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Efficient Non-Contractible Investments
by
Harold L. Cole, George J. Mailath, and Andrew Postlewaite

Abstract

This paper addresses the question of whether agents will invest efficiently
in attributes that will increase their productivity in subsequent matches with
other individuals. We present a two-sided matching model in which buyers and
sellers make investment decisions prior to a matching stage. Once matched, the
buyer and seller bargain over the transfer price. In contrast to most matching
models, preferences over possible matches are affected by decisions taken before
the matching process. We show that if bargaining respects the existence of outside
options (in the sense that the resulting allocation is in the core of the assignment
game), then efficient decisions can always be sustained in equilibrium. However,
there may also be inefficient equilibria. Our analysis identifies a potential source
of inefficiency not present in most matching models.



Efficient Non-Contractible Investments
by '
. Harold L. Cole, George J. Mailath, and Andrew Postlewaite

1. Introduction

Complementary investments are often made by different individuals; for example,
a worker may invest in human capital while a firm invests in machinery that
utilizes that human capital. Do investors making complementary investments face
the correct incentives, especially when they cannot contract with each other prior
to their decisions? The traditional answer is no (Williamson [17] and Grossman
and Hart [8]). An agent’s investment is a sunk cost by the time the agents bargain
over the split of the surplus that results from the investment. Since bargaining
typically allocates part of the surplus generated by an agent’s investment to the
other party, the failure of that agent to capture the full benefit of his investment
leads to underinvestment.

In the analysis of this holdup problem, the degree to which the benefits of an
agent’s investment cannot be captured by that agent is related to asset specificity.
The share of the surplus that an agent gets in any plausible bargaining process will
be constrained by his outside options. A worker whose skills are nearly as valuable
on a machine other than that owned by the person he is currently bargaining
with can play the two owners off against each other. In many circumstances,
competition between potential partners provides protection against the holdup
problem, and agents capture the bulk of the benefits of their investments, and,
consequently, have incentives to invest efficiently. The polar extreme to this case

is that an agent’s investment is of value to a single individual, for example, a,

worker who becomes expert on a unique machine. The value of the asset he
invests in is specific to the match with the owner of ‘that machine. Intuitively,
the lack of outside options for such an agent should lead him to expect a smaller
share of the surplus generated by his investment than when there is potential
competition for his services.

While there is a large literature that analyzes the effect of asset specificity
on investment, the degree to which investments are specific is typically taken to
be exogenous. That analysis considers a single pair in isolation, taking as given
other agents’ investments, and the outside options inherent in those investments.
The difficulty with analyzing investments of a single pair is that those invest-
ments determine (at least in part) the outside options of other pairs. Consider a
matching problem in which there are a number of people on each side who might
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make investments in hopes of subsequently pairing with someone who has made a
complementary investment. The return any individual can expect from investing
will be the outcome of the bargaining with his future partner, which will depend
on the outside options of both individuals. These outside options, of course, are
determined precisely by the investment decisions of the agents involved.

Our aim is to analyze the investment decisions of agents who, subsequent
to investing, pair off, produce a surplus, and share that surplus through some
bargaining process. We treat the agents’ investment decisions as a noncoop-
erative game, each agent’s decision depending on the (equilibrium) investment
choices of other agents like him and of the agents with whom he can potentially
match. In this way the asset specificity of agents’ investments is endogenously
determined, rather than exogenously assumed. We are particularly interested in
comparing the investments agents make when they can contract prior to investing
and those they make when they cannot. If agents can contract over the invest-
ment levels they make, investments will be efficient. ‘We take those investments
as a benchmark to which we compare investments when ex ante contracting is
impossible. When ex ante contracting is impossible, there will always be an equi-
librium in which agents invest efficiently, but there may be additional equilibria
characterized by inefficient investments. The analysis also suggests that, in many
situations; the efficient investment equilibrium is implausible. We further show
that for some problems, regardless of the bargaining process, underinvestment
may occur. On the other hand, we conjecture that there are bargaining processes
for which overinvestment cannot occur.

In order to focus on the efficiency of investment choices and bargaining over
the resulting surplus, we label the two sides in the relationship “buyers” and
«gellers.” There is of course nothing important about this, and we could have
used the terms “workers” and “firms.”

The outline of the paper is as follows. In the next section, we -present a
simple example that illustrates the investment and matching process. We then
present the formal model for the case of a finite number of agents (Section 3) and
characterize the bargaining outcomes (Section 4). Section 5 provides sufficient
conditions for agents to receive the social value of their investments, and Section
6 compares the cases in which agents can and cannot contract prior to investing.
The simplest version of the sufficient conditions for agents to fully appropriate the
value of their decisions (to use the language of Makowski and Ostroy [15]) involve
binding outside options, so that all agents’ payoffs are completely determined
by the payoffs that any single agent receives. With a finite population, this
requires that many agents are choosing the attributes that are also chosen by other
agents. If each agent is idiosyncratic (for example, has different costs of acquiring



attributes), then efficient attribute choices will not imply binding outside options.
Efficiency then results only if the bargaining between agents results in a particular
outcome (see in particular the discussion after Proposition 5). On the other
hand, the outside options do limit the agreements that agents can come to, and
the richer the set of chosen attributes, the closer to binding the outside options
become. A plausible (but incorrect) conjecture is that as the number of agents
becomes large, outside options become binding and so in large economies, we have
full appropriation. The reason the conjecture fails is that even when the set of
agents is rich (in the sense that each agent has a close competitor in exogenous
characteristics), since attributes are endogenous, agents may not have a close
competitor in attributes. Moreover, even if all agents have close competitors, the
outside options that need to bind to ensure full appropriation may not.

A second reason for exploring a model with a large number of agents is that
with a finite population, a change in a single agent’s investment decision can affect
the matching and payofis to all other agents. While this may be plausible for some
problems, it is not for others, particularly when there are many agents. In Section
7. we present a model with a continuum of agents, which allows us to assume that
a single agent’s decisions do not affect the other agents. We obtain analogs of
the results for the finite case: when agents cannot contract prior to investing,
there is always an equilibrium in which they invest efficiently, but there may be
inefficient equilibria as well. As in the finite case, the inefficient equilibria may
well be more plausible than the efficient equilibria (Section 8). We further discuss
our model and results in Section 9, while Section 10 closes with a discussion of
related literature.

2. A simple example

As discussed in the introduction, we are interested in the interaction between the
way in which the surplus is divided in matched pairs and the incentives individuals
have to invest in attributes. We begin by illustrating several issues with a simple
example. There are two buyers, {1,2}, and two sellers, {1,2}. For now, we fix
the attributes of the buyers and sellers as in the following table. The surplus
generated by a pair (b, s) is given by the product of their attributes, b - s. Figure
2.1 displays one particular outcome for this environment with each of the two
columns representing a matched pair and the split of the surplus for that pair.
Total surplus is maximized by the indicated matching and the split of the surplus
for the pairs is unique if the sharing rule is symmetric with respect to buyers and
sellers.

Suppose now that attributes are not fixed, but chosen from the set {2,3}.
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Figure 2.1: An example with two buyers and sellers.

x 3 43
b; 2 3
i 1 2
J 1 2
Sj 3 3
pi 3 43

Figure 2.2: Seller 1 with attribute s = 3.

We focus on the behavior of seller 1, with the attributes of the other agents
unchanging.! If the surplus is always divided equally and seller 1 chose instead
s = 3, then the matching and surplus division are as in Figure 2.2.

In this example, equal division violates equal treatment: The two sellers have
the same attribute but receive different payoffs. As we will see in the next section,
such a specification of payoffs is not “stable” since seller 1 could make buyer 2 a
marginally better offer than he gets when matched with seller 2. ’ ‘

Equal division may also prevent efficient attribute choices. If, for example
the cost of attribute 2 to seller 1 is 0, while the cost of attribute 3 is %, then the
increase in surplus when seller 1 chooses attribute 3 rather than attribute 2 is
9 while the increased cost to seller 1 of choosing the higher attribute is only %
This is, of course, a simple consequence of having a sharing rule that gives part
of the increase in output that results from seller 1’s investment to the buyer that
is matched with seller 1.

There are sharing rules that satisfy equal treatment (and so are stable); Figure
2.3 gives one such.

1\We can choose the cost functions for the two buyers and for seller 2 to ensure (assuming
the bargaining is monotonic) that their optimal choice of attributes is as in the table above.
Specifically, denote by 1p(b,1) the cost to buyer ¢ of acquiring attribute b and by c(s, j) the cost
of attribute s to seller j, and suppose ¥(2,1) = ¥(b,2) = e(s,2) = 0,%(3,1) = 10.
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Figure 2.3: Equal treatment and inefficiency.

T; 2 5
b; 2 3
) 1 2
7 1 2
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Figure 2.4: Equal treatment and efficiency.

While we obtain equal treatment here, there are still incentives for inefficient
choices. For example, if the cost of attribute 3 to seller 1 is 2%, then seller 1
chooses s = 3, even though it is inefficient to do so. The problem now is that the
payoff to the buyer who is matched with seller 1 falls in'response to the higher
attribute of the seller. /

There is, however, a specification of payoffs for this vector of buyers’ and
sellers’ attribute choices that satisfies equal treatment, is stable, and implies
efficient choices by seller 2 (given in Figure 2.4).

In this case, the surplus division between buyer and seller 2 has changed, even
though the characteristics of the match did not change.

; This simple example illustrates the issues we address in this paper and the
‘approach we take. If agents must make complementary investments before con-
tracting over outcomes, they may choose inefficiently. Further, the manner in
which bargaining takes place after matching (that is, the sharing rule) will affect
the efficiency of investments, even if the sharing rules are constrained by stability.

3. Description of the investment problem

An investment problem T’ is the collection {1,J,B, S,w,c,v}, where



e [ and J are disjoint finite sets of buyers and sellers;

e B and S are respectively the set of possible attributes (income, wealth, or
willingness to pay) buyers can choose from, and the set of possible attributes
(quality of good) for sellers;

e ¢ : B xI— R, where (b, 1) is the cost to buyer i of attribute b;
e c:S5xJ— Ry, where c(s, j) is the cost to seller j of attribute s; and

e v:B xS — R, where v(b,s) is the surplus generated by a buyer with
attribute b matching with a seller with attribute s.

We assume B and S are compact subsets of ®,. We assume (without loss of
generality) that there are equal populations of buyers and sellers.2 We assume
that v(b,s) displays complementarities in attributes (v is supermodular): for
b< b and s < &, v(b,s) +v(b,s") < u(b,s)+v(t,s). Equivalently, if v is C2,
0%v/0b8s > 0. We will sometimes assume that the surplus function is strictly
supermodular, i.e., v(¥',s) + v(b,s') < v(b,s) +v(¥,s') for all b < ¥ and s < ¢'.
We also assume v is strictly increasing in b and in s.

We model the bargaining and matching process that follows the attribute
choices as a cooperative game. Given a fixed distribution of attributes of buyers
and sellers, the resulting cooperative game is an assignment game: there are two
populations of agents (here, buyers and sellers), with each pair of agents (one
from each population) generating some value. To distinguish this assignment
game from the assignment game we describe in Section 6, we call this assignment
game the ex post assignment game (indicating that attribute choices are taken as
fixed). An outcome in the assignment game is a matching (each buyer matching
with no more than one seller and each seller matching with no more than one
buyer) and a bargaining outcome or payoff (a division of the value generated by
each matched pair between members of that pair). We denote the buyer’s share
of the surplus by « > 0 and the seller’s share by p > 0, with z +p < v(b, s).3

Definition 1. A matching m is a function m : I — JU {0}, where m is one-to-
one on m~Y(J), and { is interpreted as no match.

