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Abstract

I study a model of coalitional bargaining in stationary markets featuring strategic

choice of bargaining partners. The set of coalitions that form in the unique stationary

equilibrium has a tier structure, with payoffs determined from the top tier down: Shocks

propagate from higher to lower tiers, but not vice versa. In the limit as bargaining fric-

tions vanish, the equilibrium payoff profile is the only one that gives each player her

maximum Nash bargaining payoff—over all coalitions—subject to the other players’ par-

ticipation constraints. A player is made better off when she becomes less risk averse or

the coalitions that she belongs to become more productive. But she may be made worse

off when other players become more risk averse or some coalitions that she is not part

of become less productive. Some players may be worse off after a uniform increase in

the productivity of each coalition. In the special case of bilateral matching markets, in-

dependent tier structures—or submarkets—emerge in equilibrium, each with exactly one

top-tier match: Shocks propagate within submarkets but not across them.

1 Introduction

Many economic activities involve coalitions of individuals who cooperate to achieve goals

that they could not achieve separately. Different coalitions typically include similar individ-

uals, which creates interconnections among them: For example, similar college graduates

join investing, consulting and non-profit organizations, which links the wages paid by these

companies. This article seeks to understand the nature of these interconnections, and their

implications for how microeconomic shocks propagate through the economy.
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This article is organized as follows: section 2 describes the model, section 3 characterizes

the essentially-unique stationary equilibrium, and section 4 describes the tier structure and

comparative statics of this equilibrium. Finally, section 5 puts this article in the context of

the related literature, and section 6 concludes.

2 Model

2.1 Primitives

The finite set of players is denoted by N . The output function y : 2N → R≥0 specifies the

output that each coalition of players can produce. Output is perfectly divisible (e.g. money).

Each player i has vN-M utility function ui that only depends on the share of output that she

receives, and is normalized so that ui (y(i)) = 0.

2.2 The Game Γ

Consider the following infinite-horizon bargaining game Γ. At the beginning of each period

t = 0, 1, . . . , one player is selected uniformly at random to be the proposer. The proposer

chooses one coalition S that she is a member of, and proposes a split of the output y(S).

The members in S respond sequentially in (a pre-specified) order until one of them rejects

or all of them accept. In the former case, no trade occurs this period and all players stay in

the market for the next period. In the latter case, the coalition S forms, its members exit the

market with the agreed shares, and are immediately replaced by replicas. Formally, there

exists a sequence i0, i1, . . . , iτ , . . . of players of type i ∈ N . The game starts with player set

{i0}i∈N . For any τ ≥ 0 and any i ∈ N , if player iτ exits the game, player iτ+1 immediately

replaces her.

At the end of each period, the market breaks down with probability 0 < q < 1, in which

case the game ends, and each player i that has not yet formed a coalition obtains y(i). All

players have common knowledge of the game and perfect information about all the events

preceding any of their decision nodes in the game.

2



2.3 Histories, Strategies and Equilibrium

Let T be the period at which breakdown occurs. For each period t ≤ T , let ht be a history of

the game up to (but not including) period t, which is a sequence of t pairs of proposers and

coalitions proposed—with corresponding proposals and responses.

There are two types of histories at which some player must take an action. First, (ht, i)

consists of ht followed by player i being selected to be the proposer in period t. Second,

(ht, i → S, z, j) consists of (ht, i) followed by player i proposing that coalition S shares its

output according to the profile z ∈ RS
≥0, and all players preceding j ∈ S in the response

order having accepted.

A strategy σi for player i specifies, for all possible histories ht, the offer σi(ht, i) that

she makes following history (ht, i) and her response σi(ht, j → S, z, i) following history

(ht, j → S, z, i). I allow for mixed strategies, so σi(ht, i) and σi(ht, j → S, z, i) are probability

distributions over 2N × RN
≥0 and {Yes, No}, respectively.

The strategy profile (σi)i∈N is a stationary (Markovian-perfect) equilibrium of the game Γ if it

induces a Nash equilibrium in the subgame following every history, and if no player’s strat-

egy conditions behavior on the history of the game except—in the case of a response—on

the going proposal and the identity of the proposer. I often refer to a stationary equilibrium

simply as an equilibrium.

