
 
 
 

 
 
 

by 

http://ssrn.com/abstract_id=322222 

Marco Del Negro and Frank Schorfheide 

 
 “Priors from General Equilibrium Models for VARs” 

PIER Working Paper 02-024 

Penn Institute for Economic Research 
Department of Economics 
University of Pennsylvania 

3718 Locust Walk 
Philadelphia, PA 19104-6297 

pier@econ.upenn.edu 
http://www.econ.upenn.edu/pier 

http://ssrn.com/abstract_id=322222
mailto:pier@econ.upenn.edu
http://www.econ.upenn.edu/pier


Priors from General Equilibrium Models for

VARs∗

Marco Del Negro

Research Department

Federal Reserve Bank of Atlanta†

Frank Schorfheide

Department of Economics

University of Pennsylvania‡

July 2002

JEL CLASSIFICATION: C11, C32, C53

KEY WORDS: Bayesian Analysis, DSGE Models,

Forecasting, Vector Autoregressions

∗Part of this research was conducted while the second author was visiting the Research De-

partment of the Federal Reserve Bank of Atlanta, for whose hospitality he is grateful. The second

author gratefully acknowledges financial support from the University Research Foundation of the

University of Pennsylvania. We thank Sean Campbell, Frank Diebold, John Geweke, Thomas

Lubik, Chris Sims, Dan Waggoner, Charles Whiteman, Tao Zha, seminar participants at Duke

University, the European Central Bank, the Federal Reserve Bank of Atlanta, the Federal Reserve

System Meetings, the 2002 Midwest Macro Conference, the 2002 CIRANO Forecasting Conference,

and the University of Pennsylvania for helpful comments and discussions. The views expressed in

this paper do not necessarily reflect those of the Federal Reserve Bank of Atlanta or the Federal

Reserve System.
†1000 Peachtree Street NE, Atlanta GA 30309-4470. Marco.DelNegro@atl.frb.org
‡Corresponding Author: 3718 Locust Walk, Philadelphia, PA 19104-6297. schorf@ssc.upenn.edu



Abstract

This paper uses a simple New-Keynesian monetary DSGE model as a prior

for a VAR, shows that the resulting model is competitive with standard bench-

marks in terms of forecasting, and can be used for policy analysis.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are popular nowadays in

macroeconomics. They are taught in virtually every Ph.D. course, and represent

a predominant share of publications in the field. Yet, when it comes to policy

making, these models are scarcely used - at least from a quantitative point of view.

The main quantitative workhorse for policy making at the Federal Reserve System

is FRB-US, a macro-econometric model built in the Cowles foundation tradition

- a style of macroeconomics that is no longer taught in top Ph.D. programs.1 In

their decision process, Fed policy makers rely heavily on forecasting. They want to

know the expected path of inflation in the next few quarters, and by how much a

50 basis point increase in the federal funds rate would affect that path. FRB-US

offers answers to these questions - answers that many macroeconomists would regard

with suspicion given both the Lucas’ (1976) critique and the fact that in general

the restrictions imposed by Cowles foundation models are at odds with dynamic

general equilibrium macroeconomics (Sims (1980)). General equilibrium models

on the other hand have a hard time offering alternative answers. The fact that

these models are perceived to do badly in terms of forecasting, as they are scarcely

parameterized, is perhaps one of the reasons why they are not at the forefront of

policy making.

While progress is being made in the development of DSGE models that de-

liver acceptable forecasts, e.g., Smets and Wouters (2002), this paper proposes an

approach that combines a stylized general equilibrium model with a vector autore-

gression to obtain a specification that both forecasts well and is usable for policy

analysis. Specifically, the approach involves using prior information coming from

a DSGE model in the estimation of a vector autoregression. We will specify a

hierarchical prior starting out with a distribution for the structural DSGE model

parameters. Loosely speaking, this prior can be thought of as the result of the

following exercise: (i) simulate time series data from the DSGE model, (ii) fit a
1Some lucky few, among them the authors of this paper, have had the privilege of encountering

proponents of this approach during their graduate studies.
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VAR to these data. In practice we replace the sample moments of the simulated

data by population moments computed from the DSGE model solution. A tightness

parameter controls the weight of the DSGE model prior relative to the weight of

the actual sample. Markov-Chain Monte Carlo methods are used to generate draws

from the joint posterior distribution of the VAR and DSGE model parameters.

The paper shows that the approach makes even a fairly stylized New Keynesian

DSGE model competitive with standard benchmarks in terms of forecasting real

output growth, inflation, and the nominal interest rate - the three variables that are

of most interest to policy makers.2 Up to this point our procedure borrows from the

work of Ingram and Whiteman (1994) and DeJong, Ingram, and Whiteman (1993),

who are the first to use priors from DSGE models for VARs. Ingram and Whiteman

showed that prior information from the bare-bone stochastic growth model of King,

Plosser, and Rebelo (1988) is helpful in forecasting real economic activity, such as

output, consumption, investment, and hours worked.

In addition to documenting the forecasting performance of a trivariate VAR with

a prior derived from a monetary DSGE model, this paper makes two contributions

that significantly extend the earlier work. First, we show formally how posterior in-

ference for the VAR parameters can be translated into posterior inference for DSGE

model parameters. Second, we propose procedures to conduct two types of policy

experiments within our framework. The first policy analysis is based on identified

VAR impulse responses to monetary policy shocks. To obtain identification we con-

struct an orthonormal matrix from the VAR approximation of the DSGE model to

map the reduced form innovations into structural shocks. This procedure induces a

DSGE model based prior distribution for the VAR impulse responses, which can be

updated through the sample information.
2Ireland (1999) pursues a similar goal with a very different approach. He augments the linearized

solution of a DSGE model with unobservable errors that have a VAR representation. We do

not directly compare the forecasting accuracy of the two approaches. Since his model hinges on

unobservables, which may or may not contain policy shocks, it is less suitable than the approach

pursued here for policy experiments. In addition our approach has the advantage that one can

control the relative weight of DSGE model and VAR in the hybrid model.
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The second policy experiment is more ambitious. We want to forecast the effects

of a change in the policy rule. Loosely speaking, our approach can be seen as a

weighted average between (i) using the DSGE model only to forecast the effects of

the policy change, and (ii) using the VAR only to make forecasts, thereby ignoring

the effect of the policy change on the economic dynamics. The choice of the weight

is tied to the confidence that we place on the structural model conditional on the

observed data. As an application for our approach we try to forecast the impact of

the change from the Martin-Burns-Miller regime to the Volcker-Greenspan regime

on the volatility of inflation. The results suggest that the approach is promising,

and superior the extremes (i) and (ii).

The paper is organized as follows. Section 2 contains a brief description of the

DSGE model that we are using to construct the prior distribution. Section 3 dis-

cusses the specification of the DSGE model prior and explores the joint posterior

distribution of VAR and DSGE model parameters from a theoretical perspective.

Empirical results for a VAR in output growth, inflation, and interest rates are pre-

sented in Section 4. Section 5 concludes. Proofs and computational details are

provided in the Appendix.

2 A Simple Monetary DSGE Model

Our econometric procedure is applied to a trivariate VAR for output, inflation,

and interest rates. The prior distribution for the VAR is derived from a variant of

what is often referred to as New Keynesian IS-LM model. To make this paper self-

contained, we briefly review the model specification, which is adopted from Lubik

and Schorfheide (2002). Related descriptions and detailed derivations can be found,

among others, in Gaĺı and Gertler (1999), King (2000), King and Wolman (1999),

and Woodford (2000).

The model economy consists of a representative household, a continuum of mo-

nopolistically competitive firms, and a monetary policy authority that adjusts the

nominal interest rate in response to deviations of inflation and output from their
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targets. The representative household derives utility from consumption c and real

balances M/P , and disutility from working:

Ut = Et

[ ∞∑
s=t

βs−t

(
c1−τ
s − 1
1− τ

+ χ log
Ms

Ps
− hs

)]
, (1)

where h denotes hours worked, β is the discount factor, τ is the risk aversion, and

χ is a scale factor. P is the economy-wide nominal price level which the household

takes as given. The (gross) inflation rate is defined as πt = Pt/Pt−1.

The household supplies perfectly elastic labor services to the firms period by

period and receives the real wage w. The household has access to a domestic capital

market where nominal government bonds B are traded that pay (gross) interest R.

Furthermore, it receives aggregate residual profits D from the firms and has to pay

lump-sum taxes T . Consequently, the household maximizes (1) subject to its budget

constraint:

ct +
Bt

Pt
+

Mt

Pt
+

Tt

Pt
= wtht +

Mt−1

Pt
+ Rt−1

Bt−1

Pt
+ Dt. (2)

The usual transversality condition on asset accumulation rules out Ponzi-schemes.

Initial conditions are given by B0.

The production sector is described by a continuum of monopolistically com-

petitive firms each facing a downward-sloping demand curve for its differentiated

product:

Pt(j) =
(

xt(j)
xt

)−1/ν

Pt. (3)

This demand function can be derived in the usual way from Dixit-Stiglitz prefer-

ences, whereby Pt(j) is the profit-maximizing price consistent with production level

xt(j). The parameter ν is the elasticity of substitution between two differentiated

goods. The aggregate price level and aggregate demand xt are beyond the control

of the individual firm.

