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1. Motivation and Backgrund

What is the relevant l.orizon for risk management? This obvious question has no
obvious answer.! Horizons :uch as 7 to 10 days for equity and foreign exchange, and longer
horizons such as 30 days for interest rate instruments, are routinely discussed. In fact,
horizons as long as a year ar: not uncommon.? Operationally, risk is often assessed at a 1-day
horizon, and shorter (intra d: y) horizons have even been discussed. Short-horizon risk
measures are converted to ot1er horizons, such as 10-day or 30-day, by scaling. > For
example, to obtain a 10-day olatility we multiply the 1-day volatility by {/10. Moreover, the
horizon conversion is often s gnificantly longer than 10 days. Many banks, for example, link
trading volatility measuremet to internal capital allocation and risk-adjusted performance
measurement schemes, whicl rely on annual volatility estimates. The temptation is to scale 1-
day volatility by /252,

The routine and uncri ical use of scaling is also widely accepted by regulators. For
example, the Basle Committee's January 1996 "Amendment to the Capital Accord to
Incorporate Market Risks" feitures it prominently. Specifically, the amendment requires a
10-day holding period and ad vises conversion by scaling:

In calculating value at risk, an instantaneous price shock equivalent to a 10 day

movement in prices is to be used, i.e. the minimum "holding period” will be ten

trading days. Banks niay use value-at-risk numbers calculated according to

shorter holding periods scaled up to ten days by the square root of time ...
(p. 44, section B.4, paragraph c)

' Chew (1994) provid«s insightful early discussion.
? A leading example is Bankers Trust’s RAROC system; see Falloon (1995).
* See, for example, Smithson and Minton (1996a, b) and J.P. Morgan (1996).
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In this paper we sound an alarm: such scaling is inappropriate and misleading. We
show in section 2 that conve ting volatilities by scaling is statistically appropriate only under
strict conditions that are routinely violated by high-frequency (e.g., 1-day) asset returns. In
section 3, we provide a detai ed illustrative example of the failure of scaling. We conclude in
section 4, in which we note t1at, even in the unlikely event that the conditions for its statistical
legitimacy are met, scaling i: nevertheless problematic for economic reasons associated with
fluctuations in portfolio com yosition .

2. The Links Between Sho ‘t-Horizon and Long-Horizon Risk: Statistical
Considerations

Scaling Works in iid Enviror ments but Fails Otherwise

Here we describe the “estrictive environment in which scaling is appropriate.
Let v, be a log price at time 1, and suppose that changes in the log price are independently and
identically distributed,
id ,
+ € g ~ (0, o).
Then the 1-day return is

V.~V

{7 Vi T &

t

with standard deviation o. S$ milarly, the h-day return is
h-1

ViTVien = % €-p
1=

with variance ho? and standa-d deviation yho. Hence the "y/h rule": to convert a 1-day

standard deviation to an h-da:’ standard deviation, simply scale by yh. For some
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applications, a percentile of he distribution of h-day returns may be desired; percentiles also
scale by y/h if log changes a e iid, and in addition, normally distributed.

The scaling rule relic; on 1-day returns being iid. The literature on mean reversion in
stock returns appreciates thi¢, and scaling is often used as a test for whether returns are iid,
ranging from early work (e.g., Cootner, 1964) to recent work (e.g., Campbell, Lo and
MacKinlay, 1996). But high-frequency financial asset returns are distinctly notiid. Even if
high-frequency portfolio ret. rns are conditional-mean independent (which has been the
subject of intense debate in t1e efficient markets literature), they are certainly not conditional-
variance independent, as evi:lenced by hundreds of recent papers documenting strong

volatility persistence in financial asset returns.*

The Failure of Scaling in nor -iid Environments

To highlight the failu e of scaling in non-iid environments and the nature of the
associated erroneous long-hc rizon volatility estimates, we will use a simple GARCH(1,1)

process for 1-day returns,

yt = Otet
o, = w+ay’ +Bal,
g, ~ NID(0,1),

t=1,.., T. Weimpose the usual regularity and covariance stationarity conditions, 0<@<e,
220, P20, and e+P<l. The key feature of the GARCH(1,1) process is that it allows for

time-varying conditional volztility, which occurs when a and/or B is nonzero. The model

* See for example, the surveys by Bollerslev, Chou and Kroner (1992) and Diebold
and Lopez (1995).
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has been fit to hundreds of financial series and has been tremendously successful empirically;
hence its popularity.® We hesten to add, however, that our general thesis -- that scaling fails
in the non-iid environments issociated with high-frequency asset returns -- does not depend
on any way on a GARCH(1, 1) structure. Rather, we focus on the GARCH(1,1) case because
it has been studied the most 'ntensely, yielding a wealth of results that enable us to illustrate
the failure of scaling both anulytically and by simulation.