3 Essentially-Unique Equilibrium

3.1 Equilibrium Threshold Profile

Proposition 3.1 shows that different stationary equilibria of the game Γ differ only in non-

essential ways.

Proposition 3.1. Each player i has a threshold ti such that, in every stationary equilibrium of Γ,

1. she always accepts offers that give her strictly more than ti, and

2. she always rejects offers that give her strictly less than ti.

Note 3.1. The profile t determines the equilibrium strategy of each non-dummy player—that

is, each player i with ti > y(i). Every period in which a non-dummy player i is selected to

be the proposer, she proposes that one of her preferred coalitions—that is, one of the coalitions
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S 3 i with biggest net output y(S) −
∑

j∈S−i tj—forms, and she offers each of its members

j 6= i the amount tj , all of whom accept.1

Proof. Fix a stationary equilibrium of Γ. Let vi denote player i’s expected utility in any period

conditional on not trading in that period, and let wi denote player i’s expected utility when

she is the proposer. Let xi and pi(xi) be such that vi = ui(xi) and wi = ui(pi(xi)).

We have that2

(1) ui(xi) = χui(pi(xi)) where χ :=
1− q

1 + (n− 1)q

The maximum amount of output that player i can obtain when she is the proposer is

(2) max
C⊆N :i∈C

(
y(C)−

∑
j∈C−i

xj

)
.

since each player j rejects every offer that gives her strictly less than xj . Player i can secure

an amount of output arbitrarily close to (2) when she is the proposer, since each player j

accepts every offer that gives her strictly more than a share xj of output.

Together, these observations imply that

(3) pi(xi) = max
C⊆N :i∈C

(
y(C)−

∑
j∈C−i

xj

)
for all i ∈ N,

The proof now follows from the fact that, by Proposition 3.2 and Proposition 3.3, there is a

unique solution to the system (3); player i’s equilibrium threshold ti is xi.

3.2 Rubinstein Bargaining under Participation Constraints (RBPC)

Definition 3.2 defines an RBPC as a profile in Rn that is a fixed point of a natural map that

is based on the traditional theory of bargaining. Proposition 3.2 shows that a profile satis-

fies Equation 3—and is hence an equilibrium threshold profile in Γ—if and only if it is an
1Even though each player i is indifferent between accepting and rejecting an offer that gives her an amount

ti, the notion of equilibrium requires that such offers are always accepted; otherwise, the proposer has no best

response.

A dummy player i does not belong to any coalition S with strictly positive net output y(S) −
∑

j∈S tj ,

so she can make unacceptable offers in equilibrium. She can also propose that one of the coalitions S with

y(S) =
∑

j∈S tj forms (for example, S = {i}), offering tj to each player j ∈ S, but these offers need not be

accepted in equilibrium.
2To see this, note that vi = qui(y(i)) + (1 − q)

(
1
nwi +

n−1
n vi

)
= (1 − q)

(
1
nwi +

n−1
n vi

)
since equilibrium

offers leave the responders indifferent between accepting and rejecting them, and ui(y(i)) is normalized to 0.

Hence, vi = χwi, with χ as defined in (1).
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RBPC. This characterization is useful for two reasons. First, it gives us a way to think of the

equilibrium threshold profile as a fixed point to an economically meaningful map. Second,

as illustrated in subsection 3.3 below, the RBPC has a nice structure that can be easily com-

puted, so this characterization allows us to understand the determinants of which coalitions

form and how the resulting output is shared in equilibrium.

Definition 3.1. For each profile x ∈ RN
≥0, each coalition C and each player i ∈ C, let i’s

x-(Rubinstein) share in C be the ith element of the profile s ∈ RC
≥0 that satisfies

(4)
pi(si) = y(C)−

∑
j∈C−i sj

pk(sk) = max
[
pk(xk), y(C)−

∑
j∈C−k sj

]
∀k ∈ C\{i}

where the function pi is defined in Equation 1. Player i’s θ-best share is her maximum x-share

over all coalitions that include her, and her x-best coalitions are those coalitions C for which

her x-share in C is her x-best share.