Nominal rigidity is introduced by assuming that firms face quadratic adjustment

costs in nominal prices. When a firm wants to change its price beyond the economy-

wide inflation rate π∗, it incurs menu costs in the form of lost output:

ϕ

2

(
Pt(j)

Pt(j − 1)
− π∗

)2

xt. (4)
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The parameter ϕ ≥ 0 governs the degree of stickiness in the economy.

Production is assumed to be linear in labor ht(j), which each firm hires from

the household:

xt(j) = ztht(j). (5)

Total factor productivity zt is an exogenously given unit-root process of the form

∆ ln zt = (1− ρz) ln γ + ρz∆ln zt−1 + εz,t, (6)

where ∆ denotes the temporal difference operator and εz,t can be broadly interpreted

as a technology shock that affects all firms in the same way. The specification of

the technology process induces a stochastic trend into the model. Since our simple

DSGE model lacks an internal propagation mechanism that can generate serially

correlated output growth rates we assume that ∆ ln zt follows a stationary AR(1)

process.

Firm j chooses its labor input ht(j) and price Pt(j) to maximize

IEt

[ ∞∑
s=t

qsDs(j)

]
(7)

subject to (5) and (6), where

Ds(j) =

(
Ps(j)
Ps

xs(j)− wshs(j)− ϕ

2

(
Ps(j)

Ps−1(j)
− π∗

)2

xs(j)

)
.

Here q is the time-dependent discount factor that firms use to evaluate future profit

streams. While firms are heterogenous ex ante, we only consider the symmetric

equilibrium in which all firms behave identically and can be aggregated into a single

representative monopolistically competitive firm. Under the assumption that house-

holds have access to a complete set of state-contingent claims qt+1/qt = β(ct/ct+1)τ

in equilibrium. Since the household is the recipient of the firms’ residual payments

it directs firms to make decisions based on the household’s intertemporal rate of

substitution.

The central bank follows a nominal interest rate rule by adjusting its instrument

in response to deviations of output and inflation from their respective target levels:

Rt = ft(πt, xt, Rt−1, εR,t). (8)
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The central bank supplies the money demanded by the household. The monetary

policy shock εR,t can be interpreted as an unanticipated deviation from the policy

rule.

To complete the specification of the model it is assumed that the government

levies a lump-sum tax (or subsidy) Tt/Pt to finance any shortfall in government

revenues (or to rebate any surplus):

Tt

Pt
− Mt −Mt−1

Pt
+

Bt −Rt−1Bt−1

Pt
= ζtxt. (9)

The fiscal authority accommodates the monetary policy of the central bank and en-

dogenously adjusts the primary surplus to changes in the government’s outstanding

liabilities. For simplicity we assume that the government consumes a fraction ζt of

each individual good j. We define gt = 1/(1 − ζt) and assume that gt follows a

stationary AR(1) process

ln gt = (1− ρg) ln g∗ + ρg ln gt−1 + εg,t, (10)

where εg,t can be broadly interpreted as government spending shock.

To solve the model, optimality conditions are derived for the maximization prob-

lems. Consumption, output, wages, and the marginal utility of consumption are

detrended by the total factor productivity zt. The model has a deterministic steady

state in terms of the detrended variables. To approximate the equilibrium dynamics,

the model is log-linearized and the resulting linear rational expectations system is

solved with the algorithm described in Sims (2000).

Define the percentage deviations of a variable yt from its steady state trend y∗t

as ỹt = ln yt− ln y∗t . The log-linearized system can be reduced to three equations in

output, inflation, and nominal interest rates:

x̃t = IEt[x̃t+1]− τ−1(R̃t − IEt[π̃t+1]) + (1− ρg)g̃t + ρz∆z̃t, (11)

π̃t = βγ1−τIEt[π̃t+1] + κ[x̃t − g̃t], (12)

R̃t = ρRR̃t−1 + (1− ρR) (ψ1π̃t + ψ2x̃t) + εR,t, (13)

where κ is a function of the price adjustment costs and the demand elasticity. The

parameter measures the overall degree of distortion in the economy. Equation (11),
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often referred to as the New Keynesian IS-curve, is an intertemporal Euler-equation,

while (12) is derived from the firms’ optimal price-setting problem and governs

inflation dynamics around the steady state π. This relation can be interpreted as

an (expectational) Phillips-curve with slope κ. Equation (13) is the log-linearized

monetary policy rule where 0 ≥ ρR < 1 is the smoothing coefficient and ψ1, ψ2 are

the elasticities of the target interest rate with respect to the deviation of inflation

and output from their targets.3

The relationship between the steady-state deviations and observable output

growth, inflation, and interest rates is given by the following measurement equa-

tions:

∆ ln xt = ln γ + ∆ ln x̃t + ∆z̃t (14)

∆ lnPt = lnπ∗ + π̃t

lnRa
t = 4[(ln r∗ + ln π∗) + R̃t],

where the steady-state real interest rate r∗ = 1/β. In the subsequent empirical

analysis a period t corresponds to one quarter. Output growth and inflation are

quarter-to-quarter changes, whereas the interest rate, Ra
t is annualized. The DSGE

model has three structural shocks which we collect in the vector εt = [εR,t, εg,t, εz,t]′.

We assume that the shocks are normally distributed and independent of each other

and over time. Their standard deviations are denoted by σR, σg, and σz, respectively.

The DSGE model parameters are stacked into the vector

θ = [ln γ, ln π∗, ln r∗, κ, τ, ψ1, ψ2, ρR, ρg, ρz, σR, σg, σz]′. (15)

3 A VAR Prior from the DSGE Model

Let yt be the n× 1 vector of endogenous variables. In the context of the application

described in the previous section yt = [∆ lnxt,∆lnPt, lnRa
t ]. The VAR model is of

3In this paper we restrict the parameter space to values that lead to a unique stable solution

of the linear rational expectations system. Lubik and Schorfheide (2002) discuss the econometric

analysis of linear rational expectations models when the parameter space is not restricted to the

determinacy region.
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the form

yt = Φ0 + Φ1yt−1 + . . . Φpyt−p + ut, ut ∼ N (0, Σu), (16)

where ut is a vector of reduced-form disturbances. Let Y be the T × n matrix with

rows y′t. Let k = 1 + np, X be the T × k matrix with rows x′t = [1, y′t−1, . . . , y
′
t−p],

U be the T × n matrix with rows u′t, and Φ = [Φ0, Φ1, . . . ,Φp]′. The VAR can be

expressed as

Y = XΦ + U (17)

with likelihood function

p(Y |Φ,Σu) ∝ |Σu|−T/2 exp
{
−1

2
tr[Σ−1

u (Y −XΦ)′(Y −XΦ)]
}

(18)

conditional on observations y1−p, . . . , y0.

3.1 Prior Specification and Posterior

In order to conduct Bayesian inference we will specify a hierarchical prior of the

form

p(Φ,Σu, θ) = p(Φ,Σu|θ)p(θ),

where θ is the vector of DSGE model parameters. Roughly speaking, the DSGE

model prior p(Φ, Σu|θ) is generated by augmenting the actual data with T ∗ = λT

artificial observations generated from the DSGE model. The approach of using

artificial or dummy observations to incorporate prior information in VARs is quite

common, e.g., Sims and Zha (1998), and originally due to Theil and Goldberger

(1961). Rather than generating random observations y∗1, . . . , y
∗
T∗ from Equation (14)

and augmenting the actual data Y , that is, pre-multiplying the likelihood function

by

p̃(Φ, Σu|θ) ∝ |Σu|−(λT+n+1)/2 exp
{
−1

2
tr[Σ−1

u (Y ∗ −X∗Φ)′(Y ∗ −X∗Φ)]
}

, (19)

we will replace the (artificial) sample moments Y ∗′Y ∗, Y ∗′X∗, and X∗′X∗ by pop-

ulation analogs.
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If the vector of endogenous variables is composed of output growth, inflation,

and the nominal interest rate then yt is covariance stationary according to the DSGE

model (see Section 2). A law of large numbers for weakly dependent processes yields

the conclusion that sample moments converge to population moments as the sample

size of the dummy observations tends to infinity, e.g.,

lim
T∗→∞

1
T∗

Y ∗′Y ∗ = Γ∗yy(θ). (20)

The limit matrix Γ∗yy(θ) is a function of the structural parameters θ. The probability

limits of Y ∗′X∗ and X∗′X∗ will be denoted by Γ∗yx(θ) and Γ∗xx(θ), respectively.4

We now replace the sample moments in Equation (19) by scaled population

moments and use the prior

p(Φ, Σu|θ) = c−1(θ)|Σu|−
λT+n+1

2 (21)

× exp
{
−1

2
tr[λTΣ−1

u (Γ∗yy(θ)− Φ′Γ∗xy(θ)− Γ∗yx(θ)Φ + Φ′Γ∗xx(θ)Φ)]
}

.

