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Abstract

This paper considers team incentive schemes that are robust to nonquantifiable
uncertainty about the game played by the agents. A principal designs a contract for a
team of agents, each taking an unobservable action that jointly determine a stochastic
contractible outcome. The game is common knowledge among the agents, but the
principal only knows some of the available action profiles. Realizing that the game may
be bigger than he thinks, the principal evaluates contracts based on their guaranteed
performance across all games consistent with his knowledge. All parties are risk neutral
and the agents are protected by limited liability.

A contract is said to align the agents’ interests if each agent’s compensation covaries
positively and linearly with the other agents’ compensation. It is shown that contracts
that fail to do so are dominated by those that do, both in terms of the surplus guarantee
under budget balance, and in terms of the principal’s profit guarantee when he is the
residual claimant. It thus suffices to base compensation on a one-dimensional aggregate
even if richer outcome measures are available. The best guarantee for either objective
is achieved by a contract linear in the monetary value of the outcome. This provides a

foundation for practices such as team-based pay and profit-sharing in partnership.

1 Introduction

Much of economic activity is performed by teams, broadly defined to encompass groups
of agents such as partnerships, committees, research groups or start-ups, and work teams
in manufacturing and services. The classical contract-theoretic approach to incentivizing

such teams, pioneered by Holmstrém (1982), emphasizes the informational aspects of the
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problem. It holds that any signal informative of an agent’s action should optimally be used
to determine his compensation. This leads to contracts that are sophisticated and highly
context-dependent. Moreover, there is no reason for compensation to be team-based, unless it
is exogenously assumed that the outcome only provides information on the team’s aggregate
performance. Both predictions are at odds with incentive schemes typically observed in
practice, which tend to be simpler and often include team-based pay even if information
about individual performance is available. For instance, partnerships commonly operate
under a simple profit-sharing agreement.

In this paper, we investigate foundations for such simple incentive schemes by considering
contracts that are robust to nonquantifiable uncertainty about the game played by the agents.
Our model is based on Holmstrom’s (1982) team production problem, where each agent takes
an unobservable action at a private cost, and the profile of actions stochastically determines a
contractible outcome that may convey information about both aggregate as well as individual
performance. We assume that all parties are risk-neutral and the agents are protected by
limited liability, but impose no particular structure on the production technology.

The game is common knowledge among the agents, perhaps by virtue of their expertise,
or because it is simply evident now that they have been called to act. However, inspired by
Carroll’s (2015) work on the foundations of linear contracts in principal-agent problems, we
assume that the principal designing the contract only knows some of the actions available
to each agent, and hence he only knows some of the action profiles in the game. Realizing
that the game may be bigger than he thinks, but not having a prior on the set of possible
games, the principal evaluates contracts based on their guaranteed performance across all
games consistent with his knowledge.

Our first result shows that guaranteeing good performance either in terms of the expected
surplus for a budget-balanced team, or in terms of the principal’s own profit if he is the
residual claimant, requires that a contract align the agents’ interests. In particular, each
agent’s compensation should covary positively and linearly with the compensation of all
other agents. Such a contract has a natural representation in terms of a one-dimensional
aggregate of the outcome, the value of which determines everyone’s compensation, so we can
reasonably interpret the contract as providing team-based compensation. Contracts of this
form dominate all other contracts. Thus, team-based compensation is optimal even though
rich measures of individual performance may be available.

The necessity of interest alignment derives from the fact that when a contract induces
disagreement about the ranking of outcomes among the agents, then—should the game
provide the opportunity for it—each agent will seek personal gain at the others’ expense. We

can then find games where this creates a “race to the bottom,” with the unique equilibrium



leading to the worst possible outcome. We illustrate the basic intuition in the context of a
rank-order tournament after having introduced the model. While the result is reminiscent of
Carroll’s (2015) linearity result for principal-agent problems, the two are logically distinct:
the definition of interest alignment only involves the payments to the agents, so every contract
trivially aligns the agent’s interests in the single-agent case.

If a contract that aligns the agents’ interests is budget balanced among the agents, then
it is in fact a linear contract where each agent is paid a fixed share of the monetary value
generated by the contractible outcome. We show that some such linear contract achieves the
best possible surplus guarantee within the class of budget-balanced contracts. This provides
a possible foundation for profit-sharing agreements in partnerships.