Note 3.2. Lemma A.1 shows that there is indeed a unique profile s ∈ RC
≥0 that satisfies (4).

Note 3.3. Player i’s x-share in C can be interpreted as her equilibrium threshold in a model

of Rubinstein bargaining in coalition C subject to the other player’s participation constraints,

given by x. Indeed, player i’s x-share in C is her equilibrium threshold in the modification

of the game Γ in which the output that each coalition D 6= C is reduced to 0, and every

j ∈ C − i is required to reject all offers that give her strictly less than xj .

Note 3.4. Player i’s x-share si in C satisfies pi(si) ≤ y(C)−
∑

j∈C−i
xj .

Note 3.5. The profile s ∈ RC
≥0 that solves (4) satisfies pi(si) − si = pj(sj) − sj for all j with

sj > xj .

Note 3.6. I say that player j’s participation constraint in the computation of player i’s x-share

in C binds when the profile s ∈ RC
≥0 that satisfies (4) is such that sj = xj .

Definition 3.2. An RBPC is a profile x ∈ RN such that, ∀i ∈ N , xi is i’s x-best share.

Proposition 3.2. A profile x ∈ RN is an RBPC if and only if it satisfies system (3).

Proof. Necessity: Let x ∈ RN be an RBPC, and let i ∈ N . By Note 3.4, we have that

pi(xi) ≤ max
C⊆N :i∈C

(
y(C)−

∑
j∈C−i

xj

)
for all i ∈ N.

It only remains to show that there exists C such that pi(xi) ≥ y(C) −
∑

j∈C−i xj. Let C be i’s

x-best coalition, and suppose for contradiction that pi(xi) < y(C) −
∑

j∈C−i xj. This implies
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that the profile s ∈ RC
≥0 that solves system (4) has si = xi, sj ≥ xj for all j ∈ C− i, and sl > xl

for some l ∈ C − i. Hence, the same profile s solves system (4) after interchanging the roles

of l and i in this system, a contradiction of the assumption that xl is l’s x-best share.

Sufficiency: Suppose that x ∈ RN is such that system (3) holds. Let i ∈ N and C ⊆ N be

such that pi(xi) = y(C) −
∑

j∈C−i xj. First, note that i’s x-share yi in any coalition D 6= C

satisfies yi ≤ xi, since, using Note 3.4,

pi(yi) ≤ y(D)−
∑
j∈D−i

xj ≤ y(C)−
∑
j∈C−i

xj = pi(xi)

Hence, again using Note 3.4, it is enough to show that i’s x-share in C is bounded below by

xi. Let s ∈ RC
≥0 be the profile that solves system (4). Suppose for contradiction that si < xi.

Then, pi(si) < y(C)−
∑

j∈C−i xj , which implies that sj > xj for some j ∈ C. Using Note 3.5,

the fact that pi(zi)− zi is increasing in zi, and that system (3) holds, we get

pj(sj)− sj = pi(si)− si < pi(xi)− xi = y(C)−
∑
j∈C

xj ≤ pj(xj)− xj

which implies that sj < xj , a contradiction.

3.3 Computation of the RBPC

Proposition 3.3 shows that algorithmA defined in Definition 3.3 computes the unique RBPC.

Definition 3.3 (Algorithm A). Let x0 = 0 ∈ RN and X0 = ∅. Proceed inductively as follows:

In step k ≥ 1, let Xk be the union of Xk−1 and the set of all players in N − Xk−1 that

are members of an xk−1-perfect coalition—that is, an xk−1-best coalition of all its members in

N − Xk−1. For each such player i, let xki be her xk−1-best share; for each other player j, let

xkj = xk−1j . End in the first step K for which XK = XK−1, and let χ := xK .

Note 3.7. X0 ⊂ X1 ⊂ · · · ⊂ XK ⊆ N , so algorithm A ends in at most |N | steps. Its run-

ning time is bounded above by |N | times m, where m denotes the number of productive

coalitions. When every coalition is productive, the running time of the algorithm grows

exponentially with the number of players—as does the number of different coalitions.

Proposition 3.3. The profile χ defined by algorithm A is the unique RBPC.

