Technical Supplement to "Uniform Inference in Panel Autoregression"

John C. Chao*and Peter C. B. Phillips ${ }^{\dagger}$

January 6, 2017

Abstract

This Supplement comprises six appendices. Appendix SA states results on the asymptotic properties of the Anderson-Hsiao IV estimator and of the pooled ordinary least squares (POLS) estimator and uses these results to provide motivation for the design of the AIP estimator discussed in section 2 of the main paper. Appendix SB gives proofs of the results stated in Appendix SA and also supplies a proof of Lemma A1 in the main paper. Appendix SC analyzes the asymptotic properties of the Anderson-Rubin statistic in the context of the panel autoregression. Appendix SD provides proofs of the key supporting lemmas used in the proofs of the theorems stated in the main paper and in Appendix SA. Additional lemmas and their proofs as well as additional technical details are given in Appendix SE. Finally, Appendix SF provides additional Monte Carlo results comparing the finite sample performance of the AIP estimator with other point estimators of the autoregressive parameter ρ.

[^0]
Appendix SA: Asymptotic Properties of the IV and POLS Estimators

In this part of the supplement, we discuss the asymptotic properties of the Anderson-Hsiao IV estimator

$$
\widehat{\rho}_{\mathrm{IVD}}=\left[\sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1}\right]^{-1}\left[\sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t}\right],
$$

and the pooled ordinary least squares (POLS) estimator

$$
\widehat{\rho}_{\mathrm{pols}}=\left[\sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) y_{i t},
$$

where $\bar{y}_{-1, N, T}=N^{-1}(T-1)^{-1} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-1}$. More specifically, we provide an extensive catalogue of the asymptotic behavior of these two estimators under different stable, near unit root, and unit root parameter sequences. The account is fairly comprehensive and subsumes much earlier work, including recent results in Phillips (2014) and Phillips and Han (2015).

Our primary purpose in this discussion is to provide motivation for the AIP (average of IV and POLS) estimator introduced in section 2 of the main paper. As can be seen from the results given below, the Anderson-Hsiao IV estimator performs well when the underlying process is stable, whereas the POLS estimator is the superior estimator when the autoregressive parameter is unity or very nearly unity. As explained in section 2 of our main paper, the design of the AIP estimator seeks to exploit the differential strengths of the IV estimator vis-à-vis the POLS estimator, by creating an estimator that behaves like POLS in the unit root and near unit root regions of the parameter space but which behaves like IV in regions of the parameter space further away from unity.

Formal statements of the results for Anderson-Hsiao IV estimation and POLS estimation are given in Theorems SA-1 and SA-2 below, with Theorem SA-1 providing the asymptotic properties of the former and Theorem SA-2 giving comparable results for the latter. The proofs for these results on provided in the next appendix, Appendix SB.

Theorem SA-1:

Let \mathcal{Z}_{1} and \mathcal{Z}_{2} be independent $N(0,1)$ random variables. Under Assumptions 1-4, the following statements are true as $N, T \rightarrow \infty$ such that $N^{\kappa} / T \rightarrow \tau$, for $\kappa \in\left(\frac{1}{2}, \infty\right)$ and $\tau \in(0, \infty)$.
(a) Suppose that $\rho_{T}=1$ for all T sufficiently large. Then,

$$
\sqrt{T}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right) \Rightarrow \frac{2 \mathcal{Z}_{1}}{\mathcal{Z}_{2}}
$$

(b) Suppose that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T^{1+\frac{1}{2 \kappa}} \ll q(T)$. Then,

$$
\sqrt{T}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right) \Rightarrow \frac{2 \mathcal{Z}_{1}}{\mathcal{Z}_{2}}
$$

(c) Suppose that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T^{1+\frac{1}{2 \kappa}}$. Then, without further assumption on the convergence of $v(T)=T^{1+\frac{1}{2 \kappa}} / q(T)$ as $T \rightarrow \infty$,

$$
\sqrt{T}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)=O_{p}(1) .
$$

If, in addition, $T^{1+\frac{1}{2 \kappa}} / q(T) \rightarrow \lambda \in(0, \infty)$, then

$$
\sqrt{T}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right) \Rightarrow \frac{2 \mathcal{Z}_{1}}{\mathcal{Z}_{2}-\lambda \tau^{\frac{1}{2 \kappa}} / \sqrt{2}}
$$

(d) Suppose that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T \ll q(T) \ll T^{1+\frac{1}{2 \kappa}}$. Then,

$$
\frac{\sqrt{N} T^{3 / 2}}{q(T)}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right) \Rightarrow N(0,8)
$$

(e) Suppose that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. Then,

$$
\frac{V_{N T}}{\bar{\omega}_{T}} \frac{T^{3 / 2} \sqrt{N}}{q(T)}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right) \Rightarrow N(0,1)
$$

where

$$
\begin{aligned}
V_{N T} & =\frac{1}{N T^{2}} \sum_{i=1}^{N} E\left[\left(\sum_{t=2}^{T} \frac{w_{i t-1} \varepsilon_{i t}}{\sigma}\right)^{2}\right] \\
& =\frac{\sigma^{2}}{4} \frac{q(T)^{2}}{T^{2}}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
\bar{\omega}_{T} & =\sigma^{2} \sqrt{1+\frac{q(T)}{T}\left(\frac{1-\exp \{-2 T / q(T)\}}{2}\right)}
\end{aligned}
$$

(f) Suppose that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$. Then,

$$
\sqrt{N T}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right) \Rightarrow N(0,4)
$$

(g) Suppose that $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$. Then as $N, T \rightarrow \infty$

$$
\sqrt{\frac{N T}{2\left(1+\rho_{T}\right)}}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right) \Rightarrow N(0,1)
$$

Theorem SA-2:

Under Assumptions 1-4, the following statements are true as $N, T \rightarrow \infty$ such that $N^{\kappa} / T \rightarrow \tau$, for $\kappa \in\left(\frac{1}{2}, \infty\right)$ and $\tau \in(0, \infty)$.
(a) Suppose that $\rho_{T}=1$ for all T sufficiently large. Then,

$$
\sqrt{N} T\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \Rightarrow N(0,2) .
$$

(b) Suppose that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T \ll q(T)$. Then,

$$
\sqrt{N} T\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \Rightarrow N(0,2)
$$

(c) Suppose that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. Then,

$$
\sqrt{N} T \bar{V}_{N T}^{1 / 2}\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \Rightarrow N(0,2)
$$

where $\bar{V}_{N T}=2 V_{N T} / \sigma^{2}$, with $V_{N T}$ as defined in the statement of part (e) of Theorem SA-1 above.
(d) Suppose that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T^{\frac{1+\kappa}{3 \kappa}} \ll q(T) \ll T$. Then,

$$
\sqrt{N T q(T)}\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \Rightarrow N(0,2) .
$$

(e) Suppose that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T^{\frac{1+\kappa}{3 \kappa}}=N^{1 / 3} T^{1 / 3}$. Then,

$$
\sqrt{N T q(T)}\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}-\frac{2 \sigma_{a}^{2}}{q(T)^{2} \sigma^{2}}\right) \Rightarrow N(0,2) .
$$

(f) Suppose that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T^{\frac{1+\kappa}{3 \kappa}} \rightarrow 0$. Then,

$$
q(T)^{2}\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right)=\frac{2 \sigma_{a}^{2}}{\sigma^{2}}+o_{p}(1)
$$

(g) Suppose that $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$. Then,

$$
\widehat{\rho}_{\mathrm{pols}}-\rho_{T}=\frac{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right) \sigma_{a}^{2}}{\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}}+o_{p}(1) .
$$

Theorem SA-2 above shows that the POLS estimator is a superior estimator when the underlying process either has a unit root or is a very nearly unit root process, i.e., cases where $T^{\frac{1+\kappa}{3 \kappa}} \ll q(T)$ for $\kappa \in\left(\frac{1}{2}, \infty\right)$. In these cases, the POLS estimator is consistent and asymptotically normal with the fastest possible rate of convergence. POLS is, however, inconsistent when the underlying process is stable. On the other hand, Theorem SA-1 shows that the Anderson-Hsiao IV estimator performs well either when the underlying process is stable or when it can be modelled as a local-to-unity process that represents wider deviation from unity, more specifically, cases where $q(T)=O(T)$. The Anderson-Hsiao IV estimator is consistent, asymptotically normal, and also free of second order biases in these cases. Unfortunately, in local-to-unity cases where $T \ll q(T)$, the Anderson-Hsiao estimator suffers from a slower rate of convergence and could also have a nonstandard limiting distribution.

Given these results, it makes sense for us to construct an average of these two estimators to have a weight function that shifts from IV to POLS or vice versa in the (potentially thin) region of the parameter space that is characterized by the collection of localized parameter sequences $\mathcal{G} \cap$ $\left\{\rho_{T}=\exp \{-1 / q(T)\}: T^{\frac{1+\kappa}{3 \kappa}} \ll q(T) \ll T\right\}$, since this is a region where both estimators perform well. Careful examination of the proof of Theorem 2.1 shows that this desired feature is built into the AIP estimator of the form

$$
\begin{equation*}
\hat{\rho}_{\mathrm{AIP}}=w_{I C} \hat{\rho}_{\mathrm{IVD}}+\left(1-w_{I C}\right) \hat{\rho}_{\mathrm{pols}} \tag{1}
\end{equation*}
$$

with weight function given by

$$
w_{I C}=\frac{1}{1+\exp \left\{\frac{1}{2} \Delta_{I C}\right\}} \text { and } \Delta_{I C}=\mathbb{T}_{N T}+\sqrt{N} L(T)
$$

where $L(T)$ denotes some slowly varying function such that $L(T) \rightarrow \infty$ as $T \rightarrow \infty$ and where $\mathbb{T}_{N T}$ is the Studentized statistic for testing the unit root null hypothesis as defined in section 2 of the main paper. In particular, the proof of Theorem 2.1 shows that, asymptotically with probability approaching one, the weight function $w_{I C}$ for this estimator lies strictly between zero and one only under parameter sequences belonging to the collection $\mathcal{G}_{\text {bdry }} \equiv\left\{\rho_{T}=\exp \{-1 / q(T)\}: q(T) \sim T /(L(T))^{2}\right\}$ which is of course a subcollection of $\mathcal{G} \cap$ for $\kappa \in\left(\frac{1}{2}, \infty\right)$. Moreover, for parameter sequences closer to unity relative to those belonging to $\mathcal{G}_{\text {bdry }}, w_{I C} \xrightarrow{p} 1$, so that, in these cases, the AIP estimator behaves like POLS in large samples. On the other hand, for parameter sequences further away from unity relative to those belonging to $\mathcal{G}_{\text {bdry }}, w_{I C} \xrightarrow{p} 0$, resulting in AIP behaving asymptotically like the Anderson-Hsiao IV estimator.

Appendix SB: Proof of Theorems on the AIP, IV and POLS Estimator

Proof of Theorem SA-1:

To show (a), first write

$$
\begin{equation*}
\sqrt{T}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)=\left[\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1}\right]^{-1}\left[\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right] . \tag{2}
\end{equation*}
$$

Applying part (a) of Lemmas SD-1 and SD-2 in Appendix SD below, we get

$$
\begin{align*}
\sqrt{T}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)= & {\left[\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1}+O_{p}\left(\frac{1}{\sqrt{T}}\right)\right]^{-1} } \\
& \times\left[-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)\right] \\
= & {\left[\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1}\right]^{-1}\left[-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}\right] } \\
& +O_{p}\left(\frac{1}{\sqrt{T}}\right) . \tag{3}
\end{align*}
$$

Moreover, it follows from Lemma SE-24 and part (b) of Lemma SE-20 given in Appendix SE below and from the asymptotic independence of the numerator and denominator terms of (3) that we have the joint weak convergence result

$$
\binom{-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}}{\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1}} \Rightarrow\binom{\sqrt{2} \sigma^{2} \mathcal{Z}_{1}}{\left(\sigma^{2} / \sqrt{2}\right) \mathcal{Z}_{2}}
$$

as $N, T \rightarrow \infty$. Hence, by the continuous mapping theorem, we deduce that

$$
\sqrt{T}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right) \Rightarrow 2 \frac{\mathcal{Z}_{1}}{\mathcal{Z}_{2}}
$$

as required.
To show part (b), we apply part (b) of Lemmas SD-1 and SD-2 to expression (2) above to obtain

$$
\begin{aligned}
\sqrt{T}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)= & {\left[\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1}+O_{p}\left(\max \left\{\frac{T^{1+\frac{1}{2 \kappa}}}{q(T)}, \frac{1}{\sqrt{T}}\right\}\right)\right]^{-1} } \\
& \times\left[-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)\right] \\
= & {\left[\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1}\right]^{-1}\left[-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}\right] } \\
& +O_{p}\left(\max \left\{\frac{T^{1+\frac{1}{2 \kappa}}}{q(T)}, \frac{1}{\sqrt{T}}\right\}\right) .
\end{aligned}
$$

The rest of the argument then follows as in part (a) above.
Next, consider show (c). Applying part (c) of Lemmas SD-1 and part (b) of Lemma SD-2 to expression (2) above, we get in this case

$$
\begin{align*}
\sqrt{T}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)= & {\left[\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1}-\frac{T \sqrt{N}}{q(T)}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]+O_{p}\left(\frac{1}{\sqrt{T}}\right)\right]^{-1} } \\
& \times\left[-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)\right] \\
= & {\left[\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1}-\frac{T^{1+\frac{1}{2 \kappa}}}{q(T)} \frac{\sqrt{N}}{T^{\frac{1}{2 \kappa}}}\left(\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right)\right]^{-1} } \\
& \times\left[-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}\right]+O_{p}\left(\frac{1}{\sqrt{T}}\right) \tag{4}
\end{align*}
$$

as $N, T \rightarrow \infty$. Now, consider the case where $T^{1+\frac{1}{2 \kappa}} / q(T) \rightarrow \lambda \in(0, \infty)$. In this case, making use of Lemma SE-15, part (a) of Lemma SE-20, and the Cramêr convergence theorem, we have that

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1}-\frac{T^{1+\frac{1}{2 \kappa}}}{q(T)} \frac{\sqrt{N}}{T^{\frac{1}{2 \kappa}}}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right] \Rightarrow \frac{\sigma^{2}}{\sqrt{2}} \mathcal{Z}_{2}-\frac{\lambda \tau^{\frac{1}{2 \kappa}}}{2} \sigma^{2}
$$

as $N, T \rightarrow \infty$. Moreover, it follows from part (a) of Lemma SE-22 and the asymptotic independence of the numerator and denominator terms of (4) that we have the joint weak convergence result

$$
\binom{-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}}{\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1}-\tau^{\frac{1}{2 \kappa}}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]} \Rightarrow\binom{\sqrt{2} \sigma^{2} \mathcal{Z}_{1}}{\left(\sigma^{2} / \sqrt{2}\right) \mathcal{Z}_{2}-\frac{\lambda \tau^{\frac{1}{2 \kappa}}}{2} \sigma^{2}},
$$

as $N, T \rightarrow \infty$. Hence, by continuous mapping we deduce that

$$
\sqrt{T}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right) \Rightarrow \frac{\sqrt{2} \sigma^{2} \mathcal{Z}_{1}}{\left(\sigma^{2} / \sqrt{2}\right) \mathcal{Z}_{2}-\frac{\lambda \tau^{\frac{1}{2 \kappa}}}{2} \sigma^{2}} \equiv \frac{2 \mathcal{Z}_{1}}{\mathcal{Z}_{2}-\lambda \tau^{\frac{1}{2 \kappa}} / \sqrt{2}} .
$$

On the other hand, if $q(T) \sim T^{1+\frac{1}{2 \kappa}}$ but $v(T)=T^{1+\frac{1}{2 \kappa}} / q(T)$ does not converge as $T \rightarrow \infty$; then, it is nevertheless the case that the denominator of (4)

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1}-\frac{T^{1+\frac{1}{2 \kappa}}}{q(T)} \frac{\sqrt{N}}{T^{\frac{1}{2 \kappa}}}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right] \neq 0 \text { wpa } 1
$$

given that \mathcal{Z}_{2} is a continuous random variable. Since the numerator of (4) is $O_{p}(1)$, it follows that

$$
\sqrt{T}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)=O_{p}(1,)
$$

in this case as required.
To show (d), first write

$$
\frac{\sqrt{N} T^{3 / 2}}{q(T)}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)=\left[\frac{q(T)}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1}\right]^{-1}\left[\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right] .
$$

Now, applying part (d) of Lemmas SD-1 and part (b) of Lemma SD-2, we get

$$
\begin{aligned}
\frac{\sqrt{N} T^{3 / 2}}{q(T)}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)= & {\left[-\left(\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right)+O_{p}\left(\frac{q(T)}{T^{1+\frac{1}{2 \kappa}}}\right)\right]^{-1} } \\
& \times\left[-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)\right] \\
= & -\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]^{-1}\left[-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}\right] \\
& +O_{p}\left(\max \left\{\frac{q(T)}{T^{1+\frac{1}{2 \kappa}}}, \frac{1}{\sqrt{T}}\right\}\right) .
\end{aligned}
$$

Moreover, it follows from part (a) of Lemma SE-22 and Lemma SE-15 that

$$
-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T} \Rightarrow \sqrt{2} \sigma^{2} \mathcal{Z}_{1}
$$

and

$$
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2} \xrightarrow{p} \frac{\sigma^{2}}{2}
$$

as $N, T \rightarrow \infty$. Hence, by the Cramér convergence theorem, we deduce that

$$
\frac{\sqrt{N} T^{3 / 2}}{q(T)}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right) \Rightarrow-\frac{2 \sqrt{2}}{\sigma^{2}} \sigma^{2} \mathcal{Z}_{1} \equiv N(0,8)
$$

as required.
To show part (e), write

$$
\frac{V_{N T}}{\bar{\omega}_{T}} \frac{T^{3 / 2} \sqrt{N}}{q(T)}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)=\frac{V_{N T}}{\bar{\omega}_{T}}\left[\frac{q(T)}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1}\right]^{-1}\left[\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right]
$$

where

$$
\begin{aligned}
V_{N T} & =\frac{1}{N T^{2}} \sum_{i=1}^{N} E\left[\left(\sum_{t=2}^{T} \frac{w_{i t-1} \varepsilon_{i t}}{\sigma}\right)^{2}\right] \\
& =\frac{\sigma^{2}}{4} \frac{q(T)^{2}}{T^{2}}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
\bar{\omega}_{T} & =\sigma^{2} \sqrt{1+\frac{q(T)}{T}\left(\frac{1-\exp \{-2 T / q(T)\}}{2}\right)} .
\end{aligned}
$$

Now, applying part (e) of Lemma SD-1 and part (c) of Lemma SD-2, we get

$$
\begin{aligned}
& \frac{V_{N T}}{\bar{\omega}_{T}} \frac{T^{3 / 2} \sqrt{N}}{q(T)}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right) \\
= & V_{N T}\left[-\left(\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right)+O_{p}\left(\frac{1}{\sqrt{N}}\right)\right]^{-1} \\
& \times\left[-\frac{1}{\bar{\omega}_{T} \sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\bar{\omega}_{T} \sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)\right] \\
= & {\left[\frac{1}{V_{N T}} \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]^{-1}\left[\frac{1}{\bar{\omega}_{T} \sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}-\frac{1}{\bar{\omega}_{T} \sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}\right] } \\
& +O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\frac{1}{\sqrt{N}}\right) .
\end{aligned}
$$

Moreover, it follows from part (b) of Lemma SE-22 and part (a) of Lemma SE-17 that

$$
\frac{1}{\bar{\omega}_{T} \sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}-\frac{1}{\bar{\omega}_{T} \sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T} \Rightarrow \mathcal{Z}_{1} \equiv N(0,1)
$$

and

$$
\frac{1}{V_{N T}} \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}=1+\frac{1}{V_{N T}}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}-V_{N T}\right]=1+o_{p}(1) \xrightarrow{p} 1
$$

as $N, T \rightarrow \infty$. Hence, by the Cramér convergence theorem, we deduce that

$$
\frac{V_{N T}}{\bar{\omega}_{T}} \frac{T^{3 / 2} \sqrt{N}}{q(T)}\left(\hat{\rho}_{\mathrm{IVD}}-\rho_{T}\right) \Rightarrow \mathcal{Z}_{1} \equiv N(0,1)
$$

as required.

To show part (f),

$$
\sqrt{N T}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)=\left[\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1}\right]^{-1}\left[\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right]
$$

Now, applying part (f) of Lemma SD-1 and part (d) of Lemma SD-2, we get

$$
\begin{aligned}
\sqrt{N T}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)= & {\left[-\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}+O_{p}\left(\max \left\{\sqrt{\frac{q(T)}{N T}}, \frac{1}{q(T)}\right\}\right)\right]^{-1} } \\
& \times\left[-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+O_{p}\left(\max \left\{\sqrt{\frac{q(T)}{T}}, \frac{1}{\sqrt{q(T)}}\right\}\right)\right] \\
= & {\left[\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]^{-1}\left[\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}\right] } \\
& +O_{p}\left(\max \left\{\sqrt{\frac{q(T)}{T}}, \frac{1}{\sqrt{q(T)}}\right\}\right)
\end{aligned}
$$

Moreover, it follows from part (c) of Lemma SE-22 and part (b) of Lemma SE-17 that

$$
-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1} \Rightarrow \sigma^{2} \mathcal{Z}_{1}
$$

and

$$
-\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2} \xrightarrow{p} \frac{\sigma^{2}}{-2},
$$

as $N, T \rightarrow \infty$. Hence, by the Cramér convergence theorem, we deduce that

$$
\sqrt{N T}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right) \Rightarrow\left(\frac{-2}{\sigma^{2}}\right) \sigma^{2} \mathcal{Z}_{1} \equiv N(0,4)
$$

as required.
Finally, to show part (g), note that by applying part (g) of Lemma SD-1, part (e) of Lemma SD-2, part (c) of Lemma SE-17, and Lemma SE-23; we obtain

$$
\begin{aligned}
& \sqrt{\frac{N T}{2\left(1+\rho_{T}\right)}}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right) \\
= & {\left[\frac{1+\rho_{T}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1}\right]^{-1}\left[\sqrt{\frac{1+\rho_{T}}{2}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right] } \\
= & {\left[-\frac{\left(1-\rho_{T}^{2}\right)}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)\right]^{-1} } \\
& \times\left[\sigma^{2} \sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}}\left(-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\left(1-\rho_{T}\right) \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-1}\right)+O_{p}\left(\frac{1}{\sqrt{T}}\right)\right] \\
\Rightarrow & -\frac{1}{\sigma^{2}} N\left(0, \sigma^{4}\right) \equiv N(0,1),
\end{aligned}
$$

as required.

Proof of Theorem SA-2:

To proceed, first write

$$
\begin{aligned}
\widehat{\rho}_{\mathrm{pols}}= & {\left[\sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} } \\
& \times \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)\left[a_{i}\left(1-\rho_{T}\right)+\rho_{T} y_{i t-1}+\varepsilon_{i t}\right] \\
= & {\left[\sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i}\left(1-\rho_{T}\right) } \\
& +\rho_{T}\left[\sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2} \\
& +\left[\sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t},
\end{aligned}
$$

so that

$$
\begin{align*}
\widehat{\rho}_{\mathrm{pols}}-\rho_{T}= & \left(1-\rho_{T}\right)\left[\sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} \\
& +\left[\sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t} . \tag{5}
\end{align*}
$$

Now, consider part (a), where we take $\rho_{T}=1$ for all T sufficiently large. Hence, in this case, we can apply part (a) of Lemmas SD-3, SD-4, and SD-5 given in Appendix SD below, along with Lemma

SE-13 and part (b) of Lemma SE-20 given in Appendix SE to obtain

$$
\begin{aligned}
& T \sqrt{N}\left(\hat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
= & \left(1-\rho_{T}\right)\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} \\
& +\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t} \\
= & {\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}+O_{p}\left(\frac{1}{T}\right)+O_{p}\left(\frac{1}{N}\right)\right]^{-1} } \\
& \times\left[\frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\frac{1}{\sqrt{N}}\right)\right]+O_{p}\left(\left(1-\rho_{T}\right) \max \{\sqrt{N}, \sqrt{T}\}\right) \\
= & {\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}\right]^{-1}\left[\frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}\right]+O_{p}\left(\operatorname { m a x } \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}\})}\right.\right.} \\
\Rightarrow & \frac{2}{\sigma^{2}} N\left(0, \frac{\sigma^{4}}{2}\right) \equiv N(0,2) .
\end{aligned}
$$

Next, consider part (b), where we assume that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T \ll q(T)$. In this case, we apply part (b) of Lemmas SD-3, SD-4, and SD-5 along with Lemma SE-15 and part (a) of Lemma SE-20 to obtain

$$
\begin{aligned}
& T \sqrt{N}\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
= & \left(1-\rho_{T}\right)\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} \\
& +\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t} \\
= & {\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}+O_{p}\left(\frac{1}{T}\right)+O_{p}\left(\frac{1}{N}\right)\right]^{-1} } \\
& \times\left[\frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\frac{1}{\sqrt{N}}\right)\right] \\
& +O\left(\frac{1}{q(T)}\right) O_{p}(1) O_{p}(\max \{\sqrt{N}, \sqrt{T}\}) \\
= & {\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}\right]^{-1}\left[\frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}\right]+o_{p}(1) } \\
\Rightarrow & \frac{2}{\sigma^{2}} N\left(0, \frac{\sigma^{4}}{2}\right) \equiv N(0,2) .
\end{aligned}
$$

Now, we consider part (c), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. To proceed,
note that

$$
\bar{V}_{N T}=\frac{2}{\sigma^{4}} \frac{1}{N T^{2}} \bar{\omega}_{Z, N, T}^{2},
$$

where $\bar{\omega}_{Z, N, T}^{2}$ is defined in the statement of Lemma SE-27. It follows from the proof of part (a) of Lemma SE-27 that

$$
\begin{aligned}
\bar{V}_{N T} & =\frac{2}{\sigma^{4}} \frac{1}{N T^{2}} N q(T)^{2} \frac{\sigma^{4}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& =\frac{1}{2} \frac{q(T)^{2}}{T^{2}}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\left[1+O\left(\frac{1}{T}\right)\right] .
\end{aligned}
$$

Applying part (c) of Lemmas SD-3, SD-4, and SD-5 along with part (a) of Lemma SE-17 and part (a) of Lemma SE-27; we can get

$$
\begin{aligned}
& \sqrt{N} T \bar{V}_{N T}^{1 / 2}\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
= & \left(1-\rho_{T}\right) \bar{V}_{N T}^{1 / 2}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} \\
& +\bar{V}_{N T}^{1 / 2}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t} \\
= & \bar{V}_{N T}^{1 / 2}\left[\frac{q(T)^{2}}{T^{2}} \frac{\sigma^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right)\right]^{-1} \\
& \times \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}\left[1+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\frac{1}{\sqrt{N}}\right)\right] \\
& +O\left(\frac{1}{T}\right) O_{p}(1) O_{p}(1) O_{p}(\max \{\sqrt{N}, \sqrt{T}\}) \\
= & \overline{V_{N T}}\left[\frac{q(T)^{2}}{T^{2}} \frac{\sigma^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]+O_{p}\left(\operatorname { m a x } \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}\})]}\right.\right.\right. \\
& \times \frac{1}{\bar{V}_{N T}^{1 / 2}} \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}\left[1+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\frac{1}{\sqrt{N}}\right)\right]+O_{p}\left(\max \left\{\frac{\sqrt{N}}{T}, \frac{1}{\sqrt{T}\}}\right\}\right. \\
= & \frac{1}{2} \frac{q(T)^{2}}{T^{2}}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& \times\left[\frac{q(T)^{2}}{T^{2}} \frac{\sigma^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right)\right] \\
& \times \frac{\sigma^{2}}{\sqrt{2} \bar{\omega}_{Z, N, T}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}\left[1+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\frac{1}{\sqrt{N}}\right)\right]+O_{p}\left(\max \left\{\frac{\sqrt{N}}{T}, \frac{1}{\sqrt{T}\}}\right\}\right) \\
= & \frac{\sqrt{2}}{\bar{\omega}}{ }_{Z, N, T}^{N} \sum_{i=1}^{T} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}\left[1+O_{p}\left(\max \left\{\frac{\sqrt{N}}{T}, \frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right)\right] \\
\Rightarrow & N(0,2) .
\end{aligned}
$$

We turn our attention to part (d) where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T^{\frac{1+\kappa}{3 \kappa}} \ll q(T) \ll T$. Here, using part (d) of Lemmas SD-3, SD-4, and SD-5 along with part (b) of Lemma SE-17 and part (b) of Lemma SE-27; we obtain

$$
\begin{aligned}
& \sqrt{N T q(T)}\left(\hat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
= & \left(1-\rho_{T}\right)\left[\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} \\
& +\left[\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t} \\
= & \frac{2}{\sigma^{2}}\left[1+O_{p}\left(\max \left\{\frac{q(T)}{T}, \frac{1}{q(T)}, \sqrt{\frac{q(T)}{N T}}, \frac{1}{\sqrt{T}}\right\}\right)\right] \\
& \times\left[\frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+O_{p}\left(\max \left\{\frac{1}{\sqrt{q(T)}}, \sqrt{\frac{q(T)}{N T}}, \frac{\sqrt{q(T)}}{T}\right\}\right)\right] \\
& +O_{p}\left(\frac{1}{q(T)}\right) O_{p}(1) O_{p}\left(\max \left\{\sqrt{\frac{N T}{q(T)}}, \sqrt{q(T)}, \sqrt{\frac{q(T) N}{T}}\right\}\right) \\
= & \frac{2}{\sigma^{2}} \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+O_{p}\left(\max \left\{\frac{\sqrt{N T}}{q(T)^{3 / 2}}, \frac{1}{\sqrt{q(T)}}, \sqrt{\frac{q(T)}{N T}}\right\}\right) \\
\Rightarrow & \frac{2}{\sigma^{2}} N\left(0, \frac{\sigma^{4}}{2}\right) \equiv N(0,2) .,
\end{aligned}
$$

Next, we consider part (e), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T^{\frac{1+\kappa}{3 \kappa}}=$ $N^{1 / 3} T^{1 / 3} \ll T$ for $\kappa \in\left(\frac{1}{2}, \infty\right)$. In this case, we apply part (d) of Lemmas SD-3, SD-4, and SD-5
along with parts (a) and (b) of Lemma SE-11, and part (b) of Lemmas SE-17 and SE-27 to obtain

$$
\begin{aligned}
& \sqrt{N T q(T)}\left(\hat{\rho}_{\text {pols }}-\rho_{T}\right) \\
& =\left(1-\rho_{T}\right)\left[\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \\
& \times \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} \\
& +\left[\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t} \\
& =\left(1-\left[1-\frac{1}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right]\right)\left[\frac{\sigma^{2}}{2}+O_{p}\left(\max \left\{\frac{q(T)}{T}, \frac{1}{q(T)}, \sqrt{\frac{q(T)}{N T}}, \frac{1}{\sqrt{T}}\right\}\right)\right]^{-1} \\
& \times\left[\sqrt{\frac{N T}{q(T)}}\left[\frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\bar{a}_{N}^{2}\right]+O_{p}\left(\max \left\{\sqrt{q(T)}, \sqrt{\frac{q(T) N}{T}}\right\}\right)\right] \\
& +\left[\frac{\sigma^{2}}{2}+O_{p}\left(\max \left\{\frac{q(T)}{T}, \frac{1}{q(T)}, \sqrt{\frac{q(T)}{N T}}, \frac{1}{\sqrt{T}}\right\}\right)\right]^{-1} \\
& \times\left[\frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+O_{p}\left(\max \left\{\frac{1}{\sqrt{q(T)}}, \sqrt{\frac{q(T)}{N T}}, \frac{\sqrt{q(T)}}{T}\right\}\right)\right] \\
& =\frac{\sigma^{2}}{2} \frac{\sqrt{N T}}{q(T)^{3 / 2}}\left[\frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\bar{a}_{N}^{2}\right]\left[1+O_{p}\left(\max \left\{\frac{q(T)}{T}, \frac{1}{q(T)}, \sqrt{\frac{q(T)}{N T}}, \frac{1}{\sqrt{T}}\right\}\right)\right] \\
& \times\left[1+O_{p}\left(\max \left\{\frac{1}{\sqrt{q(T)}}, \sqrt{\frac{N}{q(T) T}}\right\}\right)\right] \\
& +\frac{2}{\sigma^{2}} \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}\left[1+O_{p}\left(\max \left\{\frac{q(T)}{T}, \frac{1}{q(T)}, \sqrt{\frac{q(T)}{N T}}, \frac{1}{\sqrt{T}}\right\}\right)\right] \\
& \times\left[1+O_{p}\left(\max \left\{\frac{1}{\sqrt{q(T)}}, \sqrt{\frac{q(T)}{N T}}, \frac{\sqrt{q(T)}}{T}\right\}\right)\right] \\
& =\left[\frac{2}{\sigma^{2}} \frac{\sqrt{N T}}{q(T)^{3 / 2}} \sigma_{a}^{2}+\frac{2}{\sigma^{2}} \frac{\sigma^{2}}{\sqrt{2}} \mathcal{Z}\right]\left[1+o_{p}(1)\right] \\
& =\left[\sqrt{N T q(T)} \frac{2 \sigma_{a}^{2}}{\sigma^{2} q(T)^{2}}+\sqrt{2} \mathcal{Z}\right]\left[1+o_{p}(1)\right]
\end{aligned}
$$

where $\mathcal{Z} \equiv N(0,1)$. It follows that

$$
\sqrt{N T q(T)}\left(\hat{\rho}_{\mathrm{pols}}-\rho_{T}-\frac{2 \sigma_{a}^{2}}{\sigma^{2} q(T)^{2}}\right) \Rightarrow N(0,2),
$$

as required for part (e).

Now, in part (f), we consider the case where $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T^{\frac{1+\kappa}{3 \kappa}} \rightarrow 0$. In this case, note that applying part (d) of Lemmas SD-3 and SD-5 and part (e) of Lemma SD-4 along with parts (a) and (b) of Lemma SE-11, part (b) of Lemmas SE-17 and SE-27 yield

$$
\begin{aligned}
& q(T)^{2}\left(\hat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
= & \left(1-\rho_{T}\right) q(T)\left[\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} \\
& +\left[\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \frac{q(T)}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t} \\
= & \left(1-\left[1-\frac{1}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right]\right)\left[\frac{\sigma^{2}}{2}+O_{p}\left(\max \left\{\frac{q(T)}{T}, \frac{1}{q(T)}, \sqrt{\frac{q(T)}{N T}}, \frac{1}{\sqrt{T}}\right\}\right)\right]^{-1} \\
& \times q(T)\left[\left[\frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\bar{a}_{N}^{2}\right]+O_{p}\left(\max \left\{\frac{q(T)}{\sqrt{N T}}, \frac{q(T)}{T}\right\}\right)\right] \\
& +\left[\frac{\sigma^{2}}{2}+O_{p}\left(\max \left\{\frac{q(T)}{T}, \frac{1}{q(T)}, \sqrt{\frac{q(T)}{N T}}, \frac{1}{\sqrt{T}}\right\}\right)\right]^{-1} \\
& \times \frac{q(T)^{3 / 2}}{\sqrt{N T}}\left[\frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+O_{p}\left(\max \left\{\frac{1}{\sqrt{q(T)}}, \sqrt{\frac{q(T)}{N T}}, \frac{\sqrt{q(T)}}{T}\right\}\right)\right],
\end{aligned}
$$

so that

$$
\begin{aligned}
& q(T)^{2}\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
= & \frac{2}{\sigma^{2}}\left[\frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\bar{a}_{N}^{2}\right]\left[1+O_{p}\left(\max \left\{\frac{q(T)}{T}, \frac{1}{q(T)}, \frac{q(T)}{\sqrt{N T}}, \frac{1}{\sqrt{T}}\right\}\right)\right]+O_{p}\left(\frac{q(T)^{3 / 2}}{\sqrt{N T}}\right) \\
= & \frac{2 \sigma_{a}^{2}}{\sigma^{2}}+o_{p}(1),
\end{aligned}
$$

as required for part (f).
Finally, in part (g), we consider the case where $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$. In this case, applying part
(e) of Lemmas SD-3 and SD-5 and part (f) of Lemma SD-4, we obtain

$$
\begin{aligned}
& \widehat{\rho}_{\mathrm{pols}}-\rho_{T} \\
= & \left(1-\rho_{T}\right)\left[\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{, N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} \\
& +\left[\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}\right]^{-1} \frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t} \\
= & \frac{\left(1-\rho_{T}\right)}{\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}}\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}\left[1+o_{p}(1)\right] \\
& +\frac{1}{\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}} O_{p}\left(\frac{1}{\sqrt{N T}}\right)\left[1+o_{p}(1)\right] \\
= & \frac{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right) \sigma_{a}^{2}}{\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}}+o_{p}(1),
\end{aligned}
$$

as required.

Proof of Lemma A1:

To proceed, note that, in the pathwise asymptotics considered here, N grows as a monotonically increasing function of T, so that the asymptotics can be taken to be single-indexed with $T \rightarrow \infty$. Hence, as in the statement of the lemma, we can set $N=N(T)=(\tau T)^{1 / \kappa}$ and simplify notation by writing $\mathbb{C}_{\gamma, \alpha, N, T}=\mathbb{C}_{\gamma, \alpha, N(T), T}=\mathbb{C}_{\gamma, \alpha, T}$.

Consider first part (a), where we take $\rho_{T} \in \mathcal{G}_{1}^{\mathrm{P}}=\left\{\rho_{T}: \rho_{T}=1\right.$ for all T sufficiently large $\}$. In this case, note that

$$
\begin{aligned}
& \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{1}^{\mathrm{P}}\right) \\
= & \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}}, \mathbb{T}_{1, T} \leq-z_{\gamma_{1}}, \mathbb{T}_{2, T} \leq-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{1}^{\mathrm{P}}\right) \\
& +\operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{1}, \alpha_{2}, T}^{\mathrm{UR} 1}, \mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{1}^{\mathrm{P}}\right) \\
& +\operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2}, \mathbb{T}_{1, T} \leq-z_{\gamma_{1}}, \mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{1}^{\mathrm{P}}\right) \\
\leq & \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{1}^{\mathrm{P}}\right)+\operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{1}, \alpha_{2}, T}^{\mathrm{UR} 1} \mid \rho=\rho_{T} \in \mathcal{G}_{1}^{\mathrm{P}}\right) \\
& +\operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2} \mid \rho=\rho_{T} \in \mathcal{G}_{1}^{\mathrm{P}}\right) .
\end{aligned}
$$

Then, there exists a positive integer I_{ρ} such that, for all $T \geq I_{\rho}$,

$$
1-\sqrt{2} \frac{\left(z_{\gamma_{1}}+z_{\alpha_{2}}\right)}{T \sqrt{N}}=1-\sqrt{2} \frac{\left(z_{\gamma_{1}}+z_{\alpha_{2}}\right)}{\tau^{\frac{1}{2 \kappa}} T^{\frac{1}{2 \hbar}+1}} \leq \rho_{T}=1
$$

and

$$
1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}}=1-\sqrt{2} \frac{\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\tau^{\frac{1}{2 \kappa}} T^{\frac{1}{2}}\left(1+\frac{1}{k}\right)} \leq \rho_{T}=1
$$

Thus, $\rho_{T} \in \mathbb{C}_{\gamma_{1}, \alpha_{2}, T}^{\mathrm{UR} 1}$ and $\rho_{T} \in \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2}$, for all T sufficiently large. Hence,
$\limsup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{1}, \alpha_{2}, T}^{\mathrm{UR} 1} \mid \rho=\rho_{T} \in \mathcal{G}_{1}^{\mathrm{P}}\right)=0$ and $\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2} \mid \rho=\rho_{T} \in \mathcal{G}_{1}^{\mathrm{P}}\right)=0$. Moreover, by part (a) of Theorem 3.1, $\lim _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{1}^{\mathrm{P}}\right)=\alpha_{1}$. It follows that

$$
\begin{aligned}
& \lim _{T \rightarrow \infty} \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{1}^{\mathrm{P}}\right) \\
\leq & \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{1}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{1}, \alpha_{2}, T}^{\mathrm{UR} 1} \mid \rho=\rho_{T} \in \mathcal{G}_{1}^{\mathrm{P}}\right) \\
& +\lim _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2} \mid \rho=\rho_{T} \in \mathcal{G}_{1}^{\mathrm{P}}\right) \\
= & \alpha_{1}+0+0=\alpha_{1} .
\end{aligned}
$$

Next, consider part (b), where we take $\rho_{T} \in \mathcal{G}_{2}^{\mathrm{P}}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: \sqrt{N} T \sim T^{\frac{1}{2 \kappa}+1} \ll q(T)\right\}$. Note that, in the present case, $T \sqrt{N} \sim T^{\frac{1}{2 \kappa}+1} \ll q(T)$,

$$
\begin{aligned}
1-\sqrt{2} \frac{\left(z_{\gamma_{1}}+z_{\alpha_{2}}\right)}{T \sqrt{N}} & =1-\sqrt{2} \frac{\left(z_{\gamma_{1}}+z_{\alpha_{2}}\right)}{\tau^{\frac{1}{2 \kappa}} T^{\frac{1}{2 \kappa}+1}} \\
& \leq \rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}=1-\frac{1}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right) \leq 1
\end{aligned}
$$

and

$$
\begin{aligned}
1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}} & =1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\tau^{\frac{1}{2 \kappa}} T^{\frac{1}{2}\left(1+\frac{1}{\kappa}\right)}} \\
& \leq \rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}=1-\frac{1}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right) \leq 1
\end{aligned}
$$

for all T sufficiently large, so that $\rho_{T} \in \mathbb{C}_{\gamma_{1}, \alpha_{2}, T}^{\mathrm{UR} 1}$ and $\rho_{T} \in \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2}$ eventually. Hence, $\limsup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{1}, \alpha_{2}, T}^{\mathrm{UR} 1} \mid \rho=\rho_{T} \in \mathcal{G}_{2}^{\mathrm{P}}\right)=0$ and $\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2} \mid \rho=\rho_{T} \in \mathcal{G}_{2}^{\mathrm{P}}\right)=0$. Moreover, by part (b) of Theorem 3.1, $\lim _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{2}^{\mathrm{P}}\right)=\alpha_{1}$. It follows that

$$
\begin{aligned}
& {\lim \sup _{T \rightarrow \infty} \operatorname{Pr}}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{2}^{\mathrm{P}}\right) \\
\leq & \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathrm{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{2}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{1}, \alpha_{2}, T}^{\mathrm{UR} 1} \mid \rho=\rho_{T} \in \mathcal{G}_{2}^{\mathrm{P}}\right) \\
& +\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2} \mid \rho=\rho_{T} \in \mathcal{G}_{2}^{\mathrm{P}}\right) \\
= & \alpha_{1}+0+0=\alpha_{1}<\alpha .
\end{aligned}
$$

Consider part (c), where we assume
$\rho_{T} \in \mathcal{G}_{3}^{\mathrm{P}}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}:\left(\sqrt{N} T \sim T^{\frac{1}{2 \kappa}+1} \sim q(T)\right) \cap\left(\rho_{T} \geq 1-\frac{\left(z_{\gamma_{1}}+z_{\alpha_{2}}\right) \sqrt{2}}{\sqrt{N} T}\right.\right.$ eventually $\left.)\right\}$.
In this case, $\rho_{T} \in \mathbb{C}_{\gamma_{1}, \alpha_{2}, T}^{\mathrm{UR} 1}$ eventually by assumption. Since $\sqrt{N T} \ll \sqrt{N} T \sim q(T)$, we also have
$\rho_{T} \in \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2}$ eventually. It follows by applying part (b) of Theorem 3.1 that

$$
\begin{aligned}
& \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{3}^{\mathrm{P}}\right) \\
\leq & \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{3}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{1}, \alpha_{2}, T}^{\mathrm{UR} 1} \mid \rho=\rho_{T} \in \mathcal{G}_{3}^{\mathrm{P}}\right) \\
& +\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2} \mid \rho=\rho_{T} \in \mathcal{G}_{3}^{\mathrm{P}}\right) \\
= & \alpha_{1}+0+0=\alpha_{1}<\alpha .
\end{aligned}
$$

We turn our attention now to part (d) where we take

$$
\rho_{T} \in \mathcal{G}_{4}^{\mathrm{P}}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: \sqrt{N} T \sim q(T) \cap \rho_{T}<1-\frac{\left(z_{\gamma_{1}}+z_{\alpha_{2}}\right) \sqrt{2}}{\sqrt{N} T} \text { eventually }\right\}
$$

To proceed, write $\mathbb{T}_{1, T}=\frac{M_{y y}^{1 / 2} \sqrt{N} T\left(\widehat{\rho}_{\text {pols }}-\rho_{T}\right)}{\hat{\sigma}}-\frac{M_{y y}^{1 / 2} \sqrt{N} T\left(1-\rho_{T}\right)}{\hat{\sigma}}=\mathbb{T}_{1, T}^{*}-\theta_{T}^{*}$, where $M_{y y}=N^{-1} T^{-2} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-y_{-1, N, T}\right)^{2}$. In this case, by part (b) of Lemma SD-3, Lemma SD-12, and part (b) of Theorem SA-2; we have $\mathbb{T}_{T}^{*} \Rightarrow N(0,1)$ and $\theta_{T}^{*}=\widehat{\sigma}^{-1} M_{y y}^{1 / 2} \sqrt{N} T\left(1-\rho_{T}\right)=$ $2^{-1 / 2} \sqrt{N} T\left(1-\rho_{T}\right)\left[1+o_{p}(1)\right]$, so that $\mathbb{T}_{1, T}=\mathbb{T}_{1, T}^{*}-\theta_{T}^{*}=\mathbb{T}_{1, T}^{*}-\sqrt{N} T\left(1-\rho_{T}\right) / \sqrt{2}+\xi_{T}$, where $\xi_{T}=o_{p}(1)$. Now, let ϵ_{T} be a sequence of positive numbers such that, as $T \rightarrow \infty, \epsilon_{T} \rightarrow 0$ but $\xi_{T} / \epsilon_{T}=o_{p}(1)$. It follows that

$$
\begin{aligned}
& \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \left\lvert\,\left\{q(T) \sim T^{\frac{1}{2 \kappa}+1}\right\} \cap\left\{\rho_{T}<1-\frac{\left(z_{\gamma_{1}}+z_{\alpha_{2}}\right) \sqrt{2}}{\sqrt{N} T} \text { eventually }\right\}\right.\right) \\
&= \operatorname{Pr}\left(\left.\left\{\mathbb{T}_{1, T}^{*}-\frac{\sqrt{N} T\left(1-\rho_{T}\right)}{\sqrt{2}}+\xi_{T}>-z_{\gamma_{1}}\right\} \cap\left\{\left|\xi_{T}\right|<\epsilon_{T}\right\} \right\rvert\,\left\{q(T) \sim T^{\frac{1}{2 \kappa}+1}\right\}\right. \\
&\left.\cap\left\{\rho_{T}<1-\frac{\left(z_{\gamma_{1}}+z_{\alpha_{2}}\right) \sqrt{2}}{\sqrt{N} T} \text { eventually }\right\}\right) \\
&+\operatorname{Pr}\left(\left.\left\{\mathbb{T}_{1, T}^{*}-\frac{\sqrt{N} T\left(1-\rho_{T}\right)}{\sqrt{2}}+\xi_{T}>-z_{\gamma_{1}}\right\} \cap\left\{\left|\xi_{T}\right| \geq \epsilon_{T}\right\} \right\rvert\,\left\{q(T) \sim T^{\frac{1}{2 \kappa}+1}\right\}\right. \\
& \leq\left.\cap\left\{\rho_{T}<1-\frac{\left(z_{\gamma_{1}}+z_{\alpha_{2}}\right) \sqrt{2}}{\sqrt{N} T} \text { eventually }\right\}\right) \\
&+\operatorname{Pr}\left(\left|\mathbb{T}_{1, T}^{*}\right| \geq \epsilon_{T} \left\lvert\,\left\{q(T) \sim T^{\frac{1}{2 \kappa}+1}\right\} \cap\left\{\rho_{T}<1-\frac{\left(z_{\gamma_{1}}+z_{\alpha_{2}}\right) \sqrt{2}}{\sqrt{N} T} \text { eventually }\right\}\right.\right) \\
&\left.\quad \sqrt{2}-\rho_{T}\right) \\
& \leq \operatorname{Pr}\left(\mathbb{T}_{1, T}^{*}>z_{\alpha_{2}}-\epsilon_{T}\left|\left\{q(T) \sim T_{\gamma_{1}}+\epsilon_{T}\right)\right| q(T) \sim T^{\frac{1}{2 \kappa}+1} \cap \rho_{T}<1-\frac{\left(z_{\gamma_{1}}+z_{\alpha_{2}}\right) \sqrt{2}}{\sqrt{N} T} \text { eventually }\right) \\
&+\operatorname{Pr}\left(\left|\xi_{T}\right| \geq \epsilon_{T} \left\lvert\,\left\{q(T) \sim T_{T}<1-\frac{\left(z_{\gamma_{1}}+z_{\alpha_{2}}\right) \sqrt{2}}{\sqrt{N} T} \text { eventually }\right\}\right.\right) \\
& \rightarrow 1-\Phi\left(z_{\alpha_{2}}\right)=\alpha_{2},
\end{aligned}
$$

where the second inequality above results from the fact that in this case $\rho_{T}<1-\sqrt{2}\left(z_{\gamma_{1}}+z_{\alpha_{2}}\right) N^{-1 / 2} T^{-1}$ $\Longleftrightarrow \sqrt{N} T\left(1-\rho_{T}\right) / \sqrt{2}-z_{\gamma_{1}}>z_{\alpha_{2}}$. Moreover, since $\sqrt{N T} \ll \sqrt{N} T \sim q(T)$ in this case, we again have $\rho_{T} \in \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2}$ eventually. Hence, applying part (b) of Theorem 3.1, we obtain

$$
\begin{aligned}
& \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{4}^{\mathrm{P}}\right) \\
= & \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}}, \mathbb{T}_{1, T} \leq-z_{\gamma_{1}}, \mathbb{T}_{2, T} \leq-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{4}^{\mathrm{P}}\right) \\
& +\operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{1}, \alpha_{2}, T}^{\mathrm{UR} 1}, \mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{4}^{\mathrm{P}}\right) \\
& +\operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2}, \mathbb{T}_{1, T} \leq-z_{\gamma_{1}}, \mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{4}^{\mathrm{P}}\right) \\
\leq & \lim _{\sup } \operatorname{Pr}\left(\rho \notin C_{\alpha_{1}}^{\mathbb{M} \mathbb{I}} \mid \rho=\rho_{T} \in \mathcal{G}_{4}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{4}^{\mathrm{P}}\right) \\
& +\lim _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2} \mid \rho=\rho_{T} \in \mathcal{G}_{4}^{\mathrm{P}}\right) \\
\leq & \alpha_{1}+\alpha_{2}+0=\alpha .
\end{aligned}
$$

Consider part (e), where we take
$\rho_{T} \in \mathcal{G}_{5}^{\mathrm{P}}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}:(\sqrt{N T} \ll q(T)) \cap\left(T \ll q(T) \ll T^{\frac{1}{2 \hbar}+1} \sim \sqrt{N} T\right)\right\}$. In this case, note that

$$
\begin{aligned}
\theta_{T}^{*} & =\frac{M_{y y}^{1 / 2} \sqrt{N} T\left(1-\rho_{T}\right)}{\widehat{\sigma}}=\frac{1}{\sigma} \frac{\sigma}{\sqrt{2}} \sqrt{N} T\left[1-\exp \left\{-\frac{1}{q(T)}\right\}\right]\left[1+o_{p}(1)\right] \\
& =\frac{1}{\sqrt{2}} \sqrt{N} T\left[1-1+\frac{1}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right]\left[1+o_{p}(1)\right] \\
& =\frac{1}{\sqrt{2}} \frac{\sqrt{N} T}{q(T)}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left[1+o_{p}(1)\right] \rightarrow \infty, \text { wpa.1 }
\end{aligned}
$$

so that $\frac{q(T)}{\sqrt{N} T}\left(\mathbb{T}_{1, T}^{*}-\theta_{T}^{*}+z_{\gamma_{1}}\right) \xrightarrow{p}-\frac{1}{\sqrt{2}}<0$. Thus,

$$
\begin{aligned}
0 & \leq \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{5}^{\mathrm{P}}\right) \\
& =\operatorname{Pr}\left(\left.\frac{q(T)}{\sqrt{N} T}\left(\mathbb{T}_{1, T}^{*}-\theta_{T}^{*}+z_{\gamma_{1}}\right)+\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{2}} \right\rvert\, \rho=\rho_{T} \in \mathcal{G}_{5}^{\mathrm{P}}\right) \\
& \leq \operatorname{Pr}\left(\left.\left|\frac{q(T)}{\sqrt{N} T}\left(\mathbb{T}_{1, T}^{*}-\theta_{T}^{*}+z_{\gamma_{1}}\right)+\frac{1}{\sqrt{2}}\right|>\frac{1}{\sqrt{2}} \right\rvert\, \rho=\rho_{T} \in \mathcal{G}_{5}^{\mathrm{P}}\right) \rightarrow 0 .
\end{aligned}
$$

Moreover, since $\sqrt{N T} \ll q(T)$, we have $\rho_{T} \in \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2}$ eventually, as shown previously. Hence, applying part (b) of Theorem 3.1, we deduce that

$$
\begin{aligned}
& \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{5}^{\mathrm{P}}\right) \\
\leq & \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin C_{\alpha_{1}}^{\mathbb{M} 1} \mid \rho=\rho_{T} \in \mathcal{G}_{5}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{5}^{\mathrm{P}}\right) \\
& +\lim _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2} \mid \rho=\rho_{T} \in \mathcal{G}_{5}^{\mathrm{P}}\right) \\
\leq & \alpha_{1}+0+0<\alpha .
\end{aligned}
$$

Consider part (f), where we take
$\rho_{T} \in \mathcal{G}_{6}^{\mathrm{P}}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: T \ll q(T) \sim T^{\frac{1}{2}\left(1+\frac{1}{\kappa}\right)} \sim \sqrt{N T} \cap \rho_{T} \geq 1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}}\right.$ eventually $\}$.
Following the same argument as part (e) above, we have $\theta_{T}^{*}=\frac{1}{\sqrt{2}} \frac{\sqrt{N} T}{q(T)}\left[1+O\left(q(T)^{-1}\right)\right]\left[1+o_{p}(1)\right] \rightarrow$ ∞ w.p.a.1, so that $\frac{q(T)}{\sqrt{N} T}\left(\mathbb{T}_{1, T}^{*}-\theta_{T}^{*}+z_{\gamma_{1}}\right) \xrightarrow{p}-1 / \sqrt{2}<0$. It follows that

$$
\operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{6}^{\mathrm{P}}\right) \leq \operatorname{Pr}\left(\left.\left|\frac{q(T)}{\sqrt{N} T}\left(\mathbb{T}_{1, T}^{*}-\theta_{T}^{*}+z_{\gamma_{1}}\right)+\frac{1}{2}\right|>\frac{1}{2} \right\rvert\, \rho=\rho_{T} \in \mathcal{G}_{6}^{\mathrm{P}}\right) \rightarrow 0
$$

Moreover, in this case, $\rho_{T} \in \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2}$ eventually by assumption. Using these results and part (b) of Theorem 3.1, we get

$$
\begin{aligned}
& \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{6}^{\mathrm{P}}\right) \\
\leq & \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{6}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{6}^{\mathrm{P}}\right) \\
& +\limsup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2} \mid \rho=\rho_{T} \in \mathcal{G}_{6}^{\mathrm{P}}\right) \\
= & \alpha_{1}+0+0<\alpha .
\end{aligned}
$$

Consider part (g), where we take

$$
\rho_{T} \in \mathcal{G}_{7}^{\mathrm{P}}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: T \ll q(T) \sim T^{\frac{1}{2}\left(1+\frac{1}{\kappa}\right)} \sim \sqrt{N T} \cap \rho_{T}<1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}} \text { eventually }\right\} .
$$ Write $\mathbb{T}_{2, T}=\widehat{\omega}_{\text {IVL }}\left(\widehat{\rho}_{\text {IVL }}-1\right)=\widehat{\omega}_{\text {IVL }}\left(\widehat{\rho}_{\mathrm{IVL}}-\rho_{T}\right)-\widehat{\omega}_{\mathrm{IVL}}\left(1-\rho_{T}\right)=\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}$. In this case, by part (b) of Lemma SD-9,

$$
\begin{aligned}
\mathbb{T}_{2, T}^{*} & =\widehat{\omega}_{\mathrm{IVL}}\left(\widehat{\rho}_{\mathrm{IVL}}-\rho_{T}\right) \\
& =\left(\frac{1}{\widehat{\sigma}^{2}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}\right)\left(\sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}\right)^{-1} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right] \\
& =\frac{1}{\widehat{\sigma}^{2}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right] \Rightarrow N(0,1) .
\end{aligned}
$$

In addition, by part (b) of Lemma SD-8, Lemma SD-12, and the Cramér convergence theorem, we have $\vartheta_{T}^{*}=\left(\hat{\sigma}^{-2} N^{-1} T^{-1} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}\right) \sqrt{N T}\left(1-\rho_{T}\right)=\sqrt{N T}\left(1-\rho_{T}\right)+o_{p}(1)$, so that $\mathbb{T}_{2, T}=$ $\mathbb{T}_{2, T}^{*}-\sqrt{N T}\left(1-\rho_{T}\right)+\zeta_{T}$, where $\zeta_{T}=o_{p}(1)$. Now, let ϵ_{T} be a sequence of positive numbers such that, as $T \rightarrow \infty, \epsilon_{T} \rightarrow 0$ but $\zeta_{T} / \epsilon_{T}=o_{p}$ (1). It follows by argument similar to that given in part (d) above
that

$$
\begin{aligned}
& \operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \left\lvert\,\{T \ll q(T) \sim \sqrt{N T}\} \cap\left\{\rho_{T}<1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}} \text { eventually }\right\}\right.\right) \\
\leq & \operatorname{Pr}\left(\mathbb{T}_{2, T}^{*}>\sqrt{N T}\left(1-\rho_{T}\right)-\left(z_{\gamma_{2}}+\epsilon_{T}\right) \left\lvert\, T \ll q(T) \sim \sqrt{N T} \cap \rho_{T}<1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}}\right. \text { eventually }\right) \\
& +\operatorname{Pr}\left(\left|\zeta_{T}\right| \geq \epsilon_{T} \left\lvert\,\{T \ll q(T) \sim \sqrt{N T}\} \cap\left\{\rho_{T}<1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}} \text { eventually }\right\}\right.\right) \\
\leq & \operatorname{Pr}\left(\mathbb{T}_{2, T}^{*}>z_{\alpha_{2}}-\epsilon_{T} \left\lvert\,\{T \ll q(T) \sim \sqrt{N T}\} \cap\left\{\rho_{T}<1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}} \text { eventually }\right\}\right.\right) \\
& +\operatorname{Pr}\left(\left|\zeta_{T}\right| \geq \epsilon_{T} \left\lvert\,\{T \ll q(T) \sim \sqrt{N T}\} \cap\left\{\rho_{T}<1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}} \text { eventually }\right\}\right.\right) \\
\rightarrow & 1-\Phi\left(z_{\alpha_{2}}\right)=\alpha_{2} .
\end{aligned}
$$

where the last inequality is due to the fact that $\rho_{T}<1-2 N^{-1 / 2} T^{-1 / 2}\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right) \Longleftrightarrow \sqrt{N T}\left(1-\rho_{T}\right) / 2-$ $z_{\gamma_{2}}>z_{\alpha_{2}}$, implying, in turn, that $\sqrt{N T}\left(1-\rho_{T}\right)-z_{\gamma_{2}}>z_{\alpha_{2}}$. Moreover, similar to the proof of part (e) above, we have in this case $\lim _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{7}^{\mathrm{P}}\right)=0$. Hence, using these results and applying part (b) of Theorem 3.1, we obtain

$$
\begin{aligned}
& \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{7}^{\mathrm{P}}\right) \\
\leq & \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{7}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{7}^{\mathrm{P}}\right) \\
& +\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{7}^{\mathrm{P}}\right) \\
\leq & \alpha_{1}+0+\alpha_{2}=\alpha
\end{aligned}
$$

Consider part (h), where we take $\rho_{T} \in \mathcal{G}_{8}^{\mathrm{P}}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: \sqrt{N T} \ll q(T) \sim T\right\}$. Note that, in this case,

$$
\begin{aligned}
\theta_{T}^{*} & =\frac{1}{\sigma} \frac{\sigma}{2} \frac{q(T)}{T}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]^{1 / 2} \sqrt{N} T\left[1-\exp \left\{-\frac{1}{q(T)}\right\}\right]\left[1+o_{p}(1)\right] \\
& =\frac{\sqrt{N}}{2}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]^{1 / 2}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left[1+o_{p}(1)\right] \rightarrow \infty, \text { wpa. } 1
\end{aligned}
$$

so that $N^{-1 / 2}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]^{-1 / 2}\left(\mathbb{T}_{1, T}^{*}-\theta_{T}^{*}+z_{\gamma_{1}}\right) \xrightarrow{p}-1 / 2<0$. Thus,

$$
\begin{aligned}
& \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{8}^{\mathrm{P}}\right) \\
\leq & \operatorname{Pr}\left(\left.\left|\frac{1}{\sqrt{N}}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]^{-1 / 2}\left(\mathbb{T}_{1, T}^{*}-\theta_{T}^{*}+z_{\gamma_{1}}\right)+\frac{1}{2}\right|>\frac{1}{2} \right\rvert\, \rho=\rho_{T} \in \mathcal{G}_{8}^{\mathrm{P}}\right) \rightarrow 0
\end{aligned}
$$

Moreover, note that $\sqrt{N T} \ll q(T)$, so that $\rho_{T} \in \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2}$ eventually in this case, from which we further deduce that $\lim _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2} \mid \rho=\rho_{T} \in \mathcal{G}_{8}^{\mathrm{P}}\right)=0$. Finally, applying part (c) of Theorem 3.1, we
obtain

$$
\begin{aligned}
& \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{8}^{\mathrm{P}}\right) \\
\leq & \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{8}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{8}^{\mathrm{P}}\right) \\
& +\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2} \mid \rho=\rho_{T} \in \mathcal{G}_{8}^{\mathrm{P}}\right) \\
= & \alpha_{1}+0+0<\alpha
\end{aligned}
$$

Consider part (i), where we take $\rho_{T} \in \mathcal{G}_{9}^{\mathrm{P}}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: \sqrt{N T} \sim T^{\frac{1}{2}\left(1+\frac{1}{\kappa}\right)} \ll q(T) \ll T\right\}$. Note that, for this case, $\theta_{T}^{*}=\bar{M}_{y y}^{1 / 2} \sqrt{N T q(T)}\left(1-\rho_{T}\right) / \widehat{\sigma}=\sqrt{\frac{N T}{2 q(T)}}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left[1+o_{p}(1)\right] \rightarrow \infty$ wpa.1, where $\bar{M}_{y y}=N^{-1} T^{-1} q(T)^{-1} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-y_{-1, N T}\right)^{2}$. It follows that $\sqrt{\frac{q(T)}{N T}}\left(\mathbb{T}_{1, T}^{*}-\theta_{T}^{*}+z_{\gamma_{1}}\right) \xrightarrow{p}-1 / \sqrt{2}<0$. Thus,

$$
\operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{9}^{\mathrm{P}}\right) \leq \operatorname{Pr}\left(\left.\left|\sqrt{\frac{q(T)}{N T}}\left(\mathbb{T}_{1, T}^{*}-\theta_{T}^{*}+z_{\gamma_{1}}\right)+\frac{1}{\sqrt{2}}\right|>\frac{1}{\sqrt{2}} \right\rvert\, \rho=\rho_{T} \in \mathcal{G}_{9}^{\mathrm{P}}\right) \rightarrow 0
$$

Moreover, similar to previous parts, $\rho_{T} \in \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2}$ eventually since $\sqrt{N T} \ll q(T)$, so that $\lim _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2} \mid \rho=\rho_{T} \in \mathcal{G}_{9}^{\mathrm{P}}\right)=0$. Hence, applying part (d) of Theorem 3.1, we obtain

$$
\begin{aligned}
& \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{9}^{\mathrm{P}}\right) \\
\leq & \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin C_{\alpha_{1}}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{9}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{9}^{\mathrm{P}}\right) \\
& +\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2} \mid \rho=\rho_{T} \in \mathcal{G}_{9}^{\mathrm{P}}\right) \\
\leq & \alpha_{1}+0+0<\alpha
\end{aligned}
$$

Consider part (j), where we take

$$
\rho_{T} \in \mathcal{G}_{10}^{\mathrm{P}}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \sim T^{\frac{1}{2}\left(1+\frac{1}{\kappa}\right)} \sim \sqrt{N T} \sim T \cap \rho_{T} \geq 1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}} \text { eventually }\right\}
$$

Here, following the argument given in part (h) above, we have that $\operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{10}^{\mathrm{P}}\right) \rightarrow 0$. Moreover, note that $\rho_{T} \in \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2}$ eventually by assumption in this case, so that
$\limsup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2} \mid \rho=\rho_{T} \in \mathcal{G}_{10}^{\mathrm{P}}\right)=0$. It follows, by applying part (c) of Theorem 3.1, that

$$
\begin{aligned}
& \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{10}^{\mathrm{P}}\right) \\
\leq & \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{10}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{10}^{\mathrm{P}}\right) \\
& +{\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2} \mid \rho=\rho_{T} \in \mathcal{G}_{10}^{\mathrm{P}}\right)}_{=} \alpha_{1}+0+0<\alpha
\end{aligned}
$$

Consider part (k), where we take

$$
\rho_{T} \in \mathcal{G}_{11}^{\mathrm{P}}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}:(q(T) \sim \sqrt{N T} \sim T) \cap\left(\rho_{T}<1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}} \text { eventually }\right)\right\} \text {. For }
$$

this case, write $\mathbb{T}_{2, T}=\widehat{\omega}_{\text {IVL }}\left(\widehat{\rho}_{\mathrm{IVL}}-1\right)=\widehat{\omega}_{\mathrm{IVL}}\left(\widehat{\rho}_{\mathrm{IVL}}-\rho_{T}\right)-\widehat{\omega}_{\mathrm{IVL}}\left(1-\rho_{T}\right)=\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}$. Applying part (c) of Lemma SD-9, Lemma SD-12, and the Cramér Convergence Theorem; we obtain

$$
\begin{aligned}
\mathbb{T}_{2, T}^{*} & =\widehat{\omega}_{\mathrm{IVL}}\left(\widehat{\rho}_{\mathrm{IVL}}-\rho_{T}\right) \\
& =\left(\frac{1}{\widehat{\sigma}^{2}} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}\right) \sqrt{N T}\left(\widehat{\rho}_{\mathrm{IVL}}-\rho_{T}\right) \\
& =\frac{1}{\widehat{\sigma}^{2}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right] \Rightarrow N(0,1),
\end{aligned}
$$

while, applying part (c) of Lemma SD-8 and Lemma SD-12, we have

$$
\begin{aligned}
\vartheta_{T}^{*} & =\widehat{\omega}_{\mathrm{IVL}}\left(1-\rho_{T}\right) \\
& =\left(\frac{1}{\widehat{\sigma}^{2}} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}\right) \sqrt{N T}\left(1-\rho_{T}\right) \\
& =\left(1-\frac{1}{4} \frac{q(T)}{T}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\right) \sqrt{N T}\left(1-\rho_{T}\right)+o_{p}(1) .
\end{aligned}
$$

These results imply that $\mathbb{T}_{2, T}=\mathbb{T}_{2, T}^{*}-\varphi(T / q(T)) \sqrt{N T}\left(1-\rho_{T}\right)+\zeta_{T}$, where $\zeta_{T}=o_{p}(1)$ and where $\varphi(T / q(T))=1-\frac{1}{4} \frac{q(T)}{T}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]$. Now, let ϵ_{T} be a sequence of positive numbers such that, as $T \rightarrow \infty, \epsilon_{T} \rightarrow 0$ but $\zeta_{T} / \epsilon_{T}=o_{p}$ (1). It follows by arguments similar to part (d) above that

$$
\begin{aligned}
& \operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \left\lvert\,\{q(T) \sim \sqrt{N T} \sim T\} \cap\left\{\rho_{T}<1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}} \text { eventually }\right\}\right.\right) \\
\leq & \operatorname{Pr}\left(\left.\mathbb{T}_{2, T}^{*}-\varphi\left(\frac{T}{q(T)}\right) \sqrt{N T}\left(1-\rho_{T}\right)>-\left(z_{\gamma_{2}}+\epsilon_{T}\right) \right\rvert\,\{q(T) \sim \sqrt{N T} \sim T\} \cap\right. \\
& \left.\left\{\rho_{T}<1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}} \text { eventually }\right\}\right) \\
& +\operatorname{Pr}\left(\left|\zeta_{T}\right| \geq \epsilon_{T} \left\lvert\,\{q(T) \sim \sqrt{N T} \sim T\} \cap\left\{\rho_{T}<1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}} \text { eventually }\right\}\right.\right) \\
\leq & \operatorname{Pr}\left(\mathbb{T}_{2, T}^{*}>\frac{\sqrt{N T}\left(1-\rho_{T}\right)}{2}-\left(z_{\gamma_{2}}+\epsilon_{T}\right) \left\lvert\, q(T) \sim \sqrt{N T} \sim T \cap \rho_{T}<1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}}\right. \text { eventually }\right) \\
& +\operatorname{Pr}\left(\left|\zeta_{T}\right| \geq \epsilon_{T} \left\lvert\,\{q(T) \sim \sqrt{N T} \sim T\} \cap\left\{\rho_{T}<1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}} \text { eventually }\right\}\right.\right) \\
\leq & \operatorname{Pr}\left(\mathbb{T}_{2, T}^{*}>z_{\alpha_{2}}-\epsilon_{T} \left\lvert\,\{q(T) \sim \sqrt{N T} \sim T\} \cap\left\{\rho_{T}<1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}} \text { eventually }\right\}\right.\right) \\
\rightarrow & 1-\Phi\left(z_{\alpha_{2}}\right)=\alpha_{2},
\end{aligned}
$$

where the second inequality above follows from the fact that, by Lemma SE-34, $\varphi\left(\frac{T}{q(T)}\right) \sqrt{N T}\left(1-\rho_{T}\right) \geq$ $\frac{\sqrt{N T}\left(1-\rho_{T}\right)}{2}$ for $0<\frac{T}{q(T)}<\infty$, while the last inequality above is due to the fact that
$\rho_{T}<1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}} \Longleftrightarrow \frac{\sqrt{N T}\left(1-\rho_{T}\right)}{2}-z_{\gamma_{2}}>z_{\alpha_{2}}$. Moreover, similar to the proof of part (h) above, we have $\lim _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{11}^{\mathrm{P}}\right)=0$. Hence, applying part (c) of Theorem 3.1, we have

$$
\begin{aligned}
& \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{11}^{\mathrm{P}}\right) \\
\leq & \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{11}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{11}^{\mathrm{P}}\right) \\
& +\lim _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{11}^{\mathrm{P}}\right) \\
= & \alpha_{1}+0+\alpha_{2}=\alpha .
\end{aligned}
$$

Consider part (l), where we take
$\rho_{T} \in \mathcal{G}_{12}^{\mathrm{P}}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}:(q(T) \sim \sqrt{N T} \ll T) \cap\left(\rho_{T} \geq 1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{3}}\right)}{\sqrt{N T}}\right.\right.$ eventually $\left.)\right\}$. For this case, note that, by arguments similar to those of part (i) above, we have $\operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{12}^{\mathrm{P}}\right) \rightarrow 0 . \quad \rho_{T} \in \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2}$ eventually by assumption in this case, so that $\lim _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2} \mid \rho=\rho_{T} \in \mathcal{G}_{12}^{\mathrm{P}}\right)=0$. Using these results and part (d) of Theorem 3.1, we obtain

$$
\begin{aligned}
& {\lim \sup _{T \rightarrow \infty} \operatorname{Pr}}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{12}^{\mathrm{P}}\right) \\
\leq & \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{12}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{12}^{\mathrm{P}}\right) \\
& +{\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma_{2}, \alpha_{2}, T}^{\mathrm{UR} 2} \mid \rho=\rho_{T} \in \mathcal{G}_{12}^{\mathrm{P}}\right)}_{=} \alpha_{1}+0+0<\alpha .
\end{aligned}
$$

Consider part (m), where we take
$\rho_{T} \in \mathcal{G}_{13}^{\mathrm{P}}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \sim \sqrt{N T} \ll T \cap \rho_{T}<1-\frac{2\left(z_{\gamma_{2}}+z_{\alpha_{2}}\right)}{\sqrt{N T}}\right.$ eventually $\}$. To proceed, again write $\mathbb{T}_{2, T}=\widehat{\omega}_{\text {IVL }}\left(\widehat{\rho}_{\mathrm{IVL}}-\rho_{T}\right)-\widehat{\omega}_{\mathrm{IVL}}\left(1-\rho_{T}\right)=\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}$. Here, note that $T^{\frac{1}{2}\left(\frac{1}{\kappa}-1\right)} \ll T^{\frac{1}{2}\left(\frac{1}{\kappa}+1\right)} \sim$ $\sqrt{N T} \sim q(T)$ for $\kappa \in\left(\frac{1}{2}, \infty\right)$, so that by part (d) of Lemma SD-9, Lemma SD-12, and the Cramér convergence theorem, we obtain $\mathbb{T}_{2, T}^{*} \Rightarrow N(0,1)$; and, by part (d) of Lemma SD-8, Lemma SD-12, and the Slutsky Theorem,

$$
\vartheta_{T}^{*}=\widehat{\omega}_{\mathrm{IVL}}\left(1-\rho_{T}\right)=\left(\frac{1}{\widehat{\sigma}^{2}} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}\right) \sqrt{N T}\left(1-\rho_{T}\right)=\frac{\sqrt{N T}\left(1-\rho_{T}\right)}{2}+o_{p}(1)
$$

so that $\mathbb{T}_{2, T}=\mathbb{T}_{2, T}^{*}-\sqrt{N T}\left(1-\rho_{T}\right) / 2+\zeta_{2, T}$, where $\zeta_{2, T}=o_{p}(1)$. Now, let ϵ_{T} be a sequence of positive numbers such that, as $T \rightarrow \infty, \epsilon_{T} \rightarrow 0$ but $\zeta_{2, T} / \epsilon_{T}=o_{p}(1)$. Similar to the proof of part (k) above, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{13}^{\mathrm{P}}\right) \\
\leq & \operatorname{Pr}\left(\mathbb{T}_{2, T}^{*}>z_{\alpha_{2}}-\epsilon_{T} \mid \rho=\rho_{T} \in \mathcal{G}_{13}^{\mathrm{P}}\right)+\operatorname{Pr}\left(\left|\zeta_{T}\right| \geq \epsilon_{T} \mid \rho=\rho_{T} \in \mathcal{G}_{13}^{\mathrm{P}}\right) \\
\rightarrow & 1-\Phi\left(z_{\alpha_{2}}\right)=\alpha_{2} .
\end{aligned}
$$

Moreover, similar to the proof of part (i) above, we have $\lim _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{13}^{\mathrm{P}}\right)=0$. Hence, applying part (d) of Theorem 3.1, we have

$$
\begin{aligned}
& \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{13}^{\mathrm{P}}\right) \\
\leq & \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{13}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{13}^{\mathrm{P}}\right) \\
& +\lim _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{13}^{\mathrm{P}}\right) \\
= & \alpha_{1}+0+\alpha_{2}=\alpha .
\end{aligned}
$$

Consider part (n), where we take $\rho_{T} \in \mathcal{G}_{14}^{\mathrm{P}}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: T \ll q(T) \ll \sqrt{N T}\right\}$. By arguments similar to part (e) above, we have that $\operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{14}^{\mathrm{P}}\right) \rightarrow 0$. Moreover, write $\mathbb{T}_{2, T}=\widehat{\omega}_{\text {IVL }}\left(\widehat{\rho}_{\text {IVL }}-1\right)=\widehat{\omega}_{\text {IVL }}\left(\widehat{\rho}_{\text {IVL }}-\rho_{T}\right)-\widehat{\omega}_{\text {IVL }}\left(1-\rho_{T}\right)=\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}$. In this case, by part (b) of Lemma SD-9, Lemma SD-12, and the Cramér convergence theorem, we obtain

$$
\begin{aligned}
\mathbb{T}_{2, T}^{*} & =\widehat{\omega}_{\mathrm{IVL}}\left(\widehat{\rho}_{\mathrm{IVL}}-\rho_{T}\right) \\
& =\left(\frac{1}{\widehat{\sigma}^{2}} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}\right) \sqrt{N T}\left(\widehat{\rho}_{\mathrm{IVL}}-\rho_{T}\right) \\
& =\frac{1}{\widehat{\sigma}^{2}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right] \Rightarrow N(0,1)
\end{aligned}
$$

In addition, by part (b) of Lemma SD-8 and Lemma SD-12,

$$
\vartheta_{T}^{*}=\left(\frac{1}{\widehat{\sigma}^{2}} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}\right) \sqrt{N T}\left(1-\rho_{T}\right)=\frac{\sqrt{N T}}{q(T)}\left[1+o_{p}(1)\right] \rightarrow \infty \quad \text { wpa.1. }
$$

It follows that $\frac{q(T)}{\sqrt{N T}}\left(\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}+z_{\gamma_{2}}\right)+1 \xrightarrow{p} 0$, from which we further deduce that

$$
\begin{aligned}
& \operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{14}^{\mathrm{P}}\right) \\
= & \operatorname{Pr}\left(\left.\frac{q(T)}{\sqrt{N T}}\left(\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}+z_{\gamma_{2}}\right)+1>1 \right\rvert\, \rho=\rho_{T} \in \mathcal{G}_{14}^{\mathrm{P}}\right) \\
\leq & \operatorname{Pr}\left(\left.\left|\frac{q(T)}{\sqrt{N T}}\left(\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}+z_{\gamma_{2}}\right)+1\right|>1 \right\rvert\, \rho=\rho_{T} \in \mathcal{G}_{14}^{\mathrm{P}}\right) \rightarrow 0
\end{aligned}
$$

Using these results and part (b) of Theorem 3.1, we have

$$
\begin{aligned}
& \lim _{\sup _{T \rightarrow \infty}} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{14}^{\mathrm{P}}\right) \\
\leq & \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{14}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{14}^{\mathrm{P}}\right) \\
& +\lim _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{14}^{\mathrm{P}}\right) \\
\leq & \alpha_{1}+0+0=\alpha_{1} .
\end{aligned}
$$

Consider part (o), where we take $\rho_{T} \in \mathcal{G}_{15}^{\mathrm{P}}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: N^{1 / 3} T^{1 / 3} \ll q(T) \sim T \ll \sqrt{N T}\right\}$. By arguments similar to part (h) above, we have $\operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{15}^{\mathrm{P}}\right) \rightarrow 0$. Moreover, write
$\mathbb{T}_{2, T}=\widehat{\omega}_{\text {IVL }}\left(\widehat{\rho}_{\text {IVL }}-1\right)=\widehat{\omega}_{\text {IVL }}\left(\widehat{\rho}_{\mathrm{IVL}}-\rho_{T}\right)-\widehat{\omega}_{\mathrm{IVL}}\left(1-\rho_{T}\right)=\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}$. In this case, $\mathbb{T}_{2, T}^{*} \Rightarrow N(0,1)$ by part (c) of Lemma SD-9, Lemma SD-12, and the Cramér convergence theorem. Moreover, by part (c) of Lemma SD-8 and Lemma SD-12,

$$
\begin{aligned}
\vartheta_{T}^{*} & =\left(\frac{1}{\hat{\sigma}^{2}} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}\right) \sqrt{N T}\left(1-\rho_{T}\right)=\varphi\left(\frac{T}{q(T)}\right) \sqrt{N T}\left(1-\rho_{T}\right)\left[1+o_{p}(1)\right] \\
& =\varphi\left(\frac{T}{q(T)}\right) \frac{\sqrt{N T}}{q(T)}\left[1+o_{p}(1)\right] \rightarrow \infty \text { wpa } 1,
\end{aligned}
$$

where $\varphi(T / q(T))=1-\frac{1}{4} \frac{q(T)}{T}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right] \geq \frac{1}{2}$ for all $T / q(T)>0$. It follows that $\frac{q(T)}{\sqrt{N T}}\left(\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}+z_{\gamma_{2}}\right)+\varphi(T / q(T)) \xrightarrow{p} 0$, from which we further deduce that

$$
\begin{aligned}
& \operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{15}^{\mathrm{P}}\right) \\
= & \operatorname{Pr}\left(\left.\frac{q(T)}{\sqrt{N T}}\left(\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}+z_{\gamma_{2}}\right)+\varphi\left(\frac{T}{q(T)}\right)>\varphi\left(\frac{T}{q(T)}\right) \right\rvert\, \rho=\rho_{T} \in \mathcal{G}_{15}^{\mathrm{P}}\right) \\
\leq & \operatorname{Pr}\left(\left.\left|\frac{q(T)}{\sqrt{N T}}\left(\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}+z_{\gamma_{2}}\right)+\varphi\left(\frac{T}{q(T)}\right)\right|>\frac{1}{2} \right\rvert\, \rho=\rho_{T} \in \mathcal{G}_{15}^{\mathrm{P}}\right) \rightarrow 0
\end{aligned}
$$

Using these results and part (c) of Theorem 3.1, we have

$$
\begin{aligned}
& \lim _{\sup _{T \rightarrow \infty} \operatorname{Pr}} \operatorname{P}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{15}^{\mathrm{P}}\right) \\
\leq & \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{15}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{15}^{\mathrm{P}}\right) \\
& +{\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{15}^{\mathrm{P}}\right)}_{\leq} \quad \alpha_{1}+0+0=\alpha_{1}
\end{aligned}
$$

Consider part (p) where we take
$\rho_{T} \in \mathcal{G}_{16}^{\mathrm{P}}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}:\left(N^{1 / 3} T^{1 / 3} \sim T^{\frac{1+\kappa}{3 \kappa}} \ll q(T) \ll \sqrt{N T}\right) \cap(q(T) \ll T)\right\}$. Here, again, by arguments similar to part (i), we have $\operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{16}^{\mathrm{P}}\right) \rightarrow 0$. Moreover, note that, in this case, $T^{\frac{1}{2}\left(\frac{1}{\kappa}-1\right)} \ll T^{\frac{1+\kappa}{3 \kappa}} \ll q(T)$ for $\kappa \in\left(\frac{1}{2}, \infty\right)$, so that by part (d) of Lemma SD-9, Lemma SD-12, and the Cramér convergence theorem, we obtain $\mathbb{T}_{2, T}^{*} \Rightarrow N(0,1)$. In addition, by part (d) of Lemma SD-8 and Lemma SD-12,

$$
\begin{aligned}
\vartheta_{T}^{*} & =\left(\frac{1}{\widehat{\sigma}^{2}} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}\right) \sqrt{N T}\left(1-\rho_{T}\right) \\
& =\frac{1}{\sigma^{2}} \frac{\sigma^{2}}{2} \frac{\sqrt{N T}}{q(T)}\left[1+o_{p}(1)\right]=\frac{1}{2} \frac{\sqrt{N T}}{q(T)}\left[1+o_{p}(1)\right] \rightarrow \infty \text { wpa } 1
\end{aligned}
$$

It follows that $\frac{q(T)}{\sqrt{N T}}\left(\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}+z_{\gamma_{2}}\right) \xrightarrow{p}-1 / 2<0$, from which we further deduce that

$$
\operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{16}^{\mathrm{P}}\right) \leq \operatorname{Pr}\left(\left.\left|\frac{q(T)}{\sqrt{N T}}\left(\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}+z_{\gamma_{2}}\right)+\frac{1}{2}\right|>\frac{1}{2} \right\rvert\, \rho=\rho_{T} \in \mathcal{G}_{16}^{\mathrm{P}}\right) \rightarrow 0
$$

Hence, using these results and part (d) of Theorem 3.1, we have

$$
\begin{aligned}
& \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{16}^{\mathrm{P}}\right) \\
& \leq \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{16}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{16}^{\mathrm{P}}\right) \\
&+{\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{16}^{\mathrm{P}}\right)}= \\
& \alpha_{1}+0+0=\alpha_{1}<\alpha
\end{aligned}
$$

Consider part (q) where we take $\rho_{T} \in \mathcal{G}_{17}^{\mathrm{P}}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \sim T^{\frac{1+\kappa}{3 \kappa}} \sim N^{1 / 3} T^{1 / 3}\right\}$. In this case, write $\mathbb{T}_{1, T}=\widehat{\mathbb{T}}_{1, T}-\widehat{\theta}_{T}$, where $\widehat{\mathbb{T}}_{1, T}=\widehat{\sigma}^{-1} \bar{M}_{y y}^{1 / 2} \sqrt{N T q(T)}\left(\hat{\rho}_{\text {pols }}-\rho_{T}-\frac{2 \sigma_{a}^{2}}{q(T)^{2} \sigma^{2}}\right)$, $\widehat{\theta}_{T}=$ $\widehat{\sigma}^{-1} \bar{M}_{y y}^{1 / 2} \sqrt{N T q(T)}\left(1-\rho_{T}-\frac{2 \sigma_{a}^{2}}{q(T)^{2} \sigma^{2}}\right)$, and $\bar{M}_{y y}=N^{-1} T^{-1} q(T)^{-1} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2}$. Applying part (e) of Theorem SA-2 along with part (d) of Lemma SD-3 and Lemma SD-12, we have $\widehat{\mathbb{T}}_{1, T} \Rightarrow N(0,1)$ and $\widehat{\theta}_{T}=\sqrt{\frac{N T}{2 q(T)}}\left[1+o_{p}(1)\right]$, so that $\sqrt{\frac{q(T)}{N T}}\left(\widehat{\mathbb{T}}_{1, T}-\widehat{\theta}_{T}+z_{\gamma_{1}}\right) \xrightarrow{p}-1 / \sqrt{2}<0$. Thus,

$$
\operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{17}^{\mathrm{P}}\right) \leq \operatorname{Pr}\left(\left.\left|\sqrt{\frac{q(T)}{N T}}\left(\widehat{\mathbb{T}}_{1, T}-\widehat{\theta}_{T}+z_{\gamma_{1}}\right)+\frac{1}{\sqrt{2}}\right|>\frac{1}{\sqrt{2}} \right\rvert\, \rho=\rho_{T} \in \mathcal{G}_{17}^{\mathrm{P}}\right) \rightarrow 0
$$

Moreover, note that, in this case, $T^{\frac{1}{2}\left(\frac{1}{\kappa}-1\right)} \ll T^{\frac{1+\kappa}{3 \kappa}} \sim q(T)$ for $\kappa \in\left(\frac{1}{2}, \infty\right)$, so by arguments similar to part (o), we have $\operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{17}^{\mathrm{P}}\right) \rightarrow 0$. Hence, using these results and part (d) of Theorem 3.1, we have

$$
\begin{aligned}
& \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{17}^{\mathrm{P}}\right) \\
\leq & \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{17}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{17}^{\mathrm{P}}\right) \\
& +\lim _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{17}^{\mathrm{P}}\right) \\
= & \alpha_{1}+0+0=\alpha_{1}<\alpha .
\end{aligned}
$$

Consider part (r) where we take
$\rho_{T} \in \mathcal{G}_{18}^{\mathrm{P}}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \rightarrow \infty\right.$ such that $\left.q(T) / T^{\frac{1+\kappa}{3 \kappa}} \rightarrow 0\right\}$. In this case, again represent the unit root statistic $\mathbb{T}_{1, T}$ as $\mathbb{T}_{1, T}=\widehat{\mathbb{T}}_{1, T}-\widehat{\theta}_{T}$, where we take $\widehat{\mathbb{T}}_{1, T}$
$=\bar{M}_{y y}^{1 / 2} \sqrt{N T q(T)}\left(\widehat{\rho}_{\text {pols }}-\rho_{T}-\frac{2 \sigma_{a}^{2}}{q(T)^{2} \sigma^{2}}\right) / \widehat{\sigma}=\widehat{\sigma}^{-1} \bar{M}_{y y}^{1 / 2} \sqrt{\frac{N T}{q(T)^{3}}} q(T)^{2}\left(\widehat{\rho}_{\text {pols }}-\rho_{T}-\frac{2 \sigma_{a}^{2}}{q(T)^{2} \sigma^{2}}\right)$ and where $\widehat{\theta}$ and $\bar{M}_{y y}$ are as defined previously. Now, applying part (f) of Theorem SA-2 along with part (d) of Lemma SD-3 and Lemma SD-12, we have $\widehat{\mathbb{T}}_{1, T}=o_{p}\left(\frac{\sqrt{N T}}{q(T)^{3 / 2}}\right)=o_{p}(1)$ and $\widehat{\theta}_{T}=\sqrt{\frac{N T}{2 q(T)}}\left[1+o_{p}(1)\right]$, so that $\sqrt{\frac{q(T)}{N T}}\left(\widehat{\mathbb{T}}_{1, T}-\widehat{\theta}_{T}+z_{\gamma_{1}}\right) \xrightarrow{p}-1 / \sqrt{2}<0$. Thus,

$$
\operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{18}^{\mathrm{P}}\right) \leq \operatorname{Pr}\left(\left.\left|\sqrt{\frac{q(T)}{N T}}\left(\widehat{\mathbb{T}}_{1, T}-\widehat{\theta}_{T}+z_{\gamma_{1}}\right)+\frac{1}{\sqrt{2}}\right|>\frac{1}{\sqrt{2}} \right\rvert\, \rho=\rho_{T} \in \mathcal{G}_{18}^{\mathrm{P}}\right) \rightarrow 0
$$

Now, write $\mathbb{T}_{2, T}=\widehat{\omega}_{\text {IVL }}\left(\widehat{\rho}_{\text {IVL }}-1\right)=\widehat{\omega}_{\text {IVL }}\left(\widehat{\rho}_{\text {IVL }}-\rho_{T}\right)-\widehat{\omega}_{\text {IVL }}\left(1-\rho_{T}\right)=\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}$. Consider first the case where $T^{\frac{1}{2}\left(\frac{1}{\kappa}-1\right)} \ll q(T) \ll T^{\frac{1+\kappa}{3 \kappa}}$. In this case, part (d) of Lemma SD-9, Lemma SD-12, and
the Cramér convergence theorem imply that

$$
\frac{q(T)}{\sqrt{N T}} \mathbb{T}_{2, T}^{*}=\frac{q(T)}{\sqrt{N T}} \frac{1}{\widehat{\sigma}^{2}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right]=O_{p}\left(\frac{q(T)}{\sqrt{N T}}\right)
$$

Next, consider the case where $q(T) \rightarrow \infty$ such that $q(T) / T^{\frac{1}{2}\left(\frac{1}{\kappa}-1\right)}=O$ (1). In this case, we apply part (e) of Lemma SD-9 and Lemma SD-12 to obtain

$$
\begin{aligned}
\frac{q(T)}{\sqrt{N T}} \mathbb{T}_{2, T}^{*} & =\frac{q(T)}{\sqrt{N T}} \frac{1}{\widehat{\sigma}^{2}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right] \\
& =O\left(\frac{q(T)}{\sqrt{N T}}\right) O_{p}\left(\max \left\{1, \frac{T^{\frac{1}{2}\left(\frac{1}{\kappa}-1\right)}}{q(T)}\right\}\right)=O_{p}\left(\max \left\{\frac{q(T)}{\sqrt{N T}}, \frac{1}{T}\right\}\right)
\end{aligned}
$$

It follows that in either of the two cases above, we have that $(q(T) / \sqrt{N T}) \mathbb{T}_{2, T}^{*}=o_{p}(1)$. Moreover, note that applying part (d) of Lemma SD-8 and Lemma SD-12, we obtain

$$
\begin{aligned}
\frac{q(T)}{\sqrt{N T}} \vartheta_{T}^{*} & =\frac{q(T)}{\sqrt{N T}}\left(\frac{1}{\widehat{\sigma}^{2}} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}\right) \sqrt{N T}\left(1-\rho_{T}\right) \\
& =\frac{1}{\sigma^{2}} \frac{\sigma^{2}}{2}\left[1+o_{p}(1)\right]=\frac{1}{2}\left[1+o_{p}(1)\right]
\end{aligned}
$$

Together, these results imply that $(q(T) / \sqrt{N T})\left(\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}+z_{\gamma_{2}}\right) \xrightarrow{p}-1 / 2$, from which we further deduce that

$$
\operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{18}^{\mathrm{P}}\right) \leq \operatorname{Pr}\left(\left.\left|\frac{q(T)}{\sqrt{N T}}\left(\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}+z_{\gamma_{2}}\right)+\frac{1}{2}\right|>\frac{1}{2} \right\rvert\, \rho=\rho_{T} \in \mathcal{G}_{18}^{\mathrm{P}}\right) \rightarrow 0
$$

Hence, using these results and part (d) of Theorem 3.1, we have

$$
\begin{aligned}
& \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{18}^{\mathrm{P}}\right) \\
\leq & \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{18}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{18}^{\mathrm{P}}\right) \\
& +\lim _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{18}^{\mathrm{P}}\right) \\
= & \alpha_{1}+0+0=\alpha_{1}<\alpha .
\end{aligned}
$$

Finally, we consider part (s), where

$$
\rho_{T} \in \mathcal{G}_{19}^{\mathrm{P}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0 \text { and } q(T)=O(1) \text { as } T \rightarrow \infty\right\} .
$$

In this case, we decompose \mathbb{T} as $\mathbb{T}=\widetilde{\mathbb{T}}-\widetilde{\theta}$, where $\widetilde{M}_{y y}=\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2}$, $\widetilde{\mathbb{T}}_{1, T}=$ $\widehat{\sigma}^{-1} \widetilde{M}_{y y}^{1 / 2} \sqrt{\frac{N T}{1-\rho_{T}^{2}}}\left(\hat{\rho}_{\mathrm{pols}}-\rho_{T}\right)$, and $\tilde{\theta}_{T}=\widehat{\sigma}^{-1} \widetilde{M}_{y y}^{1 / 2} \sqrt{\frac{N T}{1-\rho_{T}^{2}}}\left(1-\rho_{T}\right)$. Using part (g) of Theorem SA-2
along with part (e) of Lemma SD-3 and Lemma SD-12, we have in this case

$$
\begin{aligned}
\widetilde{M}_{y y} & =\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}+o_{p}(1), \\
\frac{\widetilde{\mathbb{T}}_{1, T}}{\sqrt{N T}} & =\widehat{\sigma}^{-1} \widetilde{M}_{y y}^{1 / 2} \frac{\left(\hat{\rho}_{\mathrm{pols}}-\rho_{T}\right)}{\sqrt{1-\rho_{T}^{2}}}=\sigma^{-1} \sqrt{\frac{\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}}{1-\rho_{T}^{2}}} \frac{\left(1-\rho_{T}\right) \sigma_{a}^{2}}{\sigma_{a}^{2}+\sigma^{2} /\left(1-\rho_{T}^{2}\right)}\left[1+o_{p}(1)\right] \\
& =\frac{\left(1-\rho_{T}\right) \sigma_{a}^{2}}{\sigma \sqrt{\sigma_{a}^{2}+\sigma^{2} /\left(1-\rho_{T}^{2}\right)}}\left[1+o_{p}(1)\right] \\
\frac{\widetilde{\theta}_{T}}{\sqrt{N T}} & =\widehat{\sigma}^{-1} \widetilde{M}_{y y}^{1 / 2} \frac{\left(1-\rho_{T}\right)}{\sqrt{1-\rho_{T}^{2}}}=\sigma^{-1} \sqrt{\sigma_{a}^{2}+\frac{\sigma^{2}}{1-\rho_{T}^{2}}}\left(1-\rho_{T}\right)\left[1+o_{p}(1)\right] .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\frac{\mathbb{T}_{1, T}}{\sqrt{N T}} & =\frac{\widetilde{\mathbb{T}}_{1, T}}{\sqrt{N T}}-\frac{\widetilde{\theta}_{T}}{\sqrt{N T}} \\
& =\frac{1}{\sigma}\left[\sigma_{a}^{2}+\frac{\sigma^{2}}{1-\rho_{T}^{2}}\right]^{-1 / 2}\left[\left(1-\rho_{T}\right) \sigma_{a}^{2}-\left(\sigma_{a}^{2}+\frac{\sigma^{2}}{1-\rho_{T}^{2}}\right)\left(1-\rho_{T}\right)\right]\left[1+o_{p}(1)\right] \\
& =-\frac{1}{\sigma}\left[\sigma_{a}^{2}+\frac{\sigma^{2}}{1-\rho_{T}^{2}}\right]^{-1 / 2} \frac{\sigma^{2}\left(1-\rho_{T}\right)}{1-\rho_{T}^{2}}\left[1+o_{p}(1)\right] \\
& =-\frac{\sigma \sqrt{1-\rho_{T}^{2}}}{\left(1+\rho_{T}\right) \sqrt{\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}}}\left[1+o_{p}(1)\right] \\
& =-\psi\left(\sigma^{2}, \sigma_{a}^{2}, \rho_{T}\right)\left[1+o_{p}(1)\right]<0 \text { wpa } 1 .
\end{aligned}
$$

where $\psi\left(\sigma^{2}, \sigma_{a}^{2}, \rho_{T}\right)=\sigma \sqrt{1-\rho_{T}^{2}}\left[\left(1+\rho_{T}\right) \sqrt{\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}}\right]^{-1}$, so that $\frac{1}{\sqrt{N T}}\left(\widetilde{\mathbb{T}}_{1, T}-\widetilde{\theta}_{T}+z_{\gamma_{1}}\right)+$ $\psi\left(\sigma^{2}, \sigma_{a}^{2}, \rho_{T}\right) \xrightarrow{p} 0$. Moreover, note that, by assumption, $q(T)=O(1)$, so that for some positive constant C_{q}, there exists some positive integer T^{*} such that for all $T \geq T^{*}, q(T) \leq C_{q}$, from which it follows that $0 \leq \rho_{T}^{2}=\exp \left\{-\frac{2}{q(T)}\right\} \leq \exp \left\{-\frac{2}{C_{q}}\right\}<1$. It follows that

$$
\psi\left(\sigma^{2}, \sigma_{a}^{2}, \rho_{T}\right)=\frac{\sigma \sqrt{1-\rho_{T}^{2}}}{\left(1+\rho_{T}\right) \sqrt{\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}}} \geq \frac{\sigma \sqrt{1-\exp \left\{-\frac{2}{C_{q}}\right\}}}{2 \sqrt{\sigma_{a}^{2}+\sigma^{2}}}=\underline{\psi}\left(\sigma^{2}, \sigma_{a}^{2}, C_{q}\right)>0 .
$$

Thus,

$$
\begin{aligned}
& \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma_{1}} \mid \rho=\rho_{T} \in \mathcal{G}_{19}^{\mathrm{P}}\right) \\
= & \operatorname{Pr}\left(\left.\frac{1}{\sqrt{N T}}\left(\widetilde{\mathbb{T}}_{1, T}-\widetilde{\theta}_{T}+z_{\gamma_{1}}\right)>0 \right\rvert\, \rho=\rho_{T} \in \mathcal{G}_{19}^{\mathrm{P}}\right) \\
\leq & \operatorname{Pr}\left(\left.\left|\frac{1}{\sqrt{N T}}\left(\widetilde{\mathbb{T}}_{1, T}-\widetilde{\theta}_{T}+z_{\gamma_{1}}\right)+\psi\left(\sigma^{2}, \sigma_{a}^{2}, \rho_{T}\right)\right|>\underline{\psi}\left(\sigma^{2}, \sigma_{a}^{2}, C_{q}\right) \right\rvert\, \rho=\rho_{T} \in \mathcal{G}_{19}^{\mathrm{P}}\right) \rightarrow 0 .
\end{aligned}
$$

Next, write $\mathbb{T}_{2, T}=\widehat{\omega}_{\mathrm{IVL}}\left(\widehat{\rho}_{\mathrm{IVL}}-1\right)=\widehat{\omega}_{\mathrm{IVL}}\left(\widehat{\rho}_{\mathrm{IVL}}-\rho_{T}\right)-\widehat{\omega}_{\mathrm{IVL}}\left(1-\rho_{T}\right)=\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}$. Applying part (f) of Lemma SD-9 and Lemma SD-12, we have

$$
\begin{aligned}
\frac{\mathbb{T}_{2, T}^{*}}{\sqrt{N T}} & =\frac{1}{\sqrt{N T}}\left(\frac{1}{\hat{\sigma}^{2}} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}\right) \sqrt{N T}\left(\widehat{\rho}_{\mathrm{IVL}}-\rho_{T}\right) \\
& =\frac{1}{\sqrt{N T} \sigma^{2}}\left(\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right]\right)\left[1+o_{p}(1)\right] \\
& =O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)=o_{p}(1)
\end{aligned}
$$

and, by part (e) of Lemma SD-8 and Lemma SD-12,

$$
\begin{aligned}
\vartheta_{T}^{*} & =\widehat{\omega}_{\text {IVL }}\left(1-\rho_{T}\right)=\left(\frac{1}{\widehat{\sigma}^{2}} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}\right) \sqrt{N T}\left(1-\rho_{T}\right) \\
& =\frac{1}{\sigma^{2}} \frac{\sigma^{2}}{1+\rho_{T}} \sqrt{N T}\left(1-\rho_{T}\right)\left[1+o_{p}(1)\right]=\sqrt{N T} \frac{1-\rho_{T}}{1+\rho_{T}}\left[1+o_{p}(1)\right] \rightarrow \infty \text { wpa } 1
\end{aligned}
$$

It follows that $N^{-1 / 2} T^{-1 / 2}\left(\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}+z_{\gamma_{2}}\right) \xrightarrow{p}-\left(1-\rho_{T}\right) /\left(1+\rho_{T}\right)<0$, from which we further deduce that
$\operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{19}^{\mathrm{P}}\right) \leq \operatorname{Pr}\left(\left.\left|\frac{1}{\sqrt{N T}}\left(\mathbb{T}_{2, T}^{*}-\vartheta_{T}^{*}+z_{\gamma_{2}}\right)+\frac{1-\rho_{T}}{1+\rho_{T}}\right|>\frac{1-\rho_{T}}{1+\rho_{T}} \right\rvert\, \rho=\rho_{T} \in \mathcal{G}_{19}^{\mathrm{P}}\right) \rightarrow 0$.
Using this result and part (e) of Theorem 3.1, we obtain

$$
\begin{aligned}
& \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\gamma, \alpha, T} \mid \rho=\rho_{T} \in \mathcal{G}_{19}^{\mathrm{P}}\right) \\
\leq & \lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\rho \notin \mathbb{C}_{\alpha_{1}, T}^{\mathbb{M}} \mid \rho=\rho_{T} \in \mathcal{G}_{19}^{\mathrm{P}}\right)+\lim \sup _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{1, T}>-z_{\gamma} \mid \rho=\rho_{T} \in \mathcal{G}_{19}^{\mathrm{P}}\right) \\
& +\lim _{T \rightarrow \infty} \operatorname{Pr}\left(\mathbb{T}_{2, T}>-z_{\gamma_{2}} \mid \rho=\rho_{T} \in \mathcal{G}_{19}^{\mathrm{P}}\right) \\
= & \alpha_{1}+0+0=\alpha_{1}<\alpha . \square
\end{aligned}
$$

Appendix SC: Asymptotic Properties of the Anderson-Rubin Statistic

An alternative way to formulate the estimation of ρ in a panel autoregression with individual effects is as an IV regression problem in the sense of Anderson and Hsiao (1981, 1982). The Anderson-Hsiao approach begins by first-differencing the panel $A R(1)$ model, given by equation (3) in the main paper, to obtain

$$
\begin{equation*}
\Delta y_{i t}=\rho \Delta y_{i t-1}+\Delta \varepsilon_{i t} \tag{6}
\end{equation*}
$$

The autoregressive parameter ρ is then estimated from (6) using $y_{i t-2}$ as the instrument based on the implicit first-stage equation

$$
\begin{equation*}
\Delta y_{i t-1}=a_{i}\left(1-\rho_{T}\right)+\left(\rho_{T}-1\right) y_{i t-2}+\varepsilon_{i t-1} . \tag{7}
\end{equation*}
$$

It is well known that a weak instrument problem occurs for the Anderson-Hsiao IV estimator when ρ_{T} is near unity, as can be seen from equation (7) above. Hence, one may think that the robust confidence procedures which have been developed and used successfully in the weak instrument literature can also be applied in a straightforward manner here to yield asymptotically valid interval estimates in the panel data setting. That turns out not to be the case. In particular, a well-known confidence procedure which is shown to be robust to the effects of weak instruments in the IV regression setup is obtained by inverting the Anderson-Rubin test statistic as shown in Staiger and Stock (1997). This test is also known to have good properties in the just identified case. However, direct application of the AndersonRubin procedure based on the IV regression setup given by equations (6) and (7) above does not lead to a confidence interval for ρ that is asymptotically valid. More specifically, the Anderson-Rubin statistic in this case has the form

$$
A_{N T}(\rho)=\frac{\left(\sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1}}{\frac{1}{N T-1}\left[\sum_{i=1}^{N} \sum_{t=2}^{T}\left(\Delta \varepsilon_{i t}\right)^{2}-\left(\sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1}\right]}
$$

which depends on ρ via the term $\Delta \varepsilon_{i t}=\Delta y_{i t}-\rho \Delta y_{i t-1}$.
The following result gives the asymptotic behavior of $A_{N T}(\rho)$ under the null hypothesis $H_{0}: \rho=\rho_{T}$ for alternative sequences $\left\{\rho_{T}\right\}$.

