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Abstract

We study the design of approval rules when experimentation must be delegated

to an agent with misaligned preferences with an application to FDA decision rules.

Consider a dynamic learning relationship in which an agent experiments on a project,

submitting the outcomes without concealment or distortion to a principal who must

decide to approve or reject the project. The agent bears the cost of experimentation,

and while she cannot approve, she can unilaterally walk away from the relationship

at any time. With such interim participation constraints, the approval threshold is

no longer time-stationary. We characterize the history-dependent optimal rule and

show that, conditional on continued experimentation, the approval threshold moves

downward sporadically. Specifically, the threshold in force at any time depends on

the history of play only via the minimum of the belief history and the current be-

lief regarding project success. While we derive this outcome as a full commitment

solution, it can be implemented as an equilibrium even in the absence of regulator

commitment. When the agent has private information about the state, these results

change along one significant dimension: an agent can choose to receive fast-track

approval in the form of an initially depressed approval threshold. On expiry of the

fast track, however, the threshold jumps up, in contrast to the previous exercise.

Thereafter, the monotone dynamics described earlier reappear. Our results help us

understand how approval rules optimally change over time and provide a theoretical

foundation for both fast-track mechanisms and the possible loosening of later thresh-

olds on longer experimentation paths. They also have empirical implications that

run counter to predictions from single-decision maker problems. Using data on FDA

approval decisions, we look at the qualitative and quantitative features of fast track

programs, and uncover a new relationship between Type I error rates and the length

of clinical trials. The agency considerations in our model provide a explanation for

these relationships.
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1 Introduction

In many real world economic situations, decision makers face a trade-off between making

a decision quickly and accurately. For example, when deciding whether or not to approve

a drug, the FDA can mandate that companies conduct clinical trials to determine the

efficacy and any side-effects the drug may have. In the approval process the FDA must

trade off the need for haste (in order to alleviate the suffering of those currently afflicted)

and the need for patience (so as to gather more information in order to prevent the use of

harmful drugs by the public). A key element of this environment is that the information

is not only generated by nature but is controlled by an agent (the drug company) with

incentives that are not aligned with that of the FDA: the drug companies which perform

the clinical trials bear the cost of experimentation and may have different preferences

on when to approve the drug. Thus the approval rule used by the FDA will determine

how much experimentation the company is willing to perform. Additionally, the drug

companies may possess private information which the FDA must elicit. For example,

a company may spend a long time developing a drug prior to the start of a clinical

trial and will posses a more informed prior about whether the drug is good or not.

The misalignment of incentives will prevent straightforward elicitation: the company,

which wants the drug to be approved more quickly, may have an incentive to exaggerate

their optimism about the drug’s quality. Understanding these agency considerations is

important for determining the best approval rule.

In this paper, we revisit the canonical Wald hypothesis-testing problem with the new

feature that approval and experimentation are controlled by separate players. We look

at how a regulator can design stopping and decision rules (without monetary transfers)

which incentivize an agent to perform experimentation and truthfully reveal any private

information they have about the state of nature. The players have misaligned incentives

in that the regulator prefers more experimentation before making a decision than the

agent does. Thus the regulator has additional incentives to consider when designing

his optimal stopping rule: in addition to the trade off between haste and discretion,

the regulator must also consider how to continually incentivize the agent to continue

experimentation. We study what the regulator’s optimal mechanism will be in the pres-

ence and absence of private information and under different levels of commitment. The

misalignment of incentives between the regulator controlling the decision and the agent

controlling experimentation will introduce rich and novel dynamics into the optimal stop-

ping problem.

The contribution of this paper is several-fold: first, we look at a novel class of ap-
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proval rules and, using new techniques for dynamic contracting, prove their optimality

among all approval rules. We find that these rules generate interesting testable predic-

tions (implying that longer experimentation is associated with more erroneous approval)

and possess a number of desirable properties. Second, we study the effects of private

information and find that it adds new qualitative features to the approval rules. We

also empirically study FDA approval decisions; gathering data on the length of clinical

trials and Type I error, we find that longer clinical trials are associated with higher error

rates, a relationship our theoretical results can justify. Finally, we extend our model to

encompass a large class of stopping games and solve for optimal mechanisms.

We start our analysis by investigating the case in which the agent has no private

information (symmetric information), focusing on how the regulator provides incentives

for the agent to experiment. A robust result from the optimal stopping literature with

a single decision-maker is the optimality of stationary threshold strategies, in which

the decision-maker stops whenever the state crosses a time- and history-independent

threshold. If the incentives of the regulator and agent were aligned, such a rule would be

optimal in our environment. Moreover, we show such that a threshold strategy is again

optimal when there are misaligned incentives but the agent can perfectly commit to the

regulator’s mechanism (a situation we call two-sided commitment in which there is only

an ex-ante participation constraint for the agent).

However, in most real life situations the agent has an outside option that he could

always take; if the clinical trials begin to go poorly and approval appears unlikely, the

drug company may pull the plug on the clinical trial. In this setting, the regulator must

consider interim participation constraints for the agent (which we call one-sided commit-

ment). We show that under one-sided commitment, stationary threshold rules are no

longer optimal: once the agent is about to quit, the regulator has an incentive to change

the approval rule so that the agent chooses to continue experimentation. However, there

are many ways the regulator could change the approval rule to give the agent incentives

for experimentation. Because the beliefs over the state of nature are changing over time,

standard dynamic contracting methods become intractable. Given the richness of the

set of approval rules, solving for the optimal rule can appear quit daunting. However, we

develop a new method for solving such problems and find that a novel optimal stopping

rule which is history-dependent and non-stationary but still remarkably tractable.

We show how the optimal mechanism can be written as a function of the current

belief and the minimum over the realized path of beliefs up to the current time. The

approval rule consists of an approval threshold which moves downward sporadically; more

specifically, the principal starts with a threshold which initially stays fixed as beliefs drift
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downwards. If beliefs descend low enough that the agent would optimally quit against if

the current threshold were to remain fixed forever, then the principal begins to lower just

enough to incentivize the agent to continue experimentation. When beliefs move higher

than the current minimum, the threshold stays fixed (never increasing) and will only

decrease when beliefs reach a new low. This drift downwards of the approval threshold

is bounded; if beliefs reach a lower fixed threshold, the regulator allows the agent to

quit. This gives us an interesting testable prediction because, unlike in the case of a

single decision-maker, the probability of Type I error is not constant over time. This

mechanism also possess a number of attractive features; for example, we find that the

optimal mechanism’s thresholds are independent of the initial beliefs, which would not

be the case if we were to restrict the principal to only consider stationary threshold rules.

At a first pass, the optimal mechanism may seem to depend strongly on the assump-

tion that the regulator can commit to the approval rule. To understand the role of regu-

lator commitment, we examine what the regulator-optimal equilibrium is and find that

our one-sided commitment mechanism is implementable without commitment. Whereas

previous literature has restricted attention to simple Markov equilibria which use only

current beliefs as a state variable, this finding shows that, if we remove this restriction,

we can implement the regulator-optimal using only one additional state-variable (the

minimum of beliefs up to the current time). We also show that every Pareto efficient

equilibrium can be implemented using a similar mechanism to our own (with a different

initial threshold). These equilibria possess the desirable feature that they are Pareto

efficient after every history, giving them a strong robustness to renegotiation concerns.

When we give private information to the agent (i.e., a more informed prior at time zero

about the state), we find that the optimal mechanism may take the form of a “fast-track”

menu option. Low types select into a mechanism which is qualitatively similar to the case

with no adverse-selection-i.e., the approval threshold is monotonically decreasing when

beliefs reach new lows. However, high types select a qualitatively different mechanism.

They are initially given a low approval threshold, but they also face a stationary “failure”

threshold. If the failure threshold is reached, the project is not rejected but the approval

threshold takes a discrete jump upward (they are thrown out of the fast-track); that is,

they are allowed to continue to experiment but face a more stringent standard. This

result shows how adverse selection creates a back-loading of costly distortions (raising

the approval threshold) for the high type. By introducing a higher approval threshold,

the regulator hurts both his and the agent’s payoffs. However, a deviating low type will

view this distortion as more likely, thereby creating a wedge in the effect of the distortion

on payoffs. This wedge allows the regulator to create separating contracts even without
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transfers and increase the probability of quicker approval for the high type.

While our model can be viewed through a normative lens on how decision rules should

be designed, we can also look at the model through a positive lens to see if our model can

justify phenomenon about decision rules which standard models do not capture. To do

this, we gather data on FDA decisions and Type I error rates to explore the relationship

between the length of experimentation and the probability of Type I error. In Section

6, we show that our model’s testable predictions (in contrast to standard single-decision

maker models) empirically match Type I error rates in FDA approval decisions.

Many of the results will go through for a large class of environments. In Section 7, we

show that form of the optimal symmetric information mechanism, a threshold decreasing

as beliefs reach new lows, holds in a much richer class of stopping games which allow

for more general diffusion processes (not just a learning environment) as well as general

payoff functions and outside options. This allows us to generalize our findings to apply to

many more principal-agent problems and show that the dynamics we study are a feature

of a wide class of such problems. We relate them to a number of other models, such as

a promotion model, lobbying game and real-option game.

In Section 2 we will discuss related literature and then introduce the model in Sec-

tion 3. Section 4 will cover the optimal mechanism where there are no information

asymmetries while Section 5 will derive the optimal mechanism when there are infor-

mation asymmetries. In Section 6 we look at the relationship between the length of

clinical trials and Type I error in the context of FDA drug approvals. Section 7 provides

extensions and generalize the model to a wider class of diffusion processes and payoff

functions.

2 Literature

The setting of our paper ties into a large literature on the problem of hypothesis testing.

Wald (1947) is the seminal work on the study of sequential testing and began a rich

literature in mathematics and statistics. Peskir and Shiryaev (2006) provide a textbook

summary and history of the problem. Moscaroni and Smith (2001) also examine a similar

framework but they look at the optimal policy in a large class of sampling strategies.

Unlike our paper, this literature focuses on the problem of a single-decision maker. While

some papers study the optimal stopping problem under constraints, the participation

constraints our problem will impose are new and yield very different solutions.

Our paper is also related to the bandit experimentation literature. Bolton and Harris

(1999), Keller, Rady and Cripps (2005), Keller and Rady (2010, 2015), Strulovici (2010),
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Chan et al. (2015) and many others have analyzed the strategic interaction among

experimenting agents. Typically, they focus on equilibrium experimentation levels and

often find equilibrium strategies in cutoff rules. In our paper, we will endow one player

(the regulator) with commitment power, which will drive the optimality of more complex

stopping rules.

A recent literature has developed around the incentivization of experimentation in

bandit problems. Garfagnini (2011) studies equilibrium levels of experimentation when

a principal must delegate experimentation to an agent. Guo (2016), one of the closest

papers to our own, looks at a bandit problem in a principal-agent model when the

agent possesses private information about the probability that the bandit is “good.”

Like our model, Guo finds optimal mechanisms when monetary transfers are infeasible

and the agent has private information about a payoff-relevant state of the world. Besides

the technical differences between our settings, (Guo examines the optimal mechanism

for eliciting information in a bandit model while we consider the optimal mechanism

in a stopping problem, and in our model the misalignment between principal and agent

preferences is more severe), we consider the case in which the agent has the ability at any

time to quit experimenting whereas in her model the principal controls experimentation

throughout. Grenadier et al. (2015) model a situation in which a principal must elicit

an agent’s information about the optimal excise time of an option. Like our model, they

study the case when the principal cannot make monetary transfers and the agent has

private information (in their case, his payoff to excising the option).

Kruse and Strack (2015) look at an optimal stopping problem in a principal-agent

framework in which the principal sets transfers in order to incentivize an agent to use

particular stopping rules. They find that, under some conditions, transfers which only

depend on the stopping decision implement cut-off rules and all cut-off rules are im-

plementable by such transfers. Madsen (2016) also studies a principal-agent stopping

problem with transfers in the case of the quickest detection problem.

Within a model of dynamic information revelation, Orlov et al. (2017) look the

interaction between an agent who can supply information and a principal who can exercise

an option. Unlike our model, they look at the nature of equilibrium when, on top of a

public news process, the agent has the ability to design information structures to reveal

some private information ala Kamenica and Gentzkow (2011).

Liu, Halac and Kartik (2016a, 2016b) also look at different ways of incentivizing

experimentation, both in the framework of a contest and a contract. Our paper differs in

that we are not allowing for monetary transfers, and instead look at how the probability of

future approval can be used to incentivize agents. The incentivization of experimentation
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using monetary transfers from a moral hazard viewpoint has also been analyzed by

Bergemann and Hege (1998,2005) and Horner and Samuelson (2013).

The study of the FDA approval process has also been studied theoretically and em-

pirically Carpenter and Ting (2007) looks at a theoretical model of drug approval when

the drug companies are better informed about the state for their drug. They study the

resulting equilibria of a discrete time model. They find that the length of experimenta-

tion determines the comparative static on the effect of firm size on the amount of Type

I and Type II errors. Carpenter (2004) also studied the effect of firm size on regulatory

decisions. Frank et. al (2014) and Carpenter et. al (2008) look at the effects of regulatory

changes at the FDA on the probability of Type I error.

Henry and Ottaviani (2017) study a model of regulatory approval when learning takes

place through a publicly observed Brownian motion. In their model, both the regulator

and the agent possess a common prior about the state. They study the deconstruction

of the approval process, when the regulator has the ability to approve and the agent has

the ability to quit. They find that varying the level of commitment and the possession

of authority changes the expected amount of experimentation and study the social costs

and benefits of different allocations of authority and commitment.

3 Model

3.1 Environment

Following our motivating example, we study the interaction between a (female) regulator

R and a (male) agent A in an infinite-horizon continuous-time model. Both players share

a common discount rate r > 0. A project, which is up for approval, is of two types: good

(θ = H) or bad (θ = L). The regulator wants to approve only good projects. The benefit

to approving a good project is aiH and the loss to approving a bad project is aiL:

R’s Payoffs

H L

Approve aRH aRL
Reject 0 0

A’s Payoffs

H L

Approve aAH aAL
Reject 0 0

We will assume that A pays a constant flow cost cA until the game ends and R pays

a flow cost of cR. For simplicity, we assume that cA = c > 0 = cR (None of the results
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will rely on cR = 0, but this assumption makes the analysis simpler).

In general, the terminal payoffs of R and A might differ. For example, A might only

care about the project being approved (if, for example, aAH = aAL = 1). While we allow

for general terminal payoffs (and extend the results further in Section 7.2), to simplify

notation we take in the rest of the text aRH = aAH = 1 and aRL = −1 ≤ a = aAL ≤ 1 (we

assume a ≤ 1 so that A weakly prefers approval when θ = H over approval when θ = L).

By changing a, we vary the bias A has over terminal decisions from being aligned with

R to always preferring approval. When a = −1 the only difference between A and R’s

payoffs is that A bears the cost of experimentation. Taking a = −1 makes clear the

difference in costs is key to the rich dynamics in the optimal mechanism.

Both players begin the game with a common-prior π0 = P(θ = H). Over the course

of the game, both players learn about the underlying state of nature θ (which we call ex-

perimentation). Information about the state is revealed via a Brownian diffusion process

with a state-dependent drift. Formally, while experimentation is ongoing, both players

publicly observe

Xt = µθt+ σWt

where W = {Wt,Ft, 0 ≤ t < ∞} is a standard one-dimensional Brownian motion1 on

the state space (Ω,F , P ) and µL = −µ < 0 < µ = µH . By observing Xt, both players

update beliefs about the state. After observing Xt, a player’s posterior belief is given by

Bayes rule as

πt =
π0f

H
t (Xt)

π0fHt (Xt) + (1− π0)fLt (Xt)
,

where fθt is the density of a normal distribution with mean µθt and variance σ2t. To

simplify the belief updating procedure, we note that we can write the beliefs in terms of

log-likelihoods2- i.e.,

Zt = log(
πt

1− πt
).