Definition 2. A bargaining outcome (x,p) € RL x R is feasible for the
matching m if ; + ppuy < v(b;, 8pm(;)) whenever m(i) # 0, x; = 0 whenever

?The case of more buyers than sellers, for example, is handled by adding additional sellers
with attribute 0 and setting v(b,0) = 0 for all 5.
3Note that shares are amounts, not fractions.



m(i) = 0, and p; = 0 whenever j ¢ m(I). A bargaining outcome is feasible if it
is feasible for some matching.

Definition 3. A bargaining outcome (x, p) is stable if it is feasible and for all
ieTandje€J,
z; + p; = v(bi,85)- (3.1)

A matching associated with a stable bargaining outcome vector is a stable
matching. '

It is clear that there are no transfers across matched pairs in a stable bargain-
ing outcome. As usual in assignment games, stable bargaining outcomes are core
allocations of the assignment game and conversely, where the characteristic func-
tion of the assignment game has value V/(A4) at a coalition A C TUJ given by the
maximum of the sum of surpluses of matched pairs (the maximum is taken over
all matchings of buyers and sellers in A). Since buyer attributes are described
by the vector b and seller attributes are described by the vector s, we sometimes
write V(b,s) for V(I U J).4

We are thus modelling the game facing buyers and sellers as one of simulta-
neously choosing attributes, and subsequent to the choice of attributes, match-
ing and sharing the surplus generated by the matches. We restrict attention to
matches and payoffs that are stable given the choice of attributes. Since v is su-
permordular, it is straightforward to show that there always exists a stable payoff
for any vector of attribute choices.

There is, however, one important issue in considering the attribute invest-
ment decisions as a noncooperative game. Typically there is not a unique stable
outcome associated with a vector of attributes; in fact, as we will see, there is
usually a continuum of stable outcomes. In order to treat attribute choices as
a noncooperative game, each agent must be able to compare the payoffs from
two different attribute choices, given other agents’ choices. This requires a well-
defined (stable) payoff associated with every possible set of attribute investments.

That is, there must be a bargaining outcome function g : Bl x 87 - RL xR,

with g(b,s) = (x,p) a stable outcome for each vector of attribute choices (b,s).
We denote by zi(b,s) buyer ¢’s share when the vector of attributes is (b,s) and
p;(b,s) the j-th seller’s share. Observe that given g, buyers and sellers are si-
multaneously choosing attributes, with payoffs z;(b,s) — (b, 1) to buyer ¢ and

4 Assignment games have received considerable attention in the literature. The core of any
assignment game is nonempty, and coincides with the set of Walrasian allocations (Kaneko
(12} and Quinzii [16] for the finite population case and Gretsky, Ostroy, and Zame [7] for the
continuum population case). Our case is particularly simple, since v is supermodular.



p;(b,s) —c(s;,7) to seller j. This is a standard strategic form game. The notion
of weak ex post contracting equilibrium combines the requirement that every vec-
tor of attribute choices lead to a stable payoff of the induced ex post assignment
game with the requirement that attribute choices are a Nash equilibrium of the
strategic form game.

Definition 4. Given an investment problem I = {I, J, B, S,v,c,v}, a weak ex
post contracting equilibrium is a pair {g*, (b*,s*)} such that:

1. g*: Bf x 87 — ®L x R, where for any choice of characteristics (b, s),
g*(b,s) = (x*(b,s), p*(b,s)) is a stable payoff for (b,s), and

2. for eachi € I and b; € B, z}(b*,,bf,s*) — (b}, i) > z}(b*,,bi,8*) —(b.,1)
a?cli fc_))r each j € J and s; € S, pj(b*,st;,s7) — c(s},5) = pj(b*,s* ;,5) -

c(s5,7)-

This equilibrium notion is a combination of a cooperative notion (stability)
with two non-cooperative ones (Nash and perfection). Each individual is best
replying to the actions of every one else, the future consequences of any attribute
choice are correctly foreseen, and any attribute choice must lead to a stable payoff.

We think of the bargaining outcome function, g, as capturing the way bargain-
ing transpires in an investment problem. Restricting the sharing of the surpluses
arising from a given vector of attribute choices (b, s) to stable payoffs still leaves
considerable indeterminacy since there is typically a multitude of stable alloca-
tions for a given vector of attributes choices. For some investment problems,
that indeterminacy might be resolved through bargaining that favors the buyers
as much as possible, given the constraints imposed by stability. For other prob-
lems, bargaining might resolve the indeterminacy in favor of the sellers, while in
still others, bargaining might result in as equal a division as is consistent with
stability.

An alternative to including the bargaining outcome function in the definition
of the equilibrium is to include it in the description of the investment problem.
For example, if bargaining favors buyers, the bargaining outcome function captur-
ing this could be included in the specification of the investment problem, leading
to a “buyer-friendly” bargaining problem. There are two difficulties with this
approach. First, the bargaining outcome function is endogenous. Second, for
some bargaining outcome functions, there may be no pure strategy equilibrium.
This nonexistence reflects an inconsistency between an exogenously specified bar-
gaining outcome function and the given data of an investment problem, I, J, B,



S, ¢, ¢, and v. The way in which bargaining resolves indeterminacy must be
endogenously determined in concert with agents’ investment choices.

We impose further restrictions on weak ex post contracting equilibria, .in an
equilibrium selection spirit. As defined, for a given set of attribute investments,
the outcome selected by the bargaining outcome function can depend on the
identity of the individuals who have chosen particular attributes. We focus on
the case in which bargaining is anonymous in the sense that it depends only on
attributes, independent of the identities of the agents choosing those attributes.

There is also nothing in the definition of ex post contracting equilibrium that
prevents the bargaining outcome function from selecting the stable outcome that
is most favorable to buyers as long as no buyers deviate, and selecting the stable
outcome that is most favorable to sellers otherwise.? This trigger specification of
payoffs breaks any link between the marginal social return from an investment
and its private return. We need some way of reducing the arbitrariness of the
specification of stable payoffs. One simple way that is always consistent with
stability is to pin the split at the bottom pair.

Definition 5. An ex post contracting equilibrium (EPCE) is a weak ex
post contracting equilibrium, {g*,(b*,s*)} that is anonymous and, if for any
two attribute vectors (b/,s') and (b”,s"), there exists i € I such that b; =
minger{b,} = b/ = minge;{by} and there exists j € J such that 8} = minge s} =
s’j' = mingey{s} }, then

zX(b',s') = =z;(b",s") and

pi(b',s) = pj(b".s").

If there is an imbalance between the number of buyers and sellers, then we

(along the lines of footnote 2) add enough dummy agents to equalize the number
of buyers and sellers. In this case, the bottom pair necessarily receives a payoff

of zero, and so the stable outcome necessarily favors agents on the short side of
the market.

4. Characterization of stable allocations for a finite population

We now characterize the stable allocations. The simple proposition below summa-
rizes several characteristics: For any attribute vector (b,s), any stable outcome

5Tn our context, all buyers agree as to the ranking of stable payoff vectors (and all sellers have
the reverse ranking). Moreover, with a finite set of buyers, even in an anonymous equilibrium
any deviation is detected, since any deviation results in a different empirical distribution over
attributes.



matches attributes positively assortatively; all buyers with equal attributes re-
ceive equal payoffs, and similarly for sellers; and finally, in checking stability, one
need not examine all unmatched pairs, but only those unmatched pairs for which
the partners have attributes which are “close” to those of their matches. Before
stating the proposition we make the following definition:

Definition 6. A matching m is positively assortative if m(I) = J and for any
1,7€1,b; > bj = Smys) > Sm(j)-

Proposition 1. Consider a vector of attributes (b,s), and a labeling of agents
so that I,J = {1, ..., n}, and attributes are weakly increasing in index. Then

1. every stable matching is positively assortative on attributes;

2. every stable payoff exhibits equal treatment: b; = by = b = z; = Ty = a3
and sj = s = 8 = p; = p;s = ps; and

3. a payoff (x,p) is stable if and only if for all 4,

Ti+p = v(b,-,si),
Zi +piv1 2 v(bi, 8:41), and
Tiv1 + P 2> v(biyy,s;).

Proof. The first two statements are straightforward. Without loss of generality,
the stable matching can be taken to be by index, yielding z; + p; = v(b;, 8;). The
two inequalities are immediate implications of stability.

In order to show sufficiency, we argue to a contradiction. Suppose there exists
a k > 1 such that z; + Pitk < v(bs, 8$;1x). Then

Titl +Pivk < Tip1 +0(bi, 8i48) — x4
S Zip1 +0(bi, siqk) — v(bi, $iv1) + pist
= V(big1, 8i41) +0(bi, Sitk) — v(bi, 8i41) < V(bit1, Sitk),
where the last inequality holds because v is strictly supermodular. Induction then
yields z;4 ¢ 1 + piyg < v(bigk_1, Si+k), a contradiction. n

The third part of this proposition is useful since it implies that in order to
check the stability of a payoff vector, we need only check adjacent pairs in a
positively assortative matching. If no buyer (or seller) can block when matched
with a partner adjacent to his or her current partner, the payoff vector is stable.
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Figure 4.1: Equal treatment can imply stability.

Since stable payoffs exhibit equal treatment, we sometimes refer to the payoffs
to an attribute rather than the payoffs to an individual, and we often will not
distinguish between the two.

Proposition 1 states that equal treatment is necessary for stability; in some
cases, it is sufficient for stability as well. Consider the allocation in Figure 4.1
with our usual v(b, s) = b- s. As before, matches should be read by columns.

Once the bottom (left-most) pair’s shares have been determined in this exam-
ple, all other agents’ payoffs are uniquely determined by equal treatment because
of the “overlap” in the players’ attributes. Moreover, when the attribute vec-
tors have this overlap property, any division of the surplus for a specified pair is
consistent with a stable payoff.

The next proposition and corollary formalize the intuition illustrated by this
example. If we order the values of chosen attributes of the buyers from low to
high, we denote by b the k-th value, and similarly by s() the k-th value for
the seller.

Definition 7. The pair of attribute vectors (b,s) is overlapping if, for a pos-
itively assortative matching m, and any K, there exists 1,4 such that b; = b(),

by = b(x41) Sm(i) = Sm(i')-

Overlapping attribute vectors have the following more transparent formula-
tion. Suppose we index the buyers and sellers by the integers 1 through n so
that attributes are weakly increasing in index. Matching by index (i.e., i = m(s))
is then positively assortative on attributes. The attribute vectors are overlap- -
ping if bj-1 # b; = sj-1 = ;. Note that the notion is symmetric, since
bi_1 # bi = s;—1 = s; implies s;_1 # 8; = bi—1 = b;. '

Proposition 2. Suppose the attribute vectors are overlapping and (x,p) is a -
payoff vector for a positively assortative matching that satisfies:

6Note that we are not ordering the chosen attributes, 50 b.—1) < be) < b(x+1) €Ven if two
buyers have attribute b(«).

11



1. equal treatment;
2. and no waste: z; + p; = v(bi, 8i)-
Then (x,p) is stable.

Proof. Since we have assumed no waste, we need only check to see that for
adjacent pairs, if the matching is switched, neither of the new pairs can block.
But since the vectors of attributes is overlapping, either both buyers have the
same attribute or both sellers have the same attribute, and the assumption that
z; + pi = v(bi, 5;) ensures that neither of the new pairs can block. n

Corollary 1. Suppose (b,s) is overlapping and the pair (s, ps(l)) satisfies
Ty = 0, Psgy 2 0, and Tp,, + Psy = v(bay, (1)) Define (z,p) recursively

as follows:
Tbierry = Ty + [v(b(n+1)75) - v(b(n)a s),

where 8 = Sm(;) = Sm(i') and b; = by, by = b(x+1) for some positive assortative
matching m and i, € I, and similarly for the sellers.” Then the payoffs (z,p)
are stable, and every stable payoff can be constructed in this way.