Drost and Nijman (1¢93) study the temporal aggregation of GARCH processes. ¢
Suppose we begin with a sanple path of a 1-day return series, {y(l)t}tT=l , which follows the
GARCH(1,1) process above.” Then Drost and Nijman show that, under regularity conditions,
the corresponding sample pa h of h-day returns, {Yae }Z‘f, similarly follows a GARCH (1,1)
process with

2 2 2
Oyt = Wiy + By Oomyet ® i Yhyt-1

where

L 1-(Bra)
N By

(B + a)h - B(h)a

>
[

)

* Again, see the surve:'s of GARCH models in finance by Bollerslev, Chou and Kroner
(1992) and Diebold and Lopez (1995).

$ More precisely, they define and study the temporal aggregation of weak GARCH
processes, a formal definition of which is beyond the scope of this paper. Although the
distinction is not crucial for cur purposes, technically inclined readers should read "weak
GARCH" whenever they encunter the word "GARCH."

7 Note the new and mcre cumbersome, but necessary, notation, the subscript in which
keeps track of the aggregatici level.
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and IB(h)|<1 is the solution >f the quadratic equation,

Pw _ _a(Bro)-b
1+p%, a(l+(B+e)™)-2b’

where

2 2
\(1-B)2 +2h(h-1) LB - °(1 - " - 2Pa)
i (x-D(-(P+a)?)
cqh-1-hB+a)+(B+a)") (- Pa(B + @)
1-(B+a)

a =

_ 1-(B+a)™
b = - + — 7
(o -Po(B +a)) T Bay ,

and x is the kurtosis of y,.* 'The Drost-Nijman formula is neither pretty nor intuitive, but it is
important, because it is the kzy to correct conversion of 1-day volatility to h-day volatility. It
is painfully obvious, moreov :r, that the scaling formula does not look at all like the Drost-
Nijman formula.

If, however, the scalii g formula were an accurate approximation to the Drost-Nijman
formula, it would still be ver’ useful because of its simplicity and intuitive appeal.
Unfortunately, such is not thi: case. As h-e, analysis of the Drost-Nijman formula reveals
that & +0 and B(h)-vO, whicl is to say that temporal aggregation produces gradual

disappearance of volatility fliictuations.” Scaling, in contrast, magnifies volatility fluctuations.

® Bollerslev (1986) shows that a necessary and sufficient condition for the existence of
a finite fourth moment, and hznce a finite kurtosis, is 3a?+2af +B* < 1.

® The Drost-Nijman r¢sult coheres with the result of Diebold (1988), who shows that
temporal aggregation produc::s returns that approach an unconditional normal distribution,
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3. A Detailed Example

Let us examine the fiilure of scaling in a specific example. We parameterize the
GARCH(1,1) process to be 1 zalistic for daily returns by setting «=0.10 and p=0.85, which are
typical of the parameter values obtained for estimated GARCH(1,1) processes. Choice of w is
arbitrary and amounts to a normalization, or choice of scale. We set w=1, which implies that
the unconditional variance o "the process equals 20. We set 0‘2, = ﬁ:—, discard the first
1,000 realizations to allow tl e effects of the initial condition to dissipate, and keep the
following T=9,000 realizaticas. In Figure 1 we show the series of daily returns and the
corresponding series of 1-da;’ conditional standard deviations, o,. The daily volatility
fluctuations are evident.

Now we examine 10-Jay and 90-volatilities, corresponding to h=10 and h=90. In
Figure 2 we show 10-day vo atilities computed in two different ways. We obtain the first
(incorrect) 10-day volatility L'y scaling the 1-day volatility, ,, by J/10. We obtain the
second (correct) 10-day vola ility by applying the Drost-Nijman formula. '® In Figure 3, we
repeat the comparison of Fig ire 2, except we display 90-day rather than 10-day volatilities.

It is clear that althougn scaling produces volatilities that are correct on average, it
magnifies the volatility flucti ations, whereas they should in fact be damped. That is, scaling

produces erroneous conclusit:ns of large fluctuations in the conditional variance of long-

horizon returns, when in fact the opposite is true. Moreover, we cannot claim that the scaled

which implies that volatility {luctuations must vanish.
' We set 0(210)1 at its 1 nconditional mean.
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volatility estimates are “con ervative” in any sense; rather, they are sometimes too high and
sometimes too low.