The prior is proper provided that λT ≥ k + n. The proportionality factor c(θ)

ensures that the density integrates to one and is defined in the Appendix. Define

the functions

Φ∗(θ) = Γ∗
−1

xx (θ)Γ∗xy(θ) (22)

Σ∗u(θ) = Γ∗yy(θ)− Γ∗yx(θ)Γ∗
−1

xx (θ)Γ∗xy(θ). (23)

Conditional on θ the prior distribution of the VAR parameters is of the Inverted-

Wishart (IW) – Normal (N ) form5

Σu|θ ∼ IW
(

λTΣ∗u(θ), λT − k, n

)
(24)

Φ|Σu, θ ∼ N
(

Φ∗(θ), Σu ⊗ (λTΓ∗xx(θ))−1

)
. (25)

4We denote Γ∗yx(θ)′ by Γ∗xy(θ).
5The construction of the prior is based on the assumption that Γ∗xx(θ) is invertible. This as-

sumption is satisfied in our application as the number of structural shocks equals the number of

endogenous variables n to which the model is fitted. In DSGE models with less than n structural

shocks the non-singularity of Γ∗xx(θ) could be achieved by the introduction of additional shocks or

measurement errors.
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Since the likelihood function (18) and prior (21) are conjugate, the posterior

distribution is also of the IW−N form. While details can be found in the Appendix,

it is instructive to examine the posterior mean of Φ conditional on θ. It is given by

Φ̃(θ) =
(

λ

1 + λ
Γ∗xx(θ) +

1
1 + λ

T−1X ′X
)−1 (

λ

1 + λ
Γ∗xy(θ) +

1
1 + λ

T−1X ′Y
)

.

(26)

The hyperparameter λ determines the effective sample size for the artificial ob-

servations, which is λT . If λ = 0 then Φ̃(θ) equals the OLS estimate of Φ. As

λ −→ ∞, Φ̃(θ) approaches the restriction function Φ∗(θ) derived from the DSGE

model. For λ = 1 sample information and prior information receive equal weight in

the posterior.

Not surprisingly, the empirical performance of a VAR with DSGE model prior

will crucially depend on the choice of λ. We use a data-driven procedure to determine

an appropriate value λ̂ of the hyperparameter. We maximize the marginal data

density

pλ(Y ) =
∫

p(Y |Φ, Σu)pλ(Φ, Σu|θ)p(θ)d(Φ, Σu, θ) (27)

with respect to λ over some grid Λ = {l1, . . . , lq}. Rather than averaging our

conclusions about all possible values of λ, we condition on the value λ̂ with the

highest posterior probability.

The ability to compute the population moments Γ∗yy(θ), Γ∗xy(θ), and Γ∗xx(θ)

analytically from the log-linearized solution to the DSGE model and the use of

conjugate priors for the VAR parameters makes the approach very efficient from a

computational point of view: 25000 draws from the posterior distribution of all the

items of interest - including forecast paths and impulse responses - can be obtained

in less than 10 minutes using a 1.2GHz PC.

3.2 Interpretation of the Prior

The functions Φ∗(θ) and Σ∗u(θ) trace out a subspace of the VAR parameter space and

can be interpreted as follows. Suppose that data are generated from a DSGE model

with parameters θ. Among the p’th order VARs the one with the coefficient matrix
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Φ∗(θ) minimizes the one-step-ahead quadratic forecast error loss. The corresponding

forecast error covariance matrix is given by Σ∗u(θ).

The forecast performance of DSGE models is often poor, because they are tightly

parameterized and impose some inadequate cross-parameter restrictions on the VAR

representation of the data. Therefore, it is important to assign prior probability mass

outside of the subspace traced out by Φ∗(θ) and Σ∗u(θ).6 We use the covariance ma-

trix Σ∗u(θ)⊗ (λTΓ∗xx(θ))−1 to distribute probability mass around Φ∗(θ) and average

over θ with respect to a prior p(θ). The orientation of the prior contours is such

that the prior is fairly diffuse in the directions of the DSGE model parameter space

that we expect to estimate imprecisely according to the DSGE model. If λ is large

then most of the prior mass concentrates in the vicinity of the subspace Φ∗(θ). Our

prior is a modification of the one used by DeJong, Ingram, and Whiteman. DeJong,

Ingram, and Whiteman used a simulation procedure to approximate (in our nota-

tion) the marginal prior for the VAR coefficients p(Φ, Σ) =
∫

p(Φ, Σu|θ)p(θ)dθ by a

conjugate IW −N prior.

The major improvement of our procedure over earlier approaches is that we

compute a joint posterior distribution for Φ, Σu, and θ that allows posterior inference

with respect to the DSGE model parameters. Since the likelihood function depends

on θ only indirectly through Φ and Σu the joint posterior can be written as

p(Φ, Σu, θ|Y ) = p(Φ,Σu|Y )p(θ|Φ, Σu). (28)

Learning about θ from the data takes place indirectly through learning about the

VAR parameters Φ, Σu. The information on θ will play an important role for the

policy analysis in Section 4.
6Ingram and Whiteman used a Gaussian prior for the DSGE model parameters θ ∼ N (θ̄, Vθ)

and approximated the function Φ∗(θ) equation-by-equation with a first-order Taylor series around

the prior mean θ̄ to induce a prior distribution for the VAR parameters.
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3.3 Learning about the DSGE Model Parameters

The purpose of this section is to characterize some of the properties of the posterior

distribution of the DSGE model parameters. The post-sample information about

the DSGE model parameters is summarized in the marginal posterior density of θ

p(θ|Y ) =
∫

p(θ|Φ, Σu)p(Φ, Σu|Y )d(Φ, Σu). (29)

Under the improper prior λ = 0 the VAR parameters and the DSGE model param-

eters are a priori independent. Since the likelihood function does not depend on

θ, its prior is not updated and nothing is learnt about the structural parameters.

However, if λ > 0 then Φ, Σu, and θ are correlated a priori and the data become

informative about the structural parameters. Roughly speaking, the conditional

prior density p(θ|Φ, Σu) projects the posterior estimates of the VAR parameters

back onto the space traced out by Φ∗(θ) and Σ∗u(θ) and its mode can be inter-

preted as minimum-distance estimator of the DSGE model parameters. This claim

is subsequently formalized through two asymptotic approximations.

Let us start by defining the quasi-likelihood function7

p∗(Y |θ) ∝ |Σ∗u(θ)|−T/2 exp
{
−1

2
tr

[
Σ∗

−1

u (θ)(Y −XΦ∗(θ))′(Y −XΦ∗(θ))
]}

. (30)

The logarithm of the quasi-likelihood function can be approximated as follows8

ln p∗(Y |θ) (31)

≈ const− 1
2
vec(Φ̂mle − Φ∗(θ))′(Σ̂−1

u,mle ⊗X ′X)vec(Φ̂mle − Φ∗(θ))

−T

2
vech(Σ̂u,mle − Σ∗u(θ))′D(Σ̂−1

u,mle ⊗ Σ̂u,mle)D′vech(Σ̂u,mle − Σ∗u(θ))′,

where Φ̂mle = (X ′X)−1X ′Y and Σ̂u,mle = (Y ′Y − Y ′X(X ′X)−1X ′Y )/T are the

maximum-likelihood estimators of the VAR parameters Φ and Σu. The vec-operator

stacks the columns of a matrix, the vech-operator stacks the non-redundant elements
7Since the DSGE model typically does not have a finite-order vector autoregressive specification

p∗(Y |θ) is a quasi-likelihood function from the perspective of the structural model.
8The approximation is obtained from a second-order Taylor expansion of p∗(Y |θ) around Φ∗ =

Φ̂mle and Σ∗u = Σ̂u,mle.
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of a symmetric matrix, and D is the duplicator matrix that satisfies vec(A) =

Dvech(A). The direct maximization of the quasi-likelihood function p∗(Y |θ) with

respect to the DSGE model parameters θ can be regarded as minimum distance

estimation (e.g., Chamberlain (1984) and Moon and Schorfheide (2002)) as θ is es-

sentially estimated by minimizing the weighted discrepancy between the unrestricted

VAR estimates Φ̂mle and the restriction function Φ∗(θ).

The posterior p(θ|Y ) can be obtained by combining the marginal likelihood

function

p(Y |θ) =
∫

p(Y |Φ,Σu)p(Φ,Σu|θ)d(Φ,Σu) (32)

with the prior p(θ). Suppose the sample size T is fixed and the number of artificial

observations from the DSGE model is large. As λ −→ ∞ the prior for the VAR

parameters concentrates its mass near the subspace traced out by Φ∗(θ) and Σ∗u(θ).

Hence, the marginal likelihood function p(Y |θ) is approximately equal to the quasi-

likelihood function p∗(Y |θ), defined in Equation (30).

Proposition 1 Let θ̃ be the mode of p(Y |θ). For a fixed set of observations Y ,

ln
p(Y |θ)
p(Y |θ̃) −→ ln

p∗(Y |θ)
p∗(Y |θ̃) as λ −→∞

uniformly for θ in compact subsets of Θ for which Σ∗u(θ) and Γ∗xx(θ) are non-singular.

Based on Proposition 1 and Equation (31) we can deduce that the posterior

mode of the marginal log-likelihood function approximately minimizes the weighted

discrepancy between the VAR estimates Φ̂mle, Σ̂u,mle and the restriction functions

Φ∗(θ), Σ∗u(θ).