Proof. I prove by induction in k that Xk is a strict superset of Xk−1 unless Xk−1 = N (so

XK = N at the step K at which algorithm A ends) and that every RBPC gives xki to each
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player i ∈ Xk (so χ is the only possible RBPC). The fact that χ is an RBPC then follows from

the observation that, for every k ≤ K and for each player i in Xk, xki is i’s χ-best share.3

Let k = 1, 2 . . . be such that Xk−1 6= N , and suppose that every RBPC gives xk−1i to each

player i ∈ Xk−1 (note that this induction hypothesis is vacuously true when k = 1, so there’s

no need to prove the base step separately). By Lemma 3.4 below, Xk is a strict superset of

Xk−1.

It only remains to prove that every RBPC gives each of the members of an xk−1-perfect

coalition her xk−1-best payoff. Let x be an RBPC (and hence, by the induction hypothesis,

xi = xk−1i for all i ∈ Xk−1), let C be an xk−1-perfect coalition, and suppose for contradiction

that, for some i in C −Xk−1, xi is strictly smaller than i’s xk−1-share in C.4 This implies that

i’s x-share in C is strictly smaller than i’s xk−1-share in C, which in turn implies that, for

some j in C −Xk−1, xj is strictly bigger than j’s xk−1-share in C (that is, j’s xk−1-best share)

which contradicts Lemma 3.5.

Lemma 3.4. For each k for which Xk−1 6= N , there is at least one xk-perfect coalition.

Proof. Let k be such that Xk−1 6= N . Denoting, for each coalition C, player i’s xk−1-share in

C by xCi , by definition we have that pi(xCi ) − xCi is the same for every player i ∈ C ∩ Xk−1;

denote by µ(C) this common value. A coalition C with maximum µ(C) is an xk−1-perfect

coalition, since, by the concavity of ui, pi(xi))− xi is increasing in xi.

Lemma 3.5. For each k = 0, 1, . . . , and for all x ∈ RN
≥0 such that xi = xk−1i when i ∈ Xk−1, each

player’s xk−1-best share is an upper bound on her x-best share.

Proof. Let k = 0, 1, . . . , and let x ∈ RN
≥0 be such that xi = xk−1i when i ∈ Xk−1. Let C ⊆ N

and i ∈ C. Player i’s x-share in C is equal to her xk−1-share in C if none of the participation

constraints in system (4) of players in C −Xk−1 bind, and smaller than that otherwise.
3To see this, let i be in Xk − Xk−1, and let C be i’s xk−1-best coalition. On the one hand, xki is a lower

bound on i’s χ-best share because her χ-share in C is xki . On the other hand, xki is an upper bound on i’s χ-best

share because i’s xl-share in any coalition C is not increasing in l (because the set of relevant constraints in the

computation of xl-shares only expands with l).
4The alternative case in which xi is strictly larger than i’s xk−1-share in C immediately contradicts

Lemma 3.5.
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3.4 Nash Bargaining under Participation Constraints

Definition 3.4. For each x ∈ RN
≥0, each coalition C and each player i ∈ C, let i’s x-Nash share

in C be5

(5)

Feasibility:
∑

i∈C si ≤ y(C),

argmax
s∈RC

≥0

∏
i∈C

ui(si) s.t.

Participation: ∀j ∈ C − i, sj ≥ xj.

when (4) is well defined, and 0 otherwise. Player i’s x-Nash best share is her maximum x-Nash

share over all coalitions that include her, and her x-Nash best coalitions are those coalitions C

for which her x-Nash share in C is her x-Nash best share.

Definition 3.5. An NBPC is a profile θ ∈ RN
≥0 such that, ∀i ∈ N , θi is i’s θ-Nash best share.

Corollary 3.6. As the breakdown probability q goes to 0, the RBPC converges to the unique NBPC.

Proof. The fact that there exists a unique NBPC follows from the argument analogous to

that in Proposition 3.3 when we use algorithm A (Definition 3.3) after replacing—in its

definition—the Rubinstein shares (Definition 3.1) with the Nash shares (Definition 3.4).6

The fact that the RBPC converges to the NBPC follows from the observation that, for each

profile θ, each coalition C and each player i ∈ C, i’s θ-Rubinstein share in C converges to

i’s θ-Nash share in C. This is only a slight generalization of the observation—first made by

Binmore (1987)—that i’s 0-Rubinstein share in C converges to i’s 0-Nash share in C.