Theorem SC-1:

Suppose that Assumptions 1-4 hold. Then, the following statements are true as $N, T \rightarrow \infty$ such that $N^{\kappa} / T=\tau$, for $\kappa \in\left(\frac{1}{2}, \infty\right)$ and $\tau \in(0, \infty)$.
(a) Suppose that $\rho_{T}=1$ for all T sufficiently large. Then,

$$
T A_{N T}\left(\rho_{T}\right) \Rightarrow 2 \chi_{1}^{2}
$$

(b) Suppose that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$. Then,

$$
T A_{N T}\left(\rho_{T}\right) \Rightarrow 2 \chi_{1}^{2}
$$

(c) Suppose that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. Then,

$$
T A_{N T}\left(\rho_{T}\right)=\Phi(T) \chi_{1}^{2}+o_{p}(1)
$$

or

$$
\frac{T}{\Phi(T)} A_{N T}\left(\rho_{T}\right) \Rightarrow \chi_{1}^{2}
$$

where

$$
\Phi(T)=\frac{T}{q(T)}\left[\frac{2 T}{q(T)}+1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]^{-1}
$$

(d) Suppose that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$,

$$
q(T) A_{N T}\left(\rho_{T}\right) \Rightarrow \chi_{1}^{2}
$$

(e) Suppose that $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$. Then,

$$
\frac{1+\left(1-\rho_{T}^{2}\right)\left(\sigma_{a}^{2}+\mu_{a}^{2}\right) / \sigma^{2}}{1-\rho_{T}} A_{N T}\left(\rho_{T}\right) \Rightarrow \chi_{1}^{2}
$$

This result shows that $A_{N T}\left(\rho_{T}\right)$ is not uniformly convergent. In particular, note that $A_{N T}\left(\rho_{T}\right)=$ $o_{p}(1)$ for all unit root and local-to-unity parameter sequences. On the other hand, for parameter sequences associated with a stable panel autoregressive process, $A_{N T}\left(\rho_{T}\right)$ does not converge in probability to zero and, in fact when appropriately rescaled, converges in distribution to a chi-squared distribution. Hence, the confidence interval obtained by inverting this statistic will not provide the correct asymptotic coverage uniformly over the parameter space $\rho \in(-1,1]$.

Proof of Theorem SC-1:

To proceed, note first that
$\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} E\left[\left(\Delta \varepsilon_{i t}\right)^{2}\right]=\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} E\left[\varepsilon_{i t}^{2}-2 \varepsilon_{i t} \varepsilon_{i t-1}+\varepsilon_{i t-1}^{2}\right]=2 \sigma^{2}\left(\frac{T-1}{T}\right)=2 \sigma^{2}\left[1+O\left(\frac{1}{T}\right)\right]$.
Moreover,

$$
\begin{aligned}
& E\left(\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left[\left(\Delta \varepsilon_{i t}\right)^{2}-2 \sigma^{2}\left(\frac{T-1}{T}\right)\right]\right)^{2} \\
= & \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=2}^{T} \sum_{s=2}^{T} E\left(\left[\left(\Delta \varepsilon_{i t}\right)^{2}-2 \sigma^{2}\left(\frac{T-1}{T}\right)\right]\left[\left(\Delta \varepsilon_{j s}\right)^{2}-2 \sigma^{2}\left(\frac{T-1}{T}\right)\right]\right) \\
= & \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left\{E\left(\Delta \varepsilon_{i t}\right)^{4}-4 \sigma^{4}\left(\frac{T-1}{T}\right)^{2}\right\} \\
= & \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left\{E\left[\varepsilon_{i t}^{2}-2 \varepsilon_{i t} \varepsilon_{i t-1}+\varepsilon_{i t-1}^{2}\right]^{2}-4 \sigma^{4}\left(\frac{T-1}{T}\right)^{2}\right\} \\
= & \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left\{E\left[\varepsilon_{i t}^{4}+6 \varepsilon_{i t}^{2} \varepsilon_{i t-1}^{2}+\varepsilon_{i t-1}^{4}-4 \varepsilon_{i t}^{3} \varepsilon_{i t-1}-4 \varepsilon_{i t} \varepsilon_{i t-1}^{3}\right]-4 \sigma^{4}\left(\frac{T-1}{T}\right)^{2}\right\} \\
= & \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left[2 E\left[\varepsilon_{i t}^{4}\right]+6 \sigma^{4}-4 \sigma^{4}\left(\frac{T-1}{T}\right)^{2}\right] \\
= & \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left[2 E\left[\varepsilon_{i t}^{4}\right]+2 \sigma^{4}+\frac{8 \sigma^{4}}{T}-\frac{4 \sigma^{4}}{T^{2}}\right] \\
= & 2 \frac{(T-1)}{N T^{2}}\left[\left(E\left[\varepsilon_{i t}^{4}\right]+\sigma^{4}\right)+\frac{4 \sigma^{4}}{T}-\frac{2 \sigma^{4}}{T^{2}}\right]=O\left(\frac{1}{N T}\right)
\end{aligned}
$$

It follows by Markov's inequality that

$$
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(\Delta \varepsilon_{i t}\right)^{2}=2 \sigma^{2}+O\left(\frac{1}{T}\right)+O_{p}\left(\frac{1}{\sqrt{N T}}\right)
$$

Consider first part (a), where we take $\rho_{T}=1$ for all T sufficiently large. In this case, we have by part (a) of Lemma SD-2, Lemma SE-24, and the Cramér Covergence Theorem, that

$$
\begin{aligned}
& \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t} \\
= & -\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right) \\
\Rightarrow & N\left(0,2 \sigma^{4}\right)
\end{aligned}
$$

and, by part (a) of Lemma SE-11, and Lemma SE-14, and part (a) of Lemma SE-18 that

$$
\begin{aligned}
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2} & =\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(a_{i}+w_{i t-2}\right)^{2} \\
& =\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}+\frac{2}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-2}+\frac{T-1}{N T^{2}} \sum_{i=1}^{N} a_{i}^{2} \\
& =\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}+O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}\left(\frac{1}{T}\right) \xrightarrow{p} \frac{\sigma^{2}}{2}
\end{aligned}
$$

so that

$$
\begin{aligned}
& T A_{N T}\left(\rho_{T}\right) \\
= & \frac{T \frac{1}{T}\left(\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1}}{\left[\left(\sum_{i=1}^{N} \sum_{t=2}^{T}\left(\Delta \varepsilon_{i t}\right)^{2}\right)-\left(\sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1} \frac{1}{N T^{2}}\right] /(N T-1)} \\
= & \frac{\left(\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1}}{\left[\left(\frac{1}{N T-1} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(\Delta \varepsilon_{i t}\right)^{2}\right)-\left(\frac{1}{\sqrt{N T-1}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1} \frac{1}{N T^{2}}\right]} \\
\Rightarrow & 2 \sigma^{4} \chi_{1}^{2}\left(\frac{\sigma^{2}}{2}\right)^{-1} \frac{1}{2 \sigma^{2}} \equiv 2 \chi_{1}^{2} .
\end{aligned}
$$

Next, consider part (b), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$. In this case, we have, by part (b) of Lemma SD-2, part (a) of Lemma SE-22, and the Cramér convergence theorem, that

$$
\begin{aligned}
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t} & =-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right) \\
& \Rightarrow N\left(0,2 \sigma^{4}\right),
\end{aligned}
$$

and, by part (a) of Lemma SE-11, Lemma SE-15, and part (b) of Lemma SE-18 that

$$
\begin{aligned}
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2} & =\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(a_{i}+w_{i t-2}\right)^{2} \\
& =\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}+\frac{2}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-2}+\frac{T-1}{N T^{2}} \sum_{i=1}^{N} a_{i}^{2} \\
& =\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}+O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}\left(\frac{1}{T}\right) \xrightarrow{p} \frac{\sigma^{2}}{2},
\end{aligned}
$$

so that

$$
\begin{aligned}
& T A_{N T}\left(\rho_{T}\right) \\
&= \frac{T \frac{1}{T}\left(\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1}}{\left[\left(\sum_{i=1}^{N} \sum_{t=2}^{T}\left(\Delta \varepsilon_{i t}\right)^{2}\right)-\left(\sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1} \frac{1}{N T^{2}}\right] /(N T-1)} \\
&=\left(\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1} \\
& {\left[\left(\frac{1}{N T-1} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(\Delta \varepsilon_{i t}\right)^{2}\right)-\left(\frac{1}{\sqrt{N T-1}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1} \frac{1}{N T^{2}}\right] }
\end{aligned}
$$

Now, consider part (c), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. In this case, we have, by part (c) of Lemma SD-2 and part (b) of Lemma SE-22, that

$$
\begin{aligned}
& \frac{1}{\bar{\omega}_{T} \sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t} \\
= & -\frac{1}{\bar{\omega}_{T} \sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\bar{\omega}_{T} \sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right) \\
\Rightarrow & N(0,1)
\end{aligned}
$$

where $\omega_{T}=\sigma^{2} \sqrt{1+(q(T) / 2 T)[1-\exp \{-2 T / q(T)\}]}$. Moreover, by part (a) of Lemma SE-11, part
(a) of Lemma SE-17, and part (c) of Lemma SE-18 that

$$
\begin{aligned}
& \frac{1}{N q(T)^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2} \\
= & \frac{T^{2}}{q(T)^{2}}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}+\frac{2}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-2}+\frac{T-1}{N T^{2}} \sum_{i=1}^{N} a_{i}^{2}\right] \\
= & \frac{T^{2}}{q(T)^{2}}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}+O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}\left(\frac{1}{T}\right)\right] \\
= & \frac{\sigma^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\left[1+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)\right] .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& T A_{N T}\left(\rho_{T}\right) \\
= & \frac{\frac{\omega_{T}^{2} T^{2}}{q(T)^{2}}\left(\frac{1}{\omega_{T} \sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1}{N q(T)^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1}}{\left[\left(\sum_{i=1}^{N} \sum_{t=2}^{T}\left(\Delta \varepsilon_{i t}\right)^{2}\right)-\left(\sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1}{N q(T)^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1} \frac{1}{N q(T)^{2}}\right] /(N T-1)} \\
= & \frac{\frac{\omega_{T}^{2} T^{2}}{q(T)^{2}}\left(\frac{1}{\omega_{T} \sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1}{N q(T)^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1}}{\left[\left(\frac{1}{N T-1} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(\Delta \varepsilon_{i t}\right)^{2}\right)-\left(\frac{1}{\sqrt{N T-1}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1}{N q(T)^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1} \frac{1}{N q(T)^{2}}\right]} \\
= & \frac{\omega_{T}^{2} T^{2}}{q(T)^{2}} \chi_{1}^{2}\left(\frac{\sigma^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\right)^{-1} \frac{1}{2 \sigma^{2}}+o_{p}(1) \\
= & \frac{T^{2}}{q(T)^{2}} \chi_{1}^{2} \frac{4 \sigma^{4}}{2 \sigma^{4}}\left(1+\frac{q(T)}{2 T}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]\right)\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]^{-1}+o_{p}(1) \\
= & \frac{2 T^{2}}{q(T)^{2}} \chi_{1}^{2}\left(1+\frac{q(T)}{2 T}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]\right)\left[\exp \left\{-\frac{2 T}{q(T)}\right\}-\frac{2 T}{q(T)}-1\right]^{-1}+o_{p}(1) \\
= & \chi_{1}^{2} \frac{T}{q(T)}\left(\frac{2 T}{q(T)}+1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right)\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]^{-1}+o_{p}(1) \\
= & \Phi(T) \chi_{1}^{2}+o_{p}(1)
\end{aligned}
$$

where

$$
\Phi(T)=\frac{T}{q(T)}\left[\frac{2 T}{q(T)}+1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]^{-1} .
$$

We turn our attention to part (d), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$. In this case, we have, by part (d) of Lemma SD-2, part (c) of Lemma SE-22, and the

Cramér convergence theorem, that

$$
\begin{aligned}
& \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t} \\
= & -\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+O_{p}\left(\max \left\{\sqrt{\frac{q(T)}{T}}, \frac{1}{\sqrt{q(T)}}\right\}\right) \\
\Rightarrow & N\left(0, \sigma^{4}\right)
\end{aligned}
$$

and, by part (a) of Lemma SE-11, part (b) of Lemma SE-17, and part (d) of Lemma SE-18, that

$$
\begin{aligned}
\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2} & =\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(a_{i}+w_{i t-2}\right)^{2} \\
& =\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}+\frac{2}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-2}+\frac{T-1}{N T q(T)} \sum_{i=1}^{N} a_{i}^{2} \\
& =\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}+O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}\left(\frac{1}{q(T)}\right) \xrightarrow{p} \frac{\sigma^{2}}{2} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& q(T) A_{N T}\left(\rho_{T}\right) \\
&= q(T) \frac{\sigma^{4}}{q(T)}\left(\frac{1}{\sigma^{2} \sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1} \\
& {\left[\left(\sum_{i=1}^{N} \sum_{t=2}^{T}\left(\Delta \varepsilon_{i t}\right)^{2}\right)-\left(\sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1} \frac{1}{N T q(T)}\right] /(N T-1) } \\
&= \frac{\sigma^{4}\left(\frac{1}{\sigma^{2} \sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1}}{\left[\left(\frac{1}{N T-1} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(\Delta \varepsilon_{i t}\right)^{2}\right)-\left(\frac{1}{\sqrt{N T-1}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1} \frac{1}{N T q(T)}\right]} \\
& \Rightarrow \sigma^{4} \chi_{1}^{2}\left(\frac{\sigma^{2}}{2}\right)^{-1} \frac{1}{2 \sigma^{2}} \equiv \chi_{1}^{2} .
\end{aligned}
$$

Finally, consider part (e), where we take $\rho_{T} \in \mathcal{G}_{\text {St }}$. In this case, we have, by part (e) of Lemma SD-2
and Lemma SE-23, that

$$
\begin{aligned}
& \sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t} \\
= & -\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1} \\
& +\left(1-\rho_{T}\right) \sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-1}+o_{p}(1) \\
\Rightarrow & N(0,1)
\end{aligned}
$$

and, by part (a) of Lemma SE-11, part (c) of Lemma SE-17, and part (e) of Lemma SE-18, that

$$
\begin{aligned}
& \frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2} \\
= & \frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(a_{i}+w_{i t-2}\right)^{2} \\
= & \frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}+\left(1-\rho_{T}^{2}\right) \frac{T-1}{N T} \sum_{i=1}^{N} a_{i}^{2}+\frac{2\left(1-\rho_{T}^{2}\right)}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-2} \\
= & \frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}+\left(1-\rho_{T}^{2}\right) \frac{T-1}{N T} \sum_{i=1}^{N} a_{i}^{2}+O_{p}\left(\frac{1}{\sqrt{N T}}\right) \\
= & \sigma^{2}+\left(1-\rho_{T}^{2}\right)\left(\sigma_{a}^{2}+\mu_{a}^{2}\right)+o_{p}(1) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \frac{1+\left(1-\rho_{T}^{2}\right)\left(\sigma_{a}^{2}+\mu_{a}^{2}\right) / \sigma^{2}}{1-\rho_{T}} A_{N T}\left(\rho_{T}\right) \\
= & \frac{\frac{2 \sigma^{4}\left[1+\left(1-\rho_{T}^{2}\right)\left(\sigma_{a}^{2}+\mu_{a}^{2}\right) / \sigma^{2}\right]\left(1-\rho_{T}^{2}\right)}{\left(1-\rho_{T}\right)\left(1+\rho_{T}\right)}\left(\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4} N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1}}{\left[\left(\sum_{i=1}^{N} \sum_{t=2}^{T}\left(\Delta \varepsilon_{i t}\right)^{2}\right)-\left(\sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1} \frac{1-\rho_{T}^{2}}{N T}\right] /(N T-1)} \\
= & \frac{2 \sigma^{2}\left[\sigma^{2}+\left(1-\rho_{T}^{2}\right)\left(\sigma_{a}^{2}+\mu_{a}^{2}\right)\right]\left(\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4} N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1}}{\left[\left(\frac{1}{N T-1} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(\Delta \varepsilon_{i t}\right)^{2}\right)-\left(\frac{1}{\sqrt{N T-1}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}\right)^{2}\left(\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2}\right)^{-1} \frac{1-\rho_{T}^{2}}{N T}\right]} \\
= & 2 \sigma^{2} \frac{\left[\sigma^{2}+\left(1-\rho_{T}^{2}\right)\left(\sigma_{a}^{2}+\mu_{a}^{2}\right)\right]}{\sigma^{2}+\left(1-\rho_{T}^{2}\right)\left(\sigma_{a}^{2}+\mu_{a}^{2}\right)} \frac{1}{2 \sigma^{2}} \chi_{1}^{2}+o_{p}(1) \\
\Rightarrow & \chi_{1}^{2} . \square
\end{aligned}
$$

Appendix SD: Proof of Key Supporting Lemmas

Lemma SD-1:

Under Assumptions 1-4, the following statements are true as as $N, T \rightarrow \infty$ such that $N^{\kappa} / T \rightarrow \tau$, for constants $\kappa \in\left(\frac{1}{2}, \infty\right)$ and $\tau \in(0, \infty)$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1}=\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}+O_{p}\left(\frac{1}{\sqrt{T}}\right) .
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T^{1+\frac{1}{2 \kappa}} \ll q(T)$, then

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1}=\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}+O_{p}\left(\max \left\{\frac{T^{1+\frac{1}{2 \kappa}}}{q(T)}, \frac{1}{\sqrt{T}}\right\}\right) .
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T^{1+\frac{1}{2 \kappa}}$, then

$$
\begin{aligned}
& \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1} \\
= & \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}-\frac{T \sqrt{N}}{q(T)}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]+O_{p}\left(\frac{1}{\sqrt{T}}\right) .
\end{aligned}
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T \ll q(T) \ll T^{1+\frac{1}{2 \kappa}}$, then

$$
\frac{q(T)}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1}=-\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]+O_{p}\left(\frac{q(T)}{\sqrt{N} T}\right)
$$

(e) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1}=-\frac{T}{q(T)}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]+O_{p}\left(\frac{1}{\sqrt{N}}\right)
$$

(f) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1}=-\left[\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]+O_{p}\left(\max \left\{\sqrt{\frac{q(T)}{N T}}, \frac{1}{q(T)}\right\}\right) .
$$

(g) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\frac{1+\rho_{T}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1}=-\frac{\left(1-\rho_{T}^{2}\right)}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)
$$

Proof:

To proceed, we first make some preliminary calculations. Note that

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1} \\
= & \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \varepsilon_{i t-1}+\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} y_{i t-2}-\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2}^{2} \\
= & \sum_{i=1}^{N} \sum_{t=2}^{T}\left(a_{i}+w_{i t-2}\right) \varepsilon_{i t-1}+\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i}\left(a_{i}+w_{i t-2}\right) \\
& -\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=2}^{T}\left(a_{i}^{2}+2 a_{i} w_{i t-2}+w_{i t-2}^{2}\right) \\
= & \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}+\sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t-1}-\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-2}-\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2} .
\end{aligned}
$$

Now, consider part (a), where we take $\rho_{T}=1$ for all T sufficiently large. In this case, we can apply part (c) of Lemma SE-11, Lemma SE-14, and part (a) of Lemma SE-18 to obtain

$$
\begin{aligned}
& \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1} \\
= & \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t-1}-\frac{\left(1-\rho_{T}\right)}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-2} \\
& -\frac{\left(1-\rho_{T}\right)}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2} \\
= & \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\left(1-\rho_{T}\right) \max \{\sqrt{T}, \sqrt{N}\}\right) \\
& +O_{p}\left(\left(1-\rho_{T}\right) \sqrt{N} T\right) \\
= & \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}+O_{p}\left(\frac{1}{\sqrt{T}}\right) .
\end{aligned}
$$

To show parts (b)-(f), we further note that

$$
\begin{align*}
& \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1} \\
= & \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}+\sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t-1}-\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-2}-\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2} \\
= & \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}+\sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t-1}-\left[1-\exp \left(-\frac{1}{q(T)}\right)\right] \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-2} \\
& -\left[1-\exp \left(-\frac{1}{q(T)}\right)\right] \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2} \\
= & \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}+\sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t-1}-\left[\frac{1}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right] \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-2} \\
& -\left[\frac{1}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right] \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2} \\
= & \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}+\sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t-1}-\frac{1}{q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-2}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& -\frac{1}{q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\left[1+O\left(\frac{1}{q(T)}\right)\right] . \tag{8}
\end{align*}
$$

Next, consider part (b), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T^{1+\frac{1}{2 \kappa}} \ll q(T)$. In this case, we apply parts (a) and (c) of Lemma SE-11, Lemma SE-15, and part (b) of Lemma SE-18 to expression (8) to obtain

$$
\begin{aligned}
& \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1} \\
= & \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}-\frac{T \sqrt{N}}{q(T)}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& +\frac{1}{\sqrt{T}}\left(\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t-1}\right)-\frac{1}{q(T)}\left[\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-2}\right]\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
= & \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}+O_{p}\left(\frac{T \sqrt{N}}{q(T)}\right)+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\max \left\{\frac{\sqrt{T}}{q(T)}, \frac{\sqrt{N}}{q(T)}\right\}\right) \\
= & \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}+O_{p}\left(\max \left\{\frac{T^{1+\frac{1}{2 \kappa}}}{q(T)}, \frac{1}{\sqrt{T}}\right\}\right),
\end{aligned}
$$

as required for part (b).
Consider part (c), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T^{1+\frac{1}{2 \kappa}} \sim T \sqrt{N}$. In this case, applying parts (a) and (c) of Lemma SE-11, Lemma SE-15, and part (b) of Lemma SE-18 to
expression (8), we have

$$
\begin{aligned}
& \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1} \\
= & \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}-\frac{T \sqrt{N}}{q(T)}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& +\frac{1}{\sqrt{T}}\left(\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t-1}\right)-\frac{1}{q(T)}\left[\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-2}\right]\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
= & \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}-\frac{T \sqrt{N}}{q(T)}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]+O_{p}\left(\frac{1}{\sqrt{T}}\right) \\
& +O_{p}\left(\max \left\{\frac{\sqrt{T}}{q(T)}, \frac{\sqrt{N}}{q(T)}\right\}\right) \\
= & \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}-\frac{T \sqrt{N}}{q(T)}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]+O_{p}\left(\frac{1}{\sqrt{T}}\right) .
\end{aligned}
$$

We turn our attention to part (d), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T \ll q(T) \ll T^{1+\frac{1}{2 \kappa}}$. Note that, in this case, we can apply the results given in parts (a) and (c) of Lemma SE-11, Lemma SE-15, and part (b) of Lemma SE-18 to expression (8) to obtain

$$
\begin{aligned}
& \frac{q(T)}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1} \\
= & -\frac{q(T)}{q(T)}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]\left[1+O\left(\frac{1}{q(T)}\right)\right]+\frac{q(T)}{T \sqrt{N}}\left[\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}\right] \\
& +\frac{q(T)}{\sqrt{N} T^{3 / 2}}\left(\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t-1}\right)-\frac{q(T)}{q(T) \sqrt{N} T}\left[\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-2}\right]\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& +O_{p}\left(\frac{q(T)}{T \sqrt{N}}\right)+O_{p}\left(\frac{q(T)}{\sqrt{N} T^{3 / 2}}\right)+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right) \\
= & -\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]+O_{p}\left(\frac{q(T)}{\sqrt{N} T}\right) .
\end{aligned}
$$

To show part (e), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. In this case, we make use of the results given in parts (a) and (c) of Lemma SE-11, part (a) of Lemma SE-17, and part (c) of

Lemma SE-18 to deduce

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1} \\
= & -\frac{T}{q(T)}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]\left[1+O\left(\frac{1}{T}\right)\right]+\frac{1}{\sqrt{N}}\left[\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}\right] \\
& +\frac{1}{\sqrt{N T}}\left(\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t-1}\right)-\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-2}\left[1+O\left(\frac{1}{T}\right)\right] \\
= & -\frac{T}{q(T)}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]\left[1+O\left(\frac{1}{T}\right)\right]+O_{p}\left(\frac{1}{\sqrt{N}}\right)+O_{p}\left(\frac{1}{\sqrt{N T}}\right) \\
& +O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right) \\
= & -\frac{T}{q(T)}\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]+O_{p}\left(\frac{1}{\sqrt{N}}\right) .
\end{aligned}
$$

Consider part (f), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$. In this case, we make use of the results given in parts (a) and (c) of Lemma SE-11, part (b) of Lemma SE-17, and part (d) of Lemma SE-18 to deduce

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1} \\
= & -\left[\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]\left[1+O\left(\frac{1}{q(T)}\right)\right]+\sqrt{\frac{q(T)}{N T}}\left[\frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1}\right] \\
& +\frac{1}{\sqrt{N T}}\left(\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t-1}\right)-\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-2}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
= & -\left[\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]\left[1+O\left(\frac{1}{q(T)}\right)\right]+O_{p}\left(\sqrt{\frac{q(T)}{N T}}\right)+O_{p}\left(\frac{1}{\sqrt{N T}}\right) \\
& +O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right) \\
= & -\left[\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}\right]+O_{p}\left(\max \left\{\sqrt{\frac{q(T)}{N T}}, \frac{1}{q(T)}\right\}\right),
\end{aligned}
$$

as required.
Finally, to show part (g), note that, in this case, we make use of the results given in parts (a) and
(c) of Lemma SE-11, part (c) of Lemma SE-17, and part (e) of Lemma SE-18 to deduce

$$
\begin{aligned}
& \frac{1+\rho_{T}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta y_{i t-1} \\
= & -\frac{\left(1-\rho_{T}\right)\left(1+\rho_{T}\right)}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2}^{2}-\frac{\left(1-\rho_{T}\right)\left(1+\rho_{T}\right)}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-2} \\
& +\frac{1+\rho_{T}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t-1}+\frac{1+\rho_{T}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \varepsilon_{i t-1} \\
= & -\frac{\left(1-\rho_{T}^{2}\right)}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2}^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}\left(\frac{1}{\sqrt{N T}}\right) \\
= & -\frac{\left(1-\rho_{T}^{2}\right)}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2}^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right) \xrightarrow{p}-\sigma^{2},
\end{aligned}
$$

as required for part (f).

Lemma SD-2:

Under Assumptions 1-4, the following statements are true as $N, T \rightarrow \infty$ such that $N^{\kappa} / T \rightarrow \tau$, for constants $\kappa \in\left(\frac{1}{2}, \infty\right)$ and $\tau \in(0, \infty)$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}=-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$, then

$$
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}=-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right) .
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}=-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}=-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+O_{p}\left(\max \left\{\sqrt{\frac{q(T)}{T}}, \frac{1}{\sqrt{q(T)}}\right\}\right)
$$

(e) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t}=\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \Delta \varepsilon_{i t}+O_{p}\left(\frac{1}{\sqrt{T}}\right) \Rightarrow N(0,1) .
$$

Proof:

To proceed, write

$$
\begin{align*}
\sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t} & =\sum_{i=1}^{N} \sum_{t=2}^{T}\left[a_{i}+w_{i t-2}\right] \Delta \varepsilon_{i t} \\
& =\sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \Delta \varepsilon_{i t}+\sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \Delta \varepsilon_{i t} . \tag{9}
\end{align*}
$$

Applying partial summation we have that

$$
\begin{align*}
& \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \Delta \varepsilon_{i t} \\
= & \sum_{i=1}^{N}\left\{\left[\sum_{t=4}^{T}\left(w_{i t-3}-w_{i t-2}\right) \varepsilon_{i t-1}\right]+w_{i T-2} \varepsilon_{i T}-w_{i 1} \varepsilon_{i 2}\right\} \\
= & \sum_{i=1}^{N}\left\{\left[\sum_{t=4}^{T}\left(w_{i t-3}-\left[\rho_{T} w_{i t-3}+\varepsilon_{i t-2}\right]\right) \varepsilon_{i t-1}\right]+w_{i T-2} \varepsilon_{i T}-w_{i 1} \varepsilon_{i 2}\right\} \\
= & \left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-1}-\sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}-\sum_{i=1}^{N} \varepsilon_{i 1} \varepsilon_{i 2} . \tag{10}
\end{align*}
$$

Substituting (10) into (9), we have

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t} \\
= & -\sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+\sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \Delta \varepsilon_{i t}-\sum_{i=1}^{N} \varepsilon_{i 1} \varepsilon_{i 2}+\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-1} .
\end{aligned}
$$

Consider first part (a). Here, by assumption, $\rho_{T}=1$ for all T sufficiently large. Hence, applying parts (g)-(i) of Lemma SE-11 and part (a) of Lemma SE-25 in Appendix SE below, we obtain

$$
\begin{aligned}
& \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t} \\
= & -\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \Delta \varepsilon_{i t}-\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i 1} \varepsilon_{i 2} \\
& +\frac{\left(1-\rho_{T}\right)}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-1} \\
= & -\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\frac{1}{\sqrt{T}}\right) \\
& +O_{p}\left(\left(1-\rho_{T}\right) \sqrt{T}\right) \\
= & -\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right),
\end{aligned}
$$

as required.
Next, consider part (b). Here, we consider the case where $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow$ 0 . In this case, using the results parts (g)-(i) of Lemma SE-11 and part (b) of Lemma SE-25, we deduce that

$$
\begin{aligned}
& \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t} \\
= & -\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\frac{\sqrt{T}}{q(T)}\right) \\
= & -\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)
\end{aligned}
$$

which shows part (b).
Consider part (c), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. In this case, using the results parts (g)-(i) of Lemma SE-11 and part (c) of Lemma SE-25, we deduce that

$$
\begin{aligned}
& \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t} \\
= & -\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\frac{\sqrt{T}}{q(T)}\right) \\
= & -\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right),
\end{aligned}
$$

which shows part (c).
Consider now part (d), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$. In this case, we apply parts (g)-(i) of Lemma SE-11, part (d) of Lemma SE-21, and part (d) of Lemma SE-25 to obtain

$$
\begin{aligned}
& \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t} \\
= & -\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\frac{1}{\sqrt{q(T)}}\right) \\
= & -\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+O_{p}\left(\sqrt{\frac{q(T)}{T}}\right)+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\frac{1}{\sqrt{q(T)}}\right) \\
= & -\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+O_{p}\left(\max \left\{\sqrt{\frac{q(T)}{T}}, \frac{1}{\sqrt{q(T)}}\right\}\right),
\end{aligned}
$$

as required.

Finally, to show part (e), note that, in this case,

$$
\begin{align*}
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t} & =\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \Delta \varepsilon_{i t}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \Delta \varepsilon_{i t} \\
& =\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \Delta \varepsilon_{i t}+O_{p}\left(\frac{1}{\sqrt{T}}\right) . \tag{11}
\end{align*}
$$

Applying partial summation the lead term on the right-hand side of the expression above, we get

$$
\begin{aligned}
& \sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \Delta \varepsilon_{i t} \\
= & \sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N}\left\{\left[\sum_{t=4}^{T}\left(w_{i t-3}-w_{i t-2}\right) \varepsilon_{i t-1}\right]+w_{i T-2} \varepsilon_{i T}-w_{i 1} \varepsilon_{i 2}\right\} \\
= & \sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T}\left[\sum_{j=1}^{t-3} \rho_{T}^{(t-3-j)} \varepsilon_{i j}-\sum_{j=1}^{t-2} \rho_{T}^{(t-2-j)} \varepsilon_{i j}\right] \varepsilon_{i t-1} \\
& +\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{j=1}^{T-2} \rho_{T}^{(T-2-j)} \varepsilon_{i j} \varepsilon_{i T}-\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i 1} \varepsilon_{i 2} \\
= & \sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T}\left[\sum_{j=1}^{t-3} \rho_{T}^{(t-3-j)} \varepsilon_{i j}-\sum_{j=1}^{t-3} \rho_{T}^{(t-2-j)} \varepsilon_{i j}\right] \varepsilon_{i t-1} \\
& -\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{j=1}^{T-2} \rho_{T}^{(T-2-j)} \varepsilon_{i j} \varepsilon_{i T} \\
& -\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i 1} \varepsilon_{i 2} \\
= & \sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{\left.1-\rho_{T}\right)}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \sum_{j=1}^{t-3} \rho_{T}^{(t-3-j)} \varepsilon_{i j} \varepsilon_{i t-1}-\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1} \\
& +\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{j=1}^{T-2} \rho_{T}^{(T-2-j)} \varepsilon_{i j} \varepsilon_{i T}-\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i 1} \varepsilon_{i 2} .
\end{aligned}
$$

Applying parts (g)-(i) of Lemma SE-11 and part (e) of Lemma SE-21, we then have

$$
\begin{aligned}
& \sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \Delta \varepsilon_{i t} \\
= & -\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}+\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{\left(1-\rho_{T}\right)}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \sum_{j=1}^{t-3} \rho_{T}^{(t-3-j)} \varepsilon_{i j} \varepsilon_{i t-1} \\
& +\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2} \varepsilon_{i T}-\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i 1} \varepsilon_{i 2} \\
= & \sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+Y_{i, T}\right)+O_{p}\left(\frac{1}{\sqrt{T}}\right)
\end{aligned}
$$

Combining this with expression (11) above, we have, by Lemma SE-23,

$$
\begin{aligned}
\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} y_{i t-2} \Delta \varepsilon_{i t} & =\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-2} \Delta \varepsilon_{i t}+O_{p}\left(\frac{1}{\sqrt{T}}\right) \\
& =\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+Y_{i, T}\right)+O_{p}\left(\frac{1}{\sqrt{T}}\right) \\
& \Rightarrow N(0,1),
\end{aligned}
$$

as required.

Lemma SD-3:

Under Assumptions 1-4, the following statements are true as $N, T \rightarrow \infty$ such that $N^{\kappa} / T \rightarrow \tau$, for $\kappa \in\left(\frac{1}{2}, \infty\right)$ and $\tau \in(0, \infty)$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\begin{aligned}
& \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2} \\
= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}+O_{p}\left(\frac{1}{T}\right)+O_{p}\left(\frac{1}{N}\right) \xrightarrow{p} \frac{\sigma^{2}}{2} .
\end{aligned}
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T \ll q(T)$, then

$$
\begin{aligned}
& \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2} \\
= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}+O_{p}\left(\frac{1}{T}\right)+O_{p}\left(\frac{1}{N}\right) \xrightarrow{p} \frac{\sigma^{2}}{2} .
\end{aligned}
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\begin{aligned}
& \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2} \\
= & \frac{q(T)^{2}}{T^{2}} \frac{\sigma^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right) .
\end{aligned}
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}=\frac{\sigma^{2}}{2}+O_{p}\left(\max \left\{\frac{1}{q(T)}, \frac{q(T)}{T}, \sqrt{\frac{q(T)}{N T}}, \frac{1}{\sqrt{T}}\right\}\right) .
$$

(e) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}=\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}+o_{p}(1),
$$

as $N, T \rightarrow \infty$.

Proof:

To proceed, first write

$$
\begin{aligned}
y_{i t-1}-\bar{y}_{-1, N, T} & =a_{i}+w_{i t-1}-\frac{1}{N(T-1)} \sum_{j=1}^{N} \sum_{s=2}^{T}\left(a_{j}+w_{i s-1}\right) \\
& =a_{i}-\frac{1}{N} \sum_{j=1}^{N} a_{j}+w_{i t-1}-\frac{1}{N(T-1)} \sum_{j=1}^{N} \sum_{s=2}^{T} w_{i s-1} \\
& =a_{i}-\bar{a}_{N}+w_{i t-1}-\bar{w}_{-1, N, T}
\end{aligned}
$$

where

$$
\bar{a}_{N}=\frac{1}{N} \sum_{j=1}^{N} a_{j}, \bar{w}_{-1, N, T}=\frac{1}{N(T-1)} \sum_{j=1}^{N} \sum_{s=2}^{T} w_{i s-1}
$$

so that

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}=\sum_{i=1}^{N} \sum_{t=2}^{T}\left(a_{i}-\bar{a}_{N}\right)^{2}+\sum_{i=1}^{N} \sum_{t=2}^{T}\left(w_{i t-1}-\bar{w}_{-1, N, T}\right)^{2} \\
& +2 \sum_{i=1}^{N} \sum_{t=2}^{T}\left(a_{i}-\bar{a}_{N}\right)\left(w_{i t-1}-\bar{w}_{-1, N, T}\right) \\
= & (T-1) \sum_{i=1}^{N} a_{i}^{2}-N(T-1) \bar{a}_{N}^{2}+\sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}-N(T-1) \bar{w}_{-1, N, T}^{2} \\
& +2 \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1}-2 N(T-1) \bar{a}_{N} \bar{w}_{-1, N, T .} .
\end{aligned}
$$

Consider first part (a), where we take $\rho_{T}=1$ for all T sufficiently large. In this case, we apply parts (a) and (b) of Lemma SE-11, part (a) of Lemma SE-18, and part (a) of Lemma SE-26 to obtain

$$
\begin{aligned}
& \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2} \\
= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}+\frac{T-1}{N T^{2}} \sum_{i=1}^{N} a_{i}^{2}-\frac{N(T-1)}{N T^{2}} \bar{a}_{N}^{2} \\
& -\frac{N(T-1)}{N T^{2}} \bar{w}_{-1, N, T}^{2}-2 \frac{N(T-1)}{N T^{2}} \bar{a}_{N} \bar{w}_{-1, N, T}+2 \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1} \\
= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}+O_{p}\left(\frac{1}{T}\right)+O_{p}\left(\frac{1}{N}\right) \xrightarrow{p} \frac{\sigma^{2}}{2},
\end{aligned}
$$

as required.
Next, consider part (b), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T \ll q(T)$. Here, we make use of parts (a) and (b) of Lemma SE-11, part (b) of Lemma SE-18, and part (b) of Lemma SE-26 to deduce

$$
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2}=\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}+O_{p}\left(\frac{1}{T}\right)+O_{p}\left(\frac{1}{N}\right) \xrightarrow{p} \frac{\sigma^{2}}{2},
$$

which is the required result for part (b).
Consider now part (c), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. To show the stated result for this case, note first that by part (a) of Lemma SE-17, we have

$$
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}=\frac{q(T)^{2}}{T^{2}} \frac{\sigma^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]+O_{p}\left(\frac{1}{\sqrt{N}}\right)+O_{p}\left(\frac{1}{\sqrt{T}}\right),
$$

from which we deduce that $\sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}=O_{p}\left(N T^{2}\right)$. Using this result and applying parts (a) and (b) of Lemma SE-11, part (c) of Lemma SE-18, and part (c) of Lemma SE-26, we get

$$
\begin{aligned}
& \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2} \\
= & \frac{T-1}{N T^{2}} \sum_{i=1}^{N} a_{i}^{2}-\frac{N(T-1)}{N T^{2}} \bar{a}_{N}^{2}+\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}-\frac{N(T-1)}{N T^{2}} \bar{w}_{-1, N, T}^{2} \\
& +2 \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1}-2 \frac{N(T-1)}{N T^{2}} \bar{a}_{N} \bar{w}_{-1, N, T} \\
= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}+O_{p}\left(\frac{1}{T}\right)+O_{p}\left(\frac{1}{N}\right) \\
= & \frac{q(T)^{2}}{T^{2}} \frac{\sigma^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right) .
\end{aligned}
$$

Consider part (d), where we assume that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow$ 0 . From part (b) of Lemma SE-17, we obtain

$$
\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}=\frac{\sigma^{2}}{2}+O_{p}\left(\max \left\{\frac{1}{q(T)}, \frac{q(T)}{T}, \sqrt{\frac{q(T)}{N T}}, \frac{1}{\sqrt{T}}\right\}\right)
$$

Using this result along with parts (a) and (b) of Lemma SE-11, part (d) of Lemma SE-18, and part (d) of Lemma SE-26, we observe that

$$
\begin{aligned}
& \frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2} \\
= & \frac{T-1}{N T q(T)} \sum_{i=1}^{N} a_{i}^{2}-\frac{N(T-1)}{N T q(T)} \bar{a}_{N}^{2}+\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}-\frac{N(T-1)}{N T q(T)} \bar{w}_{-1, N, T}^{2} \\
& +2 \frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1}-2 \frac{N(T-1)}{N T q(T)} \bar{a}_{N} \bar{w}_{-1, N, T} \\
= & \frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}+O_{p}\left(\frac{1}{q(T)}\right)+O_{p}\left(\frac{1}{q(T)}\right)+O_{p}\left(\max \left\{\frac{q(T)}{N T}, \frac{q(T)}{T^{2}}\right\}\right) \\
& +O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right) \\
= & \frac{\sigma^{2}}{2}+O_{p}\left(\max \left\{\frac{1}{q(T)}, \frac{q(T)}{T}, \sqrt{\frac{q(T)}{N T}}, \frac{1}{\sqrt{T}}\right\}\right) \\
& +O_{p}\left(\operatorname { m a x } \left\{\frac{1}{q(T)}, \frac{q(T)}{N T}, \frac{1}{\sqrt{N T}\})}\right.\right. \\
= & \frac{\sigma^{2}}{2}+O_{p}\left(\max \left\{\frac{1}{q(T)}, \frac{q(T)}{T}, \sqrt{\frac{q(T)}{N T}}, \frac{1}{\sqrt{T}}\right\}\right),
\end{aligned}
$$

which shows part (d).
Finally, consider part (e), where we take
$\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$. In this case, we make use of parts (a) and (b) of Lemma SE-11, part (c) of Lemma SE-17, and part (e) of Lemmas SE-18 and SE-26 to deduce that

$$
\begin{aligned}
& \frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right)^{2} \\
= & \left(1-\rho_{T}^{2}\right) \frac{T-1}{N T} \sum_{i=1}^{N} a_{i}^{2}-\frac{N(T-1)}{N T}\left(1-\rho_{T}^{2}\right) \bar{a}_{N}^{2}+\frac{\left(1-\rho_{T}^{2}\right)}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2} \\
& -\left(1-\rho_{T}^{2}\right) \frac{N(T-1)}{N T} \bar{w}_{-1, N, T}^{2}+2 \frac{\left(1-\rho_{T}^{2}\right)}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1} \\
& -2\left(1-\rho_{T}^{2}\right) \frac{N(T-1)}{N T} \bar{a}_{N} \bar{w}_{-1, N, T} \\
= & \left(1-\rho_{T}^{2}\right)\left(\frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\bar{a}_{N}^{2}\right)\left[1+O_{p}\left(\frac{1}{T}\right)\right]+\frac{\left(1-\rho_{T}^{2}\right)}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2} \\
& +O_{p}\left(\max \left\{\frac{1}{N T}, \frac{1}{T^{2}}\right\}\right)+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right) \\
= & \left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}+o_{p}(1)
\end{aligned}
$$

which completes the proof for part (e).

Lemma SD-4:

Under Assumptions 1-4, the following statements are true as $N, T \rightarrow \infty$ such that $N^{\kappa} / T \rightarrow \tau$, for constants $\kappa \in\left(\frac{1}{2}, \infty\right)$ and $\tau \in(0, \infty)$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\begin{aligned}
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} & =\sigma_{a}^{2}-\mu_{a} \bar{w}_{-1, N, T}+\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1}+o_{p}(1) \\
& =O_{p}\left(\max \left\{1, \sqrt{\frac{T}{N}}\right\}\right)
\end{aligned}
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T \ll q(T)$, then

$$
\begin{aligned}
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} & =\sigma_{a}^{2}-\mu_{a} \bar{w}_{-1, N, T}+\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1}+o_{p}(1) \\
& =O_{p}\left(\max \left\{1, \sqrt{\frac{T}{N}}\right\}\right) .
\end{aligned}
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\begin{aligned}
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} & =\sigma_{a}^{2}-\mu_{a} \bar{w}_{-1, N, T}+\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1}+o_{p}(1) \\
& =O_{p}\left(\max \left\{1, \sqrt{\frac{T}{N}}\right\}\right) .
\end{aligned}
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T^{\frac{1+\kappa}{3 \kappa}} / q(T)=O(1)$ but $q(T) / T \rightarrow 0$, then

$$
\begin{aligned}
& \frac{1}{q(T)^{3 / 2} \sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} \\
= & \frac{\sqrt{N T}}{q(T)^{3 / 2}}\left[\frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\bar{a}_{N}^{2}\right]+O_{p}\left(\max \left\{\frac{1}{\sqrt{q(T)}}, \sqrt{\frac{N}{q(T) T}}\right\}\right) \\
= & O_{p}\left(\max \left\{\frac{\sqrt{N T}}{q(T)^{3 / 2}}, \frac{1}{\sqrt{q(T)}}, \sqrt{\frac{N}{q(T) T}}\right\}\right) .
\end{aligned}
$$

(e) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T^{\frac{1+\kappa}{3 \hbar}} \rightarrow 0$, then

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} \\
= & {\left[\frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\bar{a}_{N}^{2}\right]+O_{p}\left(\max \left\{\frac{q(T)}{\sqrt{N T}}, \frac{q(T)}{T}\right\}\right) . }
\end{aligned}
$$

(f) If $\rho_{T} \in \mathcal{G}_{\text {St }}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i}=\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+o_{p}(1)
$$

as $N, T \rightarrow \infty$.

Proof:

To proceed, first write

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i}=\sum_{i=1}^{N} \sum_{t=2}^{T}\left(a_{i}-\bar{a}_{N}+w_{i t-1}-\bar{w}_{-1, N, T}\right) a_{i} \\
= & (T-1) \sum_{i=1}^{N} a_{i}^{2}-N(T-1) \bar{a}_{N}^{2}+\sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1}-N(T-1) \bar{a}_{N} \bar{w}_{-1, N, T} .
\end{aligned}
$$

Consider first part (a), where we take $\rho_{T}=1$ for all T sufficiently large. Here, we apply parts (a)
and (b) of Lemma SE-11, part (a) of Lemma SE-18, and part (a) of Lemma SE-26 to obtain

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} \\
= & \frac{N(T-1)}{N T} \frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\frac{N(T-1)}{N T} \bar{a}_{N}^{2}+\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1}-\frac{N(T-1)}{N T} \bar{a}_{N} \bar{w}_{-1, N, T} \\
= & {\left[\frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\bar{a}_{N}^{2}-\bar{a}_{N} \bar{w}_{-1, N, T}\right]\left[1+O\left(\frac{1}{T}\right)\right]+\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1} } \\
= & \sigma_{a}^{2}-\mu_{a} \bar{w}_{-1, N, T}+\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1}+o_{p}(1) \\
= & O_{p}(1)+O_{p}\left(\max \left\{1, \sqrt{\frac{T}{N}}\right\}\right)+O_{p}\left(\max \left\{1, \sqrt{\frac{T}{N}}\right\}\right)+o_{p}(1) \\
= & O_{p}\left(\max \left\{1, \sqrt{\frac{T}{N}}\right\}\right) .
\end{aligned}
$$

Next, consider part (b), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T \ll q(T)$. In this case, applying parts (a) and (b) of Lemma SE-11, part (b) of Lemma SE-18, and part (b) of Lemma SE-26; we obtain

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} \\
= & \sigma_{a}^{2}-\mu_{a} \bar{w}_{-1, N, T}+\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1}+o_{p}(1) \\
= & O_{p}(1)+O_{p}\left(\max \left\{1, \sqrt{\frac{T}{N}}\right\}\right)+O_{p}\left(\max \left\{1, \sqrt{\frac{T}{N}}\right\}\right)+o_{p}(1) \\
= & O_{p}\left(\max \left\{1, \sqrt{\frac{T}{N}}\right\}\right),
\end{aligned}
$$

as required.
Now, we turn our attention to part (c), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. In this case, applying parts (a) and (b) of Lemma SE-11 and part (c) of Lemmas SE-18 and SE-26; we
have

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} \\
= & \frac{N(T-1)}{N T} \frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\frac{N(T-1)}{N T} \bar{a}_{N}^{2}+\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1}-\frac{N(T-1)}{N T} \bar{a}_{N} \bar{w}_{-1, N, T} \\
= & {\left[\frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\bar{a}_{N}^{2}-\bar{a}_{N} \bar{w}_{-1, N, T}\right]\left[1+O\left(\frac{1}{T}\right)\right]+\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1} } \\
= & \sigma_{a}^{2}-\mu_{a} \bar{w}_{-1, N, T}+\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1}+o_{p}(1) \\
= & O_{p}(1)+O_{p}\left(\max \left\{1, \sqrt{\frac{T}{N}}\right\}\right)+O_{p}\left(\max \left\{1, \sqrt{\frac{T}{N}}\right\}\right)+o_{p}(1) \\
= & O_{p}\left(\max \left\{1, \sqrt{\frac{T}{N}}\right\}\right) .
\end{aligned}
$$

Consider part (d), where we assume that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T^{\frac{1+\kappa}{3 \kappa}} / q(T)=O$ (1) but $q(T) / T \rightarrow 0$. In this case, applying parts (a) and (b) of Lemma SE-11 and part (d) of Lemmas SE-18 and SE-26; we obtain

$$
\begin{aligned}
& \frac{1}{q(T)^{3 / 2} \sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} \\
= & \frac{N(T-1)}{q(T)^{3 / 2} \sqrt{N T}} \frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\frac{N(T-1)}{q(T)^{3 / 2} \sqrt{N T}} \bar{a}_{N}^{2} \\
& +\frac{1}{q(T)^{3 / 2} \sqrt{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1}-\frac{N(T-1)}{q(T)^{3 / 2} \sqrt{N T}} \bar{a}_{N} \bar{w}_{-1, N, T} \\
= & \frac{\sqrt{N T}}{q(T)^{3 / 2}}\left[\frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\bar{a}_{N}^{2}\right]\left[1+O\left(\frac{1}{T}\right)\right]+O_{p}\left(\max \left\{\frac{1}{\sqrt{q(T)}}, \sqrt{\frac{N}{q(T) T}}\right\}\right) \\
& +O_{p}\left(\max \left\{\frac{1}{\sqrt{q(T)}}, \sqrt{\frac{N}{q(T) T}}\right\}\right) \\
= & \frac{\sqrt{N T}}{q(T)^{3 / 2}}\left[\frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\bar{a}_{N}^{2}\right]+O_{p}\left(\max \left\{\frac{1}{\sqrt{q(T)}}, \sqrt{\frac{N}{q(T) T}}\right\}\right) \\
= & O_{p}\left(\max \left\{\frac{\sqrt{N T}}{q(T)^{3 / 2}}, \frac{1}{\sqrt{q(T)}}, \sqrt{\frac{N}{q(T) T}}\right\}\right),
\end{aligned}
$$

as required for part (d).
Consider part (e), where we assume that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T^{\frac{1+\kappa}{3 \kappa}} \rightarrow$ 0. In this case, again applying parts (a) and (b) of Lemma SE-11, and part (d) of Lemmas SE-18 and

SE-26; we obtain

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i} \\
= & \frac{N(T-1)}{N T} \frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\frac{N(T-1)}{N T} \bar{a}_{N}^{2} \\
& +\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1}-\frac{N(T-1)}{N T} \bar{a}_{N} \bar{w}_{-1, N, T} \\
= & {\left[\frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\bar{a}_{N}^{2}\right]\left[1+O\left(\frac{1}{T}\right)\right]+O_{p}\left(\max \left\{\frac{q(T)}{\sqrt{N T}}, \frac{q(T)}{T}\right\}\right) } \\
& +O_{p}\left(\max \left\{\frac{q(T)}{\sqrt{N T}}, \frac{q(T)}{T}\right\}\right) \\
= & {\left[\frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\bar{a}_{N}^{2}\right]+O_{p}\left(\max \left\{\frac{q(T)}{\sqrt{N T}}, \frac{q(T)}{T}\right\}\right) }
\end{aligned}
$$

which shows part (e).
Finally, consider part (f), where we take
$\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$. In this case, we make use of parts (a) and (b) of Lemma SE-11 and part (e) of Lemmas SE-18 and SE-26 to deduce

$$
\begin{aligned}
& \frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) a_{i}=\left(1-\rho_{T}^{2}\right) \frac{N(T-1)}{N T} \frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\left(1-\rho_{T}^{2}\right) \frac{N(T-1)}{N T} \bar{a}_{N}^{2} \\
& +\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} w_{i t-1}-\left(1-\rho_{T}^{2}\right) \frac{N(T-1)}{N T} \bar{a}_{N} \bar{w}_{-1, N, T} \\
= & \left(1-\rho_{T}^{2}\right)\left[\frac{1}{N} \sum_{i=1}^{N} a_{i}^{2}-\bar{a}_{N}^{2}\right]\left[1+O_{p}\left(\frac{1}{T}\right)\right]+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right) \\
& +O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right) \\
= & \left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+o_{p}(1),
\end{aligned}
$$

which completes the proof of part (f).

Lemma SD-5:

Under Assumptions 1-4, the following statements are true as $N, T \rightarrow \infty$ such that $N^{\kappa} / T \rightarrow \tau$, for constants $\kappa \in\left(\frac{1}{2}, \infty\right)$ and $\tau \in(0, \infty)$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t}=\frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\frac{1}{\sqrt{N}}\right) .
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T \ll q(T)$, then

$$
\frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t}=\frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\frac{1}{\sqrt{N}}\right)
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t}=\frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\frac{1}{\sqrt{N}}\right)
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\begin{aligned}
& \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t} \\
= & \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+O_{p}\left(\max \left\{\frac{1}{\sqrt{q(T)}}, \sqrt{\frac{q(T)}{N T}}, \frac{\sqrt{q(T)}}{T}\right\}\right) .
\end{aligned}
$$

(e) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t}=O_{p}\left(\frac{1}{\sqrt{N T}}\right)
$$

as $N, T \rightarrow \infty$.

Proof:

To proceed, first write

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t}=\sum_{i=1}^{N} \sum_{t=2}^{T}\left(a_{i}-\bar{a}_{N}+w_{i t-1}-\bar{w}_{-1, N, T}\right) \varepsilon_{i t} \\
= & \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t}-N(T-1) \bar{a}_{N} \bar{\varepsilon}_{N, T}+\sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}-N(T-1) \bar{w}_{-1, N, T} \bar{\varepsilon}_{N, T} .
\end{aligned}
$$

Consider first part (a), where we take $\rho_{T}=1$ for all T sufficiently large. Here, we make use of parts (b), (c), and (d) of Lemma SE-11, part (b) of Lemma SE-20, and part (a) of Lemma SE-26 to get

$$
\begin{aligned}
& \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t} \\
= & \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+\frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t}-\frac{N(T-1)}{T \sqrt{N}} \bar{a}_{N} \bar{\varepsilon}_{N, T}-\frac{N(T-1)}{T \sqrt{N}} \bar{w}_{-1, N, T} \bar{\varepsilon}_{N, T} \\
= & \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\operatorname { m a x } \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}\})}\right.\right. \\
= & \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right) \Rightarrow N\left(0, \frac{\sigma^{4}}{2}\right),
\end{aligned}
$$

which shows part (a).
Next, consider part (b), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T \ll q(T)$. In this case, applying parts (b), (c), and (d) of Lemma SE-11, part (a) of Lemma SE-20, and part (b) of Lemma SE-26; and, we obtain

$$
\begin{aligned}
& \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t} \\
= & \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+\frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t}-\frac{N(T-1)}{T \sqrt{N}} \bar{a}_{N} \bar{\varepsilon}_{N, T}-\frac{N(T-1)}{T \sqrt{N}} \bar{w}_{-1, N, T} \bar{\varepsilon}_{N, T} \\
= & \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right) \Rightarrow N\left(0, \frac{\sigma^{4}}{2}\right),
\end{aligned}
$$

as required.
We turn our attention to part (c), where we assume that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. In this case, applying parts (b), (c), and (d) of Lemma SE-11, part (c) of Lemma SE-25, and part (c) of Lemma SE-26; we have

$$
\begin{aligned}
& \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t} \\
= & \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+\frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t}-\frac{N(T-1)}{T \sqrt{N}} \bar{a}_{N} \bar{\varepsilon}_{N, T}-\frac{N(T-1)}{T \sqrt{N}} \bar{w}_{-1, N, T} \bar{\varepsilon}_{N, T} \\
= & \frac{1}{T \sqrt{N}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right)
\end{aligned}
$$

which shows part (c).
Now, consider part (d), where we assume that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$. In this case, applying parts (b), (c), and (d) of Lemma SE-11 and part (d) of Lemmas SE-25 and SE-26; we obtain

$$
\begin{aligned}
& \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t} \\
= & \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+\frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t}-\frac{N(T-1)}{\sqrt{N T q(T)}} \bar{a}_{N} \bar{\varepsilon}_{N, T}-\frac{N(T-1)}{\sqrt{N T(T)}} \bar{w}_{-1, N, T} \bar{\varepsilon}_{N, T} \\
= & \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+O_{p}\left(\frac{1}{\sqrt{q(T)}}\right)+O_{p}\left(\frac{1}{\sqrt{q(T)}}\right)+O_{p}\left(\max \left\{\sqrt{\frac{q(T)}{N T}}, \frac{\sqrt{q(T)}}{T}\right\}\right) \\
= & \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}+O_{p}\left(\max \left\{\frac{1}{\sqrt{q(T)}}, \sqrt{\frac{q(T)}{N T}}, \frac{\sqrt{q(T)}}{T}\right\}\right),
\end{aligned}
$$

as required for part (d).
Finally, consider part (e), where we take
$\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$. In this case, applying parts (b), (c), and (d) of Lemma SE-11 and part (e) of Lemmas SE-25 and SE-26; we have

$$
\begin{aligned}
& \frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N, T}\right) \varepsilon_{i t}=\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t}-\frac{N(T-1)}{N T}\left(1-\rho_{T}^{2}\right) \bar{a}_{N} \bar{\varepsilon}_{N, T} \\
& +\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}-\frac{N(T-1)}{N T}\left(1-\rho_{T}^{2}\right) \bar{w}_{-1, N, T} \bar{\varepsilon}_{N, T} \\
= & O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}\left(\max \left\{\frac{1}{N T}, \frac{1}{\sqrt{N} T^{3 / 2}}\right\}\right) \\
= & O_{p}\left(\frac{1}{\sqrt{N T}}\right),
\end{aligned}
$$

which completes the proof of part (e).

Lemma SD-6:

Under Assumptions 1-4, the following statements are true as $N, T \rightarrow \infty$ such that $N^{\kappa} / T \rightarrow \tau$, for $\kappa \in\left(\frac{1}{2}, \infty\right)$ and $\tau \in(0, \infty)$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T}\left(y_{i t-3}-y_{i t-2}\right)^{2}=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right) .
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$,

$$
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T}\left(y_{i t-3}-y_{i t-2}\right)^{2}=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right) .
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$,

$$
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T}\left(y_{i t-3}-y_{i t-2}\right)^{2}=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$,

$$
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T}\left(y_{i t-3}-y_{i t-2}\right)^{2}=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{q(T)}\right\}\right)
$$

(e) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T}\left(y_{i t-3}-y_{i t-2}\right)^{2}=\frac{2 \sigma^{2}}{1+\rho_{T}}+o_{p}(1)
$$

Proof of Lemma SD-6:

To show part (a), note that, by assumption here, there exists a positive integer I_{ρ} such that for all $T \geq I_{\rho}, \rho_{T}=1$, so that

$$
y_{i t-3}-y_{i t-2}=a_{i}+w_{i t-3}-\left(a_{i}+w_{i t-2}\right)=w_{i t-3}-w_{i t-2}=-\varepsilon_{i t-2},
$$

for all $T \geq I_{\rho}$. Hence, we can apply part (f) of Lemma SE-11 with $g=2$ to obtain

$$
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T}\left(y_{i t-3}-y_{i t-2}\right)^{2}=\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2}^{2}=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)
$$

Now, to show parts (b)-(d), we first write

$$
y_{i t-3}-y_{i t-2}=w_{i t-3}-w_{i t-2}=\left(1-\rho_{T}\right) w_{i t-3}-\varepsilon_{i t-2}
$$

from which we obtain

$$
\begin{aligned}
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T}\left(y_{i t-3}-y_{i t-2}\right)^{2}= & \left(1-\rho_{T}\right)^{2} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2}-2\left(1-\rho_{T}\right) \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-2} \\
& +\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2}^{2}
\end{aligned}
$$

Next, consider part (b), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$. In this case, applying Lemma SE-15, we obtain

$$
\begin{aligned}
& \left(1-\rho_{T}\right)^{2} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2}=T\left(1-\exp \left\{-\frac{1}{q(T)}\right\}\right)^{2} \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2} \\
= & T\left(1-\left[1-\frac{1}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right]\right)^{2} \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2} \\
= & T\left(\frac{1}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right)^{2} \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2}=\frac{T}{q(T)^{2}} \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
= & O_{p}\left(\frac{T}{q(T)^{2}}\right) .
\end{aligned}
$$

and, by part (b) of Lemma SE-25

$$
\begin{aligned}
& 2\left(1-\rho_{T}\right) \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-2}=2\left[\frac{1}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right] \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-2} \\
= & \frac{2}{q(T)}\left[1+O\left(\frac{1}{q(T)}\right)\right] O_{p}\left(\frac{1}{\sqrt{N}}\right)=O_{p}\left(\frac{1}{q(T) \sqrt{N}}\right) .
\end{aligned}
$$

Using these results and part (f) of Lemma SE-11 with $g=2$, we have

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T}\left(y_{i t-3}-y_{i t-2}\right)^{2} \\
= & \left(1-\rho_{T}\right)^{2} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2}-2\left(1-\rho_{T}\right) \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-2}+\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2}^{2} \\
= & O_{p}\left(\frac{T}{q(T)^{2}}\right)+O_{p}\left(\frac{1}{q(T) \sqrt{N}}\right)+\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right) \\
= & \sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)
\end{aligned}
$$

Consider part (c), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. In this case, applying part (a) of Lemma SE-17, we obtain

$$
\begin{aligned}
& \left(1-\rho_{T}\right)^{2} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2}=T\left(1-\exp \left\{-\frac{1}{q(T)}\right\}\right)^{2} \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2} \\
= & \frac{T}{q(T)^{2}} \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2}\left[1+O\left(\frac{1}{q(T)}\right)\right]=O_{p}\left(\frac{1}{T}\right),
\end{aligned}
$$

and, by part (c) of Lemma SE-25,

$$
2\left(1-\rho_{T}\right) \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-2}=2\left[\frac{1}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right] \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-2}=O_{p}\left(\frac{1}{T \sqrt{N}}\right) .
$$

Using these results along with part (f) of Lemma SE-11 with $g=2$, we have

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T}\left(y_{i t-3}-y_{i t-2}\right)^{2}=\left(1-\rho_{T}\right)^{2} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2}-2\left(1-\rho_{T}\right) \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-2} \\
& +\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2}^{2} \\
= & O_{p}\left(\frac{1}{T}\right)+O_{p}\left(\frac{1}{T \sqrt{N}}\right)+\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right) \\
= & \sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right) .
\end{aligned}
$$

We turn our attention now to part (d), where we assume that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$. In this case, applying part (b) of Lemma SE-17, we obtain

$$
\begin{aligned}
& \left(1-\rho_{T}\right)^{2} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2}=q(T)\left(1-\exp \left\{-\frac{1}{q(T)}\right\}\right)^{2} \frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2} \\
= & \frac{1}{q(T)} \frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2}\left[1+O\left(\frac{1}{q(T)}\right)\right]=O_{p}\left(\frac{1}{q(T)}\right),
\end{aligned}
$$

and, by part (d) of Lemma SE-25,

$$
\begin{aligned}
& 2\left(1-\rho_{T}\right) \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-2}=2\left[\frac{1}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right] \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-2} \\
= & \frac{2}{q(T)}\left[1+O\left(\frac{1}{q(T)}\right)\right] O_{p}\left(\sqrt{\frac{q(T)}{N T}}\right)=O_{p}\left(\frac{1}{\sqrt{N T q(T)}}\right) .
\end{aligned}
$$

Using these results and part (f) of Lemma SE-11 with $g=2$, we have

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T}\left(y_{i t-3}-y_{i t-2}\right)^{2}=\left(1-\rho_{T}\right)^{2} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2}-2\left(1-\rho_{T}\right) \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-2} \\
& +\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2}^{2} \\
= & O_{p}\left(\frac{1}{q(T)}\right)+O_{p}\left(\frac{1}{\sqrt{N T q(T)}}\right)+\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right) \\
= & \sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{q(T)}\right\}\right) .
\end{aligned}
$$

Finally, consider part (e), where we take $\rho_{T} \in \mathcal{G}_{\text {St }}$. In this case, applying part (c) of Lemma SE-17, we have

$$
\begin{aligned}
\left(1-\rho_{T}\right)^{2} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2} & =\frac{\left(1-\rho_{T}\right)^{2}}{1-\rho_{T}^{2}} \frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2}=\frac{\left(1-\rho_{T}\right)^{2}}{1-\rho_{T}^{2}}\left[\sigma^{2}+o_{p}(1)\right] \\
& =\frac{1-\rho_{T}}{1+\rho_{T}} \sigma^{2}+o_{p}(1)
\end{aligned}
$$

Moreover, by part (e) of Lemma SE-25, we have

$$
2\left(1-\rho_{T}\right) \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-2}=O_{p}\left(\frac{1}{\sqrt{N T}}\right) .
$$

Hence, applying part (f) of Lemma SE-11, we deduce that

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T}\left(y_{i t-3}-y_{i t-2}\right)^{2} \\
= & {\left[\left(1-\rho_{T}\right)^{2} \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3}^{2}-2\left(1-\rho_{T}\right) \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-2}+\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-2}^{2}\right] } \\
= & \frac{1-\rho_{T}}{1+\rho_{T}} \sigma^{2}+o_{p}(1)+O_{p}\left(\frac{1}{\sqrt{N T}}\right)+\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right) \\
= & \frac{2 \sigma^{2}}{1+\rho_{T}}+o_{p}(1),
\end{aligned}
$$

as desired.

Lemma SD-7:

Under Assumptions 1-4, the following statements are true as $N, T \rightarrow \infty$ such that $N^{\kappa} / T \rightarrow \tau$, for $\kappa \in\left(\frac{1}{2}, \infty\right)$ and $\tau \in(0, \infty)$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\frac{1}{N T} \sum_{i=1}^{N} y_{i T-2}^{2}=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right)
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$, then

$$
\frac{1}{N T} \sum_{i=1}^{N} y_{i T-2}^{2}=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}, \frac{T}{q(T)}\right\}\right)
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\frac{1}{N T} \sum_{i=1}^{N} y_{i T-2}^{2}=\frac{\sigma^{2}}{2} \frac{q(T)}{T}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right)
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\frac{1}{N T} \sum_{i=1}^{N} y_{i T-2}^{2}=O_{p}\left(\frac{q(T)}{T}\right)+O_{p}\left(\sqrt{\frac{q(T)}{N T}}\right)=o_{p}(1)
$$

(e) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\frac{1}{N T} \sum_{i=1}^{N} y_{i T-2}^{2}=O_{p}\left(\frac{1}{T}\right)
$$

Proof of Lemma SD-7:

To proceed, consider first part (a), where we take $\rho_{T}=1$ for all T sufficiently large. In this case, we apply part (a) of Lemmas SE-11, SE-30, and SE-32 to obtain

$$
\begin{aligned}
\frac{1}{N T} \sum_{i=1}^{N} y_{i T-2}^{2} & =\frac{1}{N T} \sum_{i=1}^{N}\left(a_{i}+w_{i T-2}\right)^{2}=\frac{1}{N T} \sum_{i=1}^{N} w_{i T-2}^{2}+2 \frac{1}{N T} \sum_{i=1}^{N} a_{i} w_{i T-2}+\frac{1}{N T} \sum_{i=1}^{N} a_{i}^{2} \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right)+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\frac{1}{T}\right) \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right) .
\end{aligned}
$$

Next, consider part (b), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$. In this case, we apply part (a) of Lemmas SE-11 and part (b) of Lemmas SE-30 and SE-32 to obtain

$$
\begin{aligned}
\frac{1}{N T} \sum_{i=1}^{N} y_{i T-2}^{2} & =\frac{1}{N T} \sum_{i=1}^{N} w_{i T-2}^{2}+2 \frac{1}{N T} \sum_{i=1}^{N} a_{i} w_{i T-2}+\frac{1}{N T} \sum_{i=1}^{N} a_{i}^{2} \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}, \frac{T}{q(T)}\right\}\right)+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\frac{1}{T}\right) \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}, \frac{T}{q(T)}\right\}\right) .
\end{aligned}
$$

Consider part (c), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. In this case, application of part (a) of Lemmas SE-11 and part (c) of Lemmas SE-30 and SE-32 yields

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} y_{i T-2}^{2}=\frac{1}{N T} \sum_{i=1}^{N} w_{i T-2}^{2}+2 \frac{1}{N T} \sum_{i=1}^{N} a_{i} w_{i T-2}+\frac{1}{N T} \sum_{i=1}^{N} a_{i}^{2} \\
= & \frac{\sigma^{2}}{2} \frac{q(T)}{T}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right)+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\frac{1}{T}\right) \\
= & \frac{\sigma^{2}}{2} \frac{q(T)}{T}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right) .
\end{aligned}
$$

Now, we turn our attention to part (d), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$. In this case, we apply part (a) of Lemmas SE-11 and part (d) of Lemmas SE-30 and SE-32 to obtain

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} y_{i T-2}^{2}=\frac{1}{N T} \sum_{i=1}^{N} w_{i T-2}^{2}+2 \frac{1}{N T} \sum_{i=1}^{N} a_{i} w_{i T-2}+\frac{1}{N T} \sum_{i=1}^{N} a_{i}^{2} \\
= & O_{p}\left(\frac{q(T)}{T}\right)+O_{p}\left(\frac{1}{T} \sqrt{\frac{q(T)}{N}}\right)+O_{p}\left(\frac{1}{T}\right)=O_{p}\left(\frac{q(T)}{T}\right) .
\end{aligned}
$$

Finally, consider part (e), where we take $\rho_{T} \in \mathcal{G}_{\text {St }}$. In this case, we obtain part (a) of Lemmas SE-11 and part (e) of Lemmas SE-30 and SE-32 to obtain

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} y_{i T-2}^{2}=\frac{1}{N T} \sum_{i=1}^{N} w_{i T-2}^{2}+2 \frac{1}{N T} \sum_{i=1}^{N} a_{i} w_{i T-2}+\frac{1}{N T} \sum_{i=1}^{N} a_{i}^{2} \\
= & O_{p}\left(\frac{1}{T}\right)+O_{p}\left(\frac{1}{\sqrt{N} T}\right)+O_{p}\left(\frac{1}{T}\right)=O_{p}\left(\frac{1}{T}\right) .
\end{aligned}
$$

Lemma SD-8:

Suppose that Assumptions 1-4 hold. Then, the following statements are true as $N, T \rightarrow \infty$ such that $N^{\kappa} / T \rightarrow \tau$, for $\kappa \in\left(\frac{1}{2}, \infty\right)$ and $\tau \in(0, \infty)$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}=\sigma^{2}+O_{p}\left(\frac{1}{\sqrt{N}}\right)
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T \ll q(T)$, then

$$
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}=\sigma^{2}+O_{p}\left(\max \left\{\frac{T}{q(T)}, \frac{1}{\sqrt{N}}\right\}\right)
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\begin{aligned}
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}= & \sigma^{2}\left(1-\frac{1}{4} \frac{q(T)}{T}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\right) \\
& +O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right) .
\end{aligned}
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}=\frac{\sigma^{2}}{2}+O_{p}\left(\max \left\{\frac{1}{q(T)}, \frac{q(T)}{T}, \sqrt{\frac{q(T)}{N T}}, \frac{1}{\sqrt{T}}\right\}\right)
$$

(e) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}=\frac{\sigma^{2}}{1+\rho_{T}}+O_{p}\left(\frac{1}{\sqrt{T}}\right)
$$

Proof of Lemma SD-8:

To proceed, first write

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}=\sum_{i=1}^{N} \sum_{t=3}^{T}\left[a_{i}\left(1-\rho_{T}\right)+\left(\rho_{T}-1\right) y_{i t-2}+\varepsilon_{i t-1}\right]\left[a_{i}\left(1-\rho_{T}\right)+\rho_{T} y_{i t-2}+\varepsilon_{i t-1}\right] \\
= & \left(1-\rho_{T}\right)^{2} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i}^{2}+\rho_{T}\left(\rho_{T}-1\right) \sum_{i=1}^{N} \sum_{t=3}^{T} y_{i t-2}^{2}+\sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1}^{2}+\left(1-\rho_{T}\right)\left[2 \rho_{T}-1\right] \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} y_{i t-2} \\
& +2\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1}+\left(\rho_{T}-1\right) \sum_{i=1}^{N} \sum_{t=3}^{T} y_{i t-2} \varepsilon_{i t-1}+\rho_{T} \sum_{i=1}^{N} \sum_{t=3}^{T} y_{i t-2} \varepsilon_{i t-1} \\
= & \left(1-\rho_{T}\right)^{2} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i}^{2}+\rho_{T}\left(\rho_{T}-1\right) \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i}^{2}+2 \rho_{T}\left(\rho_{T}-1\right) \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} w_{i t-2} \\
& +\rho_{T}\left(\rho_{T}-1\right) \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2}^{2}+\sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1}^{2}+\left(1-\rho_{T}\right)\left[2 \rho_{T}-1\right] \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i}^{2} \\
& +\left(1-\rho_{T}\right)\left[2 \rho_{T}-1\right] \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} w_{i t-2}+2\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1}+\left(\rho_{T}-1\right) \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1} \\
& +\left(\rho_{T}-1\right) \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1}+\rho_{T} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1}+\rho_{T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1} \\
= & \left(1-\rho_{T}\right)\left[1-\rho_{T}-\rho_{T}+2 \rho_{T}-1\right] \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i}^{2}+\left(1-\rho_{T}\right)\left[2 \rho_{T}-1-2 \rho_{T}\right] \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} w_{i t-2} \\
& +\rho_{T}\left(\rho_{T}-1\right) \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2}^{2}+\sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1}^{2}+\left[\left(1-\rho_{T}\right)(2-1)+\rho_{T}\right] \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1} \\
& +\left(\rho_{T}-1+\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1} \\
= & -\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} w_{i t-2}-\rho_{T}\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2}^{2}+\sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1}^{2}+\sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1} \\
& +\left(2 \rho_{T}-1\right) \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1}
\end{aligned}
$$

Consider part (a), where we take $\rho_{T}=1$ for all T sufficiently large. In this case, we can apply parts (c) and (f) of Lemma SE-11, Lemma SE-14, part (a) of Lemma SE-18, and part (a) of Lemma SE-25 to obtain

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1} \\
= & \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1}^{2}+\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1}-\frac{\left(1-\rho_{T}\right)}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} w_{i t-2} \\
& -\frac{\rho_{T}\left(1-\rho_{T}\right)}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2}^{2}+\frac{\left(2 \rho_{T}-1\right)}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1} \\
= & \sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}\left(\left(1-\rho_{T}\right) \max \left\{\sqrt{\frac{T}{N}}, 1\right\}\right) \\
& +O_{p}\left(\left(1-\rho_{T}\right) T\right)+O_{p}\left(\frac{1}{\sqrt{N}}\right) \\
= & \sigma^{2}+O_{p}\left(\frac{1}{\sqrt{N}}\right) .
\end{aligned}
$$

Now, consider part (b) where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T \ll q(T)$. Here, applying parts (c) and (f) of Lemma SE-11, Lemma SE-15, part (b) of Lemma SE-18, and part (b) of Lemma SE-25; we obtain

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}=\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1}^{2}+\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1}-\frac{\left(1-\rho_{T}\right)}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} w_{i t-2} \\
& -\frac{\rho_{T}\left(1-\rho_{T}\right)}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2}^{2}+\frac{\left(2 \rho_{T}-1\right)}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1} \\
= & \sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}\left(\frac{1}{q(T)} \max \left\{\sqrt{\frac{T}{N}}, 1\right\}\right) \\
& +O_{p}\left(\frac{T}{q(T)}\right)+O_{p}\left(\frac{1}{\sqrt{N}}\right) \\
= & \sigma^{2}+O_{p}\left(\max \left\{\frac{T}{q(T)}, \frac{1}{\sqrt{N}}\right\}\right) .
\end{aligned}
$$

Next, consider part (c) where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. Here, applying parts (c) and (f) of Lemma SE-11, part (a) of Lemma SE-17, part (c) of Lemma SE-18, and part (c) of

Lemma SE-25; we obtain

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}=\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1}^{2}-\frac{\rho_{T}\left(1-\rho_{T}\right)}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2}^{2}-\frac{\left(1-\rho_{T}\right)}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} w_{i t-2} \\
& +\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1}+\frac{\left(2 \rho_{T}-1\right)}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1} \\
= & \sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)-\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2}^{2}\left[1+O_{p}\left(\frac{1}{q(T)}\right)\right] \\
& +O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}\left(\frac{1}{\sqrt{N}}\right) \\
= & \sigma^{2}\left(1-\frac{1}{4} \frac{q(T)}{T}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\right)+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right) .
\end{aligned}
$$

Consider part (d) where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$. Here, applying parts (c) and (f) of Lemma SE-11, part (b) of Lemma SE-17, part (d) of Lemma SE-18, and part (d) of Lemma SE-25; we obtain

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}=\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1}^{2}-\frac{\rho_{T}\left(1-\rho_{T}\right)}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2}^{2}-\frac{\left(1-\rho_{T}\right)}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} w_{i t-2} \\
& +\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1}+\frac{\left(2 \rho_{T}-1\right)}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1} \\
= & \sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)-\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2}^{2}\left[1+O_{p}\left(\frac{1}{q(T)}\right)\right] \\
& +O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}\left(\sqrt{\frac{q(T)}{N T}}\right) \\
= & \sigma^{2}-\frac{\sigma^{2}}{2}\left[1+O_{p}\left(\max \left\{\frac{1}{q(T)}, \frac{q(T)}{T}, \sqrt{\frac{q(T)}{N T}}, \frac{1}{\sqrt{T}}\right\}\right)\right]+O_{p}\left(\max \left\{\sqrt{\frac{q(T)}{N T}}, \frac{1}{T}\right\}\right) \\
= & \frac{\sigma^{2}}{2}+O_{p}\left(\max \left\{\frac{1}{q(T)}, \frac{q(T)}{T}, \sqrt{\frac{q(T)}{N T}}, \frac{1}{\sqrt{T}}\right\}\right) .
\end{aligned}
$$

Finally, consider part (e) where we take
$\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$. Here, applying parts
(c) and (f) of Lemma SE-11, part (c) of Lemma SE-17, part (e) of Lemma SE-18, and part (e) of Lemma

SE-25; we obtain

$$
\begin{aligned}
& \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1} y_{i t-1}=\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1}^{2}-\frac{\rho_{T}\left(1-\rho_{T}\right)}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2}^{2}-\frac{\left(1-\rho_{T}\right)}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} w_{i t-2} \\
& +\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1}+\frac{\left(2 \rho_{T}-1\right)}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t-1} \\
= & \sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)-\frac{\rho_{T}}{1+\rho_{T}} \frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2}^{2} \\
& +O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}\left(\frac{1}{\sqrt{N T}}\right) \\
= & \sigma^{2}-\frac{\rho_{T} \sigma^{2}}{1+\rho_{T}}\left[1+O_{p}\left(\frac{1}{\sqrt{T}}\right)\right]+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right) \\
= & \frac{\sigma^{2}}{1+\rho_{T}}+O_{p}\left(\frac{1}{\sqrt{T}}\right) .
\end{aligned}
$$

Lemma SD-9:

Suppose that Assumptions 1-4 hold. Then, the following statements are true as $N, T \rightarrow \infty$ such that $N^{\kappa} / T \rightarrow \tau$ for some $\kappa \in\left(\frac{1}{2}, \infty\right)$ and $\tau \in(0, \infty)$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\begin{aligned}
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right] & =\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}+O_{p}\left(1-\rho_{T}\right) \\
& \Rightarrow N\left(0, \sigma^{4}\right) .
\end{aligned}
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T \ll q(T)$, then

$$
\begin{aligned}
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right] & =\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}+O_{p}\left(\frac{\sqrt{T}}{q(T)}\right) \\
& \Rightarrow N\left(0, \sigma^{4}\right) .
\end{aligned}
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\begin{aligned}
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right] & =\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}+O_{p}\left(\frac{1}{\sqrt{T}}\right) \\
& \Rightarrow N\left(0, \sigma^{4}\right) .
\end{aligned}
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \ll T$ but $T^{\frac{1}{2}\left(\frac{1}{\kappa}-1\right)} / q(T) \rightarrow 0$, then

$$
\begin{aligned}
& \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right] \\
= & \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}+O_{p}\left(\max \left\{\frac{1}{\sqrt{q(T)}}, \frac{T^{\frac{1}{2}\left(\frac{1}{\kappa}-1\right)}}{q(T)}\right\}\right) \Rightarrow N\left(0, \sigma^{4}\right) .
\end{aligned}
$$

(e) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T^{\frac{1}{2}\left(\frac{1}{\kappa}-1\right)}=O(1)$, then

$$
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right]=O_{p}\left(\max \left\{1, \frac{T^{\frac{1}{2}\left(\frac{1}{\kappa}-1\right)}}{q(T)}\right\}\right) .
$$

(f) If $\rho_{T} \in \mathcal{G}_{\text {St }}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right]=O_{p}\left(\max \left\{1, \sqrt{\frac{N}{T}}\right\}\right)=O_{p}\left(\max \left\{1, T^{\frac{1}{2}\left(\frac{1}{\kappa}-1\right)}\right\}\right)
$$

Proof of Lemma SD-9:

To proceed, first write

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right]=\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=3}^{T}\left[a_{i}\left(1-\rho_{T}\right)+\left(\rho_{T}-1\right) y_{i t-2}+\varepsilon_{i t-1}\right] a_{i} \\
& +\sum_{i=1}^{N} \sum_{t=3}^{T}\left[a_{i}\left(1-\rho_{T}\right)+\left(\rho_{T}-1\right) y_{i t-2}+\varepsilon_{i t-1}\right] \varepsilon_{i t} \\
= & \left(1-\rho_{T}\right)^{2} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i}^{2}-\left(1-\rho_{T}\right)^{2} \sum_{i=1}^{N} \sum_{t=3}^{T}\left(a_{i}+w_{i t-2}\right) a_{i}+\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1} \\
& +\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t}-\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=3}^{T}\left(a_{i}+w_{i t-2}\right) \varepsilon_{i t}+\sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t} \\
= & -\left(1-\rho_{T}\right)^{2} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} w_{i t-2}+\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1}-\left(1-\rho_{T}\right) \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t}+\sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t} .
\end{aligned}
$$

Consider part (a), where we take $\rho_{T}=1$ for all T sufficiently large. In this case, we can apply parts (c) and (h) of Lemma SE-11, part (a) of Lemma SE-18, and part (a) of Lemma SE-25 to obtain

$$
\begin{aligned}
& \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right]=\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}-\frac{\left(1-\rho_{T}\right)}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t} \\
& -\frac{\left(1-\rho_{T}\right)^{2}}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} w_{i t-2}+\frac{\left(1-\rho_{T}\right)}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1} \\
= & \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}+O_{p}\left(\left(1-\rho_{T}\right) \sqrt{T}\right)+O_{p}\left(\left(1-\rho_{T}\right)^{2} \max \{T, \sqrt{N T}\}\right)+O_{p}\left(1-\rho_{T}\right) \\
= & \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}+O_{p}\left(\left(1-\rho_{T}\right) \sqrt{T}\right) \Rightarrow N\left(0, \sigma^{4}\right) .
\end{aligned}
$$

Now, consider part (b) where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T \ll q(T)$. Here, applying
parts (c) and (h) Lemma SE-11, part (b) of Lemma SE-18, and part (b) of Lemma SE-25; we obtain

$$
\begin{aligned}
& \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right] \\
= & \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}-\frac{\left(1-\rho_{T}\right)}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t}-\frac{\left(1-\rho_{T}\right)^{2}}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} w_{i t-2} \\
& +\frac{\left(1-\rho_{T}\right)}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1} \\
= & \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}+O_{p}\left(\frac{\sqrt{T}}{q(T)}\right)+O_{p}\left(\max \left\{\frac{T}{q(T)^{2}}, \frac{\sqrt{N T}}{q(T)^{2}}\right\}\right)+O_{p}\left(\frac{1}{q(T)}\right) \\
= & \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}+O_{p}\left(\frac{\sqrt{T}}{q(T)}\right) \Rightarrow N\left(0, \sigma^{4}\right) .
\end{aligned}
$$

Next, consider part (c) where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. Here, applying parts (c) and (h) Lemma SE-11, part (c) of Lemma SE-18, and part (c) of Lemma SE-25; we obtain

$$
\begin{aligned}
& \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right]=\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}-\frac{\left(1-\rho_{T}\right)}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t} \\
& -\frac{\left(1-\rho_{T}\right)^{2}}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} w_{i t-2}+\frac{\left(1-\rho_{T}\right)}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1} \\
= & \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}+O_{p}\left(\frac{1}{\sqrt{T}}\right)+O_{p}\left(\max \left\{\frac{1}{T}, \frac{\sqrt{N}}{T^{3 / 2}}\right\}\right)+O_{p}\left(\frac{1}{T}\right) \\
= & \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}+O_{p}\left(\frac{1}{\sqrt{T}}\right) \Rightarrow N\left(0, \sigma^{4}\right) .
\end{aligned}
$$

Consider part (d) where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \ll T$ but $T^{\frac{1}{2}\left(\frac{1}{\kappa}-1\right)} / q(T) \rightarrow 0$. Here, applying parts (c) and (h) Lemma SE-11, part (d) of Lemma SE-18, and part (d) of Lemma

SE-25; we obtain

$$
\begin{aligned}
& \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right] \\
= & \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}-\frac{\left(1-\rho_{T}\right)}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t}-\frac{\left(1-\rho_{T}\right)^{2}}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} w_{i t-2} \\
& +\frac{\left(1-\rho_{T}\right)}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1} \\
= & \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}+O_{p}\left(\frac{1}{\sqrt{q(T)}}\right)+O_{p}\left(\operatorname { m a x } \left\{\frac{1}{q(T)}, \frac{1}{q(T)} \sqrt{\left.\left.\frac{N}{T}\right\}\right)+O_{p}\left(\frac{1}{q(T)}\right)}\right.\right. \\
= & \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}+O_{p}\left(\max \left\{\frac{1}{\sqrt{q(T)}}, \frac{T^{\frac{1}{2}\left(\frac{1}{\kappa}-1\right)}}{q(T)}\right\}\right)\left(\text { for } \kappa \in\left(\frac{1}{2}, \infty\right)\right) \\
\Rightarrow & N\left(0, \sigma^{4}\right) .
\end{aligned}
$$

Consider part (e) where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T^{\frac{1}{2}\left(\frac{1}{\kappa}-1\right)}=$ O (1). Here, applying parts (c) and (h) Lemma SE-11, part (d) of Lemma SE-18, and part (d) of Lemma SE-25; we obtain

$$
\begin{aligned}
& \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right] \\
= & \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}-\frac{\left(1-\rho_{T}\right)^{2}}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} w_{i t-2}-\frac{\left(1-\rho_{T}\right)}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t} \\
& +\frac{\left(1-\rho_{T}\right)}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1} \\
= & O_{p}(1)+O_{p}\left(\max \left\{\frac{1}{q(T)}, \frac{1}{q(T)} \sqrt{\frac{N}{T}}\right\}\right)+O_{p}\left(\frac{1}{\sqrt{q(T)}}\right)+O_{p}\left(\frac{1}{q(T)}\right) \\
= & O_{p}\left(\max \left\{1, \frac{T^{\frac{1}{2}\left(\frac{1}{\kappa}-1\right)}}{q(T)}\right\}\right),
\end{aligned}
$$

for $\kappa \in\left(\frac{1}{2}, \infty\right)$.
Finally, consider part (f) where we take
$\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$. Here, applying parts
(c) and (h) Lemma SE-11, part (e) of Lemma SE-18, and part (e) of Lemma SE-25; we obtain

$$
\begin{aligned}
& \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \Delta y_{i t-1}\left[a_{i}\left(1-\rho_{T}\right)+\varepsilon_{i t}\right] \\
= & \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} \varepsilon_{i t-1} \varepsilon_{i t}-\frac{\left(1-\rho_{T}\right)^{2}}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} w_{i t-2}-\frac{\left(1-\rho_{T}\right)}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2} \varepsilon_{i t} \\
& +\frac{\left(1-\rho_{T}\right)}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=3}^{T} a_{i} \varepsilon_{i t-1} \\
= & O_{p}(1)+O_{p}\left(\max \left\{1, \sqrt{\frac{N}{T}}\right\}\right)+O_{p}(1)+O_{p}(1) \\
= & O_{p}\left(\max \left\{1, \sqrt{\frac{N}{T}}\right\}\right) .
\end{aligned}
$$

Lemma SD-10:

Let $\mathcal{G}_{1}, \mathcal{G}_{2}, \ldots ., \mathcal{G}_{J}$ be J mutually exclusive collections of (parameter) sequences. Now, let $\left\{\rho_{j, T}\right\} \in \mathcal{G}_{s_{j}}$ (for $j=1, \ldots, J$), i.e., $\left\{\rho_{j, T}\right\}$ is a sequence belonging to the collection $\mathcal{G}_{s_{j}}$, where $s_{j} \in\{1, \ldots, J\}$. Define $T_{j}=f_{j}(T)(j=1, \ldots, d)$, with $d \leq J$, where $f_{j}(\cdot): \mathbb{N} \rightarrow \mathbb{N}$ is an increasing function in its argument, and let $\left\{\rho_{j, T_{j}}\right\}$ denote a subsequence of $\left\{\rho_{j, T}\right\}$. Furthermore, let \mathcal{G}^{*} be a collection of parameter sequences, and for each $\left\{\rho_{T}\right\} \in \mathcal{G}^{*}$, suppose that

$$
\left\{\rho_{T}\right\}=\bigcup_{j=1}^{d}\left\{\rho_{j, T_{j}}\right\}
$$

where

$$
\left\{\rho_{1, T_{1}}\right\} \in \mathcal{G}_{s_{1}}, \ldots,\left\{\rho_{d, T_{d}}\right\} \in \mathcal{G}_{s_{d}}
$$

with $\mathcal{G}_{s_{k}} \neq \mathcal{G}_{s_{\ell}}$ for $k \neq \ell$ and where

$$
\mathbb{N}=\bigcup_{k=1}^{d}\left\{T_{k}=f_{k}(T): T \in \mathbb{N}\right\}
$$

Finally, let $\mathbb{S}_{T}\left(\rho_{T}\right)$ be a sequence of statistics, possibly depending on ρ_{T}, and let $\zeta(T)$ be a function of T such that $\zeta(T) \rightarrow 0$ as $T \rightarrow \infty$. Then, the following statements hold as $T \rightarrow \infty$.
(a) If for each $j \in\{1, . ., d\}$ and each $\left\{\rho_{j, T}\right\} \in \mathcal{G}_{s_{j}}$

$$
\mathbb{S}_{T}\left(\rho_{j, T}\right)=O_{p}(\zeta(T)),
$$

then

$$
\mathbb{S}_{T}\left(\rho_{T}\right)=O_{p}(\zeta(T)),
$$

for all $\left\{\rho_{T}\right\} \in \mathcal{G}^{*}$.
(b) If for each $j \in\{1, . ., d\}$ and each $\left\{\rho_{j, T}\right\} \in \mathcal{G}_{s_{k}}$

$$
\mathbb{S}_{T}\left(\rho_{j, T}\right) \Rightarrow W, \text { as } T \rightarrow \infty
$$

for some random variable W, then

$$
\mathbb{S}_{T}\left(\rho_{T}\right) \Rightarrow W, \quad \text { as } T \rightarrow \infty,
$$

for all $\left\{\rho_{T}\right\} \in \mathcal{G}^{*}$.

