponential decay of the left
tails of PDF p;(z), in the sense that

Inpy(z) ~ —(a — Bz, £ — 400,

and
Inpi(z) ~ —(—a— Bz, x = —o0.

Processes with exponentially decaying tails can be constructed without
subordination as well, by using the Lévy-Khintchine formula directly.
For instance, with a choice of the Lévy measure

5) F(dz) = (cp23" e + c_aZV7le ") da,

where . = max{+z,0},v € (0,2), v # 1, and c4, A\, —A_ are positive
parameters, we obtain characteristic exponents of the form

" Y(k) = —ipk + i I'(—v) [N} — (A +ik)"]
+eD(=)[(=A)" = (=A== ik)"],

where [' is the Gamma-function. With A, = —\_, these are character-
istic exponents of processes of Koponen (1995) family; this restriction
makes the model unrealistic for Economics and Finance since empirical
PDF have usually fatter left tails than the right ones. A modification
of Koponen’s family with A\, # —A_ was introduced in Boyarchenko
and Levendorskii (1999, 2000a). Below, we will use (6) with ¢, = c_
since the case ¢, # c_ corresponds to processes with PDF asymmetric
in the central part, which contradicts empirical data.

One can use (5) with v = 0,1 as well but the characteristic expo-
nents will be different from (6) then (see Boyarchenko and Levendorskii
(1999)); with v = 0, one obtains the characteristic exponents of the
Variance Gamma Processes used by Madan and co-authors in a series
of papers during 90th — see Madan et all (1998) and the bibliography
therein.
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In Boyarchenko and Levendorskii (1999), it has been noticed that
the characteristic exponents (4) and (6), and the ones of Hyperbolic
Processes used by Eberlein et al (1998), exhibit the following common
features (a definition, which differs a little from the original one, is used
here in order to simplify the formulation):

a) the characteristic exponent, 1, admits a representation

(7) (k) = —ipk + ¢(k),
where p € R, and ¢ satisfies the following two conditions:

b) there exist A < —1 < 0 < A\, such that ¢ admits the analytic con-
tinuation into the strip Sk € (A_, A, ) and the continuous extension
into the closed strip Sk € [A_, A\,];

c) there exist ¢ > 0,C > 0,v € (0,2] and v; < v such that for all £ in
the strip Sk € (A, Ay],

(8) |6(k) — clkl’| < CQQ + |k])*™.

Parameter v is called the order of the process. In Boyarchenko and
Levendorskii (1999), it was shown that if v > 1 or u = 0, v coincides
with the order of an operator in the Lévy-analog of the Black-Scholes
equation, when stock returns follow the process X; with the character-
istic exponent 1.

Following the suggestion made by Barndorff-Nielsen and Levendorskii
(2000), we will call a process with the characteristic exponent satisfying
properties a)—c) a regular Lévy process of the order v and the expo-
nential type [A_, A;]. By using the Lévy-Khintchine formula (3) and
the formula for the action of the infinitesimal generator, L, of the Lévy
process X;:

o2
Lu(z) = ?u"(x) + bu'(x)
(9) +oo
[ (ulo+ )~ ule) ~ ' @)1a(0) Fldy),
—0oQ
one easily computes the action of the infinitesimal generator on oscil-
lating exponents:

(10) Le™*™ = —ap(k)e™.
By using the Fourier transform

u(k) = /_+00 e *oy(z)dx,

o0

together with (9) and (10), we can define the action of L in a space of
sufficiently good functions, e.g. C'*° functions decaying at the infinity
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faster than any polynomial, together with all their derivatives, by
+00

(11) Lu(z) = (2r)"! / e (k) i) dk.

Equation (11) means that —L is a pseudo-differential operator (PDO)
with the symbol ¢(k), which is holomorphic in the strip Sk € (A_, \})
and admits the continuous extension up to the boundary of the strip,
and the very segment [A_, A,] enters into the definition of a regular
Lévy process of exponential type. If A is a PDO with the symbol «,
one writes A = a(x, D), and so we will write L = —(D); and use this
notation from now on.’

3. THE INVESTMENT THRESHOLD

As we have already pointed out in the Introduction, we consider a
process X with trajectories decreasing and increasing with non-zero
probability, i.e. its probability density u'(dz) is non-zero on (0,+00)
and on (—00,0): u'(0,+00) > 0, and p'(—00,0) > 0, for all ¢ > 0.
This condition is satisfied for a regular Lévy process unless it is a pure
drift. One can see this by contradiction: if u*(0,4+00) = 0, then from
the definition of the characteristic exponent E[e*X¢] = e=®(*) it follows
that ¢ admits the analytic continuation into the lower half-plane. The
characteristic exponent of a non-trivial regular Lévy process of order
v € (0,2) does not satisfy this property since ¢(k) ~ c|k|”, as k — oo
in the strip Sk € [A_, ;] — see (8). If the order of the process v = 2,
the process contains non-trivial Gaussian component, but in this case,
p(0, +00) > 0 as well. Similarly, u*(—o0,0) > 0.