If scaling is inapprop ‘iate, then what is appropriate? First, as we have shown, if the
short-horizon return model i ; correctly specified as a GARCH(1,1) process, then long-horizon
volatilities can be computed using the Drost-Nijman formula.

Second, if the short-t orizon return model is correctly specified but does not fall into
the family of models covere:i! by Drost and Nijman, then the Drost-Nijman results do not
apply, and there are no knov n analytic methods for computing h-day volatilities from 1-day
volatilities. If we had analyt ¢ formulae, we could apply them, but we don’t. Hence if h-day
volatilities are of interest, it inakes sense to use an h-day model.

Third, when the 1-da:" return model is not correctly specified, things are even
trickier.!! For example, the | est approximation to 10-day return volatility dynamics may be
very different from what one gets by applying the Drost-Nijman formula to an (incorrect)
estimated GARCH(1,1) mod :l for 1-day return volatility dynamics (and of course very
different as well from what cne gets by scaling estimates of daily return volatilities by /10).
This again suggests that if h- lay volatilities are of interest, it makes sense to use an h-day
model.

4. Concluding Remarks
The relevant horizon nay vary by asset class (e.g., equity vs. fixed income), industry

(e.g., banking vs. insurance), position in the firm (e.g., trading desk vs. CFO), and motivation

' A moment’s reflect on reveals misspecification to be the compelling case. The
modern approach is to ackno vledge misspecification from the outset, as for example in the
influential paper of Nelson zi:d Foster (1994).
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(e.g., private vs. regulatory) and thought must be given to the relevant horizon on an
application-by-application bisis. Modeling volatility only at one short horizon, followed by
scaling to convert to longer 10rizons, is likely to be inappropriate and misleading, because
temporal aggregation shoulc reduce volatility fluctuations, whereas scaling amplifies them. '?
Instead, a strong case can be made for using different models at different horizons. 3

We hasten to add tha it is not our intent to condemn scaling always and everywhere.
Scaling is charmingly simpl:;, and it is appropriate under certain conditions. Moreover, even
when those conditions are violated, scaling produces results that are correct on average, as we
showed. Hence scaling has ts place, and its widespread use as a tool for approximate horizon
conversion is understandablic. But as our sophistication increases, the flaws with such “first-
generation” rules of thumb t ecome more pronounced, and directions for improvement
become apparent. Our inten is to stimulate such improvement.

We believe that the use of different models for different horizons is an important step
in the right direction. But even with that sophisticated strategy, the nagging and routinely-
neglected problem of portfoiio fluctuations, pinpointed in a prescient article by Kupiec and
O’Brien (1995), remains. M :asuring the volatility of trading results depends not only on the
volatility of the relevant mar tet prices but also on the position vector that describes the

portfolio. Estimates of h-day volatility are predicated on the assumption of a fixed position

2 Moreover, Christof ersen and Diebold (1997) show that the predictable volatility
dynamics in many asset retuins vanish quickly with horizon, indicating that scaling can
quickly lead one astray.

3 See Findley (1983) and Diebold (1998) for discussion of this same point in the
context of more traditional fc recasting problems.
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vector throughout the h-day norizon, which is unlikely.

Positions tend to chage frequently in the course of normal trading, both within and
across days, for a number of reasons. First, positions may be taken in order to facilitate a
customer transaction, and th::n decline to normal “inventory” levels when offsetting customer
orders come in, or when the sositions are laid-off in the market or hedged. Second, traders
may put on or take off short-term speculative positions, or adjust long-term proprietary
trading strategies. Finally, tiading management may intervene to reduce positions in response
to adverse market movemen: s.

Whatever the cause ¢ f fluctuations in the position vector, it conflicts with the h-day
buy-and-hold assumption. The degree to which this assumption is violated will depend on the
trading desk’s business strat¢ gy, the instruments it trades, and the liquidity of the markets in
which it trades. For exampl¢, even one day may be too long a horizon over which to assume
a constant portfolio for a ma ket maker in a major European currency -- the end-of-day
portfolio will bear little relat on to the variety of positions that could be taken over the course
of the next day, much less th: next 10 days. To understand the risk over a longer horizon, we
need not only robust statistic 1l models for the underlying market price volatility, but also
robust behavioral models for changes in trading positions.

Finally, we stress the challenges associated with aggregating risks across positions and
trading desks when the risks are assessed at different horizons. Obviously, one can’t simply
add together risk measures & different horizons. Instead, conversion to a common horizon
must be done through a com! ination of statistically appropriate h-day models of price

volatility and behavioral moc els for changes in traders’ positions. That, in our view, is a
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pressing direction for future research.
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Figure 2
10-Day Volatility, Scaled and Actual
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