For reasons discussed in Section 3.2 we expect that the best fit of the vector

autoregression model is achieved for moderate values of λ. Hence, we consider a

second approximation in which the sample size is large (T −→ ∞), yet the relative

importance of the prior is modest (λ −→ 0, λT −→∞). Define the function

q(θ|Y ) = exp
{
−1

2
ln |Σ∗−1

u (θ)| − 1
2
tr[Σ̂−1

u,mleΣ
∗
u(θ)] (33)



14

−1
2
tr[Σ̂−1

u,mle(Φ
∗(θ)− Φ̂mle)′Γ∗xx(θ)(Φ∗(θ)− Φ̂mle)]

}
.

The logarithm of q(θ|Y ) is approximately a quadratic function of the discrepancy

between the VAR estimates and the restriction functions generated from the DSGE

model, see Equation (31).9 The marginal log-likelihood function can be approxi-

mated as follows.

Proposition 2 Let θ̃ be the mode of p(Y |θ). Suppose T −→ ∞, λ −→ 0, and

λT −→∞. Then

1
λT

ln
p(Y |θ)
p(Y |θ̃) = ln

q(Y |θ)
q(Y |θ̃) + Op(max[(λT )−1, λ]).

The approximation holds uniformly for θ in compact subsets of Θ for which Σ∗u(θ)

and Γ∗xx(θ) are non-singular.

The intuition for this result is the following. The weight of the prior relative to

the likelihood function is small (λ −→ 0), so that for all values of θ the posterior

distribution of the VAR parameters concentrates around Φ̂mle. The conditional

density of θ given Φ and Σu projects Φ̂mle onto the subspace Φ∗(θ). The amount

of information accumulated in the marginal likelihood p(Y |θ) relative to the prior

depends on the rate at which λT diverges. The more weight is placed on the artificial

observations from the DSGE model (λ converges to zero slowly), the more curvature

and information there is in p(Y |θ).

4 Empirical Application

This section describes the results obtained when we apply the prior from the New

Keynesian model described in Section 2 on a trivariate VAR in real output growth,

9The weights are Σ∗
−1

u ⊗Γ∗xx(θ) and D′(Σ∗
−1

u ⊗Σ∗
−1

u )D instead of Σ̂−1
u,mle⊗ Γ̂xx and D′(Σ̂−1

u,mle⊗
Σ̂−1

u,mle)D.
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inflation, and interest rates.10 Section 4 consists of four parts. Section 4.1 discusses

the prior and posterior for the DSGE model parameters. Section 4.2 describes the

forecasting results. There, we show that the introduction of the prior produces a

substantial improvement relative to an unrestricted VAR in terms of forecasting. We

also show that the forecasting performance of the VAR with DSGE priors (VAR-

DSGE) is competitive relative to that of a VAR with Minnesota priors (VAR-Minn).

In Sections 4.3 and 4.4 we describe how policy analysis can be conducted using

a VAR with DSGE model prior. We consider two types of experiments. The first

experiment is what Leeper and Zha (2001) call a “modest policy intervention”: a

very short sequence of small policy shocks. Researchers typically conduct these ex-

periments using impulse response functions that come from either DSGE models or

“identified” vector autoregressions. The key to this type of experiments is therefore

the identification of monetary policy shocks. The identification approach we propose

follows naturally from the overall strategy of the paper: we use the VAR approx-

imation of the DSGE model’s impulse responses as a prior for the VAR impulse

responses.

The second type of policy experiment consists of forecasting the effects of a pol-

icy rule change. Due to the Lucas’ critique, this kind of experiment is generally

considered infeasible within the identified VAR framework. In this sense, the sec-

ond experiment is more ambitious than the first. As a rough approximation, our

approach can be seen as a weighted average between two extremes: (i) using the

DSGE model to forecast the effects of the policy change (λ = ∞), and (ii) using

the VAR to make forecasts (λ = 0), thereby ignoring the effects of the policy in-

tervention. In our framework, the choice of the prior weight λ reflects the degree
10We use quarterly data. The data for real output growth come from the Bureau of Economic

Analysis (Gross Domestic Product-SAAR, Billions Chained 1996$). The data for inflation come

from the Bureau of Labor Statistics (CPI-U: All Items, seasonally adjusted, 1982-84=100). The

interest rate series are constructed as in Clarida, Gaĺı, and Gertler (2000): for each quarter the

interest rate is computed as the average federal funds rate ( source: Haver Analytics) during the

first month of the quarter, including business days only. The data are available from 1955:III to

2001:III. The lag length in the VAR is four quarters.
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of misspecification of the structural model. We try to predict the impact of the

change from the Martin-Burns-Miller regime to the Volcker-Greenspan regime using

VAR-DSGE. The results suggest that the approach is promising, at least in some

dimensions.

4.1 Prior and Posterior of θ

All empirical results are generated with the prior distribution reported in Table 1.

The model parameters ln γ, ln π∗, ln r∗, σR, σg, and σz are scaled by 100 to convert

their units into percentage points. The priors for the quarterly steady state growth

rate, inflation rate, and real interest rate are fairly diffuse and have means 0.5%,

1.0%, and 0.5%, respectively. With 90% prior probability the risk aversion param-

eter τ is between 1.2 and 2.8, whereas the slope of the Phillips curve κ is between

0.06 and 0.51. The latter interval is consistent with the values that have been used

in calibration exercises, e.g., Clarida, Gaĺı, and Gertler (2000). The priors for the

policy parameters ψ1 and ψ2 are centered at Taylor’s (1999) values.11 The prior is

truncated at the indeterminacy region of the parameter space.

As stressed in Section 3, our procedure also generates posterior estimates for the

DSGE model parameters. Such estimates are presented in Table 2 for the sample

period 1979:III to 1999:II. To illustrate that the extent of learning about θ depends

on the weight λ of the DSGE model prior, Table 2 reports 90% posterior confidence

sets for λ = 1 and λ = 10. A comparison of prior and posterior intervals indicates

that for λ = 1 the data lead to a modest updating. The confidence intervals for

most parameters shrink and the slope of the expectational Phillips curve and the

response of the central bank to output are revised upwards. The updating is more

pronounced for λ = 10, when the artificial sample size is ten times as long as

the actual sample. The empirical findings are consistent with Proposition 2 which

implies that information about θ is accumulated at rate λT .
11Since the inflation rate and the interest rate in the DSGE model are quarter-to-quarter, the

value of ψ2 corresponds to one fourth of the value obtained in univariate Taylor-rule regressions

that use annualized interest rate and inflation data.
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For the empirical results an appropriate choice of the weight of the prior λ is

very important. We argued in Section 3.1 that λ can be chosen over a grid Λ to

maximize the marginal data density pλ(Y ), given in Equation (27). Below we will

often refer to the hyperparameter estimate

λ̂ = argmaxλ∈Λ pλ(Y ). (34)

Depending on the sample, this value generally hovers around 0.6, which corresponds

to 48 artificial observations from the DSGE model. However, the shape of the

marginal data density as a function of λ is flat for values of λ between 0.4 and 1,

suggesting that the fit of the model is roughly the same within that range.12

4.2 Forecasting Results

The objective of this subsection is to show that VARs with DSGE model priors

produce forecasts that improve on those obtained using unrestricted VARs, and are

competitive with those obtained using the popular Minnesota prior. The Minnesota

prior shrinks the VAR coefficients to univariate unit root representations. While

it has been empirically successful, e.g., Litterman (1986), Todd (1984), it lacks

economic justification and ignores information with respect to co-movements of the

endogenous variables.

In a particular instance, this point has already been made by Ingram and White-

man. However, we provide two extensions of their results. First, we show that DSGE

model priors can be helpful in forecasting not only real but also nominal variables.

Second, unlike Ingram and Whiteman, we select the relative weight of the prior ex

ante, based on the marginal posterior density of the hyperparameter λ. This is an

important extension because the forecasting performance of the VAR is sensitive to

λ and it has to be guaranteed that a good λ can be chosen before the actual forecast

errors become available.
12A full Bayesian procedure would average over λ rather than condition on the highest posterior

probability λ. However, in our experience the values of λ that have non-negligible posterior prob-

ability produce very similar predictions so that the gain from averaging instead of conditioning is

minimal.
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Most of the remainder of the section will present results from a forecasting

exercise using a rolling sample from 1975:III to 1997:III (90 periods). The optimal

weight λ̂ is computed for each forecasting origin of the rolling sample. For each date

in the forecasting interval we used 80 observations in order to estimate the VAR,

that is, a ratio of data to parameters of about 6 to 1. This choice is motivated

by the fact that the data-parameter ratio in larger models that are being used for

actual forecasting, such as the Atlanta Fed VAR, is of the same magnitude. It is

important to remark that the results presented in this section have no pretense of

being general: they are specific to the particular DSGE model, and the particular

VAR being estimated.