Proof of Lemma SD-10:

To show (a), note that, by assumption, for any $\varepsilon>0$ and for each $j \in\{1, . ., d\}$, there exists a positive constant $K_{j, \varepsilon}$ and a positive integer L_{j} such that for all $T \geq L_{j}$

$$
\operatorname{Pr}\left(\left.\left|\frac{\mathbb{S}_{T}(\rho)}{\zeta(T)}\right| \geq K_{j, \varepsilon} \right\rvert\, \rho=\rho_{j, T}\right)<\varepsilon
$$

Since, for $T \geq L_{j}, T_{j}=f_{j}(T) \geq T \geq L_{j}$ by Lemma SE-33 in Appendix SE below, we further deduce that

$$
\operatorname{Pr}\left(\left.\left|\frac{\mathbb{S}_{T_{j}}(\rho)}{\zeta\left(T_{j}\right)}\right| \geq K_{j, \varepsilon} \right\rvert\, \rho=\rho_{j, T_{j}}\right)<\varepsilon .
$$

for any subsequence $\left\{\rho_{j, T_{j}}\right\} \in \mathcal{G}_{s_{j}}$ and for all $j \in\{1, . ., d\}$. Next, let $L^{\max }=\max \left\{f_{1}\left(L_{1}\right), \ldots, f_{d}\left(L_{d}\right)\right\}$ and $K_{\varepsilon}^{\max }=\max \left\{K_{1, \varepsilon}, \ldots, K_{d, \varepsilon}\right\}$. Consider any $T \geq L^{\max }$, and we must have

$$
T=f_{j}\left(T^{*}\right)
$$

for some $j=1, \ldots, d$ and some $T^{*} \in \mathbb{N}$. By Lemma SE-33, we have that

$$
T=f_{j}\left(T^{*}\right) \geq L^{\max } \geq f_{j}\left(L_{j}\right) \geq L_{j}
$$

from which we also deduce that $T^{*} \geq L_{j}$ since $f_{j}(\cdot)$ is a monotonically increasing function. Hence, for any $\left\{\rho_{T}\right\} \in \mathcal{G}^{*}$ and for all $T \geq L^{\text {max }}$

$$
\operatorname{Pr}\left(\left.\left|\frac{\mathbb{S}_{T}(\rho)}{\zeta(T)}\right| \geq K_{\varepsilon}^{\max } \right\rvert\, \rho=\rho_{T}\right) \leq \operatorname{Pr}\left(\left.\left|\frac{\mathbb{S}_{j}\left(T^{*}\right)(\rho)}{\zeta\left(f_{j}\left(T^{*}\right)\right)}\right| \geq K_{j, \varepsilon} \right\rvert\, \rho=\rho_{f_{j}\left(T^{*}\right)}\right)<\varepsilon .
$$

It follows that

$$
\mathbb{S}_{T}\left(\rho_{T}\right)=O_{p}(\zeta(T))
$$

for all $\left\{\rho_{T}\right\} \in \mathcal{G}^{*}$.
For part (b), note that, in this case, for any $\varepsilon>0$ and for each $j \in\{1, . ., d\}$, there exists a positive integer L_{j} such that for all $T \geq L_{j}$

$$
\left|\operatorname{Pr}\left(\mathbb{S}_{T}(\rho) \leq x \mid \rho=\rho_{j, T}\right)-F_{W}(x)\right|<\varepsilon,
$$

for each x which is a point of continuity of $F_{W}(\cdot)$, the cdf of W. Since, for $T \geq L_{j}, T_{j}=f_{j}(T) \geq T \geq L_{j}$ by Lemma SE-33 in Appendix SE below, we further deduce that

$$
\left|\operatorname{Pr}\left(\mathbb{S}_{T_{j}}(\rho) \leq x \mid \rho=\rho_{j, T_{j}}\right)-F_{W}(x)\right|<\varepsilon,
$$

for each x which is a point of continuity of $F_{W}(\cdot)$. Next, let $L^{\max }=\max \left\{f_{1}\left(L_{1}\right), \ldots, f_{d}\left(L_{d}\right)\right\}$. Consider any $T \geq L^{\text {max }}$, and we must have

$$
T=f_{j}\left(T^{*}\right),
$$

for some $j=1, \ldots, d$ and some $T^{*} \in \mathbb{N}$. Again, by Lemma SE-33, we have that

$$
T=f_{j}\left(T^{*}\right) \geq L^{\max } \geq f_{j}\left(L_{j}\right) \geq L_{j},
$$

and, thus, $T \geq T^{*} \geq L_{j}$ from which it follows that, for any $\left\{\rho_{T}\right\} \in \mathcal{G}^{*}$ and for all $T \geq L^{\max }$,

$$
\begin{aligned}
& \left|\operatorname{Pr}\left(\mathbb{S}_{T}(\rho) \leq x \mid \rho=\rho_{T}\right)-F_{W}(x)\right| \\
= & \left|\operatorname{Pr}\left(\mathbb{S}_{f_{j}\left(T^{*}\right)}(\rho) \leq x \mid \rho=\rho_{f_{j}\left(T^{*}\right)}\right)-F_{W}(x)\right| \\
< & \varepsilon,
\end{aligned}
$$

for each x which is a point of continuity of $F_{W}(\cdot)$, as required.

Lemma SD-11:

Let $\widehat{\rho}_{\text {pre }}$ be the preliminary estimator defined in footnote 4 of the main paper. Suppose that Assumptions 1-4 hold. Then, the following statements are true as $N, T \rightarrow \infty$ such that $N^{\kappa} / T=\tau$ for $\kappa \in\left(\frac{1}{2}, \infty\right)$ and $\tau \in(0, \infty)$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\widehat{\rho}_{\mathrm{pre}}-\rho_{T}=O_{p}\left(\frac{1}{T \sqrt{N}}\right) .
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T)=O(1)$, then

$$
\widehat{\rho}_{\mathrm{pre}}-\rho_{T}=O_{p}\left(\frac{1}{T \sqrt{N}}\right) .
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T /(L(T))^{2} \ll q(T) \ll T$, then

$$
\widehat{\rho}_{\mathrm{pre}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N T q(T)}}\right) .
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T)(L(T))^{2} / T=O(1)$, then

$$
\widehat{\rho}_{\mathrm{pre}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N T}}\right) .
$$

(e) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\widehat{\rho}_{\mathrm{pre}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N T}}\right) .
$$

Proof of Lemma SD-11:

To proceed, we first consider part (a), where we assume that $\rho_{T}=1$ for all T sufficiently large. In this case, by part (a) of Theorems SA-1 and SA-2, respectively, we have

$$
\widehat{\rho}_{\mathrm{IVD}}-1=O_{p}\left(\frac{1}{\sqrt{T}}\right) \text { and } \widehat{\rho}_{\mathrm{pols}}-1=O_{p}\left(\frac{1}{T \sqrt{N}}\right) .
$$

Moreover, in this case, there exists a positive integer I_{ρ} such that for all $T \geq I_{\rho}$

$$
\begin{aligned}
\overline{\mathbb{T}} & =\sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2}} \sqrt{N} T\left(\hat{\rho}_{\mathrm{pols}}-1\right) \\
& =\sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2}} \sqrt{N} T\left(\hat{\rho}_{\mathrm{pols}}-\rho_{T}\right)
\end{aligned}
$$

Applying part (a) of Lemmas SD-3, Theorem SA-2, and the Cramér convergence theorem, we obtain

$$
\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2}\right]^{1 / 2} \sqrt{N} T\left(\hat{\rho}_{\mathrm{pols}}-1\right) \Rightarrow \sqrt{\frac{\sigma^{2}}{2}} \sqrt{2} \mathcal{Z}=\mathcal{Z} \equiv N\left(0, \sigma^{2}\right),
$$

so that $\overline{\mathbb{T}}=O_{p}(1)$. It follows that in this case

$$
\frac{\bar{\Delta}_{I C}}{\sqrt{N} L(T)}=\frac{\overline{\mathbb{T}}+\sqrt{N} L(T)}{\sqrt{N} L(T)}=1+\bar{\eta}_{1}(N, T)
$$

where

$$
\bar{\eta}_{1}(N, T)=\frac{\overline{\mathbb{T}}}{\sqrt{N} L(T)}=O_{p}\left(\frac{1}{\sqrt{N} L(T)}\right)
$$

so that

$$
\bar{w}_{I C}=\frac{1}{1+\exp \left\{\frac{1}{2} \sqrt{N} L(T) \frac{\bar{\Delta}_{I C}}{\sqrt{N} L(T)}\right\}}=\exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)\right]\right\}\left[1+o_{p}(1)\right]
$$

Applying part (a) of Theorems SA-1 and SA-2, we obtain

$$
\begin{aligned}
& \widehat{\rho}_{\mathrm{pre}}-\rho_{T} \\
= & \bar{w}_{I C} \widehat{\rho}_{\mathrm{IVD}}+\left(1-\bar{w}_{I C}\right) \widehat{\rho}_{\mathrm{pols}}-\rho_{T} \\
= & \bar{w}_{I C}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)+\left(1-\bar{w}_{I C}\right)\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
= & \exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)\right]\right\}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)\left[1+o_{p}(1)\right]+\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
& -\exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)\right]\right\}\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right)\left[1+o_{p}(1)\right] \\
= & O_{p}\left(\exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)+\frac{\ln T}{\sqrt{N} L(T)}\right]\right\}\right)+O_{p}\left(\frac{1}{T \sqrt{N}}\right) \\
& +O_{p}\left(\exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)+\frac{2 \ln T}{\sqrt{N} L(T)}+\frac{\ln N}{\sqrt{N} L(T)}\right]\right\}\right) \\
= & O_{p}\left(\frac{1}{T \sqrt{N}}\right) .
\end{aligned}
$$

Next, we consider part (b), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$. We break our analysis here into a number of different subcases:
Case b(i): $T \sqrt{N} \ll q(T)$.
In this case, by part (b) of Theorems SA-1 and SA-2, respectively, we have

$$
\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{T}}\right) \text { and } \widehat{\rho}_{\mathrm{pols}}-\rho_{T}=O_{p}\left(\frac{1}{T \sqrt{N}}\right) .
$$

Moreover, write

$$
\begin{aligned}
\overline{\mathbb{T}}= & {\left[\sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2}\right]^{1 / 2}\left(\hat{\rho}_{\mathrm{pols}}-1\right) } \\
= & \sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2} \sqrt{N} T\left(\hat{\rho}_{\mathrm{pols}}-\rho_{T}\right)} \\
& +\sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2} \sqrt{N} T\left(\rho_{T}-1\right)}
\end{aligned}
$$

Applying part (b) of Lemmas SD-3, Theorem SA-2, and the Cramér convergence theorem, we obtain

$$
\sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2}} \sqrt{N} T\left(\hat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \Rightarrow \sqrt{\frac{\sigma^{2}}{2}} \sqrt{2} \mathcal{Z}=\mathcal{Z} \equiv N\left(0, \sigma^{2}\right)
$$

From part (b) of Lemma SD-3, we also deduce that

$$
\begin{aligned}
& \sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2}} \sqrt{N} T\left(\rho_{T}-1\right) \\
= & -\sqrt{\frac{\sigma^{2}}{2}} \frac{\sqrt{N} T}{q(T)}\left[1+o_{p}(1)\right]=O_{p}\left(\frac{\sqrt{N} T}{q(T)}\right)=o_{p}(1) .
\end{aligned}
$$

Hence,

$$
\overline{\mathbb{T}}=O_{p}(1)+o_{p}(1)=O_{p}(1) .
$$

The rest of the argument then follows in a manner similar to the proof of part (a) above. Hence, applying part (b) of Theorems SA-1 and SA-2 and following the derivation similar to that given for part (a), we also obtain in this case

$$
\widehat{\rho}_{\mathrm{pre}}-\rho_{T}=O_{p}\left(\frac{1}{T \sqrt{N}}\right) .
$$

Case b(ii): $q(T) \sim T \sqrt{N}$
For this case, by part (c) of Theorem SA-1, we have

$$
\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{T}}\right),
$$

and, by part (b) of Theorem SA-2, we again obtain

$$
\widehat{\rho}_{\mathrm{pols}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N} T}\right) .
$$

Applying part (b) of Lemma SD-3, we have

$$
\begin{aligned}
& \sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2}} \sqrt{N} T\left(\rho_{T}-1\right) \\
= & -\sqrt{\frac{\sigma^{2}}{2} \frac{\sqrt{N} T}{q(T)}\left[1+o_{p}(1)\right]=O_{p}(1),}
\end{aligned}
$$

so that

$$
\begin{aligned}
\overline{\mathbb{T}}= & \sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2}} \sqrt{N} T\left(\hat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
& +\sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2} \sqrt{N} T\left(\rho_{T}-1\right)} \\
= & O_{p}(1)+O_{p}(1)=O_{p}(1) .
\end{aligned}
$$

The rest of the argument is again similar to that of part (a), so that, by applying part (c) of Theorem SA-1 and part (b) of Theorem SA-2, we obtain

$$
\widehat{\rho}_{\text {pre }}-\rho_{T}=O_{p}\left(\frac{1}{T \sqrt{N}}\right) .
$$

Case b(iii): $T \ll q(T) \ll T \sqrt{N}$
In this case, by part (d) of Theorem SA-1, we have

$$
\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}=O_{p}\left(\frac{q(T)}{T^{3 / 2} \sqrt{N}}\right),
$$

and, by part (b) of Theorem SA-2, we have.

$$
\widehat{\rho}_{\mathrm{pols}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N} T}\right) .
$$

Applying part (b) of Lemma SD-3 and part (b) of Theorem SA-2, we have

$$
\frac{q(T)}{\sqrt{N} T} \overline{\mathbb{T}}=-\sqrt{\frac{\sigma^{2}}{2}}+o_{p}(1)
$$

It follows that in this case

$$
\frac{\bar{\Delta}_{I C}}{\sqrt{N} L(T)}=\frac{\overline{\mathbb{T}}+\sqrt{N} L(T)}{\sqrt{N} L(T)}=1+\bar{\eta}_{1}(N, T)
$$

where

$$
\bar{\eta}_{1}(N, T)=\frac{\overline{\mathbb{T}}}{\sqrt{N} L(T)}=\frac{T}{q(T) L(T)} \frac{q(T)}{\sqrt{N} T} \overline{\mathbb{T}}=O_{p}\left(\frac{T}{q(T) L(T)}\right)=o_{p}(1) .
$$

Now, write

$$
\bar{w}_{I C}=\frac{1}{1+\exp \left\{\frac{1}{2} \sqrt{N} L(T) \frac{\bar{\Delta}_{I C}}{\sqrt{N} L(T)}\right\}}=\exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)\right]\right\}\left[1+o_{p}(1)\right] .
$$

so that by applying part (d) of Theorems SA-1 and part (b) of Theorem SA-2, we obtain

$$
\begin{aligned}
& \widehat{\rho}_{\mathrm{pre}}-\rho_{T} \\
= & \bar{w}_{I C}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)+\left(1-\bar{w}_{I C}\right)\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
= & \exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)\right]\right\}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)\left[1+o_{p}(1)\right]+\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
& -\exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)\right]\right\}\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right)\left[1+o_{p}(1)\right] \\
= & O_{p}\left(\exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)+\frac{3 \ln T}{\sqrt{N} L(T)}+\frac{\ln N}{\sqrt{N} L(T)}-\frac{2 \ln q(T)}{\sqrt{N} L(T)}\right]\right\}\right) \\
& +O_{p}\left(\frac{1}{T \sqrt{N}}\right)+O_{p}\left(\exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)+\frac{2 \ln T}{\sqrt{N} L(T)}+\frac{\ln N}{\sqrt{N} L(T)}\right]\right\}\right) \\
= & O_{p}\left(\frac{1}{T \sqrt{N}}\right) .
\end{aligned}
$$

Case b(iv): $q(T) \sim T$
Here, by part (e) of Theorem SA-1, we have

$$
\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N T}}\right),
$$

and, by the proof of part (c) of Theorem SA-2, we have.

$$
\widehat{\rho}_{\mathrm{pols}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N} T}\right) .
$$

Moreover, applying part (c) Lemma SD-3 and Theorem SA-2, we obtain

$$
\frac{q(T)}{\sqrt{N} T} \overline{\mathbb{T}}=-\frac{\sigma}{2} \frac{q(T)}{T} \sqrt{\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1}\left[1+o_{p}(1)\right]=O_{p}(1)
$$

so that, similar to case b (iii) above,

$$
\frac{\bar{\Delta}_{I C}}{\sqrt{N} L(T)}=\frac{\overline{\mathbb{T}}+\sqrt{N} L(T)}{\sqrt{N} L(T)}=1+\bar{\eta}_{1}(N, T),
$$

where

$$
\bar{\eta}_{1}(N, T)=\frac{\overline{\mathbb{T}}}{\sqrt{N} L(T)}=\frac{T}{q(T) L(T)} \frac{q(T)}{\sqrt{N} T} \overline{\mathbb{T}}=O_{p}\left(\frac{1}{L(T)}\right)=o_{p}(1),
$$

The rest of the argument follows similar to that given earlier, so that by applying part (e) of Theorem SA-1 along with part (c) of Theorem SA-2, we get

$$
\begin{aligned}
& \widehat{\rho}_{\mathrm{pre}}-\rho_{T} \\
= & \bar{w}_{I C}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)+\left(1-\bar{w}_{I C}\right)\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
= & \exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)\right]\right\}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)\left[1+o_{p}(1)\right]+\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
& -\exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)\right]\right\}\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right)\left[1+o_{p}(1)\right] \\
= & O_{p}\left(\exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)+\frac{\ln T}{\sqrt{N} L(T)}+\frac{\ln N}{\sqrt{N} L(T)}\right]\right\}\right)+O_{p}\left(\frac{1}{T \sqrt{N}}\right) \\
& +O_{p}\left(\exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)+\frac{2 \ln T}{\sqrt{N} L(T)}+\frac{\ln N}{\sqrt{N} L(T)}\right]\right\}\right) \\
= & O_{p}\left(\frac{1}{T \sqrt{N}}\right),
\end{aligned}
$$

as required.
To complete the proof of part (b), note that for the pathwise asymptotics considered here N grows as a monotonically increasing function of T, so that the asymptotics employed here can be taken to be single-indexed with $T \rightarrow \infty$. Hence, we set $\mathbb{S}_{T}\left(\rho_{T}\right)=\widehat{\rho}_{\text {pre }}-\rho_{T}$ in Lemma SD-10 and apply part (a) of that lemma for the following collection of parameter sequences

$$
\begin{aligned}
\mathcal{G}_{1}^{\rho} & =\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: \sqrt{N} T \sim T^{\frac{1}{2 \kappa}+1} \ll q(T)\right\} \\
\mathcal{G}_{2}^{\rho} & =\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: \sqrt{N} T \sim T^{\frac{1}{2 \kappa}+1} \sim q(T)\right\}, \\
\mathcal{G}_{3}^{\rho} & =\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: T \ll q(T) \ll T^{\frac{1}{2 \kappa}}+1 \sim \sqrt{N} T\right\} \\
\mathcal{G}_{4}^{\rho} & =\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \sim T\right\} .
\end{aligned}
$$

Let

$$
\mathcal{G}^{*}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: T / q(T)=O(1)\right\}
$$

and note that, by the calculations given in subcases $\mathrm{b}(\mathrm{i})$-b(iv) above and by part (a) of Lemma SD-10, we have that for every $\left\{\rho_{T}\right\} \in \mathcal{G}^{*}$,

$$
\mathbb{S}_{T}\left(\rho_{T}\right)=\widehat{\rho}_{\mathrm{pre}}-\rho_{T}=O_{p}\left(\frac{1}{T \sqrt{N}}\right)
$$

which is the desired result.
Next, consider part (c), where we take $T /(L(T))^{2} \ll q(T) \ll T$. From part (f) of Theorem SA-1, we see that in the case

$$
\hat{\rho}_{\mathrm{IVD}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N T}}\right) .
$$

Also, from the proof of part (d) of Theorem SA-2, we deduce that

$$
\begin{aligned}
\widehat{\rho}_{\mathrm{pols}} & =\rho_{T}+O_{p}\left(\frac{1}{\sqrt{N T q(T)}}\right) \\
& =1-\frac{1}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)+O_{p}\left(\frac{1}{\sqrt{N T q(T)}}\right)
\end{aligned}
$$

or

$$
q(T)\left(\hat{\rho}_{\mathrm{pols}}-1\right)=-1+O\left(\frac{1}{q(T)}\right)+O_{p}\left(\sqrt{\frac{q(T)}{N T}}\right) .
$$

Using part (d) of Lemma SD-3 and part (d) of Theorem SA-2; it follows that in this case

$$
\begin{aligned}
\sqrt{\frac{q(T)}{N T}} \overline{\mathbb{T}} & =\sqrt{\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2}} q(T)\left(\hat{\rho}_{\mathrm{pols}}-1\right) \\
& =-\frac{\sigma}{\sqrt{2}}+o_{p}(1)
\end{aligned}
$$

so that

$$
\frac{\bar{\Delta}_{I C}}{\sqrt{N} L(T)}=\frac{\overline{\mathbb{T}}+\sqrt{N} L(T)}{\sqrt{N} L(T)}=1+\bar{\eta}_{1}(N, T)
$$

where

$$
\bar{\eta}_{1}(N, T)=\frac{\overline{\mathbb{T}}}{\sqrt{N} L(T)}=\frac{1}{L(T)} \sqrt{\frac{T}{q(T)}} \sqrt{\frac{q(T)}{N T}} \overline{\mathbb{T}}=O_{p}\left(\frac{1}{L(T)} \sqrt{\frac{T}{q(T)}}\right)=o_{p}(1) .
$$

Now, write

$$
\bar{w}_{I C}=\frac{1}{1+\exp \left\{\frac{1}{2} \sqrt{N} L(T) \frac{\bar{\Delta}_{I C}}{\sqrt{N} L(T)}\right\}}=\exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)\right]\right\}\left[1+o_{p}(1)\right] .
$$

Hence, by part (f) of Theorem SA-1 and part (d) of Theorem SA-2, we have

$$
\begin{aligned}
& \widehat{\rho}_{\mathrm{pre}}-\rho_{T} \\
= & \bar{w}_{I C}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)+\left(1-\bar{w}_{I C}\right)\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
= & \exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)\right]\right\}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)\left[1+o_{p}(1)\right]+\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
& -\exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)\right]\right\}\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right)\left[1+o_{p}(1)\right] \\
= & O_{p}\left(\operatorname { e x p } \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)+\frac{\ln T}{\sqrt{N L(T)}}+\frac{\ln N}{\sqrt{N L(T)}]\})+O_{p}\left(\frac{1}{\sqrt{N T q(T)}}\right)}\right.\right.\right. \\
& +O_{p}\left(\exp \left\{-\frac{1}{2} \sqrt{N} L(T)\left[1+\bar{\eta}_{1}(N, T)+\frac{\ln T}{\sqrt{N} L(T)}+\frac{\ln N}{\sqrt{N} L(T)}+\frac{\ln q(T)}{\sqrt{N} L(T)}\right]\right\}\right) \\
= & O_{p}\left(\frac{1}{\sqrt{N T q(T)}}\right) .
\end{aligned}
$$

as required for part (c).
Now, for part (d), we consider the case where $q(T) \rightarrow \infty$ such that $q(T)(L(T))^{2} / T=O(1)$. It is helpful to break the analysis for this case into a number of subcases.
Case d(i): $q(T) \sim T /(L(T))^{2}$
Note that, in this case, by part (f) of Theorem SA-1, we have

$$
\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N T}}\right),
$$

and, by the proof of part (d) of Theorem SA-2,

$$
\begin{aligned}
\widehat{\rho}_{\mathrm{pols}} & =\rho_{T}+O_{p}\left(\frac{1}{\sqrt{N T q(T)}}\right) \\
& =1-\frac{1}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)+O_{p}\left(\frac{1}{\sqrt{N T q(T)}}\right) .
\end{aligned}
$$

In addition, similar to part (c) above, we have

$$
\sqrt{\frac{q(T)}{N T}} \overline{\mathbb{T}}=-\frac{\sigma}{\sqrt{2}}+o_{p}(1)
$$

so that

$$
\begin{aligned}
\frac{\bar{\Delta}_{I C}}{\sqrt{N} L(T)} & =\frac{\overline{\mathbb{T}}+\sqrt{N} L(T)}{\sqrt{N} L(T)} \\
& =1+\frac{1}{L(T)} \sqrt{\frac{T}{q(T)}} \sqrt{\frac{q(T)}{N T}} \overline{\mathbb{T}} \\
& =1-\frac{\sigma}{L(T)} \sqrt{\frac{T}{2 q(T)}}+\bar{\eta}_{2}(N, T) \\
& =\xi(T)+\bar{\eta}_{2}(N, T),
\end{aligned}
$$

where $\bar{\eta}_{2}(N, T)=o_{p}(1)$ and

$$
\xi(T)=1-\frac{\sigma}{L(T)} \sqrt{\frac{T}{2 q(T)}}=O(1) .
$$

Depending on the sequences $L(T)$ and $q(T)$, the sequence $\xi(T)$ could have positive or negative sign eventually or could be zero or have oscillating signs. Nevertheless, since $\bar{w}_{I C} \in[0,1]$ for all N, T; we have

$$
\begin{aligned}
& \widehat{\rho}_{\mathrm{pre}}-\rho_{T} \\
= & \bar{w}_{I C}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)+\left(1-\bar{w}_{I C}\right)\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
= & O_{p}(1) O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}(1) O_{p}\left(\frac{1}{\sqrt{N T q(T)}}\right) \\
= & O_{p}\left(\frac{1}{\sqrt{N T}}\right) .
\end{aligned}
$$

Case d(ii): $N^{1 / 3} T^{1 / 3}=T^{\frac{1+\kappa}{3 \kappa}} \ll q(T)$ but $q(T)(L(T))^{2} / T \rightarrow 0$
To proceed, first write

$$
\bar{\Delta}_{I C}=\overline{\mathbb{T}}+\sqrt{N} L(T)=\mathbb{T}^{\rho}+\bar{\theta}+\sqrt{N} L(T)
$$

where

$$
\begin{aligned}
\mathbb{T}^{\rho} & =\bar{M}_{y y}^{1 / 2} \sqrt{N T q(T)}\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
\bar{\theta} & =\bar{M}_{y y}^{1 / 2} \sqrt{N T q(T)}\left(\rho_{T}-1\right) \\
\bar{M}_{y y} & =\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2}
\end{aligned}
$$

In this case, applying part (d) of Theorem SA-2 and part (d) of Lemmas SD-3, we have

$$
\begin{aligned}
\mathbb{T}^{\rho} & \Rightarrow N(0,1) \\
\bar{\theta} & =-\frac{\sigma}{\sqrt{2}} \sqrt{\frac{N T}{q(T)}}\left[1+o_{p}(1)\right] \\
\sqrt{N} L(T) & =\sqrt{\frac{N T}{q(T)}} \sqrt{\frac{q(T) L(T)^{2}}{T}}=o\left(\sqrt{\frac{N T}{q(T)}}\right)
\end{aligned}
$$

so that

$$
\frac{\bar{\Delta}_{I C}}{\sqrt{N T / q(T)}}=\frac{\mathbb{T}^{\rho}+\bar{\theta}+\sqrt{N} L(T)}{\sqrt{N T / q(T)}}=-\frac{\sigma}{\sqrt{2}}+o_{p}(1)
$$

Hence,

$$
\begin{aligned}
\bar{w}_{I C} & =\frac{1}{1+\exp \left\{\frac{1}{2} \sqrt{N T / q(T)} \frac{\bar{\Delta}_{I C}}{\sqrt{N T / q(T)}}\right\}} \\
& =\frac{1}{1+\exp \left\{-\frac{\sigma}{2 \sqrt{2}} \sqrt{N T / q(T)}\left[1+o_{p}(1)\right]\right\}} \\
& =1+o_{p}(1) .
\end{aligned}
$$

It follows from applying the results of part (f) of Theorem SA-1 and part (d) of Theorem SA-2 that

$$
\begin{aligned}
& \widehat{\rho}_{\mathrm{pre}}-\rho_{T} \\
= & \bar{w}_{I C}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)+\left(1-\bar{w}_{I C}\right)\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
= & {\left[1+o_{p}(1)\right] O_{p}\left(\frac{1}{\sqrt{N T}}\right)+\left[1-\left(1+o_{p}(1)\right)\right] O_{p}\left(\frac{1}{\sqrt{N T q(T)}}\right) } \\
= & O_{p}\left(\frac{1}{\sqrt{N T}}\right) .
\end{aligned}
$$

Case d(iii): $q(T) \sim T^{\frac{1+\kappa}{3 \kappa}}=N^{1 / 3} T^{1 / 3}$

In this case, by part (f) of Theorem SA-1, we have

$$
\hat{\rho}_{\mathrm{IVD}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N T}}\right) .
$$

Also, from the proof of part (e) of Theorem SA-2, we obtain

$$
\widehat{\rho}_{\mathrm{pols}}-\rho_{T}=O_{p}\left(\frac{1}{q(T)^{2}}\right)=O_{p}\left(\frac{1}{\sqrt{N T q(T)}}\right)
$$

Next, write

$$
\bar{\Delta}_{I C}=\overline{\mathbb{T}}+\sqrt{N} L(T)=\underline{\mathbb{T}}+\underline{\theta}+\sqrt{N} L(T),
$$

where

$$
\begin{aligned}
\underline{\mathbb{T}} & =\bar{M}_{y y}^{1 / 2} \sqrt{N T q(T)}\left(\hat{\rho}_{\mathrm{pols}}-\rho_{T}-\frac{2 \sigma_{a}^{2}}{q(T)^{2} \sigma^{2}}\right), \\
\underline{\theta} & =\bar{M}_{y y}^{1 / 2} \sqrt{N T q(T)}\left(\rho_{T}+\frac{2 \sigma_{a}^{2}}{q(T)^{2} \sigma^{2}}-1\right), \\
\bar{M}_{y y} & =\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2} .
\end{aligned}
$$

In this case, applying part (e) of Theorem SA-2 along with part (d) of Lemmas SD-3, we have

$$
\begin{aligned}
\underline{T} & \Rightarrow N(0,1) \\
\underline{\theta} & =-\frac{\sigma}{\sqrt{2}} \sqrt{\frac{N T}{q(T)}}\left[1+o_{p}(1)\right] \\
\sqrt{N} L(T) & =\sqrt{\frac{N T}{q(T)}} \sqrt{\frac{q(T) L(T)^{2}}{T}}=o\left(\sqrt{\frac{N T}{q(T)}}\right),
\end{aligned}
$$

so that, similar to case d(ii) above,

$$
\begin{aligned}
\frac{\bar{\Delta}_{I C}}{\sqrt{N T / q(T)}} & =\frac{\underline{T}}{\sqrt{N T / q(T)}}+\frac{\underline{\theta}}{\sqrt{N T / q(T)}}+\frac{\sqrt{N} L(T)}{\sqrt{N T / q(T)}} \\
& =-\frac{\sigma}{\sqrt{2}}+o_{p}(1) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\bar{w}_{I C} & =\frac{1}{1+\exp \left\{\frac{1}{2} \sqrt{N T / q(T)} \frac{\bar{\Delta}_{I C}}{\sqrt{N T / q(T)}}\right\}} \\
& =\frac{1}{1+\exp \left\{-\frac{\sigma}{2 \sqrt{2}} \sqrt{N T / q(T)}\left[1+o_{p}(1)\right]\right\}} \\
& =1+o_{p}(1)
\end{aligned}
$$

It follows from applying the results of part (f) of Theorem SA-1 and part (e) of Theorem SA-2 that

$$
\begin{aligned}
& \widehat{\rho}_{\mathrm{pre}}-\rho_{T} \\
= & \bar{w}_{I C}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)+\left(1-\bar{w}_{I C}\right)\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
= & {\left[1+o_{p}(1)\right] O_{p}\left(\frac{1}{\sqrt{N T}}\right)+\left[1-\left(1+o_{p}(1)\right)\right] O_{p}\left(\frac{1}{q(T)^{2}}\right) } \\
= & O_{p}\left(\frac{1}{\sqrt{N T}}\right)+o_{p}\left(\frac{1}{N^{2 / 3} T^{2 / 3}}\right) \\
= & O_{p}\left(\frac{1}{\sqrt{N T}}\right) .
\end{aligned}
$$

Case d(iv): $q(T) \rightarrow \infty$ such that $q(T) / T^{\frac{1+\kappa}{3 \kappa}} \rightarrow 0$
To proceed, note that, by part (f) of Theorems SA-1 and SA-2, we have

$$
\hat{\rho}_{\mathrm{IVD}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N T}}\right) \text { and } \widehat{\rho}_{\mathrm{pols}}-\rho_{T}=O_{p}\left(\frac{1}{q(T)^{2}}\right) .
$$

Write

$$
\bar{\Delta}_{I C}=\overline{\mathbb{T}}+\sqrt{N} L(T)=\underline{\mathbb{T}}+\underline{\theta}+\sqrt{N} L(T),
$$

where

$$
\begin{aligned}
\underline{\mathbb{T}} & =\bar{M}_{y y}^{1 / 2} \sqrt{N T q(T)}\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}-\frac{2 \sigma_{a}^{2}}{q(T)^{2} \sigma^{2}}\right) \\
& =\bar{M}_{y y}^{1 / 2} \frac{\sqrt{N T}}{q(T)^{3 / 2}} q(T)^{2}\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}-\frac{2 \sigma_{a}^{2}}{q(T)^{2} \sigma^{2}}\right) \\
\underline{\theta} & =\bar{M}_{y y}^{1 / 2} \sqrt{N T q(T)}\left(\rho_{T}+\frac{2 \sigma_{a}^{2}}{q(T)^{2} \sigma^{2}}-1\right), \\
\bar{M}_{y y} & =\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2} .
\end{aligned}
$$

In this case, applying part (f) of Theorem SA-2 along with part (d) of Lemma SD-3, we have

$$
\begin{aligned}
\underline{T} & =o_{p}\left(\frac{\sqrt{N T}}{q(T)^{3 / 2}}\right), \\
\underline{\theta} & =-\frac{\sigma}{\sqrt{2}} \sqrt{\frac{N T}{q(T)}}\left[1+o_{p}(1)\right] \\
\sqrt{N} L(T) & =\sqrt{\frac{N T}{q(T)}} \sqrt{\frac{q(T) L(T)^{2}}{T}}=o\left(\sqrt{\frac{N T}{q(T)}}\right),
\end{aligned}
$$

so that

$$
\begin{aligned}
\frac{\bar{\Delta}_{I C}}{\sqrt{N T / q(T)}} & =\frac{\underline{T}}{\sqrt{N T / q(T)}}+\frac{\underline{\theta}}{\sqrt{N T / q(T)}}+\frac{\sqrt{N} L(T)}{\sqrt{N T / q(T)}} \\
& =-\frac{\sigma}{\sqrt{2}}\left[1+\bar{\eta}_{3}(N, T)\right],
\end{aligned}
$$

where $\bar{\eta}_{3}(N, T)=o_{p}(1)$. Hence,

$$
\begin{aligned}
w_{I C} & =\frac{1}{1+\exp \left\{\frac{1}{2} \sqrt{N T / q(T)} \frac{\bar{\Delta}_{I C}}{\sqrt{N T / q(T)}}\right\}} \\
& =\frac{1}{1+\exp \left\{-\frac{\sigma}{2 \sqrt{2}} \sqrt{N T / q(T)}\left[1+\bar{\eta}_{3}(N, T)\right]\right\}} \\
& =1+O_{p}\left(\exp \left\{-\frac{\sigma}{2 \sqrt{2}} \sqrt{N T / q(T)}\left[1+\bar{\eta}_{3}(N, T)\right]\right\}\right)
\end{aligned}
$$

It follows from applying the results of part (f) of Theorems SA-1 and SA-2 that

$$
\begin{aligned}
& \widehat{\rho}_{\mathrm{pre}}-\rho_{T} \\
= & \bar{w}_{I C}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)+\left(1-\bar{w}_{I C}\right)\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
= & {\left[1+O_{p}\left(\exp \left\{-\frac{\sigma}{2 \sqrt{2}} \sqrt{N T / q(T)}\left[1+\bar{\eta}_{3}(N, T)\right]\right\}\right)\right] O_{p}\left(\frac{1}{\sqrt{N T}}\right) } \\
& +\left[1-\left(1+O_{p}\left(\exp \left\{-\frac{\sigma}{2 \sqrt{2}} \sqrt{N T / q(T)}\left[1+\bar{\eta}_{3}(N, T)\right]\right\}\right)\right)\right] O_{p}\left(\frac{1}{q(T)^{2}}\right) \\
= & O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}\left(\exp \left\{-\frac{\sigma}{2 \sqrt{2}} \sqrt{N T / q(T)}\left[1+\bar{\eta}_{3}(N, T)+\frac{4 \sqrt{2}}{\sigma} \sqrt{\frac{q(T)}{N T}} \ln q(T)\right]\right\}\right) \\
= & O_{p}\left(\frac{1}{\sqrt{N T}}\right) .
\end{aligned}
$$

To complete the proof of part (d), again note that because N grows as monotonically increasing function of T, so that we can consider the asymptotics here as being single-indexed with $T \rightarrow \infty$. Hence, we set $\mathbb{S}_{T}\left(\rho_{T}\right)=\widehat{\rho}_{\text {pre }}-\rho_{T}$ in Lemma SD-10 and apply part (a) of that lemma for the following collection of parameter sequences

$$
\begin{aligned}
\mathcal{G}_{5}^{\rho} & =\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \sim T /(L(T))^{2}\right\}, \\
\mathcal{G}_{6}^{\rho} & =\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: N^{1 / 3} T^{1 / 3}=T^{\frac{1+\kappa}{3 \kappa}} \ll q(T) \text { but } q(T)(L(T))^{2} / T \rightarrow 0\right\}, \\
\mathcal{G}_{7}^{\rho} & =\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \sim T^{\frac{1+\kappa}{3 \kappa}}=N^{1 / 3} T^{1 / 3}\right\} \\
\mathcal{G}_{8}^{\rho} & =\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \rightarrow \infty \text { such that } q(T) / T^{\frac{1+\kappa}{3 \kappa}} \rightarrow 0\right\}
\end{aligned}
$$

Let

$$
\mathcal{G}^{*}=\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \rightarrow \infty \text { such that } q(T)(L(T))^{2} / T=O(1)\right\}
$$

and note that, by the calculations given in subcases $\mathrm{d}(\mathrm{i})-\mathrm{d}(\mathrm{iv})$ above and by part (a) of Lemma SD-10, we have that for every $\left\{\rho_{T}\right\} \in \mathcal{G}^{*}$,

$$
\mathbb{S}_{T}\left(\rho_{T}\right)=\hat{\rho}_{\mathrm{pre}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N T}}\right)
$$

which is the desired result.
Finally, we consider part (e), where we take $\rho_{T} \in \mathcal{G}_{\text {St }}$. To proceed with this case, note first that from part (g) of Theorems SA-1 and SA-2, we have that

$$
\hat{\rho}_{\mathrm{IVD}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N T}}\right) \text { and } \hat{\rho}_{\mathrm{pols}}-\rho_{T}=\frac{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right) \sigma_{a}^{2}}{\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}}\left[1+o_{p}(1)\right] .
$$

Next, define

$$
\begin{aligned}
\widetilde{M}_{y y} & =\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{-1, N T}\right)^{2}, \\
\widetilde{\mathbb{T}} & =\widetilde{M}_{y y}^{1 / 2} \sqrt{\frac{N T}{1-\rho_{T}^{2}}}\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right), \\
\widetilde{\theta} & =\widetilde{M}_{y y}^{1 / 2} \sqrt{\frac{N T}{1-\rho_{T}^{2}}}\left(\rho_{T}-1\right)=-\widetilde{M}_{y y}^{1 / 2} \sqrt{N T \frac{1-\rho_{T}}{1+\rho_{T}}} .
\end{aligned}
$$

Using part (g) of Theorem SA-2 along with part (e) of Lemmas SD-3, we have in this case

$$
\begin{aligned}
\widetilde{M}_{y y} & =\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}+o_{p}(1) \\
\frac{\widetilde{\mathbb{T}}}{\sqrt{N T}} & =\widetilde{M}_{y y}^{1 / 2} \frac{\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right)}{\sqrt{1-\rho_{T}^{2}}} \\
& =\sqrt{\frac{\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}}{1-\rho_{T}^{2}} \frac{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right) \sigma_{a}^{2}}{\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}}\left[1+o_{p}(1)\right]} \\
& =\left(1-\rho_{T}\right) \sigma_{a}^{2} \sqrt{\frac{\left(1-\rho_{T}^{2}\right)}{\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}}}\left[1+o_{p}(1)\right] \\
\frac{\widetilde{\theta}}{\sqrt{N T}} & =\widetilde{M}_{y y}^{1 / 2} \frac{\left(\rho_{T}-1\right)}{\sqrt{1-\rho_{T}^{2}}}=-\sqrt{\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}} \sqrt{\frac{1-\rho_{T}}{1+\rho_{T}}}\left[1+o_{p}(1)\right] .
\end{aligned}
$$

Hence,

$$
\begin{align*}
& \frac{\widetilde{\Delta}_{I C}}{\sqrt{N T}} \\
= & \frac{\widetilde{\mathbb{T}}}{\sqrt{N T}}+\frac{\widetilde{\theta}}{\sqrt{N T}}+\frac{\sqrt{N} L(T)}{\sqrt{N T}} \\
= & {\left[\left(1-\rho_{T}\right) \sigma_{a}^{2} \sqrt{\frac{\left(1-\rho_{T}^{2}\right)}{\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}}}-\sqrt{\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}} \sqrt{\frac{1-\rho_{T}}{1+\rho_{T}}}\right]\left[1+o_{p}(1)\right] } \\
= & \frac{\left(1-\rho_{T}\right) \sigma_{a}^{2} \sqrt{\left(1+\rho_{T}\right)\left(1-\rho_{T}^{2}\right)}-\left[\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}\right] \sqrt{1-\rho_{T}}}{\sqrt{\left(1+\rho_{T}\right)\left[\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}\right]}}\left[1+o_{p}(1)\right] \\
= & -\frac{\sigma^{2} \sqrt{1-\rho_{T}}}{\sqrt{\left(1+\rho_{T}\right)\left[\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}\right]}}\left[1+o_{p}(1)\right] \\
= & -\bar{\psi}\left(\rho_{T}, \sigma^{2}, \sigma_{a}^{2}\right)\left[1+o_{p}(1)\right] \tag{12}
\end{align*}
$$

where

$$
\bar{\psi}\left(\rho_{T}, \sigma^{2}, \sigma_{a}^{2}\right)=\frac{\sigma^{2} \sqrt{1-\rho_{T}}}{\sqrt{\left(1+\rho_{T}\right)\left[\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}\right]}}
$$

Next, note that in this case $\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}$ with $q(T)=O(1)$, so that there exists a positive constant C_{q} and a positive integer T^{*} such that for all $T \geq T^{*}$

$$
\left|\rho_{T}\right| \leq \exp \left\{-\frac{1}{C_{q}}\right\}<1
$$

In consequence,

$$
\bar{\psi}\left(\rho_{T}, \sigma^{2}, \sigma_{a}^{2}\right)=\frac{\sigma^{2} \sqrt{1-\rho_{T}}}{\sqrt{\left(1+\rho_{T}\right)\left[\left(1-\rho_{T}^{2}\right) \sigma_{a}^{2}+\sigma^{2}\right]}} \geq \frac{\sigma^{2} \sqrt{1-\exp \left\{-1 / C_{q}\right\}}}{\sqrt{2\left[\sigma_{a}^{2}+\sigma^{2}\right]}}>0
$$

Moreover, note that we can rewrite (12) as

$$
\frac{\bar{\Delta}_{I C}}{\sqrt{N T}}=-\bar{\psi}\left(\rho_{T}, \sigma^{2}, \sigma_{a}^{2}\right)\left[1+\bar{\eta}_{4}(N, T)\right]
$$

where $\bar{\eta}_{4}(N, T)=o_{p}(1)$, so that

$$
\begin{aligned}
\bar{w}_{I C} & =\frac{1}{1+\exp \left\{\frac{1}{2} \sqrt{N T} \frac{\bar{\Delta}_{I C}}{\sqrt{N T}}\right\}} \\
& =1+O_{p}\left(\exp \left\{-\frac{1}{2} \bar{\psi}\left(\rho_{T}, \sigma^{2}, \sigma_{a}^{2}\right) \sqrt{N T}\left[1+\bar{\eta}_{4}(N, T)\right]\right\}\right) \\
& =1+o_{p}(1) .
\end{aligned}
$$

It follows from applying part (g) of Theorems SA-1 and SA-2 that

$$
\begin{aligned}
& \widehat{\rho}_{\mathrm{pre}}-\rho_{T} \\
= & \bar{w}_{I C}\left(\widehat{\rho}_{\mathrm{IVD}}-\rho_{T}\right)+\left(1-\bar{w}_{I C}\right)\left(\widehat{\rho}_{\mathrm{pols}}-\rho_{T}\right) \\
= & {\left[1+O_{p}\left(\exp \left\{-\frac{1}{2} \bar{\psi}\left(\rho_{T}, \sigma^{2}, \sigma_{a}^{2}\right) \sqrt{N T}\left[1+\bar{\eta}_{4}(N, T)\right]\right\}\right)\right] O_{p}\left(\frac{1}{\sqrt{N T}}\right) } \\
& +\left[1-1+O_{p}\left(\exp \left\{-\frac{1}{2} \bar{\psi}\left(\rho_{T}, \sigma^{2}, \sigma_{a}^{2}\right) \sqrt{N T}\left[1+\bar{\eta}_{4}(N, T)\right]\right\}\right)\right] O_{p}(1) \\
= & O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}\left(\exp \left\{-\frac{1}{2} \bar{\psi}\left(\rho_{T}, \sigma^{2}, \sigma_{a}^{2}\right) \sqrt{N T}\left[1+\bar{\eta}_{4}(N, T)\right]\right\}\right) \\
= & O_{p}\left(\frac{1}{\sqrt{N T}}\right) \cdot \square
\end{aligned}
$$

Lemma SD-12: Let

$$
\begin{aligned}
\widehat{\sigma}^{2} & =\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t}-\bar{y}_{i}-\widehat{\rho}_{\text {pre }}\left[y_{i t-1}-\bar{y}_{i,-1}\right]\right)^{2}, \\
\widetilde{\sigma}^{2} & =\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t}-\bar{y}_{i}-\widehat{\rho}_{\text {AIP }}\left[y_{i t-1}-\bar{y}_{i,-1}\right]\right)^{2}
\end{aligned}
$$

where $\widehat{\rho}_{\text {AIP }}$ are as defined by (1) and where $\widehat{\rho}_{\text {pre }}$ is as defined in footnote 4 of the main paper. Suppose that Assumptions 1-4 hold; then, as $N, T \rightarrow \infty$ such that $N^{\kappa} / T=\tau$, for $\kappa \in\left(\frac{1}{2}, \infty\right)$ and $\tau \in(0, \infty)$,

$$
\begin{aligned}
& \widehat{\sigma}^{2}=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{T}\right\}\right)=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{T^{1 / \kappa}}, \frac{1}{T}\right\}\right), \\
& \widetilde{\sigma}^{2}=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{T}\right\}\right)=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{T^{1 / \kappa}}, \frac{1}{T}\right\}\right)
\end{aligned}
$$

for every parameter sequences $\left\{\rho_{T}\right\} \in \mathcal{G}^{*}=\left\{\rho_{T}:-1<\rho_{T} \leq 1\right.$ for all $\left.T\right\}$.

Proof of Lemma SD-12:

We will only prove the result for $\widehat{\sigma}^{2}$ since the proof for $\widetilde{\sigma}^{2}$ follows in a similar manner. To proceed,
first write

$$
\begin{aligned}
\widehat{\sigma}^{2}= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t}-\bar{y}_{i}-\widehat{\rho}_{\mathrm{pre}}\left[y_{i t-1}-\bar{y}_{i,-1}\right]\right)^{2} \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t}-\bar{y}_{i}-\rho_{T}\left[y_{i t-1}-\bar{y}_{i,-1}\right]-\left[\widehat{\rho}_{\mathrm{pre}}-\rho_{T}\right]\left[y_{i t-1}-\bar{y}_{i,-1}\right]\right)^{2} \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t}-\bar{y}_{i}-\rho_{T}\left[y_{i t-1}-\bar{y}_{i,-1}\right]\right)^{2} \\
& -\frac{2\left[\widehat{\rho}_{\mathrm{pre}}-\rho_{T}\right]}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t}-\bar{y}_{i}-\rho_{T}\left[y_{i t-1}-\bar{y}_{i-}\right]\right)\left[y_{i t-1}-\bar{y}_{i,-1}\right] \\
& +\frac{\left[\widehat{\rho}_{\mathrm{pre}}-\rho_{T}\right]^{2}}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{i,-1}\right)^{2} \\
= & Q_{1, N, T}+2\left[\widehat{\rho}_{\mathrm{pre}}-\rho_{T}\right] Q_{2, N, T}+\left[\widehat{\rho}_{\mathrm{pre}}-\rho_{T}\right]^{2} Q_{3, N, T},(\text { say }) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& Q_{1, N, T} \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t}-\bar{y}_{i}-\rho_{T}\left[y_{i t-1}-\bar{y}_{i,-1}\right]\right)^{2} \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left[a_{i}+w_{i t}-\rho_{T}\left(a_{i}+w_{i t-1}\right)\right. \\
& \left.\quad-\frac{1}{T-1} \sum_{s=2}^{T}\left(a_{i}+w_{i s}\right)+\rho_{T} \frac{1}{T-1} \sum_{s=2}^{T}\left(a_{i}+w_{i s-1}\right)\right]^{2} \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(\varepsilon_{i t}-\frac{1}{T-1} \sum_{s=2}^{T} \varepsilon_{i s}\right)^{2} \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \varepsilon_{i t}^{2}-\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i}^{2}
\end{aligned}
$$

Next, note that

$$
\begin{aligned}
& Q_{2, N, T} \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t}-\bar{y}_{i}-\rho_{T}\left[y_{i t-1}-\bar{y}_{i,-1}\right]\right)\left[y_{i t-1}-\bar{y}_{i,-1}\right] \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(\varepsilon_{i t}-\bar{\varepsilon}_{i}\right)\left(w_{i t-1}-\bar{w}_{i,-1}\right) \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}-\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i} \bar{w}_{i,-1}
\end{aligned}
$$

In addition,

$$
\begin{aligned}
& Q_{3, N, T} \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t-1}-\bar{y}_{i,-1}\right)^{2} \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(a_{i}+w_{i t-1}-\frac{1}{T-1} \sum_{s=2}^{T}\left(a_{i}+w_{i s-1}\right)\right)^{2} \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(w_{i t-1}-\frac{1}{T-1} \sum_{s=2}^{T} w_{i s-1}\right)^{2} \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left[w_{i t-1}^{2}-2 w_{i t-1} \frac{1}{T-1} \sum_{s=2}^{T} w_{i s-1}+\left(\frac{1}{T-1} \sum_{s=2}^{T} w_{i s-1}\right)^{2}\right] \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}-\frac{1}{N} \sum_{i=1}^{N} \bar{w}_{i,-1}^{2} .
\end{aligned}
$$

Now, applying the results of parts (e) and (f) of Lemma SE-11, we get

$$
\begin{aligned}
& Q_{1, N, T} \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(y_{i t}-\bar{y}_{i}-\rho_{T}\left[y_{i t-1}-\bar{y}_{i,-1}\right]\right)^{2} \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \varepsilon_{i t}^{2}-\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i}^{2} \\
= & \sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\frac{1}{T}\right) \\
= & \sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)
\end{aligned}
$$

We divide the rest of the proof into a number of cases.
Case (i): $\rho_{T}=1$ for all T sufficiently large.
In this case, we apply part (b) of Lemma SE-20 and part (a) of Lemma SE-29 to obtain

$$
\begin{aligned}
Q_{2, N, T} & =\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}-\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i} \bar{w}_{i,-1} \\
& =O_{p}\left(\frac{1}{\sqrt{N}}\right)+O_{p}(1)=O_{p}(1) .
\end{aligned}
$$

In addition, by Lemma SE-14 and part (a) of Lemma SE-28, we get

$$
\begin{aligned}
Q_{3, N, T} & =\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}-\frac{1}{N} \sum_{i=1}^{N} \bar{w}_{i,-1}^{2} \\
& =O_{p}(T)+O_{p}(T)=O_{p}(T) .
\end{aligned}
$$

Furthermore, in this case,

$$
\widehat{\rho}_{\mathrm{pre}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N} T}\right)
$$

by part (a) of Lemma SD-11. It follows that

$$
\begin{aligned}
\widehat{\sigma}^{2} & =Q_{1, N, T}+2\left[\widehat{\rho}_{\text {pre }}-\rho_{T}\right] Q_{2, N, T}+\left[\widehat{\rho}_{\text {pre }}-\rho_{T}\right]^{2} Q_{3, N, T} \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\frac{1}{\sqrt{N} T}\right) O_{p}(1)+O_{p}\left(\frac{1}{N T^{2}}\right) O_{p}(T) \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{T}\right\}\right)
\end{aligned}
$$

Case (ii): $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$
Applying part (a) of Lemmas SE-20 and part (b) of Lemma SE-29 in this case, we obtain

$$
\begin{aligned}
Q_{2, N, T} & =\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}-\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i} \bar{w}_{i,-1} \\
& =O_{p}\left(\frac{1}{\sqrt{N}}\right)+O_{p}(1)=O_{p}(1)
\end{aligned}
$$

Moreover, applying Lemma SE-15 and part (b) of Lemma SE-28, we get

$$
\begin{aligned}
Q_{3, N, T} & =\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}-\frac{1}{N} \sum_{i=1}^{N} \bar{w}_{i,-1}^{2} \\
& =O_{p}(T)+O_{p}(T)=O_{p}(T)
\end{aligned}
$$

In addition, from part (b) of Lemma SD-11, we have that in this case

$$
\widehat{\rho}_{\mathrm{pre}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N} T}\right)
$$

It follows that

$$
\begin{aligned}
\widehat{\sigma}^{2} & =Q_{1, N, T}+2\left[\widehat{\rho}_{\mathrm{pre}}-\rho_{T}\right] Q_{2, N, T}+\left[\widehat{\rho}_{\mathrm{pre}}-\rho_{T}\right]^{2} Q_{3, N, T} \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\frac{1}{\sqrt{N} T}\right) O_{p}(1)+O_{p}\left(\frac{1}{N T^{2}}\right) O_{p}(T) \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{T}\right\}\right)
\end{aligned}
$$

Case (iii): $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$
Here, the calculations are similar to case (ii) above, except that we apply part (a) of Lemma SE-27, part (c) of Lemma SE-29, part (a) of Lemma SE-17, part (c) of Lemma SE-28, and part (b) of Lemma SD-11 to obtain

$$
\begin{aligned}
Q_{2, N, T} & =\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}-\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i} \bar{w}_{i,-1}=O_{p}(1) \\
Q_{3, N, T} & =\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}-\frac{1}{N} \sum_{i=1}^{N} \bar{w}_{i,-1}^{2}=O_{p}(T) \\
\widehat{\rho}_{\text {pre }}-\rho_{T} & =O_{p}\left(\frac{1}{\sqrt{N} T}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\widehat{\sigma}^{2} & =Q_{1, N, T}+2\left[\widehat{\rho}_{\mathrm{pre}}-\rho_{T}\right] Q_{2, N, T}+\left[\widehat{\rho}_{\mathrm{pre}}-\rho_{T}\right]^{2} Q_{3, N, T} \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\frac{1}{\sqrt{N T}}\right) O_{p}(1)+O_{p}\left(\frac{1}{N T^{2}}\right) O_{p}(T) \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{T}\right\}\right) .
\end{aligned}
$$

Case (iv): $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / L(T)^{2} \ll q(T) \ll T$
In this case, we apply part (b) of Lemma SE-27 and part (d) of Lemma SE-29 to obtain

$$
\begin{aligned}
Q_{2, N, T} & =\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}-\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i} \bar{w}_{i,-1} \\
& =\sqrt{\frac{T q(T)}{N(T-1)^{2}}} \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}-\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i} \bar{w}_{i,-1} \\
& =O_{p}\left(\sqrt{\frac{q(T)}{N T}}\right)+O_{p}\left(\frac{q(T)}{T}\right)=o_{p}\left(\sqrt{\frac{q(T)}{T}}\right) .
\end{aligned}
$$

Moreover, applying part (b) of Lemma SE-17 and part (d) of Lemma SE-28, we get

$$
\begin{aligned}
Q_{3, N, T} & =\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}-\frac{1}{N} \sum_{i=1}^{N} \bar{w}_{i,-1}^{2} \\
& =\frac{T q(T)}{(T-1)} \frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}-\frac{1}{N} \sum_{i=1}^{N} \bar{w}_{i,-1}^{2} \\
& =O_{p}(q(T))+O_{p}\left(\frac{q(T)^{2}}{T}\right)=O_{p}(q(T)) .
\end{aligned}
$$

In addition, by part (c) of Lemma SD-11,

$$
\hat{\rho}_{\mathrm{pre}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N T q(T)}}\right) .
$$

It follows that

$$
\begin{aligned}
\widehat{\sigma}^{2} & =Q_{1, N, T}+2\left[\widehat{\rho}_{\mathrm{pre}}-\rho_{T}\right] Q_{2, N, T}+\left[\widehat{\rho}_{\mathrm{pre}}-\rho_{T}\right]^{2} Q_{3, N, T} \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\frac{1}{\sqrt{N T q(T)}}\right) o_{p}\left(\sqrt{\frac{q(T)}{T}}\right)+O_{p}\left(\frac{1}{N T q(T)}\right) O_{p}(q(T)) \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{T}\right\}\right) .
\end{aligned}
$$

$\underline{\text { Case (v) }}: \rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) L(T)^{2} / T=O(1)$
Here, the calculations are similar to case (iv) above, except that, by part (d) of Lemma SD-11, we have

$$
\widehat{\rho}_{\mathrm{pre}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N T}}\right)
$$

from which it follows that

$$
\begin{aligned}
\widehat{\sigma}^{2} & =Q_{1, N, T}+2\left[\widehat{\rho}_{\mathrm{pre}}-\rho_{T}\right] Q_{2, N, T}+\left[\widehat{\rho}_{\mathrm{pre}}-\rho_{T}\right]^{2} Q_{3, N, T} \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\frac{1}{\sqrt{N T}}\right) o_{p}\left(\sqrt{\frac{q(T)}{T}}\right)+O_{p}\left(\frac{1}{N T}\right) O_{p}(q(T)) \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{T}\right\}\right) .
\end{aligned}
$$

$\underline{\text { Case (vi): }} \rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$
In this case,

$$
\begin{aligned}
& Q_{2, N, T} \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}-\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i} \bar{w}_{i,-1} \\
= & \frac{\sqrt{N T}}{N(T-1)} \frac{1}{\sqrt{1-\rho_{T}^{2}}} \sqrt{\frac{1-\rho_{T}^{2}}{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}-\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i} \bar{w}_{i,-1} \\
= & \frac{1}{\sqrt{N T}} \frac{1}{\sqrt{1-\rho_{T}^{2}}} \sqrt{\frac{1-\rho_{T}^{2}}{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}\left[1+O\left(\frac{1}{T}\right)\right]-\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i} \bar{w}_{i,-1} .
\end{aligned}
$$

Here, we take $\rho_{T}^{2}=\exp \left\{-\frac{2}{q(T)}\right\}$ with $q(T)=O(1)$, so that there exists a positive constant C_{q} and a positive integer T^{*} such that for all $T \geq T^{*}$

$$
\rho_{T}^{2}=\exp \left\{-\frac{2}{q(T)}\right\} \leq \exp \left\{-\frac{2}{C_{q}}\right\}<1,
$$

from which we deduce that for all $T \geq T^{*}$

$$
\frac{1}{\sqrt{1-\rho_{T}^{2}}} \leq \frac{1}{\sqrt{1-\exp \left\{-2 / C_{q}\right\}}}<\infty
$$

Now, applying part (c) of Lemmas SE-27 and part (e) of Lemma SE-29, we obtain

$$
\begin{aligned}
Q_{2, N, T} & =\frac{1}{\sqrt{N T}} \frac{1}{\sqrt{1-\rho_{T}^{2}}} \sqrt{\frac{1-\rho_{T}^{2}}{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t}\left[1+O\left(\frac{1}{T}\right)\right]-\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i} \bar{w}_{i,-1} \\
& =O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}\left(\frac{1}{T}\right) .
\end{aligned}
$$

Moreover, write

$$
\begin{aligned}
& Q_{3, N, T} \\
= & \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}-\frac{1}{N} \sum_{i=1}^{N} \bar{w}_{i,-1}^{2} \\
= & \frac{T}{T-1} \frac{1}{1-\rho_{T}^{2}} \frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}-\frac{1}{N} \sum_{i=1}^{N} \bar{w}_{i,-1}^{2},
\end{aligned}
$$

and, using the upper bound above, we have that $T \geq T^{*}$

$$
\frac{1}{1-\rho_{T}^{2}} \leq \frac{1}{1-\exp \left\{-2 / C_{q}\right\}}<\infty .
$$

Hence, applying part (c) of Lemma SE-17 and part (e) of Lemma SE-28, we get

$$
\begin{aligned}
& Q_{3, N, T} \\
= & \frac{T}{T-1} \frac{1}{1-\rho_{T}^{2}} \frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2}-\frac{1}{N} \sum_{i=1}^{N} \bar{w}_{i,-1}^{2} \\
= & O_{p}(1)+O_{p}\left(\frac{1}{T}\right)=O_{p}(1) .
\end{aligned}
$$

In addition, in this case, we have by part (e) of Lemma SD-11,

$$
\widehat{\rho}_{\mathrm{pre}}-\rho_{T}=O_{p}\left(\frac{1}{\sqrt{N T}}\right) .
$$

It follows that

$$
\begin{aligned}
\widehat{\sigma}^{2} & =Q_{1, N, T}+2\left[\widehat{\rho}_{\mathrm{pre}}-\rho_{T}\right] Q_{2, N, T}+\left[\widehat{\rho}_{\mathrm{pre}}-\rho_{T}\right]^{2} Q_{3, N, T} \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\frac{1}{\sqrt{N T}}\right) O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(\frac{1}{N T}\right) O_{p}(1) \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{T}\right\}\right) .
\end{aligned}
$$

To complete the proof of this lemma, note that, in the pathwise asymptotics considered here, N grows as a monotonically increasing function of T, so that the asymptotics here can be taken to be single-indexed with $T \rightarrow \infty$. Hence, we set $\mathbb{S}_{T}\left(\rho_{T}\right)=\widehat{\sigma}^{2}-\sigma^{2}$ in Lemma SD-10 and apply part (a) of that lemma for the following collection of parameter sequences

$$
\begin{aligned}
\mathcal{G}_{1}^{\sigma} & =\left\{\rho_{T}: \rho_{T}=1 \text { for all } T \text { sufficiently large }\right\} \\
\mathcal{G}_{2}^{\sigma} & =\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: T / q(T) \rightarrow 0\right\} \\
\mathcal{G}_{3}^{\sigma} & =\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \sim T\right\}, \\
\mathcal{G}_{4}^{\sigma} & =\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: T / L(T)^{2} \ll q(T) \ll T\right\}, \\
\mathcal{G}_{5}^{\sigma} & =\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \rightarrow \infty \text { but } q(T) L(T)^{2} / T=O(1)\right\} \\
\mathcal{G}_{6}^{\sigma} & =\mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0 \text { and } q(T)=O(1) \text { as } T \rightarrow \infty\right\}
\end{aligned}
$$

Note that the calculations given in cases (i)-(vi) above imply that

$$
\widehat{\sigma}^{2}=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{T}\right\}\right)=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{T^{1 / \kappa}}, \frac{1}{T}\right\}\right)
$$

under every sequence $\rho_{T} \in \mathcal{G}_{\ell}^{\sigma}$ and for every $\ell \in\{1,2, . ., 6\}$. Now, let $\left\{\rho_{j, T}\right\} \in \mathcal{G}_{s_{j}}^{\sigma}$ (for $j=1, \ldots, 6$), i.e., $\left\{\rho_{j, T}\right\}$ is a sequence belonging to the collection $\mathcal{G}_{s_{j}}^{\sigma}$, where $s_{j} \in\{1, \ldots, 6\}$. In addition, define $T_{j}=f_{j}(T)$ $(j=1, \ldots, d)$, with $d \leq 6$, where $f_{j}(\cdot): \mathbb{N} \rightarrow \mathbb{N}$ is an increasing function in its argument, and let $\left\{\rho_{j, T_{j}}\right\}$ denote a subsequence of $\left\{\rho_{j, T}\right\}$. Furthermore, let

$$
\mathcal{G}^{*}=\left\{\rho_{T}:-1<\rho_{T} \leq 1 \text { for all } T\right\},
$$

and note that every parameter sequence $\rho_{T} \in \mathcal{G}^{*}$ can be represented as

$$
\left\{\rho_{T}\right\}=\bigcup_{j=1}^{d}\left\{\rho_{j, T_{j}}\right\}
$$

where

$$
\left\{\rho_{1, T_{1}}\right\} \in \mathcal{G}_{s_{1}}^{\sigma}, \ldots,\left\{\rho_{d, T_{d}}\right\} \in \mathcal{G}_{s_{d}}^{\sigma}
$$

with $\mathcal{G}_{s_{k}}^{\sigma} \neq \mathcal{G}_{s_{\ell}}^{\sigma}$ for $k \neq \ell$ and where

$$
\mathbb{N}=\bigcup_{k=1}^{d}\left\{T_{k}=f_{k}(T): T \in \mathbb{N}\right\}
$$

Hence, we can apply part (a) of Lemma SD-10 with $\zeta(T)=\max \left\{T^{-1 / \kappa}, T^{-1}\right\}$ to conclude that for every sequence $\left\{\rho_{T}\right\} \in \mathcal{G}^{*}$,

$$
\widehat{\sigma}^{2}=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{T}\right\}\right)=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{T^{1 / \kappa}}, \frac{1}{T}\right\}\right),
$$

which is the desired result.

Lemma SD-13:

Under Assumptions 1-4, the following statements are true as $N, T \rightarrow \infty$ such that $N^{\kappa} / T=\tau$ for $\kappa \in\left(\frac{1}{2}, \infty\right)$ and $\tau \in(0, \infty)$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\widehat{\omega}_{N T}^{2}=2 \sigma^{4}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right) .
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$, then

$$
\widehat{\omega}_{N T}^{2}=2 \sigma^{4}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}, \frac{T}{q(T)}\right\}\right) .
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\widehat{\omega}_{N T}^{2}=\sigma^{4}+\frac{1}{2} \sigma^{4} \frac{q(T)}{T}\left(1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right)+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right)
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\widehat{\omega}_{N T}^{2}=\sigma^{4}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{q(T)}, \frac{q(T)}{T}\right\}\right)
$$

(e) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\widehat{\omega}_{N T}^{2}=\frac{2 \sigma^{4}}{1+\rho_{T}}+o_{p}(1)
$$

Proof of Lemma SD-13:

To proceed, consider first part (a), where we take $\rho_{T}=1$ for all T sufficiently large. In this case, we make use of part (a) of Lemmas SD-6 and SD-7 and Lemma SD-12 to obtain

$$
\begin{aligned}
& \widehat{\omega}_{N T}^{2} \\
= & \widetilde{\sigma}^{2}\left[\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T}\left(y_{i t-3}-y_{i t-2}\right)^{2}+\frac{1}{N T} \sum_{i=1}^{N} y_{i T-2}^{2}\right] \\
= & {\left[\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{T}\right\}\right)\right]\left[\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right)\right] } \\
= & 2 \sigma^{4}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right)
\end{aligned}
$$

as required.
Next, consider part (b), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$. In this case, we apply part (b) of Lemmas SD-6 and SD-7 and Lemma SD-12 to obtain

$$
\begin{aligned}
& \widehat{\omega}_{N T}^{2} \\
= & \widetilde{\sigma}^{2}\left[\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T}\left(y_{i t-3}-y_{i t-2}\right)^{2}+\frac{1}{N T} \sum_{i=1}^{N} y_{i T-2}^{2}\right] \\
= & {\left[\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{T}\right\}\right)\right] } \\
& \times\left[\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}, \frac{T}{q(T)}\right\}\right)\right] \\
= & 2 \sigma^{4}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}, \frac{T}{q(T)}\right\}\right),
\end{aligned}
$$

as required.
Now, consider part (c), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. Here, applying

Lemmas part (c) of Lemmas SD-6 and SD-7 and Lemma SD-12, we have

$$
\begin{aligned}
& \widehat{\omega}_{N T}^{2} \\
= & \tilde{\sigma}^{2}\left[\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T}\left(y_{i t-3}-y_{i t-2}\right)^{2}+\frac{1}{N T} \sum_{i=1}^{N} y_{i T-2}^{2}\right] \\
= & {\left[\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{T}\right\}\right)\right]\left[\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)\right] } \\
& +\left[\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{T}\right\}\right)\right]\left[\frac{\sigma^{2}}{2} \frac{q(T)}{T}\left(1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right)+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right)\right] \\
= & \sigma^{4}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{T}\right\}\right)+\frac{1}{2} \sigma^{4} \frac{q(T)}{T}\left(1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right)+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right) \\
= & \sigma^{4}+\frac{1}{2} \sigma^{4} \frac{q(T)}{T}\left(1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right)+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right),
\end{aligned}
$$

as required.
We turn our attention to part (d), where we assume that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$. In this case, we apply part (d) of Lemmas SD-6 and SD-7 and Lemma SD-12 to obtain

$$
\begin{aligned}
& \widehat{\omega}_{N T}^{2} \\
= & \widetilde{\sigma}^{2}\left[\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T}\left(y_{i t-3}-y_{i t-2}\right)^{2}+\frac{1}{N T} \sum_{i=1}^{N} y_{i T-2}^{2}\right] \\
= & {\left[\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{T}\right\}\right)\right] } \\
& \times\left[\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{q(T)}\right\}\right)+O_{p}\left(\frac{q(T)}{T}\right)+O_{p}\left(\sqrt{\frac{q(T)}{N T}}\right)\right] \\
= & \sigma^{4}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{q(T)}, \frac{q(T)}{T}\right\}\right),
\end{aligned}
$$

as required.
Finally, we consider part (e), where we assume that
$\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$.
In this case, we apply part (e) of Lemmas SD-6 and SD-7 and Lemma SD-12 to obtain

$$
\begin{aligned}
\widehat{\omega}_{N T}^{2} & =\widetilde{\sigma}^{2}\left[\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=4}^{T}\left(y_{i t-3}-y_{i t-2}\right)^{2}+\frac{1}{N T} \sum_{i=1}^{N} y_{i T-2}^{2}\right] \\
& =\left[\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{N}, \frac{1}{T}\right\}\right)\right]\left[\frac{2 \sigma^{2}}{1+\rho_{T}}+o_{p}(1)+O_{p}\left(\frac{1}{T}\right)\right] \\
& =\frac{2 \sigma^{4}}{1+\rho_{T}}+o_{p}(1) .
\end{aligned}
$$

Appendix SE: Additional Lemmas and Technical Details

Lemma SE-1:

Let d and b both be some positive integer. The the following results hold as $T \rightarrow \infty$.
(a) If $T / q(T) \rightarrow 0$, then

$$
\sum_{t=b}^{T} \sum_{j=1}^{t-b+1} \exp \left\{-d \frac{(t-b+1-j)}{q(T)}\right\}=\frac{T^{2}}{2}\left[1+O\left(\frac{1}{T}\right)+O\left(\frac{T}{q(T)}\right)\right]
$$

(b) If $q(T) \sim T$, then

$$
\sum_{t=b}^{T} \sum_{j=1}^{t-b+1} \exp \left\{-d \frac{(t-b+1-j)}{q(T)}\right\}=\frac{q(T)^{2}}{d^{2}}\left[\exp \left\{-\frac{d T}{q(T)}\right\}+\frac{d T}{q(T)}-1\right]\left[1+O\left(\frac{1}{T}\right)\right]
$$

(c) If $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow 0$, then

$$
\sum_{t=b}^{T} \sum_{j=1}^{t-b+1} \exp \left\{-d \frac{(t-b+1-j)}{q(T)}\right\}=\frac{T q(T)}{d}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right]
$$

Proof of Lemma SE-1:

To proceed, note first that for all $T \geq b$

$$
\begin{aligned}
& \sum_{t=b}^{T} \sum_{j=1}^{t-b+1} \exp \left\{-d \frac{(t-b+1-j)}{q(T)}\right\} \\
= & \sum_{t=b}^{T} \frac{1-\exp \left\{-d \frac{t-b+1}{q(T)}\right\}}{1-\exp \left\{-\frac{d}{q(T)}\right\}} \\
= & {\left[1-\exp \left\{-\frac{d}{q(T)}\right\}\right]^{-1}\left\{(T-b+1)-\sum_{t=b}^{T} \exp \left\{-d\left(\frac{t-b+1}{q(T)}\right)\right\}\right\} } \\
= & {\left[1-\exp \left\{-\frac{d}{q(T)}\right\}\right]^{-1}\left\{(T-b+1)-\exp \left\{-\frac{d}{q(T)}\right\} \sum_{t=b}^{T} \exp \left\{-d\left(\frac{t-b}{q(T)}\right)\right\}\right\} } \\
= & {\left.\left[1-\exp \left\{-\frac{d}{q(T)}\right\}\right]^{-1}\right\} } \\
& \times\left\{(T-b+1)-\exp \left\{-\frac{d}{q(T)}\right\}\left[1-\exp \left\{-\frac{d}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-d\left(\frac{T-b+1}{q(T)}\right)\right\}\right]\right\}
\end{aligned}
$$

For part (a), we consider the case $T / q(T) \rightarrow 0$. In this case, note that

$$
\begin{aligned}
& \sum_{t=b}^{T} \sum_{j=1}^{t-b+1} \exp \left\{-d \frac{(t-b+1-j)}{q(T)}\right\} \\
= & {\left[1-\exp \left\{-\frac{d}{q(T)}\right\}\right]^{-1} } \\
& \times\left\{(T-b+1)-\exp \left\{-\frac{d}{q(T)}\right\}\left[1-\exp \left\{-\frac{d}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-d\left(\frac{T-b+1}{q(T)}\right)\right\}\right]\right\} \\
= & {\left[1-\exp \left\{-\frac{d}{q(T)}\right\}\right]^{-2}\left\{(T-b+1)\left[1-\exp \left\{-\frac{d}{q(T)}\right\}\right]\right.} \\
& \left.-\exp \left\{-\frac{d}{q(T)}\right\}\left[1-\exp \left\{-d \frac{T}{q(T)}\right\} \exp \left\{\frac{d}{q(T)}(b-1)\right\}\right]\right\} \\
= & {\left[1-1+\frac{d}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right]^{-2}(T-b+1)\left[\frac{d}{q(T)}-\frac{d^{2}}{2} \frac{1}{q(T)^{2}}+O\left(\frac{1}{q(T)^{3}}\right)\right] } \\
& \left.-1+\frac{d}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right]^{-2}\left[1-\frac{d}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right] \\
& \times\left(1-\left[1-\frac{d T}{q(T)}+\frac{d^{2} T^{2}}{2 q(T)^{2}}+O\left(\frac{T^{3}}{q(T)^{3}}\right)\right]\left[1+\frac{d(b-1)}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right]\right) \\
& -\left[1-\frac{d}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right]\left[1-\left(1-\frac{d T}{q(T)}+\frac{d^{2}}{2} \frac{T^{2}}{q(T)^{2}}+\frac{d(b-1)}{q(T)}-\frac{d^{2}(b-1) T}{q(T)^{2}}\right.\right. \\
& \left.\left.\left.+O\left(\frac{T^{3}}{q(T)^{3}}\right)+O\left(\frac{1}{q(T)^{2}}\right)\right)\right]\right\} \\
= & \frac{q(T)^{2}}{d^{2}}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left\{\frac{d T}{q(T)}-\frac{d(b-1)}{q(T)}-\frac{d^{2}}{2} \frac{T}{q(T)^{2}}+O\left(\frac{1)}{q(T)}-\frac{d^{2}}{2} \frac{T}{q(T)^{2}}+O\left(\frac{1}{q(T)^{2}}\right)-\right.\right. \\
& {\left[1-\frac{d}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right]\left(\frac{d T}{q(T)}-\frac{d^{2} T^{2}}{2 q(T)^{2}}-\frac{d(b-1)}{q(T)}+\frac{d^{2}(b-1) T}{q(T)^{2}}\right.} \\
& \left.\left.+O\left(\frac{T^{3}}{q(T)^{3}}\right)+O\left(\frac{1}{q(T)^{2}}\right)\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{q(T)^{2}}{d^{2}}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left\{\frac{d T}{q(T)}-\frac{d(b-1)}{q(T)}-\frac{d^{2}}{2} \frac{T}{q(T)^{2}}+O\left(\frac{T}{q(T)^{3}}\right)-\frac{d T}{q(T)}\right. \\
& \left.+\frac{d^{2}}{2} \frac{T^{2}}{q(T)^{2}}+\frac{d(b-1)}{q(T)}-\frac{d^{2}(b-1) T}{q(T)^{2}}+\frac{d^{2} T}{q(T)^{2}}+O\left(\frac{T^{3}}{q(T)^{3}}\right)+O\left(\frac{1}{q(T)^{2}}\right)\right\} \\
= & \frac{q(T)^{2}}{d^{2}}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left\{\frac{d^{2}}{2} \frac{T^{2}}{q(T)^{2}}-\left(\frac{2 b-3}{2}\right) \frac{d^{2} T}{q(T)^{2}}+O\left(\frac{T^{3}}{q(T)^{3}}\right)+O\left(\frac{1}{q(T)^{2}}\right)\right\} \\
= & {\left[\frac{T^{2}}{2}+O(T)+O\left(\frac{T^{3}}{q(T)}\right)+O(1)\right]\left[1+O\left(\frac{1}{q(T)}\right)\right] } \\
= & \frac{T^{2}}{2}\left[1+O\left(\frac{1}{T}\right)+O\left(\frac{T}{q(T)}\right)+O\left(\frac{1}{T^{2}}\right)\right]\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
= & \frac{T^{2}}{2}\left[1+O\left(\max \left\{\frac{1}{T}, \frac{T}{q(T)}\right\}\right)\right]
\end{aligned}
$$

Next, consider part (b), where we take $q(T) \sim T$. In this case, we obtain by direct calculation

$$
\begin{aligned}
& \sum_{t=b}^{T} \sum_{j=1}^{t-b+1} \exp \left\{-d \frac{(t-b+1-j)}{q(T)}\right\} \\
= & {\left[1-\exp \left\{-\frac{d}{q(T)}\right\}\right]^{-1} } \\
& \times\left\{(T-b+1)-\exp \left\{-\frac{d}{q(T)}\right\}\left[1-\exp \left\{-\frac{d}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-d\left(\frac{T-b+1}{q(T)}\right)\right\}\right]\right\} \\
= & \frac{q(T)}{d}\left[T-\left(\frac{q(T)}{d}\right)\left[1-\exp \left\{-\frac{d T}{q(T)}\right\} \exp \left\{\frac{d(b-1)}{q(T)}\right\}\right]\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
= & \frac{q(T)}{d}\left[T+\frac{q(T)}{d}\left(\exp \left\{-\frac{d T}{q(T)}\right\}-1\right)+O(1)\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
= & \frac{q(T)^{2}}{d^{2}}\left[\exp \left\{-\frac{d T}{q(T)}\right\}+\frac{d T}{q(T)}-1\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
= & O\left(T^{2}\right),
\end{aligned}
$$

which shows the required result for part (b).
Finally, consider part (c). In this case, $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow 0$, and we have

$$
\begin{aligned}
& \sum_{t=b}^{T} \sum_{j=1}^{t-b+1} \exp \left\{-d \frac{(t-b+1-j)}{q(T)}\right\} \\
= & {\left[1-\exp \left\{-\frac{d}{q(T)}\right\}\right]^{-1} } \\
& \times\left\{(T-b+1)-\exp \left\{-\frac{d}{q(T)}\right\}\left[1-\exp \left\{-\frac{d}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-d\left(\frac{T-b+1}{q(T)}\right)\right\}\right]\right\} \\
= & \frac{q(T)}{d}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& \times\left\{(T-b+1)-\exp \left\{-\frac{d}{q(T)}\right\}\left[1-\exp \left\{-\frac{d}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-d\left(\frac{T-b+1}{q(T)}\right)\right\}\right]\right\} \\
= & \frac{T q(T)-q(T)(b-1)}{d}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
= & \frac{-\frac{q(T)}{d} \frac{T(T)}{d}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left[1-\exp \left\{-\frac{d T}{q(T)}\right\} \exp \left\{\frac{d(b-1)}{q(T)}\right\}\right]}{d}\left[1+O\left(\frac{1}{q(T)}\right)\right]-\frac{q(T)^{2}}{d^{2}}\left(1-\exp \left\{-\frac{d T}{q(T)}\right\}\left[1+O\left(\frac{1}{q(T)}\right)\right]\right) \\
= & \frac{T q(T)-q(T)(b-1)}{d}\left[1+O\left(\frac{1}{q(T)}\right)\right]-\frac{q(T)^{2}}{d^{2}}\left\{1+O\left(\exp \left\{-\frac{d T}{q(T)}\right\}\right)\right\} \\
= & \frac{T q(T)}{d}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right],
\end{aligned}
$$

as required.

Lemma SE-2:

Let b be a positive integer and let g be a non-negative integer.
(a) If $T / q(T) \rightarrow 0$, then

$$
\sum_{t=g+1}^{T}\left[\sum_{j=1}^{t-g} \exp \left(-b \frac{(t-g-j)}{q(T)}\right)\right]^{2}=\frac{T^{3}}{3}\left[1+O\left(\frac{T}{q(T)}\right)+O\left(\frac{1}{T}\right)\right]
$$

as $T \rightarrow \infty$.
(b) If $q(T) \sim T$, then

$$
\begin{aligned}
& \sum_{t=g+1}^{T}\left[\sum_{j=1}^{t-g} \exp \left(-b \frac{(t-g-j)}{q(T)}\right)\right]^{2} \\
= & \frac{q(T)^{3}}{2 b^{3}}\left[\frac{2 b T}{q(T)}+4 \exp \left\{-\frac{b T}{q(T)}\right\}-\exp \left\{-\frac{2 b T}{q(T)}\right\}-3\right]\left[1+O\left(\frac{1}{T}\right)\right],
\end{aligned}
$$

as $T \rightarrow \infty$.
(c) If $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow 0$, then

$$
\sum_{t=g+1}^{T}\left[\sum_{j=1}^{t-g} \exp \left(-b \frac{(t-g-j)}{q(T)}\right)\right]^{2}=\frac{T q(T)^{2}}{b^{2}}\left[1+O\left(\frac{q(T)}{T}\right)\right]
$$

as $T \rightarrow \infty$.

Proof of Lemma SE-2:

To proceed, note first that for all $T \geq g+1$, we have

$$
\begin{aligned}
& \sum_{t=g+1}^{T}\left[\sum_{j=1}^{t-g} \exp \left\{-b \frac{(t-g-j)}{q(T)}\right\}\right]^{2} \\
= & {\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-2} \sum_{t=g+1}^{T}\left[1-\exp \left\{-b \frac{(t-g)}{q(T)}\right\}\right]^{2} } \\
= & \frac{q(T)^{2}}{b^{2}} \sum_{t=g+1}^{T}\left[1-2 \exp \left\{-b \frac{(t-g)}{q(T)}\right\}+\exp \left\{-2 b \frac{(t-g)}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
= & \frac{q(T)^{2}}{b^{2}}\left[(T-g)-2 \exp \left\{-\frac{b}{q(T)}\right\} \sum_{t=g+1}^{T} \exp \left\{-b \frac{(t-g-1)}{q(T)}\right\}\right. \\
& +\exp \left\{-\frac{2 b}{q(T)}\right\} \sum_{t=g+1}^{T} \exp \left\{-2 b \frac{(t-g-1)}{q(T)}\right\}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
= & \frac{q(T)^{2}}{b^{2}}\left[(T-g)-2 \exp \left\{-\frac{b}{q(T)}\right\}\left(1-\exp \left\{-\frac{b}{q(T)}\right\}\right)\right)^{-1}\left(1-\exp \left\{-b \frac{(T-g)}{q(T)}\right\}\right) \\
& \left.+\exp \left\{-\frac{2 b}{q(T)}\right\}\left(1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right)^{-1}\left(1-\exp \left\{-\frac{2 b(T-g)}{q(T)}\right\}\right)\right]\left[1+O\left(\frac{1}{q(T)}\right)\right] .
\end{aligned}
$$

Now, consider part (a), where we take $T / q(T) \rightarrow 0$. Here, we have

$$
\begin{aligned}
& \sum_{t=g+1}^{T}\left[\sum_{j=1}^{t-g} \exp \left(-b \frac{(t-g-j)}{q(T)}\right)\right]^{2} \\
& =\frac{q(T)^{2}}{b^{2}}\left[(T-g)-2 \exp \left\{-\frac{b}{q(T)}\right\}\left(1-\exp \left\{-\frac{b}{q(T)}\right\}\right)^{-1}\left(1-\exp \left\{-\frac{b T}{q(T)}\right\} \exp \left\{\frac{g b}{q(T)}\right\}\right)\right. \\
& \left.+\exp \left\{-\frac{2 b}{q(T)}\right\}\left(1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right)^{-1}\left(1-\exp \left\{-\frac{2 b T}{q(T)}\right\} \exp \left\{\frac{2 g b}{q(T)}\right\}\right)\right]\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& =\frac{q(T)^{2}}{b^{2}}\{(T-g) \\
& -\frac{2 q(T)}{b}\left(1-\left[1-\frac{b T}{q(T)}+\frac{b^{2}}{2} \frac{T^{2}}{q(T)^{2}}-\frac{1}{6} \frac{b^{3} T^{3}}{q(T)^{3}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)\right]\left[1+\frac{g b}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right]\right) \\
& \times\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& +\frac{q(T)}{2 b}\left(1-\left[1-\frac{2 b T}{q(T)}+\frac{2 b^{2} T^{2}}{q(T)^{2}}-\frac{8}{6} \frac{b^{3} T^{3}}{q(T)^{3}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)\right]\left[1+\frac{2 g b}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right]\right) \\
& \times\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& =\frac{q(T)^{2}}{b^{2}}\{(T-g) \\
& -2 \frac{q(T)}{b}\left[\frac{b T}{q(T)}-\frac{1}{2} \frac{b^{2} T^{2}}{q(T)^{2}}+\frac{1}{6} \frac{b^{3} T^{3}}{q(T)^{3}}-\frac{g b}{q(T)}+\frac{g b^{2} T}{q(T)^{2}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)+O\left(\frac{T^{2}}{q(T)^{3}}\right)\right] \\
& \times\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& +\frac{q(T)}{2 b}\left[\frac{2 b T}{q(T)}-2 \frac{b^{2} T^{2}}{q(T)^{2}}+\frac{4}{3} \frac{b^{3} T^{3}}{q(T)^{3}}-\frac{2 g b}{q(T)}+\frac{4 g b^{2} T}{q(T)^{2}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)+O\left(\frac{T^{2}}{q(T)^{3}}\right)\right] \\
& \left.\times\left[1+O\left(\frac{1}{q(T)}\right)\right]\right\} \\
& =\frac{q(T)^{2}}{b^{2}}\{(T-g) \\
& -2 \frac{q(T)}{b}\left[\frac{b T}{q(T)}-\frac{1}{2} \frac{b^{2} T^{2}}{q(T)^{2}}+\frac{1}{6} \frac{b^{3} T^{3}}{q(T)^{3}}-\frac{g b}{q(T)}+\frac{g b^{2} T}{q(T)^{2}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)+O\left(\frac{T^{2}}{q(T)^{3}}\right)\right] \\
& \times\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& +\frac{q(T)}{2 b}\left[\frac{2 b T}{q(T)}-2 \frac{b^{2} T^{2}}{q(T)^{2}}+\frac{4}{3} \frac{b^{3} T^{3}}{q(T)^{3}}-\frac{2 g b}{q(T)}+\frac{4 g b^{2} T}{q(T)^{2}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)+O\left(\frac{T^{2}}{q(T)^{3}}\right)\right] \\
& \left.\times\left[1+O\left(\frac{1}{q(T)}\right)\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{q(T)^{2}}{b^{2}}\left\{\left[(T-g)-2 T+\frac{b T^{2}}{q(T)}-\frac{1}{3} \frac{b^{2} T^{3}}{q(T)^{2}}+2 g-2 \frac{g b T}{q(T)}+O\left(\frac{T^{4}}{q(T)^{3}}\right)+O\left(\frac{T^{2}}{q(T)^{2}}\right)\right]\right. \\
& \quad \times\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
= & \frac{q(T)^{2}}{b^{2}}\left[\frac{1}{3} \frac{b^{2} T^{3}}{q(T)^{2}}+O\left(\frac{b T^{2}}{q(T)}+\frac{2}{3} \frac{b^{2} T^{3}}{q(T)^{2}}-g+2 \frac{g b T}{q(T)}+O\left(\frac{T^{4}}{q(T)^{3}}\right)+O\left(\frac{T^{2}}{q(T)^{2}}\right)\right]\left[1+O\left(\frac{1}{q(T)}\right)\right]\right\} \\
= & \frac{T^{3}}{3}\left[1+O\left(\frac{T}{q(T)^{2}}\right)\right]\left[1+O\left(\frac{1}{q(T)}\right)\right]
\end{aligned}
$$

which completes the proof of part (a).
Next, consider part (b). In this case, $q(T) \sim T$, and we have

$$
\begin{aligned}
& \sum_{t=g+1}^{T}\left[\sum_{j=1}^{t-g} \exp \left(-b \frac{(t-g-j)}{q(T)}\right)^{2}\right. \\
= & \frac{q(T)^{2}}{b^{2}}\left[(T-g)-2 \exp \left\{-\frac{b}{q(T)}\right\}\left(1-\exp \left\{-\frac{b}{q(T)}\right\}\right)^{-1}\left(1-\exp \left\{-b \frac{(T-g)}{q(T)}\right\}\right)\right. \\
& \left.+\exp \left\{-\frac{2 b}{q(T)}\right\}\left(1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right)^{-1}\left(1-\exp \left\{-\frac{2 b(T-g)}{q(T)}\right\}\right)\right]\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
= & \frac{q(T)^{2}}{b^{2}}\left[(T-g)-2 \exp \left\{-\frac{b}{q(T)}\right\}\left(1-\exp \left\{-\frac{b}{q(T)}\right\}\right)^{-1}\left(1-\exp \left\{-\frac{b T}{q(T)}\right\} \exp \left\{\frac{g b}{q(T)}\right\}\right)\right. \\
& \left.+\exp \left\{-\frac{2 b}{q(T)}\right\}\left(1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right)^{-1}\left(1-\exp \left\{-\frac{2 b T}{q(T)}\right\} \exp \left\{\frac{2 g b}{q(T)}\right\}\right)\right] \\
= & \frac{q(T)^{2}}{b^{2}}\left[(T-g)-2 \frac{q(T)}{b}\left(1-\exp \left\{-\frac{b T}{q(T)}\right\}+O\left(\frac{1}{T}\right)\right)\left(1+O\left(\frac{1}{T}\right)\right)\right. \\
& \left.+\frac{q(T)}{2 b}\left(1-\exp \left\{-\frac{2 b T}{q(T)}\right\}+O\left(\frac{1}{T}\right)\right)\left(1+O\left(\frac{1}{T}\right)\right)\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
= & \frac{q(T)^{3}}{b^{3}}\left[\frac{b T}{q(T)}-2\left(1-\exp \left\{-\frac{b T}{q(T)}\right\}\right)+\frac{1}{2}\left(1-\exp \left\{-\frac{2 b T}{q(T)}\right\}\right)\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
= & \frac{q(T)^{3}}{b^{3}}\left[\frac{b T}{q(T)}+2 \exp \left\{-\frac{b T}{q(T)}\right\}-\frac{1}{2} \exp \left\{-\frac{2 b T}{q(T)}\right\}-\frac{3}{2}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
= & \frac{q(T)^{3}}{2 b^{3}}\left[\frac{2 b T}{q(T)}+4 \exp \left\{-\frac{b T}{q(T)}\right\}-\exp \left\{-\frac{2 b T}{q(T)}\right\}-3\right]\left[1+O\left(\frac{1}{T}\right)\right]
\end{aligned}
$$

as required.

Finally, consider part (c), where we take $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow 0$. In this case, we have

$$
\begin{aligned}
& \sum_{t=g+1}^{T}\left[\sum_{j=1}^{t-g} \exp \left(-b \frac{(t-g-j)}{q(T)}\right)\right]^{2} \\
= & \frac{q(T)^{2}}{b^{2}}\left\{(T-g)-2 \frac{q(T)}{b}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left[1+O\left(\exp \left\{-b \frac{T}{q(T)}\right\}\right)\right]\right. \\
& \left.+\frac{q(T)}{2 b}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left[1+O\left(\exp \left\{-2 b \frac{T}{q(T)}\right\}\right)\right]\right\} \\
= & \frac{T q(T)^{2}}{b^{2}}\left[1+O\left(\frac{1}{T}\right)+O\left(\frac{q(T)}{T}\right)\right] \\
= & \frac{T q(T)^{2}}{b^{2}}\left[1+O\left(\frac{q(T)}{T}\right)\right]
\end{aligned}
$$

as required.

Lemma SE-3:

Let b and g be fixed positive integers; then, the following statements are true as $T \rightarrow \infty$.
(a) If $T / q(T) \rightarrow 0$, then

$$
\begin{aligned}
& \sum_{j=1}^{T-g} \exp \left\{-b\left(\frac{T-g-j}{q(T)}\right)\right\} \\
= & T\left[1-\frac{g}{T}-\frac{b}{2} \frac{T}{q(T)}+O\left(\max \left\{\frac{T^{2}}{q(T)^{2}}, \frac{1}{q(T)}\right\}\right)\right] \\
= & O(T)
\end{aligned}
$$

(b) If $q(T) \sim T$, then

$$
\sum_{j=1}^{T-g} \exp \left\{-b\left(\frac{T-g-j}{q(T)}\right)\right\}=\frac{q(T)}{b}\left[1-\exp \left\{-\frac{b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right]
$$

(c) If $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow 0$, then

$$
\sum_{j=1}^{T-g} \exp \left\{-b\left(\frac{T-g-j}{q(T)}\right)\right\}=\frac{q(T)}{b}\left[1+O\left(\frac{1}{q(T)}\right)\right]=O(q(T)) .
$$

Proof:

Focus first on part (a), where we consider the case in which $T / q(T) \rightarrow 0$. In this case,

$$
\begin{aligned}
& \sum_{j=1}^{T-g} \exp \left\{-b\left(\frac{T-g-j}{q(T)}\right)\right\} \\
= & {\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-b\left(\frac{T-g}{q(T)}\right)\right\}\right] } \\
= & {\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b T}{q(T)}\right\} \exp \left\{\frac{b g}{q(T)}\right\}\right] } \\
= & \frac{q(T)}{b}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& \times\left[1-\left(1-\frac{b T}{q(T)}+\frac{1}{2} \frac{b^{2} T^{2}}{q(T)^{2}}+O\left(\frac{T^{3}}{q(T)^{3}}\right)\right)\left(1+\frac{g b}{q(T)}+\frac{g^{2} b^{2}}{2!q(T)^{2}}+O\left(\frac{1}{q(T)^{3}}\right)\right)\right] \\
= & \frac{q(T)}{b}\left[1-\left(1-\frac{b T}{q(T)}+\frac{b^{2} T^{2}}{2 q(T)^{2}}+\frac{g b}{q(T)}+O\left(\max \left\{\frac{T^{3}}{q(T)^{3}}, \frac{T}{q(T)^{2}}\right\}\right)\right)\right] \\
= & \frac{q(T)}{b}\left[\frac{b T}{q(T)}-\frac{b^{2} T^{2}}{2 q(T)^{2}}-\frac{g b}{q(T)}+O\left(\max \left\{\frac{T^{3}}{q(T)^{3}}, \frac{T}{q(T)^{2}}\right\}\right)\right] \\
= & T-\frac{1}{2} \frac{b T^{2}}{q(T)}-g+O\left(\max \left\{\frac{T^{3}}{q(T)^{2}}, \frac{T}{q(T)}\right\}\right) \\
= & T\left[1-\frac{g}{T}-\frac{b}{2} \frac{T}{q(T)}+O\left(\max \left\{\frac{T^{2}}{q(T)^{2}}, \frac{1}{q(T)}\right\}\right)\right] \\
= & O(T),
\end{aligned}
$$

as required for part (a).
We now turn our attention to part (b), where we take $q(T) \sim T$. In this case,

$$
\begin{aligned}
& =\sum_{j=1}^{T-g} \exp \left\{-b\left(\frac{T-g-j}{q(T)}\right)\right\} \\
& =\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b T}{q(T)}\right\} \exp \left\{\frac{b g}{q(T)}\right\}\right] \\
& =\frac{q(T)}{b}\left[1+O\left(\frac{1}{T}\right)\right]\left[1-\exp \left\{-\frac{b T}{q(T)}\right\}\left(1+\frac{g b}{q(T)}+\frac{1}{2} \frac{g^{2} b^{2}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{3}}\right)\right)\right] \\
& =\frac{q(T)}{b}\left[1-\exp \left\{-\frac{b T}{q(T)}\right\}-\frac{g b}{q(T)} \exp \left\{-\frac{b T}{q(T)}\right\}+O\left(\frac{1}{T^{2}}\right)\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& =\frac{q(T)}{b}\left[1-\exp \left\{-\frac{b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& =O(T)
\end{aligned}
$$

Finally, we consider the case $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow 0$. In this case,

$$
\begin{aligned}
& \sum_{j=1}^{T-2} \exp \left\{-b\left(\frac{T-g-j}{q(T)}\right)\right\} \\
= & {\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-b\left(\frac{T-g}{q(T)}\right)\right\}\right] } \\
= & \frac{q(T)}{b}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left[1+O\left(\exp \left\{-\frac{b T}{q(T)}\right\}\right)\right] \\
= & \frac{q(T)}{b}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
= & O(q(T)),
\end{aligned}
$$

which gives the required result for part (c).

