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Abstract

We provide a computationally simple method of including and analyzing

the effects of sunspot shocks in linear rational expectations models when the

equilibrium is indeterminate. Under non-uniqueness sunspots can affect model

dynamics through endogenous forecast errors that do not completely adjust

to fundamental shocks alone. We show that sunspot shocks can be modeled

as exogenous belief shocks which can be included in the set of fundamentals.

By means of a simple example we illustrate that the exact specification of the

transmission mechanism of the belief shocks is irrelevant for the solution of the

model.
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1 Introduction

It is well known that linear rational expectations (RE) models can have multiple

equilibria. If the equilibrium is not unique it is possible to construct sunspot equi-

libria in which stochastic disturbances that are unrelated to fundamental shocks

influence model dynamics. With indeterminacy the realization of a sunspot vari-

able affects economic agents’ beliefs. In response to these shocks, agents adjust

their behavior which induces fluctuations that would not be present in a unique RE

equilibrium.

Recently, researchers have become interested in indeterminacy in dynamic stochas-

tic general equilibrium (DSGE) models. Most of the current literature, however, is

concerned with identifying the structural determinants of indeterminacy1, which

can to a large extent be analyzed in a deterministic environment. Yet, researchers

may also be interested in the stochastic properties of sunspot equilibria. For this

purpose, it is necessary to characterize how sunspot shocks enter the RE model and

how they affect the dynamics of the system.

In this paper, we provide a simple method of computing sunspot equilibria. We

show that an arbitrary vector of belief shocks can be added to the vector of funda-

mental shocks and that the solution method we use automatically selects the correct

dimension of indeterminacy. In this framework, belief shocks can be interpreted as

non-systematic shocks to endogenous forecast errors. In analytically constructing

sunspot equilibria it is often logically convenient to assume that agents change their

forecast of a specific variable in response to a sunspot. In this paper we show that

the choice of a specific variable is irrelevant.

Since indeterminacy arises when the mapping from endogenous forecast errors to

the unstable components of the linear DSGE model is not unique, sunspot shocks

help to solve for those forecast errors that cannot be expressed as functions of
1Notable exception include Schmitt-Grohé [8], Clarida, Gali, and Gertler [3] and Lubik [6] who

study the effects of sunspot shocks on economic dynamics. We formally show in this paper that

the heuristic approach taken by these authors turns out to be correct. For a comprehensive survey

of the indeterminacy literature see Benhabib and Farmer [1].
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fundamental shocks alone. We show that this approach is equivalent to treating

belief shocks as part of the underlying stochastic structure.

2 General Form of the Model

We are interested in linear rational expectations models derived from underlying

dynamic optimization problems, such as consumers’ utility maximization and firms’

profit maximization programs. The resulting system of equations typically consists

of dynamic and static first-order conditions, budget constraints and laws of motions

for exogenous driving processes. Endogenous variables xt appearing in expectations

are handled in the following way: We introduce endogenous forecast errors η by

defining ξt−1 = IEt−1 [xt], so that xt = ξt−1 + ηt which is then added to the system.

These forecast errors have the property IEt−1[ηt] = 0, where IEt−1[.] denotes the

expectation conditional on time t− 1 information. This convention will prove to be

convenient later on.

We consider the canonical linear rational expectations model of the form:

Γ0yt = Γ1yt−1 + Ψzt + Πηt, (1)

where yt is an n×1 vector of endogenous variables, zt is a l×1 vector of exogenous,

serially uncorrelated random disturbances2, and ηt is a k × 1 vector of expectation

errors, satisfying IEt−1[ηt] = 0 for all t. Sims [9] develops a solution algorithm

for (1) subject to restrictions on the rate of growth of yt.3 Moreover, he derives

conditions that ensure the existence and uniqueness of a stable solution. Roughly, a

stable solution exists, if one can choose the expectation errors ηt as a function of the

exogenous shock zt to eliminate explosive components of yt. The solution is unique if

the mapping from zt to ηt is one-to-one. In the case of non-uniqueness, his algorithm

provides one particular solution for the RE system. Sims [9, p.13] mentions that “[i]f
2This assumption is not very restrictive. The laws of motion for serially correlated disturbances

can always be appended to the system and the vector yt expanded.
3Sims’ solution method generalizes the method proposed by Blanchard and Kahn [2].
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one is interested in generating the full set of non-unique solutions, one has to add

back in, as additional “disturbances” the components of [ηt] left undetermined”.