How does the forecasting performance of VAR-DSGE rank relative to an unre-

stricted VAR, and a VAR-Minn? Table 3 provides the percentage improvement (or

loss, if negative) in root mean square forecast errors (rmse) of VAR-DSGE relative

to both competitors for cumulative real output growth, cumulative inflation, and the

federal funds rate. The improvement in rmses is shown for one, two, four, six, eight,

ten, twelve, and sixteen quarters ahead.13 Table 3 also reports the improvements

in the multivariate forecasting performance statistic proposed by Doan, Litterman,

and Sims (1984).14

Let us first focus on the comparison with the unrestricted VAR. Our results

indicate VAR-DSGE performs better than the unrestricted VAR for all variables at

all horizons. Quantitatively, the improvements are large for all variables. In terms

of the multivariate statistics the improvements range from a minimum of 9% for

four quarters ahead forecasts, to a maximum of almost 12% for forecasts four years
13Neither the output growth rates nor the inflation rates are annualized.
14The ln-det statistic is defined as the converse of the natural logarithm of the determinant of the

error covariance matrix of the forecasts, divided by two (to convert from variance to standard error)

times the number of variables that are forecasted (to obtain an average figure). The improvement

in the multivariate forecasting performance statistics is computed by taking the difference between

the multivariate statistics multiplied by 100 to obtain percentage figures. This number can be seen

as the average in the improvements for the individual variables, adjusted to take into account the

joint forecasting performance, i.e., the correlation in forecast errors.
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ahead. The improvement increases almost monotonically with the forecast horizon

for all variables except the federal funds rate.

When forecasters use prior information in VARs, they mostly use Minnesota

priors. Hence, VAR-Minn is a natural competitor with our approach.15 Table 3

shows that VAR-Minn performs better than VAR-DSGE for very short run forecasts,

especially for the federal funds rate and real output growth. As the forecast horizon

increases the relative performance of VAR-DSGE improves: for horizons beyond

one quarter the multivariate statistics suggest that VAR-DSGE outperforms VAR-

Minn. The improvement is sizable for output and inflation forecast (up to 20 and

7 %, respectively), and is non-existent for federal funds forecasts. Overall, these

results suggest that VAR-DSGE is competitive with, and sometimes improves upon,

VAR-Minn for forecasts beyond the very short run. When interpreting these results

one has to bear in mind a key difference between Minnesota and DSGE prior. The

Minnesota prior has a statistical (unit root processes fit a number of economic series

quite well) but not necessarily an economic justification. DSGE priors do: We know

where they come from. We know how to interpret them. In addition, Minnesota

priors may help to forecast well in some dimensions, but offer no help when it comes

to policy analysis. This is not the case for DSGE priors, as discussed in Sections 4.3

and 4.4.

Next we investigate how the forecasting performance of the VAR changes as a
15The Minnesota prior is implemented as:

φ̄ = (In ⊗ (X ′
T XT ) + ιH−1

m )−1(vec(X ′
T YT ) + ιH−1

m φm)

where the parameter ι denotes the weight of the Minnesota prior, φm is the prior mean and Hm

is the prior tightness. The values of φm and Hm are the same as in Doan, Litterman and Sims

(1984), with the exception of the prior mean for the first lag of output growth and inflation. Since

these two variables enter the VAR in growth rates, as opposed to log levels, to be consistent with

the random walk hypothesis the prior mean for the first lag of the ‘own’ regressor in the output

growth and inflation equations is zero and not one. The Minnesota prior is augmented by a proper

IW prior for Σu. The weight of the Minnesota prior is controlled by the hyperparameter ι. The

hyperparameter is selected ex ante using a modification of (27). This value hovers around 0.5,

depending on the sample. The value used in Doan, Litterman and Sims (1984) is ι = 1.
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function of λ. Figure 1 plots the percentage improvement relative to the unrestricted

VAR for a grid of values of λ ranging from 0 to ∞ (λ = ∞ means forecasting with

the VAR approximation to the DSGE model). By definition the gain for λ = 0

is zero. The one-step ahead forecasting performance peaks around λ = 0.8, which

is roughly consistent with the weight selected ex ante based on the marginal data

density pλ(Y ). The short run forecasting performance remains competitive even

for relatively large values of λ (λ = 5), but deteriorates substantially for λ = ∞,

especially for forecasts of real output growth. For medium and long-run forecast

horizons the best multivariate forecasting performance is achieved for a value of λ

of approximately 2. In order to obtain accurate forecasts over long horizons one has

to estimate powers of the autoregressive coefficients Φ. The large sampling variance

of these estimates can be reduced by increasing the weight of the prior. However,

once the length of the artificial sample relative to the actual sample exceeds 2, the

variance reduction is dominated by an increased bias and the forecasting accuracy

generally deteriorates. Interestingly, the deterioration is not sharp at all: in partic-

ular, for inflation and the interest rate the long-run forecasts from VAR-DSGE are

still accurate even when the prior weight is infinity.

In summary, this section shows that the VAR with DSGE prior is a fairly com-

petitive model in terms of forecasting. VAR-DSGE is inferior to VAR-Minn for

one quarter ahead forecasts, but otherwise holds its own and often outperforms its

competitors, sometimes by sizable margins.16 The section also shows that relying

on the DSGE model only for forecasting (λ = ∞) can lead to imprecise forecasts,

especially in the short run.
16We do not report formal significance tests for superior forecast performance, such as the Diebold

and Mariano (1995) test, since the assumptions underlying those tests do not match the setup in our

paper. Thus, the results should be interpreted as ex post accuracy comparisons, not as hypothesis

tests. Although not pursued here, Bayesian posterior odds could be used to choose among VAR-

DSGE and VAR-Minn ex ante.
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4.3 Impulse Response Functions

In order to compute dynamic responses of output, inflation, and interest rates to

unanticipated changes in monetary policy and to other structural shocks it is nec-

essary to map the one-step-ahead forecast errors ut into the structural shocks εt.

Let ΣC
u be the Cholesky decomposition of Σu. It is well known that in any exactly

identified structural VAR the relationship between ut and εt can be characterized

as follows:

ut = ΣC
u Ωεt, εt ∼ N (0, In), (35)

where Ω is an orthonormal matrix. The identification problem arises from the

fact that the data are silent about the choice of the rotation matrix Ω. More

prosaically, since ΣC
u ΩΩ′ΣC′

u = ΣC
u ΣC′

u the likelihood function is invariant to Ω.

Macroeconomists generally require Ω to have some ex ante justification and to pro-

duce ex post impulse response functions that are “reasonable”, i.e., conform in one

or more dimensions with the predictions of theoretical models. Since there is no

agreement on what these dimensions should be, a multitude of identification strate-

gies have been proposed. For example, Blanchard and Quah (1989) focus on the

long-run properties of shocks, while Faust (1998), Canova and DeNicoló (2001) and

Uhlig (2001) focus on sign restrictions on impact.

In our identification strategy the theoretical model serves as a prior for the VAR

impulse responses, which is consistent with the overall approach of the paper.17

The extent to which the posterior impulse responses are forced to look like the

model’s responses will depend on the tightness of the prior. Our procedure has

two main advantages. First, once the theoretical model is chosen there is no room

for arbitrariness. Conditional on the weight of the prior, the data – and not the

researcher – will determine in which dimensions the posterior impulse responses will

conform to the model’s responses, and in which dimensions they will not. Second,
17It is noteworthy that in principle the issue of identification is completely decoupled from that

of forecasting: one could use any of the available approaches to identification in VARs, e.g., linear

restrictions on the covariance matrix of the innovations as in Bernanke (1986) and Sims (1986),

and still use DSGE priors for the VAR parameters.
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whether the model can be considered a reliable basis for identification is determined

by its fit, as the tightness of the prior is chosen endogenously.

The DSGE model is of course identified: For each set of deep parameters θ, there

is a unique matrix Ω∗(θ) that maps the Cholesky decomposition of the variance-

covariance matrix of forecast errors into the matrix of the DSGE impulse responses

on impact. The computation of Ω∗(θ) is straightforward. If A0(θ) is the matrix of

DSGE impulse responses on impact obtained from Equation (14), the QR decompo-

sition of A0(θ) – available in most computer packages – will deliver a lower triangular

matrix ΣC∗
DSGE(θ) and a unitary matrix Ω∗(θ) such that A0(θ) = ΣC∗

DSGE(θ) ∗Ω∗(θ).

Let us call the triplet (Φ,Σu, Ω) the parameters of the identified VAR. Through the

identified VAR approximation of the DSGE model, given by (Φ∗(θ), Σ∗u(θ),Ω∗(θ)),

the prior distribution of the DSGE model parameters θ induces a prior distribution

for the identified VAR parameters.18

The posterior distribution is obtained by updating the distribution of Φ, Σu, and

θ as described in Section 3 and mapping θ into Ω = Ω∗(θ). Conditional on θ, the

rotation matrix is the same a posteriori as it is a priori, since the likelihood function

of the reduced form VAR is invariant with respect to Ω. However, we learn from

the data which rotation to choose, albeit indirectly, via learning about the DSGE

model parameters θ. Moreover, even conditional on θ, the posterior VAR impulse

responses will differ from the prior responses, to the extent that the distribution of

Φ and Σu is being updated.