Lemma SE-4:

Let d be a positive integer; then, the following statements are true as $T \rightarrow \infty$
(a) If $T / q(T) \rightarrow 0$, then

$$
\begin{aligned}
& \sum_{r=2}^{T-2} \sum_{s=1}^{r-1} \exp \left\{-d \frac{T-2-r}{q(T)}\right\} \exp \left\{-d \frac{T-2-s}{q(T)}\right\} \\
= & \frac{T^{2}}{2}\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right] \\
= & O\left(T^{2}\right) .
\end{aligned}
$$

(b) If $q(T) \sim T$, then

$$
\begin{aligned}
& \sum_{r=2}^{T-2} \sum_{s=1}^{r-1} \exp \left\{-d \frac{T-2-r}{q(T)}\right\} \exp \left\{-d \frac{T-2-s}{q(T)}\right\} \\
= & \frac{q(T)^{2}}{2 d^{2}}\left[1-2 \exp \left\{-\frac{d T}{q(T)}\right\}+\exp \left\{-\frac{2 d T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
= & O\left(T^{2}\right) .
\end{aligned}
$$

(c) If $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow 0$, then

$$
\begin{aligned}
& \sum_{r=2}^{T-2} \sum_{s=1}^{r-1} \exp \left\{-d \frac{T-2-r}{q(T)}\right\} \exp \left\{-d \frac{T-2-s}{q(T)}\right\} \\
= & \frac{q(T)^{2}}{2 d^{2}}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\exp \left\{-\frac{d T}{q(T)}\right\}\right)\right] \\
= & O\left(q(T)^{2}\right) .
\end{aligned}
$$

Proof of Lemma SE-4:

To proceed, note first that

$$
\begin{aligned}
& \sum_{r=2}^{T-2} \sum_{s=1}^{r-1} \exp \left\{-d \frac{T-2-r}{q(T)}\right\} \exp \left\{-d \frac{T-2-s}{q(T)}\right\} \\
= & \sum_{r=2}^{T-2} \exp \left\{-d \frac{T-2-r}{q(T)}\right\} \exp \left\{-d \frac{T-3}{q(T)}\right\} \sum_{s=1}^{r-1} \exp \left\{d\left(\frac{s-1}{q(T)}\right)\right\} \\
= & {\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-1} \sum_{r=2}^{T-2} \exp \left\{-d \frac{T-2-r}{q(T)}\right\} \exp \left\{-d \frac{T-3}{q(T)}\right\} } \\
& \times\left[\exp \left\{d\left(\frac{r-1}{q(T)}\right)\right\}-1\right] \\
= & {\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-1} \sum_{r=2}^{T-2} \exp \left\{-2 d \frac{T-2-r}{q(T)}\right\} } \\
& -\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-1} \exp \left\{-2 d \frac{T}{q(T)}\right\} \exp \left\{\frac{7 d}{q(T)}\right\} \sum_{r=2}^{T-2} \exp \left\{d \frac{r-2}{q(T)}\right\} \\
= & {\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-1} \sum_{r=2}^{T-2} \exp \left\{-2 d \frac{T-2-r}{q(T)}\right\} } \\
& -\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-2} \exp \left\{-2 d \frac{T}{q(T)}\right\} \exp \left\{\frac{7 d}{q(T)}\right\}\left[\exp \left\{d \frac{T-3}{q(T)}\right\}-1\right] \\
= & {\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-1} \sum_{r=2}^{T-2} \exp \left\{-2 d \frac{T-2-r}{q(T)}\right\} } \\
& -\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-2} \exp \left\{-d \frac{T}{q(T)}\right\} \exp \left\{\frac{4 d}{q(T)}\right\} \\
& +\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-2} \exp \left\{-2 d \frac{T}{q(T)}\right\} \exp \left\{\frac{7 d}{q(T)}\right\}
\end{aligned}
$$

Now, consider part (a) where we take $T / q(T) \rightarrow 0$. In this case, note that, applying part (a) of Lemma

SE-3 with $b=2 d$ and $g=2$, we obtain

$$
\begin{aligned}
& \sum_{r=2}^{T-2} \sum_{s=1}^{r-1} \exp \left\{-d \frac{T-2-r}{q(T)}\right\} \exp \left\{-d \frac{T-2-s}{q(T)}\right\} \\
= & {\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-1} \sum_{r=1}^{T-2} \exp \left\{-2 d \frac{T-2-r}{q(T)}\right\}-\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-1} \exp \left\{-2 d \frac{T-3}{q(T)}\right\} } \\
& -\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-2} \exp \left\{-d \frac{T}{q(T)}\right\} \exp \left\{\frac{4 d}{q(T)}\right\} \\
& +\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-2} \exp \left\{-2 d \frac{T}{q(T)}\right\} \exp \left\{\frac{7 d}{q(T)}\right\} \\
= & \frac{q(T)}{d}\left[1-\frac{d}{2 q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right] T\left[1-\frac{2}{T}-d \frac{T}{q(T)}+O\left(\max \left\{\frac{T^{2}}{q(T)^{2}}, \frac{1}{q(T)}\right\}\right)\right] \\
& -\frac{q(T)}{d}\left[1-\frac{d}{2 q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right] \\
& -\left[\frac{d}{q(T)}+\frac{d^{2}}{2} \frac{1}{q(T)^{2}}+\frac{1}{6} \frac{d^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right]^{-2} \\
& \times\left[1-d \frac{T}{q(T)}+\frac{d^{2}}{2} \frac{T^{2}}{q(T)^{2}}+O\left(\frac{T^{3}}{q(T)^{3}}\right)\right]\left[1+\frac{4 d}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right] \\
& +\left[\frac{d}{q(T)}+\frac{d^{2}}{2} \frac{1}{q(T)^{2}}+\frac{1}{6} \frac{d^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right]^{-2} \\
& \times\left[1-\frac{2 d T}{q(T)}+\frac{2 d^{2} T^{2}}{q(T)^{2}}+O\left(\frac{T^{3}}{q(T)^{3}}\right)\right]\left[1+\frac{7 d}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{T q(T)}{d}-2 \frac{q(T)}{d}-T^{2}-\frac{q(T)}{d}+O\left(\max \left\{\frac{T^{3}}{q(T)}, T\right\}\right) \\
& -\frac{q(T)^{2}}{d^{2}}\left[1+\frac{d}{2 q(T)}+\frac{d^{2}}{6 q(T)^{2}}+O\left(\frac{1}{q(T)^{3}}\right)\right]^{-2} \\
& \times\left[1-d \frac{T}{q(T)}+\frac{4 d}{q(T)}+\frac{d^{2}}{2} \frac{T^{2}}{q(T)^{2}}+O\left(\max \left\{\frac{T^{3}}{q(T)^{3}}, \frac{T}{q(T)^{2}}\right\}\right)\right] \\
& +\frac{q(T)^{2}}{d^{2}}\left[1+\frac{d}{2 q(T)}+\frac{d^{2}}{6 q(T)^{2}}+O\left(\frac{1}{q(T)^{3}}\right)\right]^{-2} \\
& \times\left[1-\frac{2 d T}{q(T)}+\frac{7 d}{q(T)}+2 \frac{d^{2} T^{2}}{q(T)^{2}}+O\left(\max \left\{\frac{T^{3}}{q(T)^{3}}, \frac{T}{q(T)^{2}}\right\}\right)\right] \\
& =\frac{T q(T)}{d}-2 \frac{q(T)}{d}-T^{2}-\frac{q(T)}{d}+O(T) \\
& -\frac{q(T)^{2}}{d^{2}}\left[1-\frac{d}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right] \\
& \times\left[1-d \frac{T}{q(T)}+\frac{4 d}{q(T)}+\frac{d^{2}}{2} \frac{T^{2}}{q(T)^{2}}+O\left(\max \left\{\frac{T^{3}}{q(T)^{3}}, \frac{T}{q(T)^{2}}\right\}\right)\right] \\
& +\frac{q(T)^{2}}{d^{2}}\left[1-\frac{d}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right] \\
& \times\left[1-2 \frac{d T}{q(T)}+\frac{7 d}{q(T)}+2 \frac{d^{2} T^{2}}{q(T)^{2}}+O\left(\max \left\{\frac{T^{3}}{q(T)^{3}}, \frac{T}{q(T)^{2}}\right\}\right)\right] \\
& =\frac{T q(T)}{d}-2 \frac{q(T)}{d}-T^{2}-\frac{q(T)}{d}-\frac{q(T)^{2}}{d^{2}}+\frac{q(T)}{d}-4 \frac{q(T)}{d}+\frac{T q(T)}{d}-\frac{1}{2} T^{2} \\
& +\frac{q(T)^{2}}{d^{2}}-\frac{q(T)}{d}+7 \frac{q(T)}{d}-2 \frac{T q(T)}{d}+2 T^{2}+O\left(\max \left\{\frac{T^{3}}{q(T)}, T\right\}\right) \\
& =\left[-T^{2}-\frac{1}{2} T^{2}+2 T^{2}\right]+\left[\frac{T q(T)}{d}+\frac{T q(T)}{d}-2 \frac{T q(T)}{d}\right]+\left[-\frac{q(T)^{2}}{d^{2}}+\frac{q(T)^{2}}{d^{2}}\right] \\
& +\left[-2 \frac{q(T)}{d}-\frac{q(T)}{d}+\frac{q(T)}{d}-4 \frac{q(T)}{d}-\frac{q(T)}{d}+7 \frac{q(T)}{d}\right]+O\left(\max \left\{\frac{T^{3}}{q(T)}, T\right\}\right) \\
& =\frac{T^{2}}{2}+O\left(\max \left\{\frac{T^{3}}{q(T)}, T\right\}\right) \\
& =\frac{T^{2}}{2}\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right]
\end{aligned}
$$

Next, consider part (b) where we take $q(T) \sim T$. In this case, we apply part (b) of Lemma SE-3
with $b=2 d$ and $g=2$ to get

$$
\begin{aligned}
& \sum_{r=2}^{T-2} \sum_{s=1}^{r-1} \exp \left\{-d \frac{T-2-r}{T}\right\} \exp \left\{-d \frac{T-2-s}{T}\right\} \\
& =\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-1} \sum_{r=1}^{T-2} \exp \left\{-2 d \frac{T-2-r}{q(T)}\right\} \\
& -\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-1} \exp \left\{-\frac{2 d T}{q(T)}\right\} \exp \left\{\frac{6 d}{q(T)}\right\} \\
& -\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-2} \exp \left\{-\frac{d T}{q(T)}\right\} \exp \left\{\frac{4 d}{q(T)}\right\} \\
& +\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-2} \exp \left\{-\frac{2 d T}{q(T)}\right\} \exp \left\{\frac{7 d}{q(T)}\right\} \\
& =\frac{q(T)}{d}\left[1-\frac{d}{2 q(T)}+O\left(\frac{1}{T^{2}}\right)\right] \frac{q(T)}{2 d}\left[1-\exp \left\{-\frac{2 d T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{q(T)}{d}\left[1-\frac{d}{2 q(T)}+O\left(\frac{1}{T^{2}}\right)\right] \exp \left\{-\frac{2 d T}{q(T)}\right\}\left[1+\frac{6 d}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right] \\
& -\left[\frac{d}{q(T)}+\frac{d^{2}}{2 q(T)^{2}}+O\left(\frac{1}{q(T)^{3}}\right)\right]^{-2} \exp \left\{-\frac{d T}{q(T)}\right\}\left[1+\frac{4 d}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right] \\
& +\left[\frac{d}{q(T)}+\frac{d^{2}}{2 q(T)^{2}}+O\left(\frac{1}{q(T)^{3}}\right)\right]^{-2} \exp \left\{-\frac{2 d T}{q(T)}\right\}\left[1+\frac{7 d}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right] \\
& =\frac{q(T)^{2}}{2 d^{2}}\left[1-\exp \left\{-\frac{2 d T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{q(T)^{2}}{d^{2}}\left[1+\frac{d}{2 q(T)}+O\left(\frac{1}{T^{2}}\right)\right]^{-2} \exp \left\{-\frac{d T}{q(T)}\right\}\left[1+\frac{4 d}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right] \\
& +\frac{q(T)^{2}}{d^{2}}\left[1+\frac{d}{2 q(T)}+O\left(\frac{1}{T^{2}}\right)\right]^{-2} \exp \left\{-\frac{2 d T}{q(T)}\right\}\left[1+\frac{7 d}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right] \\
& =\frac{q(T)^{2}}{2 d^{2}}\left[1-\exp \left\{-\frac{2 d T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{q(T)^{2}}{d^{2}}\left[1-\frac{d}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right] \exp \left\{-\frac{d T}{q(T)}\right\}\left[1+\frac{4 d}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right] \\
& +\frac{q(T)^{2}}{d^{2}}\left[1-\frac{d}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right] \exp \left\{-\frac{2 d T}{q(T)}\right\}\left[1+\frac{7 d}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right] \\
& =\left(\frac{q(T)^{2}}{2 d^{2}}\left[1-\exp \left\{-\frac{2 d T}{q(T)}\right\}\right]+\frac{q(T)^{2}}{d^{2}}\left[\exp \left\{-\frac{2 d T}{q(T)}\right\}-\exp \left\{-\frac{d T}{q(T)}\right\}\right]\right)\left[1+O\left(\frac{1}{T}\right)\right] \\
& =\frac{q(T)^{2}}{2 d^{2}}\left[1-2 \exp \left\{-\frac{d T}{q(T)}\right\}+\exp \left\{-\frac{2 d T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right]
\end{aligned}
$$

as required for part (b).

Finally, consider part (c) where we take $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow 0$. In this case, we apply part (c) of Lemma SE-3 with $b=2 d$ and $g=2$ to obtain

$$
\begin{aligned}
& \sum_{r=2}^{T-2} \sum_{s=1}^{r-1} \exp \left\{-d \frac{T-2-r}{q(T)}\right\} \exp \left\{-d \frac{T-2-s}{q(T)}\right\} \\
= & {\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-1} \sum_{r=1}^{T-2} \exp \left\{-2 d \frac{T-2-r}{q(T)}\right\} } \\
& -\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-1} \exp \left\{-2 d \frac{T-3}{q(T)}\right\} \\
& -\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-2} \exp \left\{-d \frac{T}{q(T)}\right\} \exp \left\{\frac{4 d}{q(T)}\right\} \\
& +\left[\exp \left\{\frac{d}{q(T)}\right\}-1\right]^{-2} \exp \left\{-2 d \frac{T}{q(T)}\right\} \exp \left\{\frac{7 d}{q(T)}\right\} \\
= & \frac{q(T)}{d}\left[1-\frac{d}{2 q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right] \frac{q(T)}{2 d}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& +O\left(q(T) \exp \left\{-\frac{2 d T}{q(T)}\right\}\right)+O\left(q(T)^{2} \exp \left\{-\frac{d T}{q(T)}\right\}\right)+O\left(q(T)^{2} \exp \left\{-\frac{2 d T}{q(T)}\right\}\right) \\
= & \frac{q(T)^{2}}{2 d^{2}}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\exp \left\{-\frac{d T}{q(T)}\right\}\right)\right] \\
= & O\left(q(T)^{2}\right),
\end{aligned}
$$

as required,

Lemma SE-5:

(a) For $r=0,1, . ., T-2$

$$
\begin{aligned}
& \sum_{t=r+2}^{T}(t-r-1) \exp \{x(t-r)\} \\
= & \frac{\exp \{2 x\}-(T-r) \exp \{x(T-r+1)\}+(T-r-1) \exp \{x(T-r+2)\}}{(1-\exp \{x\})^{2}},
\end{aligned}
$$

for $x \in \mathbb{R}$
(b) Let $r=0,1, \ldots, T-1$ and let α be a positive integer. In addition, suppose that $\rho \in[0,1)$. Then,

$$
\sum_{t=r}^{T}(t-r) \rho^{\alpha(t-r)}=\frac{\rho^{\alpha}-(T-r+1) \rho^{\alpha(T-r+1)}+(T-r) \rho^{\alpha(T-r+2)}}{\left(1-\rho^{\alpha}\right)^{2}}
$$

Proof of Lemma SE-5:

To show part (a), first set

$$
\begin{aligned}
f(x) & =\sum_{t=r+2}^{T} \exp \{x(t-r-1)\}=\sum_{t=r+1}^{T} \exp \{x(t-r-1)\}-1 \\
& =\frac{1-\exp \{x(T-r)\}}{1-\exp \{x\}}-\frac{1-\exp \{x\}}{1-\exp \{x\}}=\frac{\exp \{x\}-\exp \{x(T-r)\}}{1-\exp \{x\}}
\end{aligned}
$$

Taking a derivative with respect to x, we get

$$
\begin{aligned}
& \sum_{t=r+2}^{T}(t-r-1) \exp \{x(t-r-1)\}=f^{\prime}(x) \\
&= \frac{\exp \{x\}-(T-r) \exp \{x(T-r)\}}{1-\exp \{x\}}+\frac{(\exp \{x\}-\exp \{x(T-r)\}) \exp \{x\}}{(1-\exp \{x\})^{2}} \\
&=(1-\exp \{x\})^{-2}[\exp \{x\}-\exp \{2 x\}-(T-r) \exp \{x(T-r)\}+(T-r) \exp \{x(T-r+1)\} \\
&+\exp \{2 x\}-\exp \{x(T-r+1)\}] \\
&= \frac{\exp \{x\}-(T-r) \exp \{x(T-r)\}+(T-r-1) \exp \{x(T-r+1)\}}{(1-\exp \{x\})^{2}} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \sum_{t=r+2}^{T}(t-r-1) \exp \{x(t-r)\} \\
= & \exp \{x\} \sum_{t=b+2}^{T}(t-r-1) \exp \{x(t-r-1)\} \\
= & \frac{\exp \{x\}[\exp \{x\}-(T-r) \exp \{x(T-r)\}+(T-r-1) \exp \{x(T-r+1)\}]}{(1-\exp \{x\})^{2}} \\
= & \frac{\exp \{2 x\}-(T-r) \exp \{x(T-r+1)\}+(T-r-1) \exp \{x(T-r+2)\}}{(1-\exp \{x\})^{2}} .
\end{aligned}
$$

Next, to show part (b), set

$$
f(\rho)=\sum_{t=r}^{T} \rho^{\alpha(t-r)}=\frac{1-\rho^{\alpha(T-r+1)}}{1-\rho^{\alpha}} .
$$

Taking a derivative with respect to ρ, we get

$$
\begin{aligned}
& \sum_{t=r}^{n}(t-r) \rho^{\alpha(t-r)} \\
= & \frac{\rho}{\alpha} f^{\prime}(\rho) \\
= & \frac{\rho}{\alpha}\left[\frac{\left(1-\rho^{\alpha(n-r+1)}\right) \alpha \rho^{\alpha-1}}{\left(1-\rho^{\alpha}\right)^{2}}-\frac{\left.\alpha(n-r+1) \rho^{\alpha(n-r+1)-1}\right]}{1-\rho^{\alpha}}\right] \\
= & \frac{\rho}{\alpha}\left[\frac{\alpha \rho^{\alpha-1}-\alpha \rho^{\alpha(n-r+2)-1}-\alpha(n-r+1) \rho^{\alpha(n-r+1)-1}\left(1-\rho^{\alpha}\right)}{\left(1-\rho^{\alpha}\right)^{2}}\right] \\
= & \frac{\rho}{\alpha}\left[\frac{\alpha \rho^{\alpha-1}-\alpha \rho^{\alpha(n-r+2)-1}-\alpha(n-r+1)\left(\rho^{\alpha(n-r+1)-1}-\rho^{\alpha(n-r+2)-1}\right)}{\left(1-\rho^{\alpha}\right)^{2}}\right] \\
= & \frac{\rho}{\alpha}\left[\frac{\alpha \rho^{\alpha-1}-\alpha \rho^{\alpha(n-r+2)-1}-\alpha(n-r+1) \rho^{\alpha(n-r+1)-1}+\alpha(n-r+1) \rho^{\alpha(n-r+2)-1}}{\left(1-\rho^{\alpha}\right)^{2}}\right] \\
= & \frac{\rho^{\alpha}-\rho^{\alpha(n-r+2)}-(n-r+1) \rho^{\alpha(n-r+1)}+(n-r+1) \rho^{\alpha(n-r+2)}}{\left(1-\rho^{\alpha}\right)^{2}} \\
= & \frac{\rho^{\alpha}-(n-r+1) \rho^{\alpha(n-r+1)}+(n-r) \rho^{\alpha(n-r+2)}}{\left(1-\rho^{\alpha}\right)^{2}},
\end{aligned}
$$

as required.

Lemma SE-6:

Let b be a positive integer, and $g \in\{1,2\}$.
(a) If $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow 0$, then

$$
\left.\begin{array}{rl}
\sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left\{-b \frac{(t-g-j)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-j)}{q(T)}\right\} \\
& \times \sum_{k=1}^{s-g} \exp \left\{-b \frac{(t-g-k)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-k)}{q(T)}\right\} \\
= & \frac{1}{8} \frac{T q(T)^{3}}{b^{3}}[1
\end{array}+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right], ~ \$
$$

as $T \rightarrow \infty$.
(b) If $q(T) \sim T$, then

$$
\begin{aligned}
& \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left\{-b \frac{(t-g-j)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-j)}{q(T)}\right\} \\
= & \times \sum_{k=1}^{s-g} \exp \left\{-b \frac{(t-g-k)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-k)}{q(T)}\right\} \\
32 b^{4} & \left.\left.\exp \left\{-\frac{4 b T}{q(T)}\right\}+4(g-1) \exp \left\{-\frac{2 b T}{q(T)}\right\}-5\right]+\frac{T q(T)^{3}}{8 b^{3}}\left[2 \exp \left\{-\frac{2 b T}{q(T)}\right\}+1\right]\right\} \\
& \times\left[1+O\left(\frac{1}{T}\right)\right],
\end{aligned}
$$

as $T \rightarrow \infty$.

Proof of Lemma SE-6:

To proceed, note first that

$$
\begin{aligned}
& \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left\{-b \frac{(t-g-j)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-j)}{q(T)}\right\} \\
& \times \sum_{k=1}^{s-g} \exp \left\{-b \frac{(t-g-k)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-k)}{q(T)}\right\} \\
= & \sum_{t=g+2}^{T} \exp \left\{-\frac{2 b(t-g)}{q(T)}\right\} \exp \left\{\frac{2 b}{q(T)}\right\} \sum_{j=1}^{s-g} \exp \left\{\frac{2 b}{q(T)}(j-1)\right\} \\
& \times \sum_{s=g+1}^{t-1} \exp \left\{-\frac{2 b(s-g)}{q(T)}\right\} \exp \left\{\frac{2 b}{q(T)}\right\} \sum_{k=1}^{s-g} \exp \left\{\frac{2 b}{q(T)}(k-1)\right\} \\
= & \exp \left\{\frac{4 b}{q(T)}\right\} \sum_{t=g+2}^{T} \exp \left\{-\frac{2 b(t-g)}{q(T)}\right\} \sum_{j=1}^{s-g} \exp \left\{\frac{2 b}{q(T)}(j-1)\right\} \\
& \times \sum_{s=g+1}^{t-1} \exp \left\{-\frac{2 b(s-g)}{q(T)}\right\} \sum_{k=1}^{s-g} \exp \left\{\frac{2 b}{q(T)}(k-1)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\exp \left\{\frac{4 b}{q(T)}\right\} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \exp \left\{-\frac{2 b(t-g)}{q(T)}\right\} \exp \left\{-\frac{2 b(s-g)}{q(T)}\right\}\left[\sum_{j=1}^{s-g} \exp \left\{\frac{2 b}{q(T)}(j-1)\right\}\right]^{2} \\
& =\exp \left\{\frac{4 b}{q(T)}\right\} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1}\left[\exp \left\{-\frac{2 b(t-g)}{q(T)}\right\} \exp \left\{-\frac{2 b(s-g)}{q(T)}\right\}\right. \\
& \left.\times\left(\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{2 b}{q(T)}(s-g)\right\}\right]\right)^{2}\right] \\
& =\exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2} \\
& \times \sum_{t=g+2}^{T} \exp \left\{-\frac{2 b(t-g)}{q(T)}\right\} \\
& \times \sum_{s=g+1}^{t-1} \exp \left\{-\frac{2 b(s-g)}{q(T)}\right\}\left[1-2 \exp \left\{\frac{2 b}{q(T)}(s-g)\right\}+\exp \left\{\frac{4 b}{q(T)}(s-g)\right\}\right] \\
& =\exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2} \sum_{t=g+2}^{T} \exp \left\{-2 b \frac{(t-g)}{q(T)}\right\} \sum_{s=g+1}^{t-1} \exp \left\{-\frac{2 b(s-g-1)}{q(T)}\right\} \\
& -2 \exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2} \sum_{t=g+2}^{T} \exp \left\{-2 b \frac{(t-g)}{q(T)}\right\}(t-g-1) \\
& +\exp \left\{\frac{6 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2} \sum_{t=g+2}^{T} \exp \left\{-2 b \frac{(t-g)}{q(T)}\right\} \sum_{s=g+1}^{t-1} \exp \left\{2 \frac{b(s-g-1)}{q(T)}\right\} \\
& =\exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1} \\
& \times \sum_{t=g+2}^{T} \exp \left\{-2 b \frac{(t-g)}{q(T)}\right\}\left[1-\exp \left\{-2 b \frac{(t-g-1)}{q(T)}\right\}\right] \\
& -2 \exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2} \exp \left\{-\frac{4 b}{q(T)}\right\} \\
& +2 \exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2}(T-g) \exp \left\{-\frac{2 b(T-g+1)}{q(T)}\right\} \\
& -2 \exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2} \\
& \times(T-g-1) \exp \left\{-\frac{2 b(T-g+2)}{q(T)}\right\} \\
& +\exp \left\{\frac{6 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-3} \sum_{t=g+2}^{T} \exp \left\{-\frac{2 b(t-g)}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b(t-g-1)}{q(T)}\right\}\right]
\end{aligned}
$$

where the last equality above follows from part (a) of Lemma SE-5. It follows by further calculation
that

$$
\begin{aligned}
& \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left\{-b \frac{(t-g-j)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-j)}{q(T)}\right\} \\
& \times \sum_{k=1}^{s-g} \exp \left\{-b \frac{(t-g-k)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-k)}{q(T)}\right\} \\
= & \exp \left\{-\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b(T-g-1)}{q(T)}\right\}\right] \\
& -\exp \left\{-\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{4 b}{q(T)}\right\}\right]^{-1} \\
& \left.\left.\times\left[1-\exp \left\{-\frac{4 b(T-g-1)}{q(T)}\right\}\right]\right]^{-2}\right] \\
& -2 \exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2} \exp \left\{-\frac{4 b}{q(T)}\right\} \\
& +2 \exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2} \\
& \times(T-g) \exp \left\{-\frac{2 b}{q(T)}(T-g+1)\right\} \\
& -2 \exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2} \\
& \times(T-g-1) \exp \left\{-\frac{2 b(T-g+2)}{q(T)}\right\} \\
& \exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-3}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2 b(T-g-1)}{q(T)}\right\}\right. \\
& \quad \exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-3}(T-g-1)
\end{aligned}
$$

Now, consider part (a), where we take $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow 0$. In this case, we have
from the above calculations that

$$
\begin{aligned}
& \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left\{-\frac{b(t-g-j)}{q(T)}\right\} \exp \left\{-\frac{b(s-g-j)}{q(T)}\right\} \\
& \times \sum_{k=1}^{s-g} \exp \left\{-\frac{b(t-g-k)}{q(T)}\right\} \exp \left\{-\frac{b(s-g-k)}{q(T)}\right\} \\
& =\exp \left\{-\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b(T-g-1)}{q(T)}\right\}\right] \\
& -\exp \left\{-\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{4 b}{q(T)}\right\}\right]^{-1} \\
& \times\left[1-\exp \left\{-\frac{4 b(T-g-1)}{q(T)}\right\}\right] \\
& -2\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2} \\
& -2 \exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2} \\
& \times(T-g) \exp \left\{-\frac{2 b(T-g+1)}{q(T)}\right\}\left[\exp \left\{-\frac{2 b}{q(T)}\right\}-1\right] \\
& +2 \exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2} \exp \left\{-\frac{2 b(T-g+2)}{q(T)}\right\} \\
& +\exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-3}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2 b(T-g-1)}{q(T)}\right\}\right] \\
& -\exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-3}(T-g-1) \\
& =\frac{1}{16} \frac{q(T)^{4}}{b^{4}}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left[1+O\left(\exp \left\{-2 b \frac{T}{q(T)}\right\}\right)\right] \\
& -\frac{1}{32} \frac{q(T)^{4}}{b^{4}}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left[1+O\left(\exp \left\{-4 b \frac{T}{q(T)}\right\}\right)\right] \\
& -\frac{1}{8} \frac{q(T)^{4}}{b^{4}}\left[1+O\left(\frac{1}{q(T)}\right)\right]+O\left(T q(T)^{3} \exp \left\{-2 b \frac{T}{q(T)}\right\}\right)+O\left(q(T)^{4} \exp \left\{-2 b \frac{T}{q(T)}\right\}\right) \\
& -\frac{1}{16} \frac{q(T)^{4}}{b^{4}}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left[1+O\left(\exp \left\{-2 b \frac{T}{q(T)}\right\}\right)\right] \\
& +\frac{1}{8} \frac{T q(T)^{3}}{b^{3}}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& =\frac{1}{8} \frac{T q(T)^{3}}{b^{3}}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)+O\left(\exp \left\{-2 b \frac{T}{q(T)}\right\}\right)\right] \\
& =\frac{1}{8} \frac{T q(T)^{3}}{b^{3}}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right],
\end{aligned}
$$

as required.

Next, we turn our attention to part (b), where we take $q(T) \sim T$. In this case, from previous calcuations we have

$$
\begin{aligned}
& \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left\{-b \frac{(t-g-j)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-j)}{q(T)}\right\} \\
& \times \sum_{k=1}^{s-g} \exp \left\{-b \frac{(t-g-k)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-k)}{q(T)}\right\} \\
& =\exp \left\{-\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b(T-g-1)}{q(T)}\right\}\right] \\
& -\exp \left\{-\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{4 b}{q(T)}\right\}\right]^{-1} \\
& \times\left[1-\exp \left\{-\frac{4 b(T-g-1)}{q(T)}\right\}\right] \\
& -2\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2} \\
& +2 \exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2}(T-g) \exp \left\{-\frac{2 b(T-g+1)}{q(T)}\right\} \\
& -2 \exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2}(T-g-1) \exp \left\{-\frac{2 b(T-g+2)}{q(T)}\right\} \\
& +\exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-3}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2 b(T-g-1)}{q(T)}\right\}\right] \\
& -\exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-3}(T-g-1),
\end{aligned}
$$

so that

$$
\begin{aligned}
& \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left\{-\frac{b(t-g-j)}{q(T)}\right\} \exp \left\{-\frac{b(s-g-j)}{q(T)}\right\} \\
& \times \sum_{k=1}^{s-g} \exp \left\{-\frac{b(t-g-k)}{q(T)}\right\} \exp \left\{-\frac{b(s-g-k)}{q(T)}\right\} \\
= & \exp \left\{-\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2} \\
& \times\left[1-\exp \left\{-\frac{2 b T}{q(T)}\right\} \exp \left\{\frac{2 b(g+1)}{q(T)}\right\}\right] \\
& -\exp \left\{-\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{4 b}{q(T)}\right\}\right]^{-1} \\
& \times\left[1-\exp \left\{-\frac{4 b T}{q(T)}\right\} \exp \left\{\frac{4 b(g+1)}{q(T)}\right\}\right] \\
& -2\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2} \\
& +2 \exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2} \\
& \times(T-g) \exp \left\{-\frac{2 b T}{q(T)}\right\} \exp \left\{\frac{2 b(g-1)}{q(T)}\right\} \\
& -2 \exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2}(T-g-1) \exp \left\{-\frac{2 b T}{q(T)}\right\} \\
& \times \exp \left\{\frac{2 b(g-2)}{q(T)}\right\} \\
& +\exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-3}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1} \\
& \times\left[1-\exp \left\{-\frac{2 b T}{q(T)}\right\} \exp \left\{\frac{2 b(g+1)}{q(T)}\right\}\right] \\
& -\exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-3}(T-g-1)
\end{aligned}
$$

$$
\begin{aligned}
& =\exp \left\{-\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2} \\
& \times\left[1-\exp \left\{-\frac{2 b T}{q(T)}\right\} \exp \left\{\frac{2 b(g+1)}{q(T)}\right\}\right] \\
& -\exp \left\{-\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1} \\
& \times\left[1-\exp \left\{-\frac{4 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{4 b T}{q(T)}\right\} \exp \left\{\frac{4 b(g+1)}{q(T)}\right\}\right] \\
& -2\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2} \\
& +2 T\left[1+\frac{4 b}{q(T)}+\frac{8 b^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right]\left[-\frac{2 b}{q(T)}-2 \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right]^{-2} \\
& \times\left[\frac{2 b}{q(T)}-\frac{2 b^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right]^{-2} \exp \left\{-\frac{2 b T}{q(T)}\right\} \\
& \times\left[1+\frac{2 b(g-1)}{q(T)}+\frac{2 b^{2}(g-1)^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right] \\
& -2 g \exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2} \exp \left\{-\frac{2 b T}{q(T)}\right\} \\
& \times \exp \left\{\frac{2 b(g-1)}{q(T)}\right\} \\
& -2 T\left[1+4 \frac{b}{q(T)}+8 \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right]\left[-\frac{2 b}{q(T)}-2 \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right]^{-2} \\
& \times\left[\frac{2 b}{q(T)}-\frac{2 b^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right]^{-2} \exp \left\{-\frac{2 b T}{q(T)}\right\} \exp \left\{\frac{2 b(g-2)}{q(T)}\right\} \\
& +2(g+1) \exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-2} \\
& \times \exp \left\{-\frac{2 b T}{q(T)}\right\} \exp \left\{\frac{2 b(g-2)}{q(T)}\right\} \\
& +\exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-3}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1} \\
& \times\left[1-\exp \left\{-\frac{2 b T}{q(T)}\right\} \exp \left\{\frac{2 b(g+1)}{q(T)}\right\}\right] \\
& -\exp \left\{\frac{4 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-3}(T-g-1)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{16} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{2 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{1}{32} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{4 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right]-\frac{1}{8} \frac{q(T)^{4}}{b^{4}}\left[1+O\left(\frac{1}{T}\right)\right] \\
& +2 T\left[1+\frac{4 b}{q(T)}+\frac{8 b^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right]\left[-\frac{2 b}{q(T)}-\frac{2 b^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right]^{-2} \\
& \times\left[\frac{2 b}{q(T)}-\frac{2 b^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right]^{-2} \exp \left\{-\frac{2 b T}{q(T)}\right\} \\
& \times\left[1+\frac{2 b(g-1)}{q(T)}+\frac{2 b^{2}(g-1)^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right] \\
& -\frac{g}{8} \frac{q(T)^{4}}{b^{4}} \exp \left\{-\frac{2 b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -2 T\left[1+4 \frac{b}{q(T)}+8 \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right]\left[-\frac{2 b}{q(T)}-2 \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right]^{-2} \\
& \times\left[\frac{2 b}{q(T)}-\frac{2 b^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right]^{-2} \exp \left\{-\frac{2 b T}{q(T)}\right\} \\
& \times\left[1+\frac{2 b(g-2)}{q(T)}+\frac{2 b^{2}(g-2)^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right] \\
& +\frac{(g+1)]}{8} \frac{q(T)^{4}}{b^{4}} \exp \left\{-\frac{2 b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{1}{16} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{2 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& +\frac{1 T q(T)^{3}}{b^{3}}\left[1+O\left(\frac{1}{T}\right)\right]-\frac{(g+1)}{8} \frac{q(T)^{3}}{b^{3}}\left[1+O\left(\frac{1}{T}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{16} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{2 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{1}{32} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{4 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right]-\frac{1}{8} \frac{q(T)^{4}}{b^{4}}\left[1+O\left(\frac{1}{T}\right)\right] \\
& +2 T\left[1+\frac{4 b}{q(T)}+\frac{8 b^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right] \frac{q(T)^{2}}{4 b^{2}}\left[1+\frac{b}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right]^{-2} \\
& \times \frac{q(T)^{2}}{4 b^{2}}\left[1-\frac{b}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right]^{-2} \exp \left\{-\frac{2 b T}{q(T)}\right\} \\
& \times\left[1+\frac{2 b(g-1)}{q(T)}+\frac{2 b^{2}(g-1)^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right] \\
& -\frac{g}{8} \frac{q(T)^{4}}{b^{4}} \exp \left\{-\frac{2 b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -2 T\left[1+\frac{4 b}{q(T)}+\frac{8 b^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right] \frac{q(T)^{2}}{4 b^{2}}\left[1+\frac{b}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right]^{-2} \\
& \times \frac{q(T)^{2}}{4 b^{2}}\left[1-\frac{b}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right]^{-2} \exp \left\{-\frac{2 b T}{q(T)}\right\}\left[1+\frac{2 b(g-2)}{q(T)}+\frac{2 b^{2}(g-2)^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right] \\
& +\frac{(g+1)}{8} \frac{q(T)^{4}}{b^{4}} \exp \left\{-\frac{2 b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right]-\frac{1}{16} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{2 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{16} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{2 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{1}{32} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{4 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right]-\frac{1}{8} \frac{q(T)^{4}}{b^{4}}\left[1+O\left(\frac{1}{T}\right)\right] \\
& +\frac{1}{8} \frac{T q(T)^{4}}{b^{4}}\left[1+\frac{4 b}{q(T)}+\frac{8 b^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right]\left[1-\frac{2 b}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right] \\
& \times\left[1+\frac{2 b}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right]\left[1+\frac{2 b(g-1)}{q(T)}+\frac{2 b^{2}(g-1)^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right] \exp \left\{-\frac{2 b T}{q(T)}\right\} \\
& -\frac{g}{8} \frac{q(T)^{4}}{b^{4}} \exp \left\{-\frac{2 b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{1}{8} \frac{T q(T)^{4}}{b^{4}}\left[1+\frac{4 b}{q(T)}+\frac{8 b^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right]\left[1-\frac{2 b}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right] \\
& \times\left[1+\frac{2 b}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right]\left[1+\frac{2 b(g-2)}{q(T)}+\frac{2 b^{2}(g-2)^{2}}{q(T)^{2}}+O\left(\frac{1}{T^{3}}\right)\right] \exp \left\{-\frac{2 b T}{q(T)}\right\} \\
& +\frac{(g+1)}{8} \frac{q(T)^{4}}{b^{4}} \exp \left\{-\frac{2 b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{1}{16} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{2 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right]+\frac{1}{8} \frac{T q(T)^{3}}{b^{3}}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{(g+1)}{8} \frac{q(T)^{3}}{b^{3}}\left[1+O\left(\frac{1}{T}\right)\right] \\
& =\frac{1}{16} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{2 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{1}{32} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{4 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right]-\frac{1}{8} \frac{q(T)^{4}}{b^{4}}\left[1+O\left(\frac{1}{T}\right)\right] \\
& +\frac{1}{8} \frac{T q(T)^{4}}{b^{4}}\left[1+\frac{2 b}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right]\left[1+\frac{2 b g}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right] \exp \left\{-\frac{2 b T}{q(T)}\right\} \\
& -\frac{g}{8} \frac{q(T)^{4}}{b^{4}} \exp \left\{-\frac{2 b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{1}{8} \frac{T q(T)^{4}}{b^{4}}\left[1+\frac{4 b}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right]\left[1+\frac{2 b(g-1)}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right] \exp \left\{-\frac{2 b T}{q(T)}\right\} \\
& +\frac{(g+1)}{8} \frac{q(T)^{4}}{b^{4}} \exp \left\{-\frac{2 b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{1}{16} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{2 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& +\frac{1}{8} \frac{T q(T)^{3}}{b^{3}}\left[1+O\left(\frac{1}{T}\right)\right]-\frac{(g+1)}{8} \frac{q(T)^{3}}{b^{3}}\left[1+O\left(\frac{1}{T}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{16} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{2 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{1}{32} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{4 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right]-\frac{1}{8} \frac{q(T)^{4}}{b^{4}}\left[1+O\left(\frac{1}{T}\right)\right] \\
& +\frac{1}{8} \frac{T q(T)^{4}}{b^{4}}\left[1+\frac{2 b(g+1)}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right] \exp \left\{-\frac{2 b T}{q(T)}\right\} \\
& -\frac{g}{8} \frac{q(T)^{4}}{b^{4}} \exp \left\{-\frac{2 b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{1}{8} \frac{T q(T)^{4}}{b^{4}}\left[1+\frac{2 b g}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right] \exp \left\{-\frac{2 b T}{q(T)}\right\} \\
& +\frac{(g+1)}{8} \frac{q(T)^{4}}{b^{4}} \exp \left\{-\frac{2 b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{1}{16} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{2 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right]+\frac{1}{8} \frac{T q(T)^{3}}{b^{3}}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{(g+1)}{8} \frac{q(T)^{3}}{b^{3}}\left[1+O\left(\frac{1}{T}\right)\right] \\
& =\frac{1}{16} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{2 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{1}{32} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{4 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right]-\frac{1}{8} \frac{q(T)^{4}}{b^{4}}\left[1+O\left(\frac{1}{T}\right)\right] \\
& +\frac{(g+1)}{4} \frac{T q(T)^{3}}{b^{3}} \exp \left\{-\frac{2 b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right]-\frac{1}{4} \frac{q(T)^{4}}{b^{4}} \exp \left\{-\frac{2 b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{g}{4} \frac{T q(T)^{3}}{b^{3}} \exp \left\{-\frac{2 b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right]+\frac{g+1}{8} \frac{q(T)^{4}}{b^{4}} \exp \left\{-\frac{2 b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{1}{16} \frac{q(T)^{4}}{b^{4}}\left[1-\exp \left\{-\frac{2 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right]+\frac{1}{8} \frac{T q(T)^{3}}{b^{3}}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{g+1}{8} \frac{q(T)^{3}}{b^{3}}\left[1+O\left(\frac{1}{T}\right)\right] \\
& =\left\{\frac{q(T)^{4}}{32 b^{4}}\left[\exp \left\{-\frac{4 b T}{q(T)}\right\}+4(g-1) \exp \left\{-\frac{2 b T}{q(T)}\right\}-5\right]+\frac{T q(T)^{3}}{8 b^{3}}\left[2 \exp \left\{-\frac{2 b T}{q(T)}\right\}+1\right]\right\} \\
& \times\left[1+O\left(\frac{1}{T}\right)\right] \text {, }
\end{aligned}
$$

which shows (b).

Lemma SE-7:

Let b and g be a positive integer. Then, the following statements are true as $T \rightarrow \infty$
(a) If $T / q(T) \rightarrow 0$, then

$$
\begin{aligned}
& \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left\{-b \frac{(t-g-j)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-j)}{q(T)}\right\} \\
= & \frac{1}{6} T^{3}\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right]
\end{aligned}
$$

(b) If $q(T) \sim T$, then

$$
\begin{aligned}
& \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left\{-b \frac{(t-g-j)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-j)}{q(T)}\right\} \\
= & \frac{T q(T)^{2}}{2 b^{2}}\left[1-\frac{3}{2 b} \frac{q(T)}{T}+\frac{2}{b} \frac{q(T)}{T} \exp \left\{-\frac{b T}{q(T)}\right\}-\frac{1}{2 b} \frac{q(T)}{T} \exp \left\{-\frac{2 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] .
\end{aligned}
$$

(c) If $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow 0$, then

$$
\begin{aligned}
& \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left\{-b \frac{(t-g-j)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-j)}{q(T)}\right\} \\
= & \frac{T q(T)^{2}}{2 b^{2}}\left[1+O\left(\frac{q(T)}{T}\right)\right] .
\end{aligned}
$$

Proof of Lemma SE-7:

To proceed, note first that

$$
\begin{aligned}
& \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left\{-b \frac{(t-g-j)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-j)}{q(T)}\right\} \\
= & \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \exp \left\{-\frac{b(t-g)}{q(T)}\right\} \exp \left\{-\frac{b(s-g)}{q(T)}\right\} \exp \left\{\frac{2 b}{q(T)}\right\} \sum_{j=1}^{s-g} \exp \left\{2 b\left(\frac{j-1}{q(T)}\right)\right\} \\
= & {\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1}\left[\exp \left\{-\frac{b(t-g)}{q(T)}\right\} \exp \left\{-\frac{b(s-g)}{q(T)}\right\}\right.} \\
& \left.\times \exp \left\{\frac{2 b}{q(T)}\right\}\left(1-\exp \left\{2 b\left(\frac{s-g}{q(T)}\right)\right\}\right)\right] \\
= & \exp \left\{\frac{2 b}{q(T)}\right\} \exp \left\{-\frac{b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1} \sum_{t=g+2}^{T} \exp \left\{-\frac{b(t-g)}{q(T)}\right\} \\
& \times \sum_{s=g+1}^{t-1} \exp \left\{-\frac{b(s-g-1)}{q(T)}\right\} \\
& -\exp \left\{\frac{2 b}{q(T)}\right\} \exp \left\{\frac{b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1} \sum_{t=g+2}^{T} \exp \left\{-\frac{b(t-g)}{q(T)}\right\} \\
& \times \sum_{s=g+1}^{t-1} \exp \left\{b\left(\frac{s-g-1}{q(T)}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\exp \left\{\frac{b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1} \\
& \times \sum_{t=g+2}^{T} \exp \left\{-\frac{b(t-g)}{q(T)}\right\}\left[1-\exp \left\{-b\left(\frac{t-g-1}{q(T)}\right)\right\}\right] \\
& -\exp \left\{\frac{3 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1} \\
& \times \sum_{t=g+2}^{T} \exp \left\{-b\left(\frac{t-g}{q(T)}\right)\right\}\left[1-\exp \left\{b\left(\frac{t-g-1}{q(T)}\right)\right\}\right] \\
& =\exp \left\{\frac{b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1} \exp \left\{-\frac{2 b}{q(T)}\right\} \\
& \times\left[\sum_{t=g+2}^{T} \exp \left\{-\frac{b(t-g-2)}{q(T)}\right\}-\exp \left\{-\frac{b}{q(T)}\right\} \sum_{t=g+2}^{T} \exp \left\{-2 b\left(\frac{t-g-2}{q(T)}\right)\right\}\right] \\
& -\exp \left\{\frac{3 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1} \\
& \times\left[\exp \left\{-\frac{2 b}{q(T)}\right\} \sum_{t=g+2}^{T} \exp \left\{-\frac{b(t-g-2)}{q(T)}\right\}-\exp \left\{-\frac{b}{q(T)}\right\}(T-g-1)\right] \\
& =\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-2} \exp \left\{-\frac{b}{q(T)}\right\} \\
& -\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-2} \exp \left\{-\frac{b}{q(T)}\right\} \exp \left\{-\frac{b(T-g-1)}{q(T)}\right\} \\
& -\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1} \exp \left\{-\frac{2 b}{q(T)}\right\} \\
& +\left[1-\left\{\exp \frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1} \\
& \times \exp \left\{-\frac{2 b}{q(T)}\right\} \exp \left\{-\frac{2 b(T-g-1)}{q(T)}\right\} \\
& -\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1} \exp \left\{\frac{b}{q(T)}\right\} \\
& +\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1} \\
& \times \exp \left\{\frac{b}{q(T)}\right\} \exp \left\{-\frac{b(T-g-1)}{q(T)}\right\} \\
& +\exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}(T-g-1)
\end{aligned}
$$

$$
\begin{aligned}
= & {\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-2} \exp \left\{-\frac{b}{q(T)}\right\} } \\
& -\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-2} \exp \left\{-\frac{b(T-g)}{q(T)}\right\} \\
& -\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1} \exp \left\{-\frac{2 b}{q(T)}\right\} \\
& +\left[1-\left\{\exp \frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1} \\
& \times \exp \left\{-\frac{2 b(T-g)}{q(T)}\right\} \\
& -\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1} \exp \left\{\frac{b}{q(T)}\right\} \\
& +\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1} \\
& \times \exp \left\{-\frac{b(T-g-2)}{q(T)}\right\} \\
& +\exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}(T-g-1)
\end{aligned}
$$

Next, note that

$$
\begin{aligned}
& {\left[1-\exp \left(\frac{2 b}{q(T)}\right)\right]^{-1}\left[1-\exp \left(-\frac{b}{q(T)}\right)\right]^{-2} } \\
= & {\left[-\frac{2 b}{q(T)}-\frac{4 b^{2}}{2 q(T)^{2}}-\frac{8}{6} \frac{b^{3}}{q(T)^{3}}-\frac{16}{24} \frac{b^{4}}{q(T)^{4}}+O\left(\frac{1}{q(T)^{5}}\right)\right]^{-1} } \\
& \times\left[-\frac{b}{q(T)}+\frac{b^{2}}{2 q(T)^{2}}-\frac{1}{6} \frac{b^{3}}{q(T)^{3}}+\frac{1}{24} \frac{b^{4}}{q(T)^{4}}+O\left(\frac{1}{q(T)^{5}}\right)\right]^{-2} \\
= & -\frac{q(T)^{3}}{2 b^{3}}\left[1+\frac{b}{q(T)}+\frac{2}{3} \frac{b^{2}}{q(T)^{2}}+\frac{1}{3} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right]^{-1} \\
& \times\left[1-\frac{b}{2 q(T)}+\frac{b^{2}}{6 q(T)^{2}}-\frac{1}{24} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right]^{-2} \\
= & -\frac{q(T)^{3}}{2 b^{3}}\left[1-\frac{b}{q(T)}-\frac{2}{3} \frac{b^{2}}{q(T)^{2}}+\frac{b^{2}}{q(T)^{2}}-\frac{1}{3} \frac{b^{3}}{q(T)^{3}}+\frac{4}{3} \frac{b^{3}}{q(T)^{3}}-\frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& \times\left[1+\frac{b}{q(T)}-\frac{1}{3} \frac{b^{2}}{q(T)^{2}}+\frac{3}{4} \frac{b^{2}}{q(T)^{2}}+\frac{1}{12} \frac{b^{3}}{q(T)^{3}}-\frac{1}{2} \frac{b^{3}}{q(T)^{3}}+\frac{1}{2} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
= & -\frac{q(T)^{3}}{2 b^{3}}\left[1-\frac{b}{q(T)}+\frac{1}{3} \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& \times\left[1+\frac{b}{q(T)}+\frac{5}{12} \frac{b^{2}}{q(T)^{2}}+\frac{1}{12} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
= & \frac{q(T)^{3}}{2 b^{3} c^{3}}\left[1+\frac{b}{q(T)}-\frac{b}{q(T)}+\frac{5}{12} \frac{b^{2}}{q(T)^{2}}-\frac{b^{2}}{q(T)^{2}}+\frac{1}{3} \frac{b^{2}}{q(T)^{2}}+\frac{1}{12} \frac{b^{3}}{q(T)^{3}}\right. \\
& \left.-\frac{5}{12} \frac{b^{3}}{q(T)^{3}}+\frac{1}{3} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
= & -\frac{q(T)^{3}}{2 b^{3}}\left[1-\frac{1}{4} \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{4}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1}} \\
& =\left[-\frac{2 b}{q(T)}-\frac{4 b^{2}}{2 q(T)^{2}}-\frac{8 b^{3}}{6 q(T)^{3}}-\frac{16}{24} \frac{b^{4}}{q(T)^{4}}+O\left(\frac{1}{q(T)^{5}}\right)\right]^{-1} \\
& \times-\left[-\frac{b}{q(T)}+\frac{b^{2}}{2 q(T)^{2}}-\frac{b^{3}}{6 q(T)^{3}}+\frac{1}{24} \frac{b^{4}}{q(T)^{4}}+O\left(\frac{1}{q(T)^{5}}\right)\right]^{-1} \\
& \times-\left[-\frac{2 b}{q(T)}+\frac{4 b^{2}}{2 q(T)^{2}}-\frac{8 b^{3}}{6 q(T)^{3}}+\frac{16}{24} \frac{b^{4}}{q(T)^{4}}+O\left(\frac{1}{q(T)^{5}}\right)\right]^{-1} \\
& =-\frac{q(T)^{3}}{4 b^{3}}\left[1+\frac{b}{q(T)}+\frac{2}{3} \frac{b^{2}}{q(T)^{2}}+\frac{1}{3} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right]^{-1} \\
& \times\left[1-\frac{b}{2 q(T)}+\frac{b^{2}}{6 q(T)^{2}}-\frac{1}{24} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right]^{-1} \\
& \times\left[1-\frac{b}{q(T)}+\frac{2}{3} \frac{b^{2}}{q(T)^{2}}-\frac{1}{3} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right]^{-1} \\
& =-\frac{q(T)^{3}}{4 b^{3}}\left[1-\frac{b}{q(T)}-\frac{2}{3} \frac{b^{2}}{q(T)^{2}}+\frac{b^{2}}{q(T)^{2}}-\frac{1}{3} \frac{b^{3}}{q(T)^{3}}+\frac{4}{3} \frac{b^{3}}{q(T)^{3}}-\frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& \times\left[1+\frac{b}{2 q(T)}-\frac{1}{6} \frac{b^{2}}{q(T)^{2}}+\frac{1}{4} \frac{b^{2}}{q(T)^{2}}+\frac{1}{24} \frac{b^{3}}{q(T)^{3}}+\frac{1}{8} \frac{b^{3}}{q(T)^{3}}-\frac{1}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& \times\left[1+\frac{b}{q(T)}-\frac{2}{3} \frac{b^{2}}{q(T)^{2}}+\frac{b^{2}}{q(T)^{2}}+\frac{1}{3} \frac{b^{3}}{q(T)^{3}}-\frac{4}{3} \frac{b^{3}}{q(T)^{3}}+\frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& =-\frac{q(T)^{3}}{4 b^{3}}\left[1-\frac{b}{q(T)}+\frac{1}{3} \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{\left.q(T)^{4}\right)}\right)\right]\left[1+\frac{b}{2 q(T)}+\frac{1}{12} \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& \times\left[1+\frac{b}{q(T)}+\frac{1}{3} \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& =-\frac{q(T)^{3}}{4 b^{3}}\left[1-\frac{b}{q(T)}+\frac{b}{2 q(T)}+\frac{1}{12} \frac{b^{2}}{q(T)^{2}}+\frac{1}{3} \frac{b^{2}}{q(T)^{2}}-\frac{1}{2} \frac{b^{2}}{q(T)^{2}}-\frac{1}{12} \frac{b^{3}}{q(T)^{3}}\right. \\
& \left.+\frac{1}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right]\left[1+\frac{b}{q(T)}+\frac{1}{3} \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& =-\frac{q(T)^{3}}{4 b^{3}}\left[1-\frac{1}{2} \frac{b}{q(T)}-\frac{1}{12} \frac{b^{2}}{q(T)^{2}}+\frac{1}{12} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& {\left[1+\frac{b}{q(T)}+\frac{1}{3} \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{4}}\right)\right]} \\
& =-\frac{q(T)^{3}}{4 b^{3}}\left[1+\frac{b}{q(T)}-\frac{1}{2} \frac{b}{q(T)}+\frac{1}{3} \frac{b^{2}}{q(T)^{2}}-\frac{1}{2} \frac{b^{2}}{q(T)^{2}}-\frac{1}{12} \frac{b^{2}}{q(T)^{2}}-\frac{1}{12} \frac{b^{3}}{q(T)^{3}}\right. \\
& \left.+\frac{1}{12} \frac{b^{3}}{q(T)^{3}}-\frac{1}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& =-\frac{q(T)^{3}}{4 b^{3}}\left[1+\frac{1}{2} \frac{b}{q(T)}-\frac{1}{4} \frac{b^{2}}{q(T)^{2}}-\frac{1}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1} } \\
= & {\left[-\frac{2 b}{q(T)}-\frac{4 b^{2}}{2 q(T)^{2}}-\frac{8 b^{3}}{6 q(T)^{3}}-\frac{16}{24} \frac{b^{4}}{q(T)^{4}}+O\left(\frac{1}{q(T)^{5}}\right)\right]^{-1} } \\
& \times\left[-\frac{b}{q(T)}-\frac{b^{2}}{2 q(T)^{2}}-\frac{b^{3}}{6 q(T)^{3}}-\frac{1}{24} \frac{b^{4}}{q(T)^{4}}+O\left(\frac{1}{q(T)^{5}}\right)\right]^{-1} \\
& \times-\left[-\frac{b}{q(T)}+\frac{b^{2}}{2 q(T)^{2}}-\frac{b^{3}}{6 q(T)^{3}}+\frac{1}{24} \frac{b^{4}}{q(T)^{4}}+O\left(\frac{1}{q(T)^{5}}\right)\right]^{-1} \\
= & \frac{q(T)^{3}}{2 b^{3}}\left[1+\frac{b}{q(T)}+\frac{2}{3} \frac{b^{2}}{q(T)^{2}}+\frac{1}{3} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right]^{-1} \\
& \times\left[1+\frac{b}{2 q(T)}+\frac{b^{2}}{6 q(T)^{2}}+\frac{1}{24} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right]^{-1} \\
= & \times\left[1-\frac{b}{2 q(T)}+\frac{b^{2}}{6 q(T)^{2}}-\frac{1}{24} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right]^{-1} \\
& \times\left[1-\frac{b}{2 q(T)}-\frac{1}{6} \frac{b^{3}}{q(T)^{2}}+\frac{1}{4} \frac{b^{2}}{q(T)^{2}}-\frac{1}{24} \frac{b^{3}}{q(T)^{3}}-\frac{1}{8} \frac{b^{2}}{q(T)^{3}}+\frac{1}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& \times\left[1+\frac{b}{2 q(T)}-\frac{1}{6} \frac{b^{2}}{q(T)^{2}}+\frac{1}{4} \frac{b^{2}}{q(T)^{2}}+\frac{1}{24} \frac{b^{3}}{q(T)^{3}}-\frac{1}{6} \frac{b^{3}}{q(T)^{3}}+\frac{1}{8} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
= & \frac{q(T)^{3}}{2 b^{3}}\left[1-\frac{b}{q(T)}+\frac{1}{3} \frac{b^{3}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{4}}\right)\right]\left[1-\frac{b}{2 q(T)}+\frac{1}{12} \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& \times\left[1+\frac{b}{2 q(T)}+\frac{1}{12} \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
= & \frac{q(T)^{3}}{2 b^{3}}\left[1-\frac{b}{q(T)}-\frac{b}{2 q(T)}+\frac{1}{12} \frac{b^{2}}{q(T)^{2}}+\frac{1}{3} \frac{b^{2}}{q(T)^{2}}+\frac{1}{2} \frac{b^{2}}{q(T)^{2}}-\frac{1}{12} \frac{b^{3}}{q(T)^{3}}\right. \\
& \left.-\frac{1}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right]\left[1+\frac{b}{2 q(T)}+\frac{1}{12} \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{4}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{q(T)^{3}}{2 b^{3}}\left[1-\frac{3}{2} \frac{b}{q(T)}+\frac{11}{12} \frac{b^{2}}{q(T)^{2}}-\frac{1}{4} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& \times\left[1+\frac{b}{2 q(T)}+\frac{1}{12} \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& =\frac{q(T)^{3}}{2 b^{3}}\left[1+\frac{1}{2} \frac{b}{q(T)}-\frac{3}{2} \frac{b}{q(T)}+\frac{11}{12} \frac{b^{2}}{q(T)^{2}}-\frac{3}{4} \frac{b^{2}}{q(T)^{2}}+\frac{1}{12} \frac{b^{2}}{q(T)^{2}}-\frac{1}{8} \frac{b^{3}}{q(T)^{3}}\right. \\
& \left.+\frac{11}{24} \frac{b^{3}}{q(T)^{3}}-\frac{1}{4} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& =\frac{q(T)^{3}}{2 b^{3}}\left[1-\frac{b}{q(T)}+\frac{1}{4} \frac{b^{2}}{q(T)^{2}}+\frac{1}{12} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \text {, } \\
& {\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}} \\
& =\left[-\frac{2 b}{q(T)}-\frac{4 b^{2}}{2 q(T)^{2}}-\frac{8}{6} \frac{b^{3}}{q(T)^{3}}-\frac{16}{24} \frac{b^{4}}{q(T)^{4}}+O\left(\frac{1}{q(T)^{5}}\right)\right]^{-1} \\
& \times\left[-\frac{b}{q(T)}-\frac{b^{2}}{2 q(T)^{2}}-\frac{b^{3}}{6 q(T)^{3}}-\frac{1}{24} \frac{b^{4}}{q(T)^{4}}+O\left(\frac{1}{q(T)^{5}}\right)\right]^{-1} \\
& =\frac{q(T)^{2}}{2 b^{2}}\left[1+\frac{b}{q(T)}+\frac{2}{3} \frac{b^{2}}{q(T)^{2}}+\frac{1}{3} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right]^{-1} \\
& \times\left[1+\frac{b}{2 q(T)}+\frac{b^{2}}{6 q(T)^{2}}+\frac{1}{24} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right]^{-1} \\
& =\frac{q(T)^{2}}{2 b^{2}}\left[1-\frac{b}{q(T)}-\frac{2}{3} \frac{b^{2}}{q(T)^{2}}+\frac{b^{2}}{q(T)^{2}}-\frac{1}{3} \frac{b^{3}}{q(T)^{3}}+\frac{4}{3} \frac{b^{3}}{q(T)^{3}}-\frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& \times\left[1-\frac{b}{2 q(T)}-\frac{1}{6} \frac{b^{2}}{q(T)^{2}}+\frac{1}{4} \frac{b^{2}}{q(T)^{2}}-\frac{1}{24} \frac{b^{3}}{q(T)^{3}}-\frac{1}{8} \frac{b^{3}}{q(T)^{3}}+\frac{1}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& =\frac{q(T)^{2}}{2 b^{2}}\left[1-\frac{b}{q(T)}+\frac{1}{3} \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{4}}\right)\right]\left[1-\frac{b}{2 q(T)}+\frac{1}{12} \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& =\frac{q(T)^{2}}{2 b^{2}}\left[1-\frac{b}{q(T)}-\frac{b}{2 q(T)}+\frac{1}{12} \frac{b^{2}}{q(T)^{2}}+\frac{1}{3} \frac{b^{2}}{q(T)^{2}}+\frac{1}{2} \frac{b^{2}}{q(T)^{2}}-\frac{1}{12} \frac{b^{3}}{q(T)^{3}}\right. \\
& \left.-\frac{1}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& =\frac{q(T)^{2}}{2 b^{2}}\left[1-\frac{3}{2} \frac{b}{q(T)}+\frac{11}{12} \frac{b^{2}}{q(T)^{2}}-\frac{1}{4} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \exp \left\{-\frac{b(T-g)}{q(T)}\right\} \\
& =\exp \left\{\frac{g b}{q(T)}\right\} \exp \left\{-b \frac{T}{q(T)}\right\} \\
& =\left[1+\frac{g b}{q(T)}+\frac{1}{2} \frac{g^{2} b^{2}}{q(T)^{2}}+\frac{1}{6} \frac{g^{3} b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& \times\left[1-\frac{b T}{q(T)}+\frac{b^{2} T^{2}}{2 q(T)^{2}}-\frac{1}{6} \frac{b^{3} T^{3}}{q(T)^{3}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)\right] \\
& =1-\frac{b T}{q(T)}+\frac{g b}{q(T)}+\frac{b^{2} T^{2}}{2 q(T)^{2}}-\frac{g b^{2} T}{q(T)^{2}}-\frac{1}{6} \frac{b^{3} T^{3}}{q(T)^{3}}+\frac{1}{2} \frac{g^{2} b^{2}}{q(T)^{2}}+\frac{g}{2} \frac{b^{3} T^{2}}{q(T)^{3}} \\
& -\frac{1}{2} \frac{g^{2} b^{3} T}{q(T)^{3}}+\frac{1}{6} \frac{g^{3} b^{3}}{q(T)^{3}}+O\left(\frac{T^{4}}{q(T)^{4}}\right) \\
& \exp \left\{-\frac{2 b(T-g)}{q(T)}\right\} \\
& =\exp \left\{\frac{2 g b}{q(T)}\right\} \exp \left\{-\frac{2 b T}{q(T)}\right\} \\
& =\left[1+\frac{2 g b}{q(T)}+\frac{4 g^{2}}{2} \frac{b^{2}}{q(T)^{2}}+\frac{4 g^{3}}{3} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& \times\left[1-\frac{2 b T}{q(T)}+2 \frac{b^{2} T^{2}}{q(T)^{2}}-\frac{4}{3} \frac{b^{3} T^{3}}{q(T)^{3}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)\right] \\
& =1-\frac{2 b T}{q(T)}+\frac{2 g b}{q(T)}+2 \frac{b^{2} T^{2}}{q(T)^{2}}-4 g \frac{b^{2} T}{q(T)^{2}}-\frac{4}{3} \frac{b^{3} T^{3}}{q(T)^{3}}+\frac{2 g^{2} b^{2}}{q(T)^{2}}+4 g \frac{b^{3} T^{2}}{q(T)^{3}} \\
& -4 g^{2} \frac{b^{3} T}{q(T)^{3}}+\frac{4 g^{3}}{3} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{T^{4}}{q(T)^{4}}\right) \\
& \exp \left\{-\frac{b(T-g-2)}{q(T)}\right\} \\
& =\exp \left\{\frac{(g+2) b}{q(T)}\right\} \exp \left\{-b \frac{T}{q(T)}\right\} \\
& =\left[1+\frac{(g+2) b}{q(T)}+\frac{(g+2)^{2}}{2} \frac{b^{2}}{q(T)^{2}}+\frac{(g+2)^{3}}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& \times\left[1-\frac{b T}{q(T)}+\frac{1}{2} \frac{b^{2} T^{2}}{q(T)^{2}}-\frac{1}{6} \frac{b^{3} T^{3}}{q(T)^{3}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)\right] \\
& =1-\frac{b T}{q(T)}+\frac{(g+2) b}{q(T)}+\frac{1}{2} \frac{b^{2} T^{2}}{q(T)^{2}}-(g+2) \frac{b^{2} T}{q(T)^{2}}-\frac{1}{6} \frac{b^{3} T^{3}}{q(T)^{3}}+\frac{(g+2)^{2}}{2} \frac{b^{2}}{q(T)^{2}} \\
& +\frac{g+2}{2} \frac{b^{3} T^{2}}{q(T)^{3}}-\frac{(g+2)^{2}}{2} \frac{b^{3} T}{q(T)^{3}}+\frac{(g+2)^{3}}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{T^{4}}{q(T)^{4}}\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left\{-b \frac{(t-g-j)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-j)}{q(T)}\right\} \\
& =-\frac{q(T)^{3}}{2 b^{3}}\left[1-\frac{1}{4} \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{4}}\right)\right]\left[1-\frac{b}{q(T)}+\frac{b^{2}}{2 q(T)^{2}}-\frac{1}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& +\frac{q(T)^{3}}{2 b^{3}}\left[1-\frac{1}{4} \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{4}}\right)\right]\left[1-\frac{b T}{q(T)}+\frac{g b}{q(T)}+\frac{b^{2} T^{2}}{2 q(T)^{2}}-\frac{g b^{2} T}{q(T)^{2}}-\frac{1}{6} \frac{b^{3} T^{3}}{q(T)^{3}}\right. \\
& \left.+\frac{1}{2} \frac{g^{2} b^{2}}{q(T)^{2}}+\frac{g}{2} \frac{b^{3} T^{2}}{q(T)^{3}}-\frac{1}{2} \frac{g^{2} b^{3} T}{q(T)^{3}}+\frac{1}{6} \frac{g^{3} b^{3}}{q(T)^{3}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)\right] \\
& +\frac{q(T)^{3}}{4 b^{3}}\left[1+\frac{1}{2} \frac{b}{q(T)}-\frac{1}{4} \frac{b^{2}}{q(T)^{2}}-\frac{1}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& \times\left[1-2 \frac{b}{q(T)}+2 \frac{b^{2}}{q(T)^{2}}-\frac{4}{3} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& -\frac{q(T)^{3}}{4 b^{3}}\left[1+\frac{1}{2} \frac{b}{q(T)}-\frac{1}{4} \frac{b^{2}}{q(T)^{2}}-\frac{1}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right]\left[1-\frac{2 b T}{q(T)}+\frac{2 g b}{q(T)}+2 \frac{b^{2} T^{2}}{q(T)^{2}}\right. \\
& \left.-4 g \frac{b^{2} T}{q(T)^{2}}-\frac{4}{3} \frac{b^{3} T^{3}}{q(T)^{3}}+\frac{2 g^{2} b^{2}}{q(T)^{2}}+4 g \frac{b^{3} T^{2}}{q(T)^{3}}-4 g^{2} \frac{b^{3} T}{q(T)^{3}}+\frac{4 g^{3}}{3} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)\right] \\
& -\frac{q(T)^{3}}{2 b^{3}}\left[1-\frac{b}{q(T)}+\frac{1}{4} \frac{b^{2}}{q(T)^{2}}+\frac{1}{12} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& \times\left[1+\frac{b}{q(T)}+\frac{1}{2} \frac{b^{2}}{q(T)^{2}}+\frac{1}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& +\frac{q(T)^{3}}{2 b^{3}}\left[1-\frac{b}{q(T)}+\frac{1}{4} \frac{b^{2}}{q(T)^{2}}+\frac{1}{12} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& \times\left[1-\frac{b T}{q(T)}+\frac{(g+2) b}{q(T)}+\frac{1}{2} \frac{b^{2} T^{2}}{q(T)^{2}}-(g+2) \frac{b^{2} T}{q(T)^{2}}-\frac{1}{6} \frac{b^{3} T^{3}}{q(T)^{3}}+\frac{(g+2)^{2}}{2} \frac{b^{2}}{q(T)^{2}}\right. \\
& \left.+\frac{g+2}{2} \frac{b^{3} T^{2}}{q(T)^{3}}-\frac{(g+2)^{2}}{2} \frac{b^{3} T}{q(T)^{3}}+\frac{(g+2)^{3}}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)\right] \\
& +\frac{q(T)^{2}}{2 b^{2}}\left[1-\frac{3}{2} \frac{b}{q(T)}+\frac{11}{12} \frac{b^{2}}{q(T)^{2}}-\frac{1}{4} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right](T-g-1) \\
& \times\left[1+\frac{2 b}{q(T)}+2 \frac{b^{2}}{q(T)^{2}}+\frac{4}{3} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{\left.q(T)^{4}\right)}\right)\right],
\end{aligned}
$$

so that

$$
\begin{aligned}
& \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left\{-b \frac{(t-g-j)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-j)}{q(T)}\right\} \\
& =-\frac{q(T)^{3}}{2 b^{3}}\left[1-\frac{b}{q(T)}+\frac{1}{2} \frac{b^{2}}{q(T)^{2}}-\frac{1}{4} \frac{b^{2}}{q(T)^{2}}-\frac{1}{6} \frac{b^{3}}{q(T)^{3}}+\frac{1}{4} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& +\frac{q(T)^{3}}{2 b^{3}}\left[1-\frac{b T}{q(T)}+\frac{g b}{q(T)}+\frac{b^{2} T^{2}}{2 q(T)^{2}}-\frac{g b^{2} T}{q(T)^{2}}-\frac{1}{6} \frac{b^{3} T^{3}}{q(T)^{3}}+\frac{g^{2}}{2} \frac{b^{2}}{q(T)^{2}}-\frac{1}{4} \frac{b^{2}}{q(T)^{2}}\right. \\
& \left.+\frac{g}{2} \frac{b^{3} T^{2}}{q(T)^{3}}-\frac{g^{2}}{2} \frac{b^{3} T}{q(T)^{3}}+\frac{1}{4} \frac{b^{3} T}{q(T)^{3}}+\frac{g^{3}}{6} \frac{b^{3}}{q(T)^{3}}-\frac{g}{4} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)\right] \\
& +\frac{q(T)^{3}}{4 b^{3}}\left[1-2 \frac{b}{q(T)}+\frac{1}{2} \frac{b}{q(T)}+2 \frac{b^{2}}{q(T)^{2}}-\frac{b^{2}}{q(T)^{2}}-\frac{1}{4} \frac{b^{2}}{q(T)^{2}}-\frac{4}{3} \frac{b^{3}}{q(T)^{3}}+\frac{b^{3}}{q(T)^{3}}+\frac{1}{2} \frac{b^{3}}{q(T)^{3}}\right. \\
& \left.-\frac{1}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& -\frac{q(T)^{3}}{4 b^{3}}\left[1-\frac{2 b T}{q(T)}+\frac{2 g b}{q(T)}+\frac{1}{2} \frac{b}{q(T)}+2 \frac{b^{2} T^{2}}{q(T)^{2}}-4 g \frac{b^{2} T}{q(T)^{2}}-\frac{b^{2} T}{q(T)^{2}}-\frac{4}{3} \frac{b^{3} T^{3}}{q(T)^{3}}\right. \\
& +\frac{2 g^{2} b^{2}}{q(T)^{2}}+\frac{g b^{2}}{q(T)^{2}}-\frac{1}{4} \frac{b^{2}}{q(T)^{2}}+\frac{4 g b^{3} T^{2}}{q(T)^{3}}+\frac{b^{3} T^{2}}{q(T)^{3}}-\frac{4 g^{2} b^{3} T}{q(T)^{3}}-\frac{2 g b^{3} T}{q(T)^{3}} \\
& \left.+\frac{1}{2} \frac{b^{3} T}{q(T)^{3}}+\frac{4 g^{3}}{3} \frac{b^{3}}{q(T)^{3}}+\frac{g^{2} b^{3}}{q(T)^{3}}-\frac{g}{2} \frac{b^{3}}{q(T)^{3}}-\frac{1}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)\right] \\
& -\frac{q(T)^{3}}{2 b^{3}}\left[1+\frac{b}{q(T)}-\frac{b}{q(T)}+\frac{1}{2} \frac{b^{2}}{q(T)^{2}}-\frac{b^{2}}{q(T)^{2}}+\frac{1}{4} \frac{b^{2}}{q(T)^{2}}-\frac{1}{2} \frac{b^{3}}{q(T)^{3}}+\frac{1}{6} \frac{b^{3}}{q(T)^{3}}\right. \\
& \left.+\frac{1}{4} \frac{b^{3}}{q(T)^{3}}+\frac{1}{12} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& +\frac{q(T)^{3}}{2 b^{3}}\left[1-\frac{b T}{q(T)}+\frac{(g+2) b}{q(T)}-\frac{b}{q(T)}+\frac{b^{2} T^{2}}{2 q(T)^{2}}-\frac{(g+2) b^{2} T}{q(T)^{2}}+\frac{b^{2} T}{q(T)^{2}}-\frac{b^{3} T^{3}}{6 q(T)^{3}}+\frac{(g+2)^{2} b^{2}}{2 q(T)^{2}}\right. \\
& -\frac{(g+2) b^{2}}{q(T)^{2}}+\frac{1}{4} \frac{b^{2}}{q(T)^{2}}+\frac{g+2}{2} \frac{b^{3} T^{2}}{q(T)^{3}}-\frac{1}{2} \frac{b^{3} T^{2}}{q(T)^{3}}-\frac{(g+2)^{2}}{2} \frac{b^{3} T}{q(T)^{3}}+\frac{(g+2) b^{3} T}{q(T)^{3}} \\
& \left.-\frac{b^{3} T}{4 q(T)^{3}}+\frac{(g+2)^{3}}{6} \frac{b^{3}}{q(T)^{3}}-\frac{(g+2)^{2}}{2} \frac{b^{3}}{q(T)^{3}}+\frac{(g+2)}{4} \frac{b^{3}}{q(T)^{3}}+\frac{b^{3}}{12 q(T)^{3}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)\right] \\
& +\frac{T q(T)^{2}}{2 b^{2}}\left[1+\frac{2 b}{q(T)}-\frac{3}{2} \frac{b}{q(T)}+2 \frac{b^{2}}{q(T)^{2}}-3 \frac{b^{2}}{q(T)^{2}}+\frac{11}{12} \frac{b^{2}}{q(T)^{2}}+\frac{4}{3} \frac{b^{3}}{q(T)^{3}}-3 \frac{b^{3}}{q(T)^{3}}\right. \\
& \left.+\frac{11}{6} \frac{b^{3}}{q(T)^{3}}-\frac{1}{4} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
& -\frac{g+1}{2} \frac{q(T)^{2}}{b^{2}}\left[1+\frac{2 b}{q(T)}-\frac{3}{2} \frac{b}{q(T)}+2 \frac{b^{2}}{q(T)^{2}}-3 \frac{b^{2}}{q(T)^{2}}+\frac{11}{12} \frac{b^{2}}{q(T)^{2}}+\frac{4}{3} \frac{b^{3}}{q(T)^{3}}-3 \frac{b^{3}}{q(T)^{3}}\right. \\
& \left.+\frac{11}{6} \frac{b^{3}}{q(T)^{3}}-\frac{1}{4} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left\{-b \frac{(t-g-j)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-j)}{q(T)}\right\} \\
&=-\frac{q(T)^{3}}{2 b^{3}}\left[1-\frac{b}{q(T)}+\frac{1}{4} \frac{b^{2}}{q(T)^{2}}+\frac{1}{12} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
&+\frac{q(T)^{3}}{2 b^{3}}\left[1-\frac{b T}{q(T)}+\frac{g b}{q(T)}+\frac{b^{2} T^{2}}{2 q(T)^{2}}-\frac{g b^{2} T}{q(T)^{2}}-\frac{b^{3} T^{3}}{6 q(T)^{3}}+\frac{2 g^{2}-1}{4} \frac{b^{2}}{q(T)^{2}}\right. \\
&\left.+\frac{g}{2} \frac{b^{3} T^{2}}{q(T)^{3}}-\left(\frac{2 g^{2}-1}{4}\right) \frac{b^{3} T}{q(T)^{3}}+\frac{g\left(2 g^{2}-3\right)}{12} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)\right] \\
&\left.+\frac{\frac{q(T)^{3}}{4 b^{3}}[1-}{}-\frac{3}{2} \frac{b}{q(T)}+\frac{3}{4} \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
&-\frac{q(T)^{3}}{4 b^{3}}[1- \frac{2 b T}{q(T)}+\frac{4 g+1}{2} \frac{b}{q(T)}+2 \frac{b^{2} T^{2}}{q(T)^{2}}-\frac{(4 g+1) b^{2} T}{q(T)^{2}}-\frac{4}{3} \frac{b^{3} T^{3}}{q(T)^{3}} \\
& \quad+\frac{8 g^{2}+4 g-1}{4} \frac{b^{2}}{q(T)^{2}}+\frac{(4 g+1) b^{3} T^{2}}{q(T)^{3}}-\frac{8 g^{2}+4 g-1}{2} \frac{b^{3} T}{q(T)^{3}} \\
&\left.\quad+\frac{8 g^{3}+6 g^{2}-3 g-1}{6} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)\right] \\
&-\frac{q(T)^{3}}{2 b^{3}}[1-\left.\frac{1}{4} \frac{b^{2}}{q(T)^{2}}+O\left(\frac{1}{q(T)^{4}}\right)\right] \\
&+\frac{q(T)^{3}}{2 b^{3}}[1- \frac{b T}{q(T)}+\frac{(g+1) b}{q(T)}+\frac{1}{2} \frac{b^{2} T^{2}}{q(T)^{2}}-\frac{(g+1) b^{2} T}{q(T)^{2}}-\frac{1}{6} \frac{b^{3} T^{3}}{q(T)^{3}} \\
& \quad+\frac{2(g+2)^{2}-4(g+2)+1}{4} \frac{b^{2}}{q(T)^{2}}+\frac{g+1}{2} \frac{b^{3} T^{2}}{q(T)^{3}} \\
& \quad-\frac{2(g+2)^{2}-4(g+2)+1}{4} \frac{b^{3} T}{q(T)^{3}} \\
&\left.\quad+\frac{2(g+2)^{3}-6(g+2)^{2}+3(g+2)+1}{12} \frac{b^{3}}{q(T)^{3}}+O\left(\frac{T^{4}}{q(T)^{4}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left\{-b \frac{(t-g-j)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-j)}{q(T)}\right\} \\
& =\left[-\frac{q(T)^{3}}{2 b^{3}}+\frac{1}{2} \frac{q(T)^{2}}{b^{2}}-\frac{1}{8} \frac{q(T)}{b}-\frac{1}{24}+O\left(\frac{1}{q(T)}\right)\right] \\
& +\left[\frac{q(T)^{3}}{2 b^{3}}-\frac{1}{2} \frac{T q(T)^{2}}{b^{2}}+\frac{g}{2} \frac{q(T)^{2}}{b^{2}}+\frac{T^{2} q(T)}{4 b}-\frac{g}{2} \frac{T q(T)}{b}-\frac{1}{12} T^{3}\right. \\
& \left.+\left(\frac{2 g^{2}-1}{8}\right) \frac{q(T)}{b}+\frac{g}{4} T^{2}-\left(\frac{2 g^{2}-1}{8}\right) T+\frac{5}{12}+O\left(\frac{T^{4}}{q(T)}\right)\right] \\
& +\left[\frac{q(T)^{3}}{4 b^{3}}-\frac{3}{8} \frac{q(T)^{2}}{b^{2}}+\frac{3}{16} \frac{q(T)}{b}+O\left(\frac{1}{q(T)}\right)\right] \\
& -\left[\frac{q(T)^{3}}{4 b^{3}}-\frac{1}{2} \frac{T q(T)^{2}}{b^{2}}+\frac{4 g+1}{8} \frac{q(T)^{2}}{b^{2}}+\frac{1}{2} \frac{T^{2} q(T)}{b}-\frac{4 g+1}{4} \frac{T q(T)}{b}-\frac{1}{3} T^{3}\right. \\
& +\frac{8 g^{2}+4 g-1}{16} \frac{q(T)}{b}+\frac{4 g+1}{4} T^{2}-\frac{8 g^{2}+4 g-1}{8} T \\
& \left.+\frac{8 g^{3}+6 g^{2}-3 g-1}{24}+O\left(\frac{T^{4}}{q(T)}\right)\right] \\
& -\left[\frac{q(T)^{3}}{2 b^{3}}-\frac{1}{8} \frac{q(T)}{b}+O\left(\frac{1}{q(T)}\right)\right] \\
& +\left[\frac{q(T)^{3}}{2 b^{3}}-\frac{1}{2} \frac{T q(T)^{2}}{b^{2}}+\frac{g+1}{2} \frac{q(T)^{2}}{b^{2}}+\frac{1}{4} \frac{T^{2} q(T)}{b}-\frac{g+1}{2} \frac{T q(T)}{b}\right. \\
& -\frac{1}{12} T^{3}+\frac{2(g+2)^{2}-4(g+2)+1}{8} \frac{q(T)}{b}+\frac{g+1}{4} T^{2}-\frac{2(g+2)^{2}-4(g+2)+1}{8} T \\
& \left.+\frac{2(g+2)^{3}-6(g+2)^{2}+3(g+2)+1}{24}+O\left(\frac{T^{4}}{q(T)}\right)\right] \\
& +\left[\frac{T q(T)^{2}}{2 b^{2}}+\frac{1}{4} \frac{T q(T)}{b}-\frac{1}{24} T-\frac{1}{24} \frac{b T}{q(T)}+O\left(\frac{T}{q(T)^{2}}\right)\right] \\
& -\left[\frac{g+1}{2} \frac{q(T)^{2}}{b^{2}}+\frac{g+1}{4} \frac{q(T)}{b}-\frac{g+1}{24}-\frac{g+1}{24} \frac{b}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right] \\
& =\frac{1}{6} T^{3}\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right]
\end{aligned}
$$

as required for part (a).
Next, consider part (b), where we take $q(T) \sim T$. Specializing the calculations given in the proof
of part (a), we have that

$$
\begin{aligned}
& \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-2} \exp \left\{-b \frac{(t-g-j)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-j)}{q(T)}\right\} \\
= & {\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-2} \exp \left\{-\frac{b}{q(T)}\right\} } \\
& -\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-2} \exp \left\{\frac{b g}{q(T)}\right\} \exp \left\{-\frac{b T}{q(T)}\right\} \\
& -\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1} \exp \left\{-\frac{2 b}{q(T)}\right\} \\
& +\left[1-\left\{\exp \frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1} \\
& -\left[1-\exp \left\{\frac{2 b g}{q(T)}\right\} \exp \left\{-\frac{2 b T}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1} \exp \left\{\frac{b}{q(T)}\right\} \\
& +\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1} \\
& \times \exp \left\{\frac{b(g+2)}{q(T)}\right\} \exp \left\{-\frac{b T}{q(T)}\right\} \\
& +\exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}(T-g-1) \\
= & -\frac{q(T)^{3}}{2 b^{3}}\left[1+O\left(\frac{1}{T}\right)\right]+\frac{q(T)^{3}}{2 b^{3}} \exp \left\{-\frac{b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right]+\frac{q(T)^{3}}{4 b^{3}}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{q(T)^{3}}{4 b^{3}} \exp \left\{-\frac{2 b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right]-\frac{q(T)^{3}}{2 b^{3}}\left[1+O\left(\frac{1}{T}\right)\right]+\frac{q(T)^{3}}{2 b^{3}} \exp \left\{-\frac{b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right] \\
& +\frac{T q(T)^{2}}{2 b^{2}}\left[1+O\left(\frac{1}{T}\right)\right] \\
= & \frac{T q(T)^{2}}{2 b^{2}}\left[1-\frac{3}{2 b} \frac{q(T)}{T}+\frac{2}{b} \frac{q(T)}{T} \exp \left\{-\frac{b T}{q(T)}\right\}-\frac{1}{2 b} \frac{q(T)}{T} \exp \left\{-\frac{2 b T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right]
\end{aligned}
$$

as required to show part (b).

Finally, consider part (c), where we take $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow 0$. In this case, we have

$$
\begin{aligned}
& \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-2} \exp \left\{-b \frac{(t-g-j)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-j)}{q(T)}\right\} \\
= & {\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-2} \exp \left\{-\frac{b}{q(T)}\right\} } \\
& -\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-2} \exp \left\{\frac{b g}{q(T)}\right\} \exp \left\{-\frac{b T}{q(T)}\right\} \\
& -\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1} \exp \left\{-\frac{2 b}{q(T)}\right\} \\
& +\left[1-\left\{\exp \frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2 b}{q(T)}\right\}\right]^{-1} \\
& -\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1} \exp \left\{\frac{b}{q(T)}\right\} \\
& +\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1} \\
& \times \exp \left\{\frac{b(g+2)}{q(T)}\right\} \exp \left\{-\frac{b T}{q(T)}\right\} \\
& +\exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{2 b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}(T-g-1) \\
= & -\frac{q(T)^{3}}{2 b^{3}}\left[1+O\left(\frac{1}{T}\right)\right]+\frac{q(T)^{3}}{2 b^{3}} \exp \left\{-\frac{b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right]+\frac{q(T)^{3}}{4 b^{3}}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{q(T)^{3}}{4 b^{3}} \exp \left\{-\frac{2 b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right]-\frac{q(T)^{3}}{2 b^{3}}\left[1+O\left(\frac{1}{T}\right)\right]+\frac{q(T)^{3}}{2 b^{3}} \exp \left\{-\frac{b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right] \\
= & \frac{T q(T)^{2}}{2 b^{2}}\left[1+O\left(\frac{1}{T}\right)\right] \\
= & \frac{T q(T)^{2}}{2 b^{2}}\left[1+O\left(\frac{q(T)}{T}\right)\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
= & \frac{T q(T)^{2}}{2 b^{2}}\left[1+O\left(\frac{q(T)}{T}\right)\right],
\end{aligned}
$$

as required to show part (c).

Lemma SE-8:

Let b be a positive integer.
(a) Suppose that $q(T) \sim T$. Then,

$$
\begin{aligned}
& \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-b \frac{t-1-s}{q(T)}\right\} \exp \left\{-b \frac{s-1-j}{q(T)}\right\} \\
= & \left(\frac{T q(T)^{2}}{b^{2}}\left[1+\exp \left\{-\frac{T b}{q(T)}\right\}\right]-\frac{2 q(T)^{3}}{b^{3}}\left[1-\exp \left\{-\frac{T b}{q(T)}\right\}\right]\right)\left[1+O\left(\frac{1}{T}\right)\right],
\end{aligned}
$$

as $T \rightarrow \infty$.
(b) Suppose that $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow 0$. Then,

$$
\sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-b \frac{t-1-s}{q(T)}\right\} \exp \left\{-b \frac{s-1-j}{q(T)}\right\}=\frac{T q(T)^{2}}{b^{2}}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right]
$$

as $T \rightarrow \infty$.

Proof of Lemma SE-8:

To proceed, note first that

$$
\begin{aligned}
& \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-b \frac{t-1-s}{q(T)}\right\} \exp \left\{-b \frac{s-1-j}{q(T)}\right\} \\
= & \sum_{t=3}^{T} \sum_{s=2}^{t-1} \exp \left\{-b \frac{t-1-s}{q(T)}\right\} \exp \left\{-b \frac{s-1}{q(T)}\right\} \exp \left\{\frac{b}{q(T)}\right\} \sum_{j=1}^{s-1} \exp \left\{b \frac{j-1}{q(T)}\right\} \\
= & \sum_{t=3}^{T} \exp \left\{-b \frac{t-1}{q(T)}\right\} \sum_{s=2}^{t-1} \exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{b \frac{s-1}{q(T)}\right\}\right] \\
= & \exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1} \\
& \times\left[\sum_{t=3}^{T} \exp \left\{-b \frac{t-1}{q(T)}\right\}(t-2)-\exp \left\{\frac{b}{q(T)}\right\} \sum_{t=3}^{T} \exp \left\{-b \frac{t-1}{q(T)}\right\} \sum_{s=2}^{t-1} \exp \left\{b \frac{s-2}{q(T)}\right\}\right] .
\end{aligned}
$$

Next, we apply part (a) of Lemma SE-5; and, after further calculation, we obtain

$$
\begin{aligned}
& \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-b \frac{t-1-s}{q(T)}\right\} \exp \left\{-b \frac{s-1-j}{q(T)}\right\} \\
= & \exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-2} \\
& \times\left[\exp \left\{-\frac{2 b}{q(T)}\right\}-(T-1) \exp \left\{-b \frac{T}{q(T)}\right\}+(T-2) \exp \left\{-b \frac{T+1}{q(T)}\right\}\right] \\
& -\exp \left\{\frac{3 b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1} \\
& \times \sum_{t=3}^{T} \exp \left\{-b \frac{t-1}{q(T)}\right\}\left[1-\exp \left\{b \frac{t-2}{q(T)}\right\}\right] \\
= & \exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-2} \\
& \times\left[\exp \left\{-\frac{2 b}{q(T)}\right\}-(T-1) \exp \left\{-b \frac{T}{q(T)}\right\}+(T-2) \exp \left\{-b \frac{T+1}{q(T)}\right\}\right] \\
& -\exp \left\{\frac{3 b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-2} \sum_{t=3}^{T} \exp \left\{-b \frac{t-1}{q(T)}\right\}\left[1-\exp \left\{b \frac{t-2}{q(T)}\right\}\right] \\
= & \exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-2} \\
& \times\left[\exp \left\{-\frac{2 b}{q(T)}\right\}-(T-1) \exp \left\{-b \frac{T}{q(T)}\right\}+(T-2) \exp \left\{-b \frac{T+1}{q(T)}\right\}\right] \\
& \left.-\exp \left\{\frac{b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]\right]^{-1}\left[1-\exp \left\{-b \frac{T-2}{q(T)}\right\}\right]
\end{aligned}
$$

Now, consider part (a), where we take $q(T) \sim T$. From the calculations we have performed above, we have

$$
\begin{aligned}
& \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-b \frac{t-1-s}{q(T)}\right\} \exp \left\{-b \frac{s-1-j}{q(T)}\right\} \\
= & \exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-2} \\
& \times\left[\exp \left\{-\frac{2 b}{q(T)}\right\}-(T-1) \exp \left\{-b \frac{T}{q(T)}\right\}+(T-2) \exp \left\{-b \frac{T}{q(T)}\right\} \exp \left\{-\frac{b}{q(T)}\right\}\right] \\
& -\exp \left\{\frac{b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-b \frac{T-2}{q(T)}\right\}\right] \\
& +\exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-2}(T-2) \\
= & \exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-2} \\
& \times\left[\exp \left\{-\frac{2 b}{q(T)}\right\}-(T-1) \exp \left\{-b \frac{T}{q(T)}\right\}\right. \\
& \left.+(T-2) \exp \left\{-b \frac{T}{q(T)}\right\}\left(1-\frac{b}{q(T)}+O\left(\frac{1}{T^{2}}\right)\right)\right] \\
& -\exp \left\{\frac{b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-b \frac{T-2}{q(T)}\right\}\right] \\
& +\exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-2}(T-2) \\
= & \exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-2} \\
& \times\left[\exp \left\{-\frac{2 b}{q(T)}\right\}-T \exp \left\{-\frac{b T}{q(T)}\right\}+\exp \left\{-b \frac{T}{q(T)}\right\}\right. \\
& \left.+T \exp \left\{-b \frac{T}{q(T)}\right\}-\frac{b T}{q(T)} \exp \left\{-\frac{b T}{q(T)}\right\}-2 \exp \left\{-b \frac{T}{q(T)}\right\}+O\left(\frac{1}{T}\right)\right] \\
& -\exp \left\{\frac{b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-b \frac{T-2}{q(T)}\right\}\right] \\
& +\exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-2}(T-2)
\end{aligned}
$$

$$
\begin{aligned}
= & \left(-\frac{q(T)}{b}\right)\left(\frac{q(T)}{b}\right)^{2}\left[1-\exp \left\{-\frac{T b}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\left(-\frac{q(T)}{b}\right)\left(\frac{q(T)}{b}\right)^{2} b \frac{T}{q(T)} \exp \left\{-\frac{T b}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\left(-\frac{q(T)}{b}\right)^{2}\left(\frac{q(T)}{b}\right)\left[1-\exp \left\{-\frac{T b}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& +\left(-\frac{q(T)}{b}\right)^{2} T\left[1+O\left(\frac{1}{T}\right)\right] \\
= & \left(\frac{T q(T)^{2}}{b^{2}}\left[1+\exp \left\{-\frac{T b}{q(T)}\right\}\right]-\frac{2 q(T)^{3}}{b^{3}}\left[1-\exp \left\{-\frac{T b}{q(T)}\right\}\right]\right)\left[1+O\left(\frac{1}{T}\right)\right]
\end{aligned}
$$

which is the required result.
Next, we turn our attention to part (b), where we take $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow 0$. Here, from previous calculations, we have

$$
\begin{aligned}
& \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-b \frac{t-1-s}{q(T)}\right\} \exp \left\{-b \frac{s-1-j}{q(T)}\right\} \\
= & \exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-2} \\
& \times\left[\exp \left\{-\frac{2 b}{q(T)}\right\}-(T-1) \exp \left\{-b \frac{T}{q(T)}\right\}+(T-2) \exp \left\{-b \frac{T+1}{q(T)}\right\}\right] \\
& -\exp \left\{\frac{b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-b \frac{T-2}{q(T)}\right\}\right] \\
& +\exp \left\{\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{\frac{b}{q(T)}\right\}\right]^{-2}(T-2) \\
= & \left(-\frac{q(T)}{b}\right)\left(\frac{q(T)}{b}\right)^{2}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& -\left(-\frac{q(T)}{b}\right)\left(\frac{q(T)}{b}\right)^{2} \frac{T b}{q(T)} \exp \left\{-\frac{b T}{q(T)}\right\}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& -\left(-\frac{q(T)}{b}\right)\left(\frac{q(T)}{b}\right)^{2} \exp \left\{-\frac{b T}{q(T)}\right\}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& -\left(-\frac{q(T)}{b}\right)^{2}\left(\frac{q(T)}{b}\right)^{2}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left[1+O\left(\exp \left\{-\frac{b T}{q(T)}\right\}\right)\right] \\
& +T\left(-\frac{q(T)}{b}\right)^{2}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
= & \frac{T q(T)^{2}}{b^{2}}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right],
\end{aligned}
$$

which is the required result.

Lemma SE-9:

Let b and c be positive integers.
(a) If $q(T) \sim T$, then

$$
\begin{aligned}
& \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{t-1} \sum_{k=1}^{s-1} \exp \left\{-b \frac{t-1-j}{q(T)}\right\} \exp \left\{-c \frac{s-1-k}{q(T)}\right\} \\
= & \left(\frac{T^{2} q(T)^{2}}{2 b c}-\frac{q(T)^{4}}{b^{3} c}\left[1-\exp \left\{-b \frac{T}{q(T)}\right\}\right]+\frac{T q(T)^{3}}{b^{2} c} \exp \left\{-\frac{b T}{q(T)}\right\}-\frac{T q(T)^{3}}{b c^{2}}\right. \\
& +\frac{q(T)^{4}}{b c^{3}}\left[1-\exp \left\{-c \frac{T}{q(T)}\right\}\right]+\frac{q(T)^{4}}{b^{2} c^{2}}\left[1-\exp \left\{-b \frac{T}{q(T)}\right\}\right] \\
& \left.-\frac{q(T)^{4}}{b c^{2}(b+c)}\left[1-\exp \left\{-(b+c) \frac{T}{q(T)}\right\}\right]\right)\left[1+O\left(\frac{1}{T}\right)\right],
\end{aligned}
$$

as $T \rightarrow \infty$.
(b) If $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow 0$, then

$$
\begin{aligned}
& \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{t-1} \sum_{k=1}^{s-1} \exp \left\{-b \frac{t-1-j}{q(T)}\right\} \exp \left\{-c \frac{s-1-k}{q(T)}\right\} \\
= & \frac{T^{2} q(T)^{2}}{2 b c}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right]
\end{aligned}
$$

as $T \rightarrow \infty$.