In the following section we show how to derive the full set of solutions of the linear

RE model in the presence of indeterminacy. Section 4 presents a computationally

simpler approach of adding sunspot noise in the form of belief shocks to the system

and demonstrates that it generates the same set of solutions as in Section 3. Section 5

provides a simple example, while the last Section concludes.

3 Sunspot Solutions

The system can be transformed through a generalized complex Schur decomposition

(QZ) of Γ0 and Γ1. There exist matrices Q, Z, Λ, and Ω, such that Q′ΛZ ′ = Γ0,

Q′ΩZ ′ = Γ1, Q′Q = Z ′Z = I, and Λ and Ω are uppertriangular. Let wt = Z ′yt and

premultiply (1) by Q to obtain:

 Λ11 Λ12

0 Λ22





 w1,t

w2,t


 =


 Ω11 Ω12

0 Ω22





 w1,t−1

w2,t−1


 +


 Q1.

Q2.


 (Ψzt + Πηt) (2)

The second set of equations can be rewritten as:

w2,t = Λ−1
22 Ω22w2,t−1 + Λ−1

22 Q2.(Ψzt + Πηt) (3)

Without loss of generality, we assume that the system is ordered and partitioned

such that the m× 1 vector w2,t is purely explosive.

A non-explosive solution of the linear RE model (1) for yt exists if w2,0 = 0 and

for every vector zt, one can find a vector ηt that offsets the impact of zt on w2,t:

Q2.Ψ︸ ︷︷ ︸
m×l

zt︸︷︷︸
l×1

+ΠQ2.︸ ︷︷ ︸
m×k

ηt︸︷︷︸
k×1

= 0︸︷︷︸
m×1

. (4)

The vector ηt, however, need not be unique. For instance, if the number of expec-

tation errors l exceeds the number of explosive components m, Eq. (4) does not

provide enough restrictions to uniquely determine the elements of ηt. Hence, it is
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possible to introduce expectation errors that are unrelated to the fundamental un-

certainty zt without destabilizing the system. For the remainder of the paper we

will make the following assumption.

Assumption 1 The linear RE model (1) has at least one non-explosive solution.

In this section we will characterize the set of expectation errors ηt that are

consistent with the stability condition in Equation (4). The following Lemma will

subsequently be useful.

Lemma 1 Statements (i) and (ii) are equivalent.

(i) For every zt ∈ IRl there exists an ηt ∈ IRk such that Equation (4) is satisfied.

(ii) There exists a (real) k × l matrix λ such that Q2.Ψ = Q2.Πλ.

Lemma 1 simply states that a stable solution exists whenever it is possible

to express the columns of Q2.Ψ as a linear combination of the columns of Q2.Π.4

The proof is straightforward. Statement (ii) implies (i), because one can choose

ηt = −λzt. To show the converse, let the j’th column of λ be equal to an ηt that

solves Eq. (4) for zt = I.j , where I.j is the j’th column of the l × l identity matrix,

j = 1, . . . , l.

Since the rows of the matrix Q2.Π are potentially linearly dependent it is con-

venient to work with its singular value decomposition:5

Q2.Π =
[

U.1 U.2

]

 D11 0

0 0





 V ′

.1

V ′
.2


 = U︸︷︷︸

m×m

D︸︷︷︸
m×k

V ′︸︷︷︸
k×k

= U.1︸︷︷︸
m×r

D11︸︷︷︸
r×r

V ′
.1︸︷︷︸

r×k

, (5)

where D11 is a diagonal matrix and U and V are orthonormal matrices. Thus, the

m explosive components of yt generate only r ≤ m restrictions for the expectation

errors ηt.
4This insight has been used by Sims [9] to check for the existence of a stable equilibrium.
5Singular value decomposition procedures implemented in matrix-oriented software packages

such as GAUSS and MATLAB usually return the matrices U , D, and V .



5

We now exploit the orthonormality of V and express the expectation error ηt as

the sum of two orthogonal vectors. The first vector lies in the space spanned by the

columns of V.1 and the second lies in the column space of V.2.

ηt = (V.1V
′
.1 + V.2V

′
.2)ηt = V.1η̃1,t + V.2η̃2,t, (6)

where η̃1,t is an r× 1 vector and η̃2,t is (k− r)× 1. The impact of ηt on the unstable

component of the linear RE model is given by

Q2.Πηt = U.1D11V
′
.1(V.1η̃1,t + V.2η̃2,t) = U.1D11η̃1,t. (7)

The second part of the expectation error, V.2η̃2,t, does not affect the stability of the

linear RE model. If the dimension k of ηt exceeds the number of stability restrictions

r, the matrix V.2 is nonempty and one can introduce expectations errors V.2η̃2,t that

are unrelated to the fundamental shocks zt without causing an instability.