We also show that a linear contract achieves the best possible guarantee for the principal’s
profit in the case where the principal is the residual claimant for the team’s profits and
losses. By our first result, the search for the principal-optimal contract can be restricted to
contracts that align the agents’ interests. Moreover, the candidate optimal contracts can be
represented as consisting of a function specifying the agents’ total compensation for each
outcome, and of shares that determine how it is divided amont the agents. By keeping the
shares fixed and focusing on the total compensation, we can adapt Carroll’s (2015) argument
for the one-agent case to show that the total compensation should be a linear function of the
monetary value generated by the outcome (and thus the contract should be linear overall).
Heuristically, a contract that aligns the agents’ interests ensures that no agent can seek
personal gain at the expense of the other agents. Requiring that this not happen at the
expense of the principal, either, implies that the agents’ compensation must covary linearly
with the principal’s payoff as well, leading to a linear contract.

Whether the optimal guarantees for surplus and profit are positive depends on the severity
of the free-rider problem. Unlike in the case of one agent, it is not enough that some known
action profile generate a positive surplus. The condition that characterizes known production
technologies for which the optimal guarantees are non-trivial comprises of a virtual surplus
calculation: a social planner should be able to generate positive surplus in a model where
the agents’ costs are appropriately inflated to account for the robustness concern. Thus
the theory here predicts that, even absent setup costs, only sufficiently profitable teams are
worth forming.

The question of foundations for linear contracts has received a great deal of attention in
the one-agent case, starting with Holmstrom and Milgrom (1987). See Carroll (2015) for a
review of this literature. As we focus on the contracts’ guaranteed performance, our work
belongs to the literature studying worst-case optimal contracts in various settings—see, for
example, Hurwicz and Shapiro (1978), Chung and Ely (2007), Chassang (2013), Frankel



(2014), Garrett (2014), Yamashita (2015), Carroll (2017), Carroll and Segal (2017), and
Marku and Ocampo Diaz (2017). Similar robustness concerns motivate the work on robust
mechanism design following Bergemann and Morris (2005), and the analysis of approximately
optimal contracts in locally misspecified models by Madardsz and Prat (2017).

Other theoretical explanations have been put forth for the use of profit-sharing, and
for the prevalence of partnerships as an organizational form in the professional services
industry—see, for example, Garicano and Santos (2004) or Levin and Tadelis (2005). These
papers either exogenously restrict the contract space, or solve for the optimal contract in
particular parametric models. Che and Yoo (2001) show that team-based compensation can
be a part of the optimal mix of formal and relational incentives in a repeated partnership
problem where the agents can observe each others’ actions. Our work provides a comple-
mentary perspective, showing that team-based compensation arises as a robustly optimal
contract in a static setting where the agents cannot monitor each other.

Finally, there is an extensive management literature on teams. The result that contracts
should align the agents’ interests connects with some of the themes in this literature. For
example, Hackman (2002) posits that one of the key enabling conditions for work-team
effectiveness is the existence of a compelling direction that should specify ends but not
means. Interpreting the “means” as the agents’ actions and the “ends” as the contractible

outcome, a contract that aligns the agents’ interests provides just that.'

2 Model

We consider the problem of a principal incentivizing a team of agents, indexed 1 =1,..., 1.
Each agent takes an unobservable action a; from a finite set A; at a private cost ¢;(a;) > 0.
The cost can be interpreted as monetary, or as simply describing the agent’s preferences
over the available actions. The resulting action profile a = (ay,...,a;) € A = x| A;
determines stochastically the team’s observable output y, an element of a finite set Y of
possible outcomes. The distribution of y given a is denoted F'(a) € A(Y). We refer to the
tuple (A, ¢, F), where ¢ = (c1,...,¢1) : Ay X -+ x A; — RL is the profile of cost functions
and F': A — A(Y) is the family of output distributions, as the technology.

The outcome y provides a measure of the team’s performance, possibly along multiple
dimensions, and serves as a signal about the agents’ actions. Its intrinsic monetary value is
denoted v(y). For example, v(y) may be the expected market value of the team’s production

conditional on the signal y, or it may reflect how the principal aggregates different dimensions

IThis is true quite literally: the parameter d in our Definition 1 is the direction of the ray in Rﬁ_ along
which all payment profiles lie.



of performance. We denote by yy the least desirable outcome and normalize its value to zero,
i.e., v(yo) = minwv(Y) = 0. (yo can be chosen arbitrarily among the minimizers if the worst
outcome is not unique.) To avoid trivialities, we assume maxv(Y’) > 0.