Proof of Lemma SE-9:

To proceed, note first that

$$
\begin{aligned}
& \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{t-1} \exp \left\{-b \frac{t-1-j}{q(T)}\right\} \sum_{k=1}^{s-1} \exp \left\{-c \frac{s-1-k}{q(T)}\right\} \\
= & {\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-1} } \\
& \times \sum_{t=3}^{T} \sum_{s=2}^{t-1}\left[1-\exp \left\{-b \frac{t-1}{q(T)}\right\}\right]\left[1-\exp \left\{-c \frac{s-1}{q(T)}\right\}\right] \\
= & {\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-1} } \\
& \times \sum_{t=3}^{T} \sum_{s=2}^{t-1}\left[1-\exp \left\{-b \frac{t-1}{q(T)}\right\}-\exp \left\{-c \frac{s-1}{q(T)}\right\}+\exp \left\{-b \frac{t-1}{q(T)}\right\} \exp \left\{-c \frac{s-1}{q(T)}\right\}\right] \\
= & {\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-1} \sum_{t=3}^{T}\left[(t-2)-(t-2) \exp \left\{-b \frac{t-1}{q(T)}\right\}\right.} \\
& \left.-\exp \left\{-\frac{c}{q(T)}\right\} \sum_{s=2}^{t-1} \exp \left\{-c \frac{s-2}{q(T)}\right\}+\exp \left\{-b \frac{t-1}{q(T)}\right\} \exp \left\{-\frac{c}{q(T)}\right\} \sum_{s=2}^{t-1} \exp \left\{-c \frac{s-2}{q(T)}\right\}\right] .
\end{aligned}
$$

Applying part (a) of Lemma SE-5 and performing additional calculation, we get

$$
\begin{aligned}
& \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{t-1} \exp \left\{-b \frac{t-1-j}{q(T)}\right\} \sum_{k=1}^{s-1} \exp \left\{-c \frac{s-1-k}{q(T)}\right\} \\
& =\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-1} \frac{(T-2)(T-1)}{2} \\
& -\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-3}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-1}\left[\exp \left\{-\frac{2 b}{q(T)}\right\}\right. \\
& \left.-(T-1) \exp \left\{-\frac{b T}{q(T)}\right\}+(T-2) \exp \left\{-b \frac{T+1}{q(T)}\right\}\right] \\
& -\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-2} \exp \left\{-\frac{c}{q(T)}\right\} \\
& \times \sum_{t=3}^{T}\left[1-\exp \left\{-c \frac{t-2}{q(T)}\right\}\right] \\
& +\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-2} \exp \left\{-\frac{c}{q(T)}\right\} \\
& \times \sum_{t=3}^{T} \exp \left\{-b \frac{t-1}{q(T)}\right\}\left[1-\exp \left\{-c \frac{t-2}{q(T)}\right\}\right] \\
& =\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-1} \frac{(T-2)(T-1)}{2} \\
& -\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-3}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-1}\left[\exp \left\{-\frac{2 b}{q(T)}\right\}\right. \\
& \left.-(T-1) \exp \left\{-\frac{b T}{q(T)}\right\}+(T-2) \exp \left\{-b \frac{T+1}{q(T)}\right\}\right] \\
& -\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-2} \exp \left\{-\frac{c}{q(T)}\right\} \\
& \times\left\{(T-2)-\exp \left\{-\frac{c}{q(T)}\right\}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-c \frac{T-2}{q(T)}\right\}\right]\right\} \\
& +\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-2} \exp \left\{-\frac{c}{q(T)}\right\} \\
& \times \exp \left\{-\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-b \frac{T-2}{q(T)}\right\}\right] \\
& -\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-2} \exp \left\{-\frac{c}{q(T)}\right\} \\
& \times \exp \left\{-\frac{2 b}{q(T)}\right\} \exp \left\{-\frac{c}{q(T)}\right\} \sum_{t=3}^{T} \exp \left\{-(b+c) \frac{t-3}{q(T)}\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & {\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-1} \frac{(T-2)(T-1)}{2} } \\
& -\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-3}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-1}\left[\exp \left\{-\frac{2 b}{q(T)}\right\}\right. \\
& \left.-(T-1) \exp \left\{-\frac{b T}{q(T)}\right\}+(T-2) \exp \left\{-b \frac{T+1}{q(T)}\right\}\right] \\
& -\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-2} \exp \left\{-\frac{c}{q(T)}\right\} \\
& \times\left\{(T-2)-\exp \left\{-\frac{c}{q(T)}\right\}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-c \frac{T-2}{q(T)}\right\}\right]\right\} \\
& +\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{c}{q(T)}\right\}\right]^{-2} \exp \left\{-\frac{c}{q(T)}\right\} \\
& \times\left(\exp \left\{-\frac{2 b}{q(T)}\right\}\left[1-\exp \left\{-\frac{b}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-b \frac{T-2}{q(T)}\right\}\right]\right. \\
& \left.-\exp \left\{-\frac{2 b}{q(T)}\right\} \exp \left\{-\frac{c}{q(T)}\right\}\left[1-\exp \left\{-\frac{b+c}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-(b+c) \frac{T-2}{q(T)}\right\}\right]\right)
\end{aligned}
$$

For this case, we have Now, consider part (a), where we take $q(T) \sim T$. In this case,

$$
\begin{aligned}
& \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{t-1} \exp \left\{-b \frac{t-1-j}{q(T)}\right\} \sum_{k=1}^{s-1} \exp \left\{-c \frac{s-1-k}{q(T)}\right\} \\
= & \frac{T^{2} q(T)^{2}}{2 b c}\left[1+O\left(\frac{1}{T}\right)\right]-\frac{q(T)^{4}}{b^{3} c}\left[1+O\left(\frac{1}{T}\right)\right] \\
& +\frac{T q(T)^{3}}{b^{2} c} \exp \left\{-\frac{b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right]+\frac{q(T)^{4}}{b^{3} c} \exp \left\{-\frac{b T}{q(T)}\right\}\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{T q(T)^{3}}{b c^{2}}\left[1+O\left(\frac{1}{T}\right)\right]+\frac{q(T)^{4}}{b c^{3}}\left[1-\exp \left\{-c \frac{T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& +\frac{q(T)^{4}}{b^{2} c^{2}}\left[1-\exp \left\{-b \frac{T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& -\frac{q(T)^{4}}{b c^{2}(b+c)}\left[1-\exp \left\{-(b+c) \frac{T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
= & \left(\frac{T^{2} q(T)^{2}}{2 b c}-\frac{q(T)^{4}}{b^{3} c}\left[1-\exp \left\{-b \frac{T}{q(T)}\right\}\right]+\frac{T q(T)^{3}}{b^{2} c} \exp \left\{-\frac{b T}{q(T)}\right\}-\frac{T q(T)^{3}}{b c^{2}}\right. \\
& +\frac{q(T)^{4}}{b c^{3}}\left[1-\exp \left\{-c \frac{T}{q(T)}\right\}\right]+\frac{q(T)^{4}}{b^{2} c^{2}}\left[1-\exp \left\{-b \frac{T}{q(T)}\right\}\right] \\
& \left.-\frac{q(T)^{4}}{b c^{2}(b+c)}\left[1-\exp \left\{-(b+c) \frac{T}{q(T)}\right\}\right]\right)\left[1+O\left(\frac{1}{T}\right)\right] .
\end{aligned}
$$

Next, we turn our attention to part (b), where we take $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow 0$. For this
case, we have

$$
\begin{aligned}
& \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{t-1} \exp \left\{-b \frac{t-1-j}{q(T)}\right\} \sum_{k=1}^{s-1} \exp \left\{-c \frac{s-1-k}{q(T)}\right\} \\
= & \frac{T^{2} q(T)^{2}}{2 b c}\left[1+O\left(\frac{1}{q(T)}\right)\right]-\frac{q(T)^{4}}{b^{3} c}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& +\frac{T q(T)^{3}}{b^{2} c} \exp \left\{-\frac{b T}{q(T)}\right\}\left[1+O\left(\frac{1}{q(T)}\right)\right]+\frac{q(T)^{4}}{b^{3} c} \exp \left\{-\frac{b T}{q(T)}\right\}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& -\frac{T q(T)^{3}}{b c^{2}}\left[1+O\left(\frac{1}{q(T)}\right)\right]+\frac{q(T)^{4}}{b c^{3}}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left[1+O\left(\exp \left\{-c \frac{T}{q(T)}\right\}\right)\right] \\
& +\frac{q(T)^{4}}{b^{2} c^{2}}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left[1+O\left(\exp \left\{-b \frac{T}{q(T)}\right\}\right)\right] \\
& -\frac{q(T)^{4}}{b c^{2}(b+c)}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left[1+O\left(\exp \left\{-(b+c) \frac{T}{q(T)}\right\}\right)\right] \\
= & \frac{T^{2} q(T)^{2}}{2 b c}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right],
\end{aligned}
$$

which shows the desired result.
Lemma SE-10 (Phillips and Moon, 1999, Theorem 2): Let $\left\{Y_{i, T}\right\}$ be independent random variables such that $E\left[Y_{i, T}\right]=0, \quad E\left[Y_{i, T}^{2}\right]=\omega_{i, T}^{2}$. Define $\xi_{i, N, T}=\frac{Y_{i, T}}{\omega_{N, T}}$, where $\omega_{N, T}^{2}=\sum_{i=1}^{N} \omega_{i, T}^{2}$. Suppose that for all $\epsilon>0$

$$
\begin{equation*}
\lim _{N, T \rightarrow \infty} \sum_{i=1}^{N} E\left[\xi_{i, N, T}^{2} \mathbb{I}\left\{\left|\xi_{i, N, T}\right|>\epsilon\right\}\right]=0 \tag{13}
\end{equation*}
$$

Then, as $N, T \rightarrow \infty$ jointly $\sum_{i=1}^{N} \xi_{i, N, T} \Rightarrow N(0,1)$.

Lemma SE-11:

Given Assumptions 1-3, the following results hold.
(a) $N^{-1}(T-1)^{-1} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i}^{2}=\mu_{a}^{2}+\sigma_{a}^{2}+O_{p}\left(N^{-1 / 2}\right)$;
(b) $N^{-1} \sum_{i=1}^{N} a_{i}=\mu_{a}+O_{p}\left(N^{-1 / 2}\right)$;
(c) $\sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t-g}=O_{p}(\sqrt{N T})$ for $g \in\{0,1\}$;
(d) $\bar{\varepsilon}_{N T}=N^{-1}(T-1)^{-1} \sum_{i=1}^{N} \sum_{t=2}^{T} \varepsilon_{i t}=O_{p}\left(N^{-1 / 2} T^{-1 / 2}\right)$;
(e) $N^{-1} \sum_{i=1}^{N} \bar{\varepsilon}_{i}^{2}=\frac{\sigma^{2}}{(T-1)}+O_{p}\left(\frac{1}{T \sqrt{N}}\right)=O_{p}\left(\frac{1}{T}\right)$, where $\bar{\varepsilon}_{i}=(T-1)^{-1} \sum_{s=2}^{T} \varepsilon_{i s}$;
(f) $N^{-1}(T-1)^{-1} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \varepsilon_{i t-g}^{2}=\sigma^{2}+O_{p}\left(\max \left\{N^{-1 / 2} T^{-1 / 2}, T^{-1}\right\}\right)$ for (fixed) non-negative integer g;
(g) $\sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \Delta \varepsilon_{i t}=O_{p}(\sqrt{N})$;
(h) $N^{-1 / 2} T^{-1 / 2} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-g-1} \varepsilon_{i t-g} \Rightarrow N\left(0, \sigma^{4}\right)$, for (fixed) non-negative integer g;
(i) $\sum_{i=1}^{N} \varepsilon_{i 1} \varepsilon_{i 2}=O_{p}(\sqrt{N})$.

Proof of Lemma SE-11:

To show part (a), note that, by Assumption 2,

$$
\begin{aligned}
E\left[\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i}^{2}\right] & =\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} E\left[a_{i}^{2}\right]=\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \\
& =\frac{N(T-1)}{N(T-1)}\left(\mu_{a}^{2}+\sigma_{a}^{2}\right)=\mu_{a}^{2}+\sigma_{a}^{2}
\end{aligned}
$$

Moreover, by part (b) of Assumption 2,

$$
\begin{aligned}
& \operatorname{Var}\left(\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i}^{2}\right)=E\left(\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(a_{i}^{2}-\left[\mu_{a}^{2}+\sigma_{a}^{2}\right]\right)\right)^{2} \\
= & \frac{1}{N^{2}(T-1)^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=2}^{T} \sum_{s=2}^{T} E\left[\left(a_{i}^{2}-\left[\mu_{a}^{2}+\sigma_{a}^{2}\right]\right)\left(a_{j}^{2}-\left[\mu_{a}^{2}+\sigma_{a}^{2}\right]\right)\right] \\
= & \frac{1}{N^{2}} \sum_{i=1}^{N} E\left[\left(a_{i}^{2}-\left[\mu_{a}^{2}+\sigma_{a}^{2}\right]\right)^{2}\right]=\frac{E\left[a_{i}^{4}\right]-\left(\mu_{a}^{2}+\sigma_{a}^{2}\right)^{2}}{N}=O\left(\frac{1}{N}\right) .
\end{aligned}
$$

Using Markov's inequality, we deduce that

$$
\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} a_{i}^{2}=\mu_{a}^{2}+\sigma_{a}^{2}+O_{p}\left(\frac{1}{\sqrt{N}}\right) .
$$

To show part (b), note that

$$
E\left[\frac{1}{N} \sum_{i=1}^{N} a_{i}\right]=\frac{1}{N} \sum_{i=1}^{N} E\left[a_{i}\right]=\mu_{a}
$$

and

$$
\begin{aligned}
\operatorname{Var}\left(\frac{1}{N} \sum_{i=1}^{N} a_{i}\right) & =E\left(\frac{1}{N} \sum_{i=1}^{N}\left[a_{i}-\mu_{a}\right]\right)^{2}=\frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} E\left[\left(a_{i}-\mu_{a}\right)\left(a_{j}-\mu_{a}\right)\right] \\
& =\frac{1}{N^{2}} \sum_{i=1}^{N} E\left[\left(a_{i}-\mu_{a}\right)^{2}\right]=\frac{\sigma_{a}^{2}}{N}
\end{aligned}
$$

Using Markov's inequality, we deduce that

$$
\frac{1}{N} \sum_{i=1}^{N} a_{i}=\mu_{a}+O_{p}\left(\frac{1}{\sqrt{N}}\right) .
$$

To show (c), note that

$$
\begin{aligned}
E\left(\sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t-g}\right)^{2} & =\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=2}^{T} \sum_{s=2}^{T} E\left[a_{i} a_{j}\right] E\left[\varepsilon_{i, t-g} \varepsilon_{j, s-g}\right]=\sum_{i=1}^{N} \sum_{t=2}^{T} E\left[a_{i}^{2}\right] E\left[\varepsilon_{i, t-g}^{2}\right] \\
& =\sigma^{2}\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) N(T-1)=O(N T),
\end{aligned}
$$

from which it follows by applying the Markov's inequality that

$$
\sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \varepsilon_{i t-g}=O_{p}(\sqrt{N T},)
$$

as required.
To show part (d), note that

$$
\begin{aligned}
E\left(\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \varepsilon_{i t}\right)^{2} & =\frac{1}{N^{2}(T-1)^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=2}^{T} \sum_{s=2}^{T} E\left[\varepsilon_{i t} \varepsilon_{j s}\right]=\frac{1}{N^{2}(T-1)^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} E\left[\varepsilon_{i t}^{2}\right] \\
& =\frac{\sigma^{2}}{N(T-1)}=O\left(\frac{1}{N T}\right) .
\end{aligned}
$$

It follows from the Markov's inequality that

$$
\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \varepsilon_{i t}=O_{p}\left(\frac{1}{\sqrt{N T}}\right),
$$

as required.
To show (e), note first that

$$
\frac{1}{N} \sum_{i=1}^{N} E\left[\bar{\varepsilon}_{i}^{2}\right]=\frac{1}{N(T-1)^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \sum_{s=2}^{T} E\left[\varepsilon_{i t} \varepsilon_{i s}\right]=\frac{\sigma^{2}}{(T-1)}=O\left(T^{-1}\right)
$$

and

$$
\begin{aligned}
& E\left[\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i}^{2}-\frac{\sigma^{2}}{(T-1)}\right]^{2} \\
= & E\left[\frac{1}{N(T-1)^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \sum_{s=2}^{T} \varepsilon_{i t} \varepsilon_{i s}\right]^{2}-2 \frac{1}{N} \sum_{i=1}^{N} E\left[\bar{\varepsilon}_{i}^{2}\right] \frac{\sigma^{2}}{(T-1)}+\frac{\sigma^{4}}{(T-1)^{2}} \\
= & \frac{1}{N^{2}(T-1)^{4}} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=2}^{T} \sum_{s=2}^{T} \sum_{g=2}^{T} \sum_{v=2}^{T} E\left[\varepsilon_{i t} \varepsilon_{i s} \varepsilon_{j g} \varepsilon_{j v}\right]-\frac{\sigma^{4}}{(T-1)^{2}} \\
= & \frac{1}{N^{2}(T-1)^{4}} \sum_{i=1}^{N} \sum_{t=2}^{T} E\left[\varepsilon_{i t}^{4}\right]+\frac{1}{N^{2}(T-1)^{4}} \sum_{i \neq j} \sum_{t=2}^{T} \sum_{g=2}^{T} \sigma^{4}+\frac{3}{N^{2}(T-1)^{4}} \sum_{i=1}^{N} \sum_{t \neq s} \sigma^{4} \\
& -\frac{\sigma^{4}}{(T-1)^{2}} \\
= & \frac{E\left[\varepsilon_{i t}^{4}\right]}{N(T-1)^{3}}+\frac{\sigma^{4}}{N^{2}(T-1)^{2}} N(N-1)+\frac{3 \sigma^{4}}{N(T-1)^{4}}(T-2)(T-1)-\frac{\sigma^{4}}{(T-1)^{2}} \\
= & -\frac{\sigma^{4}}{N(T-1)^{2}}+\frac{3 \sigma^{4}(T-2)}{N(T-1)^{3}}+\frac{E\left[\varepsilon_{i t}^{4}\right]}{N(T-1)^{3}}=O\left(\frac{1}{N T^{2}}\right) .
\end{aligned}
$$

It follows by Markov's inequality that

$$
\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i}^{2}=\frac{\sigma^{2}}{(T-1)}+O_{p}\left(\frac{1}{T \sqrt{N}}\right)
$$

To show part (f), note that, for all positive integer $T>g+2$

$$
E\left[\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \varepsilon_{i t-g}^{2}\right]=\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=g+2}^{T} E\left[\varepsilon_{i t}^{2}\right]=\frac{T-g-1}{T-1} \sigma^{2}=\sigma^{2}+O\left(\frac{1}{T}\right)
$$

Moreover, for all $T>g+2$, we have

$$
\begin{aligned}
& E\left[\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \varepsilon_{i t-g}^{2}-\frac{T-g-1}{T-1} \sigma^{2}\right]^{2} \\
& =\frac{1}{N^{2}(T-1)^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{s=g+2}^{T} \sum_{t=g+2}^{T} E\left[\varepsilon_{j s-g}^{2} \varepsilon_{i t-g}^{2}\right]-2 \frac{\sigma^{2}}{N(T-1)} \sum_{i=1}^{N} \sum_{t=g+2}^{T} E\left[\varepsilon_{i t-g}^{2}\right] \\
& +\left(\frac{T-g-1}{T-1}\right)^{2} \sigma^{4} \\
& =\frac{1}{N^{2}(T-1)^{2}} \sum_{i \neq j} \sum_{s \neq t} E\left[\varepsilon_{j s-g}^{2}\right] E\left[\varepsilon_{i t-g}^{2}\right]+\frac{1}{N^{2}(T-1)^{2}} \sum_{i \neq j} \sum_{t=g+2}^{T} E\left[\varepsilon_{j t-g}^{2}\right] E\left[\varepsilon_{i t-g}^{2}\right] \\
& +\frac{1}{N^{2}(T-1)^{2}} \sum_{i=1}^{N} \sum_{s \neq t} E\left[\varepsilon_{i s-g}^{2}\right] E\left[\varepsilon_{i t-g}^{2}\right]+\frac{(T-g-1) E\left[\varepsilon_{i t}^{4}\right]}{N(T-1)^{2}}-\left(\frac{T-g-1}{T-1}\right)^{2} \sigma^{4} \\
& =\frac{(N-1)(T-g-1)(T-g-2)}{N(T-1)^{2}} \sigma^{4}-\left(\frac{T-g-1}{T-1}\right)^{2} \sigma^{4}+\frac{(N-1)(T-g-1)}{N(T-1)^{2}} \sigma^{4} \\
& +\frac{(T-g-1)(T-g-2)}{N(T-1)^{2}} \sigma^{4}+\frac{(T-g-1) E\left[\varepsilon_{i t}^{4}\right]}{N(T-1)^{2}} \\
& =\frac{(T-g-1)(T-g-2)}{(T-1)^{2}} \sigma^{4}-\frac{(T-g-1)(T-g-2)}{N(T-1)^{2}} \sigma^{4}-\frac{(T-1)^{2}-2 g(T-1)+g^{2}}{(T-1)^{2}} \sigma^{4} \\
& +\frac{(T-g-1)}{(T-1)^{2}} \sigma^{4}-\frac{(T-g-1)}{N(T-1)^{2}} \sigma^{4}+\frac{(T-g-1)(T-g-2)}{N(T-1)^{2}} \sigma^{4} \\
& +\frac{E\left[\varepsilon_{i t}^{4}\right]}{N(T-1)}-\frac{g E\left[\varepsilon_{i t}^{4}\right]}{N(T-1)^{2}} \\
& =\frac{(T-g-1)(T-g-2)}{(T-1)^{2}} \sigma^{4}-\frac{(T-1)^{2}-2 g(T-1)+g^{2}}{(T-1)^{2}} \sigma^{4}+\frac{(T-g-1)}{(T-1)^{2}} \sigma^{4}-\frac{(T-g-1)}{N(T-1)^{2}} \sigma^{4} \\
& +\frac{E\left[\varepsilon_{i t}^{4}\right]}{N(T-1)}-\frac{g E\left[\varepsilon_{i t}^{4}\right]}{N(T-1)^{2}} \\
& =\frac{(T-1)^{2}-g(T-1)-(g+1)(T-1)+g(g+1)}{(T-1)^{2}} \sigma^{4}-\frac{(T-1)^{2}-2 g(T-1)+g^{2}}{(T-1)^{2}} \sigma^{4} \\
& +\frac{\sigma^{4}}{(T-1)}-\frac{g \sigma^{4}}{(T-1)^{2}}-\frac{\sigma^{4}}{N(T-1)}+\frac{g \sigma^{4}}{N(T-1)^{2}}+\frac{E\left[\varepsilon_{i t}^{4}\right]}{N(T-1)}-\frac{g E\left[\varepsilon_{i t}^{4}\right]}{N(T-1)^{2}} \\
& =-\frac{\sigma^{4}}{(T-1)}+\frac{g \sigma^{4}}{(T-1)^{2}}+\frac{\sigma^{4}}{(T-1)}-\frac{g \sigma^{4}}{(T-1)^{2}}-\frac{\sigma^{4}}{N(T-1)}+\frac{g \sigma^{4}}{N(T-1)^{2}} \\
& +\frac{E\left[\varepsilon_{i t}^{4}\right]}{N(T-1)}-\frac{g E\left[\varepsilon_{i t}^{4}\right]}{N(T-1)^{2}} \\
& =-\frac{\sigma^{4}}{N(T-1)}+\frac{E\left[\varepsilon_{i t}^{4}\right]}{N(T-1)}+O\left(\frac{1}{N T^{2}}\right) \\
& =O\left(\frac{1}{N T}\right)
\end{aligned}
$$

It follows by Markov's inequality that as $N, T \rightarrow \infty$

$$
\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \varepsilon_{i t-g}^{2}=\sigma^{2}+O\left(\frac{1}{T}\right)+O_{p}\left(\frac{1}{\sqrt{N T}}\right)=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)
$$

To show part (g), write

$$
\sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \Delta \varepsilon_{i t}=\sum_{i=1}^{N} a_{i} \sum_{t=2}^{T} \Delta \varepsilon_{i t}=\sum_{i=1}^{N} a_{i}\left(\varepsilon_{i T}-\varepsilon_{i 1}\right)
$$

Note that

$$
\begin{aligned}
E\left[\sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \Delta \varepsilon_{i t}\right]^{2} & =\sum_{i=1}^{N} \sum_{j=1}^{N} E\left[a_{i} a_{j}\right] E\left[\left(\varepsilon_{i T}-\varepsilon_{i 1}\right)\left(\varepsilon_{j T}-\varepsilon_{j 1}\right)\right] \\
& =\sum_{i=1}^{N} E\left[a_{i}^{2}\right] E\left[\left(\varepsilon_{i T}-\varepsilon_{i 1}\right)^{2}\right]=2 \sigma^{2}\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) N
\end{aligned}
$$

from which it follows by Markov's inequality that

$$
\sum_{i=1}^{N} \sum_{t=2}^{T} a_{i} \Delta \varepsilon_{i t}=O_{p}(\sqrt{N}) .
$$

To show part (h), let $Y_{i, T}=\frac{1}{\sqrt{T}} \sum_{t=g+3}^{T} \varepsilon_{i t-g-1} \varepsilon_{i t-g}$ and note that

$$
E\left[Y_{i, T}\right]=\frac{1}{\sqrt{T}} \sum_{t=g+3}^{T} E\left[\varepsilon_{i t-g-1}\right] E\left[\varepsilon_{i t-g}\right]=0
$$

Moreover,

$$
\begin{aligned}
\omega_{N, T}^{2} & =\sum_{i=1}^{N} E\left[Y_{i, T}^{2}\right]=\frac{1}{T} \sum_{i=1}^{N} \sum_{t=g+3}^{T} \sum_{s=g+3}^{T} E\left[\varepsilon_{i t-g-1} \varepsilon_{i t-g} \varepsilon_{i s-g-1} \varepsilon_{i s-g}\right] \\
& =\sigma^{4} \frac{N(T-g-2)}{T}=\sigma^{4} N\left[1+O\left(\frac{1}{T}\right)\right]
\end{aligned}
$$

so that

$$
\frac{\omega_{N, T}}{\sqrt{N}} \rightarrow \sigma^{2} \in(0, \infty) \quad \text { as } N, T \rightarrow \infty
$$

Hence, to show the asymptotic normality of

$$
U_{N, T}=\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} Y_{i, T}
$$

it suffices to verify a Liapounov-type condition

$$
\begin{equation*}
\lim _{N, T \rightarrow \infty} \frac{1}{N^{2}} \sum_{i=1}^{N} E\left[Y_{i, T}^{4}\right]=0 \tag{14}
\end{equation*}
$$

By direct calculation,

$$
\begin{aligned}
& \frac{1}{N^{2}} \sum_{i=1}^{N} E\left[Y_{i, T}^{4}\right]=\frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} E\left[\left(\sum_{t=g+3}^{T} \varepsilon_{i t-g-1} \varepsilon_{i t-g}\right)^{4}\right] \\
= & \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{g=4}^{T} \sum_{s=4}^{T} \sum_{t=4}^{T} \sum_{u=4}^{T} E\left[\varepsilon_{i g-2} \varepsilon_{i s-2} \varepsilon_{i t-2} \varepsilon_{i u-2} \varepsilon_{i g-1} \varepsilon_{i s-1} \varepsilon_{i t-1} \varepsilon_{i u-1}\right] \\
= & \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=4}^{T} E\left[\varepsilon_{i t-2}^{4}\right] E\left[\varepsilon_{i t-1}^{4}\right]+\frac{6}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{s=6}^{T} \sum_{t=4}^{s-2} E\left[\varepsilon_{i s-2}^{2}\right] E\left[\varepsilon_{i s-1}^{2}\right] E\left[\varepsilon_{i t-2}^{2}\right] E\left[\varepsilon_{i t-1}^{2}\right] \\
& +\frac{6}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=4}^{T-1} E\left[\varepsilon_{i t}^{2}\right] E\left[\varepsilon_{i t-1}^{4}\right] E\left[\varepsilon_{i t-2}^{2}\right] \\
= & \left(E\left[\varepsilon_{i t-1}^{4}\right]\right)^{2} \frac{(T-3)}{N T^{2}}+\frac{6 \sigma^{8}}{N T^{2}} \sum_{s=6}^{T}(s-5)+6 E\left[\varepsilon_{i t-1}^{4}\right] \sigma^{4} \frac{(T-4)}{N T^{2}} \\
= & O\left(\frac{1}{N T}\right) .
\end{aligned}
$$

Since the Liapounov-type condition (14) implies Lindeberg-type condition (13) given in Lemma SE-10 above, it follows from Lemma SE-10 that

$$
\begin{aligned}
U_{N, T} & =\frac{1}{\omega_{N, T}} \sum_{i=1}^{N} Y_{i, T}=\frac{1}{\omega_{N, T}} \frac{1}{\sqrt{T}} \sum_{i=1}^{N} \sum_{t=g+3}^{T} \varepsilon_{i t-g-1} \varepsilon_{i t-g} \\
& =\frac{1}{\sigma^{2} \sqrt{N T}} \sum_{i=1}^{N} \sum_{t=g+3}^{T} \varepsilon_{i t-g-1} \varepsilon_{i t-g}+o_{p}(1) \Rightarrow N(0,1) .
\end{aligned}
$$

Futhermore, we deduce from the Cramér convergence theorem that

$$
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=g+3}^{T} \varepsilon_{i t-g-1} \varepsilon_{i t-g} \Rightarrow N\left(0, \sigma^{4}\right),
$$

as required.
Finally, to show part (i), note that

$$
E\left[\sum_{i=1}^{N} \varepsilon_{i 1} \varepsilon_{i 2}\right]^{2}=\sum_{i=1}^{N} \sum_{j=1}^{N} E\left[\varepsilon_{i 1} \varepsilon_{i 2} \varepsilon_{j 1} \varepsilon_{j 2}\right]=\sum_{i=1}^{N} E\left[\varepsilon_{i 1}^{2}\right] E\left[\varepsilon_{i 2}^{2}\right]=\sigma^{4} N,
$$

so that

$$
\sum_{i=1}^{N} \varepsilon_{i 1} \varepsilon_{i 2}=O_{p}(\sqrt{N})
$$

as desired for part (i).

Lemma SE-12:

Suppose that Assumptions 1 and 4 hold. Then, for $T / q(T) \rightarrow 0$ and $r \in(0,1]$

$$
\frac{1}{\sqrt{T}} w_{i,[T r]} \Rightarrow \sigma W_{i}(r) \text { for each } i
$$

as $T \rightarrow \infty$, where

$$
w_{i,[T r]}=\sum_{j=1}^{[T r]} \exp \left(-\frac{([T r]-j)}{q(T)}\right) \varepsilon_{i j}+\exp \left\{-\frac{[T r]}{q(T)}\right\} w_{i 0}
$$

Proof of Lemma SE-12:

To proceed, for $(j-1) / T \leq s<j / T$, set

$$
\int_{(j-1) / T}^{j / T} d X_{i, T}(s)=\frac{1}{\sigma \sqrt{T}} \varepsilon_{i j}
$$

and note that, since $w_{i 0}=O_{p}(1)$ for all i in light of Assumption 4 and the Markov's inequality, we have that

$$
\begin{aligned}
\frac{1}{\sqrt{T}} w_{i,[T r]}= & \frac{1}{\sqrt{T}} \sum_{j=1}^{[T r]} \exp \left(-\frac{([T r]-j)}{q(T)}\right) \varepsilon_{i j}+\frac{1}{\sqrt{T}} \exp \left\{-\frac{[T r]}{q(T)}\right\} w_{i 0} \\
= & \sigma \sum_{j=1}^{[T r]} \exp \left(-\frac{([T r]-j)}{q(T)}\right) \int_{(j-1) / T}^{j / T} d X_{i, T}(s)+o_{p}(1) \\
= & \sigma \sum_{j=1}^{[T r]} \exp \left\{-\frac{T}{q(T)} \frac{[T r]-j}{T}\right\} \int_{(j-1) / T}^{j / T} d X_{i, T}(s)+o_{p}(1) \\
= & \sigma \sum_{j=1}^{[T r]} \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \exp \left\{-\frac{T}{q(T)}\left[\frac{[T r]}{T}-r\right]\right\} \\
& \times \exp \left\{-\frac{T}{q(T)}\left[s-\frac{j}{T}\right]\right\} d X_{i, T}(s)+o_{p}(1)
\end{aligned}
$$

Now, for $(j-1) / T \leq s<j / T$ and $j=1, \ldots,[T r]$

$$
\begin{aligned}
& \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \mathbb{I}\left\{\varepsilon_{i j} \geq 0\right\} d X_{i, T}(s) \\
\leq & \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \exp \left\{-\frac{T}{q(T)}\left[\frac{[T r]}{T}-r\right]\right\} \\
& \times \exp \left\{-\frac{T}{q(T)}\left[s-\frac{j}{T}\right]\right\} \mathbb{I}\left\{\varepsilon_{i j} \geq 0\right\} d X_{i, T}(s) \\
\leq & \exp \left\{\frac{2}{q(T)}\right\} \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \mathbb{I}\left\{\varepsilon_{i j} \geq 0\right\} d X_{i, T}(s) \\
= & \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \mathbb{I}\left\{\varepsilon_{i j} \geq 0\right\} d X_{i, T}(s)\left[1+O\left(\frac{1}{q(T)}\right)\right]
\end{aligned}
$$

so that

$$
\begin{aligned}
& \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \exp \left\{-\frac{T}{q(T)}\left[\frac{[T r]}{T}-r\right]\right\} \\
& \times \exp \left\{-\frac{T}{q(T)}\left[s-\frac{j}{T}\right]\right\} \mathbb{I}\left\{\varepsilon_{i j} \geq 0\right\} d X_{i, T}(s) \\
= & \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \mathbb{I}\left\{\varepsilon_{i j} \geq 0\right\} d X_{i, T}(s)\left[1+O\left(\frac{1}{q(T)}\right)\right]
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \mathbb{I}\left\{\varepsilon_{i j}<0\right\} d X_{i, T}(s) \\
\geq & \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \exp \left\{-\frac{T}{q(T)}\left[\frac{[T r]}{T}-r\right]\right\} \\
& \times \exp \left\{-\frac{T}{q(T)}\left[s-\frac{j}{T}\right]\right\} \mathbb{I}\left\{\varepsilon_{i j}<0\right\} d X_{i, T}(s) \\
\geq & \exp \left\{\frac{2}{q(T)}\right\} \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \mathbb{I}\left\{\varepsilon_{i j}<0\right\} d X_{i, T}(s) \\
= & \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \mathbb{I}\left\{\varepsilon_{i j}<0\right\} d X_{i, T}(s)\left[1+O\left(\frac{1}{q(T)}\right)\right],
\end{aligned}
$$

so that

$$
\begin{aligned}
& \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \exp \left\{-\frac{T}{q(T)}\left[\frac{[T r]}{T}-r\right]\right\} \\
& \times \exp \left\{-\frac{T}{q(T)}\left[s-\frac{j}{T}\right]\right\} \mathbb{I}\left\{\varepsilon_{i j}<0\right\} d X_{i, T}(s) \\
= & \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \mathbb{I}\left\{\varepsilon_{i j}<0\right\} d X_{i, T}(s)\left[1+O\left(\frac{1}{q(T)}\right)\right] .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \exp \left\{-\frac{T}{q(T)}\left[\frac{[T r]}{T}-r\right]\right\} \\
& \times \exp \left\{-\frac{T}{q(T)}\left[s-\frac{j}{T}\right]\right\} d X_{i, T}(s) \\
= & \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \exp \left\{-\frac{T}{q(T)}\left[\frac{[T r]}{T}-r\right]\right\} \\
& \times \exp \left\{-\frac{T}{q(T)}\left[s-\frac{j}{T}\right]\right\} \mathbb{I}\left\{\varepsilon_{i j}<0\right\} d X_{i, T}(s) \\
& +\int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \exp \left\{-\frac{T}{q(T)}\left[\frac{[T r]}{T}-r\right]\right\} \\
& \times \exp \left\{-\frac{T}{q(T)}\left[s-\frac{j}{T}\right]\right\} \mathbb{I}\left\{\varepsilon_{i j} \geq 0\right\} d X_{i, T}(s) \\
= & \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \mathbb{I}\left\{\varepsilon_{i j}<0\right\} d X_{i, T}(s)\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& +\int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \mathbb{I}\left\{\varepsilon_{i j} \geq 0\right\} d X_{i, T}(s)\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
= & \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} d X_{i, T}(s)\left[1+O\left(\frac{1}{q(T)}\right)\right] .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \frac{1}{\sqrt{T}} w_{i,[T r]} \\
= & \sigma \sum_{j=1}^{[T r]} \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} \exp \left\{-\frac{T}{q(T)}\left[\frac{[T r]}{T}-r\right]\right\} \\
& \times \exp \left\{-\frac{T}{q(T)}\left[s-\frac{j}{T}\right]\right\} d X_{i, T}(s)+o_{p}(1) \\
= & \sigma \sum_{j=1}^{[T r]} \int_{(j-1) / T}^{j / T} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} d X_{i, T}(s)\left[1+O\left(\frac{1}{q(T)}\right)\right]+o_{p}(1) \\
= & \sigma \int_{0}^{r} \exp \left\{-\frac{T}{q(T)}(r-s)\right\} d X_{i, T}(s)\left[1+O\left(\frac{1}{q(T)}\right)\right]+o_{p}(1) \\
= & \sigma X_{i, T}(r)-\frac{T}{q(T)} \int_{0}^{r} \sigma \exp \left(-\frac{T}{q(T)}(r-s)\right) X_{i, T}(s) d s+o_{p}(1) \\
= & \sigma X_{i, T}(r)+O_{p}\left(\frac{T}{q(T)}\right)+o_{p}(1) \\
\Rightarrow & \sigma W_{i}(r),
\end{aligned}
$$

as $T \rightarrow \infty$, which is the required result.
Lemma SE-13: (Phillips and Moon, 1999, Corollary 1): Suppose that $Y_{i, T}=C_{i} Q_{i, T}$, where $Q_{i, T}$ are i.i.d. across i for all T, and the C_{i} are $(m \times m)$ nonrandom matrices for all i. Assume that
$Q_{i, T}$ are integrable for all T and $Q_{i, T} \Rightarrow Q_{i}$ as $T \rightarrow \infty$. Assume that $C=\lim _{N}(1 / N) \sum_{i=1}^{N} C_{i}$ exists. If $\left\|Q_{i, T}\right\|$ is uniformly integrable in T for all i, and if $\sup _{i}\left\|C_{i}\right\|<\infty$, then

$$
\frac{1}{N} \sum_{i=1}^{N} Y_{i, T} \xrightarrow{p} C E\left[Q_{i}\right]
$$

as $N, T \rightarrow \infty$.
In the subsequent lemmas, we find it useful to decompose $w_{i t}$ as

$$
w_{i t}=\underline{w}_{i t}+\rho_{T}^{t} w_{i 0}
$$

where $\underline{w}_{i t}=\sum_{j=1}^{t} \rho_{T}^{(t-j)} \varepsilon_{i j}$.

Lemma SE-14:

Suppose that Assumptions 1 and 4 hold. If $\rho_{T}=1$ for all T sufficiently large, then, as $N, T \rightarrow \infty$,

$$
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T}^{2} \xrightarrow{p} \frac{\sigma^{2}}{2} \text { for } g \in\{1,2\} .
$$

Proof of Lemma SE-14:

To proceed, note first that, under the assumption here, there exists a positive integer I_{ρ} such that for all $T \geq I_{\rho}$, the triangular array process $\left\{\underline{w}_{i t-g, T}\right\}$ has the partial sum representation $\underline{w}_{i t-1, T}=$ $\sum_{j=1}^{t-g} \varepsilon_{i j}$. Thus, for all T sufficiently large, we can write

$$
\begin{aligned}
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T}^{2}= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}+2 \frac{2}{N T^{3 / 2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-g, T} w_{i 0}+\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i 0}^{2} \\
= & \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(\frac{1}{\sqrt{T}} \sum_{j=1}^{t-g} \varepsilon_{i j}\right)^{2}+2 \frac{1}{N T^{3 / 2}} \sum_{i=1}^{N} \sum_{t=2}^{T}\left(\frac{1}{\sqrt{T}} \sum_{j=1}^{t-g} \varepsilon_{i j}\right) w_{i 0} \\
& +\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i 0}^{2} .
\end{aligned}
$$

Consider first the case where $g=1$. Define

$$
Q_{i, T}=\frac{1}{T} \sum_{t=2}^{T}\left(\frac{1}{\sqrt{T}} \sum_{j=1}^{t-1} \varepsilon_{i j}\right)^{2}
$$

Note that we can apply arguments similar to that given in the proof of Theorem 3.1 part (a) in Phillips (1987) to obtain

$$
Q_{i, T} \Rightarrow \sigma^{2} \int_{0}^{1}\left[W_{i}(r)\right]^{2} d r=Q_{i} \quad(\text { say }) .
$$

Next, we verify the conditions of Corollary 1 of Phillips and Moon (1999), given here as Lemma SE-13. Note first that $Q_{i, T}$ is integrable in light of Assumption 1. Moreover, in this case, $C_{i}=1$ for all i, so that trivially, $C=\lim _{N}(1 / N) \sum_{i=1}^{N} C_{i}=1<\infty$ and $\sup _{i}\left\|C_{i}\right\|=1<\infty$. In addition, note that, in this case, for all $T \geq I_{\rho}$,

$$
\begin{aligned}
E\left[\left|Q_{i, T}\right|\right] & =E\left[Q_{i, T}\right]=\frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \sum_{k=1}^{t-1} E\left[\varepsilon_{i j} \varepsilon_{i k}\right] \\
& =\sigma^{2} \frac{1}{T^{2}} \sum_{t=2}^{T}(t-1)=\sigma^{2} \frac{1}{T^{2}} \frac{T(T-1)}{2} \rightarrow \frac{\sigma^{2}}{2}
\end{aligned}
$$

so that

$$
\lim _{T \rightarrow \infty} E\left[\left|Q_{i, T}\right|\right]=\frac{\sigma^{2}}{2}=\sigma^{2} \int_{0}^{1} E\left[W_{i}(g)\right]^{2} d g=E\left[Q_{i}\right] \text { for all } i .
$$

It follows from Theorem 5.4 of Billingsley (1968) that $\left\{\left|Q_{i, T}\right|\right\}$ is uniformly integrable in T for all i. Hence, all the conditions of Lemma SE-13 are satisfied, and we deduce from this lemma that

$$
\frac{1}{N} \sum_{i=1}^{N} Q_{i, T}=\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}^{2} \xrightarrow{p} C E\left[Q_{i}\right]=\frac{\sigma^{2}}{2}
$$

as $N, T \rightarrow \infty$.
Now, by Assumption 4, there exists a positive constant C such that

$$
E\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i 0}^{2}\right]=\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} E\left[w_{i 0}^{2}\right] \leq \sup _{i} E\left[w_{i 0}^{2}\right] \frac{(T-1)}{T^{2}} \leq C \frac{(T-1)}{T^{2}}=O\left(T^{-1}\right)
$$

so that, applying Markov's inequality, we obtain

$$
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i 0}^{2}=O_{p}\left(\frac{1}{T}\right)
$$

It follows from the Cauchy-Schwarz inequality that

$$
\left|\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1, T} w_{i 0}\right| \leq \sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1, T}^{2}} \sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i 0}^{2}}=O_{p}(1) \times O_{p}\left(T^{-1 / 2}\right)
$$

so that by the Cramér convergence theorem, we deduce that

$$
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-1, T}^{2} \xrightarrow{p} \frac{\sigma^{2}}{2} .
$$

Next, consider the case $g=2$. Here, note that, for T sufficiently large,

$$
\begin{aligned}
& \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2, T}^{2}=\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1, T}^{2}-\frac{1}{N T^{2}} \sum_{i=1}^{N} w_{i T-1, T}^{2} \\
= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1, T}^{2}-\frac{1}{N T^{2}} \sum_{i=1}^{N}\left(\sum_{j=1}^{T-1} \varepsilon_{i j}\right)^{2}-2 \frac{1}{N T^{2}} \sum_{i=1}^{N}\left(\sum_{j=1}^{T-1} \varepsilon_{i j}\right) w_{i 0}-\frac{1}{N T^{2}} \sum_{i=1}^{N} w_{i 0}^{2} .
\end{aligned}
$$

Now, using Assumption 4

$$
E\left(\frac{1}{N T^{2}} \sum_{i=1}^{N} w_{i 0}^{2}\right)=\frac{1}{N T^{2}} \sum_{i=1}^{N} E\left[w_{i 0}^{2}\right] \leq \frac{C}{T^{2}}=O_{p}\left(\frac{1}{T^{2}}\right)
$$

Moreover,

$$
E\left(\frac{1}{N T^{2}} \sum_{i=1}^{N}\left[\sum_{j=1}^{T-1} \varepsilon_{i j}\right]^{2}\right)=\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{j=1}^{T-1} \sum_{k=1}^{T-1} E\left[\varepsilon_{i j} \varepsilon_{i k}\right]=\sigma^{2} \frac{T-1}{T^{2}}=O\left(\frac{1}{T}\right)
$$

so that by Markov's inequality, we deduce that

$$
\frac{1}{N T^{2}} \sum_{i=1}^{N} w_{i 0}^{2}=O_{p}\left(\frac{1}{T^{2}}\right), \frac{1}{N T^{2}} \sum_{i=1}^{N}\left[\sum_{j=1}^{T-1} \varepsilon_{i j}\right]^{2}=O_{p}\left(\frac{1}{T}\right)
$$

The Cauchy-Schwarz inequality further implies that

$$
\begin{aligned}
\left|\frac{1}{N T^{2}} \sum_{i=1}^{N}\left(\sum_{j=1}^{T-1} \varepsilon_{i j}\right) w_{i 0}\right| & \leq \sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N}\left(\sum_{j=1}^{T-1} \varepsilon_{i j}\right)^{2}} \sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} w_{i 0}^{2}} \\
& =O_{p}\left(\frac{1}{\sqrt{T}}\right) O_{p}\left(\frac{1}{T}\right)=O_{p}\left(\frac{1}{T^{3 / 2}}\right)
\end{aligned}
$$

It follows that

$$
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2, T}^{2}=\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1, T}^{2}+O_{p}\left(\frac{1}{T}\right)=\frac{\sigma^{2}}{2}+o_{p}(1)
$$

as required.

Lemma SE-15:

Suppose that Assumptions 1 and 4 hold. If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$, then, as $N, T \rightarrow \infty$,

$$
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T}^{2} \xrightarrow{p} \frac{\sigma^{2}}{2} \text { for } g \in\{1,2\}
$$

Proof of Lemma SE-15:

To proceed, first write

$$
\begin{aligned}
w_{i t-g, T}^{2}= & \underline{w}_{i t-g, T}^{2}+2 \underline{w}_{i t-g} \rho_{T}^{t-g} w_{i 0}+\rho_{T}^{2(t-g)} w_{i 0}^{2} \\
= & \left(\sum_{j=1}^{t-g} \exp \left\{-\frac{(t-g-j)}{q(T)}\right\} \varepsilon_{i j}\right)^{2}+2\left(\sum_{j=1}^{t-g} \exp \left\{-\frac{(t-g-j)}{q(T)}\right\} \varepsilon_{i j}\right) \exp \left\{-\frac{(t-g)}{q(T)}\right\} w_{i 0} \\
& +\exp \left\{-\frac{2(t-g)}{q(T)}\right\} w_{i 0}^{2}
\end{aligned}
$$

Now, consider the case where $g=1$. In this case, note that

$$
\begin{aligned}
& \frac{1}{T^{2}} \sum_{t=2}^{T} \underline{w}_{i t-1, T}^{2}=\frac{1}{T^{2}} \sum_{t=1}^{T}\left(\sum_{j=1}^{t-1} \exp \left\{-\frac{(t-1-j)}{q(T)}\right\} \varepsilon_{i j}\right)^{2} \\
= & \sigma^{2} \frac{1}{T} \sum_{t=1}^{T}\left[\sum_{j=1}^{t-1} \exp \left\{-\frac{T}{q(T)}\left(\frac{t-1}{T}-\frac{j}{T}\right)\right\} \frac{\varepsilon_{i j}}{\sigma \sqrt{T}}\right]^{2} \\
= & \sigma^{2} \sum_{t=1}^{T} \exp \left\{-\frac{2 T}{q(T)}\left(\frac{t-1}{T}\right)\right\} \frac{1}{T}\left[\sum_{j=1}^{t-1} \exp \left\{\frac{T}{q(T)} \frac{j}{T}\right\} \frac{\varepsilon_{i j}}{\sigma \sqrt{T}}\right]^{2} .
\end{aligned}
$$

Now, for $\frac{t-1}{T} \leq r<\frac{t}{T}$, we define

$$
\begin{align*}
X_{i, T}(r) & =\frac{1}{\sigma \sqrt{T}} \sum_{j=1}^{[T r]} \varepsilon_{i j}=\frac{1}{\sigma \sqrt{T}} \sum_{j=1}^{t-1} \varepsilon_{i j}, \tag{15}\\
\widetilde{X}_{i, T}(r) & =\sum_{j=1}^{t-1} \exp \left\{\frac{T}{q(T)} \frac{j}{T}\right\} \frac{\varepsilon_{i j}}{\sigma \sqrt{T}} . \tag{16}
\end{align*}
$$

Next, write

$$
\begin{aligned}
& \frac{1}{T^{2}} \sum_{t=1}^{T} \underline{w}_{i t-1, T}^{2}=\sigma^{2} \sum_{t=1}^{T} \exp \left\{-\frac{2 T}{q(T)}\left(\frac{t-1}{T}\right)\right\} \int_{(t-1) / T}^{t / T} \widetilde{X}_{i, T}^{2}(r) d r \\
= & \sigma^{2} \sum_{t=1}^{T} \int_{(t-1) / T}^{t / T} \exp \left\{-\frac{2 T}{q(T)}\left[\left(\frac{t-1}{T}\right)-r+r\right]\right\} \widetilde{X}_{i, T}^{2}(r) d r \\
= & \sigma^{2} \int_{0}^{1} \exp \left\{-\frac{2 T}{q(T)} r\right\} \exp \left\{\frac{2 T}{q(T)}\left[r-\left(\frac{t-1}{T}\right)\right]\right\} \widetilde{X}_{i, T}^{2}(r) d r,
\end{aligned}
$$

and note that for $t=1, \ldots, T$

$$
\begin{aligned}
\int_{(t-1) / T}^{t / T} \exp \left\{-\frac{2 T r}{q(T)}\right\} \widetilde{X}_{i, T}^{2}(r) d r & \leq \int_{(t-1) / T}^{t / T} \exp \left\{-\frac{2 T r}{q(T)}\right\} \exp \left\{\frac{2 T}{q(T)}\left[r-\left(\frac{t-1}{T}\right)\right]\right\} \widetilde{X}_{i, T}^{2}(r) d r \\
& \leq \exp \left\{\frac{2}{q(T)}\right\} \int_{(t-1) / T}^{t / T} \exp \left\{-\frac{2 T}{q(T)} r\right\} \widetilde{X}_{i, T}^{2}(r) d r
\end{aligned}
$$

from which it follows that

$$
\begin{aligned}
\sigma^{2} \int_{0}^{1} \exp \left\{-\frac{2 T r}{q(T)}\right\} \widetilde{X}_{i, T}^{2}(r) d r & \leq \sigma^{2} \int_{0}^{1} \exp \left\{-\frac{2 T r}{q(T)}\right\} \exp \left\{\frac{2 T}{q(T)}\left[r-\left(\frac{t-1}{T}\right)\right]\right\} \widetilde{X}_{i, T}^{2}(r) d r \\
& \leq \sigma^{2} \exp \left\{\frac{2}{q(T)}\right\} \int_{0}^{1} \exp \left\{-\frac{2 T}{q(T)} r\right\} \widetilde{X}_{i, T}^{2}(r) d r \\
& =\sigma^{2} \int_{0}^{1} \exp \left\{-\frac{2 T}{q(T)} r\right\} \widetilde{X}_{i, T}^{2}(r) d r\left[1+O_{p}\left(\frac{1}{q(T)}\right)\right]
\end{aligned}
$$

so that

$$
\begin{aligned}
& \sigma^{2} \int_{0}^{1} \exp \left\{-\frac{2 T}{q(T)} r\right\} \exp \left\{\frac{2 T}{q(T)}\left[r-\left(\frac{t-1}{T}\right)\right]\right\} \widetilde{X}_{i, T}^{2}(r) d r \\
= & \sigma^{2} \int_{0}^{1} \exp \left\{-\frac{2 T}{q(T)} r\right\} \widetilde{X}_{i, T}^{2}(r) d r\left[1+O_{p}\left(\frac{1}{q(T)}\right)\right] .
\end{aligned}
$$

By similar argument, we have

$$
\begin{align*}
& \int_{(j-1) / T}^{j / T} \exp \left\{\frac{T}{q(T)} s\right\} \exp \left\{\frac{T}{q(T)}\left[\frac{j}{T}-s\right]\right\} d X_{i, T}(s) \\
= & \int_{(j-1) / T}^{j / T} \exp \left\{\frac{T}{q(T)} s\right\} d X_{i, T}(s)\left[1+O_{p}\left(\frac{1}{q(T)}\right)\right], \tag{17}
\end{align*}
$$

for $j=1, \ldots, T$ and $(j-1) / T \leq s<j / T$.
Moreover, for $j=1, \ldots, t$ we have

$$
\begin{align*}
\int_{(j-1) / T}^{j / T} d X_{i, T}(s) & =X_{i, T}\left(\frac{j}{T}\right)-X_{i, T}\left(\frac{j-1}{T}\right)=\frac{1}{\sigma \sqrt{T}}\left\{\sum_{k=1}^{j} \varepsilon_{i k}-\sum_{k=1}^{j-1} \varepsilon_{i k}\right\} \\
& =\frac{1}{\sigma \sqrt{T}} \varepsilon_{i j} \tag{18}
\end{align*}
$$

Using (18), we can define for $(t-1) / T \leq r<t / T$,

$$
\begin{aligned}
& \widetilde{X}_{T}(r) \\
&= \sum_{j=1}^{t-1} \exp \left\{\frac{T}{q(T)} \frac{j}{T}\right\} \frac{\varepsilon_{i j}}{\sigma \sqrt{T}} \\
&=\sum_{j=1}^{t-1} \int_{(j-1) / T}^{j / T} \exp \left\{\frac{T}{q(T)} \frac{j}{T}\right\} d X_{i, T}(s) \\
&=\sum_{j=1}^{t-1} \int_{(j-1) / T}^{j / T} \exp \left\{\frac{T}{q(T)} s\right\} \exp \left\{\frac{T}{q(T)}\left[\frac{j}{T}-s\right]\right\} d X_{i, T}(s) \\
&=\sum_{j=1}^{t-1} \int_{(j-1) / T}^{j / T} \exp \left\{\frac{T}{q(T)} s\right\} d X_{i, T}(s)\left[1+O_{p}\left(\frac{1}{q(T)}\right)\right](\text { by }(17)) \\
&= \int_{0}^{[T r] / T} \exp \left\{\frac{T}{q(T)} s\right\} d X_{i, T}(s)\left[1+O_{p}\left(\frac{1}{q(T)}\right)\right] \\
&= \int_{0}^{r} \exp \left\{\frac{T}{q(T)} s\right\} d X_{i, T}(s)\left[1+O_{p}\left(\frac{1}{T}\right)\right] \\
&=\left(\left.\exp \left\{\frac{T}{q(T)} s\right\} X_{i, T}(s)\right|_{0} ^{r}+\int_{0}^{r}-\frac{T}{q(T)} \exp \left(\frac{T}{q(T)} s\right) X_{i, T}(s) d s\right)\left[1+O_{p}\left(\frac{1}{q(T)}\right)\right] \\
&= {\left[\exp \left\{\frac{T}{q(T)} r\right\} X_{i, T}(r)-\frac{T}{q(T)} \int_{0}^{r} \exp \left(\frac{T}{q(T)} s\right) X_{i, T}(s) d s\right]\left[1+O_{p}\left(\frac{1}{q(T)}\right)\right] }
\end{aligned}
$$

so that

$$
\begin{aligned}
& \frac{1}{T^{2}} \sum_{t=1}^{T} \underline{w}_{i t-1, T}^{2} \\
= & \sigma^{2} \int_{0}^{1} \exp \left\{-\frac{2 T}{q(T)} r\right\} \widetilde{X}_{T}^{2}(r) d r\left[1+O_{p}\left(\frac{1}{q(T)}\right)\right] \\
= & \sigma^{2} \int_{0}^{1} \exp \left\{-\frac{2 T}{q(T)} r\right\}\left[\exp \left\{\frac{T}{q(T)} r\right\} X_{i, T}(r)-\frac{T}{q(T)} \int_{0}^{r} \exp \left(\frac{T}{q(T)} s\right) X_{i, T}(s) d s\right]^{2} d r \\
& \times\left[1+O_{p}\left(\frac{1}{q(T)}\right)\right] \\
= & \sigma^{2} \int_{0}^{1} \exp \left\{-\frac{2 T}{q(T)} r\right\} \exp \left\{\frac{2 T}{q(T)} r\right\}\left[X_{i, T}(r)-\frac{T}{q(T)} \int_{0}^{r} \exp \left(\frac{T}{q(T)}[s-r]\right) X_{i, T}(s) d s\right]^{2} d r \\
& \times\left[1+O_{p}\left(\frac{1}{q(T)}\right)\right] \\
= & \sigma^{2} \int_{0}^{1}\left[X_{i, T}(r)-\frac{T}{q(T)} \int_{0}^{r} \exp \left(\frac{T}{q(T)}[s-r]\right) X_{i, T}(s) d s\right]^{2} d r\left[1+O_{p}\left(\frac{1}{q(T)}\right)\right] \\
= & \sigma^{2} \int_{0}^{1}\left[X_{i, T}(g)\right]^{2} d r\left[1+O_{p}\left(\frac{T}{q(T)}\right)+O_{p}\left(\frac{1}{q(T)}\right)\right] \\
= & \sigma^{2} \int_{0}^{1}\left[X_{i, T}(g)\right]^{2} d r\left[1+O_{p}\left(\frac{T}{q(T)}\right)\right] .
\end{aligned}
$$

Hence, by the continuous mapping theorem,

$$
\frac{1}{T^{2}} \sum_{t=1}^{T} \underline{w}_{i t-1, T}^{2} \Rightarrow \sigma^{2} \int_{0}^{1}\left[W_{i}(r)\right]^{2} d r
$$

as $T \rightarrow \infty$.
Next, we verify the conditions of Corollary 1 of Phillips and Moon (1999), given here as Lemma SE-13. To proceed, define

$$
Q_{i, T}=\frac{1}{T^{2}} \sum_{t=2}^{T} \underline{w}_{i t-1}^{2}
$$

Note first that $Q_{i, T}$ is integrable in light of Assumption 1; and, by the argument given previously, we have that, as $T \rightarrow \infty$,

$$
Q_{i, T} \Rightarrow \sigma^{2} \int_{0}^{1}\left[W_{i}(r)\right]^{2} d r=Q_{i} \quad(\text { say })
$$

Moreover, in this case, $C_{i}=1$ for all i, so that trivially, $C=\lim _{N}(1 / N) \sum_{i=1}^{N} C_{i}=1<\infty$ and
$\sup _{i}\left\|C_{i}\right\|=1<\infty$. In addition, applying the results of part (a) of Lemma SE-1, we get

$$
\begin{aligned}
E\left[\left|Q_{i, T}\right|\right] & =E\left[Q_{i, T}\right]=\frac{1}{T^{2}} \sum_{t=2}^{T} E\left[w_{i t-1, T}^{2}\right] \\
& =\frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \sum_{k=1}^{t-1} \exp \left\{-\frac{(t-1-j)}{q(T)}\right\} \exp \left\{-\frac{(t-1-k)}{q(T)}\right\} E\left[\varepsilon_{i j} \varepsilon_{i k}\right] \\
& =\sigma^{2} \frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \exp \left\{-2 \frac{(t-1-j)}{q(T)}\right\} \\
& =\sigma^{2} \frac{1}{T^{2}} \frac{T^{2}}{2}\left[1+O\left(\frac{T}{q(T)}\right)+O\left(\frac{1}{T}\right)\right] \\
& =\frac{\sigma^{2}}{2}+O\left(\frac{T}{q(T)}\right)+O\left(\frac{1}{T}\right),
\end{aligned}
$$

so that

$$
\lim _{T \rightarrow \infty} E\left[\left|Q_{i, T}\right|\right]=\frac{\sigma^{2}}{2}=\sigma^{2} \int_{0}^{1} E\left[W_{i}(g)\right]^{2} d g=E\left[Q_{i}\right] \text { for all } i .
$$

It follows from Theorem 5.4 of Billingsley (1968) that $\left\{\left|Q_{i, T}\right|\right\}$ is uniformly integrable in T for all i. Hence, all the conditions of Lemma SE-13 are satisfied, and we deduce from this lemma that

$$
\frac{1}{N} \sum_{i=1}^{N} Q_{i, T}=\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}^{2} \xrightarrow{p} C E\left[Q_{i}\right]=\frac{\sigma^{2}}{2}
$$

as $N, T \rightarrow \infty$.
In addition, note that, by Assumption 4, there exists a positive constant C such that

$$
\begin{aligned}
& E\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{2(t-1)} w_{i 0}^{2}\right] \\
\leq & \sup _{i} E\left[w_{i 0}^{2}\right] \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{2(t-1)} \\
\leq & \frac{C}{T^{2}} \exp \left\{-\frac{2}{q(T)}\right\}\left[1-\exp \left\{-\frac{2}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2(T-1)}{q(T)}\right\}\right] \\
= & O\left(T^{-2}\right) O(1) O(q(T)) O(T / q(T))=O\left(T^{-1}\right),
\end{aligned}
$$

so that, applying Markov's inequality, we obtain

$$
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{2(t-1)} w_{i 0}^{2}=O_{p}\left(\frac{1}{T}\right) .
$$

It follows from the Cauchy-Schwarz inequality that

$$
\begin{aligned}
\left|\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1} \rho_{T}^{t-1} w_{i 0}\right| & \leq \sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}^{2}} \sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{2(t-1)} w_{i 0}^{2}} \\
& =O_{p}(1) O_{p}\left(T^{-1 / 2}\right)=O_{p}\left(T^{-1 / 2}\right),
\end{aligned}
$$

so that, using Slutsky's Theorem, we further deduce that

$$
\begin{aligned}
& \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1, T}^{2} \\
= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1, T}^{2}+\frac{2}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1} \rho_{T}^{t-1} w_{i 0}+\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{2(t-1)} w_{i 0}^{2} \xrightarrow{p} \frac{\sigma^{2}}{2} .
\end{aligned}
$$

Next, consider the case $g=2$. Here, note that in this case

$$
\begin{aligned}
& \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} \underline{w}_{i t-2, T}^{2} \\
= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1, T}^{2}-\frac{1}{N T^{2}} \sum_{i=1}^{N} \underline{w}_{i T-1, T}^{2} \\
= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1, T}^{2}-\frac{1}{N T^{2}} \sum_{i=1}^{N}\left[\sum_{j=1}^{T-1} \exp \left(-\frac{(T-1-j)}{q(T)}\right) \varepsilon_{i j}\right]^{2} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& E\left(\frac{1}{T^{2}}\left[\sum_{j=1}^{T-1} \exp \left\{-\frac{(T-1-j)}{q(T)}\right\} \varepsilon_{i j}\right]^{2}\right) \\
= & \frac{1}{T^{2}} \sum_{j=1}^{T-1} \sum_{k=1}^{T-1} \exp \left\{-\frac{(T-1-j)}{q(T)}\right\} \exp \left\{-\frac{(T-1-k)}{q(T)}\right\} E\left[\varepsilon_{i j} \varepsilon_{i k}\right] \\
= & \sigma^{2} \frac{1}{T^{2}} \sum_{j=1}^{T-1} \exp \left\{-2 \frac{(T-1-j)}{q(T)}\right\} .
\end{aligned}
$$

Applying part (a) of Lemma SE-3 with $b=2$ and $g=1$, we obtain

$$
\begin{aligned}
& \sigma^{2} \frac{1}{T^{2}} \sum_{j=1}^{T-1} \exp \left\{-2\left(\frac{T-1-j}{q(T)}\right)\right\} \\
= & \sigma^{2} \frac{1}{T}\left[1-\frac{1}{T}-\frac{T}{q(T)}+O\left(\max \left\{\frac{T^{2}}{q(T)^{2}}, \frac{1}{q(T)}\right\}\right)\right] \\
= & O\left(T^{-1}\right)
\end{aligned}
$$

It follows from Markov's inequality that

$$
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} \underline{w}_{i t-2, T}^{2}=\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1, T}^{2}+O_{p}\left(\frac{1}{\sqrt{T}}\right)=\frac{\sigma^{2}}{2}+o_{p}(1) .
$$

Moreover, note that, again by Assumption 4, we obtain

$$
\begin{aligned}
& E\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} \rho_{T}^{2(t-2)} w_{i 0}^{2}\right] \\
\leq & \frac{C}{T^{2}} \exp \left\{-\frac{2}{q(T)}\right\}\left[1-\exp \left\{-\frac{2}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2(T-2)}{q(T)}\right\}\right] \\
= & O\left(T^{-2}\right) O(1) O(q(T)) O(T / q(T))=O\left(T^{-1}\right),
\end{aligned}
$$

from which we deduce, using Markov's inequality, that

$$
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} \rho_{T}^{2(t-2)} w_{i 0}^{2}=O_{p}\left(\frac{1}{T}\right)
$$

The Cauchy-Schwarz inequality then further implies that

$$
\begin{aligned}
\left|\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} \underline{w}_{i t-2} \rho_{T}^{t-1} w_{i 0}\right| & \leq \sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} \underline{w}_{i t-2}^{2}} \sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} \rho_{T}^{2(t-2)} w_{i 0}^{2}} \\
& =O_{p}(1) O_{p}\left(T^{-1 / 2}\right)=O_{p}\left(T^{-1 / 2}\right)
\end{aligned}
$$

so that, by making use of the Slutsky's Theorem, we get

$$
\begin{aligned}
& \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} w_{i t-2, T}^{2} \\
= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} \underline{w}_{i t-2, T}^{2}+\frac{2}{N T^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} \underline{w}_{i t-2} \rho_{T}^{t-2} w_{i 0}+\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} \rho_{T}^{2(t-2)} w_{i 0}^{2} \xrightarrow{p} \frac{\sigma^{2}}{2},
\end{aligned}
$$

as required.

Lemma SE-16:

Let g be a non-negative integer. Under Assumptions 1 and 4 , the following results hold as $N, T \rightarrow \infty$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\begin{aligned}
\sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right] & =N T^{2} \frac{\sigma^{2}}{2}\left[1+O\left(\frac{1}{T}\right)\right], \\
\sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left[\underline{w}_{i t-g, T} \underline{w}_{i s-g, T}\right] & =N T^{3} \frac{\sigma^{2}}{6}\left[1+O\left(\frac{1}{T}\right)\right] .
\end{aligned}
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$, then

$$
\begin{aligned}
\sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right] & =N T^{2} \frac{\sigma^{2}}{2}\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right], \\
\sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left[\underline{w}_{i t-g, T} \underline{w}_{i s-g, T}\right] & =N T^{3} \frac{\sigma^{2}}{6}\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right] .
\end{aligned}
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]=\sigma^{2} N \frac{q(T)^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\left[1+O\left(\frac{1}{T}\right)\right]
$$

and

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left[\underline{w}_{i t-g, T} \underline{w}_{i s-g, T}\right] \\
= & N T q(T)^{2} \frac{\sigma^{2}}{2}\left[1-\frac{3}{2} \frac{q(T)}{T}+\frac{2 q(T)}{T} \exp \left\{-\frac{T}{q(T)}\right\}-\frac{1}{2} \frac{q(T)}{T} \exp \left\{-\frac{2 T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right]
\end{aligned}
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]=N T q(T) \frac{\sigma^{2}}{2}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right]
$$

and

$$
\sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left[\underline{w}_{i t-g, T} \underline{w}_{i s-g, T}\right]=N T q(T)^{2} \frac{\sigma^{2}}{2}\left[1+O\left(\frac{q(T)}{T}\right)\right]
$$

Proof of Lemma SE-16:

First consider part (a). Note that, under the assumption here, there exists a positive integer I_{ρ} such that for all $T \geq \max \left\{I_{\rho}, g+2\right\}$, the triangular array process $\left\{\underline{w}_{i t-g, T}\right\}$ has the partial sum representation $\underline{w}_{i t-g, T}=\sum_{j=1}^{t-g} \varepsilon_{i j}$. Thus, by direct calculation, we have that, for all $T \geq \max \left\{I_{\rho}, g+2\right\}$,

$$
\begin{aligned}
\sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right] & =\sum_{i=1}^{N} \sum_{t=g+1}^{T} \sum_{j=1}^{t-g} \sum_{k=1}^{t-g} E\left[\varepsilon_{i j} \varepsilon_{i k}\right]=\sigma^{2} N \sum_{t=g+1}^{T}(t-g) \\
& =\frac{\sigma^{2}}{2} N(T-g)(T-g+1)=N T^{2} \frac{\sigma^{2}}{2}\left[1+O\left(\frac{1}{T}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left[\underline{w}_{i t-g, T} \underline{w}_{i s-g, T}\right]=\sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \sum_{k=1}^{t-g} E\left[\varepsilon_{i j} \varepsilon_{i k}\right]=\sigma^{2} N \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1}(s-g) \\
= & N \frac{\sigma^{2}}{2} \sum_{t=g+2}^{T}(t-g)(t-g-1)=N \frac{\sigma^{2}}{2}\left[\frac{(T-g)(T-g+1)(2 T-2 g+1)}{6}-\frac{(T-g)(T-g+1)}{2}\right] \\
= & N T^{3} \frac{\sigma^{2}}{6}\left[1+O\left(\frac{1}{T}\right)\right],
\end{aligned}
$$

which completes the proof for part (a).

Now, to show parts (b)-(d), note first that, for all $T \geq g+2$, we have

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]=\sum_{i=1}^{N} \sum_{t=g+1}^{T} \sum_{j=1}^{t-g} \sum_{k=1}^{t-g} \exp \left\{-\frac{(t-g-j)}{q(T)}\right\} \exp \left\{-\frac{(t-g-k)}{q(T)}\right\} E\left[\varepsilon_{i j} \varepsilon_{i k}\right] \\
= & \sigma^{2} N \sum_{t=g+1}^{T} \sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left[\underline{w}_{i t-g, T} \underline{w}_{i s-g, T}\right] \\
= & \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \sum_{k=1}^{t-g} \exp \left\{-\left(\frac{t-g-j}{q(T)}\right)\right\} \exp \left\{-\left(\frac{s-g-k}{q(T)}\right)\right\} E\left[\varepsilon_{i j} \varepsilon_{i k}\right] \\
= & \sigma^{2} N \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{k=1}^{s-g} \exp \left\{-\left(\frac{t-g-k}{q(T)}\right)\right\} \exp \left\{-\left(\frac{s-g-k}{q(T)}\right)\right\} .
\end{aligned}
$$

Consider part (b), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$. Applying part (a) of Lemma SE- 1 with $b=g+1$ and $d=2$, we obtain

$$
\begin{aligned}
\sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right] & =\sigma^{2} N \sum_{t=g+1}^{T} \sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\} \\
& =N T^{2} \frac{\sigma^{2}}{2}\left[1++O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right) O\left(\frac{1}{T}\right)+O\left(\frac{T}{q(T)}\right)\right]
\end{aligned}
$$

while, applying part (a) of Lemma SE-7, we get

$$
\begin{aligned}
\sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left[\underline{w}_{i t-g, T} \underline{w}_{i s-g, T}\right] & =\sigma^{2} N \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{k=1}^{s-g} \exp \left\{-\left(\frac{t-g-k}{q(T)}\right)\right\} \exp \left\{-\left(\frac{s-g-k}{q(T)}\right)\right\} \\
& =N T^{3} \frac{\sigma^{2}}{6}\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right]
\end{aligned}
$$

as required for part (b).
We now turn our attention to part (c), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. Applying part (b) of Lemma SE- 1 with $b=g+1$ and $d=2$, we get in this case

$$
\begin{aligned}
\sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right] & =\sigma^{2} N \sum_{t=g+1}^{T} \sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\} \\
& =\sigma^{2} N \frac{q(T)^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\left[1+O\left(\frac{1}{T}\right)\right]
\end{aligned}
$$

Moreover, applying part (b) of Lemma SE-7 with $b=1$, we obtain

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left[\underline{w}_{i t-g, T} \underline{w}_{i s-g, T}\right] \\
= & \sigma^{2} N \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{k=1}^{s-g} \exp \left\{-\left(\frac{t-g-k}{q(T)}\right)\right\} \exp \left\{-\left(\frac{s-g-k}{q(T)}\right)\right\} \\
= & N T q(T)^{2} \frac{\sigma^{2}}{2}\left[1-\frac{3}{2} \frac{q(T)}{T}+\frac{2 q(T)}{T} \exp \left\{-\frac{T}{q(T)}\right\}-\frac{1}{2} \frac{q(T)}{T} \exp \left\{-\frac{2 T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] .
\end{aligned}
$$

Together, these two results show part (c).
Finally, consider part (d), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow$ 0 . Applying part (c) of Lemma SE- 1 with $b=g+1$ and $d=2$, we get

$$
\begin{aligned}
\sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right] & =\sigma^{2} N \sum_{t=g+1}^{T} \sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\} \\
& =N T q(T) \frac{\sigma^{2}}{2}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right]
\end{aligned}
$$

Moreover, applying part (c) of Lemma SE-7 with $b=1$, we obtain

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left[\underline{w}_{i t-g, T} \underline{w}_{i s-g, T}\right] \\
= & \sigma^{2} N \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{k=1}^{s-g} \exp \left\{-\frac{(t-g-k)}{q(T)}\right\} \exp \left\{-b \frac{(s-g-k)}{q(T)}\right\} \\
= & N T q(T)^{2} \frac{\sigma^{2}}{2}\left[1+O\left(\frac{q(T)}{T}\right)\right] .
\end{aligned}
$$

Together, these two results show part (d).

Lemma SE-17:

Let g be a positive integer, and suppose that Assumptions 1 and 4 hold. Then, the following statements are true as $N, T \rightarrow \infty$.
(a) If $q(T) \sim T$, then

$$
\begin{aligned}
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T}^{2}= & \frac{q(T)^{2}}{T^{2}} \frac{\sigma^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right] \\
& +O_{p}\left(\frac{1}{\sqrt{N}}\right)+O_{p}\left(\frac{1}{\sqrt{T}}\right) .
\end{aligned}
$$

(b) If $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow 0$, then

$$
\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T}^{2}=\frac{\sigma^{2}}{2}+O_{p}\left(\max \left\{\frac{1}{q(T)}, \frac{q(T)}{T}, \sqrt{\frac{q(T)}{N T}}, \frac{1}{\sqrt{T}}\right\}\right) .
$$

(c) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T}^{2}=\sigma^{2}+O_{p}\left(T^{-1 / 2}\right)
$$

Proof of Lemma SE-17:

To proceed, again write

$$
\begin{aligned}
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T}^{2}= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}+2 \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g} \rho_{T}^{t-g} w_{i 0} \\
& +\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \rho_{T}^{2(t-g)} w_{i 0}^{2} .
\end{aligned}
$$

To show part (a), note first that from part (c) of Lemma SE-16 above, we have that

$$
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]-\frac{q(T)^{2}}{T^{2}} \frac{\sigma^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]=O\left(\frac{1}{T}\right)
$$

as $N, T \rightarrow \infty$. Thus, to show the desired result, it suffices to show that

$$
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}-\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]=O_{p}\left(\frac{1}{\sqrt{N}}\right)
$$

as $N, T \rightarrow \infty$. To proceed, note that for all $T \geq g+1$, we have

$$
\begin{align*}
& E\left(\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}-\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]\right)^{2} \\
= & E\left(\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}-\frac{1}{N T^{2}} \sigma^{2} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \sum_{k=1}^{t-g} \exp \left\{-2 \frac{(t-g-k)}{q(T)}\right\}\right)^{2} \\
= & \frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=g+1}^{T} \sum_{s=g+1}^{T} E\left[\left(\underline{w}_{i t-g, T}^{2}-\sigma^{2} \sum_{k=1}^{t-g} \exp \left\{-2 \frac{(t-2-k)}{q(T)}\right\}\right)\right. \\
& \left.\times\left(\underline{w}_{j s-g, T}^{2}-\sigma^{2} \sum_{\ell=1}^{s-g} \exp \left\{-2 \frac{(s-g-\ell)}{q(T)}\right\}\right)\right] \\
= & \frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}-\sigma^{2} \sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\}\right]^{2} \\
+ & \frac{2}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left\{\left[\underline{w}_{i t-g, T}^{2}-\sigma^{2} \sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\}\right]\right. \\
& \left.\times\left[\underline{w}_{i s-g, T}^{2}-\sigma^{2} \sum_{k=1}^{s-g} \exp \left\{-2 \frac{(s-g-k)}{q(T)}\right\}\right]\right\} . \tag{19}
\end{align*}
$$

Now, taking each of the two terms on the right-hand side of (19) in turn, we have upon applying part
(b) of Lemma SE-1 with $b=g+1$ and $d=4$ and part (b) of Lemma SE-2 with $b=2$

$$
\begin{align*}
& \frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}-\sigma^{2} \sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\}\right]^{2} \\
& =\frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{4}\right]-\frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+1}^{T}\left(\sigma^{2} \sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\}\right)^{2} \\
& =\frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \sum_{h=1}^{t-g} \sum_{j=1}^{t-g} \sum_{k=1}^{t-g} \sum_{\ell=1}^{t-g}\left\{\exp \left\{-\frac{(t-g-h)}{q(T)}\right\} \exp \left\{-\frac{(t-g-j)}{q(T)}\right\}\right. \\
& \left.\times \exp \left\{-\frac{(t-g-k)}{q(T)}\right\} \exp \left\{-\frac{(t-g-\ell)}{q(T)}\right\} E\left[\varepsilon_{i h} \varepsilon_{i j} \varepsilon_{i k} \varepsilon_{i \ell}\right]\right\} \\
& -\frac{\sigma^{4}}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+1}^{T}\left(\sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\}\right)^{2} \\
& \leq \frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \sum_{j=1}^{t-g} \exp \left\{-4 \frac{(t-g-j)}{q(T)}\right\} E\left[\varepsilon_{i j}^{4}\right] \\
& +\frac{1}{N^{2} T^{4}} 3 \sigma^{4} \sum_{i=1}^{N} \sum_{t=g+1}^{T}\left[\sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\}\right]^{2} \\
& -\frac{\sigma^{4}}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+1}^{T}\left(\sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\}\right)^{2} \\
& =\frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \sum_{j=1}^{t-g} \exp \left\{-4 \frac{(t-g-j)}{q(T)}\right\} E\left[\varepsilon_{i j}^{4}\right] \\
& +2 \frac{\sigma^{4}}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+1}^{T}\left[\sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\}\right]^{2} \\
& =\frac{E\left[\varepsilon_{i j}^{4}\right]}{N^{2} T^{4}} \frac{N q(T)^{2}}{16}\left[\exp \left\{-\frac{4 T}{q(T)}\right\}+\frac{4 T}{q(T)}-1\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& -2 \frac{\sigma^{4}}{N^{2} T^{4}} \frac{N q(T)^{3}}{16}\left[3-\frac{4 T}{q(T)}-4 \exp \left\{-\frac{2 T}{q(T)}\right\}+\exp \left\{-\frac{4 T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& =O\left(\frac{1}{N T^{2}}\right)+O\left(\frac{1}{N T}\right) \\
& =O\left(\frac{1}{N T}\right) \text {. } \tag{20}
\end{align*}
$$

Moreover, note that

$$
\begin{aligned}
& \frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left\{\left[w_{i t-g, T}^{2}-\sigma^{2} \sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\}\right]\right. \\
& \left.\times\left[w_{i s-g, T}^{2}-\sigma^{2} \sum_{k=1}^{s-g} \exp \left\{-2 \frac{(s-g-k)}{q(T)}\right\}\right]\right\} \\
& =\frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left[w_{i t-g, T}^{2} w_{i s-g, T}^{2}\right] \\
& -\frac{2 \sigma^{4}}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\} \sum_{k=1}^{s-g} \exp \left\{-2 \frac{(s-g-k)}{q(T)}\right\} \\
& +\frac{\sigma^{4}}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\} \sum_{k=1}^{s-2} \exp \left\{-2 \frac{(s-g-k)}{q(T)}\right\} \\
& =\frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1}\left\{\sum_{h=1}^{t-g} \sum_{j=1}^{t-g} \exp \left(-\frac{(t-g-h)}{q(T)}\right) \exp \left(-\frac{(t-g-j)}{q(T)}\right)\right. \\
& \left.\times \sum_{k=1}^{s-g} \sum_{\ell=1}^{s-g} \exp \left(-\frac{(s-g-k)}{q(T)}\right) \exp \left(-\frac{(s-g-\ell)}{q(T)}\right) E\left[\varepsilon_{i h} \varepsilon_{i j} \varepsilon_{i k} \varepsilon_{i \ell}\right]\right\} \\
& -\sigma^{4} \frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\} \sum_{k=1}^{s-g} \exp \left\{-2 \frac{(s-g-k)}{q(T)}\right\} \\
& =E\left[\varepsilon_{i j}^{4}\right] \frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left(-2 \frac{(t-g-j)}{q(T)}\right) \exp \left(-2 \frac{(s-g-j)}{q(T)}\right) \\
& +\sigma^{4} \frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{t-g} \exp \left(-2 \frac{(t-g-j)}{q(T)}\right) \sum_{k=1}^{s-g} \exp \left(-2 \frac{(s-g-k)}{q(T)}\right) \\
& -\sigma^{4} \frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left(-2 \frac{(t-g-j)}{q(T)}\right) \exp \left(-2 \frac{(s-g-j)}{q(T)}\right) \\
& +2 \sigma^{4} \frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left(-\frac{(t-g-j)}{q(T)}\right) \exp \left(-\frac{(s-g-j)}{q(T)}\right) \\
& \times \sum_{k=1}^{s-g} \exp \left(-\frac{(t-g-k)}{q(T)}\right) \exp \left(-\frac{(s-g-k)}{q(T)}\right) \\
& -2 \sigma^{4} \frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left(-2 \frac{(t-g-j)}{q(T)}\right) \exp \left(-2 \frac{(s-g-j)}{q(T)}\right) \\
& -\sigma^{4} \frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\} \sum_{k=1}^{s-g} \exp \left\{-2 \frac{(s-g-k)}{q(T)}\right\}
\end{aligned}
$$

Hence,

$$
\begin{align*}
& \left\lvert\, \frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left\{\left[\underline{w}_{i t-g, T}^{2}-\sigma^{2} \sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\}\right]\right.\right. \\
& \left.\times\left[\underline{w}_{i s-g, T}^{2}-\sigma^{2} \sum_{k=1}^{s-g} \exp \left\{-2 \frac{(s-g-k)}{q(T)}\right\}\right]\right\} \mid \\
\leq & \frac{\left(E\left[\varepsilon_{i j}^{4}\right]+3 \sigma^{4}\right)}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left(-2 \frac{(t-g-j)}{q(T)}\right) \exp \left(-2 \frac{(s-g-j)}{q(T)}\right) \\
& +\frac{2 \sigma^{4}}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left(-\frac{(t-g-j)}{q(T)}\right) \exp \left(-\frac{(s-g-j)}{q(T)}\right) \\
= & \frac{\left(E\left[\varepsilon_{i j}^{4}\right]+3 \sigma^{4}\right)}{N T^{4}} \frac{T q(T)^{2}}{8} \\
& \times\left[1-\frac{3}{4} \frac{q(T)}{T}+\frac{q(T)}{T} \exp \left\{-\frac{2 T}{q(T)}\right\}-\frac{1}{4} \frac{q(T)}{T} \exp \left\{-\frac{4 T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& +\frac{2 \sigma^{4}}{N T^{4}}\left(\frac{q(T)^{4}}{32}\left[\exp \left\{-\frac{4 T}{q(T)}\right\}+4(g-1) \exp \left\{-\frac{2 T}{q(T)}\right\}-5\right]\right. \\
& \left.+\frac{T q(T)^{3}}{8}\left[2 \exp \left\{-\frac{2 T}{q(T)}\right\}+1\right]\right)\left[1+O\left(\frac{1}{T}\right)\right] \\
= & O\left(\frac{1}{N T}\right)+O\left(\frac{1}{N}\right) \\
= & O\left(\frac{1}{N}\right),
\end{align*}
$$

where the third-to-last equality is justified by applying part (b) of Lemma SE-7 with $b=2$ and part (b) of Lemma SE-6 with $b=1$.

It follows from (19), (20), and (21), that

$$
\begin{aligned}
& E\left(\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}-\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g}^{2}\right]\right)^{2} \\
&= \frac{1}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}-\sigma^{2} \sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\}\right]^{2} \\
&+ \frac{2}{N^{2} T^{4}} \sum_{i=1}^{N} \sum_{t=4}^{T} \sum_{s=3}^{t-1} E\left\{\left[\underline{w}_{i t-g, T}^{2}-\sigma^{2} \sum_{j=1}^{t-2} \exp \left\{-2 \frac{(t-2-j)}{q(T)}\right\}\right]\right. \\
&\left.\quad \times\left[\underline{w}_{i s-g, T}^{2}-\sigma^{2} \sum_{k=1}^{s-2} \exp \left\{-2 \frac{(s-2-k)}{q(T)}\right\}\right]\right\} \\
&= O\left(\frac{1}{N T}\right)+O\left(\frac{1}{N}\right) \quad O\left(\frac{1}{N}\right)=o(1),
\end{aligned}
$$

from which it follows by Markov's inequality that

$$
\begin{aligned}
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} \underline{w}_{i t-g, T}^{2} & =\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]+O_{p}\left(\frac{1}{\sqrt{N}}\right) \\
& =\frac{q(T)^{2}}{T^{2}} \frac{\sigma^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]+O_{p}\left(\frac{1}{T}\right)+O_{p}\left(\frac{1}{\sqrt{N}}\right) \\
& =\frac{q(T)^{2}}{T^{2}} \frac{\sigma^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]+O_{p}\left(\frac{1}{\sqrt{N}}\right),
\end{aligned}
$$

as $N, T \rightarrow \infty$.
Moreover, note that, by Assumption 4, we have

$$
\begin{aligned}
& E\left[\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \rho_{T}^{2(t-g)} w_{i 0}^{2}\right] \\
\leq & \frac{\sup _{i} E\left[w_{i 0}^{2}\right]}{T^{2}} \exp \left\{-\frac{2}{q(T)}\right\}\left[1-\exp \left\{-\frac{2}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2(T-g)}{q(T)}\right\}\right] \\
= & O\left(T^{-2}\right) O(1) O(T) O(1)=O\left(T^{-1}\right),
\end{aligned}
$$

so that, applying Markov's inequality, we further deduce that

$$
\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \rho_{T}^{2(t-g)} w_{i 0}^{2}=O_{p}\left(\frac{1}{T}\right)
$$

The Cauchy-Schwarz inequality then implies that

$$
\begin{aligned}
\left|\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g} \rho_{T}^{t-g} w_{i 0}\right| & \leq \sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g}^{2}} \sqrt{\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \rho_{T}^{2(t-g)} w_{i 0}^{2}} \\
& =O_{p}(1) O_{p}\left(T^{-1 / 2}\right)=O_{p}\left(T^{-1 / 2}\right)
\end{aligned}
$$

from which it follows that

$$
\begin{aligned}
& \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T}^{2} \\
= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}+\frac{2}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g} \rho_{T}^{t-g} w_{i 0}+\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \rho_{T}^{2(t-g)} w_{i 0}^{2} \\
= & \frac{q(T)^{2}}{T^{2}} \frac{\sigma^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]+O_{p}\left(\frac{1}{\sqrt{N}}\right)+O_{p}\left(\frac{1}{\sqrt{T}}\right),
\end{aligned}
$$

as required.
To show part (b), write

$$
\begin{aligned}
& \frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}-\frac{\sigma^{2}}{2} \\
= & \frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}-\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]+\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]-\frac{\sigma^{2}}{2} .
\end{aligned}
$$

Now, from part (d) of Lemma SE-16 above, we have that, as $N, T \rightarrow \infty$,

$$
\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]=\frac{\sigma^{2}}{2}+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right) .
$$

Thus, to show part (b), it suffices to show that

$$
\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}=\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g}^{2}\right]+O_{p}\left(\sqrt{\frac{q(T)}{N T}}\right),
$$

as $N, T \rightarrow \infty$. Similar to the proof of part (a) above, we have

$$
\begin{aligned}
& E\left(\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}-\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g}^{2}\right]\right)^{2} \\
& \leq \frac{1}{N^{2} T^{2} q(T)^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}-\sigma^{2} \sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\}\right]^{2} \\
& +\frac{2}{N^{2} T^{2} q(T)^{2}} \left\lvert\, \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left\{\left[\underline{w}_{i t-g, T}^{2}-\sigma^{2} \sum_{j=1}^{t-g} \exp \left\{-2 \frac{(t-g-j)}{q(T)}\right\}\right]\right.\right. \\
& \left.\times\left[\underline{w}_{i s-g, T}^{2}-\sigma^{2} \sum_{k=1}^{s-g} \exp \left\{-2 \frac{(s-g-k)}{q(T)}\right\}\right]\right\} \mid \\
& \leq \frac{1}{N^{2} T^{2} q(T)^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \sum_{j=1}^{t-g} \exp \left(-4 \frac{(t-g-j)}{q(T)}\right) E\left[\varepsilon_{i j}^{4}\right] \\
& +2 \frac{\sigma^{4}}{N^{2} T^{2} q(T)^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T}\left[\sum_{j=1}^{t-g} \exp \left(-2 \frac{(t-g-j)}{q(T)}\right)\right]^{2} \\
& +\frac{\left(E\left[\varepsilon_{i j}^{4}\right]+3 \sigma^{4}\right)}{N^{2} T^{2} q(T)^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left(-2 \frac{(t-g-j)}{q(T)}\right) \exp \left(-2 \frac{(s-g-j)}{q(T)}\right) \\
& +\frac{2 \sigma^{4}}{N^{2} T^{2} q(T)^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \exp \left(-\frac{(t-g-j)}{q(T)}\right) \exp \left(-\frac{(s-g-j)}{q(T)}\right) \\
& \times \sum_{k=1}^{s-g} \exp \left(-\frac{(t-g-k)}{q(T)}\right) \exp \left(-\frac{(s-g-k)}{q(T)}\right) \\
& =\frac{E\left[\varepsilon_{i j}^{4}\right]}{N^{2} T^{2} q(T)^{2}} N \frac{T q(T)}{4}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right] \\
& +2 \frac{\sigma^{4}}{N^{2} T^{2} q(T)^{2}} \frac{N T q(T)^{2}}{4}\left[1+O\left(\frac{q(T)}{T}\right)\right] \\
& +\frac{\left(E\left[\varepsilon_{i j}^{4}\right]+3 \sigma^{4}\right)}{N^{2} T^{2} q(T)^{2}} \frac{N T q(T)^{2}}{8}\left[1+O\left(\max \left\{\frac{q(T)}{T}, \frac{1}{q(T)}\right\}\right)\right] \\
& +2 \sigma^{4} \frac{1}{N^{2} T^{2} q(T)^{2}} \frac{N T q(T)^{3}}{8}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right] \\
& =O\left(\frac{1}{N T q(T)}\right)+O\left(\frac{1}{N T}\right)+O\left(\frac{1}{N T}\right)+O\left(\frac{q(T)}{N T}\right) \\
& =O\left(\frac{q(T)}{N T}\right) \text {, }
\end{aligned}
$$

where we have applied part (c) of Lemma SE-1, part (c) of Lemma SE-2, part (c) of Lemma SE-7 with
$b=2$, and part (a) of Lemma SE-6 with $b=1$ in calculating the order of magnitudes given above. It follows by Markov's inequality that, as $N, T \rightarrow \infty$,

$$
\begin{aligned}
\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2} & =\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]+O_{p}\left(\sqrt{\frac{q(T)}{N T}}\right) \\
& =\frac{\sigma^{2}}{2}+O_{p}\left(\max \left\{\frac{1}{q(T)}, \frac{q(T)}{T}, \sqrt{\frac{q(T)}{N T}}\right\}\right)
\end{aligned}
$$

as required.
Moreover, note that, using Assumption 4, we have

$$
\begin{aligned}
& E\left[\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \rho_{T}^{2(t-g)} w_{i 0}^{2}\right] \\
\leq & \frac{\sup _{i} E\left[w_{i 0}^{2}\right]}{T q(T)} \exp \left\{-\frac{2}{q(T)}\right\}\left[1-\exp \left\{-\frac{2}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2(T-g)}{q(T)}\right\}\right] \\
= & O\left(T^{-1} q(T)^{-1}\right) O(1) O(q(T)) O(1)=O\left(\frac{1}{T}\right),
\end{aligned}
$$

so that

$$
\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \rho_{T}^{2(t-g)} w_{i 0}^{2}=O_{p}\left(\frac{1}{T}\right)
$$

by Markov's inequality. The Cauchy-Schwarz inequality furhter implies

$$
\begin{aligned}
\left|\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g} \rho_{T}^{t-g} w_{i 0}\right| & \leq \sqrt{\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g}^{2}} \sqrt{\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \rho_{T}^{2(t-g)} w_{i 0}^{2}} \\
& =O_{p}(1) O_{p}\left(T^{-1 / 2}\right)=O_{p}\left(T^{-1 / 2}\right),
\end{aligned}
$$

from which it follows that

$$
\begin{aligned}
& \frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T}^{2} \\
= & \frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}+\frac{2}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g} \rho_{T}^{t-g} w_{i 0}+\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \rho_{T}^{2(t-g)} w_{i 0}^{2} \\
= & \frac{\sigma^{2}}{2}+O_{p}\left(\max \left\{\frac{1}{q(T)}, \frac{q(T)}{T}, \sqrt{\frac{q(T)}{N T}}\right\}\right)+O_{p}\left(\frac{1}{T}\right)+O_{p}\left(\frac{1}{\sqrt{T}}\right) \\
= & \frac{\sigma^{2}}{2}+O_{p}\left(\max \left\{\frac{1}{q(T)}, \frac{q(T)}{T}, \sqrt{\frac{q(T)}{N T}}, \frac{1}{\sqrt{T}}\right\}\right),
\end{aligned}
$$

which is the desired result for part (b).