To offset the effect of the fundamental shocks zt on the unstable component w2,t

of the endogenous variables, η̃1,t has to satisfy

Q2.Ψzt + Q2.ΠV.1η̃1,t = 0. (8)

According to Lemma 1 there exists a k× l matrix λ such that the previous equation

can be rewritten as

U.1D11︸ ︷︷ ︸
m×r


V ′

.1λzt︸ ︷︷ ︸
r×1

+ η̃1,t︸︷︷︸
r×1


 = 0︸︷︷︸

m×1

. (9)

Thus, the solution for η̃1,t is of the form

η̃1,t = −V ′
.1λzt. (10)

Since U is orthonormal and U ′
.1U.1 = Ir×r, it is straightforward to verify that V ′

.1λ

is uniquely determined by Condition (ii) of Lemma 1:

V ′
.1λ = D−1

11 U ′
.1Q2.Ψ. (11)

The final result is summarized in the following proposition.
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Proposition 1 The full set of solutions to Eq. (4) is

ηt = −V.1D
−1
11 U ′

.1Q2.Ψzt + V.2η̃2,t, (12)

where η̃2,t ∈ IRk−r. If k = r the second term drops out and the solution is unique.

The solution for the expectation errors ηt can be substituted into the linear RE

model in Eq. (2) to express yt as a function of yt−1, the fundamental shocks zt,

and ε̃2,t. In the context of the model we will refer to η̃2,t as normalized reduced

form sunspot shocks.6 The contemporaneous impact of the sunspot shocks onto the

transformed endogenous variables is given by

∂(Λ11w1,t + Λ12w2,t)
∂η̃1,t

= Q1.ΠV.2︸ ︷︷ ︸
(n−m)×(k−r)

(13)

The columns of Q1.ΠV.2 contain the directions in which which sunspot shocks can

perturb the linear combination of endogenous variables (Λ11w1,t + Λ12w2,t).

The solution method automatically picks the right number of reduced form

sunspot shocks that complement the fundamental disturbances in a model where

the RE solution is indeterminate. One conceptual difficulty with this approach,

however, is how to interpret the additional error term in an economically meaning-

ful way. In the next Section, we introduce the notion of a belief shock and argue

that the full set of sunspot solutions can be computed with existing algorithms, such

as Sims [9], if the vector of fundamental shocks zt is augmented by the belief shocks.

4 A Computationally Simple Approach to Sunspots

Suppose that the system is perturbed by a random vector ζt in addition to the

disturbances zt and the expectation errors ηt.

Γ0yt = Γ1yt−1 + Ψzt + Π(ηt + ζt) = Γ1yt−1 + [ Ψ Π ]


 zt

ζt


 + Πηt. (14)

6These sunspot shocks are not uniquely defined. For instance, let M be a (k − r) × (k − r)

orthonormal matrix. We could replace V.2η̃2,t in Equation (12) with V ∗
.2η̃

∗
2,t, where V ∗

.2 = V.2M
′

and η̃∗2,t = Mη̃2,t.



7

We assume that IEt−1[ζt] = 0. The vector ζt is of the same dimension as ηt and will

be interpreted as non-systematic shocks to the endogenous forecasting errors that

are not related to the fundamental sources of randomness zt. We will refer to ζt as

belief shock. Subsequently, these belief shocks will be treated in the same way as

the fundamental shocks zt. The stability condition (4) changes to:

[ Q2.Ψ Q2.Π ]


 zt

ζt


 + Q2.Πηt = 0. (15)

Proposition 1 implies that one solution of Eq. (15) is

ηt = −V.1D
−1
11 U ′

.1[ Q2.Ψ Q2.Π ]


 zt

ζt




= −V.1D
−1
11 U ′

.1Q2.Ψzt − V.1V
′
.1ζt. (16)

Now consider the effect of the endogenous expectation errors ηt onto (Λ11w1,t +

Λ12w2,t) in the transformed system (2):