The agents do not have preferences over the outcomes per se, but the principal can guide
them by designing an incentive scheme that rewards the agents based on the team’s output.
We assume that the agents are protected by limited liability, meaning that payments to them
have to be non-negative. An incentive scheme, or a contract, is thus a function w: Y — Rfr
that specifies a payment profile w(y) = (w1(y), ..., wr(y)) for every possible outcome y € Y.
The net payoff of agent 7 is then w;(y) — ¢;(a;), with the principal receiving v(y) — >, w;(y).
All parties are assumed risk neutral.

Given a contract w, the convex hull of all payment profiles is denoted W := co(w(Y)).
We say that the contract w is budget balanced if the value of output is shared by the agents,
ie., if 3, w;i(y) = v(y) for all y.

The principal designs the contract either to maximize total surplus subject to budget
balance, or to maximize his profits. However, he does so without full knowledge of the game
played by the agents. Specifically, inspired by Carroll (2015), we assume that the technology
(A, ¢, F') is common knowledge among the agents, but the principal only knows some finite
set A% = xI_| AY of action profiles with an associated profile of cost functions ¢ : A° — R
and outcome distributions F© : A — A(Y), collectively referred to as the known technology.
The principal believes that the true technology may be any (A, ¢, F) such that A D A% and
(¢, F)|a0 = (¥, F°). That is, the true technology contains the action profiles known to the
principal, and the true costs and output distributions associated with these profiles conform
with the principal’s knowledge. (Note that the set of possible outcomes Y is held fixed; it
is known by all parties.) To simplify notation, we suppress the cost functions and outcome
distributions when this causes no confusion, writing A° and A for the known and the true
technology, respectively.

Together a contract w and the (true) technology A induce a normal form game I'(w, A)
between the agents. We let £(w, A) denote its set of mixed strategy Nash equilibria. An
equilibrium exists because A was assumed finite. In case there are many, we adopt the usual
partial-implementation assumption from contract theory and focus on the equilibrium that is

best for the principal’s objective.? Thus, the expected total surplus induced by the contract

2This minimizes the departure from the standard model and ensures the existence of an optimal contract.
Essentially the same results obtain under the alternative assumption that the agents play the worst equi-
librium for the principal among equilibria that are not strictly Pareto dominated for the agents, but in this
case optimal contracts may only exist in the sense of a limit.



w given technology A is

S(w, A) = max (Erio[v(y)] - PILIODY ci(ai)),
where F'(o) is the outcome distribution induced by F' and the equilibrium strategy profile o.

Similarly, the principal’s expected profit from the contract w given technology A is

Viw A):= max Epqo(y) -2 wiy):

Faced with the uncertainty about the game played by the agents, the principal ranks
contracts according to their guaranteed expected performance over all possible (finite) tech-

nologies. For total surplus and profits, these guarantees are, respectively,

S(w) = Aglfxo S(w,A) and V(w):= Aglfxo V(w, A).
We say that a contract is team-optimal if it maximizes S(w) over all budget-balanced con-

tracts. A contract is principal-optimal if it maximizes V(w). Note that the guaranteed
0

expected surplus satisfies S(w) > — 3, ?, where ¢ := minc;(AY), since each agent can
ensure a payoff of —c? by playing the least-cost action in A? given any technology A 2 A°.
Similarly, the zero contract w = 0 yields a nonnegative expected profit from any technology,
and hence V' (0) > 0.

Some remarks regarding the formulation are in order. The most immediate interpretation
is that the principal is designing the contract for a single team, not fully aware of the game the
agents are playing. For example, this uncertainty may reflect the agents’ superior knowledge
of the situation. Or it could be due to the principal having to design the contract before the
details of the team’s operating environment are known, or even who the team’s members
will be. Importantly, however, the principal can envision and evaluate all possible outcomes
that may arise as a result of the teams activities, i.e., he knows the set Y and the mapping
v : Y — R. The fact that Y is held fixed is not restrictive as our main findings do not
require the output distributions in the known technology to have full support. Thus Y can
contain outcomes that are impossible under the known technology. (We selectively invoke a
full-support assumption to state stronger versions of some of our results.)