Proof. Since there is a unique positive assortative matching of attributes, there
is a unique seller attribute that satisfies, for any positively assortative matching of
agents, 8 = Sm(;) = Sm(ir) and b; = bys bir = bt) for some 1,7 € I. Moreover,
the hypothesis of overlapping attribute vectors ensures s exists and that for all
matched attributes (b, s), zp + ps = v(b,s). Hence, we have equal treatment and
no waste, and Proposition 2 applies.

Equal treatment in stable payoffs guarantees that every stable payoff has this
property. |

Corollary 1 provides a complete characterization of stable outcomes when
attribute vectors are overlapping. When attribute vectors don’t overlap, there is
a degree of indeterminacy in stable payoffs, even fixing the division of the value
for the bottom pair. One can, however, construct stable payoffs for a vector of
positively assortative, nonoverlapping attributes in a straightforward way: Fix
the share for the bottom pair. If there is an overlapping subset of attributes
containing this bottom pair of attributes, equal treatment determines the payoffs
to those attributes. Where there is a gap between the attributes for this subset
of agents and those higher, Proposition 1 puts constraints on how the surplus

7This defines the payoffs to attributes. Every agent with the same attribute receives that
payoff.
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for the pair above the gap can be divided. Choose an arbitrary distribution of
surplus for that pair, subject to those constraints. Allocate the surplus for the
adjoining pairs so long as there is overlap, and each time a gap is encountered,
proceed as above.

We now formalize this idea and provide bounds on the indeterminacy of stable
payoffs. Given an attribute vector (b,s), and a stable matching m, relabel the
agents so that I, J = {1,...,n}, attributes are weakly increasing in index and
buyer 4 is matched with seller m(i) = i. (This is always possible, because every
stable matching is positively assortative in attributes.) Let (b',s") denote the
vector of attributes for a population of agents (I t ), IcIfand J C Jt, with
overlap constructed as follows: if there exists i such that b; # b;+1 and 8; # Sit+1,
then in the extended population, there is an additional buyer (with index ¢ + -%)
with attribute b; and an additional seller (also with index 7 + %) with attribute
8;41- Werefer to (bf,st) as the buyer-first extension of (b,s) . Note that a stable
matching for (bf,s") is given by ml(i) = i for all . This maintains the original
matching on I, and extends it to the new agents by matching any new buyer i-}—%
with the new seller ¢+ 3. Similarly, let (b}, s?) denote the vector of attributes for
the population (I*, J*) obtained from (b,s) by giving attribute bi41 to buyer i+ 3
and attribute s; to seller ¢ + % We refer to (b?,s?) as the seller-first extension of
(b,s). Note that (b¥,st) also has no gaps, and It = It and Jt = J'. Note also
that for any stable payoff for either extension, the restriction of the payoff to the
original agents, I U J, is stable.

The attribute vectors (bf,s’) and (bt,s?) are minimal extensions of (b,s)
that yield overlapping attribute vectors by adding just enough of the “right”
attributes. Note that the bottom pair of matched attributes is unaffected by the
extension, so that b‘; = b{ = minb; = b and s‘; = s’i = mins; = s. Since (bf,sT)
is overlapping, by Corollary 1, there is a unique stable payoff corresponding to
each value of :I:Z, and similarly for (b}, st).

The following proposition shows that the vector (bf, st) uniformly favors buy-
ers in the sense that it gives the maximal payoff to buyers over stable payoffs
given a:;'). Suppose that buyers and sellers are positively assortatively matched
and there are adjacent pairs for which both the buyers’ and sellers’ attributes
differ. The buyer-first extension maximizes the buyer’s payoff by having a seller
with the same attribute as his partner match with a buyer with a lower attribute,
which minimizes the payoff to that attribute (by Proposition 1). The buyer then
receives the remainder. Analogously, the seller-first extension (b¥,st) gives the
maximum payoff to the seller subject to the bound.

Proposition 3. Suppose (b,s) is a vector of attributes and (x,p) is a stable
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payoff. Let (x!,p!) be the unique stable payoff for. the buyer-first extension of
b, s) satisfying mt=xb, and (x},p?) the unique’stable payoff for the seller-first
b—%b

extension of (b,s) satisfying :vi = xp. Then,

mg <xp < :cz, Vb, (4.1)

and
pl <ps <pk, Vs (4.2)

Moreover, for any attribute in (b,s), any share z; satisfying (4.1) or ps satisfying
(4.2), there is a stable payoff for (b,s) giving shares zp to b or ps to s.

Proof. Since no new attributes are introduced in (bf,s') or (bt,s?), and every
pair of attributes in (b,s) matched in a stable matching remains matched when
the attribute vector is (bf,sf) or (b¥,st), it is enough to show that z, < xz Vb to
verify (4.1) and (4.2).

Let b(xy be the first buyer attribute at which there is no overlap, and note

that by = b{n . The attribute b(,)’s stable payoff is at a maximum when the
stable payoff o% the sellers with attribute s® is at a minimum, where s* is the
smallest seller attribute matched with the buyer attribute b(.). This occurs when
Tp(_yy T Psm = v(b(x—1),8"). Thus,

:Eb(n) < IIJb(N__l) + v(b(n),s") — U(b(n—1)7 SN) = IEIN) (mb(n—x))’

with equality yielding a payoff that is consistent with stability. Moreover, mzn) (xb(n—-l))
is the payoff of attribute by when the population attribute vector is (bt,st),
since attribute b(._1) receives a payoff of zy,_,,. Note also that xzn) (xb(n_l)) is
increasing in Zp,_,)- Proceeding recursively up buyer and seller attributes shows
that buyer attribute b(.)’s maximum stable payoff is calculated as if there is the
pattern of overlap of (bf,sh).

Now consider the sufficiency of (4.1) for a single buyer attribute’s share to
be stable. Fix some share satisfying (4.1) for an attribute b. We now proceed
inductively to fill in shares to the other attributes above and below. For attributes
above b, apply the procedure described just after Corollary 1. The same procedure
can also be applied for attributes below b, starting at b and working down. The
bounds (4.1) guarantee that each step will be feasible and result in the bottom
pair receiving the split (zp, ps)- |

Note that the proposition does not assert that any vector of shares that satis-
fies (4.1) for all attributes can be achieved in a single stable payoff. Propositions
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c 2 4 4 4 7 7T 71115
b 2 3 33 4 445 8
s 2 2 2 3 3 3 4 4 4
p 2 2 25559 9 9

Figure 5.1: The result of a buyer’s change in attribute.

9 and 3 characterize the stable outcomes associated with any attribute vector
(b,s). These propositions provide the tools with which we analyze the incentives
agents have in making investment decisions in the next section.

5. Incentives for efficient investment

We can use the example in Figure 4.1 to compare the private and social returns
to an individual who changes his or her attribute. Suppose, for example, a buyer
with attribute b = 2 changed his attribute to b = 5. If we leave unchanged the
bottom pair’s division, the unique payoffs consistent with equal treatment are as
in Figure 5.1 (an asterisk indicates a seller for whom the matched buyer has a
different attribute level as a result of the change). -

The share to the buyer whose attribute changed increased by 9. In principle,
this need not be the change in the social value. The change in the buyer’s attribute
from 2 to 3 alters the matching of buyers and sellers; a buyer who increases his
attribute will “leapfrog” other buyers, and match with a higher attribute seller.
This will result in some of the other buyers being matched with lower attribute
sellers than they had originally been matched with and some of the sellers being
matched with higher attribute buyers than before. In other words, when this
buyer (or other buyers or sellers) chooses an attribute, he imposes an externality
on other players simply because the matching is changed. While an increase
in a buyer’s attribute causes some of the other players to be in matches with
higher total surplus and others to be in matches with lower total surpluses, it is
unambiguous that the aggregate surplus is increased. When a buyer increases his
or her attribute, a number of the sellers are matched with higher attribute buyers
following the increase while none is matched with a lower attribute buyer. Hence,
the increase in the social value is the sum of the increases in the total surplus of
those pairs with sellers matched with higher attribute buyers after the increase.

These externalities may lead individuals to either overinvest or underinvest
from a social perspective. While it is true that in general changes in attribute can
result in changes to the individual’s payoff that differ from the change in social
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value, it is not the case in this example. The particular pattern of overlapping
attributes for the vectors of attributes results in each of the players whose at-
tribute is unchanged getting the same payoff after the specified player’s change
as before. Since no other agent’s payoff is changed by the buyer increasing his
attribute, it follows trivially that this buyer captures the full social value of the
attribute change. The qualitative characteristics of this example are quite general
as shown by the next proposition (which is proved in the appendix).

Proposition 4. Let (b,s) and (b/,s) denote two vectors of attributes satisfying
b; = b, Vi # £. Let {(x,p), m} denote a stable payoff and matching for (b,s),
and {(x',p'),m'} a stable payoff and matching for the attributes (b',s). If pm(ey =
p;n(l) and pry(e) = p;n,(t,), then

xy =z + V(b,s) — V(b,s).

Definition 8. The pair of attribute vectors (b,s) is doubly overlapping if
(b,s) is overlapping and each matched pair of attributes appears at least twice.

Corollary 2. Let (b,s) and (b',s) denote two vectors of attributes satisfying
b = b}, Vi # ¢. Let {(x,p),m} denote a stable payoff and matching for (b, s),
and {(x',p'),m'} a stable payoff and matching for the attributes (b',s) satisfying
xlb = . If (b,s) is doubly overlapping, then

x) =z, + V(b',s) - V(b,s).

Proof. If (b,s) is doubly overlapping, then the vector of attributes following
any single agent’s change of attribute is overlapping. It is straightforward to
see that if a:lg = xp, the construction in corollaryl results in pp) = p’m(e) and

Pri(e) = D @ and hence the proposition applies.

The proposition and corollary provide sufficient conditions that rule out one
source of inefficiency in investments. If the attribute choice vector is doubly
overlapping, each agent captures exactly the incremental aggregate surplus that
results from his attribute choice. Competition among future potential partners
eliminates any “holdup problem” that might arise due to the investment choice
being made prior to matching and bargaining over the surplus.

Double overlap is not necessary for agents to receive the correct incentives for
efficient attribute choice; there are trivial examples for which double overlap may
fail, yet Proposition 4 still holds. There are, however, trivial examples for which
there are equilibria for which an agent will not capture the change in surplus that
results from a change in his attribute when the conditions for Proposition 4 fail.
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It is important to note that Proposition 4 does not say that when the hy-
potheses of the proposition hold, the outcome is efficient. The proposition only
guarantees that any inefficiency in the investment choices does not stem from
a single person’s decision. There remains the possibility of inefficiencies due to
coordination failures resulting from the choices of multiple agents. For example,
if we consider the surplus function that we have used in the examples above,
v(b,s) = b- s, it is clearly an equilibritim for-all buyers and sellers to choose at-
tribute 0 if the cost of choosing this attribute is 0, regardless of the cost of higher
investment levels. The problem, of course, is that unilateral deviations from no
investment have no value. We will show in the next section, however, that for
any investment problem, there is always one equilibrium for which each agent will
capture precisely the change in surplus that results from a change in attribute,
and further, that no pair of agents can jointly change their attributes in a way
that increases their surplus, net of investment cost (or other set of agents for that
matter).

6. Ex ante contracting equilibrium

We now compare the investments taken in an ex post contracting equilibrium
with the investments agents would make if buyers and sellers could contract with
each other over matches, the investments to be undertaken, and the sharing of the
resulting surplus. If a buyer i and seller j agree to match and make investments b
and s respectively, then the total surplus so generated is v(b, s) —(b, 1) —c(s,7). In
a world of ex ante contracting, investments maximize this total surplus. Thus, if
buyer ¢ and seller j are considering matching, they are bargaining over the surplus
@(4,5) = maxpsv(b,s) — ¥(b,i) — c(s,j). The ex ante assignment game is the
assignment game with the population I of buyers, J of sellers, and value function
. Just as we considered stable outcomes for the ex post assignment, we impose
stability on outcomes of the ex ante assignment game. A stable outcome, together
with the implied attribute investments, is an ez ante contracting equilibrium:

Definition 9. The outcome of the ex ante assignment game {m*,(b*,s*), (x*,p")}
is an ex ante contracting equilibrium (EACE) if

1. (b}, 850 (3)) maximizes v(b, s) — ¥ (b, 1) — c(s,m*(¥)) if m*(t) € J;
2. (x*,p*) is feasible for m*; and
3 forallicIandj€J,
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Since the ex ante assignment game is a finite assignment game, ex ante con-
tracting equilibria exist (see footnote 4). It is immediate that (x*,p*) is a sta-
ble payoff of the ex post assignment game associated with the attribute vector
(b*,s*).