To show part (c), write

$$
\begin{aligned}
& \frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}-\sigma^{2} \\
= & \frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}-\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]+\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]-\sigma^{2} .
\end{aligned}
$$

Note that for all $T \geq g+1$

$$
\begin{aligned}
\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right] & =\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \sum_{j=1}^{t-g} \sum_{k=1}^{t-g} \rho_{T}^{2(t-g)-j-k} E\left[\varepsilon_{i j} \varepsilon_{i k}\right] \\
& =\sigma^{2} \frac{1-\rho_{T}^{2}}{T} \sum_{t=g+1}^{T} \sum_{j=1}^{t-g} \rho_{T}^{2(t-g-j)} \\
& =\sigma^{2} \frac{1-\rho_{T}^{2}}{T} \sum_{t=g+1}^{T} \frac{1-\rho_{T}^{2(t-g)}}{1-\rho_{T}^{2}} \\
& =\sigma^{2}\left[1-\frac{g}{T}-\frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-g)}\right)}{T\left(1-\rho_{T}^{2}\right)}\right]
\end{aligned}
$$

Since we assume here that $\rho_{T}^{2}=\exp \{-2 / q(T)\}$ with $q(T)=O(1)$, it follows that there exist a positive constant C_{q} and a positive integer T^{*} such that for all $T \geq \max \left\{T^{*}, g+1\right\}$,

$$
0 \leq \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-g)}\right)}{T\left(1-\rho_{T}^{2}\right)} \leq \frac{1}{T\left(1-\exp \left\{-2 / C_{q}\right\}\right)}=O\left(\frac{1}{T}\right)
$$

so that, in this case,

$$
\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]=\sigma^{2}+O\left(\frac{1}{T}\right) .
$$

Thus, to complete the proof of this part, it suffices to show that

$$
\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}=\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]+O_{p}\left(\frac{1}{\sqrt{N T}}\right) .
$$

To proceed, write

$$
\begin{aligned}
& E\left(\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}-\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]\right)^{2} \\
= & E\left(\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T}\left[\underline{w}_{i t-g, T}^{2}-\sigma^{2} \sum_{j=1}^{t-g} \rho_{T}^{2(t-g-j)}\right]\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=g+1}^{T} \sum_{s=g+1}^{T} E\left[\left(\underline{w}_{i t-g, T}^{2}-\sigma^{2} \sum_{k=1}^{t-g} \rho_{T}^{2(t-g-k)}\right)\left(\underline{w}_{j s-g, T}^{2}-\sigma^{2} \sum_{\ell=1}^{t-g} \rho_{T}^{2(t-g-\ell)}\right)\right] \\
= & \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}-\sigma^{2} \sum_{k=1}^{t-g} \rho_{T}^{2(t-g-k)}\right]^{2} \\
& +\frac{2\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left[\left(\underline{w}_{i t-g, T}^{2}-\sigma^{2} \sum_{k=1}^{t-g} \rho_{T}^{2(t-g-k)}\right)\left(\underline{w}_{i s-g, T}^{2}-\sigma^{2} \sum_{\ell=1}^{t-g} \rho_{T}^{2(t-g-\ell)}\right)\right] .
\end{aligned}
$$

Next, note that there exist a positive constant C_{q} and a positive integer T^{*} such that for all $T \geq T^{*}$

$$
\begin{aligned}
& \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left(\underline{w}_{i t-g, T}^{2}-\sigma^{2} \sum_{k=1}^{t-g} \rho_{T}^{2(t-g-k)}\right)^{2} \\
= & \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{4}\right]-\frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T}\left(\sigma^{2} \sum_{k=1}^{t-g} \rho_{T}^{2(t-g-k)}\right)^{2} \\
= & \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \sum_{h=1}^{t-g} \sum_{j=1}^{t-g} \sum_{k=1}^{t-g} \sum_{\ell=1}^{t-g} \rho_{T}^{(t-g-h)} \rho_{T}^{(t-g-j)} \rho_{T}^{(t-g-k)} \rho_{T}^{(t-g-\ell)} E\left[\varepsilon_{i h} \varepsilon_{i j} \varepsilon_{i k} \varepsilon_{i}\right] \\
& -\frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T}\left(\sigma^{2} \sum_{k=1}^{t-g} \rho_{T}^{2(t-g-k)}\right)^{2} \\
\leq & \frac{E\left[\varepsilon_{i j}^{4}\right]\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \sum_{k=1}^{t-g} \rho_{T}^{4(t-g-k)}+\frac{3 \sigma^{4}\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T}\left[\sum_{k=1}^{t-g} \rho_{T}^{2(t-g-k)}\right]^{2} \\
& -\frac{\sigma^{4}\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T}\left(\sum_{k=1}^{t-g} \rho_{T}^{2(t-g-k)}\right)^{2} \\
= & \frac{E\left[\varepsilon_{i j}^{4}\right]\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \frac{1-\rho_{T}^{4(t-g)}}{1-\rho_{T}^{4}}+\frac{2 \sigma^{4}\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \frac{1-2 \rho_{T}^{2(t-g)}+\rho_{T}^{4(t-g)}}{\left(1-\rho_{T}^{2}\right)^{2}} \\
= & \frac{E\left[\varepsilon_{i j}^{4}\right]}{N T^{2}} \frac{1-\rho_{T}^{2}}{\left(1+\rho_{T}^{2}\right)}\left[(T-g)-\frac{\left.\rho_{T}^{4}\left(1-\rho_{T}^{4(T-g)}\right)\right]}{1-\rho_{T}^{4}}\right] \\
& +\frac{2 \sigma^{4}}{N T^{2}}\left[(T-g)-2 \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-g)}\right)}{1-\rho_{T}^{2}}+\frac{\rho_{T}^{4}\left(1-\rho_{T}^{4(T-g)}\right)}{1-\rho_{T}^{4}}\right] \\
\leq & \frac{E\left[\varepsilon_{i j}^{4}\right]}{N T}\left[1+\frac{g}{T}+\frac{1}{T\left(1-\exp \left\{-4 / C_{q}\right\}\right)}\right] \\
& +\frac{2 \sigma^{4}}{N T}\left[1+\frac{g}{T}+\frac{2}{T\left(1-\exp \left\{-2 / C_{q}\right\}\right)}+\frac{\left.1-\exp \left\{-4 / C_{q}\right\}\right)}{T(1-}\right]=O\left(\frac{1}{N T}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left[\left(\underline{w}_{i t-g, T}^{2}-\sigma^{2} \sum_{k=1}^{t-g} \rho_{T}^{2(t-g-k)}\right)\left(\underline{w}_{i s-g, T}^{2}-\sigma^{2} \sum_{\ell=1}^{t-g} \rho_{T}^{2(t-g-\ell)}\right)\right] \\
= & \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left[\underline{w}_{i t-g, T}^{2} \underline{w}_{i s-g, T}^{2}\right] \\
& -2 \sigma^{4} \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{k=1}^{t-g} \rho_{T}^{2(t-g-k)} \sum_{\ell=1}^{s-g} \rho_{T}^{2(t-g-\ell)} \\
& +\frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{k=1}^{t-g} \rho_{T}^{2(t-g-k)} \sum_{\ell=1}^{s-2} \rho_{T}^{2(t-g-\ell)} \\
= & \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1}\left\{\sum_{h=1}^{t-g} \sum_{j=1}^{t-g} \rho_{T}^{(t-g-h)} \rho_{T}^{(t-g-j)} \sum_{k=1}^{s-g} \sum_{\ell=1}^{s-g} \rho_{T}^{(s-g-k)} \rho_{T}^{(s-g-\ell)} E\left[\varepsilon_{i h} \varepsilon_{i j} \varepsilon_{i k} \varepsilon_{i \ell}\right]\right\} \\
& -\frac{\sigma^{4}\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{k=1}^{t-g} \rho_{T}^{2(t-g-k)} \sum_{\ell=1}^{s-g} \rho_{T}^{2(t-g-\ell)}
\end{aligned}
$$

$$
\begin{aligned}
& =E\left[\varepsilon_{i j}^{4}\right] \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \rho_{T}^{2(t-g-j)} \rho_{T}^{2(s-g-j)} \\
& +\sigma^{4} \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{k=1}^{t-g} \rho_{T}^{2(t-g-k)} \sum_{\ell=1}^{s-2} \rho_{T}^{2(s-g-\ell)} \\
& -\sigma^{4} \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \rho_{T}^{2(t-g-j)} \rho_{T}^{2(s-g-j)} \\
& +2 \sigma^{4} \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \rho_{T}^{(t-g-j)} \rho_{T}^{(s-g-j)} \sum_{k=1}^{s-g} \rho_{T}^{(t-g-k)} \rho_{T}^{(s-g-k)} \\
& -2 \sigma^{4} \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \rho_{T}^{2(t-g-j)} \rho_{T}^{2(s-g-j)} \\
& -\sigma^{4} \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{k=1}^{t-g} \rho_{T}^{2(t-g-k)} \sum_{\ell=1}^{s-2} \rho_{T}^{2(s-g-\ell)} \\
& =\left(E\left[\varepsilon_{i j}^{4}\right]-3 \sigma^{4}\right) \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \rho_{T}^{2(t-s)} \frac{1-\rho_{T}^{4(s-g)}}{1-\rho_{T}^{4}} \\
& +2 \sigma^{4} \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \rho_{T}^{2(t-s)} \frac{1-2 \rho_{T}^{2(s-g)}+\rho_{T}^{4(s-g)}}{\left(1-\rho_{T}^{2}\right)^{2}} \\
& =\frac{E\left[\varepsilon_{i j}^{4}\right]-3 \sigma^{4}}{N T^{2}} \frac{1-\rho_{T}^{2}}{1+\rho_{T}^{2}}\left[\sum_{t=g+2}^{T} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(t-g-1)}\right)}{\left(1-\rho_{T}^{2}\right)}-\sum_{t=g+2}^{T} \frac{\rho_{T}^{2(t-g+1)}\left(1-\rho_{T}^{2(t-g-1)}\right)}{\left(1-\rho_{T}^{2}\right)}\right] \\
& +\frac{2 \sigma^{4}}{N T^{2}} \sum_{t=g+2}^{T} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(t-g-1)}\right)}{\left(1-\rho_{T}^{2}\right)}-\frac{4 \sigma^{4} \rho_{T}^{2}}{N T^{2}} \sum_{t=g+2}^{T} \rho_{T}^{2(t-g-1)}(t-g-1) \\
& +\frac{2 \sigma^{4}}{N T^{2}} \sum_{t=g+2}^{T} \frac{\rho_{T}^{2(t-g+1)}\left(1-\rho_{T}^{2(t-g-1)}\right)}{\left(1-\rho_{T}^{2}\right)}
\end{aligned}
$$

Applying part (b) of Lemma SE-5 and performing additional calculation, we get

$$
\begin{aligned}
& \frac{\left(1-\rho_{T}^{2}\right)^{2}}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} E\left[\left(\underline{w}_{i t-g, T}^{2}-\sigma^{2} \sum_{k=1}^{t-g} \rho_{T}^{2(t-g-k)}\right)\left(\underline{w}_{i s-g, T}^{2}-\sigma^{2} \sum_{\ell=1}^{t-g} \rho_{T}^{2(t-g-\ell)}\right)\right] \\
&= \frac{\left(E\left[\varepsilon_{i j}^{4}\right]-3 \sigma^{4}\right)}{N T^{2}} \frac{\rho_{T}^{2}}{1+\rho_{T}^{2}}\left[(T-g-1)-\frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-g-1)}\right)}{\left(1-\rho_{T}^{2}\right)}\right] \\
&-\frac{\left(E\left[\varepsilon_{i j}^{4}\right]-3 \sigma^{4}\right)}{N T^{2}} \frac{\rho_{T}^{6}}{1+\rho_{T}^{2}} \frac{\left(1-\rho_{T}^{2(T-g-1)}\right)}{\left(1-\rho_{T}^{2}\right)} \\
&+\frac{\left(E\left[\varepsilon_{i j}^{4}\right]-3 \sigma^{4}\right)}{N T^{2}} \frac{\rho_{T}^{8}}{1+\rho_{T}^{2}} \frac{\left(1-\rho_{T}^{4(T-g-1)}\right)}{\left(1-\rho_{T}^{4}\right)} \\
&+\frac{2 \sigma^{4}}{N T^{2}} \frac{\rho_{T}^{2}}{\left(1-\rho_{T}^{2}\right)}\left[(T-g-1)-\frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-g-1)}\right)}{\left(1-\rho_{T}^{2}\right)}\right] \\
&-\frac{4 \sigma^{4} \rho_{T}^{2}}{N T^{2}} \frac{\rho_{T}^{2}-(T-g) \rho_{T}^{2(T-g)}+(T-g-1) \rho_{T}^{2(T-g+1)}}{\left(1-\rho_{T}^{2}\right)^{2}} \\
&+\frac{2 \sigma^{4}}{N T^{2}} \frac{\rho_{T}^{6}}{1-\rho_{T}^{2}} \frac{\left(1-\rho_{T}^{2(T-g-1)}\right)}{\left(1-\rho_{T}^{2}\right)}-\frac{2 \sigma^{4}}{N T^{2}} \frac{\rho_{T}^{8}}{1-\rho_{T}^{2}} \frac{\left(1-\rho_{T}^{4(T-g-1)}\right)}{\left(1-\rho_{T}^{4}\right)} \\
& \leq \frac{\left(E\left[\varepsilon_{i j}^{4}\right]+3 \sigma^{4}\right)}{N T}\left[1+\frac{g+1}{T}+\frac{1}{1-\exp \left\{-2 / C_{q}\right\}}\right] \\
&+\frac{2 \sigma^{4}}{N T}\left[1+\frac{g+1}{T}+\frac{1}{1-\exp \left\{-2 / C_{q}\right\}}\right]+\frac{4 \sigma^{4}}{N T} \frac{1}{1-\exp \left\{-2 / C_{q}\right\}} \\
&+\frac{\left(E\left[\varepsilon_{i j}^{4}\right]+3 \sigma^{4}\right)}{N T^{2}}\left[\frac{1}{1-\exp \left\{-2 / C_{q}\right\}}+\frac{1}{1-\exp \left\{-4 / C_{q}\right\}}\right]+\frac{8 \sigma^{4}}{N T^{2}} \frac{1}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{2}} \\
&+\frac{2 \sigma^{4}}{N T^{2}}\left[\frac{1}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{2}}+\frac{1}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)\left(1-\exp \left\{-4 / C_{q}\right\}\right)}\right] \\
& O\left(\frac{1}{N T}\right) .
\end{aligned}
$$

It follows that

$$
E\left(\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}-\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]\right)^{2}=O_{p}\left(\frac{1}{N T}\right)
$$

and by Markov's inequality, we deduce that

$$
\begin{aligned}
\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2} & =\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]+O\left(\frac{1}{\sqrt{N T}}\right) \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right) .
\end{aligned}
$$

Moreover, note that, using Assumption 4, we have

$$
E\left[\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \rho_{T}^{2(t-g)} w_{i 0}^{2}\right] \leq \frac{\left(1-\rho_{T}^{2}\right)}{T} \sup _{i} E\left[w_{i 0}^{2}\right] \rho_{T}^{2} \frac{1-\rho_{T}^{2(T-g)}}{1-\rho_{T}^{2}}=O\left(T^{-1}\right)
$$

so that

$$
\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \rho_{T}^{2(t-g)} w_{i 0}^{2}=O_{p}\left(\frac{1}{T}\right)
$$

The Cauchy-Schwarz inequality then implies that

$$
\begin{aligned}
\left|\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g} \rho_{T}^{t-g} w_{i 0}\right| & \leq \sqrt{\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g}^{2}} \sqrt{\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \rho_{T}^{2(t-g)} w_{i 0}^{2}} \\
& =O_{p}(1) O_{p}\left(T^{-1 / 2}\right)=O_{p}\left(T^{-1 / 2}\right)
\end{aligned}
$$

from which it follows that

$$
\begin{aligned}
& \frac{1-\rho_{T}^{2}}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T}^{2} \\
= & \frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T}^{2}+\frac{2\left(1-\rho_{T}^{2}\right)}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g} \rho_{T}^{t-g} w_{i 0}+\frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \rho_{T}^{2(t-g)} w_{i 0}^{2} \\
= & \sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)+O_{p}\left(T^{-1}\right)+O_{p}\left(T^{-1 / 2}\right) \\
= & \sigma^{2}+O_{p}\left(T^{-1 / 2}\right),
\end{aligned}
$$

as required for part (c).

Lemma SE-18:

Let g be a positive integer. Under Assumptions 1-4, the following results hold as $N, T \rightarrow \infty$
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} w_{i t-g, T}=O_{p}\left(\max \left\{\sqrt{N} T^{3 / 2}, N T\right\}\right)
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$, then

$$
\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} w_{i t-g, T}=O_{p}\left(\max \left\{\sqrt{N} T^{3 / 2}, N T\right\}\right)
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} w_{i t-g, T}=O_{p}\left(\max \left\{\sqrt{N} T^{3 / 2}, N T\right\}\right)
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} w_{i t-g, T}=O_{p}(\max \{\sqrt{N T} q(T), N q(T)\})
$$

(e) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} w_{i t-g, T}=O_{p}(\max \{\sqrt{N T}, N\})
$$

Proof of Lemma SE-18:

To proceed, write

$$
\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} w_{i t-g, T}=\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}+\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \rho_{T}^{t-g} w_{i 0}
$$

where $\underline{w}_{i t-g}=\sum_{j=1}^{t-g} \rho_{T}^{(t-g-j)} \varepsilon_{i j}$. Note that for $T \geq g+1$

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}\right]^{2}=\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=g+1}^{T} \sum_{s=g+1}^{T} E\left[a_{i} a_{j} \underline{w}_{i t-g, T} \underline{w}_{j s-g, T}\right] \\
= & \left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sum_{i=1}^{N} \sum_{t=g+1}^{T} \sum_{s=g+1}^{T} E\left[\underline{w}_{i t-g, T} \underline{w}_{i s-g, T}\right] \\
= & \left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]+2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sum_{i=1}^{N} \sum_{s=g+2}^{T} \sum_{t=g+1}^{s-1} E\left[\underline{w}_{i t-g, T} \underline{w}_{i s-g, T}\right] .
\end{aligned}
$$

Now, consider part (a), where we take $\rho_{T}=1$ for all T sufficiently large. In this case, we can apply
the results of part (a) of Lemma SE-16 to get

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}\right]^{2} \\
= & \left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]+2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sum_{i=1}^{N} \sum_{s=g+2}^{T} \sum_{t=g+1}^{s-1} E\left[\underline{w}_{i t-g, T} \underline{w}_{i s-g, T}\right] \\
= & \sigma^{2}\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) N \frac{T^{2}}{2}\left[1+O\left(\frac{1}{T}\right)\right]+2 \sigma^{2}\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \frac{N T^{3}}{6}\left[1+O\left(\frac{1}{T}\right)\right] \\
= & N T^{3} \frac{\sigma^{2}\left(\mu_{a}^{2}+\sigma_{a}^{2}\right)}{3}\left[1+O\left(\frac{1}{T}\right)\right]=O\left(N T^{3}\right),
\end{aligned}
$$

so that by Markov's inequality, we obtain $\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}=O_{p}\left(\sqrt{N} T^{3 / 2}\right)$.
Moreover, using Assumptions 2 and 4, we have

$$
\begin{aligned}
\sum_{i=1}^{N} E\left[a_{i}^{2}\right] & =N\left(\mu_{a}^{2}+\sigma_{a}^{2}\right)=O(N), \\
\sum_{i=1}^{N} E\left(\sum_{t=g+1}^{T} \rho_{T}^{t-g} w_{i 0}\right)^{2} & =\sum_{i=1}^{N} E\left(\sum_{t=g+1}^{T} w_{i 0}\right)^{2} \quad(\text { for all } T \text { sufficiently large }) \\
& \leq \sup _{i} E\left[w_{i 0}^{2}\right] N(T-g)^{2}=O\left(N T^{2}\right),
\end{aligned}
$$

from which it follows by Markov's inequality that

$$
\sum_{i=1}^{N} a_{i}^{2}=O_{p}(N), \quad \sum_{i=1}^{N}\left(\sum_{t=g+1}^{T} \rho_{T}^{t-g} w_{i 0}\right)^{2}=O_{p}\left(N T^{2}\right) .
$$

Applying the Cauchy-Schwarz inequality, we further obtain that

$$
\left|\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \rho_{T}^{t-g} w_{i 0}\right| \leq \sqrt{\sum_{i=1}^{N} a_{i}^{2}} \sqrt{\sum_{i=1}^{N}\left(\sum_{t=g+1}^{T} \rho_{T}^{t-g} w_{i 0}\right)^{2}}=O_{p}(\sqrt{N}) O_{p}(\sqrt{N} T)=O_{p}(N T)
$$

so that

$$
\begin{aligned}
\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} w_{i t-g, T} & =\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}+\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \rho_{T}^{t-g} w_{i 0} \\
& =O_{p}\left(\sqrt{N} T^{3 / 2}\right)+O_{p}(N T) \\
& =O_{p}\left(\max \left\{\sqrt{N} T^{3 / 2}, N T\right\}\right),
\end{aligned}
$$

as required for part (a).

Next, consider part (b), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$. In this case, we apply the results of parts (b) of Lemma SE-16 to get

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}\right]^{2} \\
= & \left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]+2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sum_{i=1}^{N} \sum_{s=g+2}^{T} \sum_{t=g+1}^{s-1} E\left[\underline{w}_{i t-g, T} \underline{w}_{i s-g, T}\right] \\
= & \sigma^{2}\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) N \frac{T^{2}}{2}\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right] \\
& +2 \sigma^{2}\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \frac{N T^{3}}{6}\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right] \\
= & N T^{3} \frac{\sigma^{2}\left(\mu_{a}^{2}+\sigma_{a}^{2}\right)}{3}\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right]=O\left(N T^{3}\right) .
\end{aligned}
$$

It follows from Markov's inequality that we obtain $\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}=O_{p}\left(\sqrt{N} T^{3 / 2}\right)$.
Moreover, using Assumptions 2 and 4, we have

$$
\begin{aligned}
\sum_{i=1}^{N} E\left[a_{i}^{2}\right] & =N\left(\mu_{a}^{2}+\sigma_{a}^{2}\right)=O(N) \\
\sum_{i=1}^{N} E\left(\sum_{t=g+1}^{T} \rho_{T}^{t-g} w_{i 0}\right)^{2} & \leq \sup _{i} E\left[w_{i 0}^{2}\right] N \exp \left\{-\frac{2}{q(T)}\right\}\left[1-\exp \left\{-\frac{1}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{(T-g)}{q(T)}\right\}\right]^{2} \\
& =O(N) \times O(1) \times O\left(q(T)^{2}\right) \times O\left(T^{2} / q(T)^{2}\right)=O\left(N T^{2}\right),
\end{aligned}
$$

from which it follows again by Markov's inequality that

$$
\sum_{i=1}^{N} a_{i}^{2}=O_{p}(N), \quad \sum_{i=1}^{N}\left(\sum_{t=g+1}^{T} \rho_{T}^{t-g} w_{i 0}\right)^{2}=O_{p}\left(N T^{2}\right) .
$$

Applying the Cauchy-Schwarz inequality, we further obtain that

$$
\left|\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \rho_{T}^{t-g} w_{i 0}\right| \leq \sqrt{\sum_{i=1}^{N} a_{i}^{2}} \sqrt{\sum_{i=1}^{N}\left(\sum_{t=g+1}^{T} \rho_{T}^{t-g} w_{i 0}\right)^{2}}=O_{p}(\sqrt{N}) O_{p}(\sqrt{N} T)=O_{p}(N T)
$$

so that

$$
\begin{aligned}
\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} w_{i t-g, T} & =\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}+\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \rho_{T}^{t-g} w_{i 0} \\
& =O_{p}\left(\sqrt{N} T^{3 / 2}\right)+O_{p}(N T) \\
& =O_{p}\left(\max \left\{\sqrt{N} T^{3 / 2}, N T\right\}\right)
\end{aligned}
$$

as required for part (b).
Next, consider part (c), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. Here, we apply part (c) of Lemma SE-16 to obtain

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}\right]^{2} \\
= & \left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]+2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sum_{i=1}^{N} \sum_{s=g+2}^{T} \sum_{t=g+1}^{s-1} E\left[\underline{w}_{i t-g, T} \underline{w}_{i s-g, T}\right] \\
= & \sigma^{2}\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \frac{N q(T)^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& +2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) N T q(T)^{2} \frac{\sigma^{2}}{2} \\
& \times\left[1-\frac{3}{2} \frac{q(T)}{T}+\frac{2 q(T)}{T} \exp \left\{-\frac{T}{q(T)}\right\}-\frac{1}{2} \frac{q(T)}{T} \exp \left\{-\frac{2 T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
= & \sigma^{2}\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) N T q(T)^{2}\left[1-\frac{3}{2} \frac{q(T)}{T}+\frac{2 q(T)}{T} \exp \left\{-\frac{T}{q(T)}\right\}-\frac{1}{2} \frac{q(T)}{T} \exp \left\{-\frac{2 T}{q(T)}\right\}\right] \\
& \times\left[1+O\left(\frac{1}{T}\right)\right] \\
= & O\left(N T^{3}\right) .
\end{aligned}
$$

It follows from Markov's inequality that we obtain $\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}=O_{p}\left(\sqrt{N} T^{3 / 2}\right)$.
Moreover, using Assumptions 2 and 4, we obtain

$$
\sum_{i=1}^{N} E\left[a_{i}^{2}\right]=N\left(\mu_{a}^{2}+\sigma_{a}^{2}\right)=O(N)
$$

and

$$
\begin{aligned}
& \sum_{i=1}^{N} E\left(\sum_{t=g+1}^{T} \rho_{T}^{t-g} w_{i 0}\right)^{2} \\
\leq & \sup _{i} E\left[w_{i 0}^{2}\right] N \exp \left\{-\frac{2}{q(T)}\right\}\left[1-\exp \left\{-\frac{1}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{(T-g)}{q(T)}\right\}\right]^{2} \\
= & O(N) \times O(1) \times O\left(T^{2}\right) \times O(1)=O\left(N T^{2}\right),
\end{aligned}
$$

so that similar to the proof of part (b) above, we have

$$
\left|\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \rho_{T}^{t-g} w_{i 0}\right| \leq \sqrt{\sum_{i=1}^{N} a_{i}^{2}} \sqrt{\sum_{i=1}^{N}\left(\sum_{t=g+1}^{T} \rho_{T}^{t-g} w_{i 0}\right)^{2}}=O_{p}(\sqrt{N}) \times O_{p}(\sqrt{N} T)=O_{p}(N T)
$$

upon application of the Markov and the Cauchy-Schwarz inequalities. It follows that

$$
\begin{aligned}
\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} w_{i t-g, T} & =\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}+\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \rho_{T}^{t-g} w_{i 0} \\
& =O_{p}\left(\sqrt{N} T^{3 / 2}\right)+O_{p}(N T) \\
& =O_{p}\left(\max \left\{\sqrt{N} T^{3 / 2}, N T\right\}\right),
\end{aligned}
$$

as required for part (c).
For part (d), we consider the case where $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$. Here, we apply part (d) of Lemma SE-16 to obtain

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}\right]^{2} \\
= & \left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sum_{i=1}^{N} \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]+2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sum_{i=1}^{N} \sum_{s=g+2}^{T} \sum_{t=g+1}^{s-1} E\left[\underline{w}_{i t-g, T} \underline{w}_{i s-g, T}\right] \\
= & \sigma^{2}\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \frac{N T q(T)}{2}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right] \\
& +2 \sigma^{2}\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \frac{N T q(T)^{2}}{2}\left[1+O\left(\frac{q(T)}{T}\right)\right] \\
= & N T q(T)^{2} \sigma^{2}\left(\mu_{a}^{2}+\sigma_{a}^{2}\right)\left[1+O\left(\max \left\{\frac{q(T)}{T}, \frac{1}{q(T)}\right\}\right)\right] \\
= & O\left(N T q(T)^{2}\right),
\end{aligned}
$$

from which it follows, by Markov's inequality, that $\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}=O_{p}(\sqrt{N T} q(T))$.
Moreover, using Assumptions 2 and 4, we obtain

$$
\sum_{i=1}^{N} E\left[a_{i}^{2}\right]=N\left(\mu_{a}^{2}+\sigma_{a}^{2}\right)=O(N)
$$

and

$$
\begin{aligned}
& \sum_{i=1}^{N} E\left(\sum_{t=g+1}^{T} \rho_{T}^{t-g} w_{i 0}\right)^{2} \\
\leq & \sup _{i} E\left[w_{i 0}^{2}\right] N \exp \left\{-\frac{2}{q(T)}\right\}\left[1-\exp \left\{-\frac{1}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{(T-g)}{q(T)}\right\}\right]^{2} \\
= & O(N) \times O(1) \times O\left(q(T)^{2}\right) \times O(1)=O\left(N q(T)^{2}\right),
\end{aligned}
$$

from which it follows by Markov's inequality that

$$
\sum_{i=1}^{N} a_{i}^{2}=O_{p}(N), \sum_{i=1}^{N}\left(\sum_{t=g+1}^{T} \rho_{T}^{t-g} w_{i 0}\right)^{2}=O_{p}\left(N q(T)^{2}\right)
$$

Applying the Cauchy-Schwarz inequality, we further obtain that

$$
\left|\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \rho_{T}^{t-g} w_{i 0}\right| \leq \sqrt{\sum_{i=1}^{N} a_{i}^{2}} \sqrt{\sum_{i=1}^{N}\left(\sum_{t=g+1}^{T} \rho_{T}^{t-g} w_{i 0}\right)^{2}}=O_{p}(\sqrt{N}) \times O_{p}(\sqrt{N} q(T))=O_{p}(N q(T))
$$

so that

$$
\begin{aligned}
\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} w_{i t-g, T} & =\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}+\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \rho_{T}^{t-g} w_{i 0} \\
& =O_{p}(\sqrt{N T} q(T))+O_{p}(N q(T)) \\
& =O_{p}(\max \{\sqrt{N T} q(T), N q(T)\})
\end{aligned}
$$

as required for part (d).
Finally, to show part (e), note that in this case

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}\right]^{2} \\
& =\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) N \sum_{t=g+1}^{T} E\left[\underline{w}_{i t-g, T}^{2}\right]+2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) N \sum_{s=g+2}^{T} \sum_{t=g+1}^{s-1} E\left[\underline{w}_{i t-g, T} \underline{w}_{i s-g, T}\right] \\
& =\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) N \sum_{t=g+1}^{T} \sum_{j=1}^{t-g} \sum_{k=1}^{t-g} \rho_{T}^{2(t-g)-j-k} E\left[\varepsilon_{i j} \varepsilon_{i k}\right] \\
& +2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) N \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{t-g} \sum_{k=1}^{s-g} \rho_{T}^{(t-g-j)} \rho_{T}^{(s-g-k)} E\left[\varepsilon_{i j} \varepsilon_{i k}\right] \\
& =\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} N \sum_{t=g+1}^{T} \sum_{j=1}^{t-g} \rho_{T}^{2(t-g-j)}+2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} N \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \sum_{j=1}^{s-g} \rho_{T}^{(t+s-2 g-2 j)} \\
& =\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} N \sum_{t=g+1}^{T} \frac{1-\rho_{T}^{2(t-g)}}{1-\rho_{T}^{2}}+2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} N \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \rho_{T}^{(t-s)} \sum_{j=1}^{s-g} \rho_{T}^{2(s-g-j)} \\
& =\frac{\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2}}{1-\rho_{T}^{2}} N(T-g)-\frac{\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} \rho_{T}^{2}}{\left(1-\rho_{T}^{2}\right)} N \sum_{t=g+1}^{T} \rho_{T}^{2(t-g-1)} \\
& +\frac{2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2}}{1-\rho_{T}^{2}} N \sum_{t=g+2}^{T} \sum_{s=g+1}^{t-1} \rho_{T}^{(t-s)}\left(1-\rho_{T}^{2(s-g)}\right) \\
& =\frac{\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2}}{1-\rho_{T}^{2}} N(T-g)-\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-g)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}} N \\
& +\frac{2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} \rho_{T}}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right)} N \sum_{t=g+2}^{T}\left(1-\rho_{T}^{(t-g-1)}\right)-\frac{2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2}}{1-\rho_{T}^{2}} N \sum_{t=g+2}^{T} \rho_{T}^{(t-g+1)} \sum_{s=g+1}^{t-1} \rho_{T}^{(s-g-1)}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2}}{1-\rho_{T}^{2}} N(T-g)-\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-g)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}} N \\
& +\frac{2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} \rho_{T}}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right)} N(T-g-1)-\frac{2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} \rho_{T}^{2}\left(1-\rho_{T}^{(T-g-1)}\right)}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right)^{2}} N \\
& -\frac{2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2}}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right)} N \sum_{t=g+2}^{T} \rho_{T}^{(t-g+1)}\left(1-\rho_{T}^{(t-g-1)}\right) \\
= & \frac{\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2}}{1-\rho_{T}^{2}} N(T-g)-\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-g)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}} N \\
& +\frac{2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} \rho_{T}}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right)} N(T-g-1)-\frac{2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} \rho_{T}^{2}\left(1-\rho_{T}^{(T-g-1)}\right)}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right)^{2}} N \\
& -2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} N \frac{\rho_{T}^{3}\left(1-\rho_{T}^{(T-g-1)}\right)}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right)^{2}}+2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} N \frac{\rho_{T}^{4}\left(1-\rho_{T}^{2(T-g-1)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}\left(1-\rho_{T}\right)} \\
= & O(N T)
\end{aligned}
$$

Since we assume that $\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}$ with $q(T)=O(1)$ in this case, it follows that there exist a positive constant C_{q} and a positive integer T^{*} such that for all $T \geq T^{*}$

$$
\left|\rho_{T}\right| \leq \exp \left\{-\frac{1}{C_{q}}\right\}<1
$$

Applying this upper bound we obtain for all $T \geq T^{*}$

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}\right]^{2} \\
\leq & \frac{\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2}}{1-\rho_{T}^{2}} N(T-g)+\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-g)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}} N \\
& +\frac{2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2}\left|\rho_{T}\right|}{\left(1-\rho_{T}^{2}\right)\left(1-\left|\rho_{T}\right|\right)} N(T-g-1)+\frac{2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} \rho_{T}^{2}\left(1-\rho_{T}^{(T-g-1)}\right)}{\left(1-\rho_{T}^{2}\right)\left(1-\left|\rho_{T}\right|\right)^{2}} N \\
& +4\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} N \frac{\left|\rho_{T}\right|^{3}}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right)^{2}}+2\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} N \frac{\rho_{T}^{4}\left(1-\rho_{T}^{2(T-g-1)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}\left(1-\left|\rho_{T}\right|\right)}
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2}\left[\frac{N(T-g)}{1-\exp \left\{-2 / C_{q}\right\}}+\frac{N}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{2}}+\frac{2 N(T-g-1)}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)\left(1-\exp \left\{-1 / C_{q}\right\}\right)}\right. \\
& +\frac{4 N}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)\left(1-\exp \left\{-1 / C_{q}\right\}\right)^{2}}+\frac{2 N}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)\left(1-\exp \left\{-1 / C_{q}\right\}\right)^{2}} \\
& \left.+\frac{2 N}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{2}\left(1-\exp \left\{-1 / C_{q}\right\}\right)}\right] \\
= & O(N T),
\end{aligned}
$$

so that, using Markov's inequality, we deduce that $\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}=O_{p}(\sqrt{N T})$.
Moreover, using Assumptions 2 and 4, we obtain

$$
\begin{aligned}
\sum_{i=1}^{N} E\left[a_{i}^{2}\right] & =N\left(\mu_{a}^{2}+\sigma_{a}^{2}\right)=O(N) \\
\sum_{i=1}^{N} E\left(\sum_{t=g+1}^{T} \rho_{T}^{t-g} w_{i 0}\right)^{2} & \leq N \sup _{i} E\left[w_{i 0}^{2}\right] \rho_{T}^{2} \frac{\left(1-\rho_{T}^{T-g}\right)^{2}}{\left(1-\rho_{T}\right)^{2}}=O(N) O(1)=O(N),
\end{aligned}
$$

from which it follows by Markov's inequality that

$$
\sum_{i=1}^{N} a_{i}^{2}=O_{p}(N), \sum_{i=1}^{N}\left(\sum_{t=g+1}^{T} \rho_{T}^{t-g} w_{i 0}\right)^{2}=O_{p}(N)
$$

Applying the Cauchy-Schwarz inequality, we further obtain that

$$
\left|\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \rho_{T}^{t-g} w_{i 0}\right| \leq \sqrt{\sum_{i=1}^{N} a_{i}^{2}} \sqrt{\sum_{i=1}^{N}\left(\sum_{t=g+1}^{T} \rho_{T}^{t-g} w_{i 0}\right)^{2}}=O_{p}(\sqrt{N}) O_{p}(\sqrt{N})=O_{p}(N),
$$

so that

$$
\begin{aligned}
\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} w_{i t-g, T} & =\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \underline{w}_{i t-g, T}+\sum_{i=1}^{N} \sum_{t=g+1}^{T} a_{i} \rho_{T}^{t-g} w_{i 0} \\
& =O_{p}(\sqrt{N T})+O_{p}(N)=O_{p}(\max \{\sqrt{N T}, N\})
\end{aligned}
$$

as required for part (e).
Lemma SE-19 (Phillips and Moon, 1999, Theorem 3): Suppose that $Y_{i, T}=C_{i} Q_{i, T}$, where the $(m \times 1)$ random vectors $Q_{i, T}$ are i.i.d. $\left(0, \Sigma_{T}\right)$ across i for all T and the C_{i} are $(m \times m)$ nonzero and nonrandom matrices. Assume the following conditions hold.
(i) Let $\sigma_{T}^{2}=\lambda_{\text {min }}\left(\Sigma_{T}\right)$ and $\liminf _{T} \sigma_{T}^{2}>0$;
(ii) $\max _{1 \leq i \leq n}\left\|C_{i}\right\|^{2} / \lambda_{\min }\left(\sum_{i=1}^{N} C_{i} C_{i}^{\prime}\right)=O(1 / N)$ as $N \rightarrow \infty$;
(iii) $\left\|Q_{i, T}\right\|^{2}$ are uniformly integrable in T;
(iv) $\lim _{N, T}(1 / N) \sum_{i=1}^{N} C_{i} \Sigma_{T} C_{i}^{\prime}=\Omega>0$.

Then,

$$
X_{N, T}=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} Y_{i, T} \Rightarrow N(0, \Omega), \text { as } N, T \rightarrow \infty
$$

Lemma SE-20:

Let g be a non-negative integer. Under Assumptions 1 and 4 , the following results hold as $N, T \rightarrow \infty$.
(a) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$, then

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} w_{i t-g-1, T} \varepsilon_{i t-g} \Rightarrow N\left(0, \frac{\sigma^{4}}{2}\right)
$$

(b) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} w_{i t-g-1, T} \varepsilon_{i t-g} \Rightarrow N\left(0, \frac{\sigma^{4}}{2}\right)
$$

Proof of Lemma SE-20:

Consider first part (a), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$. Write

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} w_{i t-g-1, T} \varepsilon_{i t-g}=\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \underline{w}_{i t-g-1, T} \varepsilon_{i t-g}+\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \varepsilon_{i t-g} \rho_{T}^{t-g-1} w_{i 0},
$$

where $\underline{w}_{i t-g-1, T}=\sum_{j=1}^{t-g-1} \rho_{T}^{(t-g-1-j)} \varepsilon_{i j}$. Note that

$$
\begin{aligned}
& \frac{1}{T} \sum_{t=2}^{T} \underline{w}_{i t, T}^{2} \\
= & \frac{1}{T} \sum_{t=2}^{T}\left(\exp \left(-\frac{1}{q(T)}\right) \underline{w}_{i t-1, T}+\varepsilon_{i t}\right)^{2} \\
= & \frac{1}{T} \sum_{t=2}^{T} \varepsilon_{i t}^{2}+2 \exp \left\{-\frac{1}{q(T)}\right\} \frac{1}{T} \sum_{t=2}^{T} \underline{w}_{i t-, T} \varepsilon_{i t}+\exp \left\{-\frac{2}{q(T)}\right\} \frac{1}{T} \sum_{t=g+2}^{T} \underline{w}_{i t-1, T}^{2}
\end{aligned}
$$

so that

$$
\begin{aligned}
& \frac{1}{T} \sum_{t=2}^{T} \underline{w}_{i t-1, T} \varepsilon_{i t} \\
= & \frac{1}{2} \exp \left\{\frac{1}{q(T)}\right\}\left[\frac{1}{T} \sum_{t=2}^{T} \underline{w}_{i t, T}^{2}-\exp \left\{-\frac{2}{q(T)}\right\} \frac{1}{T} \sum_{t=1}^{T} \underline{w}_{i t-1, T}^{2}-\frac{1}{T} \sum_{t=1}^{T} \varepsilon_{i t}^{2}\right] .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \frac{1}{T} \sum_{t=2}^{T} \underline{w}_{i t, T}^{2}-\exp \left\{-\frac{2}{q(T)}\right\} \frac{1}{T} \sum_{t=2}^{T} \underline{w}_{i t-1, T}^{2} \\
= & \frac{1}{T} \sum_{t=2}^{T} \underline{w}_{i t, T}^{2}-\left[1-\frac{2}{q(T)}+O\left(\frac{1}{q(T)^{2}}\right)\right] \frac{1}{T} \sum_{t=2}^{T} \underline{w}_{i t-1, T}^{2} \\
= & \frac{1}{T} \sum_{t=2}^{T} \underline{w}_{i t, T}^{2}-\frac{1}{T} \sum_{t=2}^{T} \underline{w}_{i t-1, T}^{2}+\frac{2 T}{q(T)}\left(\frac{1}{T^{2}} \sum_{t=2}^{T} \underline{w}_{i t-1, T}^{2}\right)+O_{p}\left(\frac{T}{q(T)^{2}}\right) \\
= & \frac{1}{T} \underline{w}_{i T, T}^{2}-\frac{1}{T} \underline{w}_{i 1, T}^{2}+\frac{2 T}{q(T)}\left(\frac{1}{T^{2}} \sum_{t=1}^{T} \underline{w}_{i t-1, T}^{2}\right)+O_{p}\left(\frac{T}{q(T)^{2}}\right) \\
= & \frac{1}{T} \underline{w}_{i T, T}^{2}-\frac{1}{T} \varepsilon_{i 1}^{2}+\frac{2 T}{q(T)}\left(\frac{1}{T^{2}} \sum_{t=2}^{T} \underline{w}_{i t-1, T}^{2}\right)+O_{p}\left(\frac{T}{q(T)^{2}}\right) \\
= & \frac{1}{T} \underline{w}_{i T, T}^{2}+O_{p}\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right) .
\end{aligned}
$$

Next, note that

$$
\frac{1}{T} \sum_{t=g+2}^{T} \underline{w}_{i t-g-1, T} \varepsilon_{i t-g}=\frac{1}{T} \sum_{t=2}^{T} \underline{w}_{i t-1, T} \varepsilon_{i t}-\frac{1}{T} \sum_{s=1}^{g-1} \underline{w}_{i T-g+s, T} \varepsilon_{i T-g+1+s}
$$

Observe that

$$
\left.\begin{array}{rl}
& E\left[\frac{1}{T} \sum_{s=1}^{g-1} \underline{w}_{i T-g+s, T} \varepsilon_{i T-g+1+s}\right]^{2} \\
= & \frac{1}{T^{2}} \sum_{s=1}^{g-1} \sum_{v=1}^{g-1} \sum_{k=1}^{T-g+s T-g+v} \sum_{\ell=1} \exp \left\{-\frac{T-g+s-k}{q(T)}\right\} \exp \left\{-\frac{T-g+v-\ell}{q(T)}\right\} E\left[\varepsilon_{i k} \varepsilon_{i \ell} \varepsilon_{i T-g+1+s} \varepsilon_{i T-g+1+v}\right] \\
= & \frac{\sigma^{4}}{T^{2}} \sum_{s=1}^{g-1 T-g+s} \sum_{k=1}^{T-s} \exp \left\{-2 \frac{T-g+s-k}{q(T)}\right\} \\
= & \frac{\sigma^{4}}{T^{2}} \sum_{s=1}^{g-1}\left[1-\exp \left\{-\frac{2}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-2 \frac{T-g+s}{q(T)}\right\}\right] \\
= & \frac{\sigma^{4}}{T^{2}}\left[1-\exp \left\{-\frac{2}{q(T)}\right\}\right]^{-1}(g-1) \\
& -\frac{\sigma^{4}}{T^{2}}\left[1-\exp \left\{-\frac{2}{q(T)}\right\}\right]^{-1} \exp \left\{-2 \frac{T-g+1}{q(T)}\right\} \sum_{s=1}^{g-1} \exp \left\{-2 \frac{s-1}{q(T)}\right\} \\
= & \frac{\sigma^{4}}{T^{2}}\left[1-\exp \left\{-\frac{2}{q(T)}\right\}\right]^{-1}(g-1) \\
& -\frac{\sigma^{4}}{T^{2}}\left[1-\exp \left\{-\frac{2}{q(T)}\right\}\right]^{-2} \exp \left\{-2 \frac{T-g+1}{q(T)}\right\}\left[1-\exp \left\{-2 \frac{g-1}{q(T)}\right\}\right] \\
= & \frac{\sigma^{4}}{T^{2}}(g-1) \frac{q(T)}{2}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
& -\frac{\sigma^{4}}{T^{2}} \frac{q(T)^{2}}{4}\left[1+O\left(\frac{1}{q(T)}\right)\right]\left[1-2 \frac{T-g+1}{q(T)}+\frac{4(T-g+1)^{2}}{2!q(T)^{2}}+O\left(\frac{T^{3}}{q(T)^{3}}\right)\right] \\
& \times\left[2 \frac{g-1}{q(T)}-\frac{4(g-1)^{2}}{2!q(T)^{2}}+O\left(\frac{1}{q(T)^{3}}\right)\right] \\
= & \frac{\sigma^{4}}{T^{2}}(g-1) \frac{q(T)}{2}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
= & -\frac{\sigma^{4}}{T^{2}} \frac{q(T)^{2}}{4}\left[\frac{2(g-1)}{q(T)}-\frac{4 T(g-1)}{q(T)^{2}}+\frac{4(g-1)^{2}}{q(T)^{2}}-\frac{2(g-1)^{2}}{q(T)^{2}}+O\left(\frac{T^{3}}{q(T)^{3}}\right)\right] \\
= & \frac{\sigma^{4}(g-1)}{2} \frac{q(T)}{T^{2}}-\frac{\sigma^{4}(g-1)}{2} \frac{q(T)}{T^{2}}+\frac{\sigma^{4}(g-1)}{T}+O\left(\frac{1}{T^{2}}\right)+O\left(\frac{T}{q(T)}\right) \\
=O\left(\frac{1}{T^{2}}\right)+O\left(\frac{T}{q(T)}\right)=O\left(\frac{1}{T}\right) \\
\hline
\end{array}\right)
$$

so that applying Markov's inequality, we obtain

$$
\frac{1}{T} \sum_{s=1}^{g-1} \underline{w}_{i T-g+s, T} \varepsilon_{i T-g+1+s}=O_{p}\left(\frac{1}{\sqrt{T}}\right)
$$

Hence,

$$
\begin{align*}
& \frac{1}{T} \sum_{t=g+2}^{T} \underline{w}_{i t-g-1, T} \varepsilon_{i t-g} \\
= & \frac{1}{T} \sum_{t=2}^{T} \underline{w}_{i t-1, T} \varepsilon_{i t}-\frac{1}{T} \sum_{s=1}^{g-1} \underline{w}_{i T-g+s, T} \varepsilon_{i T-g+1+s} \\
= & \frac{1}{2} \exp \left\{\frac{1}{q(T)}\right\}\left[\frac{1}{T} \sum_{t=1}^{T} \underline{w}_{i t}^{2}-\exp \left\{-\frac{2}{q(T)}\right\} \frac{1}{T} \sum_{t=1}^{T} \underline{w}_{i t-1}^{2}-\frac{1}{T} \sum_{t=1}^{T} \varepsilon_{i t}^{2}\right]+O_{p}\left(\frac{1}{\sqrt{T}}\right) \\
= & {\left[\frac{1}{2 T} \underline{w}_{i T}^{2}-\frac{1}{2 T} \sum_{t=1}^{T} \varepsilon_{i t}^{2}+O_{p}\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right]\left[1+O\left(\frac{1}{q(T)}\right)\right]+O_{p}\left(\frac{1}{\sqrt{T}}\right) } \\
= & \frac{1}{2 T} \underline{w}_{i T}^{2}-\frac{1}{2} \sigma^{2}+O_{p}\left(\frac{T}{q(T)}\right)+O_{p}\left(\frac{1}{\sqrt{T}}\right) \\
\Rightarrow & \frac{1}{2}\left[\sigma W_{i}(1)\right]^{2}-\frac{1}{2} \sigma^{2} \equiv \frac{\sigma^{2}}{2}\left(\left[W_{i}(1)\right]^{2}-1\right), \tag{22}
\end{align*}
$$

where the last line follows from applying Lemma SE-12 with $r=1$ and the Cramér convergence theorem. Moreover, note that

$$
\begin{aligned}
d\left[W_{i}(g)\right]^{2} & =\left(W_{i}(g)+d W_{i}(g)\right)^{2}-\left[W_{i}(g)\right]^{2} \\
& =\left[W_{i}(g)\right]^{2}+2 W_{i}(g) d W_{i}(g)+\left[d W_{i}(g)\right]^{2}-\left[W_{i}(g)\right]^{2} \\
& =2 W_{i}(g) d W_{i}(g)+\left[d W_{i}(g)\right]^{2} \\
& =2 W_{i}(g) d W_{i}(g)+d g \text { a.s. }
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\int_{0}^{1} W_{i}(g) d W_{i}(g)=\frac{1}{2}\left(\left[W_{i}(1)\right]^{2}-1\right) . \tag{23}
\end{equation*}
$$

Substituting (23) into (22), we obtain

$$
\frac{1}{T} \sum_{t=g+2}^{T} \underline{w}_{i t-g-1, T} \varepsilon_{i t-g} \Rightarrow \sigma^{2} \int_{0}^{1} W_{i}(g) d W_{i}(g),
$$

as $T \rightarrow \infty$.
Next, we verify the conditions of Theorem 3 of Phillips and Moon (1999), given above as Lemma SE-19. First define

$$
Q_{i, T}=\frac{1}{T} \sum_{t=g+2}^{T} \underline{w}_{i t-g-1, T} \varepsilon_{i t-g},
$$

and note that by direct calculation and by applying the results given parts (a) and (b) of Lemma SE-1
with $d=2$ and $b=g+2$, we have

$$
\begin{aligned}
& \lim _{T \rightarrow \infty} \inf _{T} \sigma_{T}^{2}=\lim \inf _{T \rightarrow \infty} E\left[Q_{i, T}^{2}\right]=\lim _{T \rightarrow \infty} E\left[\sum_{i=1}^{N} \sum_{t=g+2}^{T} \underline{w}_{i t-g-1, T} \varepsilon_{i t-g}\right]^{2} \\
= & \lim _{T \rightarrow \infty} \frac{1}{T^{2}} \sum_{t=g+2}^{T} \sum_{s=g+2}^{T} \sum_{k=1}^{t-g-1} \sum_{\ell=1}^{s-g-1} \exp \left\{-\frac{t-g-1-k}{q(T)}\right\} \exp \left\{-\frac{s-g-1-\ell}{q(T)}\right\} E\left[\varepsilon_{i k} \varepsilon_{j \ell} \varepsilon_{i t-g} \varepsilon_{j s-g}\right] \\
= & \sigma^{4} \lim _{T \rightarrow \infty} \frac{1}{T^{2}} \sum_{t=g+2}^{T} \sum_{k=1}^{t-g-1} \exp \left\{-2 \frac{t-g-1-k}{q(T)}\right\}=\frac{\sigma^{4}}{2}>0,
\end{aligned}
$$

so that condition (i) of Lemma SE-19 is satisfied. Moreover, in this case, we have $C_{i}=1$ for all i, so that $\max _{1 \leq i \leq n}\left\|C_{i}\right\|^{2} / \lambda_{\min }\left(\sum_{i=1}^{N} C_{i} C_{i}^{\prime}\right)=1 / N=O(1 / N)$ as required by condition (ii). Next, note that by (22) above,

$$
Q_{i, T}=\frac{1}{T} \sum_{t=g+2}^{T} \underline{w}_{i t-g-1, T} \varepsilon_{i t-g} \Rightarrow \frac{\sigma^{2}}{2}\left[\chi_{1}^{2}-1\right] \equiv Q
$$

as $T \rightarrow \infty$, so that by the continuous mapping theorem

$$
Q_{i, T}^{2} \Rightarrow Q^{2} \equiv \frac{\sigma^{4}}{4}\left[\chi_{1}^{2}-1\right]^{2}, \text { as } T \rightarrow \infty .
$$

In addition,

$$
\begin{aligned}
E\left[Q^{2}\right] & =\frac{\sigma^{4}}{4}\left\{E\left[\chi_{1}^{2}\right]^{2}-2 E\left[\chi_{1}^{2}\right]+1\right\}=\frac{\sigma^{4}}{4}\{3-2+1\} \\
& =\frac{\sigma^{4}}{2}
\end{aligned}
$$

and note that, as $T \rightarrow \infty$,

$$
\lim _{T \rightarrow \infty} E\left[Q_{i, T}^{2}\right]=\sigma^{4} \lim _{T \rightarrow \infty} \frac{1}{T^{2}} \sum_{t=g+2}^{T} \sum_{k=1}^{t-g-1} \exp \left\{-2 \frac{t-g-1-k}{q(T)}\right\}=\frac{\sigma^{4}}{2}=E\left[Q^{2}\right] .
$$

It follows again from Theorem 5.4 of Billingsley (1968) that $\left\{Q_{i, T}^{2}\right\}$ is uniformly integrable, so that condition (iii) of Lemma SE-19 is satisfied. Finally, note that in this case

$$
\lim _{N, T}(1 / N) \sum_{i=1}^{N} C_{i} \Sigma_{T} C_{i}^{\prime}=\lim _{N, T}(1 / N) \sum_{i=1}^{N} E\left[Q_{i, T}^{2}\right]=\frac{\sigma^{4}}{2}>0
$$

so that condition (iv) is satisfied as well. It follows then from Lemma SE-19 that

$$
\frac{1}{\sqrt{N}} \sum_{i=1}^{N} Q_{i, T}=\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \underline{w}_{i t-g-1, T} \varepsilon_{i t-g} \Rightarrow N\left(0, \frac{\sigma^{4}}{2}\right)
$$

as $N, T \rightarrow \infty$.

Moreover, by Assumptions 1 and 4,

$$
\begin{aligned}
& E\left[\left(\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \varepsilon_{i t-g} \rho_{T}^{t-g-1} w_{i 0}\right)^{2}\right] \\
= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+2}^{T} E\left[w_{i 0} w_{j 0}\right] \rho_{T}^{t-g-1} \rho_{T}^{s-g-1} E\left[\varepsilon_{i t-g} \varepsilon_{j s-g}\right] \\
= & \frac{\sigma^{2}}{N T^{2}} \sum_{i=1}^{N} E\left[w_{i 0}^{2}\right] \sum_{t=g+2}^{T} \rho_{T}^{2(t-g-1)} \\
= & \frac{\sigma^{2}}{T^{2}}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \exp \left\{-\frac{2}{q(T)}\right\}\left[1-\exp \left\{-\frac{2}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2(T-g-1)}{q(T)}\right\}\right] \\
= & O\left(T^{-2}\right) \times O(1) \times O(1) \times O(q(T)) \times O(T / q(T))=O\left(T^{-1}\right) .
\end{aligned}
$$

It follows from Markov's inequality that

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \varepsilon_{i t-g} \rho_{T}^{t-g-1} w_{i 0}=O_{p}\left(\frac{1}{\sqrt{T}}\right)
$$

Hence,

$$
\begin{aligned}
& \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} w_{i t-g-1, T} \varepsilon_{i t-g}=\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \underline{w}_{i t-g-1, T} \varepsilon_{i t-g}+\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \varepsilon_{i t-g} \rho_{T}^{t-g-1} w_{i 0} \\
= & \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \underline{w}_{i t-g-1, T} \varepsilon_{i t-g}+O_{p}\left(\frac{1}{\sqrt{T}}\right) \Rightarrow N\left(0, \frac{\sigma^{4}}{2}\right)
\end{aligned}
$$

which is the desired result.
To show part (b), note that, in this case,

$$
w_{i t, T}=\underline{w}_{i t, T}+\rho_{T}^{t-g-1} w_{i 0}=\sum_{j=1}^{t} \varepsilon_{i j}+w_{i 0}
$$

where the second equality holds for all T sufficiently large. Now, by direct calculation,

$$
\begin{aligned}
& E\left[\frac{1}{T} \sum_{s=1}^{g-1} \underline{w}_{i T-g+s, T} \varepsilon_{i T-g+1+s, T}\right]^{2}=\frac{1}{T^{2}} \sum_{s=1}^{g-1} \sum_{v=1}^{g-1} \sum_{k=1}^{T-g+s} \sum_{\ell=1}^{T-g+v} E\left[\varepsilon_{i k} \varepsilon_{i \ell} \varepsilon_{i T-g+1+s} \varepsilon_{i T-g+1+v}\right] \\
= & \frac{\sigma^{4}}{T^{2}} \sum_{s=1}^{g-1}(T-g+s)=\frac{\sigma^{4}}{T^{2}}\left[(T-g)(g-1)+\frac{g(g-1)}{2}\right]=O\left(\frac{1}{T}\right),
\end{aligned}
$$

so that we can apply Markov's inequality to obtain

$$
\frac{1}{T} \sum_{s=1}^{g-1} \underline{w}_{i T-g+s, T} \varepsilon_{i T-g+1+s, T}=O_{p}\left(\frac{1}{\sqrt{T}}\right)
$$

Using this result and following the arguments of part (b) of Theorem 3.1 in Phillips (1987), we further obtain

$$
\begin{aligned}
& \frac{1}{T} \sum_{t=g+2}^{T} \underline{w}_{i t-g-1, T} \varepsilon_{i t-g}=\frac{1}{T} \sum_{t=2}^{T} \underline{w}_{i t-1, T} \varepsilon_{i t}-\frac{1}{T} \sum_{s=1}^{g-1} \underline{w}_{i T-g+s, T} \varepsilon_{i T-g+1+s} \\
= & \frac{1}{T} \sum_{t=2}^{T} \underline{w}_{i t-1, T} \varepsilon_{i t}+O_{p}\left(\frac{1}{\sqrt{T}}\right) \Rightarrow \frac{\sigma^{2}}{2}\left(\left[W_{i}(1)\right]^{2}-1\right) .
\end{aligned}
$$

Next, we verify the conditions of Theorem 3 of Phillips and Moon (1999), given above as Lemma SE-19. To proceed, define $Q_{i, T}=T^{-1} \sum_{t=g+2}^{T} \underline{w}_{i t-g-1, T} \varepsilon_{i t-g}$ as before, and note that by direct calculation, we have

$$
\begin{aligned}
& \lim _{T \rightarrow \infty} \inf _{T} \sigma_{T}^{2}=\lim \inf _{T \rightarrow \infty} E\left[Q_{i, T}^{2}\right]=\lim _{T \rightarrow \infty} \frac{1}{T^{2}} \sum_{t=g+2}^{T} \sum_{s=g+2}^{T} \sum_{k=1}^{t-g-1} \sum_{\ell=1}^{s-g-1} E\left[\varepsilon_{i k} \varepsilon_{j \ell} \varepsilon_{i t-g} \varepsilon_{j s-g}\right] \\
= & \sigma^{4} \lim _{T \rightarrow \infty} \frac{1}{T^{2}} \sum_{t=g+2}^{T}(t-g-1)=\sigma^{4} \lim _{T \rightarrow \infty} \frac{1}{T^{2}} \frac{(T-g)(T-g-1)}{2}=\frac{\sigma^{4}}{2}>0 .
\end{aligned}
$$

The rest of the steps for verifying the conditions of Lemma SE-19 follows in a manner similar to that given in part (a) above. Hence, by applying Lemma SE-19, we deduce that

$$
\frac{1}{\sqrt{N}} \sum_{i=1}^{N} Q_{i, T}=\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \underline{w}_{i t-g-1, T} \varepsilon_{i t-g} \Rightarrow N\left(0, \frac{\sigma^{4}}{2}\right),
$$

as $N, T \rightarrow \infty$.
Moreover, by Assumptions 1 and 4,

$$
\begin{aligned}
& E\left[\left(\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \varepsilon_{i t-g} w_{i 0}\right)^{2}\right]=\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=g+2}^{T} \sum_{s=g+2}^{T} E\left[w_{i 0} w_{j 0}\right] E\left[\varepsilon_{i t-g} \varepsilon_{j s-g}\right] \\
= & \frac{\sigma^{2}}{N T^{2}}(T-g-1) \sum_{i=1}^{N} E\left[w_{i 0}^{2}\right]=\frac{\sigma^{2}}{T}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right)\left[1+O\left(\frac{1}{T}\right)\right]=O\left(T^{-1}\right) .
\end{aligned}
$$

It follows from Markov's inequality that

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \varepsilon_{i t-g} w_{i 0}=O_{p}\left(\frac{1}{\sqrt{T}}\right) .
$$

Hence, in this case

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} w_{i t-g-1, T} \varepsilon_{i t-g}=\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \underline{w}_{i t-g-1, T} \varepsilon_{i t-g}+\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \varepsilon_{i t-g} w_{i 0}
$$

(for all T sufficiently large)

$$
=\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \underline{w}_{i t-g-1, T} \varepsilon_{i t-g}+O_{p}\left(\frac{1}{\sqrt{T}}\right) \Rightarrow N\left(0, \frac{\sigma^{4}}{2}\right),
$$

which is the desired result.

Lemma SE-21:

Let $\underline{w}_{i T-2}=\sum_{j=1}^{T-2} \rho_{T}^{(T-2-j)} \varepsilon_{i j}$. Under Assumptions 1 and 4, the following statements are true, as $N, T \rightarrow \infty$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2, T} \varepsilon_{i T}=\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}(1)
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$, then

$$
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2, T} \varepsilon_{i T}=\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}(1)
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2, T} \varepsilon_{i T}=\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}(1) .
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\begin{aligned}
\frac{1}{\sqrt{N q(T)}} \sum_{i=1}^{N} w_{i T-2, T} \varepsilon_{i T} & =\frac{1}{\sqrt{N q(T)}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{q(T)}} \exp \left\{-\frac{T}{q(T)}\right\}\right) \\
& =O_{p}(1)
\end{aligned}
$$

(e) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\frac{1}{\sqrt{N}} \sum_{i=1}^{N} w_{i T-2, T} \varepsilon_{i T}=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}+O_{p}\left(\rho_{T}^{(T-2)}\right)=O_{p}(1)
$$

Proof of Lemma SE-21:

To proceed, write

$$
\sum_{i=1}^{N} w_{i T-2, T} \varepsilon_{i T}=\sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}+\sum_{i=1}^{N} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0}
$$

where $\underline{w}_{i T-2}=\sum_{j=1}^{T-2} \rho_{T}^{(T-2-j)} \varepsilon_{i j}$.

Now, consider part (a) where, by assumption, there exists a positive integer I_{ρ} such that for all $T \geq I_{\rho}$, the sequence $\left\{\underline{w}_{i T-2, T}\right\}$ has the partial sum representation $\underline{w}_{i T-2, T}=\sum_{j=1}^{T-2} \varepsilon_{i j}$. Hence, for all $T \geq I_{\rho}$, we have by direct calculation,

$$
\begin{aligned}
& E\left[\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}\right]^{2}=\frac{1}{N T} \sum_{i=1}^{N} \sum_{h=1}^{N} \sum_{j=1}^{T-2} \sum_{k=1}^{T-2} E\left[\varepsilon_{i j} \varepsilon_{i T} \varepsilon_{h k} \varepsilon_{h T}\right] \\
= & \frac{1}{N T} \sum_{i=1}^{N} \sum_{j=1}^{T-2} E\left[\varepsilon_{i j}^{2}\right] E\left[\varepsilon_{i T}^{2}\right]=\sigma^{4} \frac{N(T-2)}{N T}=O(1) .
\end{aligned}
$$

It follows from Markov's inequality that $(N T)^{-1 / 2} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}=O_{p}(1)$.
Moreover, by Assumptions 1 and 4,

$$
\begin{aligned}
E\left[\left(\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i T} w_{i 0}\right)^{2}\right] & =\frac{1}{N T} \sum_{i=1}^{N} \sum_{j=1}^{N} E\left[w_{i 0} w_{j 0}\right] E\left[\varepsilon_{i T} \varepsilon_{j T}\right] \\
& \leq \sigma^{2} \frac{N}{N T}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right)=O\left(T^{-1}\right)
\end{aligned}
$$

from which, it follows by Markov's inequality

$$
\begin{equation*}
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i T} w_{i 0}=O_{p}\left(\frac{1}{\sqrt{T}}\right) . \tag{24}
\end{equation*}
$$

Hence, in this case,

$$
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2, T} \varepsilon_{i T}=\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i T} w_{i 0}
$$

$$
\text { (for all } T \text { sufficiently large) }
$$

$$
=\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}(1)
$$

as required for part (a).
Next, to show parts (b)-(d), note first that

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}\right]^{2} \\
= & \sum_{i=1}^{N} \sum_{h=1}^{N} \sum_{j=1}^{T-2} \sum_{k=1}^{T-2} \exp \left\{-\left(\frac{T-2-j}{q(T)}\right)\right\} \exp \left\{-\left(\frac{T-2-k}{q(T)}\right)\right\} E\left[\varepsilon_{i j} \varepsilon_{i T} \varepsilon_{h k} \varepsilon_{h T}\right] \\
= & \sum_{i=1}^{N} \sum_{j=1}^{T-2} \exp \left\{-2\left(\frac{T-2-j}{q(T)}\right)\right\} E\left[\varepsilon_{i j}^{2}\right] E\left[\varepsilon_{i T}^{2}\right] \\
= & \sigma^{4} N \sum_{j=1}^{T-2} \exp \left\{-2\left(\frac{T-2-j}{q(T)}\right)\right\} .
\end{aligned}
$$

Now, consider part (b), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$. Making use of part (a) of Lemma SE- 3 with $b=2$ and $g=2$, we have

$$
\sum_{j=1}^{T-2} \exp \left\{-2\left(\frac{T-2-j}{q(T)}\right)\right\}=T\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right]=O(T)
$$

It follows that in this case

$$
E\left[\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}\right]^{2}=\sigma^{4} \frac{N}{N T} \sum_{j=1}^{T-2} \exp \left\{-2\left(\frac{T-2-j}{q(T)}\right)\right\}=O(1),
$$

from which we deduce, using Markov's inequality, that $(N T)^{-1 / 2} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}=O_{p}(1)$.
Moreover, by Assumptions 1 and 4,

$$
\begin{aligned}
E\left[\left(\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0}\right)^{2}\right] & =\frac{1}{N T} \sum_{i=1}^{N} \sum_{j=1}^{N} \rho_{T}^{2(T-2)} E\left[w_{i 0} w_{j 0}\right] E\left[\varepsilon_{i T} \varepsilon_{j T}\right] \\
& \leq \sigma^{2} \frac{N}{N T}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \exp \left\{-\frac{2(T-2)}{q(T)}\right\}=O\left(T^{-1}\right)
\end{aligned}
$$

from which it follows by Markov's inequality that

$$
\begin{equation*}
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0}=O_{p}\left(\frac{1}{\sqrt{T}}\right) . \tag{25}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2, T} \varepsilon_{i T} & =\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0} \\
& =\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}(1)
\end{aligned}
$$

as required for part (b).
We now turn our attention to part (c), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. Using part (b) of Lemma SE-3 with $b=2$ and $g=2$, we have that

$$
\begin{aligned}
E\left[\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}\right]^{2} & =\sigma^{4} \frac{N}{N T} \sum_{j=1}^{T-2} \exp \left\{-2\left(\frac{T-2-j}{q(T)}\right)\right\} \\
& =\frac{\sigma^{4}}{2} N \frac{q(T)}{N T}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& =O(1)
\end{aligned}
$$

so that again we deduce that $(N T)^{-1 / 2} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}=O_{p}(1)$.

Moreover, by Assumptions 1 and 4,

$$
\begin{aligned}
E\left[\left(\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0}\right)^{2}\right] & =\frac{1}{N T} \sum_{i=1}^{N} \sum_{j=1}^{N} \rho_{T}^{2(T-2)} E\left[w_{i 0} w_{j 0}\right] E\left[\varepsilon_{i T} \varepsilon_{j T}\right] \\
& \leq \frac{\sigma^{2}}{T}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \exp \left\{-\frac{2(T-2)}{q(T)}\right\}=O\left(T^{-1}\right)
\end{aligned}
$$

from which it follows by Markov's inequality that

$$
\begin{equation*}
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0}=O_{p}\left(\frac{1}{\sqrt{T}}\right) \tag{26}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i T-2, T} \varepsilon_{i T} & =\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0} \\
& =\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}(1)
\end{aligned}
$$

which shows part (c).
For part (d), we consider the case where $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$. In this case, we use part (c) of Lemma SE-3 with $b=2$ and $g=2$ to obtain

$$
\begin{aligned}
E\left[\frac{1}{\sqrt{N q(T)}} \sum_{i=1}^{N} w_{i T-2, T} \varepsilon_{i T}\right]^{2} & =\sigma^{4} \frac{N}{N q(T)} \sum_{j=1}^{T-2} \exp \left\{-2\left(\frac{T-2-j}{q(T)}\right)\right\} \\
& =\frac{\sigma^{4}}{2} \frac{N q(T)}{N q(T)}\left[1+O\left(\frac{1}{q(T)}\right)\right]=O(1)
\end{aligned}
$$

from which it follows, by Markov's inequality, that $(N q(T))^{-1 / 2} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}=O_{p}(1)$.
Moreover, by Assumptions 1 and 4,

$$
\begin{aligned}
E\left[\left(\frac{1}{\sqrt{N q(T)}} \sum_{i=1}^{N} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0}\right)^{2}\right] & =\frac{1}{N q(T)} \sum_{i=1}^{N} \sum_{j=1}^{N} \rho_{T}^{2(T-2)} E\left[w_{i 0} w_{j 0}\right] E\left[\varepsilon_{i T} \varepsilon_{j T}\right] \\
& \leq \sigma^{2} \frac{N}{N q(T)}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \exp \left\{-\frac{2(T-2)}{q(T)}\right\} \\
& =O\left(\frac{1}{q(T)} \exp \left\{-\frac{2 T}{q(T)}\right\}\right)
\end{aligned}
$$

from which it follows by Markov's inequality that

$$
\begin{equation*}
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0}=O_{p}\left(\frac{1}{\sqrt{q(T)}} \exp \left\{-\frac{T}{q(T)}\right\}\right) \tag{27}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
\frac{1}{\sqrt{N q(T)}} \sum_{i=1}^{N} w_{i T-2, T} \varepsilon_{i T} & =\frac{1}{\sqrt{N q(T)}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}+\frac{1}{\sqrt{N q(T)}} \sum_{i=1}^{N} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0} \\
& =\frac{1}{\sqrt{N q(T)}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}+O_{p}\left(\frac{1}{\sqrt{q(T)}} \exp \left\{-\frac{T}{q(T)}\right\}\right)=O_{p}(1),
\end{aligned}
$$

as required for part (d)
Finally, to show part (e), note that since, in this case, $q(T)=O(1)$, there is some positive constant C_{q} and some positive integer T^{*} such that for all $T \geq T^{*}$

$$
0 \leq \rho_{T}^{2}=\exp \left\{-\frac{2}{q(T)}\right\} \leq \exp \left\{-\frac{2}{C_{q}}\right\}<1,
$$

from which it follows that

$$
\begin{aligned}
E\left[\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}\right]^{2} & =\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{N} \sum_{j=1}^{T-2} \sum_{\ell=1}^{T-2} \rho_{T}^{(T-2-j)} \rho_{T}^{(T-2-\ell)} E\left[\varepsilon_{i j} \varepsilon_{i T} \varepsilon_{k \ell} \varepsilon_{k T}\right] \\
& =\sigma^{4} \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{T-2} \rho_{T}^{2(T-2-j)} \\
& =\sigma^{4} N \frac{1}{N} \frac{1-\rho_{T}^{2(T-2)}}{1-\rho_{T}^{2}} \\
& \leq \frac{\sigma^{4}}{1-\exp \left\{-2 / C_{q}\right\}} \quad\left(\text { for all } T \geq T^{*}\right) \\
& =O(1) .
\end{aligned}
$$

It follows from applying Markov's inequality that $N^{-1 / 2} \sum_{i=1}^{N} w_{i T-2, T} \varepsilon_{i T}=O_{p}(1)$
Moreover, by Assumptions 1 and 4,

$$
\begin{aligned}
E\left[\left(\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0}\right)^{2}\right] & =\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} E\left[w_{i 0} w_{j 0}\right] \rho_{T}^{2(T-2)} E\left[\varepsilon_{i T} \varepsilon_{j T}\right] \\
& =\frac{\sigma^{2}}{N} \sum_{i=1}^{N} E\left[w_{i 0}^{2}\right] \rho_{T}^{2(T-2)} \\
& \leq \sigma^{2}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \rho_{T}^{2(T-2)}=O\left(\rho_{T}^{2(T-2)}\right)
\end{aligned}
$$

from which it follows by Markov's inequality that

$$
\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0}=O_{p}\left(\rho_{T}^{(T-2)}\right)
$$

Hence,

$$
\begin{aligned}
\frac{1}{\sqrt{N}} \sum_{i=1}^{N} w_{i T-2, T} \varepsilon_{i T} & =\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}+\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0} \\
& =\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \underline{w}_{i T-2, T} \varepsilon_{i T}+O_{p}\left(\rho_{T}^{(T-2)}\right)=O_{p}(1)
\end{aligned}
$$

as required for part (e).
To facilitate stating the next lemma, we introduce the following notations

$$
\begin{align*}
X_{i, T} & =-\frac{1}{\sqrt{T}} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1} \tag{28}\\
Y_{i, T} & =\frac{1}{\sqrt{T}} w_{i T-2} \varepsilon_{i T} .
\end{align*}
$$

Lemma SE-22:

Under Assumptions 1 and 4, the following statements are true as $N, T \rightarrow \infty$.
(a) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$, then

$$
\frac{1}{\sqrt{2} \sigma^{2} \sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+Y_{i, T}\right) \Rightarrow N(0,1) .
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\frac{1}{\bar{\omega}_{T} \sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+Y_{i, T}\right) \Rightarrow N(0,1),
$$

where

$$
\bar{\omega}_{T}=\sigma^{2} \sqrt{1+\frac{q(T)}{T}\left[\frac{1-\exp \{-2 T / q(T)\}}{2}\right]} .
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\frac{1}{\sigma^{2} \sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+Y_{i, T}\right)=\frac{1}{\sigma^{2} \sqrt{N}} \sum_{i=1}^{N} X_{i, T}+O_{p}\left(\sqrt{\frac{q(T)}{T}}\right) \Rightarrow N(0,1)
$$

Proof of Lemma SE-22:

To proceed, first decompose $Y_{i, T}$ as follows:

$$
\begin{aligned}
Y_{i, T} & =\frac{1}{\sqrt{T}} w_{i T-2, T} \varepsilon_{i T}=\frac{1}{\sqrt{T}} \underline{w}_{i T-2, T} \varepsilon_{i T}+\frac{1}{\sqrt{T}} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0} \\
& =\underline{Y}_{i, T}+\frac{1}{\sqrt{T}} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0},
\end{aligned}
$$

where $\underline{w}_{i T-2}=\sum_{j=1}^{T-2} \rho_{T}^{(T-2-j)} \varepsilon_{i j}$ and $\underline{Y}_{i, T}=\frac{1}{\sqrt{T}} \underline{w}_{i T-2, T} \varepsilon_{i T}$, and we perform some preliminary moment calculations. Let

$$
\underline{U}_{N, T}=\sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)
$$

Next, note that

$$
\begin{aligned}
E\left[X_{i, T}\right] & =-\frac{1}{\sqrt{T}} \sum_{t=4}^{T} E\left[\varepsilon_{i t-2} \varepsilon_{i t-1}\right]=0 \\
E\left[\underline{Y}_{i, T}\right] & =\frac{1}{\sqrt{T}} \sum_{j=1}^{T-2} \exp \left\{-\frac{T-2-j}{q(T)}\right\} E\left[\varepsilon_{i j} \varepsilon_{i T}\right]=0
\end{aligned}
$$

and, thus,

$$
E\left[\underline{U}_{N, T}\right]=\sum_{i=1}^{N}\left(E\left[X_{i, T}\right]+E\left[\underline{Y}_{i, T}\right]\right)=0 .
$$

In addition, note that

$$
\begin{aligned}
& E\left[X_{i, T}^{2}\right]=\frac{1}{T} \sum_{t=4}^{T} \sum_{s=4}^{T} E\left[\varepsilon_{i t-2} \varepsilon_{i t-1} \varepsilon_{i s-2} \varepsilon_{i s-1}\right]=\frac{1}{T} \sum_{t=4}^{T} E\left[\varepsilon_{i t-2}^{2}\right] E\left[\varepsilon_{i t-1}^{2}\right]=\sigma^{4}\left(\frac{T-3}{T}\right)=\sigma^{4}+O\left(\frac{1}{T}\right), \\
& E\left[\underline{Y}_{i, T}^{2}\right]=\frac{1}{T} \sum_{j=1}^{T-2} \sum_{k=1}^{T-2} \exp \left\{-\frac{T-2-j}{q(T)}\right\} \exp \left\{-\frac{T-2-k}{q(T)}\right\} E\left[\varepsilon_{i j} \varepsilon_{i k} \varepsilon_{i T} \varepsilon_{i T}\right] \\
&=\frac{1}{T} \sum_{j=1}^{T-2} \exp \left\{-2 \frac{T-2-j}{q(T)}\right\} E\left[\varepsilon_{i t}^{2}\right] E\left[\varepsilon_{i T}^{2}\right] \\
&=\sigma^{4} \frac{1}{T} \sum_{j=1}^{T-2} \exp \left\{-2 \frac{T-2-j}{q(T)}\right\}, \\
& E\left[X_{i, T} \underline{Y}_{i, T}\right]=-\frac{1}{T} \sum_{t=4}^{T} \sum_{\ell=1}^{T-2} \exp \left\{-\frac{T-2-\ell}{q(T)}\right\} E\left[\varepsilon_{i t-2} \varepsilon_{i t-1} \varepsilon_{i \ell} \varepsilon_{i T}\right] \\
&=-\frac{1}{T} \sum_{t=4}^{T} \sum_{\ell=1}^{T-2} \exp \left\{-\frac{T-2-\ell}{q(T)}\right\} E\left[\varepsilon_{i t-2} \varepsilon_{i t-1} \varepsilon_{i \ell}\right] E\left[\varepsilon_{i T}\right] \\
&=0 .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\omega_{i, T}^{2} & =E\left[\left(X_{i, T}+\underline{Y}_{i, T}\right)^{2}\right] \\
& =E\left[X_{i, T}^{2}\right]+E\left[\underline{Y}_{i, T}^{2}\right]+2 E\left[X_{i, T} \underline{Y}_{i, T}\right] \\
& =\sigma^{4}\left(\frac{T-3}{T}\right)+\sigma^{4} \frac{1}{T} \sum_{\ell=1}^{T-2} \exp \left\{-2 \frac{T-2-\ell}{q(T)}\right\},
\end{aligned}
$$

so that

$$
\omega_{N, T}^{2}=\sum_{i=1}^{N} \omega_{i, T}^{2}=\sigma^{4} N\left[\left(\frac{T-3}{T}\right)+\frac{1}{T} \sum_{\ell=1}^{T-2} \exp \left\{-2 \frac{T-2-\ell}{q(T)}\right\}\right] .
$$

Now, consider part (a), where we take $T / q(T) \rightarrow 0$. In this case, we apply part (a) of Lemma SE-3 with $b=2$ and $g=2$ to obtain

$$
\begin{align*}
\frac{\omega_{N, T}^{2}}{N} & =\frac{1}{N} \sum_{i=1}^{N} \omega_{i, T}^{2} \\
& =\sigma^{4} \frac{1}{N} N\left\{\left(\frac{T-3}{T}\right)+\frac{1}{T} T\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right]\right\} \\
& =2 \sigma^{4}+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right) . \tag{30}
\end{align*}
$$

Expression (30) and Assumption 1 then imply that there exists a positive constant C such that

$$
0<\frac{1}{C} \leq \frac{\omega_{N, T}}{\sqrt{N}} \leq C<\infty \text { eventually as } N, T \rightarrow \infty
$$

Next, note that, by the result given in expression (25)

$$
\begin{aligned}
& \frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+Y_{i, T}\right) \\
= & \frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)+\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0} \\
= & \frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)+o_{p}(1) .
\end{aligned}
$$

Hence, showing the desired result is equivalent to showing the asymptotic normality of

$$
U_{N, T}=\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right) .
$$

To show the asymptotic normality of $U_{N, T}$, it suffices to verify a Liapounov-type condition of the form

$$
\begin{equation*}
\lim _{N, T \rightarrow \infty} \frac{1}{N^{2}} \sum_{i=1}^{N} E\left[\left(X_{i, T}+\underline{Y}_{i, T}\right)^{4}\right]=0 \tag{31}
\end{equation*}
$$

To show this, note first that by Loève's c_{r} inequality, we have that

$$
\begin{align*}
& \frac{1}{N^{2}} \sum_{i=1}^{N} E\left[\left(X_{i, T}+\underline{Y}_{i, T}\right)^{4}\right] \\
\leq & \frac{1}{N^{2}} \sum_{i=1}^{N} 8\left\{E\left[\left(-\frac{1}{\sqrt{T}} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}\right)^{4}\right]+E\left[\left(\frac{1}{\sqrt{T}} \sum_{j=1}^{T-2} \exp \left\{-\frac{T-2-j}{q(T)}\right\} \varepsilon_{i j} \varepsilon_{i T}\right)^{4}\right]\right\} \\
= & 8 \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} E\left[\left(\sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}\right)^{4}\right]+8 \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} E\left[\left(\sum_{j=1}^{T-2} \exp \left\{-\frac{T-2-j}{q(T)}\right\} \varepsilon_{i j} \varepsilon_{i T}\right)^{4}\right] . \tag{32}
\end{align*}
$$

Next, note that

$$
\begin{align*}
& E\left[\left(\sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}\right)^{4}\right]=\sum_{g=4}^{T} \sum_{s=4}^{T} \sum_{t=4}^{T} \sum_{u=4}^{T} E\left[\varepsilon_{i g-2} \varepsilon_{i s-2} \varepsilon_{i t-2} \varepsilon_{i u-2} \varepsilon_{i g-1} \varepsilon_{i s-1} \varepsilon_{i t-1} \varepsilon_{i u-1}\right] \\
= & \sum_{t=4}^{T} E\left[\varepsilon_{i t-2}^{4}\right] E\left[\varepsilon_{i t-1}^{4}\right]+6 \sum_{s=6}^{T} \sum_{t=4}^{s-2} E\left[\varepsilon_{i s-2}^{2}\right] E\left[\varepsilon_{i s-1}^{2}\right] E\left[\varepsilon_{i t-2}^{2}\right] E\left[\varepsilon_{i t-1}^{2}\right] \\
& +6 \sum_{t=4}^{T-1} E\left[\varepsilon_{i t}^{2}\right] E\left[\varepsilon_{i t-1}^{4}\right] E\left[\varepsilon_{i t-2}^{2}\right] \\
= & \left(E\left[\varepsilon_{i t-1}^{4}\right]\right)^{2}(T-3)+6 \sigma^{8} \sum_{s=6}^{T}(s-5)+6 E\left[\varepsilon_{i t-1}^{4}\right] \sigma^{4}(T-4) \\
= & 6 \sigma^{8} \frac{(T-5)(T-4)}{2}+\left(E\left[\varepsilon_{i t-1}^{4}\right]\right)^{2}(T-3)+6 E\left[\varepsilon_{i t-1}^{4}\right] \sigma^{4}(T-4) \\
= & 3 \sigma^{8} T^{2}\left[1+O\left(\frac{1}{T}\right)\right], \tag{33}
\end{align*}
$$

and

$$
\begin{align*}
& E\left[\left(\sum_{j=1}^{T-2} \exp \left\{-\frac{T-2-j}{q(T)}\right\} \varepsilon_{i j} \varepsilon_{i T}\right)^{4}\right] \\
= & \sum_{g=1}^{T-2} \sum_{s=1}^{T-2} \sum_{t=1}^{T-2} \sum_{u=1}^{T-2}\left\{\exp \left\{-\frac{T-2-g}{q(T)}\right\} \exp \left\{-\frac{T-2-s}{q(T)}\right\} \exp \left\{-\frac{T-2-t}{q(T)}\right\}\right. \\
& \left.\times \exp \left\{-\frac{T-2-u}{q(T)}\right\} E\left[\varepsilon_{i g} \varepsilon_{i s} \varepsilon_{i t} \varepsilon_{i u}\right] E\left[\varepsilon_{i T}^{4}\right]\right\} \\
= & \sum_{s=1}^{T-2} \exp \left\{-4 \frac{T-2-s}{q(T)}\right\} E\left[\varepsilon_{i s}^{4}\right] E\left[\varepsilon_{i T}^{4}\right] \\
& +6 \sum_{g=2}^{T-2} \sum_{s=1}^{g-1} \exp \left\{-2 \frac{T-2-g}{q(T)}\right\} \exp \left\{-2 \frac{T-2-s}{q(T)}\right\} E\left[\varepsilon_{i g}^{2}\right] E\left[\varepsilon_{i s}^{2}\right] E\left[\varepsilon_{i T}^{4}\right] \\
= & E\left[\varepsilon_{i s}^{4}\right] E\left[\varepsilon_{i T}^{4}\right] \sum_{s=1}^{T-2} \exp \left\{-4 \frac{T-2-s}{q(T)}\right\} \\
& +6 \sigma^{4} E\left[\varepsilon_{i T}^{4}\right] \sum_{g=2}^{T-2} \sum_{s=1}^{g-1} \exp \left\{-2 \frac{T-2-g}{q(T)}\right\} \exp \left\{-2 \frac{T-2-s}{q(T)}\right\} \\
= & E\left[\varepsilon_{i s}^{4}\right] E\left[\varepsilon_{i T}^{4}\right] T\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right] \\
& +6 \sigma^{4} E\left[\varepsilon_{i T}^{4}\right] \frac{T^{2}}{2}\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right], \tag{34}
\end{align*}
$$

where the last equality follows from applying part (a) of Lemma SE-3 with $b=4$ and $g=2$ and by applying part (a) of Lemma SE-4 with $d=2$. Now, applying (33) and (34) to the upper bound in (32),
we get

$$
\begin{aligned}
& \frac{1}{N^{2}} \sum_{i=1}^{N} E\left[\left(X_{i, T}+\underline{Y}_{i, T}\right)^{4}\right] \leq 8 \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} 3 \sigma^{8} T^{2}\left[1+O\left(\frac{1}{T}\right)\right] \\
& +8 E\left[\varepsilon_{i s}^{4}\right] E\left[\varepsilon_{i T}^{4}\right] \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} T\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right] \\
& +8 \sigma^{4} E\left[\varepsilon_{i T}^{4}\right] \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} 6 \frac{T^{2}}{2}\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right] \\
= & 24 \sigma^{8} \frac{1}{N}+8 E\left[\varepsilon_{i s}^{4}\right] E\left[\varepsilon_{i T}^{4}\right] \frac{1}{N T}+24 \sigma^{4} E\left[\varepsilon_{i T}^{4}\right] \frac{1}{N}+O\left(\max \left\{\frac{T}{N q(T)}, \frac{1}{N T}\right\}\right) \\
= & O\left(N^{-1}\right) .
\end{aligned}
$$

Since the Liapounov-type condition (31) implies the Lindeberg-type condition (13) given in Lemma SE-10 above, it follows from Lemma SE-10 that

$$
\begin{aligned}
U_{N, T} & =\frac{1}{\omega_{N, T}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right) \\
& =\frac{1}{\sqrt{2} \sigma^{2}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right) \\
& \Rightarrow N(0,1) .
\end{aligned}
$$

Next, consider part (b), where we take $q(T) \sim T$. Here, we apply part (b) of Lemma SE-3 with $b=2$ and $g=2$ to obtain

$$
\begin{align*}
\frac{\omega_{N, T}^{2}}{N} & =\frac{1}{N} \sum_{i=1}^{N} \omega_{i, T}^{2} \\
& =\sigma^{4} \frac{1}{N} N\left[\left(\frac{T-3}{T}\right)+\frac{1}{T} \sum_{\ell=1}^{T-2} \exp \left\{-2 \frac{T-2-\ell}{q(T)}\right\}\right] \\
& =\sigma^{4}\left\{\left(\frac{T-3}{T}\right)+\frac{1}{T} \frac{q(T)}{2}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right]\right\} \\
& =\sigma^{4}\left[1+\frac{q(T)}{T} \frac{1}{2}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]\right]+O\left(\frac{1}{T}\right) \tag{35}
\end{align*}
$$

Note that, in light of Assumption 1, there exists a positive constant C such that

$$
\begin{aligned}
0 & <\frac{1}{C} \leq \frac{\omega_{N, T}}{\sqrt{N}} \\
& =\sigma^{2} \sqrt{1+\frac{q(T)}{T}\left[\frac{1-\exp \{-2 T / q(T)\}}{2}\right]}\left[1+O\left(\frac{1}{T}\right)\right] \\
& \leq C<\infty \text { eventually as } N, T \rightarrow \infty .
\end{aligned}
$$

Next, note that, by the result given in expression (26)

$$
\begin{aligned}
\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+Y_{i, T}\right) & =\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)+\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0} \\
& =\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)+o_{p}(1)
\end{aligned}
$$

Hence, showing the desired result is equivalent to showing the asymptotic normality of

$$
U_{N, T}=\frac{1}{\omega_{N, T}} \underline{U}_{N, T}=\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right) .
$$

To show the asymptotic normality of $U_{N, T}$, it suffices to verify a Liapounov-type condition of the form

$$
\lim _{N, T \rightarrow \infty} \sum_{i=1}^{N} E\left[\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)\right]^{4}=\lim _{N, T \rightarrow \infty} \frac{1}{N^{2}} \sum_{i=1}^{N} E\left[\left(X_{i, T}+\underline{Y}_{i, T}\right)^{4}\right]=0
$$

To proceed, note that using calculations similar to that given for (34), we have

$$
\begin{align*}
& E\left[\left(\sum_{j=1}^{T-2} \exp \left\{-\frac{T-2-j}{q(T)}\right\} \varepsilon_{i j} \varepsilon_{i T}\right)^{4}\right] \\
= & E\left[\varepsilon_{i s}^{4}\right] E\left[\varepsilon_{i T}^{4}\right] \sum_{s=1}^{T-2} \exp \left\{-4 \frac{T-2-s}{q(T)}\right\} \\
& +6 \sigma^{4} E\left[\varepsilon_{i T}^{4}\right] \sum_{g=2}^{T-2} \sum_{s=1}^{g-1} \exp \left\{-2 \frac{T-2-g}{q(T)}\right\} \exp \left\{-2 \frac{T-2-s}{q(T)}\right\} \\
= & E\left[\varepsilon_{i s}^{4}\right] E\left[\varepsilon_{i T}^{4}\right] q(T)\left[\frac{1-\exp \{-4 T / q(T)\}}{4}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& +6 \sigma^{4} E\left[\varepsilon_{i T}^{4}\right] q(T)^{2} \frac{[1-\exp \{-2 T / q(T)\}]^{2}}{8}\left[1+O\left(\frac{1}{T}\right)\right], \tag{36}
\end{align*}
$$

where the last equality follows from applying part (b) of Lemma SE-3 with $b=4$ and $g=2$ and by applying part (b) of Lemma SE-4 with $d=2$.. Now, applying (33) and (36) to the upper bound in (32),
we get

$$
\begin{aligned}
& \frac{1}{N^{2}} \sum_{i=1}^{N} E\left[\left(X_{i, T}+\underline{Y}_{i, T}\right)^{4}\right] \\
\leq & 8 \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} 3 \sigma^{8} T^{2}\left[1+O\left(\frac{1}{T}\right)\right] \\
& +8 E\left[\varepsilon_{i s}^{4}\right] E\left[\varepsilon_{i T}^{4}\right] \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} q(T)\left[\frac{1-\exp \{-4 T / q(T)\}}{4}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
= & 24 \sigma^{8} \frac{1}{N}+2 E\left[\varepsilon_{i s}^{4}\right] E\left[\varepsilon_{i T}^{4}\right] \frac{q(T)}{N T}\left[1-\exp \left\{-\frac{4 T}{q(T)}\right\}\right] \\
& \left.\left.+6 \sigma^{4} E\left[\varepsilon_{i T}^{4}\right] \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} 6 q(T)^{2} \frac{[1-\exp \{-2 T / q(T)\}]^{2}}{N T^{2}}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]^{2}+O\left(\frac{1}{N T}\right)\right]\right\} \\
= & O\left(N^{-1}\right),
\end{aligned}
$$

which verifies the required Liapounov-type condition. Since this condition implies the Lindeberg-type condition (13) stated in Lemma SE-10 above, it follows from Lemma SE-10 that

$$
\begin{aligned}
U_{N, T} & =\frac{1}{\omega_{N, T}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right) \\
& =\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right) \\
& =\frac{1}{\bar{\omega}_{T} \sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)+O\left(\frac{1}{T}\right) \\
& \Rightarrow N(0,1)
\end{aligned}
$$

where

$$
\bar{\omega}_{T}=\sigma^{2} \sqrt{1+\frac{q(T)}{T}\left[\frac{1-\exp \{-2 T / q(T)\}}{2}\right]} .
$$

Finally, we turn our attention to part (c). Here, we consider the case $q(T) \rightarrow \infty$ such that $q(T) / T \rightarrow$ 0 . Applying part (c) of Lemma SE-3 with $b=2$ and $g=2$, we obtain

$$
\begin{align*}
\frac{\omega_{N, T}^{2}}{N} & =\frac{1}{N} \sum_{i=1}^{N} \omega_{i, T}^{2}=\sigma^{4} \frac{1}{N} N\left\{\left(\frac{T-3}{T}\right)+\frac{1}{T} \frac{q(T)}{2}\left[1+O\left(\frac{1}{q(T)}\right)\right]\right\} \\
& =\sigma^{4}+O\left(\frac{q(T)}{T}\right) \tag{37}
\end{align*}
$$

Hence, in light of Assumption 1, there exists positive constant C such that

$$
\begin{equation*}
0<\frac{1}{C} \leq \frac{\omega_{N, T}^{2}}{N} \leq C<\infty \text { eventually as } N, T \rightarrow \infty \tag{38}
\end{equation*}
$$

Next, applying the result given in expression (27), part (d) of Lemma SE-21 and (38) above, we obtain

$$
\begin{aligned}
U_{N, T}= & \frac{1}{\omega_{N, T}} \sum_{i=1}^{N}\left(X_{i, T}+Y_{i, T}\right) \\
= & \frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} X_{i, T}+\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \underline{Y}_{i, T} \\
& +\frac{1}{\omega_{N, T} / \sqrt{N}} \sqrt{\frac{q(T)}{T}} \frac{1}{\sqrt{N q(T)}} \sum_{i=1}^{N} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0} \\
= & \frac{1}{\omega_{N, T}} \sum_{i=1}^{N} X_{i, T}+O_{p}\left(\sqrt{\frac{q(T)}{T}}\right)+o_{p}\left(\sqrt{\frac{q(T)}{T}}\right)
\end{aligned}
$$

Hence, to prove the result in part (c), we need to show the asymptotic normality of

$$
U_{N, T}^{(1)}=\frac{1}{\omega_{N, T}} \sum_{i=1}^{N} X_{i, T}=\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} X_{i, T}
$$

To do so, we verify the Liapounov-type condition

$$
\lim _{N, T \rightarrow \infty} \sum_{i=1}^{N} E\left[\frac{1}{\sqrt{N}} \sum_{i=1}^{N} X_{i, T}\right]^{4}=\lim _{N, T \rightarrow \infty} \frac{1}{N^{2}} \sum_{i=1}^{N} E\left[X_{i, T}^{4}\right]=0 .
$$

Applying (33), we get

$$
\begin{aligned}
\frac{1}{N^{2}} \sum_{i=1}^{N} E\left[X_{i, T}^{4}\right] & \leq \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} 3 \sigma^{8} T^{2}\left[1+O\left(\frac{1}{T}\right)\right] \\
& =3 \sigma^{8} \frac{1}{N}+O\left(\frac{1}{N T}\right) \\
& =O\left(N^{-1}\right)
\end{aligned}
$$

which verifies the required Liapounov-type condition. Since this condition implies the Lindeberg-type condition (13) stated in Lemma SE-10 above, it follows from Lemma SE-10 that

$$
\begin{aligned}
U_{N, T}^{(1)} & =\frac{1}{\omega_{N, T}} \sum_{i=1}^{N} X_{i, T} \\
& =\frac{1}{\sigma^{2}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} X_{i, T}+O\left(\frac{q(T)}{T}\right) \\
& \Rightarrow N(0,1),
\end{aligned}
$$

as required.
Lemma SE-23: Suppose that Assumptions 1 and 4 hold. If

$$
\begin{gathered}
\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0 \text { and } q(T)=O(1) \text { as } T \rightarrow \infty\right\}, \text { then as } N, T \rightarrow \infty \\
\frac{1}{\omega_{N, T}} \sum_{i=1}^{N}\left(X_{i, T}+Y_{i, T}\right)=\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)+o_{p}(1) \Rightarrow N(0,1)
\end{gathered}
$$

where in this case

$$
\begin{aligned}
& X_{i, T}=-\frac{1}{\sqrt{T}} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}, Y_{i, T}=\left(1-\rho_{T}\right) \frac{1}{\sqrt{T}} \sum_{t=4}^{T} w_{i t-3, T} \varepsilon_{i t-1} \\
& \underline{Y}_{i, T}=\left(1-\rho_{T}\right) \frac{1}{\sqrt{T}} \sum_{t=4}^{T} \underline{w}_{i t-3, T} \varepsilon_{i t-1}, \underline{w}_{i t-3, T}=\sum_{j=1}^{t-3} \rho_{T}^{(t-3-j)} \varepsilon_{i j}
\end{aligned}
$$

and

$$
\begin{aligned}
\omega_{i, T}^{2} & =\sigma^{4}\left\{\left(1-\frac{3}{T}\right)+\frac{\left(1-\rho_{T}\right)}{1+\rho_{T}}\left[1-\frac{3}{T}-\frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-3)}\right)}{T\left(1-\rho_{T}^{2}\right)}\right]\right\} \\
& =\frac{2 \sigma^{4}}{1+\rho_{T}}+O\left(\frac{1}{T}\right)
\end{aligned}
$$

Proof of Lemma SE-23:

To proceed, first decompose $Y_{i, T}$ as follows:

$$
\begin{aligned}
Y_{i, T} & =\left(1-\rho_{T}\right) \frac{1}{\sqrt{T}} \sum_{t=4}^{T} w_{i t-3, T} \varepsilon_{i t-1} \\
& =\left(1-\rho_{T}\right) \frac{1}{\sqrt{T}} \sum_{t=4}^{T} \underline{w}_{i t-3, T} \varepsilon_{i t-1}+\left(1-\rho_{T}\right) \frac{1}{\sqrt{T}} \sum_{t=4}^{T} \varepsilon_{i t-1} \rho_{T}^{t-3} w_{i 0} \\
& =\underline{Y}_{i, T}+\left(1-\rho_{T}\right) \frac{1}{\sqrt{T}} \sum_{t=4}^{T} \varepsilon_{i t-1} \rho_{T}^{t-3} w_{i 0}
\end{aligned}
$$

where $\underline{Y}_{i, T}$ and $\underline{w}_{i t-3, T}=\sum_{j=1}^{t-3} \rho_{T}^{(t-3-j)} \varepsilon_{i j}$ are defined in the statement of the lemma. Note that under the assumption of this lemma, $q(T)=O(1)$, so that there exist some positive constant C_{q} and some positive integer T^{*} such that for all $T \geq T^{*}$

$$
\begin{equation*}
0 \leq\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\} \leq \exp \left\{-\frac{1}{C_{q}}\right\}<1 . \tag{39}
\end{equation*}
$$

We should use this bound in various places in the argument given below. Now, let

$$
\underline{U}_{N, T}=\sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right),
$$

where $X_{i, T}=-T^{-1 / 2} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}$ and $\underline{Y}_{i, T}$ is as defined above. Next, note that

$$
\begin{aligned}
E\left[X_{i, T}\right] & =-\frac{1}{\sqrt{T}} \sum_{t=4}^{T} E\left[\varepsilon_{i t-2} \varepsilon_{i t-1}\right]=0 \\
E\left[\underline{Y}_{i, T}\right] & =\left(1-\rho_{T}\right) \frac{1}{\sqrt{T}} \sum_{t=4}^{T} \sum_{j=1}^{t-3} \rho_{T}^{(t-3-j)} E\left[\varepsilon_{i j} \varepsilon_{i t-1}\right]=0
\end{aligned}
$$

and, thus,

$$
E\left[\underline{U}_{N, T}\right]=\sum_{i=1}^{N}\left(E\left[X_{i, T}\right]+E\left[\underline{Y}_{i, T}\right]\right)=0
$$

In addition, note that

$$
\begin{gathered}
E\left[X_{i, T}^{2}\right]=\frac{1}{T} \sum_{t=4}^{T} \sum_{s=4}^{T} E\left[\varepsilon_{i t-2} \varepsilon_{i t-1} \varepsilon_{i s-2} \varepsilon_{i s-1}\right]=\frac{1}{T} \sum_{t=4}^{T} E\left[\varepsilon_{i t-2}^{2}\right] E\left[\varepsilon_{i t-1}^{2}\right]=\sigma^{4}\left(\frac{T-3}{T}\right)=\sigma^{4}+O\left(\frac{1}{T}\right), \\
E\left[\underline{Y}_{i, T}^{2}\right]
\end{gathered}=\left(1-\rho_{T}\right)^{2} \frac{1}{T} \sum_{t=4}^{T} \sum_{s=4}^{T} \sum_{j=1}^{t-3} \sum_{k=1}^{s-3} \rho_{T}^{(t-3-j)} \rho_{T}^{(s-3-k)} E\left[\varepsilon_{i j} \varepsilon_{i t-1} \varepsilon_{i k} \varepsilon_{i s-1}\right] .
$$

It follows that

$$
\begin{aligned}
& \omega_{i, T}^{2} \\
= & E\left[\left(X_{i, T}+\underline{Y}_{i, T}\right)^{2}\right] \\
= & E\left[X_{i, T}^{2}\right]+E\left[\underline{Y}_{i, T}^{2}\right]+2 E\left[X_{i, T} \underline{Y}_{i, T}\right] \\
= & \sigma^{4}\left(\frac{T-3}{T}\right)+\sigma^{4} \frac{\left(1-\rho_{T}\right)}{1+\rho_{T}}\left[1-\frac{3}{T}-\frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-3)}\right)}{T\left(1-\rho_{T}^{2}\right)}\right] \\
= & \frac{2 \sigma^{4}}{1+\rho_{T}}-\frac{\sigma^{4}}{T}\left[\frac{6}{1+\rho_{T}}+\frac{\rho_{T}^{2}\left(1-\rho_{T}\right)\left(1-\rho_{T}^{2(T-3)}\right)}{\left(1-\rho_{T}^{2}\right)\left(1+\rho_{T}\right)}\right] \\
= & \frac{2 \sigma^{4}}{1+\rho_{T}}-\frac{\sigma^{4}}{T}\left[\frac{6}{1+\rho_{T}}+\frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-3)}\right)}{\left(1+\rho_{T}\right)^{2}}\right]
\end{aligned}
$$

and, thus,

$$
\begin{aligned}
\frac{\omega_{N, T}^{2}}{N} & =\frac{1}{N} \sum_{i=1}^{N} \omega_{i, T}^{2} \\
& =\frac{1}{N}\left\{\frac{2 N \sigma^{4}}{1+\rho_{T}}-\frac{\sigma^{4} N}{T}\left[\frac{6}{1+\rho_{T}}+\frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-3)}\right)}{\left(1+\rho_{T}\right)^{2}}\right]\right\} \\
& =\frac{2 \sigma^{4}}{1+\rho_{T}}-\frac{\sigma^{4}}{T}\left[\frac{6}{1+\rho_{T}}+\frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-3)}\right)}{\left(1+\rho_{T}\right)^{2}}\right]
\end{aligned}
$$

Next, note that

$$
\frac{\sigma^{4}}{T}\left[\frac{6}{1+\rho_{T}}+\frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-3)}\right)}{\left(1+\rho_{T}\right)^{2}}\right] \leq \frac{1}{T} \frac{\sigma^{4}}{1-\exp \left\{-1 / C_{q}\right\}}\left[6+\frac{1}{\left(1-\exp \left\{-1 / C_{q}\right\}\right)}\right]
$$

for all $T \geq T^{*}$ and for all N, so that, in light of Assumption 1,

$$
\frac{\sigma^{4}}{T}\left[\frac{6}{1+\rho_{T}}+\frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-3)}\right)}{\left(1+\rho_{T}\right)^{2}}\right]=O\left(\frac{1}{T}\right)
$$

and

$$
\frac{\omega_{N, T}^{2}}{N}=\frac{1}{N} \sum_{i=1}^{N} \omega_{i, T}^{2}=\frac{2 \sigma^{4}}{1+\rho_{T}}+O\left(\frac{1}{T}\right) .
$$

Moreover, $0<\sigma^{4}<\infty$ by Assumption 1, so that

$$
0<\sigma^{4} \leq \frac{2 \sigma^{4}}{1+\rho_{T}} \leq \frac{2 \sigma^{4}}{\left(1-\exp \left\{-1 / C_{q}\right\}\right)}<\infty
$$

from which it follows that there exists a positive constant C such that

$$
0<\frac{1}{C} \leq \frac{\omega_{N, T}}{\sqrt{N}} \leq C<\infty \text { eventually as } N, T \rightarrow \infty
$$

Moreover, by Assumptions 1 and 4,

$$
\begin{aligned}
& E\left[\left(\left(1-\rho_{T}\right) \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-1} \rho_{T}^{t-3} w_{i 0}\right)^{2}\right] \\
= & \frac{\left(1-\rho_{T}\right)^{2}}{N T} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=4}^{T} \sum_{s=4}^{T} E\left[w_{i 0} w_{j 0}\right] \rho_{T}^{t-3} \rho_{T}^{s-3} E\left[\varepsilon_{i t-1} \varepsilon_{j s-1}\right] \\
= & \frac{\sigma^{2}\left(1-\rho_{T}\right)^{2}}{N T} \sum_{i=1}^{N} E\left[w_{i 0}^{2}\right] \sum_{t=4}^{T} \rho_{T}^{2(t-3)} \\
= & \frac{\sigma^{2}}{T}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-3)}\right)}{1-\rho_{T}^{2}}=O\left(T^{-1}\right),
\end{aligned}
$$

from which it follows by Markov's inequality that

$$
\left(1-\rho_{T}\right) \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-1} \rho_{T}^{t-3} w_{i 0}=O_{p}\left(\frac{1}{\sqrt{T}}\right) .
$$