Putting in our terms for πt, we have (after some algebra)

1Which implies that W0 = 0 so X0 = 0.
2We subsequently abuse notation by referring to Zt as beliefs.
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Zt = log(
π0

1− π0
) + log(

fHt (Xt)

fLt (Xt)
)

= Z0 +
φ

σ
Xt.

where φ = 2µ
σ , which is called the signal-to-noise ratio, describes how informative the

signals are. Since beliefs and the evidence level are isomorphic, we will use them inter-

changeably in the following sections. The change in Zt is then given by

dZt =
φ

σ
dXt.

This transformation of the belief process is useful because both Xt and the initial Z0

enter linearly into the current Zt. As discussed before, in some situation it is reasonable

that the agent has more information before the public news process begins. We model

such situations by allowing the agent’s initial belief Z0 to be private information.

Definition 1. The model has symmetric information if the initial belief Z0 of the

agent is common-knowledge. The model has asymmetric information if the initial

belief Z0 is private information of the agent.

Note that in a model with asymmetric information, all the private information of A

is realized at t = 0; that is, all information observed by A after t = 0 is also observed

by R. For now we postpone further analysis of the asymmetric information model until

Section 5 and continue describing the model under symmetric information.

We define FXt = σ((Xs, Y0) : 0 ≤ s ≤ t) (where Y0 ∼ U [0, 1] time 0 is used simply to

allow for randomization) to be the augmented natural filtration and assume it satisfies

standard restrictions (see Karatzas and Shreve (1991)). A history ht = ω|[0,t] is the

realization of a path of Xt (from time 0 to t) and Y0.

Note that R receives positive utility from approving at belief Zt if and only if Zt ≥ 0.

We will refer to Zt = 0 as R’ s myopic cutoff point-i.e., the belief at which she would

approve if she were myopic.

3.1.1 Remarks

We make several simplifying assumptions in the model, which we motivate below:

• Slow Learning: We choose to model the news process as Brownian motion for

both tractability and its similarity to real-world applications. In our motivating
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example, if Xt corresponds to patient’s health during a clinical trial, then the

choice of Brownian motion reflects the gradual nature of learning and the noisiness

of health outcomes. Even when administered good drugs, a patient’s health will

still sometimes decline. However, the drift of a patient’s health should be positive

for good drugs (i.e., µH > 0). Additionally, the use of Brownian motion ties into

a rich statistics literature on the design of adaptive clinical trials and hypothesis

testing (e.g., Peskir and Sharyaev (2006) for a textbook treatment).

• Public News: We assume that the signal is publicly observable to both R and A.

This assumption is satisfied in many situations. For example, the FDA can require

companies to publicly register and continuously report the outcome of the trial.

Assuming the news process is public allows us to avoid the situation in which R

and A’s beliefs diverge over time, which would make the model intractable.

• Costs: We assume that only A pays a flow cost. This might correspond to the cost

of administering the trial (e.g., producing drugs, paying doctors to administer the

drugs), which are not small and are important economic determinants of companies’

testing decisions (see DiMasi (2014)). The cost of delaying approval of a good drug

is internalized by R in the discounting of future payoffs.

3.2 Mechanism

Our question of interest is to understand how R can optimally design approval standards

to elicit the private information of the firm. We will assume that transfers are infeasible

(as is in the case in the example of FDA approval decisions). Formally, we allow R to

design a stopping mechanism, which consists of a stopping time and a decision rule (to

approve or reject conditional upon stopping):

Definition 2. A stopping mechanism is a pair (τ, dτ ) ∈ T×D, where T is the set of

FXt -measurable stopping rules and D is the set of FXt -measurable decision rules taking

values in {0, 1}.

When discussing our stopping mechanisms, it will be useful to discuss how the mech-

anism behaves after a particular history ht.

Definition 3. For stopping mechanism (τ, dτ ) and history ht, the continuation mech-

anism at ht is (τ [ht], dτ [ht]) and is defined for each ω with history ht by τ [ht](ζtω) =

τ(ω)− t and dτ [ht](ζtω) = dτ (ω), where ζt : Ω→ Ω is the shift operator defined such that

Xt(ω) = X0(ζtω).
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We can then use our notion of a continuation mechanism to define when the mecha-

nism is Markov with respect to certain variables.

Definition 4. For a set of F-measurable stochastic processes {Si}Ni=1, a stopping mecha-

nism is (S1, ..., SN)-Markov if the for all histories ht, h
′
t such that S1

t , ..., S
N
t are equal,

(τ [ht], dτ [ht]) = (τ [h′t], dτ [h′t]).

For example, a stopping rule which approves at the first time Xt ≥ B (for some B ∈
R) will be Xt-Markov, since the continuation stopping time will be the same regardless

of the history that led up to Xt.

The agency considerations in the model will impose constraints on the mechanisms

which are allowed, which will impose constraints on which problems we consider admis-

sible.

Definition 5. Let ∆C ⊆ T×D and define the constrained problem CP to be

sup
(τ,dτ )∈∆C

E[e−rτg(Xτ , dτ )|X0].

We say that (τ, dτ ) is admissible with respect to CP if (τ, dτ ) ∈ ∆C .

For most of the paper we will endow R with perfect commitment power, allowing us

to focus on direct-revelation stopping mechanisms in the asymmetric information model,

and we assume that the decision to approve or reject is irrevocable.3 The utility of R for

a particular mechanism (τ, dτ ) is given by

J(τ, dτ , Z0) = E[e−rτ (πτ − (1− πτ ))dτ |Z0] = E[e−rτ
eZτ − 1

1 + eZτ
dτ |Z0]

and the utility of A is given by

V (τ, dτ , Z0) = E[e−rτ (π0τ+a(1−πτ ))dτ−
∫ τ

0
e−rtcdt|Z0] = E[e−rτdτ

eZτ + a

1 + eZτ
−1− e−rτ

r
c|Z0]

Before moving on the general analysis, we first define some notation that will be

useful in the following analysis. We begin with a salient subclass of mechanisms, in

which the mechanism is characterized by a pair of thresholds: the regulator approves if

her beliefs ever reach B and rejects in her beliefs ever reach b. We will refer to B as the

static approval threshold and b as the static rejection threshold.

3This irrevocability assumption is without loss if we allow experimentation to stopped and restarted

and the agent only pays his flow cost while experimentation is ongoing.
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Definition 6. A static threshold mechanism is a pair (b, B) ∈ R2 such that b ≤ Z0 ≤
B, τ = inf{t : Zt 6∈ (b, B)} and dτ = 1(Zτ ≥ B). We define τ≥(B) := inf{t : Zt ≥ B}
and τ≤(b) := inf{t : Zt ≤ b}.

This focal class of stopping mechanisms are tractable, easily implemented and have

the useful property that they allow us to calculate the expected utility for R and A in

closed form. To express these utilities, we must know the expected discounted probability

that a threshold is reached. The formula4 for the discounted probability of reaching B

before b when the θ = H is given by

Ψ(B, b, Z) := E[e−rτdτ |θ = H,Z0 = Z] =
e−R1(Z−b) − e−R2(Z−b)

e−R1(B−b) − e−R2(B−b) ,

and the discounted probability that the beliefs cross b before ever crossing B if θ = H is

ψ(B, b, Z) := E[e−rτ (1− dτ )|θ = H] =
eR2(B−Z) − eR1(B−Z)

eR2(B−b) − eR1(B−b) ,

where R1 = 1
2(1−

√
1 + 2rσ2

µ2 ) and R2 = 1
2(1 +

√
1 + 2rσ2

µ2 ).

Doing a bit of algebra (see Henry and Ottaviani (2017)) allows us to show that the

discounted probability that B is crossed before b if θ = L is

Ψ(B, b, Z)eZ−B

and the the discounted probability that b is crossed before B if θ = L is

ψ(B, b, Z)eZ−b

This allows us to rewrite the utility of R,A when (τ, dτ ) takes a threshold form

J̃(B, b, Z0) := J(τ≥(B) ∧ τ≤(b),1(τ≥(B) < τ≤(b)), Z0) =
eZ0

1 + eZ0
Ψ(B, b, Z0)(1− e−B)

Ṽ (B, b, Z0) := V (τ≥(B) ∧ τ≤(b),1(τ≥(B) < τ≤(b)), Z0),

= − c
r

+
eZ0

1 + eZ0

(
Ψ(B, b, Z0)(1 +

c

r
+ (a+

c

r
)e−B) +

c

r
ψ(B, b, Z0)(1 + e−b)

)
.

We will generally drop the dependence of Ψ, ψ on B, b, Z when the choice of B, b, Z

is clear. To simplify notation, we will also use Ψb := ∂Ψ
∂b and ΨB := ∂Ψ

∂B (with similar

notation for the derivatives of ψ).

4See Stokey (2009).
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4 Symmetric Information

We begin our analysis by studying the design of optimal mechanisms under symmet-

ric information-i.e., both A and R share the same prior when the news process begins.

Studying the symmetric information case will be useful both for finding the optimal mech-

anism with asymmetric information and of independent interest.5 Our model extends

the canonical hypothesis-testing model, which is well-studied in single decision-maker

problems, into a mechanism-design framework in which the decision maker faces an ad-

ditional trade-off in that she incentivize A to continue to experiment. Additionally, we

examine how optimal mechanisms change depending on the level of commitment of R,A.

Exploring this dimension yields new dynamics in the optimal mechanism.

4.1 Principal Optimal

We begin by solving for the principal optimal mechanism. Note that R has no experi-

mentation costs: Therefore she will never find it optimal to reject: since the news process

will never lead R to know for sure that the state is bad (i.e., Zt can never reach −∞),

then the option value of continuing to experiment is always strictly positive. We can also

note that R’s preferences are time-consistent, and so standard arguments imply that her

optimal policy must be a threshold rule with b = −∞. Clearly she must approve an

some interior B <∞. If we write out his utility for a fixed B, we can see that

lim
b→−∞Ψ

eZ − eZ−B

1 + eZ
= eR1(B−Z) e

Z − eZ−B

1 + eZ
.

Taking the derivative with respect to B, we get a first-order condition of the optimal

approval threshold BFB as

0 = R1(1− e−BFB ) + e−B
FB
,

⇒ BFB = −log(
R1

−R2
),

which, as we should expect, implies that the optimal threshold choice of R is invariant

to the initial belief. This threshold mechanism (BFB, bFB) = (−log( R1
−R2

),−∞) is the

optimal mechanism for R and fits the standard result that static-threshold mechanisms

are optimal in single decision-maker problems.

5Similar settings have been considered in the existing literature: Henry and Ottaviani (2017) study

a model with the same payoff structure as ours, but restrict attention to the class of static threshold

mechanisms.
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4.2 Two-Sided Commitment

We now consider the case in which the control of experimentation and approval is

decentralized-i.e., A controls experimentation and R controls the approval decision. This

separation of authority introduces a new consideration for R: she must design her ap-

proval rule so that it provides incentives for A to perform experimentation. Because

A alone bears the cost of experimentation, even when A and R’s terminal payoffs are

aligned (i.e., a = −1), A will prefer less experimentation than R. This tension in the

amount of experimentation both players desire will be the main driving force of our

results.

We begin by introducing the agency problem in the most mild way possible and allow

R to present a binding contract to A which specifies the amount of experimentation that

A must perform. However, unlike the principal optimal solution, A has some say in

the design of the mechanism: More specifically, A has authority to accept or reject

the mechanism at t = 0 (and at that time alone). If A accepts the mechanism, then A

commits to continue experimentation until the mechanism specifies that experimentation

ends. We define this environment below:

Definition 7. A mechanism has two-sided commitment if once A has accepted (τ, dτ ),

experimentation continues until τ .

Since A has the option of rejecting R’s proposed mechanism, R’s mechanism must

satisfy a participation constraint. Formally, this means that A’s expected utility from

R’s proposed mechanism must be at least as high as A’s outside option, which we take

to be 0, when rejecting R’s mechanism.

Definition 8. A mechanism (τ, dτ ) satisfies the participation constraint if V (τ, dτ , Z0) ≥
0.

Since A has no private information about the state and the contract, once agreed

to, is binding, the participation constraint will be the sole constraint on R’s choice of a

mechanism. Formally, the mechanism design problem faced by R is given by

sup
(τ,dτ )

E[e−rτdτ
eZτ − 1

1 + eZτ
|Z0]

subject to

P : E[e−rτ (dτ
eZτ + a

1 + eZτ
+
c

r
)|Z0]− c

r
≥ 0,
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where P is a participation constraint that ensures that the agent finds it optimal to agree

to the mechanism.

Our problem takes the form of a constrained optimal stopping problem. A robust

finding from the single decision-maker problem (and as seen in our principal-optimal

solution) is the optimality of static-threshold rules (e.g., Wald (1947) and Moscaroni

and Smith (2001)). However, with agency considerations the participation constraint

prevents the use of standard time-consistency arguments that imply the optimality of

threshold rules. Despite this difficulty, we are able to show in Proposition 1 that static

threshold mechanisms remain optimal.

Proposition 1. The solution to the symmetric information problem with two-sided com-

mitment takes the form of a static-threshold policy. If b 6= −∞, then the optimal approval

and rejection thresholds (B, b) are the solution to the following equations:

Ψb(1− e−B)
c
r [ψb(1 + e−b)− ψe−b] + Ψb[(1 + c

r + (a+ c
r )e−B)]

=
ΨB(1− e−B) + e−BΨ

aΨe−B + ΨB(1 + c
r + (a+ c

r )e−B) + ψB(1 + e−b) cr

Ψ(1 +
c

r
+ (a+

c

r
)e−B) +

c

r
ψ(1 + e−b) =

c

r

1 + eZ0

eZ0

where B < BFB and P (τ, dτ ) is binding. If b = −∞, then B = BFB.

Proof. All proofs are relegated to the Appendices.

We see that, as long as the the principal optimal mechanism is not achievable, A

must be indifferent between accepting the mechanism and taking his outside option. Any

mechanism in which the project is rejected and A strictly prefers to accept the mechanism

can be improved upon by lowering the rejection threshold slightly, thereby increasing R

utility (since experimentation is always valuable to R) while preserving the participation

constraint. This result also establishes that the solution under two-sided commitment

is qualitatively the same as in the single decision-maker (thereby justifying some of the

focus on threshold mechanisms in the literature), albeit quantitatively different. This

quantitative difference is described in the following corollary.

Corollary 1. If (BTS , bTS) is the optimal two-sided commitment thresholds, then BFB ≥
BTS and bTS ≥ bFB.

Whenever there there is rejection in the two-sided commitment the option value of

experimentation is lower in the two-sided commitment case than in the principal-optimal

case. Since with two-sided commitment experimentation will be ended earlier at low
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beliefs relative to the principal-optimal, the value of experimentation at intermediate

beliefs decreases relative to approval leading to a lower approval threshold.

Interestingly, as in Henry and Ottaviani (2017), the choice of B, b will depend on

the initial Z0. This differs from the single-decision maker problem. Unlike in the single-

decision maker problem, the introduction of the participation constraint at t = 0 means

that the pure time-consistency of single-decision maker problems is no longer present.

4.3 One-Sided Commitment

In many applications, the assumption of two-sided commitment is unreasonable. If,

over the course of the trial, the company becomes pessimistic that the drug will ever

be approved, a drug company may decide to cut their losses and end the trial early.

While the FDA can commit to approval standards, the ability to compel the company

to continue running a clinical trial is beyond the scope of the agency’s authority. We can

think of this as the analogue of a “no forced service” assumption in a standard principal-

agent model, in which the principal can commit to a contract but the agent cannot be

prevented from taking an outside option at any time. Thus, A must be incentivized to

continue experimentation even after t = 0. We call this environment one of one-sided

commitment.