There are a few attempts in the literature to parameterize the VAR in terms of

its moving-average (MA) representation and to specify a prior distribution directly

for the impulse responses, subject to some restrictions that ensure that the MA

representation is consistent with a finite-order VAR, e.g., Dwyer (1998) and Gordon

and Boccanfuso (2001). However, the difference to the approach proposed in our

paper lies merely in the construction of the prior distribution. No matter how such
18Since the vector autoregressive representation of the DSGE model, as characterized by Φ∗(θ)

and Σ∗u(θ), is only an approximation, the Cholesky decomposition of Σ∗u(θ) is not exactly equal to

ΣC∗
DSGE(θ). However, in our experience the difference is for practical purposes negligible.
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a prior is constructed, the likelihood function is always flat in directions of the

parameter space in which Φ and Σu are constant and the conditional distribution

of Ω given Φ and Σu is never updated. Our parameterization of the VAR simply

makes explicit in which directions of the parameter space learning from the data is

possible.

Figure 2 depicts the impulse response functions with respect to monetary policy

shocks of cumulative real output growth, inflation, and the interest rate, normal-

ized so that the initial impact of a monetary shock on the interest rate is 25 basis

points. Each plots shows the VAR impulse-responses (dashed-and-dotted line), the

corresponding 90 % error bands (dotted lines), and the DSGE model impulse re-

sponses (solid lines). The estimates are based on a sample of 80 observations ending

in 2001:III. The impulse responses are computed for different values of the tight-

ness parameter λ, namely λ ∈ {0.5, 1, 5}. As expected, the VAR impulse responses

become closer to the model’s as the weight of the prior increases. Specifically, the

distance between the posterior means of the VAR and the model’s impulse responses

decreases. In addition, the bands for the VAR impulse responses narrow consider-

ably.

It is interesting to observe that in some dimensions the VAR impulse responses

conform to the model’s even for small values of the tightness parameter (λ = 0.5).

The sign and the magnitude of the VAR impulse responses on impact agree with the

model and are very precisely estimated. Also, the responses of inflation to a money

shock is short-lived both in the model as well as in the VAR. In other dimensions

there is less agreement: where the model predicts long-run money neutrality, the

VAR impulse responses indicate that there is substantial uncertainty about the

long-run effects of money shocks on output. While these findings are specific to

this DSGE model, they seem to favor identification strategies based on impulse

responses on impact (as in Faust (1998), Canova and DeNicoló (2001), and Uhlig

(2001)) relative to strategies that rely on long-run neutrality.

Identification schemes based on zero-restrictions on the contemporaneous impact

of the structural shocks often produce a price-puzzle in three- or four-variable VARs.
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While the price-puzzle can be avoided by including producer prices in addition to

consumer prices, it can also be avoided by using our identification scheme that is

not based on zero-restrictions.

4.4 Regime Shifts

The analysis of welfare implications of different monetary policy rules has become

an active area of research (see, for instance, the articles in Taylor (1999)). It is

important for policy makers to have a set of tools that allows them to predict the

effects of switching from one policy rule to another. This section discusses how to

use a VAR with DSGE model prior to analyze the effects of regime shifts. The joint

posterior distribution for the VAR and DSGE model parameters can be decomposed

into

p(Φ, Σu, θ|Y ) = p(Φ, Σu|θ, Y )p(θ|Y ). (36)

Assessing the effects of a policy regime shift is equivalent to the modification of

the posterior p(θ|Y ). Partition θ = [θ′(s), θ
′
(p)]

′, where θ(p) corresponds to the policy

parameters that are affected by the regime shift. We construct a modified posterior

p̃(θ|Y ) = p(θ(s))p̃(θ(p)), (37)

where p(θ(s)|Y ) is the marginal posterior of the non-policy parameters and p̃(θ(p)) is a

(possibly degenerate) distribution that determines the value of the policy parameters

in the experiment.

To translate the structural parameters back into VAR parameters, we will use

p(Φ, Σu|θ, Y ). For the sake of concreteness, let us recall that the posterior mean of

Φ conditional on θ is given by the formula:

Φ̃(θ) =
(

λ

1 + λ
Γ∗xx(θ) +

1
1 + λ

T−1X ′X
)−1 (

λ

1 + λ
Γ∗xy(θ) +

1
1 + λ

T−1X ′Y
)

.

Our inference with respect to the effect of the regime shift will be drawn from

p̃λ(Φ, Σu|Y ) =
∫

p(Φ, Σu|Y, θ)p̃(θ|Y )dθ. (38)
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We use the subscript λ to indicate that the conclusions depend on the weight given

to the DSGE model. If λ = 0, the VAR posterior does not depend on θ at all:

hence the researcher is ignoring the DSGE model (and the regime shift itself) in

computing her forecasts. If λ = ∞, then the procedure is equivalent to analyzing

the policy directly with the (VAR approximation of the) DSGE model. It is clear

that the Lucas critique is fully observed only in the λ = ∞ extreme. In all other

cases the forecasts are partially based on data that are generated by an economy

with ‘old’ policy parameters. The policy analyst may be willing to pay this price –

which is not necessarily high for high values of λ – if she can reap substantial gains

in forecasting performance.

Most of the current literature on monetary policy rules focuses on the effect of

these rules on the magnitude of economic fluctuations and the households’ utility

over the business cycle. A popular measure of welfare besides agents’ utility is the

volatility of the output gap and inflation. To illustrate our prediction approach we

are considering the effect of a change in the response of the federal funds rate to

deviations of inflation from its target rate (the parameter ψ1 in the Taylor rule (13))

on the standard deviation of real output growth and inflation.

A widely shared belief, e.g., Clarida, Gaĺı, and Gertler (2000), is that under the

chairmanship of Paul Volcker and Alan Greenspan the U.S. central bank responded

more aggressively to rising inflation than under their predecessors William Martin,

Arthur Burns, and William Miller. Based on the empirical results in the Taylor-rule

literature we compare two policies. Under the first policy scenario ψ1 = 1.1, whereas

under the second policy scenario ψ1 = 1.8. The former can be loosely interpreted

as a continuation of the inactive Martin, Burns, and Miller policy19, whereas the

latter corresponds to a switch to a more active Volcker, Greenspan policy. To

assess the two policies we generated draws from the modified posterior (37) and

simulate trajectories of 80 observations conditional on the parameter draws. For

each trajectory we discard the first eight quarters (hence we consider only the paths
19Although some authors report estimates of ψ1 < 1 we restrict ourselves to the determinacy

region of the DSGE model.
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post 1982:III) and then compute the standard deviation of output growth, inflation,

and the federal funds rate.

The results for various choices of λ are summarized in the density plots of Fig-

ure 3. The dashed densities corresponds to ψ1 = 1.1 and the solid densities to

ψ1 = 1.8. The vertical lines in the plots show the standard deviation of the actual

sample (post 1982:III) for the variables of interest. The 1982:III threshold is taken

from Clarida, Gaĺı, and Gertler (2000). The transition period from high inflation to

low inflation between 1979 and 1982 implies that the actual standard deviation of

inflation for the whole sample is high, and in our view does not reflect the “steady

state” variability of inflation under the Volcker-Greenspan policy. Hence we choose

to discard the first eight quarters.20

The DSGE model predicts that an increase in the Taylor rule parameter ψ1

induces a lower equilibrium variability of inflation and therefore a lower variability

of the federal funds rate. This is indeed what can be observed in Figure 3 for λ > 0.

Whenever ψ1 increases from 1.1 to 1.8, the forecasted variability of inflation and

interest rate decreases. The predicted effect of the policy change becomes larger as

the weight of the prior increases. Moreover, the uncertainty about the variability

decreases. The predictions for the standard deviation of output do not change as

ψ1 increases.

Figure 3 also shows that the two extremes (λ = 0 and λ = ∞) seem to lead

to inaccurate evaluations of the effects of the policy. The analyst who completely

ignores the policy change (λ = 0) grossly over-predicts the standard deviation of

inflation. The analyst who relies only on the DSGE model (λ = ∞) under-predicts

the standard deviation of inflation, albeit to a lesser extent, and the standard devi-

ation of the federal funds rate. The marginal data density pλ(Y ) suggests ex ante

to avoid the extremes and to choose a λ between 0.5 and 1. Values between 1
20A possible explanation is that the linear model fails to capture the transition period from high

inflation to low inflation. In the model agents change their expectations instantaneously when the

policy change is announced whereas in reality there may be a learning process in which agents

slowly realize that the policy change is permanent (regime shift) rather than temporary (deviation

from policy rule).
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and 5 seem to deliver the most accurate predictions ex post. VAR-DSGE does not

predict the reduction of the variability in real output growth that took place after

1979. This reduction may be the outcome of a change in the exogenous technology

process rather than the effect of monetary policy.

Although the experiment just described is not pure out-of-sample prediction,

since the policy experiment ψ1 = 1.8 was motivated by an analysis of the Volcker-

Greenspan sample, it illustrates the potential of our approach. We view the proce-

dure as a tool that lets the policy maker assess the effects of the policy change as a

function of the confidence placed in the structural model measured by λ. One can

interpret the density pλ(Φ, Σu|θ, Y ) as a “correction” to the vector autoregressive

representation of the DSGE model given the structural parameters θ. This “cor-

rection” has been constructed from past observations to optimize the forecasting

performance. Our approach is based on the presumption that in the absence of con-

trary evidence it is reasonable to proceed as if the “correction” is policy invariant.21

Whenever misspecified models are used for policy analysis it is typically assumed

that the misspecification is policy invariant and that pre-intervention corrections

remain valid in the new regime.