We pointed out in the previous section that investments could be inefficient.
Given the bargaining outcome function in the equilibrium, some agents might
not be able to capture the incremental surpluses that would result from altering
their investments in attributes. Further, regardless of the bargaining outcome
function, there may be coordination failures in which Pareto improvements are
possible, but only if pairs of agents Jointly change their attributes.

We should not be surprised that an inability to contract over investment
choices in the presence of complementarities can lead to inefficiency. Indeed, one
might expect that in such an environment inefficiency is inevitable, but this is
not the case. The following proposition states that any outcome achievable under
ex ante contracting is part of an ex post contracting equilibrium.

Proposition 5. Given an ex ante contracting equilibrium {m*, (b*,s*), (x*, p*)},
there exists g* such that (g*, (b*, s*)) is an ex post contracting equilibrium.

Proof. If necessary, relabel buyers and sellers so I = J = {1,...,n} and
m*(i) = i. Define g*(b*s*) = (x*,p*). Since ex post contracting equilibria
are Nash equilibria, we need only be concerned with unilateral deviations (any
specification of g* for multilateral deviations consistent with the definition of an
ex post contracting equilibrium will work). Consider then an attribute vector
(b* 4, bg,8*) for some by € Band £ € I (the extension of g* to a deviation by a
seller is identical). Denote the stable payoff we are defining by (x, p).

Suppose by < b}, and let ¢ satisfy 5, _, < be < b} (where by = —1); clearly
' < £. Since stable matchings are positively assortative in attributes, m(i) = ¢
for i <4, m(i) =i+ 1fori >4 i+ ¢ and m(¢) = 4’ is a stable matching for
(b* 4, be,8*). Since m(i) = m*(7), we can set (xi,p5) = (z},p}) for i < 4'. Set

Py = v(bfvs;r’) - v(bbs'r'-—l) +p;"—1a

(this is the most that seller i’ can receive consistent with stability and py_;—
Proposition 1),® and then complete g* as described above. Before considering
by > b}, we show that b, < by is not a profitable choice with this specification.
The difference in payoffs is

zp — (8%, &) ~ {v(be, s5) — pur — (be, )}

8If i’ = £, then there is no rematching as a result of the lower attribute choice, and p; may
be feasible in a stable outcome. If it is, then setting p; = p; also works.
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xh — (b5, £) — {v(be,85_y) — Py — Y(be, £)}
z — (b5, £) + i1 — {v(be, sii-1) = Y(be, £)}
o(l,i' — 1) — {v(be, s7-1) — W(be, ) — c(sy_1,7' —1)} 20,

Vv

where the first inequality comes from the stability of ex ante contracting outcomes
in the ex ante assignment game and the second from the definition of ¢.

Now, suppose bg > b}, and now let i satisfy b} < by < bji,, (where b 1 = 00);
clearly i > £. Set m(i) = i for ¢ < ¢, mid) =i—1lfor £ <1 < i, m(f) =7,
and m(s) = i for i > ' + 1. As before, for i < £, we set (zi,pi) = (¥, p})-
Potentially all the matches between seller ¢ and seller ¢’ (inclusive) involve the
seller being matched with a new buyer attribute than under m*. Moreover, all
these sellers are matching, under m, with buyers whose attributes are at least
as large as under m*. Then it is still feasible (and stable) to set pz = P; and
Top1 = v(b; +1,32) — pg (note that g1 < zp,1). We now proceed inductively,
setting pis1 = v(blye, 5T1) — (V(0i4a, 87) — Pi) and T2 = v(blyq,st)—pifori > £
By Proposition 1, we have described a stable outcome of the ex post assignment
game associated with (bZ,, be,s*). Moreover, pir > pj- [The proof is by induction.
Note that pe > p; and suppose p; = pt. Then, pit1 = v(bly g, Stp1) — Tit2 =
'U(b:{+2’ s:—;—l) - ’U(b?+2,33) +pi 2 v(b:+27 S,f+1) - U(b:+27 8:) +p2‘ 2 U(b;—\bla S:+1) -
v(bly,81)+ P 2 v(biiy, Sf1) — Tiy = Pin (where the first inequality follows
from p; > p}, the second from the supermodularity of v, and the third from
stability).] The difference in payoffs for buyer £ for the deviation to bg is then

5 — (b}, ) — {v(be, 55) — pv — ¥(be, )}
25 — (b}, 8) — {v(be, ) — pir — ¥(be, )}
75 — (b}, 8) + i — {v(be, s3) — ¥ (be, )}
(2,7 — {v(be, s7) — P (be, £) — c(sh,i)} 20,

I

v

where the second inequality comes from the stability of ex ante contracting out-
comes in the ex ante assignment game and the third from the definition of ¢. |

If the ex ante contracting attribute choices are doubly overlapping, then the
result is trivial. The nontriviality comes from the possibility that there may
be gaps in the attribute matchings (after a deviation), so that stability and the
bottom pair do not uniquely determine attribute payoffs. This indeterminacy is
important; it is because of this indeterminacy that we do not interpret Proposition
5 as a strong positive result. It is true that for any outcome that is supportable
as part of an EACE, there is an EPCE yielding the same investments and pay-
offs. But the EPCE that does this depends crucially on the bargaining outcome
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function. The issue is the interpretation of bargaining outcome function. We
suggested above that we could think of it as generally determining how surplus
is shared subject to the constraints of competition implicit in stability. For some
problems sellers might capture most of this and in others, it may be the buyers.
But in Proposition 5, the bargaining outcome function responds to changes in the
underlying investment problem (e.g., changes in the costs of investment 1 or c),
since it depends upon (b*,s*).

While the indeterminacy is eliminated if the ex ante contracting attribute
choices are doubly overlapping, there is good reason not to expect double overlap.
Typically, if each agent has different costs of acquiring attributes and attributes
are continuous variables, then the efficient attribute choices (b*,s*) will not be
doubly overlapping. Proposition 3, on the other hand, provides bounds that
suggest that as the set of chosen attributes become sufficiently rich (in the sense
that the set of attributes looks like an interval), the indeterminacy in stable
payoffs disappears (in the limit, Lemma 1 would apply). However, attributes are
endogenous and even if there are many agents, the set of chosen attributes may not
be rich. The complementarity of attributes means that in general (in particular,
when the complementarity is strong), in the limit the set of efficient attributes
forms a disconnected set (footnote 9 in Section 7 contains an example). Consider
an increasing sequence of finite populations of agents, with the space of their
exogenous characteristics becoming increasingly rich (so that in the limit, every
agent has close competitors, in the sense that the limit space of characteristics is
an interval). The efficient attributes along the sequence must then eventually fail
to be doubly overlapping, and so the failure of double overlapping is not a “small
numbers” problem.

6.1. Inefficient investment: underinvestment

We mentioned at the end of Section 5 that ex post contracting equilibrium out-
comes might easily be inefficient (the example of v(b,s) = b-s and all buyers
and sellers choosing attribute 0). While having all agents choose attribute 0 is a
particularly simple way to illustrate the possibility of inefficiency, it isn’t difficult
to construct examples in which all agents are choosing positive attributes. In
fact, we can modify any investment problem to generate inefficiency; moreover,
this inefficiency cannot eliminated by any restrictions on the bargaining outcome
function.

Fix an investment problem T' = {I,J,B,S,¥,¢, v} and define B' = BU {v'}
and &' = S U {s'}, where ' > b = maxB and s > 5 = maxS. Extend the
definition of v to B’ x S’ by setting v(b, s') = v(b,3) for all b € B and v(b',s) =
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(b, s) for all s € S, and v(¥,s') = v(b,3) + max; (b, 1) + max, c(3,j) +2a + 1,
where a > v(b,5). Extend the cost functions by setting ¥(V,7) = (b, i) + a for
all 4 € I and ¢(¢',7) = ¢(3,4) +a for all j € J. Note that, unless both the buyer
and the seller in a pair choose the added elements b’ and s', the new attributes
are simply expensive substitutes for bands

The only efficient outcome in the investment problem I'={I,J,B,S,¢,c,v}
is for every buyer to choose b’ and every seller s (since v(¥,s') —p(¥, 1) —c(s',j) =
v(b,3) + max; ¥(b, i) + max; c(3,5) +2a+ 1 —(b,9) —a—c(s',j) = c(3,j)—a>
v(b,3) + 1).

Fix an ex post contracting equilibrium of I” and denote its bargaining outcome
function by g. We claim that there is another ex post contracting equilibrium of
I with the same bargaining outcome function g that involves inefficient attribute
choices. Consider the strategic form game implied by g on the attribute sets B
and S. This has an equilibrium (perhaps in mixed strategies). Moreover, this
will be an ex post contracting equilibrium of I': If all other agents are choosing
attributes in B and S, then no matter how the bargaining outcome function
divides the surplus, since a > v(b,3), there is insufficient total surplus to justify
choosing the added attribute.

6.2. Inefficient investment: overinvestment

The previous subsection illustrated an ex post contracting equilibrium outcome
with agents making inefficiently low investment in attributes. There is a similar
possibility of overinvestment, but with an important difference. We first give a
simple example with overinvestment

There are two buyers, {1,2} and two sellers, {1,2}; the possible characteristics
for buyers and sellers are B = § = {4, 6}. The surplus function is v(b,s) =b-s.
The cost functions are ¥(4,3) = c(4,j) = 5, 4,5 = 1,2; ¥(6,3) = ¢(6,5) = 16,
i,j = 1,2. The efficient attribute choices are for all buyers and sellers to choose
attribute level 4. These efficient choices can be part of an EPCE. Suppose that
when all agents choose attribute 4, the surpluses are shared as in the left of Figure
6.1, and as in the right of Figure 6.1 if a single agent (here, a buyer) deviates and
chooses attribute 6.

Since a single agent switching from attribute 4 to attribute 6 decreases his
net payoff from 3 to 0, the efficient choice of attribute level 4 for all agents is
an EPCE. However, there may be another EPCE in which all agents overinvest,
that is, all agents choose the high attribute level 6. Suppose that the payoffs
resulting from all agents choosing attribute level 6 and those following a single
agent deviating and choosing level 4 are as given in Figure 6.2.
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z—% 3 3 -y 3 0
T 8 8 Ty 8 16
b; 4 4 b; 4 6
i 1 2 i 1 2
Jj 1 2 j 1 2
Sj 4 4 Sj 4 4
pi 838 p; 8 8

pj—c 3 3 pj—c 3 3

Figure 6.1: The efficient equilibrium.

z—-Y 2 2 - 1 2
T 18 18 xT; 6 18
b; 6 6 b; 4 6
i 1 2 3 1 2
j 1 2 J 1 2
8 6 6 S 6 6
Pj 18 18 p; 18 18

pj—c 2 2 pj—c 2 2

Figure 6.2: The overinvestment equilibrium.
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These make clear that it is an EPCE for all agents to choose the inefficient
attribute level 6. Note that there is a common bargaining outcome function g
that supports (that is, is part of) both equilibria.

This illustrates that we can get inefficient overinvestment as well as inefficient
underinvestment, but as we stated above, there is a difference between the two
cases. For the example in the previous section illustrating an equilibrium with
underinvestment, we pointed out that the inefficiency would arise regardless of
the bargaining rule g (that is, there was no g for which the underinvestment
outcomes would not be an equilibrium.