Definition 9. A mechanism has one-sided commitment if after any history ht A can

quit experimenting and take an outside payoff 0.

We also allow for A, once R has approved to immediately quit and take his outside

option of zero rather than the payoff for approval. Since A has the ability at any time

to take an outside option, we must reformulate what a participation constraint means

in this new environment with one-sided commitment. Under two-sided commitment, we

only had to ensure that the expected payoff at time t = 0 was weakly positive. With

one-sided commitment, we must ensure that A’s continuation payoff is weakly positive

at all t and histories ht until R ends experimentation. The mechanism must then satisfy

a dynamic version of the usual participation constraint.

Definition 10. A mechanism (τ, dτ ) satisfies the dynamic participation constraint

if after any history ht the expected continuation to A from (τ, dτ ) is non-negative:

∀ ht, E[e−r(τ−t)(dτ
eZτ + a

1 + eZτ
+
c

r
)|Zt, ht]−

c

r
≥ 0.

Because there is a participation constraint for each history and given the richness

of potential histories, writing out all the constraints is infeasible. Intuitively, another
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way of stating the idea behind the dynamic participation constraint is to say that A

never finds it strictly optimal to quit. Suppose that the agent chooses to quit before R

ends experimentation-i.e., A chooses a quitting rule τ ′ ∈ T by which he takes his outside

option of 0 at time τ ′. This strategy will give A an expected utility of

E[e−r(τ∧τ
′)(dτ1(τ ≤ τ ′)e

Zτ + a

1 + eZτ
+
c

r
)]− c

r
.

Following this idea and restricting R to choose from mechanisms which incentivize A to

not quit prematurely, we define R’s problem as

[SM ] : sup
(τ,dτ )

E[e−rτdτ
eZτ − 1

1 + eZτ
|Z0]

subject to

DP : sup
τ ′∈T

E[e−r(τ∧τ
′)(dτ1(τ ≤ τ ′)e

Zτ + a

1 + eZτ
+
c

r
)|Z0] ≤ E[e−rτ (dτ

eZτ + a

1 + eZτ
+
c

r
)|Z0].

DP implies that for any quitting rule that A might use, the payoff to potentially quitting

early is weakly less than letting R decide when to end experimentation. Specifying that

the optimal mechanism must not let A quit before R approves or rejects the drug is

without loss: If a mechanism allows A to quit after a history ht, then we could specify

another mechanism in which R rejects at the same moment that A quits. This will not

change any incentives for A to quit earlier than time t (since quitting and rejection lead

to the same payoff for A) and hence the expected payoff to R from the two mechanisms

will be the same.

As we formally prove in Lemma 1, the constraint DP is essentially a rewritten version

of the definition of dynamic participation constraints from an ex-ante perspective.6 To

see that the two are equivalent, note that if there was such positive probability placed

on a set of histories that A had a strictly negative expected continuation payoff, then

the quitting rule

τ ′ = inf{t : E[e−r(τ−t)(dτ
eZτ + a

1 + eZτ
+
c

r
)|Zt, ht] =

c

r
}

(i.e., quitting when the continuation payoff to A is zero) would lead to a strictly higher

payoff, violating DP . Similarly, if (τ, dτ ) satisfies dynamic participation constraints, then

it also must satisfy DP : If A’s continuation value is always positive, then it cannot be

optimal to quit early since A would be giving up positive utility.

6With a slight abuse of notation, we will refer to DP as dynamic participation constraints for the rest

of the paper.
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Lemma 1. Any mechanism (τ, dτ ) which satisfies all dynamic participation constraints

must satisfy DP . For any mechanism (τ̃ , d̃τ ) which satisfies DP , there exists another

mechanism which satisfies all dynamic participation constraints and yields the same pay-

off as (τ̃ , d̃τ ).

Given the previous results for the principal-optimal and two-sided commitment it

seems natural to conjecture the optimality of static threshold mechanisms. Surprisingly,

we find that the conjecture fails, as we illustrate with a simple example below to show

how threshold rules can be improved upon. Simply put, whenever R rejects in a static

threshold mechanism, she would be better off lowering the threshold (“cutting the A some

slack”) in order to incentivize A to continue experimenting. By changing the threshold

after some histories, R is better able to fine tune the incentives for experimentation to

A.

Suppose that R is using a static approval threshold of B1 > 0 (If B1 < 0, then the

static threshold mechanism would only approve at beliefs which give R negative utility

and, therefore, R would be better off rejecting immediately). Since R would always

benefit from continued experimentation at all beliefs below this approval threshold, he

will never reject the project before the agent would decide to quit. Let b∗Z be the value

at which A will choose to quit experimenting when R uses a static threshold of B and

the current beliefs are Z and let B∗Z,A be the optimal threshold that A would choose if

she could choose both the approval and rejection threshold. In general, this choice will

depend on the approval threshold B. It is straightforward to show that the argmax over

b of Ṽ (B, b, Z0) is independent of Z0 and thus the optimal quitting threshold is only a

function of B. More formally, we define b∗Z , B
∗
Z,A as

b∗Z(B) := argmaxb Ṽ (B, b, Z0),

B∗Z,A := argmaxB Ṽ (B, b∗Z(B), Z0).

Let us assume that B1 > B∗Z,A (otherwise, R could raise B1 to B∗Z,A and be strictly

better off). In order to satisfy DP it must be that R rejects when Zt = b∗Z(B).

Let Mechanism 1 by a static-threshold mechanism (B1, b
∗
Z(B1)). The expected payoff

to R from this mechanism will be

Ψ(B1, b
∗
Z(B1), Z0)

eZ0(1− e−B1)

1 + eZ0
.

However, upon reaching b∗Z(B1), R rejects the project and takes her outside option.

At this point, she would be better off if she could convince A to keep experimenting. Now
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consider Mechanism 2, in whichR uses an approval threshold ofB1 until either Zt = B1 or

Zt = b∗Z(B1). If Zt reaches b∗Z(B1) first, then, instead of rejecting, R lowers the approval

threshold to αB1 for some α < 1 such that b∗Z(B1) < αB1 and max{0, B∗Z,A} < αB1.

Note that A will now only quit experimenting if the evidence reaches b∗Z(αB1), since the

lowering of the approval threshold strictly incentivizes A to keep experimenting. Under

this new policy, the expected payoff to R from Mechanism 2 is

Ψ(B1, b
∗
Z(B1), Z0)

eZ0(1− e−B1)

1 + eZ0

+ ψ(B1, b
∗
Z(B1), Z0)

eZ0(1 + e−b
∗
Z(B1))

1 + eZ0
Ψ(αB1, b

∗
Z(αB1), b∗Z(B1))

eb
∗
Z(B1)(1− e−αB1)

1 + eb
∗
Z(B1)

.

Breaking down the above payoff, the expected payoff if B1 is reached before b∗Z(B1)

is the same as in the original policy i.e.

Ψ(B1, b
∗
Z(B1), Z0)

eZ0(1− e−B1)

1 + eZ0
.

However, because she doesn’t reject yet in Mechanism 2, R receives an additional payoff

(from the fact that A will continue experimenting) conditional on the evidence reaching

b∗Z(B1) before B1, which is given by

Ψ(αB1, b
∗
Z(αB1), b∗Z(B1))

eb
∗
Z(B1)(1− e−αB1)

1 + eb
∗
Z(B1)

.

This is multiplied by the discounted probability that beliefs hit b∗Z(B1) before B1

ψ(B1, b
∗
Z(B1), Z0)

eZ0(1 + e−b
∗
Z(B1))

1 + eZ0
.

Note that Ψ(αB1, b
∗
Z(αB1), b∗Z(B1)) e

b∗Z (B1)(1−e−αB1 )

1+eZ1
is strictly positive (since e−αB1 < 1).

Therefore Mechanism 2 yields a higher payoff for R. Since the choice of B1 was arbitrary,

we can see that any static-threshold mechanisms are not optimal.

Intuitively, R is being too stubborn by sticking to the static threshold B1. Once the

beliefs have gone low enough, R would be better off by decreasing his approval threshold

in order to provide incentives for A to continue experimentation-i.e., conditional on the

evidence reaching b∗Z(B1), R can achieve a positive continuation value by “cutting some

slack” and lowering the approval threshold some, thereby ensuring that A doesn’t find

it optimal to cease experimenting.
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Once we have moved out of the realm of threshold rules conjecturing the form that

the optimal policy will take is difficult. Because the space of stopping rules is large, it is

not clear if there is salient class of mechanisms that the optimal policy will lie in or know

if the optimal policy is feasible to derive. The key difficulty comes from the sup over

τ ′ ∈ T in the DP constraint. Unlike standard mechanism design, where the agent can

deviate by misreporting along some one-dimensional interval, the DP constraint allows

the agent to deviate across an infinite dimensional class. Overcoming this difficulty is

the main challenge of this section.

Remarkably, we are still able to solve for the optimal mechanism and show that it

possesses a relatively simple structure. In the interest of keeping notation consistent

throughout the following sections, we will describe the mechanism in terms of Xt rather

than Zt.
7 We define an equivalent version of b∗Z , B

∗
Z,A for the process measured in terms

of Xt as

b∗(B) := b∗(B;Z0) := [bZ(Z0 +
φ

σ
B)− Z0]

σ

φ
,

B∗A := B∗A(Z0) := [B∗Z,A − Z0]
σ

φ
.

We find that the optimal mechanism turns out to depend on the realized path of Xt

only through the current minimum of the evidence path MX
t := min{Xs : s ∈ [0, t]}.

The optimal mechanism approves at the first time that Xt crosses a threshold B(MX
t ).

We can think of the optimal mechanism as consisting of two regimes:

• Stationary Regime: The mechanism begins with a static approval threshold B1

which lasts until Xt reaches B1 or b∗(B1) .

• Incentivization Regime: Once Xt first hits b∗(B1), the stopping rule is given

by the first time Xt crosses B(MX
t ) which decreases as MX

t decreases in order to

incentivize A to keep experimenting when beliefs get too low.

As in the example above, R decreases the current threshold in order to incentivize A

to keep experimenting; the decrease is gradual, just enough to keep A from quitting. The

optimal mechanism features a gradual movement downward of the approval threshold

from R’s preferred level to A’s preferred level. We define B(X) is the lowest static

approval threshold B above A’s preferred threshold B∗A such that A would choose to

7This will be useful when we introduce asymmetric information so that we don’t have to describe the

mechanism in terms of the beliefs of both A and R.
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quit at evidence level X when R is using a static threshold mechanism with approval

threshold B-i.e.,

B(X) := min{B > B∗A : b∗(B) = X},

Formally, the resulting optimal mechanism is stated in the following theorem.

Theorem 1. The optimal stopping mechanism under symmetric information is given by

the stopping rule τ = inf{t : Xt ≥ B(MX
t )} ∧ τ≤(b∗(B∗A) ∨ b∗(−σ

φZ0)) and dτ = 1(Xτ ≥
B(MX

τ )) where B(MX
t ) is defined as

B(MX
t ) =

{
B1 MX

t ∈ [b∗(B1), 0]

B(MX
t ) MX

t ∈ [b∗(B∗A) ∨ b∗(−σ
φZ0), b∗(B1)).

Note that A can never be incentivized to experiment at beliefs below b∗(B∗A): in his

first best, A would be quitting at Z < b∗(B∗A), a payoff he can replicate even when he

doesn’t have control of the approval threshold by quitting immediately. Moreover, R will

never choose to lower the approval threshold below her myopic threshold −σ
φZ0 (since

doing so would only guarantee her a negative payoff and she would be better off letting

the agent quit). Thus experimentation is not extended indefinitely but ends whenever

the approval threshold reaches either the agent optimal level or R’s myopic cutoff.

We note several interesting features of the optimal mechanism:

• Monotonicity: The approval threshold only drifts downward and only changes in

order to provide incentives to keep A from quitting. The times at which the current

approval threshold decreases are stochastic (since they are a function of MX
t ).

• Agent Indifference: Whenever the evidence level is at Xt = MX
t , the agent will

be indifferent between quitting and continuing. R would like to keep the approval

threshold from decreasing and will thus wait until A is indifferent between quitting

and continuing, which occurs at Xt = MX
t . This means that even though the

threshold is moving towards A’s preferred level, this does not increase A’s time

zero utility since whenever the threshold decreases, A would be just as well off

quitting immediately.

• Starting Belief Invariance: Because the level of evidence is isomorphic to be-

liefs, we can alternatively write the approval threshold in terms of what beliefs R

approves at. If we do this transformation, then the optimal mechanism is invariant

to what the initial beliefs Z0 are. This property, which is common in single-decision

21



0.1 0.2 0.3 0.4 0.5 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t

Z

Figure 2: The graph above corresponds to the changing approval threshold for a par-

ticular realization of Xt. The upper dashed line corresponds to the current approval

threshold. This approval threshold will stay at the same level until X crosses the current

minimum of the process, which is given by the bottom dotted line.

maker problems, is absent if we were to restrict attention to a choice over static

threshold rules (see Henry and Ottaviani (2017)).

The rest of this section will be devoted to sketching out the ideas of the proof. The

tractability afforded by continuous time has led to a growing literature in mechanism and

contract design. Our approach differs from the standard continuous-time approach (e.g.,

Sannikov (2007), where transfers are feasible, and Fong (2007), where transfers are not

feasible) where agent-continuation payoffs are formulated as a state variable in an HJB

equation. Because they are learning about the underlying state, using the HJB approach

in our model would require carrying both a state variable of agent continuation and

current beliefs about the state; finding the solution to the HJB equation would require

solving a difficult partial differential equation and is impractical for analyzing the optimal

stopping rule. Instead, we use a different approach by finding a relaxed problem over

which Lagrangian techniques work well. This method allows to more easily derive the

qualitative features of the optimal mechanism. Using these qualitative features, we are

then able to explicitly pin down the form of the optimal mechanism. In contrast to the

model of Sannikov (2007), the moral hazard component is much simpler in our model

(in our model the agent can only decide at each point in time whether or not to quit),
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Figure 3: The dashed line gives the approval threshold as a function of MX and

the solid straight line marks the 45 degree line where X = MX . The dashed line is

initially constant in MX during the stationary regime while it decreases in MX for the

incentivization regime. The lines coming up from the 45 degree line illustrate a sample

path of X which is approved when X = 0.7.
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but the tools available to the mechanism designer are more sparse (since we rule out

transfers and the decisions of R and A are irreversible).

The use of Lagrangian techniques allows us to convert our constrained problem SM

(the primal problem) into an unconstrained form (the dual problem). The key technical

difficulty lies in the fact that when checking DP , we must consider all possible quitting

rules τ ′ which A might use. For an arbitrary stopping rule (τ, dτ ), we might try to

solve for the optimal τ ′ which A would use. However, even for simple time-dependent

stopping rules, solving for τ ′ is difficult and cannot be calculated in closed-form. Given

the richness of the set of available (τ, dτ ), which may be history-dependent, solving for τ ′

is infeasible. Moreover, to use Lagrangian techniques we will need to restrict attention to

a finite number of constraints. This means we will need to find a finite number of quitting

rules which will approximate the set of binding constraints. Given the dimensionality of

the space of quitting rules, it is not immediately clear how to do this.

In order to accommodate these complications, we will define a relaxed problem over

which our Lagrangian approach will prove useful. We will limit the set of DP constraints

to consider only those quitting rules of a particular class, which we call threshold quitting

rules.

Definition 11. A uses a threshold quitting rule at Xi if he quits at time τ(Xi) :=

τ≤(Xi) (We drop the ≤ in the subscript for notational convenience).