Q1.Πηt = Q1.ΠV.1V
′
.1ηt + Q1.Π(I − V.1V

′
.1)ηt

= −Q1.ΠV.1V
′
.1V.1D

−1
11 λ∗zt −Q1.Π(I − V.1V

′
.1)V.1D

−1
11 λ∗zt

−Q1.ΠV.1V
′
.1V.1V

′
.1ζt −Q1.Π(I − V.1V

′
.1)V.1V

′
.1ζt

= −Q1.ΠV.1D
−1
11 λ∗zt −Q1.ΠV.1V

′
.1ζt. (17)

The overall contemporaneous impact of ζt is

∂(Λ11w1,t + Λ12w2,t)
∂ζt

= Q1.Π−Q1.ΠV.1V
′
.1 = Q1.ΠV.2V

′
.2︸ ︷︷ ︸

(n−m)×k

, (18)

since orthonormality of V implies that V.1V
′
.1 + V.2V.2 = Ik×k.

The transformed belief shock ζ∗t = V ′
.2ζt is equivalent to the reduced form sunspot

shock η̃2,t in Section 3. As previously, Λ11w1,t+Λ12w2,t is perturbed in the directions

of the columns of Q1.ΠV.2. However, since the dimension k of ζt is usually greater

than the dimension k − r of η̃2,t, there is more than one realization ζt of the belief

shock that corresponds to a particular η̃2,t. Such realizations generate the same

equilibrium dynamics. If the solution to Eq. (4) is unique, then V.2 is empty and the
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addition of the forecast-error shocks ζt does not affect the RE equilibrium dynamics

of the model.

Overall we conclude that augmenting the fundamental shocks by belief shocks

generates the full set of stable solutions as characterized in Section 3. Algorithms

such as the one described in Sims [9] can be used without modification to compute

these solutions.

5 A Simple Example

We illustrate our approach by means of a simple example taken from Lubik and

Marzo [7] to which we refer the reader for further details. We consider a reduced-

form model of an economy with monopolistically competitive firms that face adjust-

ment costs when changing prices. Goods are produced with variable labor input only.

Agents can smooth their consumption stream by purchasing government bonds that

pay a nominal rate of interest. The central bank affects the economy’s equilibrium

by means of an interest rate policy.

The linearized version of such an economy is described by the following equa-

tions:

IEt

[
Ỹt+1

]
+ σIEt [π̃t+1] = Ỹt + σR̃t, (19)

βIEt [π̃t+1] = π̃t − κỸt, (20)

R̃t = ψπ̃t + εt. (21)

All variables are in log-deviations from a unique steady state, where Ỹ is output

(which is equal to consumption in equilibrium), π̃ the inflation rate, and R̃ the

nominal interest rate. ε is a fundamental monetary policy shock. σ > 0, κ > 0,

and 0 < β < 1 are parameters. Eq. (19) is an intertemporal Euler-equation, while

(20) governs inflation dynamics which is derived from firms’ optimal price-setting

problem. The monetary authority uses the rule (21) in adjusting the nominal interest

rate in response to changes in its inflation target. ψ ≥ 0 measures the elasticity of
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the interest rate response. Substituting (21) in (19) results in a two-equation system

in Ỹ and π̃ only.

We now transform the reduced-form system (19) - (21) into the canonical form (1).

Define ξY
t = IEt

[
Ỹt+1

]
, ξπ

t = IEt [π̃t+1], and add the following two equations to the

system:

Ỹt = ξY
t−1 + ηY

t , (22)

π̃t = ξπ
t−1 + ηπ

t . (23)

This transformation allows us to substitute out the variables appearing in expec-

tations and to introduce the expectation errors η. The canonical system is defined

for the vector of endogenous variables yt =
[
Ỹt, π̃t, ξ

Y
t , ξπ

t

]′
, fundamental shocks

zt = [εt], and ηt =
[
ηY

t , ηπ
t

]′. The dimensions or the vectors are n = 4, k = 2, and

l = 1.

To examine the effects of sunspots we can proceed as in Section 4 by adding

belief shocks ζY
t , ζπ

t , respectively, to the two definitional equations above, which

expands the exogenous shock vector to zt =
[
εt, ζ

Y
t , ζπ

t

]
. It is well established that

the RE equilibrium is unique if ψ > 1. In this case r = k = 2, V.2 is the null matrix

and any belief shock to output and inflation forecasts does not affect the equilibrium

dynamics.

For 0 ≤ ψ < 1 there is a one-dimensional indeterminacy, that is, r = 1. Since

V.2 = [V12, V22]′ is now a 2×1 vector sunspot shocks do play a role. It is remarkable,

however, that the model solution is isomorphic to the exact location of the sunspot.