We conjecture that there are bargaining outcome functions g that will preclude
overinvestment for many investment problems. For example, consider a finite
symmetric investment problem. Suppose, moreover, that the net surplus function
v(b, s) —1(b,4) —c(s, j) is concave in attributes. It can be shown that every EPCE
with the following g cannot involve overinvestment. If the vector of attributes
(b,s) is such that b= s, g divides the surplus equally for each pair. For a vector
(b,s) in which b # s, let i be the first pair (under assortative matching) for
which b; # s;. The agent with the smaller attribute receives under g half the
surplus that would have resulted had he been matched with an agent with the
same attribute as his own, and his partner receives the residual. Define g for
all buyers and sellers with smaller index to be equal division and for buyers and
sellers with higher index, let g give the highest share to that side for which 4 has
the smaller attribute consistent with this, and with stability. While we believe a
similar bargaining outcome function will also work in the absence of concavity of
the net surplus function, an investigation of this would take us too far afield.

w Characterization of stable allocations for a continuum of agents

We now describe a model with a continuum of agents, analogous to that in the
earlier sections with a finite set of agents, that allows us to analyze individual
agents’ behavior when they are negligible with respect to the aggregate, that is,
when individual deviations leave other agents’ payoffs unchanged.

The populations of buyers and sellers are each described by Lebesgue measure
on the unit interval, so that I = J = [0,1]. We denote buyers’ behavior by the
function 8 : [0,1] — R4 and sellers’ by the function o : [0,1] — Ry

Stability is as before: (z,p) is stable if it is feasible and z(i) + p(j) =
v(B(i),0(j)) for all i and j (note that we have not defined feasibility for the
continuum model as yet). Intuitively, stability should again require that match-
ing be positively assortative in attributes. If 8 and o are strictly increasing, we
could then specify that ¢ matches with j = <.
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If the attribute functions, 8 and o, are continuous and strictly increasing, and
the matching is positively assortative in index, feasibility is adequately captured
by the finite population pairwise feasibility requirement: (i)+p(s) < v(B(1), o (1))
for all i. However, since the surplus function is supermodular, there is no reason
to believe that endogenous attribute choices will be continuous functions of agent
characteristics. In particular, efficient attribute choices need not be continuous.’
We therefore need to describe feasible payoffs when the attribute functions are
increasing, but not necessarily continuous.

We begin by illustrating the issues through an example: Suppose first that
v(b,s) = b-s, B(i) = 1+ for all i, o(j) = 1+ for all j, and matching is positively
assortative by index (equivalently, by attribute). Then the bottom pair generates
a surplus of 1 and equal division of the payoff for each pair is feasible under
the pairwise feasibility requirement and stable. Suppose now the bottom buyer’s
attribute is O rather than 1 (i.e., 8(0) = 0). The pairwise feasibility requirement
forces p(0) = 0. However, the point of modelling the set of agents as a continuum
is to eliminate the possibility that a single agent’s actions affect the feasible payoffs
available to other agents.

Consider the sequence of matchings {ma}5., where i matches with j = 4,
except that buyers 0 and % exchange partners.m If payoffs under my, are deter-
mined by equal division of the induced surpluses, then the payoffs for all agents,
ezcept buyer 0, converge to the payoffs they received under equal division when
B(0) = 1. This includes seller 0. Thus, there is a sequence of matchings that
yield payoffs that satisfy the pairwise feasibility requirement, and yet their limit
does not. Note, moreover, that in the case B(0) = 0, the pairwise feasibility re-

9For example, suppose the cost functions are given by (b,1) = b%/i, and c(s,5) = s3/(85).
The surplus function is ,

b-s, ifb-s <1,
v(b,s) = (3—4-b~s)-b‘s+(4-b-s~—2)(Z-b-s—%%), if%gb-sgg,
2-b-5— 37, ifh-s> 3.

Aggregate net surplus is maximized by matching buyer ¢ with seller j = i. The net surplus
maximizing choices of attribute are (8*,0") where

. 21 i<i

ﬁ('b)={2¢ iZ%

and 4 .
.y i< 35,

g = AN

G) {% iz

10 hat is, ma : [ — J is given by mn(0) = 1, ma(3) = 0, and mn(i) = 4 for all i # 0, L
Note that m., is one-to-one and preserves measure.

24



quirement with stability forces p(j) — 0 as j — 0. At an intuitive level, we would
like the bargaining outcome payoff (z*,p*), where *(0) = 0, z*(3) = (1 +1%)?/2
for i > 0, and p*(j) = (1 + )%/2 for all j, to be feasible and stable.!!

As mentioned above, our goal in moving to a continuum of agents is to elim-
inate the effects that a single agent might have on the possible stable payoffs
to other agents. We can accomplish this by altering the definition of feasible
payoffs for a continuum of agents’ attribute choices. Rather than giving a com-
plete treatment of feasibility in assignment games with a continuum of agents
and arbitrary attribute choice functions, we define feasibility in the simple case
in which the attribute choice functions are strictly increasing, and positively-as-
sortative matching on index is effectively imposed.!? Almost everywhere positive
assortative matching by attribute can be deduced from stability and the notion of
feasibility used by Gretsky, Ostroy, and Zame (7] or used by Kamecke [11]. Our
notion of feasibility is:!3

Definition 10. Suppose 3 and o are strictly increasing. A bargaining outcome
(z,p) is feasible if

I

z(i') < max {lim sup [v(B(%), 0 (1)) — p(4)] ,0} )

1174 is not critical to this example that the bottom buyer has chosen an isolated attribute. The
same issue arises whenever there is a discontinuity in the attribute choice functions. Suppose
for example that the buyer attribute choice function is discontinuous. We would like the set of
sellers’ feasible payoffs to be the same when the buyer attribute choice function only differs in
whether it is continuous from the left or from the right.

124¥e will need to extend the notion of feasibility in the next section to cover the case where,
due to a single agent’s choice of attribute, the attribute function is not stric"tly increasing. This
extension is obvious and trivial.

13This notion of feasibility differs from that in Gretsky, Ostroy, and Zame [7] and in Kamecke
[11]. As we indicated above, our definiton only applies to positively assortative matchings, so we
have not described feasibility for “most” matchings. Our definition has the important advantage
that when combined with stability, it uniquely determines a single agent’s payoff as a function
of the other agents’ payoffs. This is necessary if an agent is to compare payoffs from different
attribute choices. The measure-theoretic notion of feasibility in Gretsky, Ostroy, and Zame [T},
when combined with feasibility, does not force isolated attributes to have unique payoffs (when
other agents’ payoffs are fixed). The notion of feasibility in Kamecke [11] effectively requires that
the attribute functions be continuous. Kamecke defines a bargaining outcome to be feasible if it
can be approximated, in the sense of uniform convergence, by payoffs that are pairwise feasible.
In our example, (z*,p") would not be feasible under this notion. Simply requiring pointwise
convergence, on the other hand, is too weak, since under this notion of feasibility, there are
feasible and stable payoffs that violate equal treatment: Consider again the example, but with
B() = o(j) = 1 for all i and j. Let m, be the matching described in footnote 10. The payoff
(2n,pn) given by z,(0) = 8, z.(3) = 3, pa(L) =%, and pu(f) = L is feasible for m.. Moreover,
it converges pointwise to the stable payoffs (Z, 5}, where E0) = 3, (1) = %, and p(j) = %
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and

p(j') < max {h?i. sup [v(8),0(3) = =(1)] ,0} :

To motivate this definition, first note that if all the relevant functions (8, o,
z, and p) are continuous and the nonnegativity constraints are not binding, this
reduces to the pairwise feasibility definition for positively assortative matching
by index. Second, the role of the nonnegativity constraint (which we show below
cannot bind almost everywhere) is to describe agents like buyer 0 in the example
above. Finally, as in the example, with a continuum of agents, an agent 7 may
not be matching with precisely j = 7. Rather, he may be matching with agents
arbitrarily close to j = i. Moreover, these matches may yield higher possible
payoffs. Taking the lim sup captures these possibilities.14

It is immediate that the definition of stability implies that the inequalities
in the definition of feasibility hold as equalities for stable payoffs. In the finite
case, equal treatment implies that if stable payoffs have been fixed for all but
one buyer (similar statements hold for sellers), and if that buyer has the same
attribute as a second buyer, then that buyer’s payoff is determined by the second
buyer’s payoff. There is a similar result for the continuum agent case. Suppose
that stable payoffs have been fixed for all but one buyer. Then that buyer’s payoff
is determined by that of any other buyers whose attributes are arbitrarily close:

Lemma 1. Suppose v is strictly supermodular and C'. Suppose 8 and o are
strictly increasing. For any stable payoffs (x,p),  and p are strictly increasing -
(and so their left hand and right hand limits exist). Moreover, x and p inherit
the continuity properties of § and o, respectively (i.e., if B is continuous from the '
left at ', then z is continuous from the left at 7', etc.).

Proof. See appendix.

Let C(B,0) be the set of common continuity points of § and . By Lemma
1, for i € C(B,0), stable  and p are both continuous at ¢, and so z(¢') <
max{v(B(i'),0(i)) — p(¢'),0}. Hence, p(i’) < max{v(B(¥'),0(i")) — z(i'),0}, im-
plying z(i'), p(i’) < v(B(i"), (1)) and so 2(i') + p(¢') = v(B(1"),0(i")). We can
thus assume that buyer ¢ with attribute b = S(¢) is matching with precisely
seller j = i with attribute s = o(¢). This allows us to define the function
5:B8(C(B,0)) — S given by §(b) = o(B~1(b)) and the function b : o(C(B,0)) = B
given by b(s) = B(c7}(s))-

L4yW/e need to take the limsup, rather than simply taking limits, because the limit does not
exist when the attribute functions are discontinuous.
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For b € B(C(B,0)), 3(b) is the attribute of the seller that the buyer with
attribute b matches with (and similarly for the buyer attribute b(s)). It is also
helpful to have specific notation for the share of the surplus that a particular
attribute receives in a stable payoff (x, p). Suppose 3 and ¢ are strictly increasing.
Define &(b) = (67" (b)) and p(s) = p(o~1(s)). Equivalently, (z,p) = (&0 83, poo).
The payoffs (Z,p) is stable if (Z(8),p(0)) is stable. ,

To simplify notation and eliminate a special case that, while straightforward
to analyze, does not add anything substantive, we rule out isolated attribute
choices in the statement of the characterization result (isolated attribute choices
are addressed in footnote 17). We first make the following definition:

Definition 11. A function is well-behaved if it is strictly increasing, discon-
tinuous at only a finite number of points, differentiable where continuous, and at
every point, either continuous from the left or from the right.

We now characterize the stable payoffs of the assignment game for a particular
class of attribute choice functions. Kamecke [11] has previously shown that sta-
bility implies (7.2) and (7.3) a.e. for general v when 3 and o are continuous. As
usual, f(z+) denotes the right hand limit (f(z+) = lim.}o f(z +¢)) and f(z—)
denotes the left hand limit (f(z—) = lim¢j f(z — €)).

Lemma 2. Suppose v is strictly supermodular and C!, and that § and o are
both well behaved. Stable payoffs (x,p) exist. The payoffs (z,p) are stable if and
only if the following hold:

1. No waste:
z(?) + p(3) = v(B(i),0(9)) Vi € C(B,0), (7.1)

2. xz and p are continuous at all i € C(3,0),

3. & and p are differentiable on B(C(f3,0)) and o(C(83,0)) respectively, with

derivatives
F(b) = @%@ for all b € B(C(B,0)), and - (7.2)
P(s) = ?Lba(zm for all s € o(C(B,0)), (7.3)
and
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4. at any point of discontinuity 1,

a(i+) + p(i+) = v(Bi+), o (i+)),
o(i+) — z(i—) = v(B(i+),0(i~)) — v(B(E—),0(i~)), and (7.4)
p(i+) — p(i-) = v(B(i-),0(i+)) — v(B(i=),o(i-)).