An alternative interpretation of the model is that the principal is designing a contract
to be used in a number of different situations, perhaps by many different teams, and wants
the contract to guarantee good expected performance in all of them. In case of the profit

guarantee, a concrete example might be a collection of self-managing teams, such as the



cabin crews of a large international airline. Each crew may face a multitude of situations
at the airport and on board depending on the model and the condition of the aircraft, the
number and types of passengers, the weather and possible delays caused by it or by technical
problems, and so on. The realized situation may be apparent to all crew members (captured
by the agents knowing A), but it may be too difficult and costly to communicate or verify all
of this information about the circumstances to a third party for the contract to depend on it.
Moreover, large airlines have numerous cabin crews, whose compositions change frequently,
so robust performance in a broad range of circumstances may seem desirable.?

We have deliberately assumed that the contract can only condition on the outcome y.
We view this assumption as capturing the spirit of the robustness exercise. However, as
the agents are assumed to know the true technology, a more general contract could first
ask the agents to report the true technology A, and then determine the incentive scheme w
based on the reports. With one agent, Carroll (2015) shows that such screening contracts
do not alter the findings. But with many agents, there does exist an equilibrium where the
agents truthfully report the technology, and—given our partial implementation assumption—
the situation reduces to the standard Bayesian case. A stronger notion of implementation
together with limited liability would prevent this trivial solution, but a detailed analysis of

this case seems difficult, and we leave it for future work.

3 Necessity of Interest Alignment

We start the analysis by showing that contracts that fail to align the agents’ interests can
be easily improved upon. We also show that, under mild additional assumptions about the
known technology, interest alignment becomes necessary for a contract to have a nontrivial
surplus or profit guarantee.

In order to motivate our definition of interest alignment and to develop intuition for
the result, it is useful to first consider a contract under which the agents are in direct
competition—a rank-order tournament. To this end, suppose for a moment that there are
just two agents and that an outcome is a pair y = (y, y2) listing their outputs. Let Y be any
finite grid on R? containing the origin and at least one outcome with y; > y» and another
with yo > y;. The value to the principal is the sum v(y) = y; + yo, and thus yo = (0,0).
A rank-order tournament is a contract specifying three payment levels: w;(y) = b > 0 if
yi > Yy, wi(y) = b/2 if y; = y_;, and w;(y) = 0 if y; < y_;. That is, the agent with the
highest output gets a bonus b, which is shared equally in case of a tie.

Because of the form of the contract, agent 1 has an incentive to pursue actions that

3See Hackman (2002) and references therein for a discussion and case studies of cabin crews.
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A? —Cl(a1)7b
ay | b,—co(az) | b/2,b/2

Figure 1. The game I'(w, A) for the tournament example. Since b is the highest feasible payoff,
a; is a weakly dominant strategy. To see that a’ is the unique equilibrium, fix a mixed strategy
equilibrium o. If the support of ¢ is contained in A°, then some agent i’s expected payoff is at
most b/2, whereas deviating to a} yields b for sure. Hence, a; must be in the support of o; for
some agent 7. But then a’ ; is the unique best response for agent —i, and thus o_; must play it
with certainty. This in turn implies that o; must play a, with certainty. Therefore, o is simply
the pure-strategy profile a’.

increase the likelihood that his output is greater than agent 2’s output, or y; > ys. If the
only way to do this is by increasing y;, then the tournament does incentivize the agent to
exert effort towards increasing total output.” But as pointed out by Lazear (1989), it is also
in agent 1’s interest to sabotage agent 2 to lower ys, for example, by refusing to help. He
may also try to claim credit for some of agent 2’s output—or even outright steal it—to shift
some of 1, to y;. To the extent that such actions distract from agent 1’s productive efforts,
they lead to lower total output. Indeed, if both agents can engage in such activities, even
the best equilibrium for the principal may yield no output.

More formally, given any known technology A, consider a technology A where each agent
has an additional zero-cost action a} so that A; = AYU{a}} for i = 1,2. The action a; results
deterministically in some outcome g* that has agent ¢ winning the tournament if agent —i
plays any action in A°, (i.e., y! > y*,). Think of @, as an activity that benefits agent i at
the other agent’s expense as discussed above. However, suppose that if both agents engage
in this activity, then nothing is produced: the profile a’ = (a},a}) leads to the outcome
yo = (0,0) with certainty. It is easy to verify that a is then a weakly dominant strategy for
each agent in the game I'(w, A), and a’ is the unique equilibrium—see Figure 1.