Suppose, h = h(K) defines the boundary of the inaction region. Set

+00
g(K,z) = E” [/ e (MG (K) — 1)1 (—oonx))(Xe)dt] -
0

A general characterization result for the boundary of the inaction re-
gion, obtained for the case of a general strong Markov process in Ok-
sendal (2000) (see Definition 3.3 and sufficient conditions following it
in the above paper), in our case can be formulated as follows:
Lemma 1. Let the following conditions be satisfied:

1) g(K,2) <0, if v < h(K);

2) g(K,2) = 0, if & = h(K);

3) if e*G'(K) —r <0, then z < h(K);

4) h(Kl) > h(KQ), Zle > K,

Then h = h(K) is the boundary of the inaction region.

SFor the theory of pseudo-differential operators, see e.g. Eskin (1973).
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To apply 1)-4), introduce
FK,z) = (e"G'(K) — 1) L(—oon(xc)) (%),

notice that g(K, z) = (R, f)(K, z) is the resolvent of f (K is assumed to
be fixed here, and the resolvent operator acts with respect to the second
variable), and use the following important result on the resolvent and
generator (see Breiman (1968), p.342):

(12) (r—L)g(K,z) = f(K,z), z<Hh(K),
and
(13) g(K,z) =0, x> h(K).

The result is valid provided g belongs to the domain of L.

Below we are going to consider the corresponding Wiener-Hopf equa-
tion on (—oo, h(K)), i.e. (12) subject to (13), in appropriate Sobolev
spaces of generalized functions (for details, see the Appendix). First
we will find the unique solution in the sense of generalized functions for
arbitrary h(K), after that we will show that there is only one choice
of a curve z = h(K), which gives ¢g(K, -) in the domain of L for all K,
and these h and g satisfy 1)-4).

The standard tool of solving the Wiener-Hopf equation is the Wiener-
Hopf factorization method. It uses the Wiener-Hopf factorization of
r + 1(k), the symbol of r — L, the operator in (12). We formulate the
factorization theorem from Sato (1999) for a general Lévy process first,
in a form which does not give computationally effective formulas but
is sufficient for the proof of our result; an explicit form will be given in
the Appendix.

Sato (1999) uses a different definition of the characteristic exponent
E[e*Xt] = k) hence 1) = 1 in Sato (1999) and 1 here are related
by ¥s(k) = — (k). This explains the difference in formulation between
Theorem 45.2 in Sato (1999) and its version below.

Theorem 2. Let r > 0 be fized and let u*(dx) be the probability density
Of Xt.

There exists a unique pair of infinitely divisible distributions p and
p, having drift 0 supported on (—o0, 0] and [0, +00), respectively, such
that their Fourier transforms ¢ (k) and ¢, (k) satisfy

(14) r(r+ (k)™ = ¢ (k)¢; (k), k€R.

The functions ¢ (k) have the following representations

610 =exp | [0t [ (e~ )
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67 (k) = exp [ /0 T ey / " (@ 1)t (de)

—0oQ

If a solution to the Wiener-Hopf equation (12) exists and is unique, it
is given by the formula

(15) g =110 (D)1(—oonx) ¢, (D) f

(see e.g. Eskin (1973)). For some operators and spaces of generalized
functions, the solution of the Wiener-Hopf equation may not exist or
be non-unique but this not the case here as it will be shown in the
Appendix.

Since ¢, is the characteristic function of the probability distribution
p, supported at [0, +00), we can conclude that, first,

o)) = [ " pr (e — ) F(y)dy

o0

(it follows from the definition of PDO and the fact that under the
Fourier transform, the convolution p, * f of two functions p, and f,
i.e. an expression on the right hand side, becomes the multiplication

of their Fourier images: m = z;,:f), and second, for z < h(K), the
right hand side is equal to

/ " pr(e— ) fly)dy = / " pr(@ — )G (K) — r)dy =

—0o0 —0oQ

= / Oopr_(fﬂ —y)(e’G(K) = r)dy = ¢, (=i))G'(K)e" —r-.

—0oQ

By substituting into (15), we obtain

(16) g(Ka x) = T_I(b;nl—(D)l(foo,h(K)]wK(x):

where wi (z) = ¢, (—i)G'(K)e® — r, or equivalently,
h(K)

(a7 o(t,0) =7 [ bt o - yuclw)i.

Determine h(K) as a unique solution to the equation wg(z) =0, i.e.

(18) h(K) = In[r/(¢, (=i)G'(K))].