The payoffs to A of quitting early are equal to those of rejection. Therefore, A

evaluates the (τ, dτ ) when following quitting rule τ(Xi) as equivalent to the mechanism

(τ∧τ(Xi), d(Xi)) where we define d(Xi) := dτ1(τ ≤ τ(Xi)). We further restrict attention

to a finite number of such quitting rules. Let TN = {Xi}Ni=0 such that X0 = 0 and

Xi+1 = Xi +
X
N for some X ∈ R− so that the solution to two-sided commitment problem

starting at Z0 = −φ
σ X would be immediate rejection.

In order to apply our Lagrangian technique, we define a relaxed problem in which we

only impose that A cannot profitably quit early when restricted use a finite number of

threshold quitting rules. This problem is formally defined as

[RSMN ] : sup
(τ,dτ )

E[e−rτdτ
eZτ − 1

1 + eZτ
|Z0]

subject to ∀Xi ∈ TN

RDP (Xi) : E[e−r(τ∧τ(Xi))(dτ (Xi)
eZτ + a

1 + eZτ
+
c

r
)|Z0] ≤ E[e−rτ (dτ

eZτ + a

1 + eZτ
+
c

r
)|Z0].
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We note that because we have dropped a number of constraints (i.e., all non-threshold

quitting rules), the solution to RSMN will provide an upper bound on the value to R of

the full problem SM .

Let us define the set of RDP constraints which are binding when using the optimal

(τ, dτ ) for RSMN as

BN = {Xi ∈ TN : E[e−r(τ∧τ(Xi))(dτ (Xi)
eZτ + a

1 + eZτ
+
c

r
)|X0] = E[e−rτ (dτ

eZτ + a

1 + eZτ
+
c

r
)|X0]}.

We will write BN = {X1, ..., X |BN |} which are ordered from largest to smallest (we will

generally use superscripts to refer to binding constraints).

It is important to emphasize that it is not obvious that dropping non-threshold con-

straints is without loss. For many stopping policies R could use, the best response of A

will not be to use a threshold policy. For example, if R were to wait until date T and

approve if and only if XT > B, then the optimal quitting rule A would use would in fact

not be a threshold policy but would be a time-dependent curve τ ′ = inf{t : Xt = f(t)}.
Since we allow for arbitrarily complex history-dependent stopping rules, the quitting rule

which is A’s best response to an arbitrary τ may also be a complex history-dependent

quitting rule. We should also note that we are not restricting the solution of RSMN to

be a threshold policy. Instead, we are only checking that A has no incentive to deviate

to a threshold quitting rule rather than obediently following R’s proposed mechanism.

We can now use Lemma 16 from the Appendix in order to transform our primal

problem RSMN into its corresponding dual problem by constructing an associated La-

grangian with Lagrange multipliers {λ(Xi)}Ni=0 ∈ RN+1
−

L = sup
(τ,dτ )

E[e−rτdτ
eZτ − 1

1 + eZτ
|Z0]

+

N∑
i=0

λ(Xi)
(
E[e−r(τ∧τ(Xi))(dτ (Xi)

eZτ + a

1 + eZτ
+
c

r
)|Z0]− E[e−rτ (dτ

eZτ + a

1 + eZτ
+
c

r
)|Z0]

)
.

For an appropriate choice of {λ(Xi)}Ni=0, the solution to the associated Lagrangian will

solve the primal problem RSMN and will have complementary slackness conditions

∀Xi ∈ TN , λ(Xi)
(
E[e−r(τ∧τ(Xi))(dτ (Xi)

eZτ + a

1 + eZτ
+
c

r
)|Z0]−E[e−rτ (dτ

eZτ + a

1 + eZτ
+
c

r
|Z0]

)
= 0.

This implies that we can rewrite the Lagrangian using only the binding constraints:
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L = sup
(τ,dτ )

E[e−rτdτ
eZτ − 1

1 + eZτ
|Z0]

+

|BN |∑
j=1

λ(Xj)
(
E[e−r(τ∧τ(Xj))(dτ (Xj)

eZτ + a

1 + eZτ
+
c

r
)|Z0]− E[e−rτ (dτ

eZτ + a

1 + eZτ
+
c

r
)|Z0]

)
.

This dual version of the problem drastically simplifies the analysis since it allows us

to study what is effectively a single decision-maker problem. And while the selection

of appropriate multipliers {λ(Xi)}Ni=0 is difficult, the qualitative properties that we will

derive from the analysis of the Lagrangian for arbitrary multipliers will allow us to pin

down the form of the optimal solution.

We will decompose the problem into the time before the first binding quitting rule

X1 has been reached and the time after the first quitting rule has been reached (i.e.,

τ(X1)). If A is truly indifferent between quitting and continuing at τ(X1), then his

continuation value at τ(X1) should be zero. We denote the continuation value for R of

the mechanism which delivers a continuation value of zero to A when the evidence level

is Xt by HN (Xt). This is defined formally as

[HN (Xt)] : sup
(τ,dτ )

E[e−rτdτ
eZτ − 1

1 + eZτ
|Zt]

subject to RDP (Xi) ∀Xi ∈ TN

PK(0) : E[e−rτ (dτ
eZτ + a

1 + eZτ
+
c

r
)|Zt]−

c

r
= 0,

which is similar to our original problem RSMN except for an added promise keeping

constraint PK(0) which ensures that the expected utility of A for continuing until R

rejects is zero.

With the problem in an unconstrained form, we can use techniques from the sin-

gle decision-maker stopping problem to find the optimal policy which solves the dual

problem. The following lemma allows us to establish the optimality of a “local” static-

threshold rule: the approval threshold stays constant until the first binding constraint

X1 is reached. Moreover, we see that A will truly be indifferent between quitting and

continuing at τ(X1).

Lemma 2. The solution to RSMN is a static threshold approval policy until τ(X1). The

continuation mechanism at τ(X1) is the solution to HN (X1).
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Lemma 2 establishes the optimality of the initial stationary regime in RSMN . This

result doesn’t contradict our earlier result that static thresholds are non-optimal: as

we show below, the mechanism in the second regime will not turn out to be a static

threshold mechanism. A key thing to note is that the value of HN (X1) is independent

of the history up until time τ(X1). What happens after τ(X1) is completely bundled

into the value HN (X1) and therefore doesn’t affect the choice of R before τ(X1) except

through the value of HN (X1). This also implies that whenever X1 is reached, A is

indifferent between quitting and continuing to experiment. This property comes from

the particular form of the optimal stopping rule and is not true of all stopping rules

that R could use. For example, if R was using a deterministic stopping rule τ = T for

some T ∈ R+, then it could be that A’s RDP (X1) constraint was binding in expectation

at t = 0, but, when X1 is first reached, A could have a strictly positive or negative

continuation value. The stationarity of the optimal stopping rule prior to τ(X1) in key

for proving the indifference of A at τ(X1).

We must now solve for the optimal mechanism in the second regime (i.e. that which

solves the problem which deliver HN (X1)). The proof of Lemma 3 mirrors that of Lemma

2. The difference is that when we are trying to solve for the optimal mechanism which

deliver R payoff HN (X1) (and A a payoff of zero), we have added a promise keeping

constraint to the RDP constraints. This additional constraint can be incorporated in a

Lagrangian similar to the RDP constraints and, by repeated application of the arguments

used in Lemma 2, we can show the optimal mechanism to be a decreasing threshold in

MX
t .

Lemma 3. As N → ∞, the limit of the stopping mechanisms which solve HN (X1) is

given by τ = inf{t : Xt ≥ B(MX
t )} ∧ τ(b∗(B∗A)∨ b∗(−σ

φZ0)) and dτ = 1(Xτ = B(MX
t )).

The proof establishes that for each N , the stopping mechanism is (Xt,M
X
t )-Markov.

This property, which we will see repeatedly in the next session as well, is crucial for estab-

lishing that our relaxed problem is a solution to the full problem. While the mechanism

is history-dependent, the mechanism can be determined with only two state-variables,

making the mechanism tractable for calculation and implementation.

In order to pin down the exact form of B(MX
t ), we use complementary slackness as

our grid of threshold quitting rules becomes increasingly fine. In addition to telling us the

form of B(MX
t ), Lemma 3 also states how long B(MX

t ) will continue to decrease. Note

that the role of decreasing B is to incentivize further experimentation. However, if the

approval threshold descends below the myopic threshold of R at Xt = −σ
φ Z0 (where Zt =

0), then R would rather cease experimenting than lower the approval threshold (since,

if she lowers it, she will only approve at beliefs which give a negative utility). Moreover,
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the argument we made in the illustration of the non-optimality of static threshold rules

implies that it is never optimal to end experimentation when B(MX
t ) is above R’s myopic

threshold. These arguments imply that R will reject the project precisely when B(MX
t )

is equal to R’s myopic threshold.

Having derived the solution to RSMN , we need to check that the solution to the

relaxed problem solves the full problem SM as N → ∞. Because our mechanism is

(Xt,M
X
t )-Markov, we can show that the best response of A will also be (Xt,M

X
t )-

Markov; checking that all dynamic participation constraints is then relatively simple.

Lemma 4. Let (τN , dNτ ) be the solution to RSMN and (τ, dτ ) = lim
N→∞ (τN , dNτ ). Then

(τ, dτ ) is a solution to SM .

The optimal mechanism in Theorem 1 can also be written in belief-space, giving

an approval threshold of BZ(MZ
t ) = φ

σB((MZ
t − Z0)σφ) + Z0. Looking at the optimal

mechanism in belief space, we can ask how the optimal mechanism depends on the

initial belief Z0. Surprisingly, we find that BZ(·) is independent of Z0, which stands in

contrast to our model with two-sided commitment as well as other models with agency

considerations, such as Henry and Ottaviani (2017), who find that the initial conditions

do matter for determining the optimal mechanism for the principal. This invariance

the initial belief is a common feature of single-decision maker problems and implies a

dynamic consistency in the state variables (Xt,M
X
t ). In the case of Henry and Ottaviani

(2017), however, their mechanism is exogenously restricted to be a threshold mechanism.

Our result implies that dynamic consistency is restored when we allow the principal to

consider all possible mechanisms.

Lemma 5. The optimal approval threshold in belief-space BZ(MZ
t ) is independent of Z0

and depends only on MZ
t := min{Zs : s ≤ t}.

The most notable feature about the optimal mechanism is that the approval thresh-

old is changing with MX
t . For lower MX

t , the lower approval threshold increases the

probability of Type I error, in contrast to static threshold mechanisms (as in the case

of two-sided commitment) in which the probability of error conditional upon approval is

constant. This observation gives us predictions our model makes to an outside analyst

how only sees the length of experimentation conditional on approval and, if the project

is approved, the true state (i.e., the analyst cannot observe the realization of Xt). Our

model predicts that the analyst will predict a higher probability of Type I error (i.e.,

approving a bad project) for projects which have taken a long time to be approved when

compared to projects which were approved quickly. In many contexts this fits a natural
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Figure 4: We see that the likelihood of Type I error given approval at time t is increasing.

intuition. For example, if an assistant professor receives tenure very quickly, he is more

likely to be judged to be of high quality than if he took a long time to receive tenure.

As we will see in Section 6, this prediction will be matched empirically in data on FDA

approval times and Type I error probabilities.

4.4 No Commitment

At first glance, the optimal mechanism under one-sided commitment seems to require a

great deal of commitment: R agrees to permanently lower the approval threshold, even

though she would be better off raising in back to its initial level if beliefs drift back

up. We might naturally wonder how much R loses if she cannot commit to the optimal

mechanism. To answer this question, we need to think about the exact details of the

model without commitment. More specifically, we need to know the precise sequence

of events when A stops experimenting: as we will show, these details are crucial for

determining the equilibrium outcome. We introduce several different set-ups below:

• (I): A can irrevocably quit experimenting at any time t and R cannot approve

after A has quit.

• (II): A can irrevocably quit experimenting at any time t and R can approve at

any time after the agent quits.
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• (III): A can temporarily stop experimenting at any time. When A is not experi-

menting, A pays no flow cost and R can approve at any time.

If we restrict attention to Markov Perfect Equilibrium (MPE) using the belief Zt as

the state variable (as is standard in the literature), then we see that the equilibrium has

a static threshold structure. Where the threshold are exactly depends on the fine details

of the model.

Proposition 2. Under set-ups (I) and (II), when a = 1 there exists an MPE character-

ized by a pair (B, b) such that R approves only at time τ≥(B) and A quits at time τ(b).

In set-up (I), B > 0 while in set up (II), B = 0 and b = b∗(0) and A quits experimenting

when Xt 6∈ (b, B). The value of experimentation in the MPE to R is strictly less than

under one- or two-sided commitment.

Set-up (I) corresponds to the model of Kolb (2016) and Henry and Ottaviani (2017)

and the corresponding result follows directly from Kolb (2016). Note that in set-up (II),

R doesn’t benefit from experimentation at all: if she approves, she is either approving at

Zt = 0 (which is her myopic threshold) or is approving immediately at Z0. The agent is

able to benefit from quitting as soon as he knows that R will approve in the subsequent

subgame.

However, the restriction to MPE with only Zt as a state variable is with loss. One

natural justification for the restriction to MPE is that they are “simple” enough to

be implementable in real world situations and minimize history dependence. There a

large number of history dependent equilibria, many of which may sound implausible.

Surprisingly, we show that a complex structure is not necessary for finding principal

optimal equilibrium: if we only slightly expand the state space to be (Xt,M
X
t ), then

the optimal mechanism under one-sided commitment can be implemented as an MPE

without commitment.

Proposition 3. Under set-up (III), the optimal mechanism under one-sided commit-

ment can be implemented as an equilibrium.

The intuition behind the proof is quite simple. Suppose that A expects R to follow the

mechanism as outlined in Theorem 1 and R expects A to continue experimenting until

R approves or Xt = b∗(B∗A) ∧ b∗(−φ
σZ0). Then R has no incentive to approve early (if

approving early were a profitable deviation, then she could implement it in the mechanism

with commitment and still satisfy all DP constraints) or reject early (since rejection is

always suboptimal). Moreover, A has no incentive to cease experimenting early since his

continuation value is always weakly positive. Moreover, if A ceases experimentation at
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Xt = B(MX
t ) until R approves, R also has no incentive to delay approval. The key to

the proof is that neither player ever has a strictly negative continuation value and thus

has no incentive to deviate from the prescribed equilibrium actions.

Proposition 3 tells us that our solution to the no-commitment case is the preferred

equilibrium for R. We can also ask what other payoffs are generated by various equi-

libria. Our techniques from the case with commitment can be useful in generating the

Pareto frontier of the equilibrium set. More formally, consider the problem of solving the

principal’s problem so that it respects DP constraints and delivers at least W utility to

A:

sup
(τ,dτ )

E[e−rτdτ
eZτ − 1

1 + eZτ
]

subject to

DP : sup
τ ′

E[e−r(τ∧τ
′)(dτ1(τ ≤ τ ′)e

Zτ + a

1 + eZτ
+
c

r
)] ≤ E[e−rτ (dτ

eZτ + a

1 + eZτ
+
c

r
)]

PK : E[e−rτ (dτ
eZτ + a

1 + eZτ
+
c

r
)] = W

It is straightforward to show that the solution to the above problem will take the form

τ = inf{t : Xt ≥ B(MX
t )} ∧ τ(b∗(B∗A) ∨ b∗(−σ

φZ0)) and dτ = 1(Xτ ≥ B(MX
τ )) where

B(MX
t ) is defined as

B(MX
t ) =

{
B MX

t ∈ [b∗(B), 0]

B(MX
t ) MX

t ∈ [b∗(B∗A) ∨ b∗(−σ
φZ0), b∗(B)).

for some B ∈ [B∗A ∨ −
σ
φZ0, B

1] (i.e., all B between the principal’s first best B1 and the

max of the A-optimal threshold and R’s myopic threshold −σ
φZ0). Thus, by adjusting

the initial threshold B (which is equivalent to adjusting W ), we can map out the Pareto

frontier of the equilibrium set. Additionally, these mechanisms are Pareto optimal after

every history, giving them a high degree of robustness to renegotiation.