The principal’s profit given technology A is V(w, A) = v(yy) — b = —b, and thus the
tournament’s profit guarantee is negative: V(w) < V(w,A) < 0. The principal would be
better off offering the zero contract. In fact, as the unique equilibrium of I'(w, A) yields v
with certainty, the tournament’s profit guarantee would be nonpositive even if rewarding the
agents was costless to the principal (i.e., if his payoff was just v(y)).

To motivate our definition of interest alignment, it is useful to represent the above ar-

gument graphically. In Figure 2.a, the line segment between (b,0) and (0,b) is the convex

4Holmstrém (1982) showed that for some specific choices of technology, a tournament is the optimal
contract for a principal who knows the game played by the agents and designs the contract to maximize his
expected payoff. The (sub-)optimality of the tournament in this sense plays no role in the example.



(a) (b)

Figure 2. (a) The rank-order tournament. (b) A contract that aligns the agents’ interests.

hull of payment profiles W = co({(0,0), (b/2,b/2), (b,0)}). The new action a allows agent i
to force at zero cost his most preferred point in W (i.e., (0,b0) or (b,0)) if agent —i plays
any action in A%, As the expected payment profile Ep(,)[w(y)] under any mixed strategy
profile o lies somewhere in W, at least one agent thus has a profitable deviation if the other
agent’s strategy puts positive probability only on known actions. This rules out equilibria
with support in A°. Finally, o’ yields rewards w(yo) = (b/2,b/2) at the midpoint of the line
segment; this point is better for each agent than the other agent’s most preferred point, so
a’ is the unique equilibrium.

A rank-order tournament is special in that the agents’ interests are in direct conflict: for
any outcome distributions F,G € A(Y'), whenever Ep[w;(y)] > Eg[wi(y)] so that agent 1
prefers F' to G, we have Eq[wa(y)] > Er|wa(y)] so that agent 2 prefers G to F'. Graphically,
this is equivalent to W being a downward-sloping line segment as in Figure 2.a so that the
agents have opposite preferences over the points in W. However, it turns out that the same
perverse incentives that undermine the tournament can arise in contracts that induce far less
disagreement about the desirability of different outcome distributions. To completely rule
out such disagreement, W must consist of a (weakly) increasing line segment as in Figure 2.b.

This suggests the following definition.

Definition 1. A contract w aligns the agents’ interests if all payment profiles lie on the
same ray in RY, ie., if w(Y) C {w+dt:t € R, } for some w,d € RYL.

A contract that does not satisfy the definition is said to fail to align the agents’ interests.
The tournament in Figure 2.a is an example. Note that any contract for which the interior
of W is non-empty as in Figures 3 and 4 below fails to align the agents’ interests.

Definition 1 is equivalent to the requirement that for all agents ¢ and j and all outcome



distributions F,G € A(Y), Er[w;(y)] > Eg[w;i(y)] implies Er[w;(y)] > Eq[w;(y)]. That is,
no two agents disagree on the ranking of any pair of outcome distributions, albeit one of the
agent’s preference may be strict and the other’s weak (if the latter is globally indifferent).
The equivalence follows by noting that each point in the convex hull of payment profiles W
is the expected profile Ex[w(y)] for some F' € A(Y). Hence, the agents do not disagree on
the ranking of distributions precisely when W, and thus w(Y’), lies along a ray in RZ.

A second equivalent condition is the existence of outcomes 3§ and y with w(y) > w(y)
such that, for all y € Y, we have w(y) = (1 — Nw(y) + Aw(y) for some A € [0,1]. The
parameter A has a natural interpretation as a measure of the team’s performance on a scale
from zero to one. In this sense a contract that aligns the agents’ interests prescribes team-
based compensation.

Note that any constant contract satisfies Definition 1. For example, the zero contract
aligns the agents’ interests. It is also worth noting that the definition only concerns the
agents, and so in general it is silent on how the payments relate to the value of the outcome.
However, if the contract is also budget balanced, then interest alignment is equivalent to the

agents dividing the value v(y) amongst themselves according to some fixed shares.