It will be shown in the Appendix, that with this choice of h(K), g(K, z)
belongs to the domain of L. Further, wg is continuous, negative on
on (—oo, h(K)) and vanishes at the end point. From (17), g(K, ) is
non-positive, the PDF p; being non-negative, and vanishes at the end
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point. Hence, conditions 1)-2) of Lemma 1 are satisfied; 4) follows
since G'(K) is decreasing, and to verify 3), we notice that

¢, (—1) = /_+oopr(a:)ewdx =

o0

+o0 +0o0
= / p, (z)e %dx < / p, (z)dx =1,
0 0

since p, is the probability distribution, and therefore from e*G'(K) —
r < 0, it follows that e*G'(K)¢, (—i) —r < 0. Since with z = h(K)
the last inequality turns into equality, we have z < h(K).

We have proven (modulo verification of several technical points which
are left for the Appendix), that the boundary = h(K) of the inaction

region is determined by
¢, (—1)e" G (K) = .

Now we are going to explain the meaning of the abstract results pre-
sented above. Recall that r on the right hand side of the last equation
is, in fact, r times C'(K), the marginal cost of capital, which was as-
sumed constant and normalized to 1, hence by dividing by r, we get

(19) r o (—1)e" TG (K) = C'(K).

Here comes the crucial step: define the infimum process
ny = info<,<; X;. By using the formula (45.8) in Sato (1999):

r'¢ (k) =E [/ e ekt |
0 |
with £ = —1, we conclude that

r g, (—i)=F [/ e "teMdt|
0

and rewrite (19) in the form
E [ / M G KV | o = h(K)] — C'(K).
0

This is exactly (1), the main result stated in the Introduction.

To conclude this Section, we are going to demonstrate that in the
case of Gaussian processes our investment rule gives the prescription
that is exactly the same as in Dixit and Pindyck (1996). Let X; be the
Brownian motion with the variance o? and drift b. First, we compute
the investment threshold by using the Marshallian law:

G'(K)H(K)E| / TPt | Py = 1] = C'(K),
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or equivalently,

H(K)=(r—b— %)ggg

In Dixit and Pindyck (1996), the correction to the Marshallian law is
derived by using the so-called fundamental quadratic

2
%)\2+b)\—r:0

which comes from

o d*f df
oI Y r—p
2 dz? + dr ’
applied to exp(Az). In our notation, the last equation is just
(L—r)f=0.

Recall that
Let = —y(k)eiet,

and apply it with ¢k = A which is k = —¢A:
Le* = —p(—i))e.

We obtain that the fundamental quadratic can be rewritten as
—(r+¢(—iX)) = 0.

Let 8, > 0 > _ be the roots of the fundamental quadratic. Then the
characteristic polynomial is equal to

(- B0 5)

If we substitute A = ik here, we obtain
2

(k) = = ik = )ik — ) =

o . .
= E(,B+ — ik)(=B- + ik).
Introduce the correction factor as in Dixit and Pindyck (1996):

_ B o? C'(K)
H(K) = 6+_1(7“—b—5)m,
rewrite as
(20) T_IH(K) _ B—F r—b— % C,(K)

Br—1 r G'(K)’

and compare the result with the result of the present paper.
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The factors in the Wiener-Hopf factorization (14) are uniquely de-
fined by requirements:

é, (#;) is holomorphic in the lower (upper) half-plane and does
not vanish there (due to the Liouville theorem, this fixes factors up to
scalar multiples);

¢E(0) = 1, since they are characteristic functions of probability den-
sities.

Now it is evident that

B+ - —B-
21 (k) = k)= ——.
Therefore the factor in Dixit-Pindyck formula (20) can be written as
Be  ru(-i) 1

Gy T = e e (e ()T =

By (19), the investment prescription in the present paper is given by

1 C'(K)
¢, (—1) G'(K)’
whence it is clear that the investment rules are identical.

We see that the factor (¢, (—7))~! “governs” the investment rule for
the case of irreversible investment. Similarly, it can be shown that in

the case of irreversible disinvestment, the factor (¢, (—i)) ' governs.
We also know that their product is just the factor

r'H(K) =

r 4+ Y (—1) _r—b—%2

T T

in the Marshallian law, if we re-write the latter as

(22) rLH(K) = | br_ 7. ggg

The last fact implies that the Marshallian law is correct when one can
costlessly and continuously adjust ones capital in any direction (and
hence, the investment and disinvestment are absolutely reversible).
From the above exercise, we can notice that in the case of irreversible
investment (respectively, disinvestment), the correction factor to the
Marshallian law is ¢ (—i) (respectively, ¢, (—i)), which is the inverse
factor in the correct rule for irreversible disinvestment (respectively,
investment).
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4. CAPITAL ACCUMULATION

Consider the capital accumulation of the firm born at ¢ = 0 with
the Cobb-Douglas production function G(K) = dK?; the marginal
cost is normalized to unity, both the infimum and supremum processes
are non-trivial, and the initial level of the price is normalized to 1:
P, = 1. Clearly, the capital stock increases when (and only when)
the supremum process jumps, therefore from (18) we conclude that the
capital stock evolves according to

Myr=\ g (—i) = (dOKI=")".
By solving w.r.t. K;:
Ky = (dor =g (=) /00y

T

and applying the expectation operator, we obtain (2). The first factor
in (2), W_, is expressed via the factor ¢, (—i) in the Wiener-Hopf
factorization formula, and the second factor,

W, (t) = Ele“™ | mg = 0],

where m; = supy<,<; X, and w = 1/(1 —0), can be found from the for-
mula for its Laplace transform (see the equation (45.7) in Sato (1999)):

(23) r ot (—iw) = /0+<><> e "W (t)dt.