4 Tier Structure and Comparative Statics

4.1 Tier Structure

An important property of the equilibrium threshold profile t of Γ that comes out directly

from the characterization of the RBPC (Proposition 3.3) is that both the players and the coali-

tions that form in equilibrium can be organized into tiers, as follows:
5Without the participation constraints, (5) is the definition of the Nash Bargaining solution, where player

i’s disagreement (or threat) point is ui(y(i)) = 0.
6The only part of the argument that is different in this limit is the proof of the statement analogous to

Lemma 3.4. The argument in this case is essentially the same as that in Pycia (2012, pages 330-331): Denoting,

for each coalition C, player i’s xk−1-Nash share by xCi , we have that ui(xCi )/u
′
i(x

C
i ) is the same for every player

i ∈ C ∩ Xk−1; denote by χ(C) this common value. A coalition C with maximum χ(C) is an xk−1-perfect

coalition, since each player’s xk−1-Nash share in C is increasing in χ(C).
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The tier-1 coalitions are those that are a preferred coalition of all its members. The tier-1

players are those that are members of a tier-1 coalition. Proceeding inductively, after having

defined tiers 1, 2, . . . , k − 1, a coalition is in tier-k if and only if it contains at least one player

in tier k − 1 and is a preferred coalition of all its members who are not in any of the tiers

above (1, 2, . . . , k − 1). Tier-k players are those that are in a tier-k coalition and are not in any

tier-k′ coalition, for any k′ < k.

4.2 Comparative Statics

4.2.1 Marginal Shocks

The tier structure of the equilibrium implies that—in the generic case in which each player

has a unique preferred coalition7—a player’s equilibrium threshold is not affected by marginal

shocks that only hit coalitions and players in lower tiers.

A marginal increase in the output of a coalition in tier k can only decrease the equilibrium

payoffs of players in tier k + 1, but has ambiguous effects on players in tiers k′ > k + 1.

Moreover, a uniform increase of ∆ > 0 units in the output of each coalition can decrease

some players equilibrium payoffs, because the sum of the relevant participation constraints

in a coalition can increase by more than ∆.

In the limit as the breakdown probability vanishes, Corollary 3.6 implies that the output in

each coalition that forms in equilibrium is shared according to the Nash bargaining solution

subject to the participation constraint of the players in higher tiers.

In the special case of bilateral matching markets, we can visualize the equilibrium by de-

picting the preferred-neighbor network, which has a link from player i to player j if player

i makes offers to player j in equilibrium. Combining the observation that, generically,

each player has exactly one preferred neighbor with the fact that each component of the

preferred-neighbor network—or submarket—has at least two mutually-preferred neighbors,

we conclude that, generically, only one pair of players in each submarket are in the top tier.

In other words, independent tier structures—one for each submarket—emerge in equilib-

rium, each with exactly one top tier match. Marginal shocks propagate within submarkets,

but not across them, and marginal shocks to the preferences of the top-tier players or the

productivity of the top-tier match of a submarket affect all terms of trade in their submarket.

7Equivalently, letting x be the RBPC, the generic case in which each player has a unique x-best coalition.
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4.2.2 Beyond Marginal Shocks

Definition 4.1. Player i is more risk averse than player j if there exists an increasing and

concave function g such that ui = g ◦ uj .

Proposition 4.1. Player i’s equilibrium threshold is nondecreasing in y(C) for all C 3 i, and non-

increasing in her own risk aversion.

Proof. Let C ⊆ N and i ∈ C. An increase in y(C) cannot generate more stringent partici-

pation constraints at the step of algorithm A at which player i’s RBPC share is defined. It

follows that player i’s RBPC share can only increase after such increase.