5 Conclusions

The paper takes the idea of Ingram and Whiteman (1994) – imposing priors from

general equilibrium models on VARs – and develops it into a full-blown strategy,

usable for policy analysis. The strategy involves the following steps: (i) Choose a

DSGE model and a prior distribution for its parameters. (ii) Solve the DGSE model

and map the prior distribution of its parameters into a prior distribution for the

VAR parameters. While a log-linear approximation of the DSGE model simplifies

the computation of its VAR approximation given by Φ∗(θ) and Σ∗u(θ) considerably,

it is not crucial to our approach. (iii) Obtain via Monte Carlo methods the joint
21Determining a priori whether or not this invariance is satisfied in practice is infeasible. In fact,

it would require ex ante knowledge about the actual effects of the policy, which is typically not

available. If it were available, the DSGE model based policy analysis would not be interesting.
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posterior distribution of DSGE and VAR parameters, which can then be used to

compute predictive densities. The strategy is very efficient from the computational

point of view.

We apply the strategy to a VAR in real output growth, inflation, and interest

rates, and show that it is broadly successful in terms of forecasting performance.

The VAR with DSGE model prior clearly outperforms an unrestricted VAR at all

horizons. Its forecasting performance is comparable to a VAR with Minnesota prior.

While the Minnesota prior is helpful for forecasting, it offers no help when it comes

to policy analysis.

We provide an identification scheme for the structural shocks and hence enable

an analysis of modest policy interventions. Our approach follows naturally from the

overall strategy in the paper. Construct an orthonormal matrix from the VAR ap-

proximation of the DSGE model to map the reduced form innovations into structural

shocks. This orthonormal matrix induces a DSGE model based prior distribution for

VAR impulse responses that can be updated with the available data. We argue that

our approach produces an attractive alternative to existing identification schemes –

attractive because it ties identification to a fully specified general equilibrium model,

leaving no room for arbitrariness.

We also illustrate how a VAR with DSGE model prior can be used to predict the

effects of changes in the policy regime – a task that is generally considered infeasible

for identified VARs. We use the approach to predict the impact of the change from

the Martin-Burns-Miller regime to the Volcker-Greenspan regime on the volatility

of the variables of interest. We find that at least in some dimensions the approach

fares better than using the DSGE model only, or the unrestricted VAR only, to

predict the effect of the change, although further research is needed to investigate

this issue more deeply.

As envisioned in Diebold (1998), the combination of DSGE models and vector

autoregressions shows promise for macroeconomic forecasting and policy analysis.

Yet, more research lies down the road. If the VAR is specified in terms of output

and prices rather than output growth and inflation, then the asymptotic behavior
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of the sample moments of the artificial data changes. The elements of the properly

standardized moment matrices have stochastic rather than deterministic limits and

our construction of the prior has to be modified. Moreover, it is worthwhile to make

comparisons among priors that are derived from different models, such as a New

Keynesian model versus a flexible price cash-in-advance model.
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A Analysis of the Posterior Distribution

Prior Distribution: Conditional on the DSGE model parameters θ the prior density

for the VAR parameters is of the form

p(Φ, Σu|θ) = c−1(θ)|Σu|−
λT+n+1

2 (A1)

× exp
{
−1

2
tr[λTΣ−1

u (Γ∗yy(θ)− Φ′Γ∗
′

yx(θ)− Γ∗xy(θ)Φ + Φ′Γ∗xx(θ)Φ)]
}

.

The normalization factor c(θ) is

c(θ) = (2π)
nk
2 |λTΓ∗xx(θ)|−n

2 |λTΣ∗u(θ)|−λT−k
2 (A2)

2
n(λT−k)

2 π
n(n−1)

4

n∏

i=1

Γ[(λT − k + 1− i)/2],
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where Γ[·] denotes the gamma function.

Posterior Distribution: In order to analyze the posterior distribution we use the

following factorization

p(Φ, Σu, θ|Y ) = p(Φ, Σu|Y, θ)p(θ|Y ). (A3)

Let Φ̃(θ) and Σ̃u(θ) be the maximum-likelihood estimates of Φ and Σu, respectively,

based on artificial sample and actual sample

Φ̃(θ) = (λTΓ∗xx(θ) + X ′X)−1(λTΓ∗xy + X ′Y ) (A4)

Σ̃u(θ) =
1

(λ + 1)T

[
(λTΓ∗yy(θ) + Y ′Y )

−(λTΓ∗yx(θ) + Y ′X)(λTΓ∗xx(θ) + X ′X)−1(λTΓ∗xy(θ) + X ′Y )
]
.(A5)

Since conditional on θ the DSGE model prior and the likelihood function are conju-

gate, it is straightforward to show, e.g., Zellner (1971), that the posterior distribution

of Φ and Σ is also of the Inverted Wishart – Normal form:

Σu|Y, θ ∼ IW
(

(λ + 1)T Σ̃u(θ), (1 + λ)T − k, n

)
(A6)

Φ|Y,Σu, θ ∼ N
(

Φ̃(θ),Σu ⊗ (λTΓ∗xx(θ) + X ′X)−1

)
. (A7)

The marginal likelihood function of θ is given by

p(Y |θ) =
∫

p(Y |Φ, Σu)p(Φ, Σu|θ)d(Φ, Σu) (A8)

=
p(Y |Φ, Σ)p(Φ, Σ|θ)

p(Φ, Σ|Y )

=
|λTΓ∗xx(θ) + X ′X|−n

2 |(λ + 1)T Σ̃u(θ)|− (λ+1)T−k
2

|λTΓ∗xx(θ)|−n
2 |λTΣ∗u(θ)|−λT−k

2

×(2π)−nT/22
n((λ+1)T−k)

2
∏n

i=1 Γ[((λ + 1)T − k + 1− i)/2]

2
n(λT−k)

2
∏n

i=1 Γ[(λT − k + 1− i)/2]
.

The third equality can be obtained from the normalization constants of the Inverted

Wishart – Normal distributions. The marginal posterior of θ is

p(θ|Y ) =
p(Y |θ)p(θ)

pλ(Y )
, (A9)
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where

pλ(Y ) =
∫

p(Y |θ)p(θ)dθ (A10)

is the marginal data density, indexed by the hyperparameter λ.

Sampling from Posterior Distribution: We assume that the parameter space of

λ is finite Λ = {l1, . . . , lq}. In order to select λ, and to generate draws from the

joint posterior distribution of VAR parameters, DSGE model parameters, we use

the following scheme:

(i) For each λ ∈ Λ use the Metropolis algorithm described in Schorfheide (2000)

to generate draws from pλ(θ|Y ).

(ii) Based on these draws apply Geweke’s (1999) modified harmonic mean estima-

tor to obtain numerical approximations of the data densities pλ(Y ).

(iii) Find the pre-sample size λ̂ that has the highest data density.

(iv) Select the draws of {θ(s)} that correspond to λ̂ and use standard methods to

generate draws from p(Φ,Σu|Y, θ(s)) for each θ(s).

Notice that this scheme can also be used to select among competing DSGE models.

Moreover, the whole procedure can be easily generalized to the case in which we

have a prior distribution over the hyperparameter λ.

Proof of Proposition 1. Define the sample moments Γ̂xx = X ′X/T , Γ̂xy =

X ′Y/T , and Γ̂yy = Y ′Y/T . Let φ = 1/λ and θ̃ the mode of the marginal log-

likelihood function given in Equation (A8). Consider the log-likelihood ratio

ln
p(Y |θ)
p(Y |θ̃) = −T

2
ln |Σ∗u(θ)| − n

2
ln |I + φΓ∗

−1

xx (θ)Γ̂xx| (A11)

−(1/φ + 1)T − k

2
ln

∣∣∣∣
1/φ + 1

1/φ
Σ∗

−1

u (θ)Σ̃u(θ)
∣∣∣∣

+
T

2
ln |Σ∗u(θ̃)|+ n

2
ln |I + φΓ∗

−1

xx (θ̃)Γ̂xx|

+
(1/φ + 1)T − k

2
ln

∣∣∣∣
1/φ + 1

1/φ
Σ∗

−1

u (θ̃)Σ̃u(θ̃)
∣∣∣∣ .

We derive an approximation of the log-likelihood ratio that is valid as φ −→ 0. A

first-order Taylor approximation of the second term around φ = 0 yields

ln |I + φΓ∗
−1

xx Γ̂xx| = ln |I|+ φtr[Γ∗
−1

xx Γ̂xx|+ O(φ2). (A12)
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Notice that

1/φ + 1
1/φ

Σ∗
−1

u Σ̃u =
[
Γ∗yy − Γ∗yxΓ∗

−1

xx Γ∗xy

]−1

(A13)

×
[
Γ∗yy + φΓ̂yy − (Γ∗yx + φΓ̂yx)(Γ∗xx + φΓ̂xx)−1(Γ∗xy + φΓ̂xy)

]
.