In order that (23) be applicable, 7 must be so large that the integral in
the RHS is finite, or equivalently, ¢, (k) must admit the analytic con-
tinuation into the half-plane &%k > —w and the continuous extension
up to the boundary Sk = —w, and be positive at the point £ = —iw.
Since ¢, (k) is holomorphic in the lower half-plane Sk < 0, continuous
in the closed half-plane &k < 0, does not vanish there, and is positive
on the imaginary negative half-axis, we can use (14) and obtain the
holomorphic continuation of ¢ (k) into the strip where ¢ is holomor-
phic:

(24) rto (k) = (r+ (k) oy (k)7

Suppose, —iw is inside the strip (in real-world situations, it is usually
the case since # = 0.2 — 0.4, hence w < 2, and the width of the strip is
much greater than 10 — see e.g. Eberlein et al. (1998)), therefore from
(24), we conclude that (23) is applicable if

(25) (—iw) +1 > 0.
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This is a restriction on admissible values of parameters of the process.
We also impose the restriction

(26) (—iw) <0,
which is a necessary and sufficient condition for the expected level of

the capital in the model of the completely reversible investment to grow
with time since

(27) E[P? | Py =1] = E[e“** | Xy = 0] = ™,
where a = —t(—iw). Apply the inverse Laplace transform to (23) and
use (24); the result is

0+1%00

28) Wil = (2mi)t [ (s p(iw)) 6 (—w)) s,
for any o > r. From the equation (45.8) in Sato (1999), we conclude
that

o, (—iw) = 8/O+00 e St E[e“™]dt

is well-defined and holomorphic w.r.t. s in the half-plane s > 0, and
does not vanish there. Hence, the integrand in (28) is well-defined and
holomorphic w.r.t. s in the half-plane s > 0, with the only pole at
s = a — see (26). Clearly, the pole is simple, and therefore by shifting
the line of integration to the left and using the residue theorem (its use
can be justified for RLPE), we obtain

(29) W, (t) = e HE(co) + R(t),
where HE(o0) = 1/¢, (—iw), and

o1+100

(30)  R(t) = (2mi)”" / (s + (—iw)) " (65 (—iw)) "ds,

01—100
for any o1 € (0,a). In the Appendix, we show that for RLPE, there
exists C' = C(o7) such that

(31) |R(t)| < Ce™'t7 1.
Hence, we can rewrite (29) as
(32) W, (t) = HE(0)e™ + O(e”"), t — +oo.

In the model of the completely reversible investment, the Marshallian
law (22) is correct. Moreover, the capital stock changes each time the
price changes (i.e., H(K) = P), therefore
W = (db(r + (i) )"
and
WE(t) = e™.
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Hence for the ratio of expected levels of the accumulated capital in the
models of the irreversible investment and the reversible one, we obtain

(33) K(t) = K(00) + O(e~ V),
for any oy > 0, where x(0c0) = UC - HE(>0), and
(34) ve = (oSl ) =i

Numerical results will be given in Section 5, and we conclude the section
by deriving explicit formulas for the case of the Gaussian process with
the variance 0 and the drift . For s > 0, let 84(s) be positive and
negative roots of the “fundamental quadratic”

2
TN 4bA—s5=0,
2
i.e.
Bi(s) = (=b£ VI? + 2502%) /0.

We have
a = —1(—iw) = o*w?/2 + bw,

—B_(a) = (b + Vb + 202bw + o*w?) /o? = (2b+ o*w) /02,
therefore by using (21), we obtain

e - (021

B+
B —B_(a) \ " _ 2b+20%
HE(eo) = (—ﬁ(a) +w) T 2t ok

5. POSSIBLE APPLICATIONS AND NUMERICAL EXAMPLES

One of the straightforward applications of the model presented here
is effective capital budgeting which is important to corporate survival.
The real options literature to date has provided many insights into cap-
ital budgeting decision-making. The major result of the existing mod-
els of irreversible investment under uncertainty is that irreversibility
increases the hurdle that projects must clear in order to be profitably
undertaken.

Unfortunately, the current real option models are not widely used
in corporate decision making. Among one of the primary reasons for
that, Lander and Pinches (1999) point out that many of the required
modeling assumptions are often violated in practical real options ap-
plications. In particular, this concerns the choice of the stochastic
process for the underlying variable. As we already mentioned it in the
Introduction, even though the normality of the process is rejected by
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empirical evidence, Gaussian processes are often used in the investment
literature.