Even though an increase in i’s risk aversion can generate less stringent participation con-

straints at the step of algorithmA at which player i’s RBPC share is defined, player i’s RBPC

share cannot increase after such a change. To see this, let C be i’s xk-best coalition at the step

k in which her post-shock RBPC share is defined. Note that the only relevant less stringent

participation constraint can be that of a player j ∈ C whose pre-shock RBPC share is de-

fined at some step before i’s pre-shock RBPC is defined, and whose post-shock RBPC share

is defined at step k. But this implies that j’s xk-best share is not smaller than j’s pre-shock

RBPC share, which together with the fact that pi(xi)− xi is increasing in both xi and i’s risk

aversion, implies that player i’s RBPC share cannot increase after such shock.

5 Related Literature

This paper contributes to the literature on bargaining in stationary markets started by Ru-

binstein and Wolinsky (1985) and that includes Gale (1987), De Fraja and Sakovics (2001),

Manea (2011), Nguyen (2015) and Polanski and Vega-Redondo (forthcoming).

The three main differences with respect to Manea (2011) are that he uses a random-match

bargaining protocol (where in each period, bargaining is restricted to occur among two play-

ers that are matched at random), that he assumes that each pair of players can generate the

same surplus, and that he focuses on the limit as bargaining frictions vanish. In contrast, I

use a strategic-match bargaining protocol (where in each period, one randomly selected player

can choose whom to bargain with), I allow trade between different players to generate dif-

ferent surpluses, and I study both the case of arbitrary bargaining frictions and the limit as

bargaining frictions vanish.

The model that is closest to the one I study here is that of Nguyen (2015), which is a

generalization of the model in Manea (2011) to a setup in which coalitions of arbitrary size
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can form: The two main differences between the model in Nguyen (2015) and the one I study

here is that I don’t restrict attention to the case of transferable utility, and that I allow players

to strategically choose which coalitions to make offers to.

The structure of the equilibrium of the game Γ is similar to the no-delay equilibrium

of a similar non-stationary model characterized by Chatterjee et al. (1993) in the case of

transferable utility (see also Ray, 2007). This is natural, since in a stationary market no player

can benefit by delaying trade, and players have a degree of bargaining power similar to that

conferred by the rejector-proposes protocol of Chatterjee et al. (1993). From this perspective,

this article presents a characterization of the no-delay equilibrium of the model analogous

to the one in Chatterjee et al. (1993) in a setting in which utility is not necessarily perfectly

transferable.

The equilibrium payoff profile of Γ in the limit as bargaining frictions vanish coincides

with the Nash Bargaining solution under Participation Constraints: The unique payoff profile

that gives each player her maximum Nash Bargaining payoff—over all coalitions—subject

to the participation constraints of the other players.

The NBPC can be regarded as a cooperative solution concept for the stationary environ-

ment considered in this paper. A natural way to build such a solution concept is to assume

that output within each coalition is shared according to a fixed sharing rule; see for example

Farrell and Scotchmer (1988), Banerjee et al. (2001) and Pycia (2012), who study the condi-

tions under which different such fixed rules lead to stable outcomes. However, this does not

allow coalitions to make exceptions in their sharing rules in order to meet the participation

constraints of their members. This leads to well-known holdup problems (see e.g. Pycia,

2012): Players with strong bargaining positions cannot commit to adequately reward others,

making it difficult for them to find coalitional partners.

To overcome these problems, the sharing rule in each coalition must be allowed to de-

pend on the sharing rule in other teams. In particular, the problem has to be solved for all

possible coalitions simultaneously, in such a way that the surplus in each coalition is shared

respecting the endogenous participation constraints of its members. But this has its own

challenges. Most importantly, participation constraints can lose connection with the eco-

nomic fundamentals. For example, a player can get a certain share of output in coalition C1

because she gets it in coalition C2, when the only reason that she gets it in coalition C2 is

because she gets it in coalition C1. Hence, a satisfactory solution must impose additional re-

quirements that rule out this type of circular reasoning in the determination of participation

constraints.
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The NBPC imposes a credibility requirement on participation constraints: Each player

must be able to justify her payoff as being her Nash bargaining payoff in some coalition

subject to the participation constraints of the other players. Similar credibility requirements

play important roles throughout game theory: For example, subgame perfection in the theory

of non-cooperative games rules out threats that cannot be justified by equilibrium play, and

farsighted stability in the theory of cooperative games rules out blocks by coalitions that can-

not be justified with stable allocations; see for example Dutta and Ray (1989), Chwe (1994),

and Ray and Vohra (2014, 2015).