Applying this result, we have

$$
\begin{aligned}
\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+Y_{i, T}\right)= & \frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right) \\
& +\frac{1}{\omega_{N, T} / \sqrt{N}}\left(1-\rho_{T}\right) \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=4}^{T} \varepsilon_{i t-1} \rho_{T}^{t-3} w_{i 0} \\
= & \frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)+O_{p}\left(\frac{1}{\sqrt{T}}\right) .
\end{aligned}
$$

Hence, showing the desired result is equivalent to showing the asymptotic normality of

$$
U_{N, T}=\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right) .
$$

To proceed, we again verify the Liapounov-type condition

$$
\begin{equation*}
\lim _{N, T \rightarrow \infty} \frac{1}{N^{2}} \sum_{i=1}^{N} E\left[\left(X_{i, T}+\underline{Y}_{i, T}\right)^{4}\right]=0 \tag{40}
\end{equation*}
$$

To show this, note first that by Loève's c_{r} inequality, we have

$$
\begin{aligned}
& \frac{1}{N^{2}} \sum_{i=1}^{N} E\left[\left(X_{i, T}+\underline{Y}_{i, T}\right)^{4}\right] \\
\leq & \frac{1}{N^{2}} \sum_{i=1}^{N} 8\left\{E\left[\left(-\frac{1}{\sqrt{T}} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}\right)^{4}\right]+E\left[\left(\left(1-\rho_{T}\right) \frac{1}{\sqrt{T}} \sum_{t=4}^{T} \sum_{j=1}^{t-3} \rho_{T}^{(t-3-j)} \varepsilon_{i j} \varepsilon_{i t-1}\right)^{4}\right]\right\} \\
= & 8 \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} E\left[\left(\sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}\right)^{4}\right]+8 \frac{\left(1-\rho_{T}\right)^{4}}{N^{2} T^{2}} \sum_{i=1}^{N} E\left[\left(\sum_{t=4}^{T} w_{i t-3} \varepsilon_{i t-1}\right)^{4}\right] .
\end{aligned}
$$

From previous calculations, we have that

$$
\begin{aligned}
& E\left[\left(\sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}\right)^{4}\right]=6 \sigma^{8} \frac{(T-5)(T-4)}{2}+\left(E\left[\varepsilon_{i t-1}^{4}\right]\right)^{2}(T-3)+6 E\left[\varepsilon_{i t-1}^{4}\right] \sigma^{4}(T-4) \\
= & 3 \sigma^{8} T^{2}\left[1+O\left(\frac{1}{T}\right)\right] .
\end{aligned}
$$

Moreover, in light of Assumption 1, there exists a positive constant C such that

$$
\begin{aligned}
& E\left[\left(\sum_{t=4}^{T} \underline{w}_{i t-3, T} \varepsilon_{i t-1}\right)^{4}\right] \\
& =\sum_{g=4}^{T} \sum_{s=4}^{T} \sum_{t=4}^{T} \sum_{u=4}^{T} E\left[\underline{w}_{i g-3, T} \underline{w}_{i s-3, T} \underline{w}_{i t-3, T} \underline{w}_{i u-3, T} \varepsilon_{i g-1} \varepsilon_{i s-1} \varepsilon_{i t-1} \varepsilon_{i u-1}\right] \\
& \leq C\left(\sum_{t=4}^{T} \sum_{j=1}^{t-3} \rho_{T}^{4(t-3-j)}+\sum_{t=6}^{T} \sum_{s=4}^{t-2} \sum_{j=1}^{s-3}\left|\rho_{T}\right|^{2(t-3-[s-1])}\left|\rho_{T}\right|^{(t-3-j)}\left|\rho_{T}\right|^{(s-3-j)}\right. \\
& +\sum_{t=6}^{T} \sum_{s=4}^{t-2} \sum_{j=1}^{s-3}\left|\rho_{T}\right|^{(t-3-[s-1])}\left|\rho_{T}\right|^{2(t-3-j)}\left|\rho_{T}\right|^{(s-3-j)}+\sum_{t=6}^{T} \sum_{s=4}^{t-2} \sum_{j=1}^{s-3} \rho_{T}^{2(t-3-[s-1])} \rho_{T}^{2(s-3-j)} \\
& +\sum_{t=5}^{T} \sum_{s=4}^{t-1} \sum_{j=1}^{t-3} \sum_{k=1}^{s-3} \rho_{T}^{2(t-3-j)} \rho_{T}^{2(s-3-k)}+\sum_{t=5}^{T} \sum_{s=4}^{t-1}\left[\sum_{j=1}^{s-3}\left|\rho_{T}\right|^{(t-3-j)}\left|\rho_{T}\right|^{(s-3-j)}\right]^{2} \\
& \left.+\sum_{t=6}^{T} \sum_{s=4}^{t-2} \sum_{j=1}^{s-3}\left|\rho_{T}\right|^{(t-3-[s-1])}\left|\rho_{T}\right|^{(t-3-j)}\left|\rho_{T}\right|^{2(s-3-j)}\right) \\
& \leq C\left(\sum_{t=4}^{T} \sum_{j=1}^{t-3} \rho_{T}^{4(t-3-j)}+\sum_{t=6}^{T} \sum_{s=4}^{t-2} \sum_{j=1}^{s-3}\left|\rho_{T}\right|^{2(t-3-[s-1])}\left|\rho_{T}\right|^{(t-s)}\left|\rho_{T}\right|^{2(s-3-j)}\right. \\
& +\sum_{t=6}^{T} \sum_{s=4}^{t-2} \sum_{j=1}^{s-3} \rho_{T}^{2(t-3-[s-1])} \rho_{T}^{2(s-3-j)}+\sum_{t=6}^{T} \sum_{s=4}^{t-2} \sum_{j=1}^{s-3}\left|\rho_{T}\right|^{(t-3-[s-1])}\left|\rho_{T}\right|^{(t-3-j)}\left|\rho_{T}\right|^{(t-s)}\left|\rho_{T}\right|^{2(s-3-j)} \\
& +\sum_{t=6}^{T} \sum_{s=4}^{t-2} \sum_{j=1}^{s-3}\left|\rho_{T}\right|^{(t-3-[s-1])}\left|\rho_{T}\right|^{(t-3-j)}\left|\rho_{T}\right|^{2(s-3-j)} \\
& \left.+\sum_{t=5}^{T} \sum_{s=4}^{t-1}\left[\sum_{j=1}^{s-3}\left|\rho_{T}\right|^{2(t-3-j)}\right]\left[\sum_{j=1}^{s-3}\left|\rho_{T}\right|^{2(s-3-j)}\right]+\sum_{t=5}^{T} \sum_{s=4}^{t-1} \sum_{j=1}^{t-3} \sum_{k=1}^{s-3} \rho_{T}^{2(t-3-j)} \rho_{T}^{2(s-3-k)}\right) \\
& \leq C\left(\sum_{t=4}^{T} \sum_{j=1}^{t-3} \rho_{T}^{4(t-3-j)}+2 \sum_{t=6}^{T} \sum_{s=4}^{t-2} \sum_{j=1}^{s-3} \rho_{T}^{2(t-3-[s-1])} \rho_{T}^{2(s-3-j)}\right. \\
& \left.+2 \sum_{t=6}^{T} \sum_{s=4}^{t-2} \sum_{j=1}^{s-3}\left|\rho_{T}\right|^{2(t-3-[s-1])}\left|\rho_{T}\right|^{(s-1-j)}\left|\rho_{T}\right|^{2(s-3-j)}+2 \sum_{t=5}^{T} \sum_{s=4}^{t-1} \sum_{j=1}^{t-3} \sum_{k=1}^{s-3} \rho_{T}^{2(t-3-j)} \rho_{T}^{2(s-3-k)}\right) \\
& \leq C\left(\sum_{t=4}^{T} \sum_{j=1}^{t-3} \rho_{T}^{4(t-3-j)}+4 \sum_{t=6}^{T} \sum_{s=4}^{t-2} \sum_{j=1}^{s-3} \rho_{T}^{2(t-3-[s-1])} \rho_{T}^{2(s-3-j)}+2 \sum_{t=5}^{T} \sum_{s=4}^{t-1} \sum_{j=1}^{t-3} \sum_{k=1}^{s-3} \rho_{T}^{2(t-3-j)} \rho_{T}^{2(s-3-k)}\right) \\
& =C(I+I I+I I I),(s a y) \text {. }
\end{aligned}
$$

Now, using the bound (39), we obtain for all $T \geq T^{*}$
(i)

$$
\begin{aligned}
I & =\sum_{t=4}^{T} \sum_{j=1}^{t-3} \rho_{T}^{4(t-3-j)}=\sum_{t=4}^{T} \frac{1-\rho_{T}^{4(t-3)}}{1-\rho_{T}^{4}}=\frac{1}{1-\rho_{T}^{4}}\left[T-3-\frac{\rho_{T}^{4}\left(1-\rho_{T}^{4(T-3)}\right)}{1-\rho_{T}^{4}}\right] \\
& \leq \frac{T}{1-\exp \left\{-4 / C_{q}\right\}}\left[1+\frac{3}{T}+\frac{1}{T\left(1-\exp \left\{-4 / C_{q}\right\}\right)}\right]=O(T)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
I I & =4 \sum_{t=6}^{T} \sum_{s=4}^{t-2} \sum_{j=1}^{s-3} \rho_{T}^{2(t-3-[s-1])} \rho_{T}^{2(s-3-j)} \\
& =4 \sum_{t=6}^{T} \sum_{s=4}^{t-2} \rho_{T}^{2(t-3-[s-1])} \frac{1-\rho_{T}^{2(s-3)}}{1-\rho_{T}^{2}} \\
& =4 \frac{1}{1-\rho_{T}^{2}} \sum_{t=6}^{T} \sum_{s=4}^{t-2} \rho_{T}^{2(t-2-s)}-4 \frac{\rho_{T}^{2}}{1-\rho_{T}^{2}} \sum_{t=6}^{T} \sum_{s=4}^{t-2} \rho_{T}^{2(t-6)} \\
& =4 \frac{\rho_{T}^{2}}{\left(1-\rho_{T}^{2}\right)^{2}} \sum_{t=6}^{T}\left(1-\rho_{T}^{2(t-6)}\right)-4 \frac{\rho_{T}^{2}}{1-\rho_{T}^{2}} \sum_{t=6}^{T} \rho_{T}^{2(t-6)}(t-5) \\
& =4 \frac{\rho_{T}^{2}(T-5)}{\left(1-\rho_{T}^{2}\right)^{2}}-4 \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-5)}\right)}{\left(1-\rho_{T}^{2}\right)^{3}}-4 \frac{\rho_{T}^{2}}{1-\rho_{T}^{2}} \sum_{t=6}^{T} \rho_{T}^{2(t-6)}-4 \frac{\rho_{T}^{2}}{1-\rho_{T}^{2}} \sum_{t=6}^{T} \rho_{T}^{2(t-6)}(t-6)
\end{aligned}
$$

Applying part (b) of Lemma SE-5 and performing additional calculation, we get

$$
\begin{aligned}
I I= & 4 \frac{\rho_{T}^{2}(T-5)}{\left(1-\rho_{T}^{2}\right)^{2}}-4 \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-5)}\right)}{\left(1-\rho_{T}^{2}\right)^{3}}+4 \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-5)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}} \\
& -4 \frac{\rho_{T}^{2}\left(\rho_{T}^{2}-(T-5) \rho_{T}^{2(T-5)}+(T-6) \rho_{T}^{2(T-4)}\right)}{\left(1-\rho_{T}^{2}\right)^{3}} \\
= & 4 \frac{\rho_{T}^{2} T}{\left(1-\rho_{T}^{2}\right)^{2}}\left[1+\frac{\rho_{T}^{2(T-5)}}{\left(1-\rho_{T}^{2}\right)}-\frac{\rho_{T}^{2(T-4)}}{\left(1-\rho_{T}^{2}\right)}\right]-\frac{20 \rho_{T}^{2}}{\left(1-\rho_{T}^{2}\right)^{2}}-4 \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-5)}\right)}{\left(1-\rho_{T}^{2}\right)^{3}} \\
& +4 \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-5)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}}-4 \frac{\rho_{T}^{4}\left[1+5 \rho_{T}^{2(T-6)}-6 \rho_{T}^{2(T-5)}\right]}{\left(1-\rho_{T}^{2}\right)^{3}} \\
\leq & \frac{4 T}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{2}}\left[1+\frac{2}{1-\exp \left\{-2 / C_{q}\right\}}\right]+\frac{4}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{2}} \\
& +\frac{4}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{3}}+\frac{48}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{2}}+\frac{20}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{3}} \\
= & O(T) .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& I I I=2 \sum_{t=5}^{T} \sum_{s=4}^{t-1} \sum_{j=1}^{t-3} \sum_{k=1}^{s-3} \rho_{T}^{2(t-3-j)} \rho_{T}^{2(s-3-k)} \\
& =\frac{2}{\left(1-\rho_{T}^{2}\right)^{2}} \sum_{t=5}^{T}\left(1-\rho_{T}^{2(t-3)}\right) \sum_{s=4}^{t-1}\left(1-\rho_{T}^{2(s-3)}\right) \\
& =\frac{2}{\left(1-\rho_{T}^{2}\right)^{2}} \sum_{t=5}^{T}\left(1-\rho_{T}^{2(t-3)}\right)\left[(t-4)-\frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(t-4)}\right)}{\left(1-\rho_{T}^{2}\right)}\right] \\
& =\frac{2}{\left(1-\rho_{T}^{2}\right)^{2}}\left[\sum_{t=5}^{T}(t-4)-\rho_{T}^{4} \sum_{t=5}^{T} \rho_{T}^{2(t-5)}(t-5)-\rho_{T}^{4} \sum_{t=5}^{T} \rho_{T}^{2(t-5)}-\frac{\rho_{T}^{2}}{\left(1-\rho_{T}^{2}\right)}(T-4)\right. \\
& \left.+\frac{\rho_{T}^{6}}{\left(1-\rho_{T}^{2}\right)} \sum_{t=5}^{T} \rho_{T}^{2(t-5)}+\frac{\rho_{T}^{4}}{\left(1-\rho_{T}^{2}\right)} \sum_{t=5}^{T} \rho_{T}^{2(t-5)}-\frac{\rho_{T}^{8}}{\left(1-\rho_{T}^{2}\right)} \sum_{t=5}^{T} \rho_{T}^{4(t-5)}\right] \\
& =\frac{2}{\left(1-\rho_{T}^{2}\right)^{2}}\left[\frac{(T-4)(T-3)}{2}-\frac{\rho_{T}^{4}\left(\rho_{T}^{2}-(T-4) \rho_{T}^{2(T-4)}+(T-5) \rho_{T}^{2(T-3)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}}\right. \\
& -\frac{\rho_{T}^{4}\left(1-\rho_{T}^{2(T-4)}\right)}{\left(1-\rho_{T}^{2}\right)}-\frac{\rho_{T}^{2}(T-4)}{\left(1-\rho_{T}^{2}\right)}+\frac{\rho_{T}^{6}\left(1-\rho_{T}^{2(T-4)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}}+\frac{\rho_{T}^{4}\left(1-\rho_{T}^{2(T-4)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}} \\
& \left.-\frac{\rho_{T}^{8}\left(1-\rho_{T}^{4(T-4)}\right)}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}^{4}\right)}\right] \\
& =\frac{2 T^{2}}{\left(1-\rho_{T}^{2}\right)^{2}}\left[\frac{1}{2}-\frac{7}{2 T}-\frac{\rho_{T}^{2}}{T\left(1-\rho_{T}^{2}\right)}+\frac{6}{T^{2}}-\frac{\rho_{T}^{2(T-2)}}{T}-\frac{\rho_{T}^{6}+4 \rho_{T}^{2(T-2)}-5 \rho_{T}^{2(T-1)}}{T^{2}\left(1-\rho_{T}^{2}\right)^{2}}\right. \\
& -\frac{\rho_{T}^{4}\left(1-\rho_{T}^{2(T-4)}\right)}{T^{2}\left(1-\rho_{T}^{2}\right)}+\frac{4 \rho_{T}^{2}}{T^{2}\left(1-\rho_{T}^{2}\right)}+\frac{\rho_{T}^{6}\left(1-\rho_{T}^{2(T-4)}\right)}{T^{2}\left(1-\rho_{T}^{2}\right)^{2}}+\frac{\rho_{T}^{4}\left(1-\rho_{T}^{2(T-4)}\right)}{T^{2}\left(1-\rho_{T}^{2}\right)^{2}} \\
& \left.-\frac{\rho_{T}^{8}\left(1-\rho_{T}^{4(T-4)}\right)}{T^{2}\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}^{4}\right)}\right] \\
& \leq \frac{T^{2}}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{2}}\left[1+\frac{9}{T}+\frac{2}{T\left(1-\exp \left\{-2 / C_{q}\right\}\right)}+\frac{12}{T^{2}}+\frac{10}{T^{2}\left(1-\exp \left\{-2 / C_{q}\right\}\right)}\right. \\
& \left.+\frac{24}{T^{2}\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{2}}+\frac{2}{T^{2}\left(1-\exp \left\{-2 / C_{q}\right\}\right)\left(1-\exp \left\{-4 / C_{q}\right\}\right)}\right] \\
& =O\left(T^{2}\right) \text {, }
\end{aligned}
$$

where the fifth equality above follows in part from applying part (b) of Lemma SE-5.

It follows from the results given for expressions $I-I I I$ that

$$
\sum_{i=1}^{N} E\left[\left(\sum_{t=4}^{T} \underline{w}_{i t-3, T} \varepsilon_{i t-1}\right)^{4}\right]=O\left(N T^{2}\right)
$$

Hence,

$$
\begin{aligned}
& \frac{1}{N^{2}} \sum_{i=1}^{N} E\left[\left(X_{i, T}+\underline{Y}_{i, T}\right)^{4}\right] \\
= & 8 \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} E\left[\left(\sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}\right)^{4}\right]+8 \frac{\left(1-\rho_{T}\right)^{4}}{N^{2} T^{2}} \sum_{i=1}^{N} E\left[\left(\sum_{t=4}^{T} \underline{w}_{i t-3} \varepsilon_{i t-1}\right)^{4}\right] \\
= & O\left(\frac{1}{N^{2} T^{2}}\right) O\left(N T^{2}\right)+O\left(\frac{1}{N^{2} T^{2}}\right) O\left(N T^{2}\right) \\
= & O\left(\frac{1}{N}\right)
\end{aligned}
$$

so the the Liapunov-type condition (40) is satisfied. Now, since the Liapounov-type condition (40) implies the Lindeberg-type condition (13) given in Lemma SE-10 above, it follows from Lemma SE-10 that

$$
U_{N, T}=\frac{1}{\omega_{N, T}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right) \Rightarrow N(0,1)
$$

Moreover, note that

$$
\frac{1}{\omega_{N, T}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)=\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)+O\left(\frac{1}{T}\right)
$$

This implies that

$$
\sqrt{\frac{1+\rho_{T}}{2 \sigma^{4}}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)=\frac{1}{\omega_{N, T}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)+O\left(\frac{1}{T}\right) \Rightarrow N(0,1)
$$

as required.

Lemma SE-24:

Suppose that Assumptions 1 and 4 hold. If $\rho_{T}=1$ for all T sufficiently large, then, as $N, T \rightarrow \infty$,

$$
\frac{1}{\sqrt{2} \sigma^{2} \sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+Y_{i, T}\right) \Rightarrow N(0,1)
$$

where

$$
X_{i, T}=-\frac{1}{\sqrt{T}} \sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}, Y_{i, T}=\frac{1}{\sqrt{T}} w_{i T-2, T} \varepsilon_{i T}
$$

Proof of Lemma SE-24:

To proceed, first decompose $Y_{i, T}$ as follows:

$$
\begin{aligned}
Y_{i, T} & =\frac{1}{\sqrt{T}} w_{i T-2, T} \varepsilon_{i T}=\frac{1}{\sqrt{T}} \underline{w}_{i T-2, T} \varepsilon_{i T}+\frac{1}{\sqrt{T}} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0} \\
& =\underline{Y}_{i, T}+\frac{1}{\sqrt{T}} \varepsilon_{i T} \rho_{T}^{T-2} w_{i 0},
\end{aligned}
$$

where $\underline{w}_{i T-2}=\sum_{j=1}^{T-2} \rho_{T}^{(T-2-j)} \varepsilon_{i j}$ and $\underline{Y}_{i, T}=\frac{1}{\sqrt{T}} \underline{w}_{i T-2, T} \varepsilon_{i T}$. Let $\underline{U}_{N, T}=\sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)$, as before. Now, as shown in the proof of Lemma SE-22, $E\left[X_{i, T}\right]=0$ and

$$
E\left[X_{i, T}^{2}\right]=\sigma^{4}\left(\frac{T-3}{T}\right)=\sigma^{4}+O\left(\frac{1}{T}\right)
$$

Moreover, given the assumption here, there exists a positive integer I_{ρ} such that for all $T \geq I_{\rho}$, the triangular array process $\left\{w_{i t, T}\right\}$ has the partial sum representation $w_{i t, T}=\sum_{j=1}^{t} \varepsilon_{i j}$. Hence, for all $T \geq I_{\rho}$, we can make the following moment calculations:

$$
\begin{gathered}
E\left[\underline{Y}_{i, T}\right]=\frac{1}{\sqrt{T}} \sum_{j=1}^{T-2} E\left[\varepsilon_{i j} \varepsilon_{i T}\right]=0 \\
E\left[\underline{Y}_{i, T}^{2}\right]=\frac{1}{T} \sum_{j=1}^{T-2} \sum_{k=1}^{T-2} E\left[\varepsilon_{i j} \varepsilon_{i k} \varepsilon_{i T} \varepsilon_{i T}\right]=\frac{1}{T} \sum_{j=1}^{T-2} E\left[\varepsilon_{i t}^{2}\right] E\left[\varepsilon_{i T}^{2}\right]=\sigma^{4} \frac{T-2}{T},
\end{gathered}
$$

and

$$
E\left[X_{i, T} \underline{Y}_{i, T}\right]=-\frac{1}{T} \sum_{t=4}^{T} \sum_{\ell=1}^{T-2} E\left[\varepsilon_{i t-2} \varepsilon_{i t-1} \varepsilon_{i \ell} \varepsilon_{i T}\right]=-\frac{1}{T} \sum_{t=4}^{T} \sum_{\ell=1}^{T-2} E\left[\varepsilon_{i t-2} \varepsilon_{i t-1} \varepsilon_{i \ell}\right] E\left[\varepsilon_{i T}\right]=0
$$

It follows from these calculations that

$$
E\left[\underline{U}_{N, T}\right]=\sum_{i=1}^{N}\left(E\left[X_{i, T}\right]+E\left[\underline{Y}_{i, T}\right]\right)=0
$$

and

$$
\begin{aligned}
\frac{\omega_{N, T}^{2}}{N} & =\frac{1}{N} \sum_{i=1}^{N} \omega_{i, T}^{2}=\frac{1}{N} \sum_{i=1}^{N} E\left[\left(X_{i, T}+\underline{Y}_{i, T}\right)^{2}\right] \\
& =\frac{1}{N} \sum_{i=1}^{N} E\left[X_{i, T}^{2}\right]+\frac{1}{N} \sum_{i=1}^{N} E\left[\underline{Y}_{i, T}^{2}\right]+2 \frac{1}{N} \sum_{i=1}^{N} E\left[X_{i, T} \underline{Y}_{i, T}\right] \\
& =\frac{\sigma^{4}}{N} N\left[\left(\frac{T-3}{T}\right)+\frac{T-2}{T}\right] \\
& =2 \sigma^{4}+O\left(\frac{1}{T}\right)
\end{aligned}
$$

Given Assumption 1, it follows that, in this case, there exists a positive constant C such that

$$
0<\frac{1}{C} \leq \frac{\omega_{N, T}}{\sqrt{N}} \leq C<\infty \text { eventually as } N, T \rightarrow \infty
$$

Next, note that, for all T sufficiently large,

$$
\begin{aligned}
\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+Y_{i, T}\right) & =\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)+\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \varepsilon_{i T} w_{i 0} \\
& =\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)+o_{p}(1)
\end{aligned}
$$

where the second equality follows from the result given in expression (24) above. Hence, showing the desired result is equivalent to showing the asymptotic normality of

$$
U_{N, T}=\frac{1}{\omega_{N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)
$$

To show the asymptotic normality of $U_{N, T}$, it suffices to verify a Liapounov-type condition of the form

$$
\begin{equation*}
\lim _{N, T \rightarrow \infty} \frac{1}{N^{2}} \sum_{i=1}^{N} E\left[\left(X_{i, T}+\underline{Y}_{i, T}\right)^{4}\right]=0 \tag{41}
\end{equation*}
$$

To show this, note first that by Loève's c_{r} inequality, we have

$$
\begin{align*}
& \frac{1}{N^{2}} \sum_{i=1}^{N} E\left[\left(X_{i, T}+\underline{Y}_{i, T}\right)^{4}\right] \\
\leq & 8 \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} E\left[\left(\sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}\right)^{4}\right]+8 \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} E\left[\left(\sum_{j=1}^{T-2} \varepsilon_{i j} \varepsilon_{i T}\right)^{4}\right] \tag{42}
\end{align*}
$$

From the proof of Lemma SE-22, we have

$$
\begin{align*}
& E\left[\left(\sum_{t=4}^{T} \varepsilon_{i t-2} \varepsilon_{i t-1}\right)^{4}\right] \\
= & 6 \sigma^{8} \frac{(T-5)(T-4)}{2}+\left(E\left[\varepsilon_{i t-1}^{4}\right]\right)^{2}(T-3)+6 E\left[\varepsilon_{i t-1}^{4}\right] \sigma^{4}(T-4) \\
= & 3 \sigma^{8} T^{2}\left[1+O\left(\frac{1}{T}\right)\right] . \tag{43}
\end{align*}
$$

In addition, note that, under Assumption 1,

$$
\begin{align*}
E\left[\left(\sum_{j=1}^{T-2} \varepsilon_{i j} \varepsilon_{i T}\right)^{4}\right] & =\sum_{g=1}^{T-2} \sum_{s=1}^{T-2} \sum_{t=1}^{T-2} \sum_{u=1}^{T-2} E\left[\varepsilon_{i g} \varepsilon_{i s} \varepsilon_{i t} \varepsilon_{i u}\right] E\left[\varepsilon_{i T}^{4}\right] \\
& =E\left[\varepsilon_{i s}^{4}\right] E\left[\varepsilon_{i T}^{4}\right](T-2)+6 \sigma^{4} E\left[\varepsilon_{i T}^{4}\right] \sum_{g=2}^{T-2}(g-1) \\
& =E\left[\varepsilon_{i s}^{4}\right] E\left[\varepsilon_{i T}^{4}\right](T-2)+3 \sigma^{4} E\left[\varepsilon_{i T}^{4}\right](T-3)(T-2) \\
& =3 \sigma^{4} E\left[\varepsilon_{i T}^{4}\right] T^{2}\left[1+O\left(\frac{1}{T}\right)\right] . \tag{44}
\end{align*}
$$

Now, applying (43) and (44) to the upper bound in (42), we get

$$
\begin{aligned}
\frac{1}{N^{2}} \sum_{i=1}^{N} E\left[\left(X_{i, T}+\underline{Y}_{i, T}\right)^{4}\right] \leq & 8 \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} 3 \sigma^{8} T^{2}\left[1+O\left(\frac{1}{T}\right)\right] \\
& +8 \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} 3 \sigma^{4} E\left[\varepsilon_{i T}^{4}\right] T^{2}\left[1+O\left(\frac{1}{T}\right)\right] \\
= & 24 \sigma^{8} \frac{1}{N}+24 \sigma^{4} E\left[\varepsilon_{i T}^{4}\right] \frac{1}{N}+O\left(\frac{1}{N T}\right) \\
= & O\left(N^{-1}\right)
\end{aligned}
$$

Since the Liapounov-type condition (41) implies the Lindeberg-type condition (13) given in Lemma SE-10 above, it follows from Lemma SE-10 that

$$
\begin{aligned}
U_{N, T} & =\frac{1}{\omega_{N, T}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right) \\
& =\frac{1}{\sqrt{2} \sigma^{2}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(X_{i, T}+\underline{Y}_{i, T}\right)+O\left(\frac{1}{T}\right) \\
& \Rightarrow N(0,1)
\end{aligned}
$$

as required.

Lemma SE-25:

Let d be a non-negative integer and let g be an integer such that $g \geq 2$. Suppose further that $g>d$. Under Assumptions 1 and 4, the following statements are true as as $N, T \rightarrow \infty$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d}=\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}+O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}(1) .
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$, then

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d}=\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}+O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}(1) .
$$

and

$$
\frac{\left(1-\rho_{T}\right)}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d}=O_{p}\left(\frac{1}{q(T)}\right) .
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d}=\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T^{\varepsilon}} \varepsilon_{i t-d}+O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}(1) .
$$

and

$$
\frac{\left(1-\rho_{T}\right)}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d}=O_{p}\left(\frac{1}{T}\right) .
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d}=\frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}+O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}(1)
$$

and

$$
\frac{\left(1-\rho_{T}\right)}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d}=O_{p}\left(\frac{1}{q(T)}\right) .
$$

(e) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d}=\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T^{T}} \varepsilon_{i t-d}+O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}(1),
$$

and

$$
\frac{\left(1-\rho_{T}\right)}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d}=O_{p}(1)
$$

Proof of Lemma SE-25:

To proceed, first write

$$
\sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d}=\sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}+\sum_{i=1}^{N} \sum_{t=g+1}^{T} \varepsilon_{i t-d} \rho_{T}^{t-g} w_{i 0}
$$

where $\underline{w}_{i t-g, T}=\sum_{j=1}^{t-g} \rho_{T}^{(t-g-j)} \varepsilon_{i j}$.
Consider first part (a). Note that, under the assumption here, there exists a positive integer I_{ρ} such that for all $T \geq I_{\rho}$, the triangular array process $\left\{\underline{w}_{i t-g, T}\right\}$ has the partial sum representation $\underline{w}_{i t-g, T}=\sum_{j=1}^{t} \varepsilon_{i j}$. Hence, for all $T \geq \max \left\{I_{\rho}, g+1\right\}$, we obtain by direct calculation

$$
\begin{aligned}
E\left[\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}\right]^{2} & =\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=g+1}^{T} \sum_{s=g+1}^{T} \sum_{k=1}^{t-g} \sum_{\ell=1}^{s-g} E\left[\varepsilon_{i k} \varepsilon_{j \ell} \varepsilon_{i t-d} \varepsilon_{j s-d}\right] \\
& =\frac{\sigma^{4}}{N T^{2}} \sum_{i=1}^{N} \sum_{t=g+1}^{T}(t-g) \\
& =\frac{\sigma^{4}}{2} \frac{N(T-g)(T-g+1)}{N T^{2}} \\
& =\frac{\sigma^{4}}{2} \frac{N T^{2}}{N T^{2}}\left[1+O\left(\frac{1}{T}\right)\right]=O(1),
\end{aligned}
$$

so that by Markov's inequality $N^{-1 / 2} T^{-1} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}=O_{p}(1)$.
Moreover, by Assumptions 1 and 4,

$$
\begin{aligned}
E\left[\left(\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \varepsilon_{i t-d} w_{i 0}\right)^{2}\right] & =\frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=g+1}^{T} \sum_{s=g+1}^{T} E\left[w_{i 0} w_{j 0}\right] E\left[\varepsilon_{i t-d} \varepsilon_{j s-d}\right] \\
& =\frac{\sigma^{2}}{N T^{2}} \sum_{i=1}^{N} E\left[w_{i 0}^{2}\right](T-g) \\
& \leq \frac{\sigma^{2}}{T}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \frac{(T-g)}{T} \\
& =O\left(T^{-1}\right)
\end{aligned}
$$

from which it follows, by Markov's inequality, that

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \varepsilon_{i t-d} w_{i 0}=O_{p}\left(\frac{1}{\sqrt{T}}\right) .
$$

Hence,

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d}=\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}+\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \varepsilon_{i t-d} w_{i 0}
$$

$$
\text { (for all } T \text { sufficiently large) }
$$

$$
=\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}+O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}(1) .
$$

Now, to show parts (b)-(d), we first write

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}\right]^{2} \\
= & \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=g+1}^{T} \sum_{s=g+1}^{T} \sum_{k=1}^{t-g} \sum_{\ell=1}^{s-g} \exp \left\{-\frac{t-g-k}{q(T)}\right\} \exp \left\{-\frac{s-g-\ell}{q(T)}\right\} E\left[\varepsilon_{i k} \varepsilon_{j \ell} \varepsilon_{i t-d} \varepsilon_{j s-d}\right] \\
= & \sigma^{4} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \sum_{k=1}^{t-g} \exp \left\{-2 \frac{t-g-k}{q(T)}\right\}
\end{aligned}
$$

for $T \geq g+1$.
Next, consider part (b), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$. In this case, we apply part (a) of Lemma SE- 1 with $b=g+1$ and $d=2$ to obtain

$$
\begin{aligned}
E\left[\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}\right]^{2} & =\sigma^{4} \frac{N}{N T^{2}} \sum_{t=g+1}^{T} \sum_{k=1}^{t-g} \exp \left\{-2 \frac{t-g-k}{q(T)}\right\} \\
& =\frac{N T^{2}}{N T^{2}} \frac{\sigma^{4}}{2}\left[1+O_{p}\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right]=O(1),
\end{aligned}
$$

so that, by Markov's inequality, we obtain $N^{-1 / 2} T^{-1} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}=O_{p}(1)$.
Moreover, by Assumptions 1 and 4,

$$
\begin{aligned}
& E\left[\left(\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \varepsilon_{i t-d} \rho_{T}^{t-g} w_{i 0}\right)^{2}\right] \\
= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=g+1}^{T} \sum_{s=g+1}^{T} \rho_{T}^{t-g} \rho_{T}^{s-g} E\left[w_{i 0} w_{j 0}\right] E\left[\varepsilon_{i t-d} \varepsilon_{j s-d}\right] \\
= & \frac{\sigma^{2}}{N T^{2}} \sum_{i=1}^{N} E\left[w_{i 0}^{2}\right] \sum_{t=g+1}^{T} \rho_{T}^{2(t-g)} \\
= & \frac{\sigma^{2}}{T^{2}} \sup _{i} E\left[w_{i 0}^{2}\right] \exp \left\{-\frac{2}{q(T)}\right\}\left[1-\exp \left\{-\frac{2}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2(T-g)}{q(T)}\right\}\right] \\
= & O\left(T^{-2}\right) \times O(1) \times O(1) \times O(q(T)) \times O(T / q(T))=O\left(T^{-1}\right),
\end{aligned}
$$

from which it follows by Markov's inequality that

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \varepsilon_{i t-d} \rho_{T}^{t-g} w_{i 0}=O_{p}\left(\frac{1}{\sqrt{T}}\right) .
$$

Hence,

$$
\begin{aligned}
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d} & =\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}+\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \varepsilon_{i t-d} \rho_{T}^{t-g} w_{i 0} \\
& =\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}+O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}(1) .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
\frac{\left(1-\rho_{T}\right)}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d} & =\left(1-\exp \left\{-\frac{1}{q(T)}\right\}\right) \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d} \\
& =\frac{1}{q(T)} \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d}\left[1+O_{p}\left(\frac{1}{q(T)}\right)\right] \\
& =O_{p}\left(\frac{1}{q(T)}\right) .
\end{aligned}
$$

Next, consider part (c), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. Here, applying part (b) of Lemma SE- 1 with $b=g+1$ and $d=2$, we get

$$
\begin{aligned}
E\left[\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}\right]^{2} & =\sigma^{4} N \frac{1}{N T^{2}} \sum_{t=g+1}^{T} \sum_{k=1}^{t-g} \exp \left\{-2 \frac{t-g-k}{q(T)}\right\} \\
& =\frac{N q(T)^{2}}{N T^{2}} \frac{\sigma^{4}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\left[1+O_{p}\left(\frac{1}{T}\right)\right] \\
& =O(1),
\end{aligned}
$$

so that, using Markov's inequality, we again obtain $N^{-1 / 2} T^{-1} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}=O_{p}(1)$. Moreover, by Assumptions 1 and 4,

$$
\begin{aligned}
& E\left[\left(\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \varepsilon_{i t-d} \rho_{T}^{t-g} w_{i 0}\right)^{2}\right] \\
= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=g+1}^{T} \sum_{s=g+1}^{T} \rho_{T}^{t-g} \rho_{T}^{s-g} E\left[w_{i 0} w_{j 0}\right] E\left[\varepsilon_{i t-d} \varepsilon_{j s-d}\right] \\
= & \frac{\sigma^{2}}{N T^{2}} \sum_{i=1}^{N} E\left[w_{i 0}^{2}\right] \sum_{t=g+1}^{T} \rho_{T}^{2(t-g)} \\
= & \frac{\sigma^{2}}{T^{2}}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \exp \left\{-\frac{2}{q(T)}\right\}\left[1-\exp \left\{-\frac{2}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2(T-g)}{q(T)}\right\}\right] \\
= & O\left(T^{-2}\right) O(1) O(1) O(T) O(1)=O\left(T^{-1}\right),
\end{aligned}
$$

from which it follows, by Markov's inequality, that

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \varepsilon_{i t-d} \rho_{T}^{t-g} w_{i 0}=O_{p}\left(\frac{1}{\sqrt{T}}\right) .
$$

Hence,

$$
\begin{aligned}
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d} & =\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}+\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \varepsilon_{i t-d} \rho_{T}^{t-g} w_{i 0} \\
& =\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}+O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}(1)
\end{aligned}
$$

Furthermore, note that

$$
\begin{aligned}
\frac{\left(1-\rho_{T}\right)}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d} & =\left(1-\exp \left\{-\frac{1}{q(T)}\right\}\right) \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d} \\
& =\frac{1}{q(T)} \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d}\left[1+O_{p}\left(\frac{1}{q(T)}\right)\right] \\
& =O_{p}\left(\frac{1}{T}\right) .
\end{aligned}
$$

Now, consider part (d), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$. Here, applying part (c) of Lemma SE-1 with $b=g+1$ and $d=2$, we get

$$
\begin{aligned}
E\left[\frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}\right]^{2} & =\sigma^{4} \frac{N}{N T q(T)} \sum_{t=g+1}^{T} \sum_{k=1}^{t-g} \exp \left\{-2 \frac{t-g-k}{q(T)}\right\} \\
& =\frac{N T q(T)}{N T q(T)} \frac{\sigma^{4}}{2}\left[1+O_{p}\left(\frac{q(T)}{T}\right)+O_{p}\left(\frac{1}{q(T)}\right)\right] \\
& =O(1),
\end{aligned}
$$

so that, applying Markov's inequality, we obtain $N^{-1 / 2} T^{-1 / 2} q(T)^{-1 / 2} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}=$ $O_{p}(1)$. Moreover, by Assumptions 1 and 4,

$$
\begin{aligned}
& E\left[\left(\frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \varepsilon_{i t-d} \rho_{T}^{t-g} w_{i 0}\right)^{2}\right] \\
= & \frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=g+1}^{T} \sum_{s=g+1}^{T} \rho_{T}^{t-g} \rho_{T}^{s-g} E\left[w_{i 0} w_{j 0}\right] E\left[\varepsilon_{i t-d} \varepsilon_{j s-d}\right] \\
= & \frac{\sigma^{2}}{N T q(T)} \sum_{i=1}^{N} E\left[w_{i 0}^{2}\right] \sum_{t=g+1}^{T} \rho_{T}^{2(t-g)} \\
= & \frac{\sigma^{2}}{T q(T)} \sup _{i} E\left[w_{i 0}^{2}\right] \exp \left\{-\frac{2}{q(T)}\right\}\left[1-\exp \left\{-\frac{2}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2(T-g)}{q(T)}\right\}\right] \\
= & O\left(T^{-1} q(T)^{-1}\right) O(1) O(1) O(q(T)) O(1) \\
= & O\left(T^{-1}\right),
\end{aligned}
$$

from which it follows by Markov's inequality that

$$
\frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \varepsilon_{i t-d} \rho_{T}^{t-g} w_{i 0}=O_{p}\left(\frac{1}{\sqrt{T}}\right)
$$

Hence,

$$
\begin{aligned}
& \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d} \\
= & \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}+\frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \varepsilon_{i t-d} \rho_{T}^{t-g} w_{i 0} \\
= & \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}+O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}(1)
\end{aligned}
$$

Furthermore, note that

$$
\begin{aligned}
\frac{\left(1-\rho_{T}\right)}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d} & =\left(1-\exp \left\{-\frac{1}{q(T)}\right\}\right) \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d} \\
& =\frac{1}{q(T)} \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d}\left[1+O_{p}\left(\frac{1}{q(T)}\right)\right] \\
& =O_{p}\left(\frac{1}{q(T)}\right)
\end{aligned}
$$

Finally, for part (e), note that for all $T \geq g+1$, we have

$$
\begin{aligned}
& E\left[\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}\right]^{2} \\
= & \frac{1}{N T} \sum_{i=1}^{N} \sum_{h=1}^{N} \sum_{t=g+1}^{T} \sum_{s=g+1}^{T} \sum_{j=1}^{t-g} \sum_{k=1}^{s-g} \rho_{T}^{(t-g-j)} \rho_{T}^{(s-g-k)} E\left[\varepsilon_{i j} \varepsilon_{h k} \varepsilon_{i t-d} \varepsilon_{h s-d}\right] \\
= & \frac{\sigma^{4}}{N T} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \sum_{j=1}^{t-g} \rho_{T}^{2(t-g-j)} \\
= & \frac{\sigma^{4} N}{N T} \sum_{t=g+1}^{T} \frac{1-\rho_{T}^{2(t-g)}}{1-\rho_{T}^{2}} \\
= & \sigma^{4} \frac{1}{1-\rho_{T}^{2}} \frac{1}{T}\left[(T-g)-\frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-g)}\right)}{1-\rho_{T}^{2}}\right] .
\end{aligned}
$$

Since here we assume that $\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}$ with $q(T)=O(1)$, it follows that there exist a positive constant C_{q} and a positive integer T^{*} such that for all $T \geq T^{*}$, we have

$$
\left|\rho_{T}\right| \leq \exp \left\{-\frac{1}{C_{q}}\right\}<1
$$

Using this bound, we have $T \geq \max \left\{T^{*}, g+1\right\}$

$$
\begin{aligned}
E\left[\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}\right]^{2} & =\sigma^{4} \frac{1}{1-\rho_{T}^{2}} \frac{1}{T}\left[(T-g)-\frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-g)}\right)}{1-\rho_{T}^{2}}\right] \\
& \leq \frac{\sigma^{4}}{1-\exp \left\{-2 / C_{q}\right\}}\left[1+\frac{1}{1-\exp \left\{-2 / C_{q}\right\}}\right]=O(1) .
\end{aligned}
$$

Hence, by applying Markov's inequality, we further obtain $N^{-1 / 2} T^{-1 / 2} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}=$ $O_{p}(1)$.

Moreover, by Assumptions 1 and 4,

$$
\begin{aligned}
& E\left[\left(\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \varepsilon_{i t-d} \rho_{T}^{t-g} w_{i 0}\right)^{2}\right] \\
= & \frac{1}{N T} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=g+1}^{T} \sum_{s=g+1}^{T} \rho_{T}^{t-g} \rho_{T}^{s-g} E\left[w_{i 0} w_{j 0}\right] E\left[\varepsilon_{i t-d} \varepsilon_{j s-d}\right] \\
= & \frac{\sigma^{2}}{N T} \sum_{i=1}^{N} E\left[w_{i 0}^{2}\right] \sum_{t=g+1}^{T} \rho_{T}^{2(t-g)} \\
= & \frac{\sigma^{2}}{T}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right)^{2} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-g)}\right)}{1-\rho_{T}^{2}} \\
= & O\left(T^{-1}\right) O(1) O(1) \\
= & O\left(T^{-1}\right)
\end{aligned}
$$

from which it follows, by Markov's inequality, that

$$
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \varepsilon_{i t-d} \rho_{T}^{t-g} w_{i 0}=O_{p}\left(\frac{1}{\sqrt{T}}\right)
$$

Hence,

$$
\begin{aligned}
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d} & =\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}+\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \varepsilon_{i t-d} \rho_{T}^{t-g} w_{i 0} \\
& =\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} \underline{w}_{i t-g, T} \varepsilon_{i t-d}+O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}(1) .
\end{aligned}
$$

Finally, note that

$$
\left|\frac{\left(1-\rho_{T}\right)}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d}\right| \leq 2\left|\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} \sum_{t=g+1}^{T} w_{i t-g, T} \varepsilon_{i t-d}\right|=O_{p}(1),
$$

which completes the proof for part (e).

Lemma SE-26:

Suppose that Assumptions 1 and 4 hold. Then, the following statements are true as $N, T \rightarrow \infty$
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\bar{w}_{-1, N, T}=O_{p}\left(\max \left\{\sqrt{\frac{T}{N}}, 1\right\}\right) .
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$, then

$$
\bar{w}_{-1, N, T}=O_{p}\left(\max \left\{\sqrt{\frac{T}{N}}, 1\right\}\right),
$$

as $N, T \rightarrow \infty$.
(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\bar{w}_{-1, N, T}=O_{p}\left(\max \left\{\sqrt{\frac{T}{N}}, 1\right\}\right),
$$

as $N, T \rightarrow \infty$.
(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\bar{w}_{-1, N, T}=O_{p}\left(\max \left\{\frac{q(T)}{\sqrt{N T}}, \frac{q(T)}{T}\right\}\right),
$$

as $N, T \rightarrow \infty$.
(e) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\bar{w}_{-1, N, T}=O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)
$$

as $N, T \rightarrow \infty$.

Proof of Lemma SE-26:

To proceed, note that

$$
\bar{w}_{-1, N, T}=\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1}=\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}+\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0},
$$

where $\underline{w}_{i t-1, T}=\sum_{j=1}^{t-1} \rho_{T}^{(t-1-j)} \varepsilon_{i j}$.
Consider first part (a). Note that, under the assumption here, there exists a positive integer I_{ρ} such that for all $T \geq I_{\rho}$, the triangular array process $\left\{\underline{w}_{i t, T}\right\}$ has the partial sum representation
$\underline{w}_{i t, T}=\sum_{j=1}^{t} \varepsilon_{i j}$. Hence, for all $T \geq \max \left\{I_{\rho}, g+1\right\}$, we obtain by direct calculation

$$
\begin{aligned}
& E\left[\left(\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}\right)^{2}\right] \\
= & \frac{1}{N^{2}(T-1)^{2}} \sum_{i=1}^{N} \sum_{\ell=1}^{N} \sum_{t=2}^{T} \sum_{s=2}^{T} E\left[\underline{w}_{i t-1, T} \underline{w}_{\ell s-1, T}\right] \\
= & \frac{1}{N^{2}(T-1)^{2}} \sum_{i=1}^{N} \sum_{\ell=1}^{N} \sum_{t=2}^{T} \sum_{s=2}^{T} \sum_{j=1}^{t-1} \sum_{k=1}^{s-1} E\left[\varepsilon_{i j} \varepsilon_{\ell k}\right] \\
= & \frac{\sigma^{2}}{N^{2}(T-1)^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T}(t-1)+\frac{2 \sigma^{2}}{N^{2}(T-1)^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} \sum_{s=2}^{t-1}(s-1) \\
= & \frac{\sigma^{2}}{N(T-1)^{2}} \frac{T(T-1)}{2}+\frac{2 \sigma^{2}}{N(T-1)^{2}} \sum_{t=3}^{T} \frac{(t-1)(t-2)}{2} \\
= & \frac{T}{N(T-1)} \frac{\sigma^{2}}{2}+\frac{\sigma^{2}}{N(T-1)^{2}} \frac{(T-2)(T-1)(2 T-3)}{6}+\frac{\sigma^{2}}{N(T-1)^{2}} \frac{(T-2)(T-1)}{2} \\
= & \frac{\sigma^{2}}{3} \frac{T}{N}\left[1+O\left(\frac{1}{T}\right)\right] .
\end{aligned}
$$

It follows by Markov's inequality that

$$
\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}=O_{p}\left(\sqrt{\frac{T}{N}}\right) .
$$

Moreover, by Assumption 4 and Liapounov's inequality, we have

$$
E\left|\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i 0}\right| \leq \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} E\left|w_{i 0}\right| \leq\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right)^{1 / 2} \leq C<\infty,
$$

for some (positive) constant C. It follows, by Markov's inequality, that

$$
\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i 0}=O_{p}(1) .
$$

Hence,

$$
\begin{aligned}
\bar{w}_{-1, N, T} & =\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}+\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i 0} \quad \text { (for all } T \text { sufficiently large) } \\
& =O_{p}\left(\sqrt{\frac{T}{N}}\right)+O_{p}(1)=O_{p}\left(\max \left\{\sqrt{\frac{T}{N}}, 1\right\}\right),
\end{aligned}
$$

which shows part (a).
Now, to show parts (b)-(d), first write

$$
\begin{aligned}
& E\left[\left(\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}\right)^{2}\right] \\
= & \frac{1}{N^{2}(T-1)^{2}} \sum_{i=1}^{N} \sum_{\ell=1}^{N} \sum_{t=2}^{T} \sum_{s=2}^{T} E\left[\underline{w}_{i t-1, T} \underline{w}_{\ell s-1, T}\right] \\
= & \frac{1}{N^{2}(T-1)^{2}} \sum_{i=1}^{N} \sum_{\ell=1}^{N} \sum_{t=2}^{T} \sum_{s=2}^{T} \sum_{j=1}^{t-1} \sum_{k=1}^{s-1} \exp \left\{-\frac{t-1-j}{q(T)}\right\} \exp \left\{-\frac{s-1-k}{q(T)}\right\} E\left[\varepsilon_{i j} \varepsilon_{\ell k}\right] \\
= & \sigma^{2} \frac{1}{N^{2}(T-1)^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \exp \left\{-2 \frac{t-1-j}{q(T)}\right\} \\
& +2 \sigma^{2} \frac{1}{N^{2}(T-1)^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-\frac{t-1-j}{q(T)}\right\} \exp \left\{-\frac{s-1-j}{q(T)}\right\} \\
= & \sigma^{2} \frac{1}{N(T-1)^{2}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \exp \left\{-2 \frac{t-1-j}{q(T)}\right\} \\
& +2 \sigma^{2} \frac{1}{N(T-1)^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-\frac{t-1-j}{q(T)}\right\} \exp \left\{-\frac{s-1-j}{q(T)}\right\} .
\end{aligned}
$$

Next, consider part (b), where we assume that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$. Applying part (a) of Lemma SE- 1 with $b=2$ and $d=2$ and part (a) of Lemma SE-7 with $b=1$ and $g=1$, we see that in this case

$$
\begin{aligned}
& E\left[\left(\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}\right)^{2}\right] \\
= & \sigma^{2} \frac{1}{N(T-1)^{2}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \exp \left\{-2 \frac{t-1-j}{q(T)}\right\} \\
& +2 \sigma^{2} \frac{1}{N(T-1)^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-\frac{t-1-j}{q(T)}\right\} \exp \left\{-\frac{s-1-j}{q(T)}\right\} \\
= & \sigma^{2} \frac{1}{N(T-1)^{2}} \frac{T^{2}}{2}\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right] \\
& +\frac{2 \sigma^{2}}{N(T-1)^{2}} \frac{1}{6} T^{3}\left[1+O\left(\max \left\{\frac{T}{q(T)}, \frac{1}{T}\right\}\right)\right] \\
= & O\left(\frac{T}{N}\right) .
\end{aligned}
$$

It follows by the Markov's inequality that

$$
\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}=O_{p}\left(\sqrt{\frac{T}{N}}\right)
$$

Moreover, by Assumption 4 and Liapounov's inequality, we have

$$
\begin{aligned}
& E\left|\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right| \\
\leq & \frac{1}{N(T-1)} \sum_{i=1}^{N} E\left|w_{i 0}\right| \sum_{t=2}^{T} \rho_{T}^{t-1} \\
\leq & \frac{1}{T-1}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right)^{1 / 2} \exp \left\{-\frac{1}{q(T)}\right\}\left[1-\exp \left\{-\frac{1}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{T-1}{q(T)}\right\}\right] \\
\leq & O\left(T^{-1}\right) O(1) O(1) O(q(T)) O(T / q(T))=O(1)
\end{aligned}
$$

from which it follows, by Markov's inequality, that

$$
\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}=O_{p}(1) .
$$

Hence,

$$
\begin{aligned}
\bar{w}_{-1, N, T} & =\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}+\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0} \\
& =O_{p}\left(\sqrt{\frac{T}{N}}\right)+O_{p}(1)=O_{p}\left(\max \left\{\sqrt{\frac{T}{N}}, 1\right\}\right)
\end{aligned}
$$

which shows part (b).
Consider part (c), where we assume that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. Applying part (b) of Lemma SE- 1 with $b=2$ and $d=2$ and part (b) of Lemma SE-7 with $b=1$, we see that in this case

$$
\begin{aligned}
& E\left[\left(\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}\right)^{2}\right] \\
= & \sigma^{2} \frac{1}{N(T-1)^{2}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \exp \left\{-2 \frac{t-1-j}{q(T)}\right\} \\
& +2 \sigma^{2} \frac{1}{N(T-1)^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-\frac{t-1-j}{q(T)}\right\} \exp \left\{-\frac{s-1-j}{q(T)}\right\} \\
= & \sigma^{2} \frac{1}{N(T-1)^{2}} \frac{q(T)^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& +\frac{2 \sigma^{2}}{N(T-1)^{2}} \frac{T q(T)^{2}}{2}\left[1-\frac{3}{2} \frac{q(T)}{T}+2 \frac{q(T)}{T} \exp \left\{-\frac{T}{q(T)}\right\}-\frac{1}{2} \frac{q(T)}{T} \exp \left\{-\frac{2 T}{q(T)}\right\}\right] \\
= & O\left(\frac{q(T)^{2}}{N T}\right)=O\left(\frac{q(T)}{N}\right) .
\end{aligned}
$$

It follows by the Markov's inequality that

$$
\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}=O_{p}\left(\sqrt{\frac{q(T)}{N}}\right)=O_{p}\left(\sqrt{\frac{T}{N}}\right) .
$$

Moreover, by Assumption 4 and Liapounov's inequality, we have

$$
\begin{aligned}
& E\left|\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right| \\
\leq & \frac{1}{N(T-1)} \sum_{i=1}^{N} E\left|w_{i 0}\right| \sum_{t=2}^{T} \rho_{T}^{t-1} \\
\leq & \frac{1}{T-1}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right)^{1 / 2} \exp \left\{-\frac{1}{q(T)}\right\}\left[1-\exp \left\{-\frac{1}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{T-1}{q(T)}\right\}\right] \\
\leq & O\left(T^{-1}\right) \times O(1) \times O(1) \times O(T) \times O(1)=O(1),
\end{aligned}
$$

from which it follows, by Markov's inequality, that

$$
\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}=O_{p}(1) .
$$

Hence,

$$
\begin{aligned}
\bar{w}_{-1, N, T} & =\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}+\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0} \\
& =O_{p}\left(\sqrt{\frac{T}{N}}\right)+O_{p}(1)=O_{p}\left(\max \left\{\sqrt{\frac{T}{N}}, 1\right\}\right),
\end{aligned}
$$

as required for part (c).
We turn our attention now to part (d) where we assume that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$. In this case, applying part (c) of Lemma SE- 1 with $b=2$ and $d=2$ as well as part (c) of Lemma SE-7 with $b=1$, we get

$$
\begin{aligned}
& E\left[\left(\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}\right)^{2}\right] \\
= & \sigma^{2} \frac{1}{N(T-1)^{2}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \exp \left\{-2 \frac{t-1-j}{q(T)}\right\} \\
& +2 \sigma^{2} \frac{1}{N(T-1)^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-\frac{t-1-j}{q(T)}\right\} \exp \left\{-\frac{s-1-j}{q(T)}\right\} \\
= & \sigma^{2} \frac{1}{N(T-1)^{2}} \frac{T q(T)}{2}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right] \\
& +2 \sigma^{2} \frac{1}{N(T-1)^{2}} \frac{T q(T)^{2}}{2}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right] \\
= & O\left(\frac{q(T)^{2}}{N T}\right) .
\end{aligned}
$$

It follows by the Markov's inequality that

$$
\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}=O_{p}\left(\frac{q(T)}{\sqrt{N T}}\right)=o_{p}(1) .
$$

Moreover, by Assumption 4 and Liapounov's inequality, we have

$$
\begin{aligned}
& E\left|\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right| \\
\leq & \frac{1}{N(T-1)} \sum_{i=1}^{N} E\left|w_{i 0}\right| \sum_{t=2}^{T} \rho_{T}^{t-1} \\
\leq & \frac{1}{T-1}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right)^{1 / 2} \exp \left\{-\frac{1}{q(T)}\right\}\left[1-\exp \left\{-\frac{1}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{T-1}{q(T)}\right\}\right] \\
\leq & O\left(T^{-1}\right) \times O(1) \times O(1) \times O(q(T)) \times O(1)=O(q(T) / T),
\end{aligned}
$$

from which it follows, by Markov's inequality, that

$$
\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}=O_{p}\left(\frac{q(T)}{T}\right)
$$

Hence,

$$
\begin{aligned}
\bar{w}_{-1, N, T} & =\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}+\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0} \\
& =O_{p}\left(\frac{q(T)}{\sqrt{N T}}\right)+O_{p}\left(\frac{q(T)}{T}\right)=O_{p}\left(\max \left\{\frac{q(T)}{\sqrt{N T}}, \frac{q(T)}{T}\right\}\right)
\end{aligned}
$$

which shows part (d).
Finally, to show part (e), write

$$
\begin{aligned}
& E\left[\left(\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}\right)^{2}\right] \\
& =\frac{1}{N^{2}(T-1)^{2}} \sum_{i=1}^{N} \sum_{\ell=1}^{N} \sum_{t=2}^{T} \sum_{s=2}^{T} E\left[\underline{w}_{i t-1, T} \underline{w}_{\ell s-1, T}\right] \\
& =\frac{1}{N^{2}(T-1)^{2}} \sum_{i=1}^{N} \sum_{\ell=1}^{N} \sum_{t=2}^{T} \sum_{s=2}^{T} \sum_{j=1}^{t-1} \sum_{k=1}^{s-1} \rho_{T}^{t-1-j} \rho_{T}^{s-1-k} E\left[\varepsilon_{i j} \varepsilon_{\ell k}\right] \\
& =\sigma^{2} \frac{1}{N(T-1)^{2}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \rho_{T}^{2(t-1-j)}+2 \sigma^{2} \frac{1}{N^{2}(T-1)^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \rho_{T}^{t-s} \sum_{j=1}^{s-1} \rho_{T}^{2(s-1-j)} \\
& =\sigma^{2} \frac{1}{N(T-1)^{2}} \sum_{t=2}^{T} \frac{1-\rho_{T}^{2(t-1)}}{1-\rho_{T}^{2}}+2 \sigma^{2} \frac{1}{N(T-1)^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \rho_{T}^{t-s} \frac{1-\rho_{T}^{2(s-1)}}{1-\rho_{T}^{2}} \\
& =\frac{\sigma^{2}}{N(T-1)} \frac{1}{1-\rho_{T}^{2}}-\frac{\sigma^{2}}{N(T-1)^{2}} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-1)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}} \\
& +\frac{2 \sigma^{2}}{N(T-1)^{2}} \frac{\rho_{T}}{1-\rho_{T}^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \rho_{T}^{t-1-s}-\frac{2 \sigma^{2}}{N(T-1)^{2}} \frac{1}{1-\rho_{T}^{2}} \sum_{t=3}^{T} \rho_{T}^{t} \sum_{s=2}^{t-1} \rho_{T}^{(s-2)} \\
& =\frac{\sigma^{2}}{N(T-1)} \frac{1}{1-\rho_{T}^{2}}-\frac{\sigma^{2}}{N(T-1)^{2}} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-1)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}} \\
& +\frac{2 \sigma^{2}}{N(T-1)^{2}} \frac{\rho_{T}}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right)} \sum_{t=3}^{T}\left(1-\rho_{T}^{(t-2)}\right) \\
& -\frac{2 \sigma^{2}}{N(T-1)^{2}} \frac{1}{1-\rho_{T}^{2}} \sum_{t=3}^{T} \rho_{T}^{t} \frac{1-\rho_{T}^{t-2}}{1-\rho_{T}} \\
& =\frac{\sigma^{2}}{N(T-1)} \frac{1}{1-\rho_{T}^{2}}-\frac{\sigma^{2}}{N(T-1)^{2}} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-1)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}} \\
& +\frac{2 \sigma^{2}(T-2)}{N(T-1)^{2}} \frac{\rho_{T}}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right)}-\frac{2 \sigma^{2}}{N(T-1)^{2}} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{(T-2)}\right)}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right)^{2}} \\
& -\frac{2 \sigma^{2}}{N(T-1)^{2}} \frac{\rho_{T}^{3}\left(1-\rho_{T}^{(T-2)}\right)}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right)^{2}}+\frac{2 \sigma^{2}}{N(T-1)^{2}} \frac{\rho_{T}^{4}\left(1-\rho_{T}^{2(T-2)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}\left(1-\rho_{T}\right)} .
\end{aligned}
$$

Now, since $q(T)=O(1)$ in this case, there exist some positive constant C_{q} and some positive integer T^{*} such that for all $T \geq T^{*}$

$$
0 \leq\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\} \leq \exp \left\{-\frac{1}{C_{q}}\right\}<1
$$

so that

$$
\begin{aligned}
& E\left[\bar{w}_{-1, N, T}^{2}\right] \\
\leq & \frac{\sigma^{2}}{N(T-1)} \frac{1}{1-\rho_{T}^{2}}+\frac{\sigma^{2}}{N(T-1)^{2}} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-1)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}} \\
& +\frac{2 \sigma^{2}}{N(T-1)} \frac{\left|\rho_{T}\right|}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right)}+\frac{2 \sigma^{2}}{N(T-1)^{2}} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{(T-2)}\right)}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right)^{2}} \\
& +\frac{2 \sigma^{2}}{N(T-1)^{2}} \frac{\rho_{T}^{3}\left(1-\rho_{T}^{(T-2)}\right)}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right)^{2}}+\frac{2 \sigma^{2}}{N(T-1)^{2}} \frac{\rho_{T}^{4}\left(1-\rho_{T}^{2(T-2)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}\left(1-\rho_{T}\right)} \\
\leq & \frac{1}{N(T-1)} \frac{\sigma^{2}}{1-\exp \left\{-2 / C_{q}\right\}}+\frac{1}{N(T-1)^{2}} \frac{\sigma^{2}}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{2}} \\
& +\frac{1}{N(T-1)} \frac{4 \sigma^{2}}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)\left(1-\exp \left\{-1 / C_{q}\right\}\right)} \\
& +\frac{1}{N(T-1)^{2}} \frac{2 \sigma^{2}}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{2}\left(1-\exp \left\{-1 / C_{q}\right\}\right)} \\
= & O\left(\frac{1}{N T}\right)
\end{aligned}
$$

It follows by the Markov's inequality that

$$
\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}=O_{p}\left(\frac{1}{\sqrt{N T}}\right)
$$

Moreover, by Assumption 4 and Liapounov's inequality, we have

$$
\begin{aligned}
E\left|\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right| & \leq \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T}\left|\rho_{T}\right|^{t-1} E\left|w_{i 0}\right| \\
& \leq \frac{1}{T-1}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right)^{1 / 2} \frac{\left|\rho_{T}\right|\left(1-\left|\rho_{T}\right|^{T-1}\right)}{1-\left|\rho_{T}\right|} \\
& =O\left(\frac{1}{T}\right)
\end{aligned}
$$

from which it follows, by Markov's inequality, that

$$
\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}=O_{p}\left(\frac{1}{T}\right)
$$

Hence,

$$
\begin{aligned}
\bar{w}_{-1, N, T} & =\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1}+\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0} \\
& =O_{p}\left(\frac{1}{\sqrt{N T}}\right)+O_{p}\left(\frac{1}{T}\right)=O_{p}\left(\max \left\{\frac{1}{\sqrt{N T}}, \frac{1}{T}\right\}\right)
\end{aligned}
$$

which completes the proof of part (e).

Lemma SE-27:

Suppose that Assumptions 1 and 4 hold. Then, the following statements are true as $N, T \rightarrow \infty$
(a) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\frac{1}{\bar{\omega}_{Z, N, T}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1, T} \varepsilon_{i t} \Rightarrow \mathcal{Z} \equiv N(0,1),
$$

as $N, T \rightarrow \infty$, where

$$
\begin{aligned}
\bar{\omega}_{Z, N, T}^{2} & =\sigma^{4} \sum_{i=1}^{N} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \exp \left\{-2 \frac{t-1-j}{q(T)}\right\} \\
& =\frac{\sigma^{4}}{4} N q(T)^{2}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\left[1+O\left(\frac{1}{T}\right)\right]
\end{aligned}
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1, T} \varepsilon_{i t} \Rightarrow N\left(0, \frac{\sigma^{4}}{2}\right),
$$

as $N, T \rightarrow \infty$.
(c) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\sqrt{\frac{1-\rho_{T}^{2}}{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1, T} \varepsilon_{i t} \Rightarrow N\left(0, \sigma^{4}\right)
$$

Proof of Lemma SE-27:

Before embarking on the proof of the indvidual parts of this lemma, we first introduce some additional notation and perform some preliminary moment calculations. To proceed, first write

$$
\sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1, T} \varepsilon_{i t}=\sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1, T} \varepsilon_{i t}+\sum_{i=1}^{N} \sum_{t=2}^{T} \varepsilon_{i t} \rho_{T}^{t-1} w_{i 0},
$$

where $\underline{w}_{i t-1, T}=\sum_{j=1}^{t-1} \rho_{T}^{(t-1-j)} \varepsilon_{i j}$. Let

$$
Z_{i, T}=\frac{1}{T} \sum_{t=2}^{T} \underline{w}_{i t-1, T} \varepsilon_{i t},
$$

and note that

$$
\begin{aligned}
E\left[Z_{i, T}\right] & =\frac{1}{T} \sum_{t=2}^{T} E\left[\underline{w}_{i t-1, T} \varepsilon_{i t}\right]=\frac{1}{T} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \exp \left\{-\frac{t-1-j}{q(T)}\right\} E\left[\varepsilon_{i j} \varepsilon_{i t}\right]=0 \\
E\left[Z_{i, T}^{2}\right] & =\frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{s=2}^{T} E\left[\underline{w}_{i t-1, T} \underline{w}_{i s-1, T} \varepsilon_{i t} \varepsilon_{i s}\right] \\
& =\frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{s=2}^{T} \sum_{j=1}^{t-1} \sum_{k=1}^{s-1} \exp \left\{-\frac{t-1-j}{q(T)}\right\} \exp \left\{-\frac{s-1-k}{q(T)}\right\} E\left[\varepsilon_{i j} \varepsilon_{i k} \varepsilon_{i t} \varepsilon_{i s}\right] \\
& =\sigma^{4} \frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \exp \left\{-2 \frac{t-1-j}{q(T)}\right\} .
\end{aligned}
$$

It follows that

$$
\omega_{Z, N, T}^{2}=\sum_{i=1}^{N} E\left[Z_{i, T}^{2}\right]=\sigma^{4} N \frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \exp \left\{-2 \frac{t-1-j}{q(T)}\right\}
$$

Now, consider part (a), where we assume that $q(T) \sim T$. Using part (b) of Lemma SE-1 with $b=2$ and $d=2$, we see that in this case

$$
\begin{aligned}
\omega_{Z, N, T}^{2} & =\frac{\bar{\omega}_{Z, N, T}^{2}}{T^{2}}=\sigma^{4} N \frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \exp \left\{-2 \frac{t-1-j}{q(T)}\right\} \\
& =\sigma^{4} N \frac{q(T)^{2}}{4 T^{2}}\left[\exp \left\{-2 \frac{T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\left[1+O\left(\frac{1}{T}\right)\right]
\end{aligned}
$$

so that

$$
\frac{\omega_{Z, N, T}^{2}}{N}=\sigma^{4} \frac{q(T)^{2}}{4 T^{2}}\left[\exp \left\{-2 \frac{T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\left[1+O\left(\frac{1}{T}\right)\right]
$$

Moreover, the assumption $q(T) \sim T$ implies that there exists a constant $\bar{C}>1$ such that

$$
0<\frac{1}{\bar{C}} \leq \frac{T}{q(T)} \leq \bar{C}<\infty \text { eventually as } T \rightarrow \infty
$$

In addition, let $f(x)=\exp \{-2 x\}+2 x-1$. Since $f(0)=0$ and $f^{\prime}(x)=-2 \exp \{-2 x\}+2>0$ for all $x>0$, it follows that by the mean value theorem that for all $a \in(0, \infty)$ there exists some $b \in(0, a)$ such that

$$
\exp \{-2 a\}+2 a-1=f(a)=f^{\prime}(b) a>0
$$

Using these facts, we deduce that

$$
0<\exp \left\{-\frac{2}{\bar{C}}\right\}+\frac{2}{\bar{C}}-1<\exp \{-2 \bar{C}\}+2 \bar{C}-1<\infty
$$

It then follows from Assumption 1 that there exists a positive constant C such that

$$
0<\frac{1}{C} \leq \frac{\omega_{Z, N, T}}{\sqrt{N}} \leq C<\infty \text { eventually as } N, T \rightarrow \infty
$$

Moreover, by Assumptions 1 and 4,

$$
\begin{aligned}
& E\left[\left(\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} \varepsilon_{i t} \rho_{T}^{t-1} w_{i 0}\right)^{2}\right] \\
= & \frac{1}{N T^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=2}^{T} \sum_{s=2}^{T} \rho_{T}^{t-1} \rho_{T}^{s-1} E\left[w_{i 0} w_{j 0}\right] E\left[\varepsilon_{i t} \varepsilon_{j s}\right] \\
= & \frac{\sigma^{2}}{N T^{2}} \sum_{i=1}^{N} E\left[w_{i 0}^{2}\right] \sum_{t=2}^{T} \rho_{T}^{2(t-1)} \\
= & \frac{\sigma^{2}}{T^{2}}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \exp \left\{-\frac{2}{q(T)}\right\}\left[1-\exp \left\{-\frac{2}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2(T-1)}{q(T)}\right\}\right] \\
= & O\left(T^{-2}\right) \times O(1) \times O(1) \times O(T) \times O(1)=O\left(T^{-1}\right),
\end{aligned}
$$

from which it follows, by Markov's inequality, that

$$
\frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} \varepsilon_{i t} \rho_{T}^{t-1} w_{i 0}=O_{P}\left(\frac{1}{\sqrt{T}}\right) .
$$

Hence,

$$
\begin{aligned}
& \frac{1}{\omega_{Z, N, T} / \sqrt{N}} \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1, T} \varepsilon_{i t} \\
= & \frac{1}{\omega_{Z, N, T} / \sqrt{N}} \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \underline{w}_{i t-1, T} \varepsilon_{i t}+\frac{1}{\omega_{Z, N, T} / \sqrt{N}} \frac{1}{\sqrt{N} T} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \varepsilon_{i t} \rho_{T}^{t-1} w_{i 0} \\
= & \frac{1}{\omega_{Z, N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} Z_{i, T}+O_{P}\left(\frac{1}{\sqrt{T}}\right) .
\end{aligned}
$$

Thus, showing the desired result is equivalent to showing the asymptotic normality of

$$
U_{Z, N, T}=\frac{1}{\omega_{Z, N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} Z_{i, T},
$$

To show the asymptotic normality of $U_{N, T}$, it suffices to verify a Liapounov-type condition of the form

$$
\lim _{N, T \rightarrow \infty} \frac{1}{N^{2}} \sum_{i=1}^{N} E\left[Z_{i, T}^{4}\right]=0
$$

Now, given Assumption 1, there exists a positive constant C such that

$$
\begin{aligned}
& E\left[Z_{i, T}^{4}\right] \\
= & \frac{1}{T^{4}} \sum_{t=2}^{T} \sum_{s=2}^{T} \sum_{g=2}^{T} \sum_{u=2}^{T} E\left[\underline{w}_{i t-1, T} \underline{w}_{i s-1, T} \underline{w}_{i g-1, T} \underline{w}_{i u-1, T} \varepsilon_{i t} \varepsilon_{i s} \varepsilon_{i g} \varepsilon_{i u}\right] \\
= & \frac{1}{T^{4}} \sum_{t=2}^{T} \sum_{s=2}^{T} \sum_{g=2}^{T} \sum_{u=2}^{T} \sum_{j=1}^{t-1} \sum_{k=1}^{s-1} \sum_{\ell=1}^{g-1} \sum_{h=1}^{u-1} \exp \left\{-\frac{t-1-j}{q(T)}\right\} \exp \left\{-\frac{s-1-k}{q(T)}\right\} \\
& \exp \left\{-\frac{g-1-\ell}{q(T)}\right\} \exp \left\{-\frac{u-1-h}{q(T)}\right\} E\left[\varepsilon_{i j} \varepsilon_{i k} \varepsilon_{i \ell} \varepsilon_{i h} \varepsilon_{i t} \varepsilon_{i s} \varepsilon_{i g} \varepsilon_{i u}\right] \\
\leq & C\left(\frac{1}{T^{4}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \exp \left\{-4 \frac{t-1-j}{q(T)}\right\}\right. \\
& +\frac{1}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-2 \frac{t-1-s}{q(T)}\right\} \exp \left\{-\frac{t-1-j}{q(T)}\right\} \exp \left\{-\frac{s-1-j}{q(T)}\right\} \\
& +\frac{1}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-\frac{t-1-s}{q(T)}\right\} \exp \left\{-2 \frac{t-1-j}{q(T)}\right\} \exp \left\{-\frac{s-1-j}{q(T)}\right\} \\
& +\frac{1}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-2 \frac{t-1-s}{q(T)}\right\} \exp \left\{-2 \frac{s-1-j}{q(T)}\right\} \\
& +\frac{1}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{t-1} \sum_{k=1}^{s-1} \exp \left\{-2 \frac{t-1-j}{q(T)}\right\} \exp \left\{-2 \frac{s-1-k}{q(T)}\right\} \\
& +\frac{1}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1}\left[\sum_{j=1}^{s-1} \exp \left\{-\frac{t-1-j}{q(T)}\right\} \exp \left\{-\frac{s-1-j}{q(T)}\right\}\right] \\
& \left.+\frac{1}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-\frac{t-1-s}{q(T)}\right\} \exp \left\{-\frac{t-1-j}{q(T)}\right\} \exp \left\{-2 \frac{s-1-j}{q(T)}\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq C\left(\frac{1}{T^{4}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \exp \left\{-4 \frac{t-1-j}{q(T)}\right\}\right. \\
& +\frac{1}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-2 \frac{t-1-s}{q(T)}\right\} \exp \left\{-\frac{t-s}{q(T)}\right\} \exp \left\{-2 \frac{(s-1-j)}{q(T)}\right\} \\
& +\frac{1}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-2 \frac{t-1-s}{q(T)}\right\} \exp \left\{-2 \frac{s-1-j}{q(T)}\right\} \\
& +\frac{1}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-\frac{t-1-s}{q(T)}\right\} \exp \left\{-\frac{t-1-j}{q(T)}\right\} \exp \left\{-\frac{t-s}{q(T)}\right\} \exp \left\{-2 \frac{(s-1-j)}{q(T)}\right\} \\
& +\frac{1}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-\frac{t-1-s}{q(T)}\right\} \exp \left\{-\frac{t-1-j}{q(T)}\right\} \exp \left\{-2 \frac{s-1-j}{q(T)}\right\} \\
& +\frac{1}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{t-1} \sum_{k=1}^{s-1} \exp \left\{-2 \frac{t-1-j}{q(T)}\right\} \exp \left\{-2 \frac{s-1-k}{q(T)}\right\} \\
& \left.+\frac{1}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1}\left[\sum_{j=1}^{s-1} \exp \left\{-2 \frac{(t-1-j)}{q(T)}\right\}\right]\left[\sum_{k=1}^{s-1} \exp \left\{-2 \frac{(t-1-k)}{q(T)}\right\}\right]\right) \\
& \leq C\left(\frac{1}{T^{4}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \exp \left\{-4 \frac{t-1-j}{q(T)}\right\}+\frac{2}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-2 \frac{t-1-s}{q(T)}\right\} \exp \left\{-2 \frac{s-1-j}{q(T)}\right\}\right. \\
& +\frac{2}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-2 \frac{t-1-s}{q(T)}\right\} \exp \left\{-\frac{s-j}{q(T)}\right\} \exp \left\{-2 \frac{s-1-j}{q(T)}\right\} \\
& \left.+\frac{2}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{t-1} \sum_{k=1}^{s-1} \exp \left\{-2 \frac{t-1-j}{q(T)}\right\} \exp \left\{-2 \frac{s-1-k}{q(T)}\right\}\right) \\
& \leq C\left(\frac{1}{T^{4}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \exp \left\{-4 \frac{t-1-j}{q(T)}\right\}+\frac{4}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-2 \frac{t-1-s}{q(T)}\right\} \exp \left\{-2 \frac{s-1-j}{q(T)}\right\}\right. \\
& \left.+\frac{2}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{t-1} \sum_{k=1}^{s-1} \exp \left\{-2 \frac{t-1-j}{q(T)}\right\} \exp \left\{-2 \frac{s-1-k}{q(T)}\right\}\right)
\end{aligned}
$$

It follows from applying part (b) of Lemma SE- 1 with $b=2$ and $d=4$, part (a) of Lemma SE- 8 with
$b=2$, and part (a) of Lemma SE-9 with $b=c=2$ that

$$
\begin{aligned}
& E\left[Z_{i, T}^{4}\right] \\
\leq & C\left\{\frac{1}{T^{4}} \frac{q(T)^{2}}{16}\left[\exp \left\{-\frac{4 T}{q(T)}\right\}+\frac{4 T}{q(T)}-1\right]\left[1+O\left(\frac{1}{T}\right)\right]\right. \\
& +\frac{4}{T^{4}}\left(\frac{T q(T)^{2}}{4}\left[1+\exp \left\{-\frac{2 T}{q(T)}\right\}\right]-\frac{2 q(T)^{3}}{8}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]\right)\left[1+O\left(\frac{1}{T}\right)\right] \\
& +\frac{2}{T^{4}}\left(\frac{T^{2} q(T)^{2}}{8}-\frac{q(T)^{4}}{16}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]-\frac{T q(T)^{3}}{8}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]\right. \\
& +\frac{q(T)^{4}}{16}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]+\frac{q(T)^{4}}{16}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right] \\
& \left.-\frac{q(T)^{4}}{32}\left[1-\exp \left\{-\frac{4 T}{q(T)}\right\}\right]\right)\left[1+O\left(\frac{1}{T}\right)\right] \\
= & C\left(\frac{1}{4} \frac{q(T)^{2}}{T^{2}}-\frac{1}{4} \frac{q(T)^{3}}{T^{3}}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]\right. \\
& \left.+\frac{1}{16} \frac{q(T)^{4}}{T^{4}}\left[1-2 \exp \left\{-\frac{2 T}{q(T)}\right\}+\exp \left\{-\frac{4 T}{q(T)}\right\}\right]\right)\left[1+O\left(\frac{1}{T}\right)\right]
\end{aligned}
$$

so that

$$
\begin{aligned}
& \frac{1}{N^{2}} \sum_{i=1}^{N} E\left[Z_{i, T}^{4}\right] \\
= & C \frac{1}{4 N}\left(\frac{q(T)^{2}}{T^{2}}-\frac{q(T)^{3}}{T^{3}}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]+\frac{1}{4} \frac{q(T)^{4}}{T^{4}}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]^{2}\right) \\
& \times\left[1+O\left(\frac{1}{T}\right)\right] \\
= & O\left(\frac{1}{N}\right) .
\end{aligned}
$$

Since the Liapounov condition implies the Lindeberg-type condition (13), we deduce from Lemma SE-10 that

$$
U_{Z, N, T}=\frac{1}{\omega_{Z, N, T}} \sum_{i=1}^{N} Z_{i, T} \Rightarrow \mathcal{Z} \equiv N(0,1)
$$

as $N, T \rightarrow \infty$.
Next, consider part (b), where we assume that $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but
$q(T) / T \rightarrow 0$. In this case, using part (c) of Lemma SE- 1 with $b=2$ and $d=2$, we see that

$$
\begin{aligned}
\omega_{Z, N, T}^{2} & =\sigma^{4} N \frac{1}{T^{2}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \exp \left\{-2 \frac{t-1-j}{q(T)}\right\} \\
& =\sigma^{4} N \frac{T q(T)}{2 T^{2}}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right] \\
& =\frac{\sigma^{4}}{2} \frac{N q(T)}{T}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right],
\end{aligned}
$$

so that

$$
\frac{T}{N q(T)} \omega_{Z, N, T}^{2}=\frac{\sigma^{4}}{2}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right] .
$$

It then follows from Assumption 1 that there exists a positive constant C such that

$$
0<\frac{1}{C} \leq \sqrt{\frac{T}{N q(T)}} \omega_{Z, N, T} \leq C<\infty \text { eventually as } N, T \rightarrow \infty
$$

Moreover, by Assumptions 1 and 4,

$$
\begin{aligned}
& E\left[\left(\frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T} \varepsilon_{i t} \rho_{T}^{t-1} w_{i 0}\right)^{2}\right]=\frac{1}{N T q(T)} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=2}^{T} \sum_{s=2}^{T} \rho_{T}^{t-1} \rho_{T}^{s-1} E\left[w_{i 0} w_{j 0}\right] E\left[\varepsilon_{i t} \varepsilon_{j s}\right] \\
= & \frac{\sigma^{2}}{N T q(T)} \sum_{i=1}^{N} E\left[w_{i 0}^{2}\right] \sum_{t=2}^{T} \rho_{T}^{2(t-1)} \\
= & \frac{\sigma^{2}}{q(T) T}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \exp \left\{-\frac{2}{q(T)}\right\}\left[1-\exp \left\{-\frac{2}{q(T)}\right\}\right]^{-1}\left[1-\exp \left\{-\frac{2(T-1)}{q(T)}\right\}\right] \\
= & O\left(q(T)^{-1} T^{-1}\right) \times O(1) \times O(1) \times O(q(T)) \times O(1)=O\left(T^{-1}\right),
\end{aligned}
$$

from which it follows, by Markov's inequality, that

$$
\frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T} \varepsilon_{i t} \rho_{T}^{t-1} w_{i 0}=O_{p}\left(\frac{1}{\sqrt{T}}\right) .
$$

Hence,

$$
\begin{aligned}
& \frac{1}{\omega_{Z, N, T} / \sqrt{N q(T) / T}} \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1, T} \varepsilon_{i t} \\
= & \frac{1}{\omega_{Z, N, T} / \sqrt{N q(T) / T}} \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \underline{w}_{i t-1, T} \varepsilon_{i t} \\
& +\frac{1}{\omega_{Z, N, T} / \sqrt{N q(T) / T}} \frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \varepsilon_{i t} \rho_{T}^{t-1} w_{i 0} \\
= & \frac{1}{\omega_{Z, N, T} / \sqrt{N q(T) / T}} \sqrt{\frac{T}{N q(T)}} \sum_{i=1}^{N} Z_{i, T}+O_{p}\left(\frac{1}{\sqrt{T}}\right) .
\end{aligned}
$$

Thus, showing the desired result is equivalent to showing the asymptotic normality of

$$
U_{Z, N, T}=\frac{1}{\omega_{Z, N, T} / \sqrt{N q(T) / T}} \sqrt{\frac{T}{N q(T)}} \sum_{i=1}^{N} Z_{i, T}
$$

To show the asymptotic normality of $U_{N, T}$, it suffices to verify a Liapounov-type condition of the form

$$
\lim _{N, T \rightarrow \infty}\left(\frac{T}{N q(T)}\right)^{2} \sum_{i=1}^{N} E\left[Z_{i, T}^{4}\right]=0
$$

Now, similar to part (a) above, we have that, given Assumption 1, there exists a positive constant C such that

$$
\begin{aligned}
& E\left[Z_{i, T}^{4}\right] \\
\leq & C\left(\frac{1}{T^{4}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \exp \left\{-4 \frac{t-1-j}{q(T)}\right\}+\frac{4}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \exp \left\{-2 \frac{t-1-s}{q(T)}\right\} \exp \left\{-2 \frac{s-1-j}{q(T)}\right\}\right. \\
& \left.+\frac{2}{T^{4}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{t-1} \sum_{k=1}^{s-1} \exp \left\{-2 \frac{t-1-j}{q(T)}\right\} \exp \left\{-2 \frac{s-1-k}{q(T)}\right\}\right)
\end{aligned}
$$

from applying part (c) of Lemma SE-1 with $b=2$ and $d=4$, part (b) of Lemma SE-8 with $b=2$, and part (a) of Lemma SE-9 with $b=c=2$ that

$$
\begin{aligned}
& E\left[Z_{i, T}^{4}\right] \\
\leq & C\left\{\frac{1}{T^{4}} \frac{T q(T)}{4}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right]+\frac{4}{T^{4}} \frac{T q(T)^{2}}{4}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right]\right. \\
& \left.+\frac{2}{T^{4}} \frac{T^{2} q(T)^{2}}{8}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right]\right\} \\
= & C \frac{1}{4} \frac{q(T)^{2}}{T^{2}}\left[1+\frac{4}{T}+\frac{1}{T q(T)}\right]\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right] \\
= & C \frac{1}{4}\left(\frac{q(T)}{T}\right)^{2}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right] .
\end{aligned}
$$

Hence,

$$
\left(\frac{T}{N q(T)}\right)^{2} \sum_{i=1}^{N} E\left[Z_{i, T}^{4}\right] \leq C \frac{1}{4 N}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right]=O\left(\frac{1}{N}\right)
$$

Since the Liapounov condition implies the Lindeberg-type condition (13), we deduce from Lemma SE-10 that

$$
U_{Z, N, T}=\frac{1}{\omega_{Z, N, T} / \sqrt{N q(T) / T}} \sqrt{\frac{T}{N q(T)}} \sum_{i=1}^{N} Z_{i, T} \Rightarrow \mathcal{Z} \equiv N(0,1),
$$

as $N, T \rightarrow \infty$. By the Cramér convergence theorem, we then have that

$$
\sqrt{\frac{T}{N q(T)}} \sum_{i=1}^{N} Z_{i, T}=\frac{1}{\sqrt{N T q(T)}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1, T} \varepsilon_{i t} \Rightarrow N\left(0, \frac{\sigma^{4}}{2}\right)
$$

as $N, T \rightarrow \infty$.
To show part (d), we first define

$$
Q_{i, T}=\sqrt{\frac{1-\rho_{T}^{2}}{T}} \sum_{t=2}^{T} \underline{w}_{i t-1, T} \varepsilon_{i t},
$$

and note that

$$
\begin{aligned}
E\left[Q_{i, T}\right] & =\sqrt{\frac{1-\rho_{T}^{2}}{T}} \sum_{t=2}^{T} E\left[\underline{w}_{i t-1, T} \varepsilon_{i t}\right]=\sqrt{\frac{1-\rho_{T}^{2}}{T}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \rho_{T}^{(t-1-j)} E\left[\varepsilon_{i j} \varepsilon_{i t}\right]=0, \\
E\left[Q_{i, T}^{2}\right] & =\frac{1-\rho_{T}^{2}}{T} \sum_{t=2}^{T} \sum_{s=2}^{T} E\left[\underline{w}_{i t-1, T} \underline{w}_{i s-1, T} \varepsilon_{i t} \varepsilon_{i s}\right] \\
& =\frac{1-\rho_{T}^{2}}{T} \sum_{t=2}^{T} \sum_{s=2}^{T} \sum_{j=1}^{t-1} \sum_{k=1}^{s-1} \rho_{T}^{(t-1-j)} \rho_{T}^{(s-1-k)} E\left[\varepsilon_{i j} \varepsilon_{i k} \varepsilon_{i t} \varepsilon_{i s}\right] \\
& =\sigma^{4} \frac{1-\rho_{T}^{2}}{T} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \rho_{T}^{2(t-1-j)} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\omega_{Q, N, T}^{2} & =\sum_{i=1}^{N} E\left[Q_{i, T}^{2}\right]=\sigma^{4} N \frac{1-\rho_{T}^{2}}{T} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \rho_{T}^{2(t-1-j)} \\
& =\sigma^{4} N \frac{1-\rho_{T}^{2}}{T} \sum_{t=2}^{T}\left[\frac{1-\rho_{T}^{2(t-1)}}{1-\rho_{T}^{2}}\right] \\
& =\sigma^{4} N\left[1-\frac{1}{T}-\frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-1)}\right)}{T\left(1-\rho_{T}^{2}\right)}\right]
\end{aligned}
$$

Since, in this case, we take $\rho_{T}^{2}=\exp \{-2 / q(T)\}$ with $q(T)=O(1)$, it follows that there exist a positive constant C_{q} and a positive integer T^{*} such that for all $T \geq T^{*}$

$$
\rho_{T}^{2} \leq \exp \left\{-\frac{2}{C_{q}}\right\}<1
$$

Using this bound, we further deduce that all $T \geq T^{*}$

$$
0 \leq \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-1)}\right)}{T\left(1-\rho_{T}^{2}\right)} \leq \frac{1}{T\left(1-\exp \left\{-2 / C_{q}\right\}\right)}=O\left(\frac{1}{T}\right)
$$

so that

$$
\frac{\omega_{Q, N, T}^{2}}{N}=\sigma^{4}\left[1+O\left(\frac{1}{T}\right)\right] .
$$

Thus, it follows from Assumption 1 that there exists a positive constant C such that

$$
0<\frac{1}{C} \leq \frac{\omega_{Q, N, T}}{\sqrt{N}} \leq C<\infty \text { eventually as } N, T \rightarrow \infty
$$

Moreover, by Assumptions 1 and 4,

$$
\begin{aligned}
& E\left[\left(\sqrt{\frac{1-\rho_{T}^{2}}{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} \varepsilon_{i t} \rho_{T}^{t-1} w_{i 0}\right)^{2}\right] \\
= & \frac{1-\rho_{T}^{2}}{N T} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=2}^{T} \sum_{s=2}^{T} \rho_{T}^{t-1} \rho_{T}^{s-1} E\left[w_{i 0} w_{j 0}\right] E\left[\varepsilon_{i t} \varepsilon_{j s}\right] \\
= & \frac{\sigma^{2}\left(1-\rho_{T}^{2}\right)}{N T} \sum_{i=1}^{N} E\left[w_{i 0}^{2}\right] \sum_{t=2}^{T} \rho_{T}^{2(t-1)} \\
= & \frac{\sigma^{2}\left(1-\rho_{T}^{2}\right)}{T}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-1)}\right)}{1-\rho_{T}^{2}} \\
= & O\left(T^{-1}\right) \times O(1) \times O(1)=O\left(T^{-1}\right),
\end{aligned}
$$

from which it follows, by Markov's inequality, that

$$
\sqrt{\frac{1-\rho_{T}^{2}}{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} \varepsilon_{i t} \rho_{T}^{t-1} w_{i 0}=O_{p}\left(\frac{1}{\sqrt{T}}\right) .
$$

Hence,

$$
\begin{aligned}
& \frac{1}{\omega_{Q, N, T} / \sqrt{N}} \sqrt{\frac{1-\rho_{T}^{2}}{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1, T} \varepsilon_{i t} \\
= & \frac{1}{\omega_{Q, N, T} / \sqrt{N}} \sqrt{\frac{1-\rho_{T}^{2}}{N T}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \underline{w}_{i t-1, T} \varepsilon_{i t}+\frac{1}{\omega_{Q, N, T} / \sqrt{N}} \sqrt{\frac{1-\rho_{T}^{2}}{N T}} \sum_{i=1}^{N} \sum_{t=g+2}^{T} \varepsilon_{i t} \rho_{T}^{t-1} w_{i 0} \\
= & \frac{1}{\omega_{Q, N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} Q_{i, T}+O_{p}\left(\frac{1}{\sqrt{T}}\right) .
\end{aligned}
$$

Thus, showing the desired result is equivalent to showing the asymptotic normality of

$$
U_{Q, N, T}=\frac{1}{\omega_{Q, N, T} / \sqrt{N}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} Q_{i, T}=\frac{1}{\omega_{Q, N, T} / \sqrt{N}} \sqrt{\frac{1-\rho_{T}^{2}}{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} w_{i t-1} \varepsilon_{i t} .
$$

To show the asymptotic normality of $U_{N, T}$, it suffices to verify a Liapounov-type condition of the form

$$
\lim _{N, T \rightarrow \infty} \frac{1}{N^{2}} \sum_{i=1}^{N} E\left[Q_{i, T}^{4}\right]=0
$$

To proceed, note that following calculations similar to that given in the proof of Lemma SE-23, we have
that, in light of Assumption 1, there exists a positive constant C such that

$$
\begin{aligned}
& E\left[Q_{i, T}^{4}\right] \\
= & E\left[\left(\sqrt{\frac{1-\rho_{T}^{2}}{T}} \sum_{t=2}^{T} \underline{w}_{i t-1, T} \varepsilon_{i t}\right)^{4}\right] \\
= & \frac{\left(1-\rho_{T}^{2}\right)^{2}}{T^{2}} \sum_{g=2}^{T} \sum_{s=2}^{T} \sum_{t=2}^{T} \sum_{u=2}^{T} E\left[\underline{w}_{i g-1, T} \underline{w}_{i s-1, T} \underline{w}_{i t-1, T} \underline{w}_{i u-1, T} \varepsilon_{i g} \varepsilon_{i s} \varepsilon_{i t} \varepsilon_{i u}\right] \\
\leq & C\left[\frac{\left(1-\rho_{T}^{2}\right)^{2}}{T^{2}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \rho_{T}^{4(t-1-j)}+4 \frac{\left(1-\rho_{T}^{2}\right)^{2}}{T^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \rho_{T}^{2(t-1-s)} \rho_{T}^{2(s-1-j)}\right. \\
& \left.+2 \frac{\left(1-\rho_{T}^{2}\right)^{2}}{T^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{t-1} \sum_{k=1}^{s-1} \rho_{T}^{2(t-1-j)} \rho_{T}^{2(s-1-k)}\right] \\
= & C(I+I I+I I I),(s a y) .
\end{aligned}
$$

Moreover, using the upper bound $\rho_{T}^{2} \leq \exp \left\{-2 / C_{q}\right\}<1$ for all $T \geq T^{*}$ as above, we have

$$
\begin{aligned}
I & =\frac{\left(1-\rho_{T}^{2}\right)^{2}}{T^{2}} \sum_{t=2}^{T} \sum_{j=1}^{t-1} \rho_{T}^{4(t-1-j)}=\frac{\left(1-\rho_{T}^{2}\right)^{2}}{T^{2}} \sum_{t=2}^{T} \frac{1-\rho_{T}^{4(t-1)}}{1-\rho_{T}^{4}} \\
& =\frac{\left(1-\rho_{T}^{2}\right)^{2}}{T^{2}} \frac{1}{1-\rho_{T}^{4}}\left[T-1-\frac{\rho_{T}^{4}\left(1-\rho_{T}^{4(T-1)}\right)}{1-\rho_{T}^{4}}\right] \\
& =\frac{1}{T^{2}} \frac{1}{1+\rho_{T}^{2}}\left[\left(1-\rho_{T}^{2}\right)(T-1)-\frac{\rho_{T}^{4}\left(1-\rho_{T}^{4(T-1)}\right)}{1+\rho_{T}^{2}}\right] \\
& \leq \frac{1}{T}\left[1+\frac{1}{2 T}\right]=O\left(\frac{1}{T}\right),
\end{aligned}
$$

$$
\begin{aligned}
I I & =4 \frac{\left(1-\rho_{T}^{2}\right)^{2}}{T^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{s-1} \rho_{T}^{2(t-1-s)} \rho_{T}^{2(s-1-j)} \\
& =4 \frac{\left(1-\rho_{T}^{2}\right)^{2}}{T^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \rho_{T}^{2(t-1-s)} \frac{1-\rho_{T}^{2(s-1)}}{1-\rho_{T}^{2}} \\
& =4 \frac{\left(1-\rho_{T}^{2}\right)^{2}}{T^{2}} \frac{1}{1-\rho_{T}^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \rho_{T}^{2(t-1-s)}-4 \frac{\left(1-\rho_{T}^{2}\right)^{2}}{T^{2}} \frac{1}{1-\rho_{T}^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \rho_{T}^{2(t-2)} \\
& =4 \frac{\left(1-\rho_{T}^{2}\right)^{2}}{T^{2}} \frac{1}{\left(1-\rho_{T}^{2}\right)^{2}} \sum_{t=3}^{T}\left(1-\rho_{T}^{2(t-2)}\right)-4 \frac{\left(1-\rho_{T}^{2}\right)^{2}}{T^{2}} \frac{1}{1-\rho_{T}^{2}} \sum_{t=3}^{T} \rho_{T}^{2(t-2)}(t-2) \\
& =4 \frac{T-2}{T^{2}}-4 \frac{1}{T^{2}} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-2)}\right)}{\left(1-\rho_{T}^{2}\right)}-4 \frac{\left(1-\rho_{T}^{2}\right)}{T^{2}} \frac{\rho_{T}^{2}-(T-1) \rho_{T}^{2(T-1)}+(T-2) \rho_{T}^{2 T}}{\left(1-\rho_{T}^{2}\right)^{2}}
\end{aligned}
$$

(by part(b) of Lemma SE-5)

$$
=\frac{4}{T}-\frac{8}{T^{2}}-4 \frac{1}{T^{2}} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-2)}\right)}{\left(1-\rho_{T}^{2}\right)}-\frac{4 \rho_{T}^{2}}{T^{2}\left(1-\rho_{T}^{2}\right)}+\frac{4 \rho_{T}^{2(T-1)}}{T\left(1-\rho_{T}^{2}\right)}-\frac{4 \rho_{T}^{2 T}}{T\left(1-\rho_{T}^{2}\right)}
$$

$$
-\frac{4 \rho_{T}^{2(T-1)}}{T^{2}\left(1-\rho_{T}^{2}\right)}+\frac{8 \rho_{T}^{2 T}}{T^{2}\left(1-\rho_{T}^{2}\right)}
$$

$$
\leq \frac{4}{T}\left[1+\frac{2}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)}\right]+\frac{4}{T^{2}}\left[2+\frac{5}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)}\right]
$$

$$
=O\left(\frac{1}{T}\right)
$$

and

$$
\begin{aligned}
& \text { III }= 2 \frac{\left(1-\rho_{T}^{2}\right)^{2}}{T^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{j=1}^{t-1} \sum_{k=1}^{s-1} \rho_{T}^{2(t-1-j)} \rho_{T}^{2(s-1-k)} \\
&= \frac{\left(1-\rho_{T}^{2}\right)^{2}}{T^{2}} \frac{2}{\left(1-\rho_{T}^{2}\right)^{2}} \sum_{t=3}^{T}\left(1-\rho_{T}^{2(t-1)}\right) \sum_{s=2}^{t-1}\left(1-\rho_{T}^{2(s-1)}\right) \\
&= \frac{2}{T^{2}} \sum_{t=3}^{T}\left(1-\rho_{T}^{2(t-1)}\right)\left[(t-2)-\frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(t-2)}\right)}{\left(1-\rho_{T}^{2}\right)}\right] \\
&= \frac{2}{T^{2}} \sum_{t=3}^{T}(t-2)-\frac{2 \rho_{T}^{2}}{T^{2}} \sum_{t=3}^{T} \rho_{T}^{2(t-2)}(t-2)-2 \frac{(T-2)}{T^{2}} \frac{\rho_{T}^{2}}{\left(1-\rho_{T}^{2}\right)}+\frac{2}{T^{2}} \frac{\rho_{T}^{6}\left(1-\rho_{T}^{2(T-2)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}} \\
&\left.+\frac{2}{T^{2}} \frac{\rho_{T}^{4}\left(1-\rho_{T}^{2(T-2)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}}-\frac{2}{T^{2}} \frac{\rho_{T}^{8}\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}^{4}\right)}{(T(T-2)}\right) \\
&= \frac{(T-2)(T-1)}{T^{2}}-\frac{2 \rho_{T}^{2}}{T^{2}} \frac{\rho_{T}^{2}-(T-1) \rho_{T}^{2(T-1)}+(T-2) \rho_{T}^{2 T}}{\left(1-\rho_{T}^{2}\right)^{2}}(\text { by part(b) of Lemma SE-5)} \\
&-\frac{2 \rho_{T}^{2}}{T\left(1-\rho_{T}^{2}\right)}+\frac{4 \rho_{T}^{2}}{T^{2}\left(1-\rho_{T}^{2}\right)}+\frac{2}{T^{2}}\left[\frac{\rho_{T}^{6}\left(1-\rho_{T}^{2(T-2)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}}+\frac{\rho_{T}^{4}\left(1-\rho_{T}^{2(T-2)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}}-\frac{\rho_{T}^{8}\left(1-\rho_{T}^{4(T-2)}\right)}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}^{4}\right)}\right] \\
&= 1-\frac{3}{T}-\frac{2 \rho_{T}^{2}}{T\left(1-\rho_{T}^{2}\right)}+\frac{2 \rho_{T}^{2 T}}{T\left(1-\rho_{T}^{2}\right)^{2}}-\frac{2 \rho_{T}^{2(T+1)}}{T\left(1-\rho_{T}^{2}\right)^{2}} \\
&+\frac{2}{T^{2}}-\frac{2 \rho_{T}^{4}}{T^{2}\left(1-\rho_{T}^{2}\right)^{2}}-\frac{2 \rho_{T}^{2 T}}{T^{2}\left(1-\rho_{T}^{2}\right)^{2}+\frac{4 \rho_{T}^{2(T+1)}}{T^{2}\left(1-\rho_{T}^{2}\right)^{2}}+\frac{4 \rho_{T}^{2}}{T^{2}\left(1-\rho_{T}^{2}\right)}} \\
&+\frac{2}{T^{2}} \frac{\rho_{T}^{6}}{\left(1-\rho_{T}^{2(T-2)}\right)} \\
& \leq 1+\frac{2}{\left(1-\rho_{T}^{2}\right)^{2}}+\frac{\rho_{T}^{4}\left(1-\rho_{T}^{2(T-2)}\right)}{T^{2}} \frac{2}{\left(1-\rho_{T}^{2}\right)^{2}}-\frac{2}{T^{2}} \frac{\rho_{T}^{8}\left(1-\rho_{T}^{4(T-2)}\right)}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}^{4}\right)} \\
&+\frac{2}{T^{2}}\left[1+\frac{2}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)}+\frac{2}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{2}}\right] \\
&(1),
\end{aligned}
$$

from which we deduce that

$$
\frac{1}{N^{2}} \sum_{i=1}^{N} E\left[Q_{i, T}^{4}\right]=O\left(\frac{1}{N}\right)=o(1) .
$$

Since the Liapounov condition implies the Lindeberg-type condition (13), we deduce from Lemma SE-10 that

$$
U_{Q, N, T}=\frac{1}{\omega_{Q, N, T} / \sqrt{N}} \sqrt{\frac{1-\rho_{T}^{2}}{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1} \varepsilon_{i t} \Rightarrow \mathcal{Z} \equiv N(0,1)
$$

as $N, T \rightarrow \infty$. By the Cramér convergence theorem, we then have that

$$
\sqrt{\frac{1-\rho_{T}^{2}}{N T}} \sum_{i=1}^{N} \sum_{t=2}^{T} \underline{w}_{i t-1} \varepsilon_{i t}=\frac{\omega_{Q, N, T}}{\sqrt{N}} U_{Q, N, T}=\sigma^{2} U_{Q, N, T}\left[1+O\left(\frac{1}{T}\right)\right] \Rightarrow N\left(0, \sigma^{4}\right)
$$

as required.