Lemma 1. A contract w is budget balanced and aligns the agents’ interests if and only if

there exists a = (o, ..., ) € [0,1] such that 3, a; = 1 and w;(y) = cuv(y) for alli and y.

Proof. Clearly a contract of this form is budget balanced and aligns the agents’ interests.
For the converse, note that by budget balance we can take y = yo and § € argmax, v(y)
in the second equivalent condition above. Fixing y, we sum over ¢ and use budget balance
again to get v(y) = 5, wi(y) = (1= A) Sy wi(go) +A s wi(g) = (1= Ao (yo) + Av() = Ao(g).
Hence, A = v(y)/v(y). Noting that w;(yo) = 0 by limited liability and budget balance, we
thus have w;(y) = (w;(7)/v(¥))v(y), so taking o; = w;(7)/v(7) yields the result. O

Our first main result shows that any contract that fails to align the agents’ interests can

be easily improved upon regardless of whether we are interested in profits or total surplus.

Theorem 1. If a contract w fails to align the agents’ interests, then V(w) < V(0). If,
in addition, w is budget balanced, then S(w) < S(w') for every contract w' that is budget

balanced and aligns the agents’ interests.

That is, the guaranteed expected profit of a contract that fails to align the agents’ interests
is no better than that of the zero contract, generalizing the observation from the tournament
example. And if the contract is also budget balanced, then its guaranteed expected surplus

is weakly worse than the guarantee obtained by arbitrarily distributing shares across the

10



agents. These results imply, inter alia, that we can restrict attention to contracts that align
the agents’ interests when searching for optimal ones.

We prove Theorem 1 by finding for any contract that fails to align the agents’ interests
a (sequence of) game(s) with poor performance. The construction is more involved, but
the basic idea is the same as in the tournament example: misalignment erodes a contract’s
guaranteed performance because, if given the opportunity, agents will seek personal gain at
the expense of others, and this can lead to all equilibria being bad for the principal.

Before turning to the proof, we note that Theorem 1 can be strengthened under additional
assumptions about the known technology to show that interest alignment is necessary in
order to obtain any nontrivial performance guarantees.

We need the following definitions. An action profile a € A° satisfies full support if
F(a) # 6y, (where d,, is the Dirac measure at yo) implies that F'(a) has full support on
Y. It satisfies costly production if Epq)[v(y)] > 0 implies ¢;(a;) > 0 for some agent i. The
following corollary shows that if each known action profile satisfies either of these, the worst

case for any contract that fails to align the agents’ interests is that no value is created.

Corollary 1. Suppose every action profile in the known technology A° satisfies full support
or costly production. If a contract w fails to align the agents’ interests, then there exists a

sequence of technologies A™ O A° such that

sup F({y €Y :v(y) >0} o) —0.
ce&(w,A™)

The value of the team’s equilibrium output converges to zero as n — oo, so the principal’s
profit is nonpositive in the limit (and it would be so even if the principal didn’t have to pay
the agents’ compensation out of pocket). Moreover, the construction in the proof uses actions
whose costs are no lower than the costs of the known actions, implying that the equilibrium

total surplus converges to its theoretical lower bound. This establishes the following corollary.

Corollary 2. Under the assumptions of Corollary 1, if a contract w fails to align the agents’
interests, then V(w) <0 and S(w) < -3, &Y.

Corollary 2 shows that under relatively weak additional assumptions, contracts that fail
to align the agents’ interests are not only dominated in the sense of Theorem 1; they fail to
improve on the trivial bounds both for profits and total surplus. In fact, if the contract is

also budget balanced, an even weaker assumption will do.

Corollary 3. Suppose the known technology A° does not contain an action profile a such
that c(a) = 0 and supp F(a) C argmax, v(y). If a budget balanced contract w fails to align
the agents’ interests, then S(w) < — 3, Y.

11



That is, unless it is costless to produce the most valuable outcome(s) with certainty under
the known technology, any budget balanced contract that fails to align the agents’ interests
has only the trivial surplus guarantee.

Of course, the above results are silent on whether contracts that do align the agents’
interests can improve on the trivial guarantees. We address this question in Sections 4 and 5,

which consider, respectively, team-optimal and principal-optimal contracts.

3.1 Proof of Theorem 1

We present here the proof of Theorem 1, relegating those of the corollaries to the Appendix.