Due to the above, the first question which one may ask is how the
investment threshold changes if one considers a regular Lévy process
instead of a Gaussian process with the same first and second moments
p1,a¢ and 1o Ay of observed PDF pa(x) of the process X, for a chosen
small time interval At; for small At, py a,/At and g A/ At are good
proxies for the first two coefficients in the Taylor expansion of the
characteristic exponent (k) at k = 0; they can be used to infer the
parameters of a RLPE process (in the Gaussian modeling, they are the
drift and variance).

To answer this question, we calculated the investment threshold for
different regular Lévy processes of exponential type with the same lim-
its (i.e. “drift” and “variance”)

(35) lAig(l)Ml,At/Ata and lAig(l)MZ,At/Ata

and we found that usually the threshold decreases (insignificantly) as
we replace the Gaussian process with a regular Lévy processes of ex-
ponential type with the same “drift” and “variance”; only for “very
non-Gaussian” processes of order close to zero we found sets of param-
eters for which the threshold increased. This result can be explained as
follows. When one fits the Gaussian curve to real PDF, one is bound
to disregard the extreme events, and so, in fact, the “drift” and “vari-
ance” for a Gaussian process inferred from the real data do not coincide
with the ones in (35) which one obtains by using a larger portion of
rare events than in the Gaussian modeling: (35) based on the larger
data set, gives larger value of the variance and hence it is incorrect to
compare Gaussian processes and non-Gaussian ones by using the first
two moments — or even the first 3 or 4 moments, since all of them are
suitable tools of describing the behavior of PDF near zero, being the
coefficients of the Taylor series at zero.

Hence, much more natural question is: what can be an effect of
taking into account more and more data on rare events. To answer
this question, we consider a series of truncated Lévy processes with
the characteristic exponent (6); we fix » = 0.06, 4 = —0.05,¢ = ¢_ =
cy = 0.15,v = 1.6, and see how the moments limayo pjat/At, j =
2,3,4 (“variance”, “skewness” and “kurtosis”) of the process and the
investment threshold change with truncation parameters A, and A_,
which describe the fatness of the left and the right tail, respectively.

(Insert Fig.1 - Fig.4 here.)
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The choice v = 1.6 means that near zero, the PDF does not differ
too much from a Gaussian one, and the decreasing of A, (respectively,
—)\_) can be interpreted as the taking into account the more and more
of negative (respectively, positive) large jumps. We believe that the
result of this computational experiment is instructive. We allow A_
to vary from —30 to —22, and A; from —A_ to —A_ — 8, and we see
that though the variance does not change much, the threshold changes
more than four-fold; in particular, when A\_ = —30 remains fixed and
A4 decreases from 30 to 22, the variance increases only by 7 percent,
from 0.171 to 0.182, kurtosis by 55 percent, from 0.106 x 1073 to 0.165 x
103, and skewness changes from 0 to —0.0006, whereas the threshold
increases by 423 percent. So, even this relatively small skewness and
insignificant increase of variance (and a bit more significant increase
of kurtosis), which can easily be disregarded in practice since they
come mostly from the tails of PDF, can have a dramatic impact on the
investment threshold.

The results of the numerical example highlight the importance of
obtaining the correct estimates for the parameters of a regular Lévy
process governing the underlying stochastic variable. In principle, it is
possible to infer these parameters from the moments (up to the fourth
order) of the corresponding probability distribution. However, this will
provide a good fit for the central part of the distribution only, but not
for the tails of the distribution. To obtain parameter estimates fitting
the whole distribution, more sophisticated methods should be used
(see, e.g. Barndorff-Nielsen and Shepard (2000) and the bibliography
there).

Next problem examined in our model is the optimal amount of in-
vestment and long-run accumulation of capital. As it was stressed by
Hubbard (1994), the benchmark models of investment under uncer-
tainty introduced by Dixit and Pindyck (1996), do not suggest specific
predictions about the level of investment. Since the investment rule it-
self is not observable, one has to use the data on investment and capital
stock to evaluate investment models; this shows the importance of the-
oretical results on the long-run capital accumulation. Abel and Eberly
(1999) examine the behavior of the capital stock in the long run and
calculate explicitly the impacts of irreversibility and uncertainty on the
expected long-run capital stock. They assume that an exogenous de-
mand shock follows a geometric Brownian motion. Two types of effect
are revealed: the user cost effect, which tends to reduce the capital
stock, and the hangover effect, which arises because the irreversibility
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prevents a firm from selling capital when its marginal revenue prod-
uct is low. Neither of these effects dominates globally, so the effect of
increased uncertainty cannot be determined unambiguously.