Lemma SE-28:

Under Assumptions 1 and 4, the following statements are hold as $N, T \rightarrow \infty$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\sum_{i=1}^{N} \bar{w}_{i,-1}^{2}=O_{p}(N T)
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$, then

$$
\sum_{i=1}^{N} \bar{w}_{i,-1}^{2}=O_{p}(N T)
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\sum_{i=1}^{N} \bar{w}_{i,-1}^{2}=O_{p}(N q(T))=O_{p}(N T)
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\sum_{i=1}^{N} \bar{w}_{i,-1}^{2}=O_{p}\left(\frac{N q(T)^{2}}{T}\right)
$$

(e) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\sum_{i=1}^{N} \bar{w}_{i,-1}^{2}=O_{p}\left(\frac{N}{T}\right)
$$

Proof of Lemma SE-28:

To proceed, note that

$$
\begin{aligned}
\sum_{i=1}^{N} \bar{w}_{i,-1}^{2}= & \sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} w_{i t-1, T}\right)^{2} \\
= & \sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}+\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2} \\
= & \sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)^{2}+2 \sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right) \\
& +\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2},
\end{aligned}
$$

where $\underline{w}_{i t-1, T}=\sum_{j=1}^{t-1} \rho_{T}^{(t-1-j)} \varepsilon_{i j}$.
Consider first part (a). Note that, under the assumption here, there exists a positive integer I_{ρ} such that for all $T \geq I_{\rho}$, the triangular array process $\left\{\underline{w}_{i t, T}\right\}$ has the partial sum representation $\underline{w}_{i t, T}=\sum_{j=1}^{t} \varepsilon_{i j}$. Hence, for all $T \geq \max \left\{I_{\rho}, 3\right\}$, we obtain by direct calculation

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)^{2}\right] \\
= & \frac{1}{(T-1)^{2}} \sum_{i=1}^{N} \sum_{s=2}^{T} \sum_{t=2}^{T} \sum_{g=1}^{s-1} \sum_{v=1}^{t-1} E\left[\varepsilon_{i g} \varepsilon_{i v}\right] \\
= & \frac{\sigma^{2} N}{(T-1)^{2}} \sum_{t=2}^{T}(t-1)+\frac{2 \sigma^{2} N}{(T-1)^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1}(s-1) \\
= & \frac{\sigma^{2} N}{(T-1)^{2}} \frac{T(T-1)}{2}+\frac{2 \sigma^{2} N}{(T-1)^{2}} \sum_{t=3}^{T} \frac{(t-1)(t-2)}{2} \\
= & \frac{\sigma^{2}}{2} \frac{N T}{(T-1)}+\frac{\sigma^{2} N}{(T-1)^{2}}\left[\frac{(T-2)(T-1)(2 T-3)}{6}+\frac{(T-2)(T-1)}{2}\right] \\
= & \frac{\sigma^{2}}{3} N T\left[1+O\left(\frac{1}{T}\right)\right] .
\end{aligned}
$$

Applying Markov's inequality, we deduce that

$$
\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)^{2}=O_{p}(N T) .
$$

Moreover, by Assumption 4,

$$
E\left[\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} w_{i 0}\right)^{2}\right] \leq N\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right)=O(N)
$$

from which it follows, by Markov's inequality, that

$$
\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} w_{i 0}\right)^{2}=O_{p}(N)
$$

Also, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
& \left|\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)\left(\frac{1}{T-1} \sum_{t=2}^{T} w_{i 0}\right)\right| \\
\leq & \sqrt{\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)^{2}} \sqrt{\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} w_{i 0}\right)^{2}}=O_{p}(\sqrt{N T}) O_{p}(\sqrt{N})=O_{p}(N \sqrt{T}) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\sum_{i=1}^{N} \bar{w}_{i,-1}^{2}= & \sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)^{2}+2 \sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)\left(\frac{1}{T-1} \sum_{t=2}^{T} w_{i 0}\right) \\
& +\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} w_{i 0}\right)^{2} \quad(\text { for all } T \text { sufficiently large) } \\
= & O_{p}(N T)+O_{p}(N \sqrt{T})+O_{p}(N)=O_{p}(N T)
\end{aligned}
$$

as required for part (a).
Now, to show parts (b)-(d), we first make some preliminary moment calculations. Note that

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{s=2}^{T} \underline{w}_{i s-1, T}\right)^{2}\right] \\
= & \frac{1}{(T-1)^{2}} \sum_{i=1}^{N} \sum_{s=2}^{T} \sum_{t=2}^{T} \sum_{g=1}^{s-1} \sum_{v=1}^{t-1} \exp \left\{-\frac{s-1-g}{q(T)}\right\} \exp \left\{-\frac{t-1-v}{q(T)}\right\} E\left[\varepsilon_{i g} \varepsilon_{i v}\right] \\
= & \frac{\sigma^{2}}{(T-1)^{2}} \sum_{i=1}^{N} \sum_{t=2}^{T} \sum_{v=1}^{t-1} \exp \left\{-2 \frac{t-1-v}{q(T)}\right\} \\
& +2 \frac{\sigma^{2}}{(T-1)^{2}} \sum_{i=1}^{N} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{g=1}^{s-1} \exp \left\{-\frac{s-1-g}{q(T)}\right\} \exp \left\{-\frac{t-1-g}{q(T)}\right\} \\
= & \frac{\sigma^{2} N}{(T-1)^{2}} \sum_{t=2}^{T} \sum_{v=1}^{t-1} \exp \left\{-2 \frac{t-1-v}{q(T)}\right\} \\
& +2 \frac{\sigma^{2} N}{(T-1)^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{g=1}^{s-1} \exp \left\{-\frac{s-1-g}{q(T)}\right\} \exp \left\{-\frac{t-1-g}{q(T)}\right\} .
\end{aligned}
$$

Next, consider part (b), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$. Applying part (a) of Lemma SE- 1 with $b=2$ and $d=2$ and part (a) of Lemma SE- 7 with $b=1$ and $g=1$, we obtain

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{s=2}^{T} \underline{w}_{i s-1, T}\right)^{2}\right] \\
= & \frac{\sigma^{2} N}{(T-1)^{2}} \sum_{t=2}^{T} \sum_{v=1}^{t-1} \exp \left\{-2 \frac{t-1-v}{q(T)}\right\} \\
& +2 \frac{\sigma^{2} N}{(T-1)^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{g=1}^{s-1} \exp \left\{-\frac{s-1-g}{q(T)}\right\} \exp \left\{-\frac{t-1-g}{q(T)}\right\} \\
= & \frac{\sigma^{2} N}{(T-1)^{2}} \frac{T^{2}}{2}\left[1+O\left(\frac{1}{T}\right)\right]+2 \frac{\sigma^{2} N}{(T-1)^{2}} \frac{T^{3}}{6}\left[1+O\left(\frac{T}{q(T)}\right)+O\left(\frac{1}{T}\right)\right] \\
= & \frac{\sigma^{2}}{3} N T\left[1+O\left(\frac{T}{q(T)}\right)+O\left(\frac{1}{T}\right)\right]=O(N T) .
\end{aligned}
$$

Using Markov's inequality, we deduce that

$$
\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{s=2}^{T} \underline{w}_{i s-1, T}\right)^{2}=O_{p}(N T)
$$

Moreover, by Assumption 4,

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2}\right] \\
\leq & \frac{N}{(T-1)^{2}}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \exp \left\{-\frac{2}{q(T)}\right\}\left[1-\exp \left\{-\frac{1}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{T-1}{q(T)}\right\}\right]^{2} \\
= & O\left(N T^{-2}\right) O(1) O(1) O\left(q(T)^{2}\right) O\left(T^{2} / q(T)^{2}\right)=O(N)
\end{aligned}
$$

from which it follows by Markov's inequality that

$$
\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2}=O_{p}(N)
$$

Also, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
& \left|\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)\right| \\
\leq & \sqrt{\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{s=2}^{T} \underline{w}_{i s-1, T}\right)^{2} \sqrt{\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2}}} \\
= & O_{p}(\sqrt{N T}) O_{p}(\sqrt{N})=O_{p}(N \sqrt{T}) .
\end{aligned}
$$

so that

$$
\begin{aligned}
\sum_{i=1}^{N} \bar{w}_{i,-1}^{2}= & \sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)^{2}+2 \sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right) \\
& +\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2} \\
= & O_{p}(N T)+O_{p}(N \sqrt{T})+O_{p}(N)=O_{p}(N T),
\end{aligned}
$$

as required for part (b).
To show part (c), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, we apply part (b) of

Lemma SE- 1 with $b=2$ and $d=2$ and part (b) of Lemma SE-7 with $b=1$ to obtain

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{s=2}^{T} \underline{w}_{i s-1, T}\right)^{2}\right] \\
= & \frac{\sigma^{2} N}{(T-1)^{2}} \sum_{t=2}^{T} \sum_{v=1}^{t-1} \exp \left\{-2 \frac{t-1-v}{q(T)}\right\} \\
& +2 \frac{\sigma^{2} N}{(T-1)^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{g=1}^{s-1} \exp \left\{-\frac{s-1-g}{q(T)}\right\} \exp \left\{-\frac{t-1-g}{q(T)}\right\} \\
= & \frac{\sigma^{2} N}{(T-1)^{2}} \frac{q(T)^{2}}{4}\left[\exp \left\{-\frac{2 T}{q(T)}\right\}+\frac{2 T}{q(T)}-1\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& +\frac{2 \sigma^{2} N}{(T-1)^{2}} \frac{T q(T)^{2}}{2}\left[1-\frac{3}{2} \frac{q(T)}{T}+2 \frac{q(T)}{T} \exp \left\{-\frac{T}{q(T)}\right\}-\frac{1}{2} \frac{q(T)}{T} \exp \left\{-\frac{2 T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
= & \sigma^{2} N q(T) \frac{q(T)}{T}\left[1-\frac{3}{2} \frac{q(T)}{T}+2 \frac{q(T)}{T} \exp \left\{-\frac{T}{q(T)}\right\}-\frac{1}{2} \frac{q(T)}{T} \exp \left\{-\frac{2 T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
= & O(N q(T)) .
\end{aligned}
$$

Using Markov's inequality, we deduce that

$$
\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{s=2}^{T} \underline{w}_{i s-1, T}\right)^{2}=O_{p}(N q(T))=O_{p}(N T)
$$

Moreover, by Assumption 4,

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2}\right] \\
\leq & \frac{N}{(T-1)^{2}}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \exp \left\{-\frac{2}{q(T)}\right\}\left[1-\exp \left\{-\frac{1}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{T-1}{q(T)}\right\}\right]^{2} \\
= & O\left(N T^{-2}\right) \times O(1) \times O(1) \times O\left(T^{2}\right) \times O(1)=O(N),
\end{aligned}
$$

from which it follows, by Markov's inequality, that

$$
\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2}=O_{p}(N)
$$

Also, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
& \left|\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)\right| \\
\leq & \sqrt{\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{s=2}^{T} \underline{w}_{i s-1, T}\right)^{2}} \sqrt{\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2}} \\
= & O_{p}(\sqrt{N T}) O_{p}(\sqrt{N})=O_{p}(N \sqrt{T})
\end{aligned}
$$

so that

$$
\begin{aligned}
\sum_{i=1}^{N} \bar{w}_{i,-1}^{2}= & \sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)^{2}+2 \sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right) \\
& +\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2} \\
= & O_{p}(N T)+O_{p}(N \sqrt{T})+O_{p}(N)=O_{p}(N T) .
\end{aligned}
$$

We turn our attention now to part (d), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$. Applying part (c) of Lemma SE-1 with $b=2$ and $d=2$ and part (c) of Lemma SE-7 with $b=1$, we obtain

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{s=2}^{T} \underline{w}_{i s-1, T}\right)^{2}\right] \\
= & \frac{\sigma^{2} N}{(T-1)^{2}} \sum_{t=2}^{T} \sum_{v=1}^{t-1} \exp \left\{-2 \frac{t-1-v}{q(T)}\right\} \\
& +2 \frac{\sigma^{2} N}{(T-1)^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{g=1}^{s-1} \exp \left\{-\frac{s-1-g}{q(T)}\right\} \exp \left\{-\frac{t-1-g}{q(T)}\right\} \\
= & \frac{\sigma^{2} N}{(T-1)^{2}} \frac{T q(T)}{2}\left[1+O\left(\frac{1}{q(T)}\right)+O\left(\frac{q(T)}{T}\right)\right] \\
& +2 \frac{\sigma^{2} N}{(T-1)^{2}} \frac{T q(T)^{2}}{2}\left[1+O\left(\max \left\{\frac{q(T)}{T}, \frac{1}{q(T)}\right\}\right)\right] \\
= & O\left(\frac{N q(T)^{2}}{T}\right) .
\end{aligned}
$$

Using Markov's inequality, we deduce that

$$
\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{s=2}^{T} \underline{w}_{i s-1, T}\right)^{2}=O_{p}\left(\frac{N q(T)^{2}}{T}\right)
$$

Moreover, note that, using Assumption 4, we obtain

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2}\right] \\
\leq & \frac{N}{(T-1)^{2}}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \exp \left\{-\frac{2}{q(T)}\right\}\left[1-\exp \left\{-\frac{1}{q(T)}\right\}\right]^{-2}\left[1-\exp \left\{-\frac{T-1}{q(T)}\right\}\right]^{2} \\
= & O\left(N T^{-2}\right) \times O(1) \times O(1) \times O\left(q(T)^{2}\right) \times O(1)=O\left(N q(T)^{2} / T^{2}\right),
\end{aligned}
$$

so that it follows, by Markov's inequality, that

$$
\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2}=O_{p}\left(\frac{N q(T)^{2}}{T^{2}}\right)
$$

Also, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
& \left|\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)\right| \\
\leq & \sqrt{\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{s=2}^{T} \underline{w}_{i s-1, T}\right)^{2} \sqrt{\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2}}} \\
= & O_{p}\left(\sqrt{\frac{N q(T)^{2}}{T}}\right) O_{p}\left(\frac{\sqrt{N} q(T)}{T}\right)=O_{p}\left(\frac{N q(T)^{2}}{T^{3 / 2}}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\sum_{i=1}^{N} \bar{w}_{i,-1}^{2}= & \sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)^{2}+2 \sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right) \\
& +\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2} \\
= & O_{p}\left(\frac{N q(T)^{2}}{T}\right)+O_{p}\left(\frac{N q(T)^{2}}{T^{3 / 2}}\right)+O_{a . s .}\left(\frac{N q(T)^{2}}{T^{2}}\right)=O_{p}\left(\frac{N q(T)^{2}}{T}\right) .
\end{aligned}
$$

Finally, we consider part (e), where we take $\rho_{T} \in \mathcal{G}_{\mathrm{St}}$. Since we assume here that $q(T)=O(1)$, there exist some positive constant C_{q} and some positive integer T^{*} such that for all $T \geq T^{*}$

$$
0 \leq\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\} \leq \exp \left\{-\frac{1}{C_{q}}\right\}<1 .
$$

Using this bound, we obtain for all $T \geq T^{*}$

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{s=2}^{T} \underline{w}_{i s-1, T}\right)^{2}\right] \\
= & \frac{\sigma^{2} N}{(T-1)^{2}} \sum_{t=2}^{T} \sum_{v=1}^{t-1} \rho_{T}^{2(t-1-v)}+2 \frac{\sigma^{2} N}{(T-1)^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \sum_{g=1}^{s-1} \rho_{T}^{(s-1-g)} \rho_{T}^{(t-1-g)} \\
= & \frac{\sigma^{2} N}{(T-1)^{2}} \sum_{t=2}^{T} \frac{1-\rho_{T}^{2(t-1)}}{1-\rho_{T}^{2}}+2 \frac{\sigma^{2} N}{(T-1)^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \rho_{T}^{t-1-(s-1)} \sum_{g=1}^{s-1} \rho_{T}^{2(s-1-g)} \\
= & \frac{N}{(T-1)} \frac{\sigma^{2}}{1-\rho_{T}^{2}}-\frac{N \sigma^{2}}{(T-1)^{2}} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-1)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}}+2 \frac{\sigma^{2} N}{(T-1)^{2}} \sum_{t=3}^{T} \sum_{s=2}^{t-1} \rho_{T}^{(t-s)} \frac{1-\rho_{T}^{2(s-1)}}{1-\rho_{T}^{2}} \\
= & \frac{N}{(T-1)} \frac{\sigma^{2}}{1-\rho_{T}^{2}}-\frac{N \sigma^{2}}{(T-1)^{2}} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-1)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}} \\
& +2 \frac{N}{(T-1)^{2}} \frac{\sigma^{2}}{1-\rho_{T}^{2}} \sum_{t=3}^{T} \frac{\rho_{T}}{\left(1-\rho_{T}^{2(t-2)}\right)} \\
= & \frac{N}{\left(T-\rho_{T}^{2}\right.} \frac{\sigma^{2}}{1-\rho_{T}^{2}}-\frac{N \sigma^{2}}{(T-1)^{2}} \frac{\rho_{T}^{2}\left(1-\rho_{T}^{2(T-1)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}} \\
& +2 \frac{N(T-1)^{2}}{\left(T-\rho_{T}^{2}\right.} \sum_{t=3}^{T} \rho_{T}^{t} \frac{1-\rho_{T}^{2}}{1-\rho_{T}} \frac{\sigma^{2} \rho_{T}}{\left(1-\rho_{T}^{2}\right)^{2}}-2 \frac{N}{(T-1)^{2}} \frac{\sigma^{2} \rho_{T}^{3}}{\left(1-\rho_{T}^{2(T-2)}\right)} \\
& -2 \frac{N}{(T-1)^{2}} \frac{\sigma^{2} \rho_{T}^{3}\left(1-\rho_{T}^{(T-2)}\right)}{\left(1-\rho_{T}^{2}\right)\left(1-\rho_{T}\right)^{2}}+2 \frac{N}{(T-1)^{2}} \frac{\sigma^{2} \rho_{T}^{4}\left(1-\rho_{T}^{2(T-2)}\right)}{\left(1-\rho_{T}^{2}\right)^{2}\left(1-\rho_{T}\right)} \\
\leq & \frac{N}{(T-1)} \frac{\sigma^{2}}{1-\exp \left\{-2 / C_{q}\right\}}+\frac{N}{(T-1)} \frac{2 \sigma^{2}}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{2}}+\frac{N}{(T-1)^{2}} \frac{\sigma^{2}}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{2}} \\
& +\frac{N}{(T-1)^{2}} \frac{N}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{2}}+2 \frac{N}{(T-1)^{2}} \frac{\sigma^{2}}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{3}} \\
& +2 \frac{N}{(T-1)^{2}} \frac{\sigma^{2}}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)\left(1-\exp \left\{-1 / C_{q}\right\}\right)^{2}}+\frac{N}{(T-1)^{2}} \frac{N}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{2}\left(1-\exp \left\{-1 / C_{q}\right\}\right)} \\
= & O\left(\frac{N}{T}\right) \cdot
\end{aligned}
$$

Using Markov's inequality, we deduce that

$$
\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{s=2}^{T} \underline{w}_{i s-1, T}\right)^{2}=O_{p}\left(\frac{N}{T}\right)
$$

Moreover, note that, by Assumption 4,

$$
\begin{aligned}
E\left[\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2}\right] & \leq \frac{N}{(T-1)^{2}}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right)\left(\sum_{t=2}^{T}\left|\rho_{T}\right|^{t-1}\right)^{2} \\
& \leq \frac{N}{(T-1)^{2}}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right)^{2} \frac{\left|\rho_{T}\right|^{2}\left(1-\left|\rho_{T}\right|^{T-1}\right)^{2}}{\left(1-\left|\rho_{T}\right|\right)^{2}} \\
& =O\left(N T^{-2}\right) \times O(1) \times O(1)=O\left(N / T^{2}\right),
\end{aligned}
$$

so that it follows, by Markov's inequality, that

$$
\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2}=O_{p}\left(\frac{N}{T^{2}}\right)
$$

Also, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
& \left|\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)\right| \\
\leq & \sqrt{\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{s=2}^{T} \underline{w}_{i s-1, T}\right)^{2}} \sqrt{\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2}} \\
= & O_{p}\left(\sqrt{\frac{N}{T}}\right) O_{p}\left(\frac{\sqrt{N}}{T}\right)=O_{p}\left(\frac{N}{T^{3 / 2}}\right),
\end{aligned}
$$

so that

$$
\begin{aligned}
\sum_{i=1}^{N} \bar{w}_{i,-1}^{2}= & \sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)^{2}+2 \sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \underline{w}_{i t-1, T}\right)\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right) \\
& +\sum_{i=1}^{N}\left(\frac{1}{T-1} \sum_{t=2}^{T} \rho_{T}^{t-1} w_{i 0}\right)^{2} \\
= & O_{p}\left(\frac{N}{T}\right)+O_{p}\left(\frac{N}{T^{3 / 2}}\right)+O_{p}\left(\frac{N}{T^{2}}\right)=O_{p}\left(\frac{N}{T}\right),
\end{aligned}
$$

as required for part (e).

Lemma SE-29:

Under Assumptions 1 and 4, the following statements hold as $N, T \rightarrow \infty$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i} \bar{w}_{i,-1}=O_{p}(1) .
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$, then

$$
\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i} \bar{w}_{i,-1}=O_{p}(1)
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i} \bar{w}_{i,-1}=O_{p}(1)
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i} \bar{w}_{i,-1}=O_{p}\left(\frac{q(T)}{T}\right)
$$

(e) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i} \bar{w}_{i,-1}=O_{p}\left(\frac{1}{T}\right)
$$

Proof of Lemma SE-29:

By the Cauchy-Schwarz inequality, we have

$$
\left|\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i} \bar{w}_{i,-1}\right| \leq \frac{1}{N} \sum_{i=1}^{N}\left|\bar{\varepsilon}_{i} \bar{w}_{i,-1}\right| \leq \sqrt{\frac{1}{N} \sum_{i=1}^{N} \bar{\varepsilon}_{i}^{2}} \sqrt{\frac{1}{N} \sum_{i=1}^{N} \bar{w}_{i,-1}^{2}} .
$$

The results for parts (a)-(d) then follow immediately from applying, respectively, the results from parts (a)-(d) of Lemma SE-28 as well as part (e) of Lemma SE-11.

Lemma SE-30:

Under Assumptions 1-4, the following statements hold as $N, T \rightarrow \infty$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\sum_{i=1}^{N} a_{i} w_{i T-2, T}=O_{p}(\max \{\sqrt{N T}, N\})
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$, then

$$
\sum_{i=1}^{N} a_{i} w_{i T-2, T}=O_{p}(\max \{\sqrt{N T}, N\})
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\sum_{i=1}^{N} a_{i} w_{i T-2, T}=O_{p}(\max \{\sqrt{N T}, N\})
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\sum_{i=1}^{N} a_{i} w_{i T-2, T}=O_{p}(\sqrt{N q(T)})
$$

(e) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\sum_{i=1}^{N} a_{i} w_{i T-2, T}=O_{p}(\sqrt{N})
$$

Proof of Lemma SE-30:

To proceed, first write

$$
\sum_{i=1}^{N} a_{i} w_{i T-2, T}=\sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}+\sum_{i=1}^{N} a_{i} \rho_{T}^{T-2} w_{i 0}
$$

where $\underline{w}_{i T-2}=\sum_{j=1}^{T-2} \rho_{T}^{(T-2-j)} \varepsilon_{i j}$.
Consider part (a). Note that, under the assumption here, there exists a positive integer I_{ρ} such that for all $T \geq I_{\rho},\left\{\underline{w}_{i T-2, T}\right\}$ has the partial sum representation $\underline{w}_{i T-2, T}=\sum_{j=1}^{T-2} \varepsilon_{i j}$. Hence, for all $T \geq I_{\rho}$, we obtain by direct calculation

$$
\begin{aligned}
E\left(\sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}\right)^{2} & =\sum_{i=1}^{N} \sum_{j=1}^{N} E\left[a_{i} a_{j} \underline{w}_{i T-2, T} \underline{w}_{j T-2, T}\right] \\
& =\sum_{i=1}^{N} E\left[a_{i}^{2}\right] E\left[\underline{w}_{i T-2, T}^{2}\right]+\sum_{i \neq j} E\left[a_{i}\right] E\left[a_{j}\right] E\left[\underline{w}_{i T-2, T}\right] E\left[\underline{w}_{j T-2, T}\right] \\
& =\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sum_{i=1}^{N} \sum_{g=1}^{T-2} \sum_{s=1}^{T-2} E\left[\varepsilon_{i g} \varepsilon_{i s}\right] \\
& =\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} N(T-2)=O(N T) .
\end{aligned}
$$

It follows by Markov's inequality that $\sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}=O_{p}(\sqrt{N T})$.
Moreover, by Assumptions 2 and 4, we have

$$
E\left[\sum_{i=1}^{N} a_{i}^{2}\right]=N\left(\mu_{a}^{2}+\sigma_{a}^{2}\right)=O(N), E\left[\sum_{i=1}^{N} w_{i 0}^{2}\right] \leq \sup _{i} E\left[w_{i 0}^{2}\right] N=O(N)
$$

from which it follows, by Markov's inequality, that

$$
\sum_{i=1}^{N} a_{i}^{2}=O_{p}(N), \quad \sum_{i=1}^{N} w_{i 0}^{2}=O_{p}(N) .
$$

Applying tge Cauchy-Schwarz inequality, we further obtain

$$
\left|\sum_{i=1}^{N} a_{i} w_{i 0}\right| \leq \sqrt{\sum_{i=1}^{N} a_{i}^{2}} \sqrt{\sum_{i=1}^{N} w_{i 0}^{2}}=O_{p}(\sqrt{N}) O_{p}(\sqrt{N})=O_{p}(N) .
$$

Hence,

$$
\begin{aligned}
\sum_{i=1}^{N} a_{i} w_{i T-2, T}= & \sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}+\sum_{i=1}^{N} a_{i} w_{i 0} \\
& (\text { for all } T \text { sufficiently large }) \\
= & O_{p}(\sqrt{N T})+O_{p}(N)=O_{p}(\max \{\sqrt{N T}, N\}),
\end{aligned}
$$

as required for part (a).
Now, to show parts (b)-(d), note first that

$$
\begin{aligned}
& E\left(\sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}\right)^{2}=\sum_{i=1}^{N} \sum_{j=1}^{N} E\left[a_{i} a_{j} \underline{w}_{i T-2, T} \underline{w}_{j T-2, T}\right] \\
= & \sum_{i=1}^{N} E\left[a_{i}^{2}\right] E\left[\underline{w}_{i T-2, T}^{2}\right]+\sum_{i \neq j} E\left[a_{i}\right] E\left[a_{j}\right] E\left[\underline{w}_{i T-2, T}\right] E\left[\underline{w}_{j T-2, T}\right] \\
= & \left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sum_{i=1}^{N} \sum_{g=1}^{T-2} \sum_{s=1}^{T-2} \exp \left\{-\frac{(T-2-g)}{q(T)}\right\} \exp \left\{-\frac{(T-2-s)}{q(T)}\right\} E\left[\varepsilon_{i g} \varepsilon_{i s}\right] \\
= & \left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} \sum_{i=1}^{N} \sum_{s=1}^{T-2} \exp \left\{-2 \frac{(T-2-s)}{q(T)}\right\} \\
= & \left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} N \sum_{s=1}^{T-2} \exp \left\{-2 \frac{(T-2-s)}{q(T)}\right\} .
\end{aligned}
$$

Next, consider part (b), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$. In this case, we apply Lemma SE-3 part (a) to obtain

$$
E\left(\sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}\right)^{2}=\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} N T\left[1+O\left(\frac{1}{T}\right)+O\left(\frac{T}{q(T)}\right)\right]
$$

so that we deduce via Markov's inequality $\sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}=O_{p}(\sqrt{N T})$.
Moreover, by Assumptions 2 and 4, we have

$$
\begin{aligned}
E\left[\sum_{i=1}^{N} a_{i}^{2}\right] & =N\left(\mu_{a}^{2}+\sigma_{a}^{2}\right)=O(N) \\
E\left[\sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}\right] & \leq \sup _{i} E\left[w_{i 0}^{2}\right] N \exp \left\{-\frac{2(T-2)}{q(T)}\right\}=O(N),
\end{aligned}
$$

from which it follows, by Markov's inequality, that

$$
\sum_{i=1}^{N} a_{i}^{2}=O_{p}(N), \quad \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}=O_{p}(N)
$$

Applying tge Cauchy-Schwarz inequality, we further obtain

$$
\left|\sum_{i=1}^{N} a_{i} \rho_{T}^{T-2} w_{i 0}\right| \leq \sqrt{\sum_{i=1}^{N} a_{i}^{2}} \sqrt{\sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}}=O_{p}(\sqrt{N}) O_{p}(\sqrt{N})=O_{p}(N)
$$

Hence,

$$
\begin{aligned}
\sum_{i=1}^{N} a_{i} w_{i T-2, T} & =\sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}+\sum_{i=1}^{N} a_{i} \rho_{T}^{T-2} w_{i 0} \\
& =O_{p}(\sqrt{N T})+O_{p}(N) \\
& =O_{p}(\sqrt{N T})+O_{p}(N)=O_{p}(\max \{\sqrt{N T}, N\})
\end{aligned}
$$

as required for part (b).
Consider part (c), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. Here, we apply Lemma SE-3 part (b) to obtain

$$
E\left(\sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}\right)^{2}=\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} N \frac{q(T)}{2}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right]
$$

so again we deduce via Markov's inequality $\sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}=O_{p}(\sqrt{N T})$.
Moreover, by Assumptions 2 and 4, we have

$$
\begin{aligned}
E\left[\sum_{i=1}^{N} a_{i}^{2}\right] & =N\left(\mu_{a}^{2}+\sigma_{a}^{2}\right)=O(N) \\
E\left[\sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}\right] & \leq \sup _{i} E\left[w_{i 0}^{2}\right] N \exp \left\{-\frac{2(T-2)}{q(T)}\right\}=O(N),
\end{aligned}
$$

from which it follows, by Markov's inequality, that

$$
\sum_{i=1}^{N} a_{i}^{2}=O_{p}(N), \quad \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}=O_{p}(N)
$$

Applying tge Cauchy-Schwarz inequality, we further obtain

$$
\left|\sum_{i=1}^{N} a_{i} \rho_{T}^{T-2} w_{i 0}\right| \leq \sqrt{\sum_{i=1}^{N} a_{i}^{2}} \sqrt{\sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}}=O_{p}(\sqrt{N}) O_{p}(\sqrt{N})=O_{p}(N)
$$

Hence,

$$
\begin{aligned}
\sum_{i=1}^{N} a_{i} w_{i T-2, T} & =\sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}+\sum_{i=1}^{N} a_{i} \rho_{T}^{T-2} w_{i 0} \\
& =O_{p}(\sqrt{N T})+O_{p}(N) \\
& =O_{p}(\sqrt{N T})+O_{p}(N)=O_{p}(\max \{\sqrt{N T}, N\})
\end{aligned}
$$

as required for part (c).
Turning our attention to part (d), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$. Applying part (c) of Lemma SE-3, we obtain

$$
E\left(\sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}\right)^{2}=\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} N \frac{q(T)}{2}\left[1+O\left(\frac{1}{q(T)}\right)\right]
$$

so that the use of Markov's inequality yields $\sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}=O_{p}(\sqrt{N q(T)})$.
Moreover, by Assumptions 2 and 4, we have

$$
\begin{aligned}
E\left[\sum_{i=1}^{N} a_{i}^{2}\right] & =N\left(\mu_{a}^{2}+\sigma_{a}^{2}\right)=O(N), \\
E\left[\sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}\right] & \leq \sup _{i} E\left[w_{i 0}^{2}\right] N \exp \left\{-\frac{2(T-2)}{q(T)}\right\}=O\left(N \exp \left\{-\frac{2 T}{q(T)}\right\}\right),
\end{aligned}
$$

from which it follows, by Markov's inequality, that

$$
\sum_{i=1}^{N} a_{i}^{2}=O_{p}(N), \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}=O_{p}\left(N \exp \left\{-\frac{2 T}{q(T)}\right\}\right)
$$

Applying the Cauchy-Schwarz inequality, we further obtain

$$
\begin{aligned}
\left|\sum_{i=1}^{N} a_{i} \rho_{T}^{T-2} w_{i 0}\right| & \leq \sqrt{\sum_{i=1}^{N} a_{i}^{2}} \sqrt{\sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}} \\
& =O_{p}(\sqrt{N}) O_{p}\left(\sqrt{N} \exp \left\{-\frac{T}{q(T)}\right\}\right)=O_{p}\left(N \exp \left\{-\frac{T}{q(T)}\right\}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \sum_{i=1}^{N} a_{i} w_{i T-2, T}=\sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}+\sum_{i=1}^{N} a_{i} \rho_{T}^{T-2} w_{i 0} \\
= & O_{p}(\sqrt{N q(T)})+O_{p}\left(N \exp \left\{-\frac{T}{q(T)}\right\}\right)=O_{p}(\sqrt{N q(T)}),
\end{aligned}
$$

as required for part (d).
Finally, consider part (e), where we take $\rho_{T} \in \mathcal{G}_{\mathrm{St}}$. In this case,

$$
\begin{aligned}
& E\left(\sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}\right)^{2}=\sum_{i=1}^{N} \sum_{j=1}^{N} E\left[a_{i} a_{j} \underline{w}_{i T-2, T} \underline{w}_{j T-2, T}\right] \\
= & \left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} N \sum_{s=1}^{T-2} \rho_{T}^{2(T-2-s)}=\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} N \frac{1-\rho_{T}^{2(T-2)}}{1-\rho_{T}^{2}} .
\end{aligned}
$$

Since we assume that $\rho_{T}^{2}=\exp \left\{-\frac{2}{q(T)}\right\}$ with $q(T)=O(1)$ here, it follows that there exist a positive constant C_{q} and a positive integer T^{*} such that for all $T \geq T^{*}$

$$
\rho_{T}^{2}=\exp \left\{-\frac{2}{q(T)}\right\} \leq \exp \left\{-\frac{2}{C_{q}}\right\}<1,
$$

from which we further deduce, in light of Assumptions 1 and 2, that

$$
E\left(\sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}\right)^{2}=\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2} N \frac{1-\rho_{T}^{2(T-2)}}{1-\rho_{T}^{2}} \leq N \frac{\left(\mu_{a}^{2}+\sigma_{a}^{2}\right) \sigma^{2}}{1-\exp \left\{-2 / C_{q}\right\}}=O(N) .
$$

Hence, by applying Markov's inequality, we obtain $\sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}=O_{p}(\sqrt{N})$.
Moreover, by Assumptions 2 and 4, we have

$$
\begin{aligned}
E\left[\sum_{i=1}^{N} a_{i}^{2}\right] & =N\left(\mu_{a}^{2}+\sigma_{a}^{2}\right)=O(N) \\
E\left[\sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}\right] & \leq \sup _{i} E\left[w_{i 0}^{2}\right] N \rho_{T}^{2(T-2)}=O\left(N \rho_{T}^{2 T}\right),
\end{aligned}
$$

from which it follows, by Markov's inequality, that

$$
\sum_{i=1}^{N} a_{i}^{2}=O_{p}(N), \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}=O_{p}\left(N \rho_{T}^{2 T}\right)
$$

Applying tge Cauchy-Schwarz inequality, we further obtain

$$
\left|\sum_{i=1}^{N} a_{i} \rho_{T}^{T-2} w_{i 0}\right| \leq \sqrt{\sum_{i=1}^{N} a_{i}^{2}} \sqrt{\sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}}=O_{p}(\sqrt{N}) O_{p}\left(\sqrt{N} \rho_{T}^{T}\right)=O_{p}\left(N \rho_{T}^{T}\right)
$$

Hence,

$$
\begin{aligned}
& \sum_{i=1}^{N} a_{i} w_{i T-2, T}=\sum_{i=1}^{N} a_{i} \underline{w}_{i T-2, T}+\sum_{i=1}^{N} a_{i} \rho_{T}^{T-2} w_{i 0} \\
= & O_{p}(\sqrt{N})+O_{p}\left(N \rho_{T}^{T}\right)=O_{p}(\sqrt{N}),
\end{aligned}
$$

as required for part (e).

Lemma SE-31:

Let $\underline{w}_{i T-2}=\sum_{j=1}^{T-2} \rho_{T}^{(T-2-j)} \varepsilon_{i j}$. Under Assumptions 1 and 4, the following statements hold as $N, T \rightarrow \infty$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\frac{1}{N T} \sum_{i=1}^{N} E\left[\underline{w}_{i T-2, T}^{2}\right]=\sigma^{2}+O\left(\frac{1}{T}\right) .
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$,

$$
\frac{1}{N T} \sum_{i=1}^{N} E\left[\underline{w}_{i T-2, T}^{2}\right]=\sigma^{2}+O\left(\frac{1}{T}\right)+O\left(\frac{T}{q(T)}\right)
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$,

$$
\frac{1}{N T} \sum_{i=1}^{N} E\left[\underline{w}_{i T-2, T}^{2}\right]=\frac{\sigma^{2}}{2} \frac{q(T)}{T}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]+O\left(\frac{1}{T}\right) .
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$,

$$
\frac{1}{N T} \sum_{i=1}^{N} E\left[\underline{w}_{i T-2, T}^{2}\right]=O\left(\frac{q(T)}{T}\right)=o(1) .
$$

(e) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\frac{1}{N T} \sum_{i=1}^{N} E\left[\underline{w}_{i T-2, T}^{2}\right]=O\left(\frac{1}{T}\right)=o(1) .
$$

Proof of Lemma SE-31:

Consider first part (a). Note that, under the assumption here, there exists a positive integer I_{ρ} such that, for all $T \geq I_{\rho},\left\{\underline{w}_{i T-2, T}\right\}$ has the partial sum representation $\underline{w}_{i T-2, T}=\sum_{j=1}^{T-2} \varepsilon_{i j}$. Hence, for all $T \geq I_{\rho}$, we obtain by direct calculation

$$
\frac{1}{N T} \sum_{i=1}^{N} E\left[\underline{w}_{i T-2, T}^{2}\right]=\frac{1}{N T} \sum_{i=1}^{N} \sum_{g=1}^{T-2} \sum_{s=1}^{T-2} E\left[\varepsilon_{i g} \varepsilon_{i s}\right]=\sigma^{2} \frac{N(T-2)}{N T}=\sigma^{2}+O\left(\frac{1}{T}\right) .
$$

Now, to show parts (b)-(d), note first that

$$
\begin{aligned}
& \sum_{i=1}^{N} E\left[\underline{w}_{i T-2, T}^{2}\right] \\
= & \sum_{i=1}^{N} \sum_{g=1}^{T-2} \sum_{s=1}^{T-2} \exp \left\{-\frac{(T-2-g)}{q(T)}\right\} \exp \left\{-\frac{(T-2-s)}{q(T)}\right\} E\left[\varepsilon_{i g} \varepsilon_{i s}\right] \\
= & \sigma^{2} N \sum_{s=1}^{T-2} \exp \left\{-2 \frac{(T-2-s)}{q(T)}\right\} .
\end{aligned}
$$

Next, consider part (b), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$. In this case, we apply Lemma SE-3 part (a) to obtain

$$
E\left(\sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2}\right)=\sigma^{2} N T\left[1+O\left(\frac{1}{T}\right)+O\left(\frac{T}{q(T)}\right)\right],
$$

so that

$$
\frac{1}{N T} \sum_{i=1}^{N} E\left[\underline{w}_{i T-2, T}^{2}\right]=\sigma^{2}+O\left(\frac{1}{T}\right)+O\left(\frac{T}{q(T)}\right)
$$

Consider part (c), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. Here, we apply Lemma SE-3 part (b) to obtain

$$
E\left(\sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2}\right)=\sigma^{2} N \frac{q(T)}{2}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right],
$$

so that

$$
\frac{1}{N T} \sum_{i=1}^{N} E\left[\underline{w}_{i T-2, T}^{2}\right]=\frac{\sigma^{2}}{2} \frac{q(T)}{T}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]+O\left(\frac{1}{T}\right)
$$

We turn our attention now to part (d), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$. Applying part (c) of Lemma SE-3, we obtain

$$
E\left(\sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2}\right)=\sigma^{2} N \frac{q(T)}{2}\left[1+O\left(\frac{1}{q(T)}\right)\right]
$$

so that

$$
\frac{1}{N T} \sum_{i=1}^{N} E\left[\underline{w}_{i T-2, T}^{2}\right]=\frac{\sigma^{2}}{2} \frac{q(T)}{T}+O\left(\frac{1}{T}\right)=O\left(\frac{q(T)}{T}\right)
$$

Finally, to show part (e),

$$
\sum_{i=1}^{N} E\left[\underline{w}_{i T-2, T}^{2}\right]=\sigma^{2} N \sum_{s=1}^{T-2} \rho_{T}^{2(T-2-s)}=\sigma^{2} N \frac{1-\rho_{T}^{2(T-2)}}{1-\rho_{T}^{2}}
$$

Here, we take $\rho_{T}^{2}=\exp \left\{-\frac{2}{q(T)}\right\}$ with $q(T)=O(1)$, so that there exist a positive constant C_{q} and a positive integer T^{*} such that for all $T \geq T^{*}$

$$
\rho_{T}^{2}=\exp \left\{-\frac{2}{q(T)}\right\} \leq \exp \left\{-\frac{2}{C_{q}}\right\}<1
$$

from which we deduce that

$$
\frac{1}{N T} \sum_{i=1}^{N} E\left[\underline{w}_{i T-2, T}^{2}\right] \leq \frac{\sigma^{2}}{T} \frac{1}{1-\exp \left\{-2 / C_{q}\right\}}=O\left(\frac{1}{T}\right)=o(1)
$$

Lemma SE-32:

Under Assumptions 1 and 4, the following statements hold as $N, T \rightarrow \infty$.
(a) If $\rho_{T}=1$ for all T sufficiently large, then

$$
\frac{1}{N T} \sum_{i=1}^{N} w_{i T-2, T}^{2}=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right)
$$

(b) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$, then

$$
\frac{1}{N T} \sum_{i=1}^{N} w_{i T-2, T}^{2}=\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}, \frac{T}{q(T)}\right\}\right)
$$

(c) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$, then

$$
\frac{1}{N T} \sum_{i=1}^{N} w_{i T-2, T}^{2}=\frac{\sigma^{2}}{2} \frac{q(T)}{T}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right)
$$

(d) If $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$, then

$$
\frac{1}{N T} \sum_{i=1}^{N} w_{i T-2, T}^{2}=O_{p}\left(\frac{q(T)}{T}\right)
$$

(e) If $\rho_{T} \in \mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0\right.$ and $q(T)=O(1)$ as $\left.T \rightarrow \infty\right\}$, then

$$
\frac{1}{N T} \sum_{i=1}^{N} w_{i T-2, T}^{2}=O_{p}\left(\frac{1}{T}\right)
$$

Proof of Lemma SE-32:

To proceed, first write

$$
\frac{1}{N T} \sum_{i=1}^{N} w_{i T-2, T}^{2}=\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2}+2 \frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2} \rho_{T}^{T-2} w_{i 0}+\frac{1}{N T} \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}
$$

$\underline{w}_{i T-2}=\sum_{j=1}^{T-2} \rho_{T}^{(T-2-j)} \varepsilon_{i j}$.
Consider first part (a). Note that, under the assumption here, there exists a positive integer I_{ρ} such that for all $T \geq I_{\rho},\left\{\underline{w}_{i T-2, T}\right\}$ has the partial sum representation $\underline{w}_{i T-2, T}=\sum_{j=1}^{T-2} \varepsilon_{i j}$. Hence, for all $T \geq I_{\rho}$, we obtain by direct calculation

$$
\begin{aligned}
& E\left(\frac{1}{N T} \sum_{i=1}^{N}\left(\underline{w}_{i T-2, T}^{2}-E\left[\underline{w}_{i T-2, T}^{2}\right]\right)\right)^{2} \\
= & \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} E\left\{\left(\underline{w}_{i T-2, T}^{2}-E\left[\underline{w}_{i T-2, T}^{2}\right]\right)\left(\underline{w}_{j T-2, T}^{2}-E\left[\underline{w}_{j T-2, T}^{2}\right]\right)\right\} \\
= & \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N} E\left(\underline{w}_{i T-2, T}^{2}-E\left[\underline{w}_{i T-2, T}^{2}\right]\right)^{2} \\
= & \frac{1}{N^{2} T^{2}} \sum_{i=1}^{N}\left\{E\left[\underline{w}_{i T-2, T}^{4}\right]-\left(E\left[\underline{w}_{i T-2, T}^{2}\right]\right)^{2}\right\} \\
= & \frac{1}{N T^{2}} \sum_{g=1}^{T-2} \sum_{s=1}^{T-2} \sum_{t=1}^{T-2} \sum_{v=1}^{T-2} E\left[\varepsilon_{i g} \varepsilon_{i s} \varepsilon_{i t} \varepsilon_{i v}\right]-\frac{1}{N T^{2}}\left(\sum_{g=1}^{T-2} \sum_{s=1}^{T-2} E\left[\varepsilon_{i g} \varepsilon_{i s}\right]\right)^{2} \\
\leq & E\left[\varepsilon_{i t}^{4}\right] \frac{T-2}{N T^{2}}+3 \sigma^{4} \frac{(T-2)^{2}}{N T^{2}}-\sigma^{4} \frac{(T-2)^{2}}{N T^{2}} \\
= & E\left[\varepsilon_{i t}^{4}\right] \frac{T-2}{N T^{2}}+2 \sigma^{4} \frac{(T-2)^{2}}{N T^{2}}=O\left(N^{-1}\right) .
\end{aligned}
$$

It follows from Markov's inequality and part (a) of Lemma SE-31 that

$$
\begin{aligned}
\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2} & =\frac{1}{N T} \sum_{i=1}^{N} E\left[\underline{w}_{i T-2, T}^{2}\right]+O_{p}\left(\frac{1}{\sqrt{N}}\right)=\sigma^{2}+O_{p}\left(\frac{1}{\sqrt{N}}\right)+O_{p}\left(\frac{1}{T}\right) \\
& =\sigma^{2}+O_{p}\left(\frac{1}{\sqrt{N}}\right) .
\end{aligned}
$$

Moreover, using Assumption 4, we have

$$
E\left[\frac{1}{N T} \sum_{i=1}^{N} w_{i 0}^{2}\right] \leq \frac{1}{T} \sup _{i} E\left[w_{i 0}^{2}\right]=O\left(T^{-1}\right)
$$

from which, it follows, by Markov's inequality, that

$$
\frac{1}{N T} \sum_{i=1}^{N} w_{i 0}^{2}=O_{p}\left(\frac{1}{\sqrt{T}}\right) .
$$

Also, by the Cauchy-Schwarz inequality,

$$
\left|\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2} w_{i 0}\right| \leq \sqrt{\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2}^{2}} \sqrt{\frac{1}{N T} \sum_{i=1}^{N} w_{i 0}^{2}}=O_{p}(1) O_{p}\left(T^{-1 / 2}\right)=O_{p}\left(T^{-1 / 2}\right) .
$$

Hence,

$$
\begin{aligned}
\frac{1}{N T} \sum_{i=1}^{N} w_{i T-2, T}^{2}= & \frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2}+2 \frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2} w_{i 0}+\frac{1}{N T} \sum_{i=1}^{N} w_{i 0}^{2} \\
& (\text { for all } T \text { sufficiently large) } \\
= & \sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right),
\end{aligned}
$$

as required for part (a).
Now, to show parts (b)-(d), note first that

$$
\begin{aligned}
& E\left(\frac{1}{N T} \sum_{i=1}^{N}\left(\underline{w}_{i T-2, T}^{2}-E\left[\underline{w}_{i T-2, T}^{2}\right]\right)\right)^{2}=\frac{1}{N^{2} T^{2}} \sum_{i=1}^{N}\left\{E\left[\underline{w}_{i T-2, T}^{4}\right]-\left(E\left[\underline{w}_{i T-2, T}^{2}\right]\right)^{2}\right\} \\
= & \frac{1}{N T^{2}} \sum_{g=1}^{T-2} \sum_{s=1}^{T-2} \sum_{t=1}^{T-2} \sum_{v=1}^{T-2} \exp \left\{-\frac{(T-2-g)}{q(T)}\right\} \exp \left\{-\frac{(T-2-s)}{q(T)}\right\} \exp \left\{-\frac{(T-2-t)}{q(T)}\right\} \\
& \times \exp \left\{-\frac{(T-2-v)}{q(T)}\right\} E\left[\varepsilon_{i g} \varepsilon_{i s} \varepsilon_{i t} \varepsilon_{i v}\right] \\
& -\frac{1}{N T^{2}}\left(\sum_{g=1}^{T-2} \sum_{s=1}^{T-2} \exp \left\{-\frac{(T-2-g)}{q(T)}\right\} \exp \left\{-\frac{(T-2-s)}{q(T)}\right\} E\left[\varepsilon_{i g} \varepsilon_{i s}\right]\right)^{2} \\
\leq & \frac{1}{N T^{2}} \sum_{s=1}^{T-2} \exp \left\{-4 \frac{(T-2-s)}{q(T)}\right\} E\left[\varepsilon_{i s}^{4}\right]+\frac{3 \sigma^{4}}{N}\left(\frac{1}{T} \sum_{s=1}^{T-2} \exp \left\{-2 \frac{(T-2-s)}{q(T)}\right\}\right)^{2} \\
& -\frac{\sigma^{4}}{N}\left(\frac{1}{T} \sum_{s=1}^{T-2} \exp \left\{-2 \frac{(T-2-s)}{q(T)}\right\}\right)^{2} \\
= & \frac{1}{N T^{2}} \sum_{s=1}^{T-2} \exp \left\{-4 \frac{(T-2-s)}{q(T)}\right\} E\left[\varepsilon_{i s}^{4}\right]+\frac{2 \sigma^{4}}{N}\left(\frac{1}{T} \sum_{s=1}^{T-2} \exp \left\{-2 \frac{(T-2-s)}{q(T)}\right\}\right)^{2} .
\end{aligned}
$$

Next, consider part (b), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $T / q(T) \rightarrow 0$. In this case,
we apply Lemma SE-3 part (a) to obtain

$$
\begin{aligned}
& E\left(\frac{1}{N T} \sum_{i=1}^{N}\left(\underline{w}_{i T-2, T}^{2}-E\left[\underline{w}_{i T-2, T}^{2}\right]\right)\right)^{2} \\
= & \frac{1}{N T^{2}} \sum_{s=1}^{T-2} \exp \left\{-4 \frac{(T-2-s)}{q(T)}\right\} E\left[\varepsilon_{i s}^{4}\right]+\frac{2 \sigma^{4}}{N}\left(\frac{1}{T} \sum_{s=1}^{T-2} \exp \left\{-2 \frac{(T-2-s)}{q(T)}\right\}\right)^{2} \\
= & \frac{E\left[\varepsilon_{i s}^{4}\right]}{N T^{2}} T\left[1+O\left(\frac{1}{T}\right)+O\left(\frac{T}{q(T)}\right)\right]+\frac{2 \sigma^{4}}{N T^{2}} T^{2}\left[1+O\left(\frac{1}{T}\right)+O\left(\frac{T}{q(T)}\right)\right] \\
= & O\left(\frac{1}{N}\right) .
\end{aligned}
$$

It follows from Markov's inequality and part (b) of Lemma SE-31 above that

$$
\begin{aligned}
\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2} & =\frac{1}{N T} \sum_{i=1}^{N} E\left[\underline{w}_{i T-2, T}^{2}\right]+O_{p}\left(\frac{1}{\sqrt{N}}\right) \\
& =\sigma^{2}+O_{p}\left(\frac{1}{\sqrt{N}}\right)+O_{p}\left(\frac{T}{q(T)}\right) .
\end{aligned}
$$

Moreover, using Assumption 4, we have

$$
E\left[\frac{1}{N T} \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}\right] \leq \frac{1}{T}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \exp \left\{-\frac{2(T-2)}{q(T)}\right\}=O\left(\frac{1}{T}\right) O(1) O(1)=O\left(\frac{1}{T}\right)
$$

from which it follows, by Markov's inequality, that

$$
\frac{1}{N T} \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}=O_{p}\left(\frac{1}{T}\right) .
$$

Also, by the Cauchy-Schwarz inequality,

$$
\left|\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2} \rho_{T}^{T-2} w_{i 0}\right| \leq \sqrt{\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2}} \sqrt{\frac{1}{N T} \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}}=O_{p}(1) O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}\left(\frac{1}{\sqrt{T}}\right) .
$$

Hence,

$$
\begin{aligned}
\frac{1}{N T} \sum_{i=1}^{N} w_{i T-2, T}^{2} & =\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2}+2 \frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2} \rho_{T}^{T-2} w_{i 0}+\frac{1}{N T} \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2} \\
& =\sigma^{2}+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}, \frac{T}{q(T)}\right\}\right)
\end{aligned}
$$

as required for part (b).

Consider part (c), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \sim T$. Here, we apply Lemma SE-3 part (b) to obtain

$$
\begin{aligned}
& E\left(\frac{1}{N T} \sum_{i=1}^{N}\left(\underline{w}_{i T-2, T}^{2}-E\left[\underline{w}_{i T-2, T}^{2}\right]\right)\right)^{2} \\
= & \frac{1}{N T^{2}} \sum_{s=1}^{T-2} \exp \left\{-4 \frac{(T-2-s)}{q(T)}\right\} E\left[\varepsilon_{i s}^{4}\right]+\frac{2 \sigma^{4}}{N}\left(\frac{1}{T} \sum_{s=1}^{T-2} \exp \left\{-2 \frac{(T-2-s)}{q(T)}\right\}\right)^{2} \\
= & \frac{E\left[\varepsilon_{i s}^{4}\right]}{N T^{2}} \frac{q(T)}{4}\left[1-\exp \left\{-\frac{4 T}{q(T)}\right\}\right]\left[1+O\left(\frac{1}{T}\right)\right] \\
& +\frac{2 \sigma^{4}}{N T^{2}} \frac{q(T)^{2}}{4}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]^{2}\left[1+O\left(\frac{1}{T}\right)\right] \\
= & O\left(\frac{1}{N}\right) .
\end{aligned}
$$

It follows from Markov's inequality and part (c) of Lemma SE-31 that

$$
\begin{aligned}
\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2} & =\frac{1}{N T} \sum_{i=1}^{N} E\left[\underline{w}_{i T-2, T}^{2}\right]+O_{p}\left(\frac{1}{\sqrt{N}}\right) \\
& =\frac{\sigma^{2}}{2} \frac{q(T)}{T}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]+O_{p}\left(\frac{1}{\sqrt{N}}\right)+O_{p}\left(\frac{1}{T}\right) \\
& =\frac{\sigma^{2}}{2} \frac{q(T)}{T}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]+O_{p}\left(\frac{1}{\sqrt{N}}\right) .
\end{aligned}
$$

Moreover, using Assumption 4, we have

$$
E\left[\frac{1}{N T} \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}\right] \leq \frac{1}{T}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \exp \left\{-\frac{2(T-2)}{q(T)}\right\}=O\left(\frac{1}{T}\right) O(1) O(1)=O\left(\frac{1}{T}\right)
$$

from which it follows, by Markov's inequality, that

$$
\frac{1}{N T} \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}=O_{p}\left(\frac{1}{T}\right)
$$

Also, by the Cauchy-Schwarz inequality,

$$
\left|\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2} \rho_{T}^{T-2} w_{i 0}\right| \leq \sqrt{\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2}} \sqrt{\frac{1}{N T} \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}}=O_{p}(1) O_{p}\left(\frac{1}{\sqrt{T}}\right)=O_{p}\left(\frac{1}{\sqrt{T}}\right) .
$$

Hence,

$$
\begin{aligned}
\frac{1}{N T} \sum_{i=1}^{N} w_{i T-2, T}^{2} & =\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2}+2 \frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2} \rho_{T}^{T-2} w_{i 0}+\frac{1}{N T} \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2} \\
& =\frac{\sigma^{2}}{2} \frac{q(T)}{T}\left[1-\exp \left\{-\frac{2 T}{q(T)}\right\}\right]+O_{p}\left(\max \left\{\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{T}}\right\}\right),
\end{aligned}
$$

as required for part (c).
We now turn our attention to part (d), where we take $\rho_{T}=\exp \{-1 / q(T)\}$ such that $q(T) \rightarrow \infty$ but $q(T) / T \rightarrow 0$. Applying part (c) of Lemma SE-3, we obtain

$$
\begin{aligned}
& E\left(\frac{1}{N T} \sum_{i=1}^{N}\left(\underline{w}_{i T-2, T}^{2}-E\left[\underline{w}_{i T-2, T}^{2}\right]\right)\right)^{2} \\
= & \frac{1}{N T^{2}} \sum_{s=1}^{T-2} \exp \left\{-4 \frac{(T-2-s)}{q(T)}\right\} E\left[\varepsilon_{i s}^{4}\right]+\frac{2 \sigma^{4}}{N}\left(\frac{1}{T} \sum_{s=1}^{T-2} \exp \left\{-2 \frac{(T-2-s)}{q(T)}\right\}\right)^{2} \\
= & \frac{E\left[\varepsilon_{i s}^{4}\right]}{N T^{2}} \frac{q(T)}{4}\left[1+O\left(\frac{1}{q(T)}\right)\right]+\frac{2 \sigma^{4}}{N T^{2}} \frac{q(T)^{2}}{4}\left[1+O\left(\frac{1}{q(T)}\right)\right] \\
= & O\left(\frac{q(T)^{2}}{N T^{2}}\right) .
\end{aligned}
$$

It follows from Markov's inequality and part (d) of Lemma SE-31 that

$$
\begin{aligned}
\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2} & =\frac{1}{N T} \sum_{i=1}^{N} E\left[\underline{w}_{i T-2, T}^{2}\right]+O_{p}\left(\frac{q(T)}{\sqrt{N} T}\right) \\
& =O\left(\frac{q(T)}{T}\right)+O_{p}\left(\frac{q(T)}{\sqrt{N} T}\right)=O_{p}\left(\frac{q(T)}{T}\right) .
\end{aligned}
$$

Moreover, using Assumption 4, we have

$$
\begin{aligned}
E\left[\frac{1}{N T} \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}\right] & \leq \frac{1}{T}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \exp \left\{-\frac{2(T-2)}{q(T)}\right\} \\
& =O\left(\frac{1}{T}\right) O(1) O\left(\exp \left\{-\frac{2 T}{q(T)}\right\}\right)=O\left(\frac{1}{T} \exp \left\{-\frac{2 T}{q(T)}\right\}\right)
\end{aligned}
$$

from which it follows, by Markov's inequality, that

$$
\frac{1}{N T} \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}=O_{p}\left(\frac{1}{T} \exp \left\{-\frac{2 T}{q(T)}\right\}\right)
$$

Also, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
& \left|\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2} \rho_{T}^{T-2} w_{i 0}\right| \leq \sqrt{\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2}} \sqrt{\frac{1}{N T} \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}} \\
= & O_{p}\left(\sqrt{\frac{q(T)}{T}}\right) O_{p}\left(\frac{1}{\sqrt{T}} \exp \left\{-\frac{T}{q(T)}\right\}\right)=O_{p}\left(\frac{\sqrt{q(T)}}{T} \exp \left\{-\frac{T}{q(T)}\right\}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\frac{1}{N T} \sum_{i=1}^{N} w_{i T-2, T}^{2} & =\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2}+2 \frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2} \rho_{T}^{T-2} w_{i 0}+\frac{1}{N T} \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2} \\
& =O_{p}\left(\frac{q(T)}{T}\right)+O_{p}\left(\frac{\sqrt{q(T)}}{T} \exp \left\{-\frac{T}{q(T)}\right\}\right)+O_{p}\left(\frac{1}{T} \exp \left\{-\frac{2 T}{q(T)}\right\}\right) \\
& =O_{p}\left(\frac{q(T)}{T}\right),
\end{aligned}
$$

as required for part (d).
Finally, to show part (e), note that

$$
\begin{aligned}
& E\left(\frac{1}{N T} \sum_{i=1}^{N}\left(\underline{w}_{i T-2, T}^{2}-E\left[\underline{w}_{i T-2, T}^{2}\right]\right)\right)^{2} \\
= & \frac{1}{N T^{2}} \sum_{s=1}^{T-2} \rho_{T}^{4(T-2-s)} E\left[\varepsilon_{i s}^{4}\right]+\frac{2 \sigma^{4}}{N}\left(\frac{1}{T} \sum_{s=1}^{T-2} \rho_{T}^{2(T-2-s)}\right)^{2} \\
= & \frac{E\left[\varepsilon_{i s}^{4}\right]}{N T^{2}} \frac{\left(1-\rho_{T}^{4(T-2)}\right)}{1-\rho_{T}^{4}}+\frac{2 \sigma^{4}}{N T^{2}}\left(\frac{1-\rho_{T}^{2(T-2)}}{1-\rho_{T}^{2}}\right)^{2} .
\end{aligned}
$$

Here, we take $q(T)=O(1)$, so that there exist a positive constant C_{q} and a positive integer T^{*} such that for all $T \geq T^{*}$

$$
\rho_{T}^{g}=\exp \left\{-\frac{g}{q(T)}\right\} \leq \exp \left\{-\frac{g}{C_{q}}\right\}<1 \text { with } g \in\{2,4\}
$$

from which we further deduce that

$$
\begin{aligned}
& E\left(\frac{1}{N T} \sum_{i=1}^{N}\left(\underline{w}_{i T-2, T}^{2}-E\left[\underline{w}_{i T-2, T}^{2}\right]\right)\right)^{2} \\
\leq & \frac{1}{N T^{2}}\left[\frac{E\left[\varepsilon_{i s}^{4}\right]}{1-\exp \left\{-4 / C_{q}\right\}}+\frac{2 \sigma^{4}}{\left(1-\exp \left\{-2 / C_{q}\right\}\right)^{2}}\right]=O\left(\frac{1}{N T^{2}}\right) .
\end{aligned}
$$

It follows from Markov's inequality and part (e) of Lemma SE-31 that

$$
\begin{aligned}
\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2} & =\frac{1}{N T} \sum_{i=1}^{N} E\left[\underline{w}_{i T-2, T}^{2}\right]+O_{p}\left(\frac{1}{\sqrt{N} T}\right) \\
& =O_{p}\left(\frac{1}{T}\right)+O_{p}\left(\frac{1}{\sqrt{N} T}\right)=O_{p}\left(\frac{1}{T}\right) .
\end{aligned}
$$

Moreover, using Assumption 4, we have

$$
E\left[\frac{1}{N T} \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}\right] \leq \frac{1}{T}\left(\sup _{i} E\left[w_{i 0}^{2}\right]\right) \rho_{T}^{2(T-2)}=O\left(\frac{1}{T}\right) O(1) O\left(\rho_{T}^{2 T}\right)=O\left(\frac{\rho_{T}^{2 T}}{T}\right),
$$

from which it follows, by Markov's inequality, that

$$
\frac{1}{N T} \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}=O_{p}\left(\frac{\rho_{T}^{2 T}}{T}\right)
$$

Also, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\left|\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2} \rho_{T}^{T-2} w_{i 0}\right| & \leq \sqrt{\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2}} \sqrt{\frac{1}{N T} \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2}} \\
& =O_{p}\left(\frac{1}{\sqrt{T}}\right) O_{p}\left(\frac{\rho_{T}^{T}}{\sqrt{T}}\right)=O_{p}\left(\frac{\rho_{T}^{T}}{T}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\frac{1}{N T} \sum_{i=1}^{N} w_{i T-2, T}^{2} & =\frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2, T}^{2}+2 \frac{1}{N T} \sum_{i=1}^{N} \underline{w}_{i T-2} \rho_{T}^{T-2} w_{i 0}+\frac{1}{N T} \sum_{i=1}^{N} \rho_{T}^{2(T-2)} w_{i 0}^{2} \\
& =O_{p}\left(\frac{1}{T}\right)+O_{p}\left(T^{-1} \rho_{T}^{T}\right)+O_{p}\left(T^{-1} \rho_{T}^{2 T}\right)=O_{p}\left(\frac{1}{T}\right)
\end{aligned}
$$

as required for part (e).

Lemma SE-33 below is a well-known lemma concerning strictly increasing functions which characterize subsequences.
Lemma SE-33: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a strictly increasing function in its argument, where \mathbb{N} denotes the set of natural numbers, i.e., $\{1,2, \ldots$.$\} . Then, f(T) \geq T$ for all $T \in \mathbb{N}$.

Proof:

The proof follows trivially by mathematical induction after first noting that $f(1) \geq 1$ since $f(1) \in \mathbb{N}$.

Lemma SE-34:

Let $\varphi(x)=1-\frac{1}{4 x}[\exp \{-2 x\}+2 x-1]$. Then, $\varphi(x) \geq 1 / 2$, for $0<x<\infty$.

Proof:

Note that

$$
\begin{aligned}
\varphi^{\prime}(x) & =\frac{1}{4 x^{2}}[\exp \{-2 x\}+2 x-1]-\frac{1}{4 x}[-2 \exp \{-2 x\}+2] \\
& =\frac{1}{4 x^{2}}[\exp \{-2 x\}+2 x-1+2 x \exp \{-2 x\}-2 x] \\
& =\frac{1}{4 x^{2}}[(1+2 x) \exp \{-2 x\}-1] \\
& <0, \text { for all } x \text { such that } 0<x<\infty,
\end{aligned}
$$

where the last inequality follows from the inequality $1+2 x<\exp \{2 x\}$ for all $x \in(0, \infty)$. Next, observe that

$$
\lim _{x \rightarrow \infty} \varphi(x)=\lim _{x \rightarrow \infty}\left[1+\frac{1}{4 x}+\frac{1}{4 x e^{2 x}}-\frac{1}{2}\right]=\frac{1}{2}
$$

Also, let $f(x)=\frac{1}{4 x}[\exp \{-2 x\}+2 x-1]$, and note that, by L'Hôpital's rule,

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{-2 \exp \{-2 x\}+2}{4}=0 .
$$

From these calculations, we see that $\varphi(x)$ is a function which approaches 1 as $x \rightarrow 0$, which approaches $1 / 2$ as $x \rightarrow \infty$, and which is monotonically decreasing in between. The required result, thus, follows.

Lemma SE-35:

Let

$$
\begin{aligned}
\mathcal{G}_{1}^{0} & =\left\{\rho_{T}: \rho_{T}=1 \text { for all } T \text { sufficiently large }\right\} \\
\mathcal{G}_{2}^{0} & =\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: T / q(T) \rightarrow 0\right\} \\
\mathcal{G}_{3}^{0} & =\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \sim T\right\} \\
\mathcal{G}_{4}^{0} & =\left\{\rho_{T}=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \rightarrow \infty \text { but } q(T) / T \rightarrow 0\right\} \\
\mathcal{G}_{5}^{0} & =\mathcal{G}_{\mathrm{St}}=\left\{\left|\rho_{T}\right|=\exp \left\{-\frac{1}{q(T)}\right\}: q(T) \geq 0 \text { and } q(T)=O(1) \text { as } T \rightarrow \infty\right\} .
\end{aligned}
$$

Suppose that $\rho_{T} \in \bigcup_{j=1}^{5} \mathcal{G}_{j}^{0}$. Then, under Assumptions 1 and 4,

$$
\frac{\rho_{T}}{\sqrt{N T}} \sum_{i=1}^{N} w_{i 0} \varepsilon_{i 2}=O_{p}\left(\frac{1}{\sqrt{T}}\right)
$$

as $N, T \rightarrow \infty$.

Proof of Lemma SE-35:

Note that, by Assumptions 1 and 4,

$$
\begin{aligned}
E\left(\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i 0} \varepsilon_{i 2}\right)^{2} & =\frac{1}{N T} \sum_{i=1}^{N} \sum_{j=1}^{N} E\left[w_{i 0} w_{j 0}\right] E\left[\varepsilon_{i 2} \varepsilon_{j 2}\right] \\
& =\frac{\sigma^{2}}{N T} \sum_{i=1}^{N} E\left[w_{i 0}^{2}\right] \\
& \leq \frac{\sigma^{2}}{T} \sup _{i} E\left[w_{i 0}^{2}\right]=O\left(\frac{1}{T}\right)
\end{aligned}
$$

from which we deduce, using Markov's inequality, that

$$
\frac{1}{\sqrt{N T}} \sum_{i=1}^{N} w_{i 0} \varepsilon_{i 2}=O_{p}\left(\frac{1}{\sqrt{T}}\right) .
$$

Moreover, since $\left|\rho_{T}\right| \leq 1$ for all T sufficiently large for $\rho_{T} \in \bigcup_{j=1}^{5} \mathcal{G}_{j}^{0}$, it further follows that

$$
\frac{\rho_{T}}{\sqrt{N T}} \sum_{i=1}^{N} w_{i 0} \varepsilon_{i 2}=O_{p}\left(\frac{1}{\sqrt{T}}\right)
$$

as required.

Appendix SF: Additional Monte Carlo Results

This section reports additional Monte Carlo results focusing on comparing finite sample performance of alternative point estimators. The simulation results reported here therefore complement those reported in the main text of the paper, which focused on comparing finite sample performance of confidence procedures. The data generating processes we consider for the purpose of this study are similar to those considered in the paper. In particular, data are generated by the process

$$
\begin{aligned}
y_{i t} & =a_{i}+w_{i t}, \\
w_{i t} & =\rho w_{i t-1}+\varepsilon_{i t}, \text { for } i=1, \ldots N \text { and } t=1, \ldots, T ;
\end{aligned}
$$

where $\left\{\varepsilon_{i t}\right\} \equiv i . i . d . N(0,1)$ and $\left\{a_{i}\right\} \equiv i . i . d . N(2,1)$. We vary $w_{i 0}=0,2$ and $\rho=1.00,0.99,0.95,0.90$, 0.80 , and 0.60 . In addition, we let $N=100,200$. When $N=100$, we take $T=50,100$; and when $N=200$, we consider $T=100,200$.

We compare the point estimation properties of the AIP estimator

$$
\hat{\rho}_{\mathrm{AIP}}=w_{I C} \hat{\rho}_{\mathrm{IVD}}+\left(1-w_{I C}\right) \hat{\rho}_{\mathrm{pols}},
$$

where

$$
w_{I C}=\left[1+\exp \left\{\frac{1}{2}\left(\mathbb{T}_{N T}+\sqrt{N}\left(1+\ln (\ln T)^{1 / 2}\right)\right)\right\}\right]^{-1}
$$

with that of the the bias-corrected within-group (BCWG) estimator of Hahn and Kuersteiner (2002), the POLS estimator, the Anderson-Hsiao IV estimator, the X-differencing estimator of Han, Phillips, and Sul (2014), and the Arellano-Bover IV estimator proposed in Arellano and Bover (1995) and further analyzed in Blundell and Bond (1998). Here, we differentiate between the Anderson-Hsiao IV estimator and the Arellano-Bover IV estimator by denoting the former as $\widehat{\rho}_{\text {IVD }}$, since it is based on performing IV on the first-differenced equation, and denoting the Arellano-Bover IV estimator as $\widehat{\rho}_{\text {IVL }}$, since it is based on performing IV on the equation in levels. Tables SF-1 through SF-4 report median bias of the estimators included in the comparison for different configurations of N, T, ρ_{0}, and $w_{i 0}$, whereas Tables SF- 5 through SF-8 report results for the range between the 0.05 and the 0.95 quantiles for the same set of experiments ${ }^{1}$. Looking at the results reported in these tables, it seems that the only general conclusion we can make is that no particular estimator dominates all others either in terms of median bias or in terms of 0.05-0.95 quantile range. Different estimators perform better or worse for different subclasses of experiments characterized by N, T, ρ_{0}, and $w_{i 0}$. However, there are some patterns in the simulation data which we will summarize below.

[^1]First, the results of the first four tables show that, in the cases where $w_{i 0}=0$ which is consistent with the assumption of mean stationarity of the initial condition, $\widehat{\rho}_{\text {IVL }}$ tends to be the best performer in terms of median bias overall. On the other hand, $\widehat{\rho}_{\text {IVL }}$ is also the estimator whose performance is most sensitive to the specification of the initial condition, so that, under the specification that $w_{i 0}=2$ which violates the assumption of mean stationarity, the performance of $\widehat{\rho}_{\text {IVL }}$ deteriorates considerably, particularly in the cases where the underlying process is stable. More specifically, for experiments where $w_{i 0}=2$ and $\rho_{0} \leq 0.9$, the performance of $\widehat{\rho}_{\text {IVL }}$ in terms of median bias is only fifth amongst the six estimators. On the other hand, relative to the other estimators, the performance of the AIP estimator $\widehat{\rho}_{\text {AIP }}$ is the most robust across different specifications of N, T, ρ_{0}, and $w_{i 0}$ in the sense that, across all experiments, it is the only estimator which never ranked in the bottom two in terms of median bias. Moreover, compared to the other five estimators, $\widehat{\rho}_{\text {AIP }}$ seems to perform particularly well in terms of median bias in the experiments reported in Table SF-4, where the sample sizes are relatively large ($N=200$ and $T=100$ or 200) and where mean stationarity of the initial condition is not assumed, i.e., $w_{i 0}=2$. In this set of experiments, $\widehat{\rho}_{\text {AIP }}$ ranks first or second in ten of the twelve experiments.

With respect to the other estimators, note that the results on the median bias for the AndersonHsiao IV estimator $\widehat{\rho}_{\text {IVD }}$ and the POLS estimator $\widehat{\rho}_{\text {POLS }}$ are very much in agreement with what is predicted by our large sample theory. POLS does poorly in terms of median bias when the underlying process is stable but much better when $\rho_{0}=1$, while IV is just the opposite. The performance of the X-differencing estimator of Han, Phillips, and Sul (2014) is similar to that of POLS in the sense that it is better when ρ_{0} is in the "more persistent" region of the parameter space than when it is in the "more stable" region; but, overall, the median bias of the X-differencing estimator is smaller than that of POLS, and its performance across the parameter space is more uniform than that of POLS. Finally, the median biases of the BCWG estimator are also smaller when ρ_{0} is in the $0.6-0.9$ range than in cases where $0.95 \leq \rho_{0} \leq 1$. These results are consistent with results given in Hahn and Kuersteiner (2002), as their bias-correction procedure is specifically designed to remove second-order biases in the stable case, not the unit root case.

Next, we turn our attention to Tables SF-5 through SF-8, which report results on the dispersion of various estimators as measured by the 0.05-0.95 quantile range. Here, note that the POLS estimator tends to be the best performer, particularly in the unit root and near unit root cases. On the other hand, AIP does well in the persistent region of the parameter space (e.g., when $\rho_{0}=1$ or $\rho_{0}=0.99$) but tends to do less well relative to all the "OLS-type" estimators (i.e., $\widehat{\rho}_{\text {BCWG }}, \widehat{\rho}_{\text {POLS }}$, and $\widehat{\rho}_{\text {XD }}$) in terms of dispersion when the underlying process is stable. The degree of dispersion exhibited by AIP very much reflects that of the constituent estimators, $\widehat{\rho}_{\text {IVD }}$ and $\widehat{\rho}_{\text {POLS }}$, from which it is constructed. Hence, when the underlying process is very persistent, the weights on AIP shift toward POLS, thus, taking advantage of the efficiency of the latter estimator when the true autoregressive coefficient is unity or very close to unity. On the other hand, when the underlying process is stable, the weights on AIP shift toward the Anderson-Hsiao IV estimator, which, although well-centered in terms of having a small median bias, tends to be less efficient relative to the "OLS-type" estimators; and our simulation results show that the AIP estimator inherits both the virtue and the vice of this estimator.

Table SF-1: Median Bias							
$N=100, w_{i 0}=0$							
ρ_{0}	T	$\widehat{\rho}_{\text {BCWG }}$	$\widehat{\rho}_{\text {POLS }}$	$\widehat{\rho}_{\text {IVD }}$	$\widehat{\rho}_{\text {XD }}$	$\widehat{\rho}_{\text {IVL }}$	$\widehat{\rho}_{\text {AIP }}$
1.00	50	-2.17×10^{-2}	-2.66×10^{-4}	-4.23×10^{-2}	-1.52×10^{-4}	-1.85×10^{-5}	-3.50×10^{-4}
1.00	100	-1.05×10^{-2}	-1.64×10^{-4}	-2.33×10^{-2}	-1.56×10^{-4}	-4.25×10^{-5}	-2.07×10^{-4}
0.99	50	-2.45×10^{-2}	1.81×10^{-4}	-5.31×10^{-4}	-8.57×10^{-3}	-2.21×10^{-5}	1.70×10^{-4}
0.99	100	-1.22×10^{-2}	1.17×10^{-4}	-6.02×10^{-4}	-7.21×10^{-3}	-8.61×10^{-5}	1.21×10^{-4}
0.95	50	-1.97×10^{-2}	4.93×10^{-3}	-6.27×10^{-4}	-1.89×10^{-2}	-2.87×10^{-4}	4.90×10^{-3}
0.95	100	-5.99×10^{-3}	4.59×10^{-3}	5.74×10^{-4}	-9.84×10^{-3}	5.29×10^{-4}	4.29×10^{-3}
0.90	50	-1.20×10^{-2}	1.66×10^{-2}	2.95×10^{-4}	-1.68×10^{-2}	2.99×10^{-4}	1.40×10^{-2}
0.90	100	-3.21×10^{-3}	1.62×10^{-2}	-2.61×10^{-5}	-8.15×10^{-3}	2.55×10^{-4}	3.50×10^{-3}
0.80	50	-6.05×10^{-3}	5.34×10^{-2}	4.82×10^{-4}	-1.12×10^{-2}	-1.48×10^{-4}	1.10×10^{-2}
0.80	100	-1.57×10^{-3}	5.30×10^{-2}	3.62×10^{-6}	-5.52×10^{-3}	-8.80×10^{-5}	2.82×10^{-4}
0.60	50	-3.08×10^{-3}	1.56×10^{-1}	1.82×10^{-4}	-4.77×10^{-3}	-1.64×10^{-4}	1.07×10^{-3}
0.60	100	-7.23×10^{-4}	1.55×10^{-1}	-4.56×10^{-4}	-2.20×10^{-3}	-3.21×10^{-4}	-4.51×10^{-4}

Results are based on 10,000 simulations.

Table SF-2: Median Bias							
ρ_{0}	T	$\widehat{\rho}_{\text {BCWG }}$	$\widehat{\rho}_{\text {POLS }}$	$\widehat{\rho}_{\text {IVD }}$	$\widehat{\rho}_{\text {XD }}$	$\widehat{\rho}_{\text {IVL }}$	$\widehat{\rho}_{\text {AIP }}$
1.00	50	-2.17×10^{-2}	-2.66×10^{-4}	-3.20×10^{-2}	-1.52×10^{-4}	-1.86×10^{-5}	-3.01×10^{-4}
1.00	100	-1.05×10^{-2}	-1.64×10^{-4}	-1.95×10^{-2}	-1.56×10^{-4}	-4.13×10^{-5}	-1.77×10^{-4}
0.99	50	-2.41×10^{-2}	1.76×10^{-4}	6.63×10^{-4}	-7.91×10^{-3}	-4.70×10^{-4}	1.65×10^{-4}
0.99	100	-1.18×10^{-2}	1.20×10^{-4}	-5.14×10^{-4}	-6.56×10^{-3}	-4.58×10^{-4}	1.30×10^{-4}
0.95	50	-1.67×10^{-2}	4.81×10^{-3}	-2.37×10^{-4}	-1.11×10^{-2}	-7.63×10^{-3}	4.76×10^{-3}
0.95	100	-5.12×10^{-3}	4.48×10^{-3}	5.62×10^{-4}	-5.85×10^{-3}	-3.16×10^{-3}	4.17×10^{-3}
0.90	50	-9.05×10^{-3}	1.60×10^{-2}	1.42×10^{-4}	-3.96×10^{-3}	-1.58×10^{-2}	1.29×10^{-2}
0.90	100	-2.51×10^{-3}	1.58×10^{-2}	1.06×10^{-4}	-2.05×10^{-3}	-7.15×10^{-3}	2.97×10^{-3}
0.80	50	-4.03×10^{-3}	5.18×10^{-2}	6.04×10^{-4}	4.61×10^{-3}	-2.76×10^{-2}	8.58×10^{-3}
0.80	100	-1.13×10^{-3}	5.21×10^{-2}	4.20×10^{-5}	2.13×10^{-3}	-1.27×10^{-2}	2.46×10^{-4}
0.60	50	-2.02×10^{-3}	1.53×10^{-1}	3.55×10^{-4}	6.63×10^{-3}	-3.51×10^{-2}	9.86×10^{-4}
0.60	100	-4.25×10^{-4}	1.53×10^{-1}	-4.95×10^{-4}	3.46×10^{-3}	-1.67×10^{-2}	-4.93×10^{-4}

Results are based on 10,000 simulations.

Table SF-3: Median Bias							
ρ_{0}	T	$\widehat{\rho}_{\text {BCWG }}$	$\widehat{\rho}_{\text {POLS }}$	$\widehat{\rho}_{\text {IVD }}$	$\widehat{\rho}_{\text {XD }}$	$\widehat{\rho}_{\text {IVL }}$	$\widehat{\rho}_{\text {AIP }}$
1.00	100	-1.04×10^{-2}	-9.41×10^{-5}	-1.73×10^{-2}	-5.88×10^{-5}	-5.75×10^{-5}	-9.30×10^{-5}
1.00	200	-5.07×10^{-3}	-3.77×10^{-5}	-5.71×10^{-3}	-2.82×10^{-5}	-9.46×10^{-5}	-3.85×10^{-5}
0.99	100	-1.21×10^{-2}	2.25×10^{-4}	-5.58×10^{-4}	-7.14×10^{-3}	1.68×10^{-5}	2.23×10^{-4}
0.99	200	-5.25×10^{-3}	1.95×10^{-4}	-2.66×10^{-5}	-4.97×10^{-3}	2.82×10^{-5}	1.93×10^{-4}
0.95	100	-6.00×10^{-3}	4.72×10^{-3}	2.26×10^{-4}	-9.85×10^{-3}	1.41×10^{-4}	4.45×10^{-3}
0.95	200	-1.57×10^{-3}	4.53×10^{-3}	-6.39×10^{-5}	-4.71×10^{-3}	-7.69×10^{-5}	6.10×10^{-4}
0.90	100	-3.07×10^{-3}	1.64×10^{-2}	9.40×10^{-5}	-7.96×10^{-3}	-8.47×10^{-5}	2.13×10^{-3}
0.90	200	-7.77×10^{-4}	1.61×10^{-2}	-1.09×10^{-4}	-3.84×10^{-3}	1.99×10^{-6}	-1.01×10^{-4}
0.80	100	-1.57×10^{-3}	5.33×10^{-2}	-1.31×10^{-4}	-5.42×10^{-3}	-8.25×10^{-5}	-9.95×10^{-5}
0.80	200	-4.05×10^{-4}	5.29×10^{-2}	-2.52×10^{-4}	-2.68×10^{-3}	-2.23×10^{-4}	-2.52×10^{-4}
0.60	100	-7.10×10^{-4}	1.56×10^{-1}	8.92×10^{-5}	-2.27×10^{-3}	1.04×10^{-4}	8.92×10^{-5}
0.60	200	-1.60×10^{-4}	1.55×10^{-1}	3.93×10^{-5}	-1.10×10^{-3}	5.69×10^{-5}	3.93×10^{-5}

Results are based on 10,000 simulations.

Table SF-4: Median Bias							
ρ_{0}	T	$\widehat{\rho}_{\text {BCWG }}$	$\widehat{\rho}_{\text {POLS }}$	$\widehat{\rho}_{\text {IVD }}$	$\widehat{\rho}_{\text {XD }}$	$\widehat{\rho}_{\text {IVL }}$	$\widehat{\rho}_{\text {AIP }}$
1.00	100	-1.04×10^{-2}	-9.41×10^{-5}	-1.65×10^{-2}	-5.88×10^{-5}	-5.78×10^{-5}	-9.57×10^{-5}
1.00	200	-5.07×10^{-3}	-3.77×10^{-5}	-5.31×10^{-3}	-2.82×10^{-5}	-9.53×10^{-5}	-3.68×10^{-5}
0.99	100	-1.18×10^{-2}	2.26×10^{-4}	-2.50×10^{-4}	-6.51×10^{-3}	-3.55×10^{-4}	2.26×10^{-4}
0.99	200	-5.07×10^{-3}	1.95×10^{-4}	-8.64×10^{-5}	-4.54×10^{-3}	-2.70×10^{-4}	1.92×10^{-4}
0.95	100	-5.14×10^{-3}	4.61×10^{-3}	1.16×10^{-4}	-5.88×10^{-3}	-3.60×10^{-3}	4.31×10^{-3}
0.95	200	-1.36×10^{-3}	4.46×10^{-3}	-7.90×10^{-6}	-2.86×10^{-3}	-1.99×10^{-3}	5.69×10^{-4}
0.90	100	-2.32×10^{-3}	1.60×10^{-2}	1.97×10^{-4}	-1.90×10^{-3}	-7.56×10^{-3}	1.83×10^{-3}
0.90	200	-5.96×10^{-4}	1.59×10^{-2}	-8.86×10^{-5}	-9.11×10^{-4}	-3.59×10^{-3}	-8.39×10^{-5}
0.80	100	-1.04×10^{-3}	5.24×10^{-2}	-4.79×10^{-5}	2.24×10^{-3}	-1.27×10^{-2}	-1.84×10^{-5}
0.80	200	-2.60×10^{-4}	5.25×10^{-2}	-2.40×10^{-4}	1.13×10^{-3}	-6.28×10^{-3}	-2.40×10^{-4}
0.60	100	-4.36×10^{-4}	1.54×10^{-1}	5.13×10^{-5}	3.39×10^{-3}	-1.63×10^{-2}	5.13×10^{-5}
0.60	200	-7.32×10^{-5}	1.55×10^{-1}	-2.60×10^{-6}	1.73×10^{-3}	-7.88×10^{-3}	-2.60×10^{-6}

Results are based on 10,000 simulations.

Table SF-5: Nine Decile Range 0.05 to 0.95							
ρ_{0}	T	$\widehat{\rho}_{\text {BCWG }}$	$\widehat{\rho}_{\text {POLS }}$	$\widehat{\rho}_{\text {IVD }}$	$\widehat{\rho}_{\text {XD }}$	$\widehat{\rho}_{\text {IVL }}$	$\widehat{\rho}_{\text {AIP }}$
1.00	50	0.0211	0.0093	3.6701	0.0206	0.0471	0.0095
1.00	100	0.0106	0.0046	2.5061	0.0101	0.0334	0.0048
0.99	50	0.0222	0.0108	0.4070	0.0212	0.0579	0.0108
0.99	100	0.0117	0.0062	0.1479	0.0108	0.0461	0.0062
0.95	50	0.0259	0.0157	0.1380	0.0245	0.0797	0.0162
0.95	100	0.0149	0.0108	0.0793	0.0142	0.0594	0.0176
0.90	50	0.0292	0.0212	0.1161	0.0282	0.0855	0.0329
0.90	100	0.0173	0.0150	0.0712	0.0169	0.0616	0.0585
0.80	50	0.0336	0.0303	0.1034	0.0335	0.0878	0.0877
0.80	100	0.0220	0.0251	0.0685	0.0217	0.0624	0.0682
0.60	50	0.0407	0.0533	0.0944	0.0429	0.0860	0.0941
0.60	100	0.0273	0.0483	0.0629	0.0274	0.0594	0.0629

Results are based on 10,000 simulations.

Table SF-6: Nine Decile Range 0.05 to 0.95							
ρ_{0}	T	$\widehat{\rho}_{\text {BCWG }}$	$\widehat{\rho}_{\text {POLS }}$	$\widehat{\rho}_{\text {IVD }}$	$\widehat{\rho}_{\text {XD }}$	$\widehat{\rho}_{\text {IVL }}$	$\widehat{\rho}_{\text {AIP }}$
1.00	50	0.0211	0.0093	3.3846	0.0206	0.0471	0.0096
1.00	100	0.0106	0.0046	2.3667	0.0101	0.0335	0.0048
0.99	50	0.0223	0.0107	0.3283	0.0211	0.0625	0.0108
0.99	100	0.0116	0.0062	0.1354	0.0107	0.0492	0.0062
0.95	50	0.0252	0.0155	0.1175	0.0235	0.0969	0.0160
0.95	100	0.0145	0.0106	0.0731	0.0136	0.0661	0.0174
0.90	50	0.0282	0.0208	0.1020	0.0270	0.1058	0.0326
0.90	100	0.0171	0.0149	0.0674	0.0163	0.0682	0.0570
0.80	50	0.0323	0.0299	0.0940	0.0323	0.1052	0.0828
0.80	100	0.0216	0.0249	0.0653	0.0212	0.0680	0.0651
0.60	50	0.0400	0.0530	0.0887	0.0427	0.0960	0.0884
0.60	100	0.0271	0.0481	0.0607	0.0273	0.0625	0.0607

Results are based on 10,000 simulations.

Table SF-7: Nine Decile Range 0.05 to 0.95									
$N=200, w_{\text {i0 }}=0$									
ρ_{0}	T	$\widehat{\rho}_{\text {BCWG }}$	$\widehat{\rho}_{\text {POLS }}$	$\widehat{\rho}_{\text {IVD }}$	$\widehat{\rho}_{\text {XD }}$	$\widehat{\rho}_{\text {IVL }}$	$\widehat{\rho}_{\text {AIP }}$		
1.00	100	0.0074	0.0033	2.4315	0.0071	0.0234	0.0033		
1.00	200	0.0037	0.0017	1.8462	0.0035	0.0166	0.0017		
0.99	100	0.0084	0.0043	0.1022	0.0077	0.0324	0.0043		
0.99	200	0.0045	0.0026	0.0492	0.0041	0.0262	0.0026		
0.95	100	0.0105	0.0076	0.0557	0.0100	0.0426	0.0097		
0.95	200	0.0063	0.0053	0.0358	0.0061	0.0313	0.0313		
0.90	100	0.0123	0.0106	0.0513	0.0122	0.0441	0.0456		
0.90	200	0.0079	0.0081	0.0342	0.0078	0.0317	0.0342		
0.80	100	0.0155	0.0178	0.0474	0.0155	0.0435	0.0474		
0.80	200	0.0104	0.0154	0.0328	0.0103	0.0311	0.0328		
0.60	100	0.0195	0.0346	0.0442	0.0201	0.0420	0.0442		
0.60	200	0.0136	0.0327	0.0302	0.0136	0.0294	0.0302		

Results are based on 10,000 simulations.

Table SF-8: Nine Decile Range 0.05 to 0.95							
ρ_{0}	T	$\widehat{\rho}_{\text {BCWG }}$	$\widehat{\rho}_{\text {POLS }}$	$\widehat{\rho}_{\text {IVD }}$	$\widehat{\rho}_{\text {XD }}$	$\widehat{\rho}_{\text {IVL }}$	$\widehat{\rho}_{\text {AIP }}$
1.00	100	0.0074	0.0033	2.3574	0.0071	0.0234	0.0033
1.00	200	0.0037	0.0017	1.8048	0.0035	0.0166	0.0017
0.99	100	0.0083	0.0043	0.0934	0.0077	0.0345	0.0043
0.99	200	0.0045	0.0026	0.0471	0.0041	0.0274	0.0026
0.95	100	0.0103	0.0075	0.0524	0.0098	0.0474	0.0098
0.95	200	0.0063	0.0053	0.0347	0.0060	0.0330	0.0308
0.90	100	0.0122	0.0105	0.0484	0.0117	0.0488	0.0442
0.90	200	0.0078	0.0080	0.0333	0.0076	0.0334	0.0333
0.80	100	0.0153	0.0176	0.0451	0.0151	0.0474	0.0451
0.80	200	0.0103	0.0153	0.0319	0.0102	0.0324	0.0319
0.60	100	0.0195	0.0345	0.0430	0.0200	0.0443	0.0430
0.60	200	0.0135	0.0327	0.0296	0.0135	0.0302	0.0296

Results are based on 10,000 simulations.

References

[1] Anderson, T. W. and C. Hsiao (1981). "Estimation of Dynamic Models with Error Components", Journal of American Statistical Association, 76, 598-606.
[2] Anderson, T. W. and C. Hsiao (1982). "Formulation and Estimation of Dynamic Models Using Panel Data", Journal of Econometrics, 18, 47-82 .
[3] Arellano, M. and O. Bover (1995). "Another Look at the Instrumental Variable Estimation of Error-components Models", Journal of Econometrics, 68, 29-51.
[4] Billingsley, P. (1968). Convergence of Probability Measures. John Wiley \& Sons, New York.
[5] Blundell, R. and S. Bond (1998). "Initial Conditions and Moment Restrictions in Dynamic Panel Data Models", Journal of Econometrics, 87, 115-143.
[6] Hahn, J. and G. Kuersteiner (2002). "Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects When Both N and T are Large", Econometrica, 70(4), 1639-1657.
[7] Han, C., P.C.B. Phillips and D. Sul (2014). "X-Differencing and Dynamic Panel Model Estimation", Econometric Theory, 30 (1), 201-251.
[8] Phillips, P.C.B. (1987). "Time Series Regression with a Unit Root", Econometrica, 55, 277-301.
[9] Phillips, P. C. B. (2014) "Dynamic Panel Anderson-Hsiao Estimation with Roots Near Unity", unpublished paper.
[10] Phillips, P. C. B. and C. Han, "The True Limit Distributions of the Anderson-Hsiao IV Estimators in Panel Autoregression", Economics Letters, 127, 2015, 89-92.
[11] Phillips, P. C. B. and H. R. Moon (1999). "Linear Regression Limit Theory for Nonstationary Panel Data", Econometrica, 67(5), 1057-1111.
[12] Staiger, D. and J. Stock (1997). "Instrumental Variables Regression with Weak Instruments", Econometrica 65, 57-586.

[^0]: *University of Maryland. Email: Chao@econ.umd.edu
 ${ }^{\dagger}$ Yale University, University of Auckland, University of Southampton and Singapore Management University. Phillips gratefully acknowledges support from theh NSF under Grant SES 12 85258. Email: peter.phillips@yale.edu

[^1]: ${ }^{1}$ We have chosen to use median bias and $0.05-0.95$ quantile range to measure the centrality and the dispersion of the point estimators because these measures are robust to the possible non-existence of finite sample moments of estimators.