Throughout this section, fix a contract w that fails to align the agents’ interests. Let

Y* = ﬁ arg max w;(y).
i=1 YEY
By definition, any y € Y* simultaneously maximizes the payment to every agent. Graphi-
cally, this means that w(y) > z for every x € W. Note that Y* may well be empty.
There are three cases to consider, corresponding to the following three lemmas. The first
case is similar to the tournament in that the set Y* is empty, implying that there are (at

least) two agents whose most preferred points in W are distinct.

Lemma 2. If Y* = (), then there exists a sequence of technologies A™ O A°, with unique
equilibrium distributions F™ € A(Y') and min ¢;(A}) = & for all i, such that F™ — §,,.

The proof of this and that of the next lemma make use of the fact that the agents’ payoffs
depend on the outcome distribution F'(a) € A(Y') only through the expected payment profile
Er@|w(y)] € W. Conversely, any x € W is the expected payment profile for some F' € A(Y").
Therefore, when constructing a technology A, as far as the agents’ incentives are concerned,

it suffices to specify the expected payment profiles z(a) € W, a € A.

Proof Sketch. Without loss of generality, suppose arg max, wi (y) Narg max, ws(y) = (). The
proof in the Appendix uses technologies where only agents 1 and 2 have new actions, and
these actions jointly determine the outcome independently of the other agents’ actions, so
little is lost by assuming I = 2 here. For simplicity, we also let ¢! =0, i = 1,2.

The set W is now either a downward-sloping line segment as in Figure 2.a, or it has a
non-empty interior as in Figure 3. The first case is simpler and essentially reduces to the
tournament example; the general argument is better illustrated by focusing on Figure 3.

Consider a technology A where A; = A% U {a}, a?, a3} with ¢;(a¥) = 0 for all i and k (so

that each new action is a least-cost action) and where any a € A involving new actions is

12
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Figure 3. A contract that fails to align the agents’ interests with Y* = (). The gray area is
W, the convex hull of payment profiles. The payoff matrix represents the game I'(w, A) in the
proof sketch for Lemma 2.

assigned an expected payment profile as specified in the right panel of Figure 3.
Note that z* is (one of) agent i’s most preferred point(s) in . Such points 2! and 2% are

necessarily distinct when arg max, wi(y) Narg max, wy(y) = 0. Taking 2* to be the expected
1

} and the other agent plays any a_; € A%, eliminates

payment profile if agent i plays a
equilibria in known actions (i.e., with support in A%): in any such equilibrium some agent i
would necessarily get less than 2%, and hence he could profitably deviate to a;.

If w(yy) was in the dotted rectangle in Figure 3, we could then set z(a},ad) = w(yo)
with no need for actions a? and a?. Then (a},a}) would be the unique equilibrium of the
game I'(w, (AU {al}) x (AU {al})), similarly to the tournament example. However, when
w(yo) lies outside the rectangle, as depicted here, this no longer works as at least one agent
i prefers the other agent’s most preferred point 2% to w(yy). (They both do in Figure 3.)

Instead, we choose a sequence (2°,...,2%) in W as in Figure 3. That is, each agent i

0

prefers z° to 27, and given any two adjacent elements of the sequence (z°, ..., x), agent 1
strictly prefers the odd one and agent 2 the even one. The last element, 2%, is chosen in the
interior of W so that we can populate the remaining cells in the payoff matrix in Figure 3
with points u® < u! < u? such that u! < 2% for all [, k. (u’ are not shown in the left panel;
they can be chosen in the gap between z* and w(yp) if 23 is close enough to z3.)

When the row(s) and column(s) corresponding to A} and A have been eliminated—they
are not necessarily strictly dominated, but no agent will play them with positive probabil-
ity in any equilibrium—the remaining matrix is by construction dominance solvable, with
(a3, a3) the unique outcome. Letting * — w(yo) thus yields a sequence of technologies whose
unique equilibrium expected payment profiles converge to w(yp), and thus the distributions

generating them can be taken to converge to d,, as desired.
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Note that the number of steps in the path (z°,...,2%), and hence the number of actions
in the technology A, is dictated by the shape of W, with a narrower set requiring more steps.