5 Asymmetric Information

In many principal-agent situations the agent may have private information about the

state. For example, if A is a start-up and R a venture capitalist deciding when to invest,

it is likely that A is more informed than R about the start-up’s profitability. In the
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case of drug companies, the company may have acquired information about the drug

during the R&D phase or during animal or foreign clinical trials which are not directly

observable by the FDA. This information is valuable to R, as it will allow them to shorten

experimentation time and make more informed decisions. In this section we study how to

elicit this private information and look at what distortions it introduces. As we will see,

under one-sided commitment the optimal mechanisms are qualitatively different when

compared to the symmetric information case. When A reports a higher prior on θ, the

optimal mechanism may entail giving him a fast-track to approval, where he is given a

low initial approval threshold with the caveat that he may be thrown out of the fast-track

if the outcomes of the trial go poorly and face a more stringent burden of proof to meet

for approval.

Intuitively, R would like to set a lower approval threshold when A reports a higher

prior. However, since A prefers a lower approval threshold than R, this introduces incen-

tives for types with lower priors to misreport their type. In order to restore incentives, R

will seek to “punish” outcomes which lower types find more likely. Due to the different

beliefs of R when evaluating the mechanism for a high type and a low type A evaluating

the same mechanism, R can “back-load” punishments in such a way as to reduce low

type incentives while minimizing ex-ante distortions for R. In the optimal mechanism,

this punishment comes in the form of being thrown out of the fast-track: R, knowing

that A has a lower prior, views the chances that the fast-track is revoked (which entails

an inefficient increase in the approval threshold from R’s perspective) to be lower than

A does when A has a lower prior and has deviated.

We model asymmetric information by allowing for the agent’s starting belief πA to

take on a binary realization πA ∈ {π`, πh} where π` < πh. Translating into log-likeliehood

space, we will call the case when A begins with prior Z0 = Z` = log( π`
1−π` ) the low type

of A (who we refer to as `) and when A begins with the prior Z0 = Zh = log( πh
1−πh ) as

the high type of A (who we refer to as h). We let P(Zi) be the ex-ante probability of

type Zi.

Formally, we split time t = 0 into three “instances”: {0−, 0, 0+}. At time t = 0−,

A is given a signal which conveys some information about the state. Without loss of

generality, we assume that the signal is equal to his posterior about θ, i.e., his the signal

s = πA. We will focus on the case when πA ∈ (0, 1), although the model can fit the case

where πA ∈ {0, 1}.8. R knows that A receives a signal, but the realization of the signal

is private information to A. Then, at time t = 0, A can send a message m ∈M = {h, `}
8In many applications, A is likely to be more but not perfectly informed-e.g., drug companies have

more information but do not know for sure that their drug is good.
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to R, after which R can publicly commit to a mechanism. Finally, at time t = 0+ the

public news process begins.

We now redefine a stopping mechanism to account for the need to elicit the private

information of the agent. By the Revelation Principle, we focus on direct mechanisms

in which A reports his type to R. This will result in R offering a menu of stopping

mechanisms from which A can choose by reporting his type.

Definition 12. A stopping mechanism is a menu {(τ i, diτ )}i=h,` such that (τ i, diτ ) ∈
T×D and R implements (τ i, diτ ) when she receives message m = i.

With asymmetric information, R would like to approve h types quicker than ` types.

However, incentive compatibility constraints will come into conflict with this goal: of-

fering higher approval standards for low types than high types makes it more attractive

for low types to claim to be high types. How can R design a mechanism that allows

her to approve high types quicker while still disincentivizing low types from claiming to

be high types? As we will see, the degree of commitment (one- or two-sided) is crucial

for determining the best way to do this. Under two-sided commitment, R can threaten

low types with prolonged experimentation as the evidence becomes negative which will

be enough to dissuade deviation. However, with one-sided commitment such a threat is

no longer credible: the low type always has his outside option available. This limit to

the punishment R can deliver to ` will be a key determinant of the optimal mechanism

under one-sided commitment.

When we are considering the effects of A misreporting his type, the beliefs of A and

R will be different. Note that because initial beliefs enter linearly into Zt, after any

realization of Xt, the beliefs of A and R (when A misreports his type) will be different

by ∆z := Zh − Z`.

5.1 Two-Sided Commitment

We again begin by briefly studying the case with two-sided commitment. With the

introduction of private information, we must also ensure that the mechanism R designs

provides incentives for each type of A to correctly declare their type, which is given in

our definition of incentive compatibility.

Definition 13. A stopping mechanism under two-sided commitment is incentive com-

patible if for all i, k,

E[e−rτ
i
(diτ +

c

r
)|Zi] ≥ E[e−rτ

k
(dkτ +

c

r
)|Zi]
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Formally, R’s problem under two-sided commitment is given by

sup
(τ i,diτ )i=`,h

∑
i=`,h

E[e−rτ
i
diτ
eZτi − 1

1 + eZτi
|Zi] · P(Zi)

subject to ∀ i, k

P (Zi) : E[e−rτ
i
(diτ

eZτ + a

1 + eZτ
+
c

r
)|Zi] ≥

c

r

IC(Zi, Zk) : E[e−rτ
k
(dkτ

eZτ + a

1 + eZτ
+
c

r
)]Zi] ≤ E[e−rτ

i
(diτ

eZτ + a

1 + eZτ
+
c

r
)|Zi].

The introduction of IC constraints mean that R, when designing the mechanism for

Zi, must consider both the distribution over outcomes given Zi and the distribution

over outcomes given Zk. We might suspect that this difference in the distribution over

outcomes may give R room to introduce non-stationary distortions9, surprisingly we find

that it is in face optimal to still use static threshold mechanisms.

Proposition 4. The optimal mechanism under two-sided commitment is a menu of

static-threshold stopping rules.

The assumption of two-sided commitment is somewhat similar to the model of Guo

(2016); in her bandit framework, the agent reports his private information about the

state and the principal commits to a policy which describes which bandit arm to pull.

The agent has no ability to quit the mechanism early (in her main framework, this is

without loss because the agent prefers more experimentation than the principal). As in

her model, we see that static-threshold rules are optimal.

With two-sided commitment, we find that the h type’s IC(Zh, Z`) constraint is often

binding. Because R can make ` commit to experiment past the threshold at which `’s

expected continuation value becomes negative, R can punish ` by increasing experimen-

tation on for low beliefs (which also increases R’s utility). This force is strong enough

so that R can always find a way to dissuade ` from claiming to be h.

Proposition 5. If bh 6= −∞, then IC(Zh, Z`) is binding.

5.2 One-Sided Commitment

We must reformulate the standard participation and incentive constraints to the dynamic

nature of incentives under one-sided commitment. To do this we will need to define a

9See McClellan (2017) for an example where this is optimal.
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dynamic version of incentive compatibility in a similar manner as we defined the dynamic

participation constraints. Incentive constraints for type i’s value of reporting to be type

k must take into account that i also considers the value of a deviation where he may

choose to quit early. With this in mind, we can now define the proper notion of incentive

compatibility.

Definition 14. A stopping mechanism under one-sided commitment is dynamically

incentive compatible if for all i, k,

sup
τ ′∈T

E[e−r(τ
k∧τ ′)(dkτ1(τ < τ ′)

eZτ + a

1 + eZτ
+
c

r
)|Zi] ≤ E[e−rτ

i
(diτ

eZτ + a

1 + eZτ
+
c

r
)|Zi].

We include the sup over τ ′ ∈ T in the incentive constraint to convey the fact that i is

comparing correctly declaring his type to be i to the payoff he could get from reporting to

be type k and potentially quitting early. This introduces a much richer set of deviations

each type could take than in the standard IC constraints (as in our problem with two-

sided commitment). These types of double deviations (misreporting one’s type and

quitting early) will play an important role in determining the optimal mechanism.

We can then write the mechanism design problem with asymmetric information as

[AM ] : sup
(τ i,diτ )i=`,h

∑
i=`,h

E[e−rτ
i
diτ
eZτi − 1

1 + eZτi
|Zi] · P(Zi)

subject to ∀ i = h, ` and k 6= i

DP (Zi) : sup
τ ′

E[e−r(τ
i∧τ ′)(diτ1(τ i ≤ τ ′)e

Zτ + a

1 + eZτ
+
c

r
)|Zi] ≤ E[e−rτ

i
(diτ

eZτ + a

1 + eZτ
+
c

r
)|Zi]

DIC(Zi, Zk) : sup
τ ′

E[e−r(τ
k∧τ ′)(djτ1(τk ≤ τ ′)e

Zτ + a

1 + eZτ
+
c

r
)|Zi] ≤ E[e−rτ

i
(diτ

eZτ + a

1 + eZτ
+
c

r
)|Zi].

We will proceed by analyzing the problem type-by-type. Unlike many mechanism

design problems, there is no clear answer to which are the relevant constraints.10 In

fact, different combinations of binding DIC constraints may bind depending on the

specific values of Zh, Z`. We begin by looking at what the optimal mechanism for h is

when DIC(Z`, Zh) is binding and DIC(Zh, Z`) is slack.11 This conjecture is in contrast

with the case of two-sided commitment in which h’s IC was binding. However, these

10Other standard mechanism design features also fail to hold here; for example, the absence of transfers

precludes standard “no distortion at the top” results.
11Note that it is possible, if Z` is low enough, that ` would always prefer to quit immediately. However

such a case would immediately revert back to the symmetric information model with initial belief Z0 = Zh.
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two environments differ considerably. Under two-sided commitment, R could dissuade `

from imitating h (even when h’s approval threshold was lower) by decreasing h’s rejection

threshold which, due the higher beliefs of h, would be more costly for ` than h. However,

under one-sided commitment such a “threat” to ` is no longer credible since ` can always

quit prematurely and take his outside option. Therefore, if the expected time for h to

be approved is lower in one-sided commitment (as R would like), then it seems natural

to think that `’s DIC will bind. As we will show later, this intuition is correct if Zh is

high enough.

Let V` be the utility that ` gets from truthfully declaring his type (this is determined

by R through his choice of `’s mechanism, but for now we can treat it as fixed.). Then

our problem of determining the optimal high type mechanism is given by

[AMh] : sup
(τ,dτ )

E[e−rτdτ
eZτ − 1

1 + eZτ
|Zh]

subject to DP (Zh),

DIC(Z`, Zh, V`) : sup
τ ′

E[e−r(τ∧τ
′)(dτ1(τ ≤ τ ′)e

Zτ + a

1 + eZτ
+
c

r
)|Z`] ≤

c

r
+ V`.

Intuitively, we should expect that h’s DP constraints will not be binding as long `

has not found it strictly optimal to quit experimenting: since h has a higher belief about

the state being good, he will ascribe a higher probability to approval than ` would.

The lower belief on `’s part means that for low enough Xt, the symmetric information

mechanism for h will induce ` to quit immediately. Let (τSMh , dSMτ,h ) be the stopping rule

for the symmetric mechanism given h and define bSM to be the highest Xt such that

(τSMh , dSMτ,h ) starting at Xt would induce ` to quit immediately-i.e.,

bSM := max{Xt : max
X

E[e−r(τ
SM
h ∧τ(Xi))(dSMτ,h (X)

eZτ + a

1 + eZτ
+
c

r
)|Xt,M

X
t = Xt, Zτ = Z`+

φ

σ
Xτ ] =

c

r
}.

It is straightforward to see that such a bSM exists; for example, if Xt is such that the

optimal approval threshold for h is given by Bh(MX
t ), then ` will find it optimal to quit

immediately since Bh(MX
t ) ≥ B`(M

X
t ). Upon τ(bSM ), using the symmetric mechanism

for h is optimal: the optimal mechanism for AMh will promise ` and h types who have

continued to this point some (weakly positive) continuation utilities and will respect all

DP constraints for h. Since the symmetric mechanism for h doesn’t have such promised

continuation values and does respect all DP constraints, it’s value will yield an upper

bound on the original mechanism at time τ(bSM ).
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Therefore, we define a relaxed problem in which we drop all DP constraints and all

but a finite number of DIC constraints and restrict the process to stop at Xt = bSM

with continuation value to R equal to his payoff from the symmetric mechanism for h at

Xt (which we will denote SMh(Xt)). Formally, our relaxed problem can be written as

[RAMh
N ] : sup

(τ,dτ )
E[e−r(τ∧τ(bSM ))(dτ (bSM )

eZτ − 1

1 + eZτ
1(τ ≤ τ(bSM )) + 1(τ > τ(bSM ))SMh(bSM )|Zh]

subject to ∀Xi ∈ TN ∪ {bSM}

RDIC`(Xi) : E[e−r(τ∧τ(Xi)∧τ(bSM ))(d(Xi)
eZτ + a

1 + eZτ
1(τ ≤ τ(bSM )) +

c

r
)|Z`] ≤ V` +

c

r
.

We can decompose the first time ` would optimally quit and the continuation mech-

anism from this time onward.

[Hh
N (Xt)] : sup

(τ,dτ )
E[e−r(τ∧τ(bSM ))(dτ (bSM )

eZτ − 1

1 + eZτ
1(τ ≤ τ(bSM )) + 1(τ > τ(bSM ))SMh(bSM )|Zt]

subject to ∀Xi ∈ {Xj ∈ TN ∪ {bSM} : Xj < Xt}

RPK(0) : E[e−r(τ∧τ(Xi)∧τ(bSM ))(dτ (Xi)
eZτ + a

1 + eZτ
1(τ ≤ τ(bSM )) +

c

r
)|Zt −∆Z ] ≤ c

r
.

We start by verifying that our relaxed problem RAMh
N is truly a relaxed problem and

yields a higher value to R than AMh. This follows from our previous discussion on bSM

and the fact that we have dropped DP constraints and a number of DIC constraints.

Lemma 6. The solution to RAMh
N is an upper-bound on AMh.

With this in hand, we can begin the analysis of RAMh
N . Using similar arguments to

that of Lemma 2, we show that the optimal solution until the first binding constraint

X1 is to use a threshold rule. The proof is not a straightforward application of the

arguments for the symmetric information case since the expectation in our constraint

set are taken with respect to a different distribution (i.e., `’s beliefs) than our objective

function. Despite this difference, we show that threshold mechanisms until X1 are still

optimal.

Lemma 7. The solution to RAMh is given by a stationary approval threshold policy until

the first binding constraint X1. At X1, the continuation mechanism solves Hh
N (X1).

At the first binding constraint X1, R must be using a stopping rule which induces ` to

weakly prefer to quit. There are many ways in which the optimal mechanism could induce
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` to quit while still providing incentives for h to experiment (e.g., there exists thresholds

such that, due `’s lower belief, ` would quit while h would continue to experiment). If the

first binding constraint is bSM , then the symmetric information mechanism will induce

` to quit.

Because A cares about the state, it is possible that R could dissuade ` from misre-

porting to be h by giving him too low of an approval threshold (i.e., threatening him with

early approval). We are interested in a situation in ` prefers to have a lower threshold; In

order to rule out such threat of early approval, we will assume that at bSM , ` would still

prefer a lower approval threshold. More specifically, we assume that there is only one

threshold which would leave ` indifferent between continuing to experiment and quitting.

Assumption 1. For each b > bSM and X > b, there exists a unique BZ such that

Ṽ (BZ , Z` + φ
σ b, Z` + φ

σX) = 0.