According to the results in Section 4, the impacts of belief shocks to output and

inflation are

Q1.ΠV.2V12ζ
Y
t and Q1.ΠV.2V22ζ

π
t ,

respectively. Up to a normalization constant, the two shocks have the same effects

on the equilibrium dynamics. Consequently, we can model sunspots as influencing

beliefs about output, inflation, or both. While ex post it is not possible to infer

which forecast was affected by a belief shock, the notion of a belief shock can help

us to provide economic intuition about the equilibrium dynamics.
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We now conduct the following thought experiment. Suppose that the economy is

initially in a non-stochastic steady state. In period t = 0 agents observe a sunspot

which leads them to believe that the current inflation rate is actually above its

steady state value, π̃0 > π, and that adjustment dynamics are monotone thereafter,

π̃t+1 < π̃t, t = 0, 1, ... .7 We proceed by arguing that this inflation path is not

consistent with an RE equilibrium under the anti-inflationary policy ψ > 1.

The monetary authority responds to the inflationary belief by raising the nomi-

nal interest rate (see Eq. (21)), which in turn increases the expected real rate. From

the Euler-equation (19) this implies positive output (and consumption) growth since

agents desire to increase current savings. Although the inflation rate is falling to-

wards the steady state, the anti-inflation policy keeps the real rate from declining

so that output growth remains positive in future periods. Note that the inflation

path implies that initial output Ỹ0 increases (see Eq. (20)), which is inconsistent

with current consumption declining to support an increase in savings. However,

since Ỹ0 > Y and subsequent output growth is positive. this is obviously not an

equilibrium path with steady-state adjustment dynamics. We can therefore rule out

a sunspot equilibrium under this policy rule.

Now suppose that monetary policy is not aggressive enough, i.e. ψ < 1. Under

an inflationary sunspot-belief the expected real rate declines and output growth is

negative. The fall in the real rate stimulates current consumption and therefore

output, Ỹ0 > Y . From (20), this is consistent with positive current inflation, which

validates the initial assumption of sunspot-driven positive inflation expectations. As

inflation falls towards its steady state, the passive interest-rate policy keeps the real

rate low, and output returns to the steady state.

Alternatively, we could assume that the sunspot variable influences output ex-

pectations so that agents are led to believe that Ỹ0 > Y , and that adjustment

dynamics are such that Ỹt+1 < Ỹt, t = 0, 1, .... Negative output growth implies a fall

in the real rate which is consistent with a weak (ψ < 1) monetary policy response
7It can be shown that other adjustment dynamics are similarly inconsistent with an equilibrium.

See Lubik and Marzo [7] for further details.
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and smooth inflation adjustment dynamics. When policy has an anti-inflationary

stance negative expected output growth can only be supported by an explosive in-

flation path that violates the initial assumption of Ỹ0 > Y .8

We conclude that the dynamic effects of sunspot shocks can be analyzed both

qualitatively and quantitatively as exogenous disturbances to endogenous forecast

errors. Remarkably, the specification of the exact transmission channel of these dis-

turbances is irrelevant as long as a sufficiently large set of fundamental belief shocks

is included in the vector of exogenous disturbances. This procedure thus offers the

researcher a simple way of studying uniqueness of RE equilibria and sunspot dy-

namics without explicit reference to the existence calculations made in this paper

and elsewhere.

6 Conclusion

In this paper, we provide a convenient method for quantitative theorists to study the

implications of sunspot shocks in stochastic general equilibrium models when the

RE equilibrium is not unique. We show that sunspot disturbances can be modeled

as exogenous shocks to endogenous forecast errors, which have a straightforward

economic interpretation as belief shocks. Once the stochastic properties of the driv-

ing processes are specified, model statistics can be computed and impulse-response

analysis conducted. Furthermore, this paper provides a rigorous justification for

common thought experiments in the indeterminacy literature which try to highlight

the internal logic of models without unique equilibrium.

This paper might also of interest to empirical researchers. When estimating

dynamic stochastic general equilibrium models, it is typical practice9 to restrict

the parameter space to regions where indeterminacy does not occur. But since the

possibility of indeterminacy is an integral feature of linear RE models, this practice

could lead to serious model misspecification. Our approach demonstrates how to
8We can similarly analyze the effects of simultaneous belief shocks in output and inflation.
9For instance, Kim [5] or Ireland [4].
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properly account for sunspot shocks in empirical models based on linearized DSGE

models. Furthermore, this paper provides a framework for investigating the role of

sunspot shocks in business cycle fluctuations.
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