However, any points x and 2’ < z in the interior of W can be connected by such a path. [J

If Y* # (), the projection of W to some pair of agents’ payments is of the form depicted
in Figure 4. (The interior (relative to R3) is non-empty, since otherwise w would align the
agents’ interests.) There no longer exist distinct most preferred points for the agents that
got the construction in the proof of Lemma 2 started. However, if no known zero-cost action
profile maps deterministically to the point z in Figure 4, then we can still eliminate equilibria

involving profiles in A° and drive the outcome to 3, with essentially the same construction.

Lemma 3. Let Y* # (. Suppose that, for all a € A°, supp F'(a) C Y* implies c(a) # 0.
Then there exists a sequence of technologies A™ O A°, with unique equilibrium distributions
Fr e A(Y), such that min¢;(A}) — & for all i and F™ — 6y,.

Proof Sketch. We again assume for simplicity that [ =2 and ¢ =0, 1 = 1, 2.

Consider a technology A that assigns one new zero-cost action a} to each agent so that
A; = AY U {a}}. Choose 2°, 2!, 2% as in Figure 4, i.e., 2° is in the interior of W and
28 > 29 > 27", Let the expected payment profile be 2* if only agent i plays the new action
al; let it be 20 if both agents play the new action.

The profile a' is an equilibrium of the game TI'(w, A), because a; is the unique best-
response to al; by construction. In fact, for 2% close enough to z, it is the only equilibrium.

To see this, choose x° close enough to z such that
2 + 29 > Epgy[wi(y)] — ci(a1) + Ep@)[wa(y)] — ca(az) Va € A°.

This is possible, because by assumption every a € A? with Ep(,[w(y)] = z has some agent
playing a costly action, and A° is finite. The inequality implies that for all a € A°, we have
2t > x) > Epy|w;i(y)] — ¢;(a;) for some agent ¢, who thus can profitably deviate to a;. This
rules out other pure-strategy equilibria. With some more work one can establish a! as the
unique mixed-strategy equilibrium as well.

Having escaped the point z, we can now add actions {a?,...,a’} to the technology A

and use the construction in the proof of Lemma 2 to drive the equilibrium outcome to yo. [

Finally, there remains the possibility that some known action profile a* € A° ensures
that the outcome is in Y* at no cost to the agents. Then a* is an equilibrium for any
technology A D A°, and hence the contract w can potentially give a nontrivial profit or

surplus guarantee. But a* is also an equilibrium under the zero contract as well as under
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Figure 4. A contract that fails to align the agents’ interests with Y™* = ().

any budget balanced contract that aligns the agents’ interests; such contracts can be shown

to improve upon w. More precisely, we have the following lemma.

Lemma 4. Suppose there erists a € A° such that supp F(a) C Y* and c¢(a) = 0. Then
V(w) < V(0). Moreover, if w is budget balanced, then S(w) < S(w') for every contract w'

that is budget balanced and aligns the agents’ interests.

We note for future reference that this lemma holds also for any contract w that aligns

the agents’ interests, different from the zero contract.

Proof. Let a* € A° satisfy the assumption in the lemma. Consider a technology A where
A; = AV U {dl} and ¢;(al) = 0 for all 3. Let F(a},a_;) = F(a*) for all a_; € A_;. Then each
agent can ensure his highest feasible payoff max w;(Y’) by playing a}. This implies that any
equilibrium o € £(w, A) can assign positive probability only to a such that c¢(a) = 0 and
supp F'(a) C Y*. Hence,

Viw, A Er — i
(U} ) a€A:c(a)=0 grllg)s(upp F(a)CY™* F(a) [U (y) zz: v (y)}
= E — ; E < .
4€AY c(a)=0 and supp Fla)Cy* (D [v(y) ;wz(y)} = ae A0 aay=o T@ )] = V()

Above, the second line follows from the first one, since the set of distributions associated
with zero-cost profiles is the same in A and A°; the strict inequality follows, since w;(y) > 0
for y € Y* for some agent ¢ because w is different from the zero contract; the last inequality
follows since every a € A° with c¢(a) = 0 is an equilibrium under the zero contract given any
A DAY Thus, V(w) < V(w,A) < V(0), establishing the first part of the lemma.

For the second part, suppose that w is budget balanced so that >, w;(y) = v(y) for
all y. Then Y™ C argmax,y >; wi(y) = arg max, .y v(y). By assumption, there thus exists
a* € A° such th