Proof. See appendix.

8. Ex post contracting equilibrium in the continuum

In this section, we analyze ex ante and ex post contracting equilibria of the
continuum agent model. As in the finite player case, in the ex post contracting
game agents make simultaneous choices of attribute prior to matching, followed
by a stable payoff in the assignment game resulting from those choices. The ex
ante contracting game is the game in which buyers and sellers contract with each
other over matches, the investments to be undertaken, and the sharing of the
resulting surplus.

As in the finite case, we need to determine the change in payoff to an agent
who unilaterally changes his attribute. After such a deviation by buyer i, say, the
attribute choice function [ is no longer strictly increasing. However, it fails to be
strictly increasing only because of a single agent’s choice of attribute. Accordingly,
we assume that all the agents’ payoffs, except for buyer i/, are determined as
if B and o are strictly increasing. That is, we consider the attribute choice
functions (3,0), where B(i) = B(i) for all ¢ # i’ and B(#') is any attribute b
satisfying lim;p;/ [3@) < b < lim;p B(3). Note that if im,per B(3) < limgpe B(2), the
indeterminacy of 3(s') can only be reflected in an indeterminacy in the payoff of
seller ¢/, and then only if o is both discontinuous from the right and from the left
at /. Finally, the payoff of buyer ' is determined from:

(i) = max {v(B(), 0 (&' =) — p(F'~), v(B(), 0 () — p(), v(B("), 0 +) — p(I'+)} -
(8.1)
We make some standard assumptions on the surplus and cost functions.

Assumption 8.1. The surplus function v : R2 — Ry is C* with Ov(b, s)/0b > 0,
du(b, s)/s > 0, 8?u(b, s)/9bds > 0, d%v(b,s)/0b? < 0, and 82v(b,s)/0s? < 0 for
all (b,s) € R2.

There exists B : [0,1] — R4y such that the buyers’ cost function ¥ : {(b,1) |
b e [0,B(:)),i € [0,1]} — Ry is C? and satisfies ¥(0,1) = 0, 8(0,1)/0b = 0, for
all i € [0,1], and dy(b,1)/6b > 0, 821(b,i)/0b? > 0 and 8% /8bdi < 0 for b > 0.
Moreover, lim, 5, ¥(b,i) = oo.
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There exists S :[0,1] — Ry such that the sellers’ cost function ¢ : {(s,9)
s €1[0,5(j)),j € [0,1]} — R satisfies the same properties as .

Assumption 8.1 implies the problem

rgixv(b, ) — (b,1) — c(s,1) (8.2)

has an interior solution for all i € [0, 1], and that any solution is strictly increasing
in index. For the analysis that follows, it is convenient to make the following
-assumption:

Assumption 8.2. There is a well-behaved pair of attribute choice functions,
(B*,0*), such that (8"(3),0*(i)) solves (8.2) for all i.

While this is a direct assumption on the efficient attribute choice functions,
it is one that will be typically satisfied. Our first result is the counterpart of
Proposition 5.

Proposition 6. Under assumptions 8.1 and 8.2, there exists a bargaining out-
come function g* such that (g*,(8*,0*)) is an ex post contracting equilibrium.

Proof. See appendix.

There is an important difference between Propositions 5 and 6. First consider
the case of doubly overlapping ex ante efficient attribute vectors, (b*,s*), for the
finite population. Stable payoffs are determined completely by the division for
the bottom pair of attributes and equal treatment. It is immediate that there is
a bargaining function g* such that (g*,(b*,s*)) is an ex post contracting equilib-
rium: Since a single agent (i say) changing attribute in the doubly overlapping
attribute vector (b*,s*) does not remove any matched pair of attribute values,'®
the resulting attribute vector is still overlapping and so the original stable payoff
is still stable (with, if necessary, the new attribute’s payoff determined in the
obvious way). Since no other agents’s payoff is changed as a result of i’s play, 4
captures the full value of any attribute change and so (g*, (b*,s*)) is an ex post
contracting equilibrium. The difficulty in the finite case arises in dealing with the
possibility that (b*,s") may not be doubly overlapping. If a single agent’s change
in attribute results in a completely new attribute matching, the stable payoff
to most attributes necessarily changes. Finally, the bargaining outcome func-
tion used in Proposition 5 only depends on the cost functions through (b*,s*).

16\While the attributes of some the agents’ partners will be different as a result of the re-
matching, any pair of attribute values that was matched in the absence of the deviation will be
matched when there is a deviation.
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While this is somewhat misleading, since if the attributes are continuous vari-
ables, changes in 9 and c will necessarily affect (b*,s*), there is a sense in which,
given (b*,s*), the cost functions do not affect the required bargaining outcome
function.

The continuum case is quite different. By construction, any change of at-
tribute by a single agent leaves all other payoffs unchanged, and a single agent’s
attribute choice has no impact on social value. None the less, there is a similarity
between the case of doubly overlapping attributes in a finite population and the
case of continuous attribute choice functions, B* and o*, in a continuum popu-
lation. For the continuum population, stable payoffs are determined completely
by the division for the bottom pair of attributes and (7.2) and (7.3). The two
marginal conditions, (7.2) and (7.3), essentially assert that each attribute is paid
its marginal social value, and so it is not surprising that Proposition 6 holds in
this case. Moreover, the definition of g* is trivial, since it is given by the divi-
sion for the bottom pair of attributes and (7.2) and (7.3), and (8.1) for deviating
attributes outside the range of 3* and o*.

The case of discontinuous attribute choice functions in a continuum population
is more interesting. As we noted at the beginning of the previous paragraph, any
change of attribute by a single agent leaves all other payoffs unchanged, and so
there is no problem in determining stable payoffs for the other agents. Suppose
* (and so o*) are discontinuous at i. From (7.4), at 4, there is a range of possible
divisions that is consistent with stability. However, only one division is consistent
with (8*,0*) being an ex post contracting equilibrium, namely the division that
makes the buyer indifferent between the choices @*(i=) and B*(i+) and, at the
same time, makes the seller indifferent between o*(i~) and o*(i+):

(i+) — Y(B*(i+),1) = x(i-) — Y(B"(i-),9)
and

pli+) — c(0* (i+),1) = p(i—) = c(o” (=), 1)-
(This division is feasible because the total net surplus at i— equals that at i+).
There is thus a sense in which the appropriate g* is “special.” Moreover, unlike
the bargaining outcome function for the finite population case, given (3%,0"), the
bargaining outcome function does depend on the cost functions directly, as well
as through their determination of (8*,0%).

The following lemma captures the idea that the coordination failure exhibited

by inefficient ex post contracting equilibria is not a failure of matching, but rather
a failure of attribute choice.

Lemma 3. Suppose (8*,0*) are the attribute choice functions for an ex ante
contracting equilibrium and (53, &) are well-behaved attribute choice functions for
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an ex post contracting equilibrium. Suppose for buyer i, B(i) # B*(3); then there
does not exist j such that &(j) = o*(i); similarly, if for seller j, a(j) # o*(4),
then there does not exist i such that (i) = B8*(j).

Proof: Since marginal costs of attributes are decreasing in index, B and &
are increasing in index. Since any stable matching is positively assortative in
attributes, in any ex post contracting equilibrium, buyer i is matched with seller
i. First note that for all 7,

B(i) € arginax v(b,5(i)) — (b, 1) — p(i) (8.3)

and _
g(i) € argrsnaxv(ﬁ(i),s) —c(s,1) — z(37). (8.4)

[We prove the first. If it did not hold, then there exists b # B(i) such that
v(b,3 (1)) — (b, 1) — p(8) > v(B(1),(1)) — »(B(),7) - p(0)-
Since (3,5) is an ex post contracting equilibrium,

v(B(8),3(i)) — Y(B(3),1) — P(8) 2 sup v(b,3(5)) — ¥(b,%) — P(F);

which implies
v(b,5(3)) — B(3) > v(b,&(4)) — P(d),
a contradiction.]

Suppose that for some buyer i, B(i') # 6" (i'), while for some seller j', 5(j') =
o*(i'). Then j' # ', since if j' = 7', (8.3) and the efficiency of (3*,0*) imply that
B(¢') and B*(i') are maximizing the same strictly concave function, v(b,0*(7)) —
¥(b,4'), which is inconsistent with B # B*(#).

Suppose j' > i’ (the other case is handled similarly). Since 8%¢)/8bdi < 0, the
solution to the problem max, v(b,o*(i')) — 1(b,9) is increasing in 1, and hence,
B(5") > B*(#'). Since 8%v/8bds > 0, the solution to max,v(b,s) — c(s,j') is
increasing in b, and consequently, 5(j') > argmax, v(B*(i'),s) — c(s,j'). Finally,
82c/8sBj < 0 implies that argmax, v(8*(¢'),s) — ¢(s, j) is increasing in j, so that
7(j") > o*(¢'), a contradiction. Hence, there cannot be a seller with index than
§' > i for which 5(j') = o*(¢). W

In addition, ex post contracting equilibria are “constrained” efficient for the
continuum case. This is in contrast to the finite case in which ex post contracting
equilibrium outcomes need not be “constrained” efficient, as is illustrated by the
example in section 2.

31



Lemma 4. Suppose ([3,&) are attribute choice functions for an ex post contract-
ing equilibrium that are not part of an ex ante contracting equilibrium. Then
for any blocking coalition (7,7) with attribute choices (T), §), there does not exist
i'such that b = B(¢'), nor does there exist j' such that § = é(4").

Proof: Suppose (3,7) is a blocking coalition with attribute choices (b, 3) and
shares (Z,p). Then,

i+p = vb,3),
z-v(bi) > 2(B0) - ¥(B(),1), and
ﬁ—C(§,j) > ﬁ(é‘(5))—c(6(5),])

The proof is by contradiction. Suppose there exists j' such that § = a(3").
Since p _~C(_§,j) >_ﬁ(6(J)) - C(Q(j)h}') Z~ ﬁ(g) - C(§75)7 we have p > ﬁ(E), and
so & — ¥(b,3) = v(b,3) — P —¥(b,7) < v(b, 3) — H(8) — ¥(b,2). But stability, the
hypothesis that stable payoffs to nondeviating players are unchanged, and the
fact that (8,6) is are part of an ex post contracting equilibrium implies that
v(b, ) — p(8) — ¥(b,1) is a lower bound on buyer 1’s payoff in equilibrium, and so
we have a contradiction. An identical argument, mutatis mutandis, shows that
there cannot exist an 4’ such that b= B(). n

g. Discussion

We saw in the continuum case that when agents are choosing attribute choices
efficiently, there may be a jump in the investments at some point. When the cost
and surplus functions are well-behaved and there is a discontinuous increase in
attribute for one side, there must also be a discontinuous increase in attribute
for the other side as well. The gross payoff to agents must be discontinuous at
the point of discontinuity as well: agents arbitrarily close will receive boundedly
different payoffs in any efficient equilibrium. There is not, however, any discon-
tinuity in utility; the increase in gross payoff is exactly offset by the increase in
cost in acquiring the attribute necessary to attain that payoff. This is, of course,
not surprising; when cost functions are continuous, if there was a discontinuous
increase in payoff net of the cost of investment, agents just below the point of
discontinuity would have an incentive to make the higher investment. This char-
acteristic has the flavor of the argument that rents will be dissipated by agents’
expending resources in competition for those rents.

It is important to note that this is not inefficient here, but rather may be
a property of efficient choice of attributes. The variance of income (that is,
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gross payoffs) may be greater or less than the variance of utility (payoffs net of
investment costs), depending on the cost functions. In the extreme case that
all agents on one side of the market have nearly the same cost of acquiring any
given attribute, there will be hardly any variance in utility while there may be
large variance in income. Variance in utility is & direct consequence of differences
across agents in acquiring given attributes. The degree to which such differences
in cost translate into different gross payoffs depends on the shape of the surplus
function, v.