Undoubtedly, the same problem has to be addressed in the case when
the underlying stochastic variable evolves according to a regular Lévy
process. Our formula (2), its realization (29) and corollaries (32)—(34)
allows one to give quantitative answers. Consider the same firm and
process as in the example for the investment threshold above, with
r = 0.06, # = 0.33 and d = /6 in the Cobb-Douglas function, ¢ =
0.15,v = 1.6, and Ay and —A_ varying from 10 to 30. Following
Abel and Eberly (1999), we determine the last parameter, p, from
the requirement that the expected rate of growth of the price remains
constant:

InE[P, | Py =1]/t = InE[eX* | Xo = 0]/t = —¢(—i);

we set —1p(—i) = 0.05, so that the requirement r + 1(—i) > 0 is satis-
fied. In Fig. 5-13, we plot, respectively, variance, skewness, kurtosis,
investment threshold, rate of the accumulation of the capital, user-cost
effect, long-run hangover effect, long-run capital accumulation ratio,
and expected capital accumulated during 10 years.

(Insert Fig.5 - Fig.13 here.)

The volatility is a convex decreasing function in (A;, —A_), and the
same holds for kurtosis, threshold, rate of capital accumulation, long-
run hangover effect, and accumulated capital; on the contrary, user-cost
effect and long-run capital accumulation ratio are concave increasing
functions. It is seen that in this model, the user-cost effect dominates
the long-run hangover effect, so that their product, the long-run capital
accumulation ratio, satisfies the properties of the former but not the
latter. Similarly, the effect of the decrease of the rate of accumulation
dominates the effect of the irreversibility measured by the long-run
capital accumulation ratio.

Now we consider errors which may arise, when one uses Gaussian
models in non-Gaussian situations. In both the non-Gaussian and
Gaussian models, we use the same expected rate of growth of the price,
and for each set of parameters, which define a non-Gaussian process
X; = In P, we take the Gaussian process with the same variance as
that of X;. Numerical examples show that typically, when the skew-
ness decreases, the threshold, the rate of growth of the capital and the
capital accumulation in non-Gaussian case decrease as compared to the
Gaussian case. In the example above these effects are not significant:
of order 1 percent or less, but there the process does not deviate too
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much from the Gaussian: the order of the process, v = 1.6, is close to
the Gaussian v = 2. Parameters Ay > 10 and —A_ > 10, and so the
tails of PDF decay as exp(—10|x|) or even faster.

In the next series of examples, we take » = 1.1, ¢ = 0.5, and change
A4 in a wider range from 2 to 30; A_ changes in the former range from
-30 to -10. So, here we allow for much fatter left tail. In Fig.14-19, we
plot the ratios of the thresholds, the rates of growth of the capital, user-
cost and hangover effects, and the capital accumulated in non-Gaussian
and Gaussian models. We see that though the investment threshold in
the non-Gaussian case decreases up to 15 percent, the rate of capital
accumulation is depressed by the same 15 percent, and the capital ac-
cumulated during 10 years by 13 percent. This means that though the
Gaussian model may be too pessimistic about the unobserved invest-
ment threshold, it certainly is too optimistic about observed quantities
like: the rate of capital accumulation and the capital accumulated.

(Insert Fig.14 - Fig.19 here.)

The real-world processes may deviate from Gaussian ones even more
(for instance, the left tail can be even fatter, and the figures clearly
show that with the further decrease in A, the capital accumulation
will be depressed much more). This example illustrates that the capital
accumulation is mainly depressed by the possibility of large downward
jumps, which is not taken into account properly by Gaussian models.

Notice that there is a conceptual problem of proxy measures of un-
certainty, which is not resolved so far even for investment models using
Gaussian processes (see discussion in Carruth, Dickerson and Henley
(2000)); our formulas (1)—(2) (and their analogs for disinvestment prob-
lems) suggest that the proper measure must be a couple of measures:
for the supremum and infimum of the process. As the technical proxy
in not too non-Gaussian situations, a pair volatility— the rate of the
decay of the left tail can be used. Usually it is the left tail that is fat,
and the rate of decay of the left tail gives us the probabilities of large
downward jumps. This suggests one more possible application of our
method.

The technique presented here can be applied to the problems of op-
timal capital structure, investment risk management and endogenous
default (detailed discussions of existing treatments of these problems
are given in Rogers (1999) and Zhou (1997)). Until recently, mod-
els of credit risk have relied almost exclusively on diffusion processes
to model the evolution of firm value (see, for example, Leland (1994)
or Leland and Toft (1996)). The diffusion approach predicts that the
credit spreads on corporate bonds tend to zero, as the maturity tends
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to zero, which contradicts the empirical results. To capture the basic
features of credit risk, it is necessary to allow for jumps; this can be
achieved by modeling the evolution of the value of a firm as a Lévy
process.

6. CONCLUSION

We suggested using a wide family of (non-Gaussian) regular Lévy
processes of exponential type in models of Investment under Uncer-
tainty. As an example, the problem of the gradual irreversible capacity
expansion has been solved, for the case when the price can move in
both directions with non-zero probability. It was shown that the result
can be formulated as the Marshallian law but with the infimum process
started at the current level of the price instead of the process for the
price of the output itself. As an example, we considered the case of the
Brownian Motion and recovered the optimal investment rule in Dixit
and Pindyck (1996). We also obtain a formula for the capital accu-
mulation, in the form of two factors, one depending on the infimum
process, and the other one on the supremum process. Following Abel
and Eberly (1999) we studied the effect of irreversibility by considering
the ratios of these factors in the completely irreversible and completely
reversible cases.