If we consider payoffs such that A prefers approval regardless of the state (i.e., a > 0)

then such an assumption clearly holds. Alternatively, we can also rule out such threats

with a low approval threshold without this assumption on bSM as long as A is allowed to

continue experimenting (and delay approval or rejection until A desires to do so) after R

approves (that is A’s payoff to approval is at Xt is maxB,b Ṽ (B, b, Z` + φ
σX) rather than

eZτ+a
1+eZτ

).12 In such a situation in which A controls both experimentation and approval

once R has signed off on approval, A can always get at least his preferred threshold B∗A,

making threats of “too-early” approval by R non-credible and will ensure that A’s utility

is weakly decreasing in the approval threshold and therefore there is a unique approval

threshold which leaves the agent indifferent with taking his outside option.13

It is important to note that while the continuation mechanism at τ(X1) must induce

` to quit, the payoff relevant beliefs for R are those of h. By inducing ` to quit, the

mechanism may be setting a stricter approval policy that R would like to given that the

true beliefs are h. If this is the case, then R would like to “relax” the overly stringent

approval policy over time while making sure to do in such a way as to not violate the

earlier incentives for ` to quit. We verify that this intuition is correct in the following

lemma. R loosens the threshold by decreasing the threshold as MX
t : as `’s beliefs get

lower, a lower approval threshold is needed to ensure that ` found it optimal to quit at

X1. First, though, we define some notation:

12It is easy to show that such a payoff assumption won’t change the results of Section 4.
13In the case of drug companies, this means that the regulator can not forbid the companies from

running additional trails after approval but before putting the drug on the market, which is a reasonable

assumption.
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b∗i (B) := b∗(B;Zi)

B∗i,A := B∗A(Zi)

Bi(X) := min{B > B∗i,A : b∗i (B) = X}.

The function b∗h(B) (b∗` (B)) gives the threshold at which a high (low) type would quit

when facing a static approval threshold is B and A’s beliefs are Zh (Z`). Bi(X) is the

approval threshold which would induce type i to quit at evidence level X.

Lemma 8. When DIC(Zh, Z`) is slack, the optimal mechanism which solves Hh
N (Xt)

when the current evidence is Xt is given by a dynamic threshold policy τ = inf{t : Xt ≥
Bh(MX

t )} ∧ τ(b∗(B∗h,A) ∨ b∗h(−σ
φZh)) and dτ = 1(τ = τ(Bh(MX

t ))) where

Bh(MX
t ) =

{
B`(M

X
t ) MX

t ∈ [bSM , X1],

BSM
h (MX

t ) MX
t < bSM .

where BSM
h (MX

t ) is symmetric information mechanism for h.

Combining Lemmas 7 and 8, we summarize the optimal mechanism for h below.

Lemma 9. When DIC(Zh, Z`) is slack, the optimal mechanism which solves h is given

by, for some (b1h, B
1
h), the policy τ = inf{t : Xt ≥ Bh(MX

t )}∧τ(b(Zh)) and dτ = 1(Xτ =

Bh(MX
t )) where

Bh(MX
t ) =


B1
h if MX

t ∈ [b1h, 0)

B`(M
X
t ) MX

t ∈ [bSM , b1h)

BS
h (MX

t ) MX
t < bSM .

where BS
h (MX

t ) is symmetric information threshold function for h.

The approval threshold Bh(MX
t ) is pinned down by (b1h, B

1
h). Note that when b1h >

b∗` (B
1
h), then B`(b

1
h) > B1

h, implying that the approval threshold takes a jump when MX
t

crosses b1h. This features distinguishes it from our symmetric information mechanism

and, as we will see, the mechanism for `. The reason behind this jump follows from our

discussion at the outset of the section 5.2: b1h acts a failure threshold which, if reached,

moves into a punishment phase in order to lower the incentives of ` to misreport his type.

This second stage of the optimal mechanism has a continuous and monotonically

decreasing (in MX
t ) threshold, which consists of two regimes:
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• Punishment Regime: After exiting the initial stationary regime, the mechanism

may enter a “punishment” regime in which the approval threshold jumps up. The

fact that Bh(MX
t ) = B`(M

X
t ) ensures that ` does indeed want to quit, but uses the

minimal increase in the approval threshold necessary. R would like to decrease the

approval threshold as quickly as possible, but must satisfy PK constraints which

ensure that ` did indeed find it optimal to quit at τ ′. We show that the optimal

means to do this is by using the stopping time τ = inf{t : Xt ≥ B`(M
X
t )}.

• Symmetric Mechanism Regime: At a certain point, employing the symmetric

mechanism for type h is enough to deliver the appropriate punishments for ` and

is optimally chosen by R at MX
t = bSM . In this sense, the distortions introduced

by asymmetric information dissipate over time since conditional on no approval

before MX
t = bSM , eventually R will be able to implement her best mechanism

under one-sided commitment absent any distortions from private information.

Because R eventually moves to the symmetric mechanism for h, the rejection thresh-

old is the same as in the symmetric information case, which implies that there is no

distortion from private information at the end of experimentation. The DIC(Z`, Zh)

constraint does not cause R to reject earlier that would be optimal in the absence of in-

centive constraints. This comes about because the ` always has more pessimistic beliefs

that h and thus there is always a way to deliver incentives for ` to quit that don’t involve

rejection. Interestingly, this implies that the placement of distortions are non-monotonic

in MX
t for h: they increase upon entering the punishment phase but then are gradually

reduced over time until they are eliminated upon entering the second stationary regime,

in which R uses the best mechanism he could get absent private information.

Having found what the optimal mechanism is for h, we must also solve for the optimal

mechanism for `. Suppose that the mechanism must deliver utility V` to the low type

correctly declaring his type. Then the mechanism design problem is given by

[AM`] : sup
(τ,dτ )

E[e−rτdτ
eZτ − 1

1 + eZτ
|Z`]

subject to

DP (Z`) : sup
τ ′∈T

E[e−r(τ∧τ
′)(dτ1(τ ′ > τ)

eZτ + a

1 + eZτ
+
c

r
)|Z`] ≤ E[e−rτ (dτ

eZτ + a

1 + eZτ
+
c

r
)|Z`]

PK(V`) : E[e−rτ (dτ
eZτ + a

1 + eZτ
+
c

r
)|Z`] ≥ V`.
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Except for the additional promise keeping constraint PK(V`), this is identical to the

symmetric information mechanism. We should expect that the optimal mechanism for `

is qualitatively the same as the symmetric information mechanism, which turns out to

be correct.

Lemma 10. The optimal mechanism for ` when DIC(Zh, Z`) is slack is given by the

stopping rule τ = inf{t : Xt ≥ B`(M
X
t )} ∧ τ(br) and dτ = 1(Xτ = B`(M

X
τ )) which is

defined as

B`(M
X
t ) =

{
B1
` , MX

t ∈ [b∗` (B
1
` ), 0),

B`(M
X
t ), MX

t ∈ [br, b
∗
` (B

1
` )).

where B1
` is such that B1

` is less than it would be in the symmetric information case.

Lemma 10 leaves open the possibility that R rejects at br > b∗` (B
1
` )-i.e., the second

part of B`(M
X
t ) is never reached. Whenever A and R’s payoffs are aligned over terminal

payoffs (i.e., a = −1), then R will never reject early and br = b∗` (B
∗
A,`). However, this may

not be true when a = 1. Although there are no DIC constraints to consider, R, when

designing `’s mechanism, does consider how increasing the utility of ` when truthfully

reporting weakens the incentives for ` to misreport himself to be h. Therefore, R will

decrease the approval threshold lower than she would prefer; if this decrease is large

enough, R may prefer to not enter the incentivization regime and instead reject at br.

However, it is straightforward to show that if P(Z`) is large enough and Z` > b∗` (
−σ
φ Z`),

then we will have b1` = b∗(B1
` ). This will also always be the case when Z` > 0.

Having derived the form of each mechanism for each type separately, we can now

formally state the optimal mechanism.

Theorem 2. When DIC(Z`, Zh) is binding and DIC(Zh, Z`) is slack, the optimal mech-

anism is given the mechanisms of Lemmas 9 and 10. If the optimal mechanism for h is

not equal to the symmetric information case and b1` = b∗(B1
` ), then B1

h ≤ B1
` and b1` ≤ b1h;

moreover, B1
h < B1

` implies b1` < b1h

The mechanism displays a number of interesting characteristics:

• Low Type Monotonicity: The mechanism for ` closely resembles that of the

symmetric mechanism in that the approval threshold will only drift downwards.

• High Type Jump: When b1h > b∗` (B
1
h) (which we verify later will be the case

when Zh is high enough), then the approval threshold for h takes a jump upwards
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Figure 5: If the initial regime thresholds were such that B1
` > B1

h and b1` > b1h, then `

report himself to be h and quit early, effectively giving himself a lower approval threshold.

when Xt reaches b1h for the first time, after which it is monotonically decreasing

in MX
t . This jump upward occurs in order to provide enough punishment for a

deviating ` type to prefer to quit immediately.

• Some Distortion At The Start: Until the first time Xt = bSM , the approval

threshold will differ than R’s optimal mechanism under symmetric information.

• No Distortion At The End: R never rejects at a belief higher than she would

under symmetric information for h and for ` as well if br < b∗` (B
1
` ).

Note that both ` and h receive an initial stationary regime. Qualitatively, the features

of the second stage are determined by the initial static phase. We are interested in how

these static phases compare for h, `. Is it that h is offered a lower approval threshold

than `? While it seems intuitive, lowering the approval threshold also introduces other

distortions into the mechanism through the DIC constraints.

We refer to the mechanism given to h, when not equal to his symmetric information

mechanism, as a fast-track mechanism. We can think of h as being offered a two stage

trial: the first trial (a fast-track) is given a low approval threshold, but also a “failure”

threshold b1h. If the failure threshold is reached first, then the trial is declared a failure

and the agent is thrown out of the fast-track. However, instead of rejecting, R allows h to

immediately begin experimenting again, only now h is given a higher approval threshold.

This fast-track mechanism illustrates the trade offs that must be made under one-

sided commitment: in order to grant h a lower approval threshold, R must deter devi-

ations by ` by increasing the failure threshold. This lower approval threshold is more
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Figure 6: The approval threshold for h (the upper dashed line) starts off low, but, when

Xt crosses the failure threshold (the lower dotted line), the approval threshold jumps up

and drifts down as MX
t decreases.

likely to be reached by h than `, which allows R to profitably back load distortions in

the “failure” threshold.

We now illustrate some of the ideas behind why the optimal mechanism must take

this nested form. For `, when declaring himself to be ` or h, his utility is completely

determined by the initial static thresholds. Suppose that V` > 0; then we know that b`1 =

b∗` (B
`
1)-i.e., R keeps the initial threshold fixed until the point at which ` is first indifferent

between ceasing and continuing experimentation. We note that if Bh
1 > B`

1, then we

cannot have DIC(Z`, Zh) binding. The reason for this is clear: since the static approval

threshold is higher (which strictly reduces utility to `), ` must gain from experimenting

longer on the low end of beliefs when claiming to be h. But since ` when truthfully

declaring his type is allowed to experiment up until the point at which he would choose

to quit, there is nothing to be gained (relative to truthfully declaring his type) for ` from

claiming to be h. If Bh
1 < B`

1, then it must be that bh < b`. Otherwise ` could profitably

deviate by claiming to be h and quitting when beliefs drift down from initial beliefs by

b`. In this way, ` is able to maintain the same quitting threshold as truthfully declaring

himself to be ` while also achieving a lower approval threshold Bh.

Theorem 2 assumes that DIC(Zh, Z`) is slack and DIC(Z`, Zh) is binding. This will

not always be the case: there are examples in which DIC(Zh, Z`) must bind. This comes

about due to the incentivization regime for `. This incentivization regime decreases the
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approval threshold enough to keep ` indifferent. Since h has a higher belief than ` after

observing Xt, h (when reporting to be `) will still have positive continuation value when

in `’s incentivization regime, creating incentives for h to imitate `. However, we can

show that if Zh is high enough, then the incentives of R and h are sufficiently aligned

and DIC(Z`, Zh) binding is sufficient for DIC(Zh, Z`) to be slack.

Proposition 6. For each Z`, ∃Z such that ∀Zh > Z, DIC(Zh, Z`) is slack and DIC(Z`, Zh)

is binding in the optimal mechanism. Moreover, if `’s utility is strictly positive, then

b1h > b∗(B1
h).

Although numerical examples show that DIC(Zh, Z`) will be slack for Zh which are

not limiting cases, it will still be the case that for some Zh, we will have DIC(Zh, Z`)

binding in the optimal solution. As we will show, under the assumption that Z` < 014,

we can verify that the optimal mechanism will look very similar to that of Theorem 2.

When both DICs bind, then the optimal mechanism will introduce distortion into `s

mechanism by inducing early rejection.

Lemma 11. The optimal mechanism for ` when Z` < 0 and DIC(Zh, Z`) is binding is

given by a dynamic approval threshold B`(Mt), which is defined as

Bh(MX
t ) =

{
B`

1 MX
t ∈ [br ∨ b∗` (B`

1), 0),

B(MX
t ) MX

t ∈ [br, br ∨ b∗` (B`
1)).

for some (B`
1, br) ∈ R2.

When both DIC constraints are binding, the problem to determine h’s mechanism is

only modified by adding a PK constraint to deliver some value Vh to h when he correctly

declares his type. This changes very little about the arguments of Lemma 7 and 8.

Lemma 12. When DIC(Zh, Z`) is binding, there exists (b1h, B
1
h, B

2
h) such that the opti-

mal mechanism for h is given by τ = inf{t : Xt ≥ Bh(MX
t )} ∧ τ(−σ

φZh)

Bh(MX
t ) =


B1
h if MX

t ≥ b1h,
B`(M

X
t ) if MX

t ∈ [b∗` (B
2
h), b1h],

B2
h if MX

t ∈ [b∗h(B2
h), b∗` (B

2
h)),

Bh(MX
t ) if MX

t ≤ b∗h(B2
h),

and dτ = 1(Xτ = Bh(MX
t )).

14The assumption that Z` < 0 is reasonable given our application: Over 90% of all drugs that begin a

clinical trial fail to be approved (see FDA (2017)).
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In all, we summarize the optimal mechanism in this case below:

Theorem 3. The optimal mechanism for ` when Z` < 0 and DIC(Zh, Z`) is binding is

given by Lemma 11 and the optimal mechanism for h is given by Lemma 12.

There are two main differences between the mechanism when DIC(Zh, Z`) is binding

and when it is slack. When it binds, R may reject ` early (i.e.- br > b(0)) in order to

lower incentives for h to imitate `. Additionally, it may be that the second stationary

regime for h starts below R’s symmetric information solution (so that R can provide

additional incentives for h while maintaining `’s incentive to quit).

Interestingly, unlike h’s mechanism when DIC(Z`, Zh) is binding, `’s mechanism

does not qualitatively change much even when DIC(Zh, Z`) is binding. The fast-track

feature of h’s mechanism comes from the backloading of punishments by R, whereas

the distortions in `’s mechanism from DIC(Zh, Z`) come through in early rejection of

the project. This tells us that the different priors in the constraint set matter and it is

important whether they are greater or less than the prior of the objective function.

5.3 Quantitative Derivation

Our qualitative analysis of the optimal mechanism leaves us with very few parameters

over which we must optimize. For high enough Zh, the optimal mechanism is com-

pletely pinned down by the choice of the thresholds of the stationary regime (B1
h, b

1
h)

and (B1
` , br). When DIC(Zh, Z`) is binding, we have consider three parameters each for

h, `: (B1
h, b

1
h, B

2
h) and (B1

` , b
1
` , br). Given the richness of the available stopping rules, this

reduction is somewhat remarkable and makes the problem computationally tractable.

The choice of these thresholds will pin down the rest of the mechanism. To find the

optimal stationary regime thresholds, we must find what the continuation value to R is

of reaching bi.