We treat in this paper the case in which the relevant groups for production
are pairs. We could easily have extended the analysis to cover the case in which
production necessitated a group of people, one of each of a number of different
types. With analogous assumptions on the surplus and cost functions, we would
have had similar results regarding positive assortative matching, equal treatment,
etc. An interesting extension that is not so direct is to treat the case in which
groups may or may not have one of each type of agent with the surplus they
generate depending on the composition of the group.

In our model matching is frictionless, that is, there is no cost in agents’ search-
ing out appropriate partners. It is clear that frictionless matching drives some of
the qualitative results; for example, we would not expect to see perfectly assor-
tative matching if matching is accomplished through costly search.!® For given
vectors of attributes for the agents, the matching and sharing that we focus

For many of the problems the model is meant to address—such as match-
ing workers to firms—the process of matching and production is ongoing. That
is, there is a sequence of periods in which matching may take place, and once ‘
matched, the pair may stay matched for several periods. A natural way to model
such a problem would be with a new cohort of individuals on each side of the
market entering each period, making investments in the first period of their lives ‘
and entering the matching market the next period. If the cost functions vary
stochastically across cohorts, individuals who are looking for partners might find
it profitable to defer matching until later periods in the hope of finding a better

match. The static nature of our model clearly precludes an analysis of such be- -

havior; extending it to such an environment would be difficult, but potentially
quite interesting.

16Gee Burdett and Coles ([2]) for an analysis of such a model, although one in which attributes
are given exogenously.
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10. Related literature

Our focus is on whether agents have the right incentives in terms of their invest-
ment decisions, given that a core allocation of the induced assignment game will
result. Since the core in this case coincides with the set of Walrasian allocations,
a question related to ours is whether in a competitive equilibrium, agents have in-
centives to make efficient ex ante investments. This question has been addressed
by Hart [9, 10], Makowski [14], and Makowski and Ostroy [15]. In these papers,
there is a set of exogenously specified possible commodities that can be produced
(or in [15], occupations that can be chosen). Firms first decide which goods to
produce, and then, given these decisions, a price-taking equilibrium results. Hart
and Makowski ask whether firms choose to produce an efficient mix of commodi-
ties. They both conclude that if firms are perfectly competitive, then the resulting
equilibrium commodity choices are constrained efficient. Makowski and Ostroy
(15] are interested in the role of full appropriation and noncomplementarities in
leading to full efficiency.

Our work is distinguished from this work in two ways: First, the production
technology available to our agents is very different, due to the matching and
complementarities in attributes. Second, the matching process allows to us t0
focus on the bargaining between the agents and the role of outside options in
affecting efficiency. On the other hand, the qualitative properties exhibited by
the equilibria in their models are similar to those in our model.

Acemoglu [1] analyzes a model in which workers and firms are matched in
which there may be inefficient underinvestment in human capital. The ineffi-
ciency in his model stems from the fact that while a matched firm and worker
can contract over how the incremental surplus that would result from additional
investment would be shared, there is an exogenously specified probability of a
negative productivity shock to the pair that would necessitate rematching. It is
assumed that it is impossible for workers to contract with future employers over
the sharing of surplus, leading to inefficient underinvestment. The inefficiency in
that paper is due to assumned labor market imperfections, namely that following
the dissolution of a match, there is a costly search process to rematching. The
frictions in the matching process prevent a worker from capturing the entire social
value of his investment, leading to underinvestment. The model presented here
differs in that we assume frictionless matching. We demonstrate that for both
the case in which there is a finite number of agents and the case in which there
is a continuum of agents, inefficient investment can occur in equilibrium.

Besides these papers, there are several other papers that are related, but less
closely. Cole and Prescott [3] and Ellickson, Grodal, Scotchmer, and Zame [5],
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[4] analyze general equilibrium models in which agents, in addition to exchang-
ing goods, can belong to clubs, and care about the characteristics of the other
members of the clubs. Their models allow more general possible groupings of
agents than we do, but take the agents’ characteristics as given. Farrell and
Scotchmer [6] study formation of coalitions when output is divided equally and
show existence and (generic) uniqueness of the core. When agents differ in ability,
coalitions are inefficiently small. The inefficiency in their model arises from the
heterogeneity of agents, and would not arise if the there were sufficiently many
agents of each ability. MacLeod and Malcomson [13] study the hold-up problem
associated with investment decisions taken prior to contracting and provide, in a
specific model, the idea that ex ante investments will be efficient, as long as the
investments are general and there are outside options. That investments in their
model are general leads to competition for the individual making the investment,
assuring him of the incremental surplus that results from the investment; this
is similar to the effect of "local competition” in our overlap case above. Their
model, however, doesn’t give rise to the coordination inefficiencies in our model.
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A. Appendix

Proof of Proposition 4. This will follow from the following 2 lemmata.

Lemma A. Let (b,s) and (b',s) denote two vectors of attributes satisfying bi =
b, Vi # £ Let {(z,p),m} denote a stable payoff and matching for (,8), and
{(« ,p),m'}a stable payoff and matching for the attributes (v',s). If (b',s) are
overlapping and Pm(e) = Pin(ey then

xh =T+ V(b',s) - V(b,s).
(A similar result holds for the sellers.)

Proof. Suppose b, > be (the same argument applies, mutatis mutandis, t0 the
case b, < bg). Let «/ denote the rank order of b, in b/, ie., by = by and let &’
denote the rank order of min{b; : bi > be} in b’. Since (b',s) has no gaps,

K/
xlf = x;)'(n,) = xlb’ + z [U(b,(k)v Sk) - U(b’(k—-l)a Sk)]v (Al)

(K'II) kznﬂ

where, for each k, sk = s = Sm'() and b = by b, = b’(n_l) for some positive
assortative matching m' and i, € I g

Since the only difference between the attribute vector (b,s) and (b',s) is that
one worker has a higher attribute, the only attribute matchings that are different
involve exactly one matching for each of the attributes (sk:k=kK" o k'}. For
each k = k' +1,.-+» «', one seller of attribute s matches with a worker with
attribute b’(k_l) under (b,s), and matches with a worker with the next higher
attribute by under (b',s). For k= k", one seller of attribute s° matches with
a worker who has the same attribute (bg) as worker ¢ under (b,s), and matches
with a worker with attribute b, under (b',s). Thus,

K/

b0 Vbus) = 2y~ 800,507 2 ) o1

k=x""+1

Now, using ac;,,( " + Py = v(b’(n,,), s*") and Pl g = Pmie) equation (A.1) can

be rewritten as
" Kj
:L'li = U(b’(ﬂu),sn ) - pm(z) + Z [/U(bl(k), Sk) - 'U(b’(k__l), Sk)]
k:nll
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K.’
= 0,8 — [plbe ™) —ze + Y [v(b'(k),sk)‘—v(b’(k_l),s’“)]
k="

= z¢+ V(b',s) — V(b,s).

Lemma B. Let (b,s) and (b',s) denote two vectors of attributes satisfying
b; = b}, Vi # £. Let {(x,p),m} denote a stable payoff and matching for (b, s),
and {(',p"),m'} and {(z",p" ),m'} be two stable payoffs and matchings for the
attributes (b',s). If ppey = p:m(e) and Py ey = p'r’n,(e), then '

2y —zy < V(b,s) — V(b,s) < 7 — ze.
(A similar result holds for the sellers.)

Proof. The bound on zj is immediate, given the bound on zj (reverse b and
b'). If (b/,s) has no gaps, the value of ), is determined uniquely once Piue) 18
fixed, and by Lemma A, the bound holds with equality.

Suppose now that (b/,s) has gaps and b} > by (the same argument applies,
mutatis mutandis, to the case b, < bg).

Consider the impact of buyer £’s attribute change in a related collection of
buyers and sellers that is a combination of the buyer and seller attributes that
are rematched. Let I' = {i : by < b;i < b}, J = m(I') and J" = (.
Consider an economy (I,J,(b,8)) with \I| = |J| = 2 |I| buyers and sellers, and
b = ((bi)icr, (bi)icrr) and § = ((s;)jeus (85)jesn). (Note that {s = s = sj, j€
JYy={s:s=3s; 7€ J"}.) The attribute vector of buyers after buyer £ changes
attribute is b’ = ((8;)ierr, (b})icr). Observe that (b’,5) has no gaps, and that
(b',5) is the buyer-first extension of (b,s), apart from the bottom matched pair
(but the seller’s attribute in that pair is the same as in (b, s)) and some repeated
matched pairs. By Lemmas A and ,

2y <z + V(B,8) — V(b,8),
which yields the desired upper bound, because V(b/,8) — V(b,8) = V(b',s) -
V(b,s). |

Proof of Lemma 1: We first argue that x and p are strictly increasing. Sup-
pose there exists 7 < % such that z(i') > z(i). Forp > 0 small, let ¢ =

2 {v(B(),0(" — n)) — v(8("),0(i' —n))}. Since B is strictly increasing, € > 0.
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Moreover, since ¢ is also strictly increasing and v is strictly supermodular, v(8(¢), o (5))—
v(B(i"),0(j)) > 2¢ for all j > i/ — 7. Feasibility implies that there exists j €
(i’ —n,1 +n) such that

z(¢') <v(B("),0(4) —p() + e

and so

o(i) +p(j) < =2(F)+p() Sv(B(E),0()) +e
< v(B(),0(h) e

contradicting the stability of (z,p), and so z is strictly increasing. A similar
argument applies to p.

Consider now the case of 3 continuous from the left at i'. Suppose z(d) >
liminfi1y 2(3). Let € = [z(i')—liminfis z())/4. Suppose lim sup;_;[v(8(i"),0(j))—
p(§)] > 0. (If the reverse weak inequality held, z(#') = 0, contradicting the as-
sumption that = jumps up at i'.) There exists j close to i such that z(¢') +p(j) <
v(B(i"),0(j)) + €. Moreover, for i close to (but less than) ¢/, v(8(i'),0(j)) <
v(B(5),0(§)) + € and x(2) + 3¢ < (¢'). Thus,

z(@) +p(j) < () +p(y) -3¢
< w(BE),00) - 2%
< v(B(i),a(j)) — e <v(B(E),0(5))-
But this contradicts stability, and so (i) < liminf;py 2(1).

Now suppose (i') < limsup;;y (). Note that this implies that lim sup; z(2) >
0. Lete = [lim sup;py (1) — (7 )} /4. Since v is uniformly continuous, there ex-
ists i close to (but less than) ¢/, such that lv(B(1),s) — v(B(),s)| <eforall s € S.

Moreover, i can be chosen so that z(i') < (i) — 3. There also exists j close to ¢
such that z(i) + p(j) < v(B(3),0(5)) + €. Thus,

z(i') +p(j) < =) +p() -3
< v(B(i),0(j)) — 2
< w(B("),0() — & <v(B{E),a(7)-
But this also contradicts stability, and hence, lim inf;1s 2(2) 2 z(i") > limsup;yy 2(3);

i.e., T is continuous from the right at B(").
The other possibilities are covered similarly. |

Proof of Lemma 2: Let {i;,%2,...,%7} be the discontinuity points of 8 and o,
and define Iy = (i1,9¢41) fort=1,..., T =1, Ip = [0,41), and I7 = (T, 1]. Then,
C(ﬂ’ J) = U{:()It-
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Existence of stable payoffs is addressed after the characterization. We have
already argued that the no waste and continuity conditions must hold for any
stable payoffs. These in turn imply at any point of discontinuity iy, x(is—) +
plis—) = v(Bir—),0(i~)) and z(is+) + p(ie+) = v(B(i+),0(it+)). The two
inequalities in (7.4) are then equivalent to the local stability conditions:

2(ig+) +p(i—) = v(B(ir+),0(i—)), and
o(i—) +pli+) = v(Bi—),0(i+t)),
which (from continuity) are clearly necessary. The local condition (7.3) follows

from the observation that since the payoffs are stable, for b’ € S(C(S, o)) and all
s € 0(C(B,0)),

(¥, 5(t)) — BEY)) = (b)) 2 v(¥,5) ~ B(s), (A.2)

while (7.2) follows from fixing s’ € 0(C(8,0)) in the same inequality and consid-
ering the value to the seller of matching with different buyers.