The main technical tool in the paper is the Wiener-Hopf factoriza-
tion method. The method can also be applied to other models of the
Investment under Uncertainty, for instance to entry and exit problems.
In relatively simple cases the answers can be expressed in terms of the
supremum and infimum processes; in more complicated cases of two
thresholds, first approximations to the thresholds can be expressed in
terms of these processes.

We produced a numerical example to show that if one fits a non-
Gaussian process non-accurately to data, serious mistakes in the in-
vestment decisions may result, and examples to study the effects of the
non-Gaussian uncertainty and irreversibility on the long-run accumula-
tion of the capital. The examples clearly show that the non-Gaussianity
makes the negative impact on the observed quantities like the rate of
capital accumulation and the capital accumulated but not on the un-
observed investment threshold.

More general regular Feller-Lévy processes of exponential type in-
troduced recently by Barndorff-Nielsen and Levendorskii (2000) can
also be used. (These processes generalize regular Lévy processes of ex-
ponential type in the same spirit as diffusion processes with variable
characteristics generalize the Brownian motion).
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APPENDIX A. EXPLICIT SOLUTIONS

We start with the derivation of explicit analytic formulas for the
factors in the Wiener-Hopf factorization formula for regular Lévy pro-
cesses of the order v € (0, 2] and the exponential type [A_, A;]. The for-
mulas having been obtained in Boyarchenko and Levendorskii (2000a,
2000Db), here they will be given in cases v € (1,2] and v € (0, 1], u = 0;
the case of v € (0,1] and pu # 0 leads to more involved constructions.
Notice that the case v = 2 includes Gaussian processes or allows for
Gaussian components.

To simplify the construction, we assume that A\ < —1 < 0 < Ay,
though the result obtains in the case A_ <0 <1 < Ay as well. It can
be shown (see Boyarchenko and Levendorskii (1999), Lemma 2.6) that
for any o, > 0, there exist € > 0 and 6 > 0 such that for any s in the
half-plane Rs > oy, and any k£ in the strip Sk € [—¢, €],

(36) R(s + (k) = o(1 + [k])”.

Set

(37) B(s, k) = ¢ ' (1 + k)7 (s + ¢(k)),
where ¢ > 0 is the constant in (8); then

(38) Jlim B(s,k) = 1.

Due to (36), b(s, k) = In B(s, k) is well-defined for Sk € [—¢, €] and s
in the half-plane Rs > 0;. For 7 > —e¢, 71 € (—¢,7) and real k, set

, i [TOTT b(s,1)
(39) b+(8,k + ’LT) = % /oo+iT1 mdl

Due to (8) and (38), the integral in (39) absolutely converges, and by
the Cauchy theorem, b, (s, k +i7) is independent of a choice of 7. For
T <€ m € (7,€) and real k, set

) 40041711
(40) b_(s,k+it) = _QL/ Mdl.
7

Finally, for £ in a half-plane +3k > Fe and the same s, set
(41) ax(s, k) = (1 Fik)"?exp by (s, k).

In Boyarchenko and Levendorskii (2000b), it has been shown that
a+(s, k) and ¢ (k) in Theorem 2 are related by

(42) 5 (k)™ = ax(s, k) /as(s,0).
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(for s > 05 clearly, both sides are holomorphic in the half-plane Rs > 0,
and hence, (42) holds in this half-plane). By using (40) with 7 €
(0, Ay), we obtain for any ¢ > 0

b (—io) = % — (140) " exp[b_(s,0) — b_(s, —io)]
ook (s, 1 b(s,1
=(1+0)"?exp [(27r2')1 /—oo—l—in ( (i,l ) _ —i(j,—)l) dl]
B B +oo+iT1 b(S, l)
— v/ — 7
= (L+o) e [ o)™ /;oo—l—in 1+ ia)dl] ’
and finally,

65 (—io)™! =
_ (1 + 0_)1//2 exp |:0(2ﬂ_)_1 /+00+m ]n[c—l(l + l2)—1//.2(5 + w(s,l))]dl:| .
—o0o+1iT1 l(l + ZO-)
Now we can substitute into the formula (18) for the investment thresh-
old in Section 3, and formulas HE(c0) = 1/¢, (—iw), (29)—(30) and
(33)-(34), and obtain explicit results.

It remains to verify some technical points in the proof in Section 3.
To simplify the consideration, we assume that there is no Gaussian
component, i.e. v < 2 (it may seem strange, but the presence of a
Gaussian component leads to some additional work).