Define the function ji(X,M, br) (we will drop br for notational convenience) to be

the expected value of the principal when the current minimum of evidence is M , current

beliefs are Z = Zi + φ
σX and the project is rejected when beliefs reach br. Using our

previous formulas for discounted threshold crossing probabilities, it is easy to see that
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ji(X,M
X) = Ψ(Bi,Z(MZ),MX , Z)

eZ − eZ−Bi,Z(MZ)

1 + eZ︸ ︷︷ ︸
Expected utility from approval before Zt = MZ

+ ψ(Bi,Z(MZ),M,Z)
eZ + eZ−M

Z

1 + eZ︸ ︷︷ ︸
Discounted prob. MZ hit first

· ji(M
X ,MX)︸ ︷︷ ︸

Continuation value at MZ

.

where the mapping from X,MX , B to X,MZ , BZ is understood. Thus if we can calcu-

late ji(M
X) := ji(M

X ,MX), the value of ji(X,M
X) follows immediately. In order to

calculate ji(M
X), we use the principle of normal reflection15: ∂ji(X,M

X)
∂MX |X=MX = 0. We

can then take the derivative with respect to MX to get

∂ji(X,M
X)

∂MX
=
φ

σ
B′i,Z(MZ)[ΨB

eZ − eZ−Bi,Z(MZ)

1 + eZ
+ Ψ

eZ−Bi,Z(MZ)

1 + eZ
+ ψB

eZ + eZ−M
Z

1 + eZ
ji(M

X)]

+
φ

σ
[Ψb

eZ − eZ−Bi,Z(MZ)

1 + eZ
+ ψb

eZ + eZ−b

1 + eZ
ji(M

X)− ψe
Z−MZ

1 + eZ
ji(M

X)]

+ j′(MX)ψ
eZ + eZ−M

Z

1 + eZ
.

Evaluating the above equation at Z = MZ and using that ∂ji(X,M
X)

∂MX |Z=M+ = 0, we get

j′i(M
X) = ji(M

X)[
1

1 + eMX − ψb]−
eM

X − eMX−Bi,Z(MZ)

1 + eM
Ψb, (1)

where we note that Ψ(B(M),M,M) = 0 and ψ(B(M),M,M) = 1. This, coupled with

the boundary condition ji(br) = 0 gives the ODE which describes ji(M).

Proposition 7. The value of experimentation to R for type i when the current evidence

level is MX
t and the minimum is MX

t is given the unique solution to j′i(M
X
t ).

For `, we know that the approval mechanism is strictly decreasing in M and so this

equation gives the value of the incentivization for `. The function jh also corresponds to

h’s optimal mechanism when h’s continuation value at Xt = MX
t is equal to zero. We

still need to derive the value of the mechanism to R when in the punishment regime.

15See Peskir and Sharyaev (2006) for a derivation.
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By a similar derivation, we can show that value in the punishment regime (which we

call jph) is given the same differential equation as in equation 1, but now with boundary

condition at b2h of

jph(b1h) = Ψ(B2
h,Z , b

2
h,Z ,M

Z)
eM

Z − eM
Z−B2

h,Z

1 + eMZ +ψ(B2
h,Z , b

2
h,Z ,M

Z)
eM

Z − eM
Z−b2h,Z

1 + eMZ j2(b2h,Z).

whereB2
h,Z and b2h,Z are the translations ofB2

h and b2h into belief space. WhenDIC(Zh, Z`)

is binding, we need to also consider the value to h of `’s optimal mechanism when in the

incentivization regime, which we will call v`h. By a similar argument as for j(X,MX),

we get a differential equation for v`h(MX) as

dv`h(MX)

dMX
=
φ

σ

(
[1− ψBB′h,Z(MZ)− ψb](

c

r
+ v(MZ))

− [ΨBB
′(M) + Ψb]

eM
Z+∆z(1 + c

r ) + (a+ c
r )eM−Bh,Z(M)

1 + eMZ+∆z

)
with boundary condition v`h(br) = 0.

Similarly, we must find the value to h from the beginning of punishment regime in

the mechanism for h, which we denote vhh. A similar argument establishes the differential

equation to be as the one above. We evaluate the boundary condition as the beginning of

the second stationary regime. Since the expected continuation payoff to h upon reaching

the beginning of incentivization regime is zero, we can evaluate the utility to h of the

secondary stationary regime using only the static thresholds. This gives a boundary

condition of vhh(M) = Ψ(B2
h, b

2
h,M)

eM (1+ c
r

)+(a+ c
r

)eM−B
2
h

1+eM
+ ψ(B2

h, b
2
h,M) cr

eM+eM−b
2
h

1+eM
.

This allow us to write out the mechanism design problem as

[QD] : max
(Bi,bi,bi)i=h,`

∑
i=h,`

Ψ(BZ,i, bi,Z , Zi)
eZi − eZ−i−Bi,Z

1 + eZi
+ ψ(Bi,Z , bi,Z , Zi)

eZi + eZi−bi,Z

1 + eZi
ji(bi, bi)

subject to ∀i = h, ` and k 6= i

DIC(Zi, Zk) : Ψ(Bi,Z , bi,Z , Zi)
eZi(1 + c

r ) + (a+ c
r )eZi−Bi

1 + eZi
+ ψ(BZ,i, bi, Zi)

eZi + eZi−bi

1 + eZi
vii(bi, bi)

≥Ψ(Bk,Z , bk,Z , Zk)
eZi(1 + c

r ) + (a+ c
r )eZk−Bk,Z

1 + eZi
+ ψ(Bk,Z , bk,Z , Zk)

eZi + eZk−bk,Z

1 + eZi
vki (bk, bk)

DP (Zi) : bi ≥ b∗i (Bi).

where vkh is defined as above, vk` .
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5.4 Comparative Statics

While all of the previous section allows for general a, we now restrict attention to the case

when a = 1 so that A always prefers immediate approval. In this case, the misalignment

of R and A’s preferrences is particularly severe, making it more difficult for R to elicit

A’s private information. As we will see, this difference in preferences opens up a number

of interesting comparative statics.

In the symmetric information case, increasing the cost c unambiguously hurts R,

since it induces R to provide more incentivization and reject at a higher beliefs (i.e.,
∂b∗(−φ

σ
Z0)

∂c > 0). However, with asymmetric information this is no longer the case. Ad-

ditional costs may be of use as a screening device. When c becomes small, it becomes

increasingly harder for R to induce ` to quit while still inducing h to keep experimenting.

Taking the limit as c→ 0, we get that the private information of A is not used at all.

Proposition 8. Under both one- and two-sided commitment, as c → 0 the optimal

mechanisms for h, ` converge to value of the single-decision maker problem for R with

prior P(Zh)πh + (1− P(ZH))π`.

With asymmetric information and the absence of monetary transfers, costly experi-

mentation provides a tool for screening of types, as detailed in the following proposition.

This result can speak to the debate on who should fund drug trials (drug companies or

government agencies), providing a reason for requiring the companies by requiring them

to have some “skin in the game” and making it easier to elicit any private information

the companies may have.

Proposition 9. The value of the optimal mechanism is non-monotonic in c when A has

private information. When A has no information, the value of the optimal mechanism

is strictly decreasing in c.

To understand the idea behind this proposition, we, consider the limiting cases of c

and suppose that πh ≈ 1 and π` ≈ 0 and P(Z`) is large. As c → 0, the value of the

optimal mechanism converges to that of the principal-optimal symmetric information

problem with prior P(Zh)πh + P(Z`)π`: all information that A possess is wasted. If

we look at low values of µ
σ , then the value of the optimal mechanism goes to zero as

immediate approval is not optimal and it takes a long time for beliefs to change up to

a level at which R would approve. On the other side, as c becomes large, R can always

find a mechanism which separates h and `. R could find a mechanism which rejects `

immediately but for which h still participates and is approved with positive probability.

This will bound the value of the optimal mechanism above zero.
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Additionally, we might wonder whether or not it is beneficial to R for A to have

private information about θ. On one hand, if R can make use of A’s information, then

it is beneficial to R. On the other hand, private information introduces information

rents and can add distortions into R’s optimal mechanism. Which effect is greater is not

ex-ante obvious. To answer this question, we compare the case of symmetric information

to the case in which A has perfect information about θ. The following proposition shows

that asymmetric information is in fact better for R.

Proposition 10. Let π0 be the prior of R. Then the value to R of optimal mechanism

under asymmetric information in which A learns θ perfectly is higher than the value to

R of the optimal mechanism under symmetric information

6 FDA Drug Approval

Our model provides a theoretical justification for why approval standards may change

over time. A related question, outside of the normative viewpoint adopted in the previous

sections, is whether or not we see such changes in practice. To consider this question, we

look more closely at FDA approval standards. We will study the relationship between

the length of clinical trials and the probability of Type I error and will show that, as in

our model, longer experimentation leads to more Type I error. First though, we describe

the process which a new drug must go through to get approved.

Once a new drug has been patented, the drug company must apply for a Investi-

gational New Drug (IND) application with the FDA before beginning trials on human

subjects. Companies can, however, perform tests on animals and overseas without the

FDA’s approval, which can motivate why drug companies hold private information about

the drug. Once the IND has been approved by the FDA, the companies can begin human-

subject clinical trials. The trials are typically conducted in three phases and cumulatively

can last for many years (5.76 years on average in our data, but can take up to 20 years).

Once the company has completed their trials, they submit a New Drug Application

(NDA) with the FDA, at which point the FDA reviews the results of the clincial trials.

After the FDA reviews the companies application, it either approves or fails to approve

the drug. However, over 90% of all NDA applications are approved, indicating that

companies understand and have met the standards needed for approval.

In addition to the normal approval process, the FDA has a number of programs for

expedited approval. Beginning in 1997, the FDA began using a process for approvals,

which it calls the Fast Track designation whose “purpose is to get important new drugs

to the patient earlier.” Prior to the IND application, the sponsoring company can apply
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for the Fast Track designation. After consultation with the company, the FDA will grant

the designation if the drug “is intended to treat a serious condition AND nonclinical or

clinical data demonstrate the potential to address unmet medical need.” However, the

fast-track designation is not always permanent: if the data from the clinical trial shows

that the drug no longer meets the criteria for the Fast Track designation, it may be

removed after which the company can continue to perform clinical trials, albeit without

the benefits of the Fast Track. The FDA expanded its expedited approval programs

by creating the Accelerated Approval and Breakthrough Therapy designation, both of

which have similar features as the Fast Track designation. These attributes, expedited

approval and removal from the Fast Track upon negative news from the clinical trail, fit

the qualitative features of Section 5.2.

In contrast to the standard single-decision maker problem, our model predicts that

the FDA should use a dynamically moving approval threshold. Unfortunately, we cannot

directly observe belief at which the FDA is approving the drugs. The standard model,

with a single constant approval threshold, should have the same probability of Type I

error regardless of the length of the clinical trial. This will allow us to test the asymmetric

information model. For ` types (those who do not receive the Fast Track), the approval

threshold is decreasing and hence the same increasing probability of Type I error as in

Section 4.3 holds. At first glance, the problem for h types is more complicated, since

the approval threshold is non-monotonic. However, we can note that as long as h is in

the fast track (i.e., the failure threshold has not been reached), the approval threshold

is constant over time. Therefore, our model predicts that drugs in the fast track should

have a constant Type I error probability over time while drugs in the standard approval

process should have an increasing probability of Type I error.

Our data below consists of 370 drugs approved between 1987-2013, of which 65 were

either withdrawn or received a BBW. 79 of the drugs were approved under an expedited

approval process (Fast Track or Accelerated Approval). Much of the data was compiled

from Gilchrist (2016), Frank et al. (2014) and Carpenter et al. (2008) while the rest of the

data was taken by searching the FDA website directly16. Table 1 gives some descriptive

statistics of the data and Figure 7 gives a histogram over the length of testing prior to

NDA submission.17 Table 1 shows that, as intended, the approval time we can confirm

that the length of clinical trials under Expedited Approval is lower then that under the

Standard Approval pathway; performing a two-sample t-test, we can confirm that this

16 From Gilchrist (2016), we get a measure of how long each drug took from the initial IND application

to NDA submission. We then use Frank et al. (2014) and Carpenter et al. (2008) to compile a measure

of Type I error.
17All results presented below are robust to dropping outliers.
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Table 1: Summary Statistics

Standard Approval Expedited Approval

Mean 6.135 5.143

Median 5.317 4.890

Maximum 26.21 14.997

Minimum 1.011 0.076

Standard Deviation 3.348 2.684

N 339 79

difference is statistically significant (p = 0.0145).

Figure 7: This histogram shows the length of clinical trials across our sample.

There are several ways in which we could measure Type I error. The most obvious is

to count whenever a drug is withdrawn from the market for safety concerns. However,

some drugs are not pulled from the market but receive Black Box Warnings (BBW)

which appear on the label of the drug and advise of negative side-effects and changes

in the prescribed application of the drug. These events signify a failure of the approval

process to correctly determine the safety of a new drug. Following Frank et al. (2014)
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and Carpenter et al. (2008), we say that a drug experiences Type I error if it is either

withdrawn from the market or receives a post-market entry BBW.

When looking at the effect of trial length on Type I error, it is important to control

for the type of drug: it may be that drugs treating cancer are judged by a different

standard than those treating allergies. In order to control for this, we classify each drug

according to its Anatomical Therapeutic Chemical (ATC) code, which is used by the

World Health Organization to categorize drugs by which organ and system they treat as

well as their pharmacological and chemical properties. We used this to group drugs in

to 14 categories, which we then use as fixed effects to control for the drug class in our

regressions.

In addition to drug category fixed effects, we can also control for a number of other

factors in the regression. While our interest is in the effect of trial length on Type I error,

we might wonder whether the length of the FDA review process after NDA submission

has an impact on the probability of Type I error. Ex-ante, it is reasonable to think that

the length of the review is related to the length of the trial and the probability of Type

I error. Additionally, we also control for the size of the company (including a dummy

variable for whether or not the sponsoring company was one of the 25 largest) as well

as the approval year (to pick up any time trends in the data). Running the regression,

some of our observations are lost due to lack of variability in the error indicator within

drug class (for some classes there were no Type I errors). The results are presented in

Table 2.
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Table 2: Regression Results

SP EP

Trial Length 0.104∗∗∗ 0.0001

(0.043) (0.176)

Review Time 0.074 -1.448

(0.080) (1.311)

Top 25 Company 0.440 -0.195

(0.324) (0.876)

Approval Year −0.055∗∗ -0.030

(0.024) 0.079

Drug Class Fixed Effects Yes Yes

N 309 61

Standard deviation in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01

The results exactly match what our model predicts: we see that under the standard

pathway, drugs that took longer in clinical trials were more likely to experience a Type I

error while those clinical trial length had no impact in the expedited approval programs.

Our model provides a justification for why such a relationship may actually be optimal.

7 Extensions

In the previous sections we have assumed a limited set of controls for R (i.e, to approve

or not) and very specific utility functions/diffusion process. We now explore how each

of features shapes our results and show that the qualitative form of optimal policies is

robust to many of our model’s details.

7.1 Transfers

One natural extension is to allow for some form of transfers. In many settings, unbounded

transfers are infeasible. Instead, we will focus on the case where R may share the costs
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of experimenting with A. In our FDA example, this can be done via subsidies or grants.

Formally, we let wt be the transfers made at time t and u(wt) be the agent’s utility from

transfers wt. The utility of R is given by

E[e−rτdτ
eZτ − 1

1 + eZτ
−
∫ τ

0
e−rtwt|Z0],

and the utility to A is given by

E[e−rτdτ
eZτ − a
1 + eZτ

−
∫ τ

0
e−rt(

c

r
+ u(wt))|Z0].

If we extend our Lagrangian analysis to this setup, we can see that the choice of w

will depend on the accumulated Lagrange multipliers. Because the choice of wt does not

affect the evolution of Xt or Zt, wt will be determined at each time t by the first-order

condition

1 = −
N∑
i=1

λ(Xi)1(MX
t ≤ Xi)u

′(wt).