Now we turn to sufficiency. Fix a pair of nonnegative payoffs (z(0),p(0)) that
satisfy

2(0) + p(0) = v(B(0), (0))-
Since any stable payoff must satisfy (7.2) and (7.3), we have

86 Bu(b, 5(5))

) = 0+/ db, for i € I, A3
o) =20 + [ ori € Io (A3)
and o .
a(j b
p(j) = p(0) + ai)(—gs—)’s—)ds, for j € Ip. (A.4)
a(0) S

Note that these equations determine z(iy—) and p(i1—). (We show below that
(7.1), (A.3), and (A.4) are consistent.) It remains to extend z and p to the rest
of [0,1]. As on I, (7.2) and (7.3) determine z and p on I; once the initial values,
x(it+) and p(ic+), have been determined. Let (z(it+),p(is+)) be any pair of
payoffs satisfying (7.4). If, for example, 8 is continuous at %, then z(it+) =
z(i;—), and there is only one choice for (z(i¢+), p(ie+)). The payoff for buyer 2,
is then determined by the continuity property of 5 if B is continuous from the
left, then x(i;) = B(é;—), while if 3 is continuous from the right, x(it) = B(it+)
(the same considerations apply for seller ;)"

171f both B and o are discontinuous from the left and the right at i, then any choice
(z(de+), p(ie+)) satisfying

(int) = max {v(B(ie), 0 (ie—) — Plie=), v(B(ér), 0 (i) — p(ir), v(B(ix), o (iet) — p(i:+)} (A.5)
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We next verify feasihility for ¢ € C(8,0). Suppose i € I;. By assumption,
z(ig+) + p(ie+) = v(B(it+), o(i4+)), and for i € I,

1) +p0) = alier) + [ 20630)

B(ie+) ob
o()  Ju(b(s), s)
+p(ic+) + / ——ds
p(it+) oiet) Bs

1

= o8+, o) + [ LD 4y - o53) o1y,

so each pair efficiently shares the surplus.
We now verify stability. Lemma 3 implies

z(it—) + p(it4r+) > v(B(it—), 0 (it4x+)) for all k.

If (z,p) is not stable, then there is a pair i and j satisfying z(3) + p(j) <
v(B(3),0(4)). Suppose i € I; and j € Iyk, k > 1 (the case of i and j in the
same continuity interval is an obvious modification of the following, as is the case
in which i and j are reversed). Then,

?’(it+1“) +p() < x(itt1-) +v(B(i),0(j)) — z(3)

Blict1~) Gu(b. 5
N v(ﬂ(i)’a(j)H/ﬁ(i) Q‘(_ba’l;ib—)ldb

2ot 4 [P67) 0t ()
wB@ o)+ [T

= v(B(ity1—),0(5)),

where the second inequality comes from the strict supermodularity of v. But
then,

db

A

T(ir1—) +plicrrt) < v(B(itr1—),0())) — p(4) + p(eqk+)

~ ' . a(4) 61)(5(3), s)
= WBla)o) - [ s
. ‘ a(j) Av(B(it+1—), s)
< v(B(ity1—),0())) — /a(mkﬂ ds as
= U(,@(it-{—l“‘), U(it+k+))a
and
p(e+) = max {v(B(it—), 0 (i) — z(i:—), v(B(ir), o (ic)) — z(ir), v(B(ie+),0(3:)) — x(ie+)},

(A.6)
is stable and feasible.
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a contradiction. Thus, (z,p) is stable.
[

Proof of Proposition 6: As in the proof of Lemma 2, i; denotes the tth dis-
continuity point of 8* and o*. Then

o(B* (=), 0*(i=))  —¥(B*(is=),ie) — (07 (it—),0e) =
V(B (i), 0% (de+) — Y(B" (Be+), %) — C(ff*.(‘itﬂL)ﬂ't)tA ,

Equilibrium requires

2(6+) — (B (i), ie) = 2(ie—) = (8" (1e=), 1) (A.8)

and ‘
plig+) — c(o” (i+),30) = p(ie—) — c(o™ (1=), @), (A9)

where z(is+) (z(i¢—)) is the share of a buyer with attribute B8*(i¢+) (8%(it—))s
and p(is+) (p(3:—)) is the share of a seller with attribute o*(ig+) (0*(3:—)). 1f
the stable payoffs do not satisfy these equalities, then clearly buyers and sellers
close to i; (either just above or just below) have an incentive to deviate.

It remains to show that the payoffs implied by (A.8) and (A.9) are consistent
with stability. Now,

o(it) +plis—) = x(ig=) +plis—) + (B (ie+), 1) — P(F"(ie =), %)
v(B*(i=), 0" (it—)) + Y(B* (Get) i) —P(B" (=), i)
> (B (ir+), 0" (),

since v(*(ie=), 0* (i—)) — Y(B* (=), it) — c(07 (ie=), ie) Z v(B"(ie+), 0" (0e—)) —
DB ie+), ) — (0 (i), ).

We need to show that (A.8) and (A.9) are sufficient for equilibrium. Fix
(z*(0),p*(0)) such that z*(0) + p*(0) = v(8*(0),0*(0)). The payoffs (z*,p*) are
now obtained from (A.3), (A.4), (A.8), and (A.9). From Lemma 2, these payoffs
are stable. These determine the payoffs to a buyer (seller) choosing any attribute
in the range of §* (¢0*). Attributes outside the range are dealt with directly
through feasibility: Let b} solve v(b, o*(is+)) — p(ie+) = v(b,0*(it—)) — p(i—)
and set b§ = 0 and b}, = B(i) (and similarly for s;). Then, B (i—) <
b < B (ist), V(8 (ie—), 0" (t+)) — pliet) < V(8 (ie=), 0" (ie=)) — pie—), and
o(8*(ig-+). o (i1+))~plie+) > v(8" (i), 0* (=) —p(ie—). Then, for b € [8*(it=),bi],
#(b) = v(b,0*(ir—)) — p(it—), and for b € [bF, B*(3c+)], £(b) = v(b,0*(ie+)) —
p(iz+). Similar statements hold for the seller.
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Consider now the buyer’s problem (the argument for the seller is symmetric).
We first argue that 3*(i) is a maximizing attribute choice for buyer i € [iz, it+1)
from the attribute set [b}, bt 1)1 The problem for buyer i is to choose b €
[b%,b},] to maximize

&(b) — (b, 1)

Consider first choices of b € (8*(it+), B (it+1 —)). Since buyer ’s payoff function
is differentiable over that domain (by Lemma 2), any maximizing choice of b €
(8* (i4+), B* (ig41—)) must satisfy the first order condition

0 (8,)

By construction,

i"(ﬂ*(z)) — 8v(ﬁ*(2)b, o*(i)) - ?ﬂ%ﬁﬂ Vi € (’it,it+1)-

Suppose that &'(b) = d(b,i)/8b for some b # B*(i), b € (ﬂ*(z’t+),ﬂ*(z’t+1—-)).
Since b € (8*(i4+), B*(4t+1—)), there exists i with B*(7) = b and so

BY(b,3) i _ O¥B:7)
% = 2'(b) =

ob
which is impossible, since 0 /0b is a strictly decreasing function of i. Thus, the
first order condition has a unique solution in b € (8*(ie+), B (Gt+17))-

We now argue that 8*(%) a local maximizer for i. In what follows, partial
derivatives are indicated by subscripts. It is enough to show that the second
derivative of buyer #’s payoff function is strictly negative. The second derivative
is &

S A * [~ A 8
(8" (8),0*(2)) +vbs(B"(8), 07 (2) 3

(@), (AL0)
b=p" ()

Now, %%‘bzﬂ"(i) — (do*(3)/di) (dB"(i)/di)* and df*/di > 0, so that (A.10)

can be rewritten as

a3/ {(ow ) (5 + o0 ()} = (@5 @/ e <0

Thus, 5*(i) is the unique optimal choice from (B*(it+), B* (it41—))- By continuity,
3*(i) is an optimal choice for i = 4; and ig4q from [B (i), B” (141—)]-

18The same argument shows that for buyers inthe bottom interval [0,41), 8° (i) is optimal in
the set [0,b}], and that for buyers in the top interval (ir, 1], 8" (?) is optimal in the set [bT, B(2)}.
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We now turn to choices of b ¢ (B*(34+), B* (it+1—)). Since stable match-
ings require positive assortative matching in attributes, if buyer 7 chooses b €
(b}, B*(it+)), then he is effectively matched with the seller with attribute o*(i¢+),
while a choice of b > B*(it41—) leads to a match with o*(iz4i—). Consider the
first possibility. In the first case, #(b) = v(b,0* (i +)) — B(o” (it+)), while in the
socond, 2(b) = v(b, 0 (ies1-)) — P(* (it+1-)).

We first consider b < (3*(4t+) and argue to a contradiction. Suppose there
exists b < B*(it+) such that

5(8* (1)) — W(B*(0),3) < v(b, 0" (i) — B0 (ixt)) - )

Lot € = o(b,0*(i4)) — Bo™(ie+)) — B(b,3) — (8" (D) = $(F(@),3)] > 0. Since
p is continuous, there exists an i < i (and close to i;) such that |p(o*(3)) —
p(o*(it+))| < €/2. For this 1,

w(B* (i), 0" (1)) — v(b,0* (@) = (8" (4),8) —%(b,5) > $(B*(3),2) — (b, ),

where the first inequality follows from the optimality of (8*,0*) for 1, and the
second from 01/0bdi < 0. Then,

2(8*(0) — (B (3),2) = #HB(@) — (B (1):7)
‘ v(B*(3), 0% () — $(B*(4), 1) — B(o™(?))
(b, o*(3)) — ¥(b,2) — Ble™(i))
w(b, 0* (i+)) — $(b,8) — B(o™ (@r+)) — €/2
2(B*(3)) — Y(B*(2),0) + €~ €/2,
which implies 0 > €, a contradiction. k
We now consider b > 3*(it+1—). Note first that it is obviously a best reply for

buyer 4,41 to choose 3* (it41—)- Consider the difference between buyer i’s payoft
from following #* and choosing b:

A(i; b) = 2(8(3)) — w(B"(2),) — (b, 0" (Ger1—)) — Plo* (ie41=)) — BB, D).
Differentiating with respect to % yields:

OAEY (g (9) ~ (" (0)) Gy T+ )

_ <6v(ﬁ*((i9)’; a* (@) _ l/jb(ﬂ*(i),z-)) 45_; — (B (3),8) + (b, )

AVARAYS

i

b
= b)) DD = [ <0,
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so that if A(2;b) < O for some b > B*(it41—), then A(ig41,b) <0, contradicting
the optimality of 8* (ig41—) for buyer 241

We now argue that 3*(i) is a maximizing attribute choice for buyer i € [it, it+1]
from the full attribute set [0,B(3)]. Fixi € [it,d41), t = 1, and consider an
attribute b € [b_;,b%). Then

o(i) — W(B* (i), ) = B(F"(e+)) ~ (B (it +), 1),

and
(i —) — Y(B* (ie—), 1) = £(b) — P(b, it)-
Combining these two inequalities with
wie+) — W(B* (i), 4) = x(i—) = P(B*(2e—),it)
gives
and so
(i) — $(B8*(0), 1) = &(b) — $(b,),

that is, 8*(4) is a maximizing choice for i from [b}_;,bfy1]. An obvious induction
completes the argument.
]
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