Clearly, we may assume that for any ¢ > 0, g, a solution to the
problem (12)—(13), belongs to Ly(R) with an exponential weight e,
i.e. e*/2g € Ly(R). By making the change g(K,z) = e */%¢.(K, 1),
f(x) = e™*/2f,(K,z), multiplying (12) and (13) by €*/? and noticing
that e/2a(D)e™2¢/2 = a(D + i€/2), we obtain the following problem,
which is equivalent to (12)—(13):

(43) (r + (D +i€/2))g(K, ) = [(K,z), = <h(K),

(44) 9:(K,z) =0, x> h(K).

If € > 0 is small enough, f. € Ly(R). Hence, f. belongs to the Sobolev
space H~”(R). Since the factors a (k) grow at the infinity as |k[*/2, it
follows from general theorems in Chapter 7 of Eskin (1973), that the
solution to the problem (41)-(42) exists, and among the solutions, a
bounded one is unique. It is given by

(45) ge =178 (D +ie/2) (oo n(ic)$; (D + i€/2) e
Certainly, ¢ > 0 must be sufficiently small in order that (43) made

sense. By making the inverse substitution g.(K,z) = e*/?g(K,z) and
similarly for f., we obtain (15).
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With our choice of h(K), the Fourier image of vg = 1(_oonx Wk

decays at the infinity as |k|~? (and with any other choice, as |k|™1):
h(K)
k) = [ o ()G (K)e — )y

re—ikh(K)
(—ik)(1 —ik)"
Hence, from (16) and the fact that due to (39)-(42) ¢, (k) decays at
the infinity as |k| /2, we conclude that § decays at infinity as |k|~27*/2,
along the strip where (k) is holomorphic. Since r + 9 (k), the symbol
of r — L, grows as |k|” at the infinity (due to (8) and our assumptions
about v and p), and hence, the Fourier image of (r — L)g decays at
the infinity as |k|~2*¥/2. Since v < 2, this Fourier image is of the class
Li(R), and hence, (r — L)g € C(R); by making some additional effort,
it can be shown that (r — L)g € C(R) decays at infinity, i.e. (r—L)g €
Co(R). Hence, g is in the domain of L. By using similar but more
detailed consideration, it can be shown that with any other choice of the
boundary of the inaction region, (r— L)g(z) is unbounded as z tends to
the boundary of the inaction region; hence, one has no freedom with the
choice of the boundary. This observation can be used as a substitute
for the smooth pasting condition which fails for some regular Lévy
processes of exponential type, as it was demonstrated in Boyarchenko
and Levendorskii (2000b) for perpetual American options (the smooth
pasting condition fails in this model of irreversible investment if and
only if the order of the process is less than 1 and the drift is negative).

It remains to prove the estimate (31) in Section 4. We integrate by

part in (30) by using e**ds = t~'de’*. When we differentiate f(s) :=

(s + ¥(—iw)) (g5 (—iw)) "', by using the Leibnitz formula, we obtain
f(s)(eafi(s) + azfa(s)),

where oy, ay € C are constants,

fi(s) = (s + ¥ (—iw))

Fols) = 0, ( /_ +°° Mdl)

o —lw—1

and

_ /+oo dl
oo (5 9()(miw — 1)
Clearly, there exists C' such that for s on the line s = oy > 0,
() < I8, (-iw)| < €,
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|fi(s)] < Cls|™,
and
+o0
|fa(s)] < 0/ (Is|+ 10P)H @+ 1)l
< Cls|1,

for any € > 0. By gathering these estimates, we obtain that after the
integration by part, the integrand in (30) admits an estimate via

Ct—leat|8‘—3/2’
and (31) follows.
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Fig.2. Skewness. Parameters: nu=1.6, mu=-0.05, c=0.15
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Fig.5. Volatility. Parametersv=1.6, —(-i)=0.05, ¢=0.15
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Fig.8. Investment Threshold. Parameters: r=0.06,v=1.6, —)(-i)=0.05, ¢=0.15




Fig.9. Rate of capital accumulation. Parameters: r=0.06,v=1.6, —y(-i)=0.05, ¢=0.15
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Fig.10. User—cost effect. Parameters: r
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Fig.11. Long-run hangover effect. Parameters: r=0.06,v=1.6, —y(-i)=0.05, ¢=0.15, 6=0.33

2.75 <




=0.05, ¢=0.15, 6=0.33

0.06,v=1.6, —y(-i)

Fig.12. Long-run capital accumulation ratio; r
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Fig.13. Accumulated capital; r=0.06,v=1.6, —(-i)=0.05, c=0.15, 6=0.33
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Fig.14. Threshold: Non—-Gaussian vs Gaussian




Fig.15. Rate of growth: Non—Gaussian vs Gaussian




Fig.16. User—cost effect: Non—-Gaussian vs Gaussian
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Fig.17. Long-run
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Fig.18. Long-run capital accumulation ratio: Non—-Gaussian vs Gaussian




Fig.19. Capital accumulation, t=10 years: Non—Gaussian vs Gaussian
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