Other solutions based on Nash Bargaining under core-like constraints—albeit in a frame-

work in which at most one coalition can form and utility is perfectly transferable—include

Serrano and Shimomura (1998), Okada (2010), Compte and Jehiel (2010) and Burguet and

Caminal (2016). The NBPC is closest in spirit to the SCOOP of Burguet and Caminal (2016):

The main difference—on top of the two just mentioned—is that the SCOOP requires that

disagreement (or threat) points in each coalition reflect the payoffs that players can obtain in

other coalitions, whereas outside options in the NBPC act instead as participation constraints;

that is, as lower bounds on players’ payoffs. (see Binmore et al. (1986) on the importance of

this distinction).

6 Conclusion

The classical theory of bargaining, as exemplified by the Nash Bargaining solution (Nash,

1950) and Rubinstein’s alternating offers model (Rubinstein, 1982), explores the determi-

nants of how surplus is shared in the absence of market forces. As expressed by Abreu and

Gul (2000, page 86):

In its purest form, [bargaining theory] is precisely about explaining a division of

residual surplus that remains after one has accounted for market forces, outside

options, and so on.

But, ultimately, market forces and outside options come from somewhere, so an important

challenge for bargaining theory it to illuminate the source of these forces and their interac-

tion with the pure bargaining problem.8

In this article, I characterize the equilibrium of a new model of coalitional bargaining in

8Chatterjee et al. (1993) is the pioneer in this regard. More recent contributions along these lines include

Manea (2011), and Elliott and Nava (2016), among many others.
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stationary markets. This characterization provides insight into the source of each player’s

bargaining power: The set of coalitions that form in equilibrium has a tier structure; output

in each coalition is shared as is standard Rubinstein bargaining(“pure bargaining”) subject to

the participation constraints of players that are members of coalitions in higher tiers (“mar-

ket forces”). This tier structure illuminates each player’s source of bargaining power, and

how productivity and preference shocks propagate through the market.

The equilibrium payoff profile in the limit as bargaining frictions vanish coincide with

the Nash Bargaining solution under Participation Constraints: The unique payoff profile that

gives each player her maximum Nash bargaining payoff—over all coalitions—subject to

the participation constraint of the other players. I leave the investigation of the axiomatic

properties of the NBPC for future research.
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A Supplement to section 3

Lemma A.1. For each profile x ∈ RN
≥0, each coalition C and each player i ∈ C, there is a unique

profile s ∈ RC
≥0 that satisfies system (4).

Proof. Suppose for contradiction that that there are two solutions s and s′ to Equation 4.

Define K to be the set of all indices in which the solutions differ; that is,

K := {i ∈ N | si 6= s′i}.

Pick the index k ∈ K for which pk(sk)− sk is highest, and suppose without loss of generality

that pk(sk)− sk is an upper bound on {pk(s′k)− s′k}i∈K .

Since, by the concavity of ui, pi(si) − si is increasing in si, we also have that sk > s′k. We

have that

(6) pk(sk) = y(C)−
∑
j∈C−k

sj

and that9

(7) pj(sj)− sj ≥ pk(sk)− sk for all j ∈ C

So, given our choice of k ∈ K, for all j ∈ C we have that pj(sj) − sj ≥ pj(s
′
j) − s′j or, using

again that pj(sj)− sj is increasing in sj , that sj ≥ s′j . But then, Equation 6 combined with the

fact that, by definition,

pk(s
′
k) ≥ y(C)−

∑
j∈C−k

s′j

implies that s′k ≥ sk, a contradiction.

9To see this, note that, for all j ∈ C − i,

pj(sj) ≥ y(C)−
∑

i∈C−j
si

Adding −sj to both sides of this inequality and using Equation 6 gives Equation 7.

14



References

ABREU, D. AND F. GUL (2000): “Bargaining and reputation,” Econometrica, 68, 85–117.
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