The log-determinant of this term has the following first-order Taylor expansion

around φ = 0:

ln
∣∣∣∣
1/φ + 1

1/φ
Σ∗

−1

u Σ̃u

∣∣∣∣

= ln |I|+ φtr

[
Σ∗

−1

u (Γ̂yy − Γ̂yxΦ∗ − Φ∗
′
Γ̂xy + Φ∗

′
Γ̂xxΦ∗)

]
+ O(φ2). (A14)

Combining these results yields

ln p(Y |θ) = −T

2
ln |Σ∗u(θ)|+ T

2
ln |Σ∗u(θ̃)| (A15)

−T

2
tr

[
Σ∗

−1

u (θ)(Γ̂yy − Γ̂yxΦ∗(θ)− Φ∗
′
(θ)Γ̂xy + Φ∗

′
(θ)Γ̂xxΦ∗(θ))

]

+
T

2
tr

[
Σ∗

−1

u (θ̃)(Γ̂yy − Γ̂yxΦ∗(θ̃)− Φ∗
′
(θ̃)Γ̂xy + Φ∗

′
(θ̃)Γ̂xxΦ∗(θ̃))

]
+ O(φ)

= ln
p∗(Y |θ)
p∗(Y |θ̃) + O(φ).

Thus, as φ −→ 0 the log-likelihood ratio converges to the log-likelihood ratio of the

quasi-likelihood functions. The convergence is uniform on compact subsets of Θ for

which Σ∗u(θ) and Γ∗xx(θ) are non-singular.

Proof of Proposition 2. We rewrite the marginal log-likelihood ratio given in

Equation (A11) in terms of λ:

ln
p(Y |θ)
p(Y |θ̃) = −T

2
ln |Σ∗u(θ)| − n

2
ln |λI + Γ∗

−1

xx (θ)Γ̂xx| (A16)

−(λ + 1)T − k

2
ln

∣∣∣(λ + 1)Σ∗
−1

u (θ)Σ̃u(θ)
∣∣∣

+
T

2
ln |Σ∗u(θ̃)|+ n

2
ln |λI + Γ∗

−1

xx (θ̃)Γ̂xx|

+
(λ + 1)T − k

2
ln

∣∣∣(λ + 1)Σ∗
−1

u (θ̃)Σ̃u(θ̃)
∣∣∣ .

A Taylor-series expansion of the second term around λ = 0 yields

ln |λI + Γ∗
−1

xx Γ̂xx| = ln |Γ∗−1

xx Γ̂xx|+ λtr[Γ̂−1
xx Γ∗xx] + O(λ2). (A17)
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Notice that

(λ + 1)Σ∗
−1

u Σ̃u =
[
Γ∗yy − Γ∗yxΓ∗

−1

xx Γ∗xy

]−1

(A18)

×
[
λΓ∗yy + Γ̂yy − (λΓ∗yx + Γ̂yx)(λΓ∗xx + Γ̂xx)−1(λΓ∗xy + Γ̂xy)

]
.

The log-determinant of this term has the following first-order Taylor expansion

around λ = 0:

ln
∣∣∣(λ + 1)Σ∗

−1

u Σ̃u

∣∣∣ (A19)

= ln |Σ∗−1

u Σ̂u,mle|+ λtr

[
Σ̂−1

u,mle(Γ
∗
yy − Γ∗yxΦ̂mle − Φ̂′mleΓ

∗
xy + Φ̂′mleΓ

∗
xxΦ̂mle)

]
+ O(λ2)

= ln |Σ∗−1

u Σ̂u,mle|+ λtr

[
Σ̂−1

u,mleΣ
∗
u

]
+ λtr

[
Σ̂−1

u,mle(Φ
∗ − Φ̂mle)′Γ∗xx(Φ∗ − Φ̂mle)

]
+ O(λ2).

Combining the three terms leads to the following approximation of the log-likelihood

ratio

p(Y |θ)
p(Y |θ̃) = −λT

2
ln |Σ∗−1

u (θ)|+ λT

2
ln |Σ∗−1

u (θ̃)| (A20)

−λT

2
tr[Σ̂−1

u,mleΣ
∗
u(θ)] +

λT

2
tr[Σ̂−1

u,mleΣ
∗
u(θ̃)]

−λT

2
tr[Σ̂−1

u,mle(Φ
∗(θ)− Φ̂mle)′Γ∗xx(θ)(Φ∗(θ)− Φ̂mle)]

+
λT

2
tr[Σ̂−1

u,mle(Φ
∗(θ̃)− Φ̂mle)′Γ∗xx(θ̃)(Φ∗(θ̃)− Φ̂mle)] + Op(max[λ2T, 1])

= ln
q(Y |θ)
q(Y |θ̃) + Op(max[λ2T, 1]).
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Table 1: Prior Distributions for DSGE Model Parameters

Name Range Density Mean S.D.

ln γ IR Normal 0.500 0.250

ln π∗ IR Normal 1.000 0.500

ln r∗ IR+ Gamma 0.500 0.250

κ IR+ Gamma 0.300 0.150

τ IR+ Gamma 2.000 0.500

ψ1 IR+ Gamma 1.500 0.250

ψ2 IR+ Gamma 0.125 0.100

ρR [0,1) Beta 0.500 0.200

ρg [0.1) Beta 0.800 0.100

ρz [0,1) Beta 0.300 0.100

σR IR+ Inv. Gamma 0.251 0.139

σg IR+ Inv. Gamma 0.630 0.323

σz IR+ Inv. Gamma 0.875 0.430

Notes: The model parameters ln γ, lnπ∗, ln r∗, σR, σg, and σz are scaled by 100

to convert them into percentage points. The Inverse Gamma priors are of the form

p(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2
, where ν = 4 and s equals 0.2, 0.5, and 0.7, respectively.

Approximately 1.5 % of the prior mass lies in the indeterminacy region of the pa-

rameter space. The prior is truncated in order to restrict it to the determinacy

region of the DSGE model.
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Table 2: Posterior of DSGE Model Parameters: 1979:III - 1999:II

Name Prior Posterior, λ = 1 Posterior, λ = 10

CI(low) CI(high) CI(low) CI(high) CI(low) CI(high)

ln γ 0.101 0.922 0.438 0.885 0.553 0.846

ln π∗ 0.219 1.863 0.505 1.465 0.415 1.310

ln r∗ 0.132 0.880 0.272 0.967 0.560 0.969

κ 0.063 0.513 0.302 0.918 0.398 0.896

τ 1.197 2.788 0.716 1.816 0.667 1.585

ψ1 1.121 1.910 1.133 1.810 1.476 2.077

ψ2 0.001 0.260 0.092 0.501 0.082 0.330

ρR 0.157 0.812 0.211 0.536 0.426 0.612

Notes: We report 90 % confidence intervals based on the output of the Metropolis-

Hastings Algorithm. The model parameters ln γ, lnπ∗, and ln r∗ are scaled by 100

to converted them into percentage points.
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Table 3: Percentage gain (loss) in RMSEs: DSGE Prior versus Unre-

stricted VAR and Minnesota Prior

Horizon RGDP Growth Inflation Fed Funds Multivariate

V-unr V-Minn V-unr V-Minn V-unr V-Minn V-unr V-Minn

1 15.000 -1.721 6.630 -0.235 7.338 -7.491 11.241 -0.658

2 13.490 3.057 6.367 0.403 4.785 -5.158 9.049 0.940

4 12.986 3.505 7.736 3.697 4.821 -2.078 8.767 3.096

6 13.102 2.312 9.220 5.955 5.872 -1.550 9.657 3.558

8 13.128 5.039 9.618 5.854 7.047 -1.707 10.553 4.716

10 15.313 8.947 9.967 5.954 6.884 -2.129 11.873 5.475

12 15.663 13.118 9.989 6.265 4.982 -0.782 11.391 6.508

14 16.441 17.438 10.048 6.573 4.762 -0.218 11.546 7.398

16 18.233 20.720 10.134 6.900 4.359 0.871 12.220 8.259

Notes: The rolling sample is 1975:III to 1997:III (90 periods). At each date in the

sample, 80 observations are used in order to estimate the VAR. The forecasts are

computed based an the values λ̂ and ι̂ that have the highest posterior probability

based on the estimation sample.
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Figure 1: Forecasting performance as a function of the weight of the

prior
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Notes: The plot shows the percentage gain (loss) in RMSEs relative to an unre-

stricted VAR. The rolling sample is 1975:III to 1997:III (90 periods). At each date

in the sample, 80 observations are used in order to estimate the VAR.
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Figure 2: Identified impulse response functions
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Notes: The dashed-dotted lines represent the posterior means of the VAR impulse

response functions. The dotted lines are 90% confidence bands. The solid lines

represent the mean impulse responses from the DSGE model. The impulse responses

are based on the sample 1981:IV to 2001:III.
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Figure 3: Effects of a Policy Regime Shift
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Notes: The dotted horizontal lines correspond to the sample standard deviation

of the actual data from 1982:IV to 1999:II. The dashed and the solid lines are

posterior predictive distributions of sample standard deviations for the same time

period, obtained using data up to 1979:II. The dashed line corresponds to ψ1 = 1.1,

the solid line corresponds to ψ1 = 1.8.