Interestingly, the amount of the costs borne by R is, conditional on MX
t , independent

of the current level of Xt. Since −
∑N

i=1 λ(Xi)1(MX
t ≤ Xi) is increasing in MX

t , this

will imply that the optimal α is also increasing as MX
t decreases. This seems natural;

as the the firm becomes more pessimistic, R is willing to take on more costs in order to

prolong experimentation and to reduce the need to decrease the approval threshold.

While it might seem strange at first that R takes on more costs as the beliefs about

the project gets worse, this is exactly what happens in many real-world settings. If we

think about for which projects the government provides subsidies, they are often for

research which has less of a chance of being successful but the government values more

than the agent controlling the project.

Proposition 11. The optimal mechanism with cost sharing depends only on MX
t and

wt = w̃(MX
t ) for some decreasing function w̃.

7.2 General Markov Process

It is natural to wonder how the results of the model depend on the particular framework

used. For example, how does the payoff structure determine the optimal mechanism?

Does the exact specification of the diffusion process qualitatively determine the optimal

strategy? To answer these questions, we generalize the symmetric information model to
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allow for a wide range of utility functions and stochastic processes. We can show that

the optimal mechanism retains the same form as in Section 4.3.

Let Xt be a one-dimensional diffusion process on I ⊆ R (where I is the interval

[a, a] and a, a are possibly −∞,∞ respectively) which solves the stochastic differential

equation

dXt = µ(Xt)dt+ σ(Xt)dBt, (2)

for some Borel functions µ : I → R, σ : I → R and a given X0. We assume µ, σ are

such that equation 2 has a unique (weak) solution. For an arbitrary mechanism (τ, dτ ),

let R’s utility be given by

E[e−rτg(Xτ , dτ )|X0],

and A’s utility be given by

E[e−rτf(Xτ , dτ )|X0].

As before, we want to explore the dynamics of the optimal mechanism when A cannot

sign binding long-term contracts (one-sided commitment). If A chooses to quit at Xt, he

receives his outside option, f(Xt, 0), which is equal to his payoff from rejection and may

depend on Xt. The mechanism design problem for R can then be written as

[GSM ] : sup
(τ,dτ )

E[e−rτg(Xτ , dτ )|X0]

subject to

DP : sup
τ ′

E[e−r(τ∧τ
′)f(Xτ∧τ ′ , dτ1(τ ≤ τ ′))|X0] ≤ E[e−rτf(Xτ , dτ )|X0]

In order to use the techniques as sketched in Section 4.3, we need to place several

assumptions on the f, g.

Assumption 2. We assume that for w ∈ {f, g}, the following are satisfied:

• 1. Pure delay is sub-optimal: For α ∈ {0, 1}, we have

E[e−r(τ≥(B)∧τ(b))w(Xτ≥(B)∧τ(b), α)|Xt] ≤ w(Xt, α).

• 2. Decision Threshold: If X ′ > X, then w(X, 1) ≥ w(X, 0) implies w(X ′, 1) >

w(X ′, 0).
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• 3. Continuity: w(X,α) is continuous in X for each α ∈ {0, 1}.

• 4.There exists X such that the solution for any X0 < X to

sup
(τ,dτ )

E[e−rτg(Xτ , dτ )|X0]

subject to

E[e−rτf(Xτ , dτ )|X0] ≥ f(X0, 0)

is to stop and reject immediately.

• 5. A prefers approval whenever R does: g(X, 1) > g(X, 0)⇒ f(X, 1) > f(X, 0).

• 6. lim
x→∞ E[e−rτ(x)|y]w(x, 1) = 0 for any y ∈ I.

While the list of assumptions may seem long, each part of the assumption is generally

very mild and will fit many other models besides the one we have analyzed so far. Parts

1− 3 are straightforward and are satisfied in most stopping problems considered in the

literature. Part 2 implies that there is a myopic cutoff point for R, above which R

approves and below which R rejects, which we denote XR
my-i.e., g(Xmy, 1) = g(Xmy, 0)

(and define XA
my similarly). Part 4 ensures that there is a lower bound below it is too

costly for R to incentivize A to continue. Part 5 ensures that R has an incentive to stop

at some point if Xt goes too low and Part 6 is merely a technical condition needed to

ensure payoffs do not diverge.

Next, we need to place some assumptions on the preferences of the players in relation

to their optimal approval thresholds. As before, we will look at situations in which A

prefers “less” experimentation (i.e., a lower approval threshold) than R does. Define

A’s utility to static threshold mechanism which stops whenever Xt 6∈ [b, B] and takes

decision da at threshold a as

Ṽ (B, dB, b, db, X) = E[e−r(τ≥(B)∧τ(b))f(Xτ≥(B)∧τ(b), dτ≥(B)∧τ(b))|X],

where dτ≥(B)∧τ(b) = dB1(τ≥(B) < τ(b)) + db1(τ(b) < τ≥(B)). We define V̂ (B, b,X) :=

Ṽ (B, 1, b, 0, X) and similarly for Ĵ(B, b,X).

Let us suppose that the optimal mechanism were restricted to reject at τ(br). We

can then ask what the preferred static approval threshold would be for R and A. As

in Section 4, we will want to impose that R prefers a higher approval threshold than

A does. We define B∗R(br), B
∗
A(br) to be functions which give us the optimal approval

thresholds of R and A respectively:
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B∗R(br) := argmaxB E[e−r(τ≥(B)∧τ≤(br))g(Xτ≥(B)∧τ≤(br)),1(τ(B) < τ(br)))]

B∗A(br) := argmaxB E[e−r(τ≥(B)∧τ≤(br))f(Xτ≥(B)∧τ≤(br)),1(τ(B) < τ(br)))]

This allows us to formally state our assumption that R prefers a higher threshold. We

assume that the utility with respect to a static approval threshold is strictly single-peaked

and that R’s preferred approval threshold is greater than that of A.

Assumption 3. The following assumptions on the utility of R and A hold:

• V̂ (B, b,X), Ĵ(B, b,X) are both strictly single-peaked in B and continuous in all

arguments.

• Given rejection at br, R’s preferred approval threshold is higher than that of A:

B∗R(br) > B∗A(br).

We can then write down functions analogous to b∗, B as defined previously:

b∗(B) := argmaxb V̂ (B, b,B − ε)

B̃(b,X) := {B > max
b

B∗A(b) : V̂ (B, b,X) = f(X, 0)}

B(X) := lim
δ→0

B̃(X + δ,X).

We now make our final assumption, a condition on B̃, which will be used to ensure

that B exists.

Assumption 4. B̃(b,X) is continuously differentiable.

With this in hand, we can show that state a generalization of Theorem 1 for general

payoff functions and stochastic processes.

Theorem 4. Under Assumptions 2-4, the solution to GSM is given by τ = inf{t : Xt ≥
B(MX

t )} ∧ τ(br)) (for some br) and dτ = 1(Xt ≥ B(MX
t )) where the approval threshold

is given by

B(MX
t ) =

{
B1 if MX

t ≥ b∗(B1)

B(MX
t ) if MX

t ≤ b∗(B1)
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Theorem 4 illustrates how we can expand the results of Section 4.3 to more general

payoff structures (e.g., allowing A to have state-dependent utility or R to bear some cost

of experimentation) and allows us to easily state the optimal mechanisms for a number of

standard environments outside of the experimentation/learning framework considered up

until now. For example, we can consider a real-option game similar to that of Grenadier

et al. (2016).

Example 1. Suppose that A is tasked with running a project and R is an outside investor

who can invest in the project. The value of the project, if invested in, is given by Xt,

which solves the stochastic differential equation

dXt = µXtdt+ σXtdBt,

The payoffs to R is zero if he rejects the project at Xt −K (for some K ∈ R+) if he

invests in the project while the payoff to A is βXt + L1 for some β ∈ R+ and L1 ∈ R in

R invests and L2 ∈ R+ if R rejects or A quits.

Our general model can also be used to model a manager’s decision of whether or

not to promote an agent, in which case it is realistic for the agent’s outside option may

depend on the beliefs about his type (something not capture in the model of Section 3).

Example 2. Suppose that R is a manager deciding whether or not to promote an agent

A. The agent pays a flow cost c until he is either promoted or let go. The agent’s type

is either {θh, θ`} and R only wants to hire a θh type. Both R and A have the same belief

about the agent’s type18 and they learn about the agent’s type by observing a Brownian

motion Xt with type-dependent drift

dXt = µθdt+ σdBt.

If A is promoted, he receives a payoff of 1 while if he is let go or he quits, he receives

a payoff of f(Xt, 0) (we can interpret this as the outside wage he will receive given the

market’s belief about his type, which may depend on the information revealed over the

course of the game). If R promotes a θ type, she receives a utility gθ(Xt, 1) (we allow

her utility to depend on the agent’s type as well as her beliefs at the time of promotion;

this can capture situations in which how the A is viewed by other employees at the time

of promotion determines the payoff to approving A).

18While it is often the case in real-life that A will have more information about his type than R, we

can view the type here as being indicative of the productivity match between R and A, in which case

the symmetric information assumption is more innocuous.
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If the primitives of this problem satisfy Assumptions 2-4, then Theorem 4 implies

that R will use a decreasing approval threshold over time. This means that if A is higher

quickly, he is more likely to be a good type than if he took a long time to be promoted,

which fits a natural intuition on type inference in these situations that single decision-

maker models fail to capture.

We can then also apply the model to study a lobbying situation. The decreasing

threshold then corresponds to a gradual decrease in R’s demands, something we naturally

see in many real life negotiations.

Example 3. Let R be a company lobbying with a politician A over the supply of some

good. The politician wants to be seen as proactive and derives a utility of 1 whenever

a deal is made. The degree of public support Xt determines the payment A can offer R

for the good (let’s assume when public support is Xt, A can offer R Xt). R derives a

utility uR(Xt)−K when a deal is reached and A offers the maximum possible when public

support is Xt. Additionally, A can exert costly effort (with a flow cost c) to rally public

support for the deal, so that public support evolves according to the the diffusion process

dXt = µ(Xt)dt+ σ(Xt)dBt.

We can then interpret “approval” as R agreeing to a deal when offered Xt. The

approval threshold is analogous to the demand of R. Under Assumptions 2-4, Theorem

4 then implies that R’s optimal negotiating strategy is to slowly decrease his demand if

public support decreases.

8 Conclusion

In this paper, we present a model of a hypothesis testing problem with Brownian learning

and agency concerns. We examine how different commitment structures lead to different

approval policies. The mechanism we find under one-sided commitment features a history

dependent approval threshold, yet can still be solved for in a tractable way and can

be written as a function of the minimum of the Brownian motion. We find that the

optimal mechanism when the agent posses no private information takes the form of

a monotonically decreasing approval threshold. This solution to an optimal stopping

problem is novel in the literature and illustrates the use of Lagrangian techniques in

stopping problems with agency concerns. We are able to fully characterize the solution in

the problem with no adverse selection and are able to pin down the solution to the adverse

selection problem up to the choice of a small number of constants. We also show how
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these results can be generalized to a large class of payoff functions and diffusion processes,

allowing us to explore their implications in a number of other economic settings, such as

promotion or lobbying models.

We also apply the model to the case when the agent has private information. The

optimal solution may take the form of a fast-track mechanism: high types are offered

a low starting approval threshold, but if the evidence becomes too unfavorable, the

approval threshold jumps up, entering a punishment phase in which it drifts back down

slowly.

Our findings has implications for the design of clinical drug trials. Using data on

FDA approval decisions and Type I error, we show that the predictions of our optimal

model shows that agency considerations can explain the empirical relationship between

Type I error and the length of clinical trials. Additionally, we show how our fast-track

mechanism matches many features of FDA expedited approval programs.
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Appendices

A Properties of V, J

Lemma 13. V (B, b,X), J(B, b,X) are single-peaked in B and, for a fixed b, we have

argmaxB J(B, b,X) ≥ argmaxB V (B, b,X).

Proof. The single-peaked property follows from Lemma 1 of Chan et. al (2016).

We argue that for a fixed b, the optimal threshold B for A is lower than that of R.

For R, the the optimal threshold solves the first-order condition:

ΨB(1− e−B) + Ψe−B = 0,

and the optimal threshold for A satisfies

ΨB(1 +
c

r
+ (a+

c

r
)e−B)− (a+

c

r
)Ψe−B + ψB

c

r
= 0.

We note that the derivative of the first-order condition with respect to a is

(ΨB −Ψ)e−B < 0,

and thus by the implicit function theorem and the second-order condition, the optimal

threshold is decreasing in a. Therefore it is enough to prove the claim for a = −1, in

which case A’s first-order condition is

ΨB(1 +
c

r
+ (−1 +

c

r
)e−B)− (−1 +

c

r
)Ψe−B + ψB

c

r
= 0. (3)

Let ∆ = B − b. The derivative of the first-order condition with respect to c is

ΨB(1 + e−B)−Ψe−B + ψB

= Ψ
(R1e

−R1∆ −R2e
−R2∆

e−R1∆ − e−R2∆
(1 + e−B)− e−B +

R2e
−∆ −R1e

−∆

e−R1∆ − e−R2∆

)
Thus the above is negative if and only if

(R1e
−R1∆ −R2e

−R2∆)(1 + e−B)− e−B(e−R1∆ − e−R2∆) +R2e
−∆ −R1e

−∆ (4)
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At ∆ = 0, this is equal to

e−B(R1 −R2) < 0.

If we take the derivative of equation 4 with respect to ∆ when equation 4 is equal to

zero, we have

(−R2
1e
−R1∆ +R2

2e
−R2∆)(1 + e−B) + e−B(R1e

−R1∆ −R2e
−R2∆)−R2e

−∆ +R1e
−∆

= (R1(1−R1)e−R1∆ +R2(R2 − 1)e−R2∆)(1 + e−B) + e−B((R1 − 1)e−R1∆ − (R2 − 1)e−R2∆)

= R1R2(e−R1∆ − e−R2∆)(1 + e−B) + e−Be−B((R1 − 1)e−R1∆ − (R2 − 1)e−R2∆)

< 0.

Therefore, we know that equation 4 is always negative. Therefore, increasing c decreases

the right-hand side of equation 3. By the implicit function theorem and the second-order

condition, we have that A’s optimal B is decreasing in c. Since the R and A optimal

thresholds are equal when c = 0, it must be that A’s optimal B is lower than that of

R.

Lemma 14. Ṽ satisfies single crossing of 0 with respect to X.

Proof. Suppose that ∃X1 < X2 such that Ṽ (B, b,X1) = Ṽ (B, b,X2) = 0. Then for any

X ∈ (X1, X2), we have

Ṽ (B, b,X1) = E[e−rτ (dτ +
c

r
)|X]− c

r

= E[e−rτ(X1)1(τ(X1) < τ(X2))(Ṽ (B, b,X1) +
c

r
)|X]

+ E[e−rτ(X2)1(τ(X1) > τ(X2))(Ṽ (B, b,X2) +
c

r
)|X]− c

r

= E[e−rτ(X1)1(τ(X1) < τ(X2))
c

r
|X] + E[e−rτ(X2)1(τ(X1) > τ(X2))

c

r
|X]− c

r

< 0.

B General Optimal Stopping Properties

We now present several general properties of single-decision optimal stopping problems

which will prove useful in our analysis.
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Lemma 15. Let Zt be a solution to dZt = µ(Zt)dt+ σ(Zt)dWt, where Wt is a standard

Brownian motion. Then for the problem

sup
(τ,dτ )

E[e−rτ (dτg1(Zτ ) + (1− dτ )g2(Zτ ))|Z0].

There exists a solution of the form τ = inf{t : Zt 6∈ (Zr, Za)]} with dτ = 1(Zτ = Zi)

for Zi = Za or Zi = Zr.

Proof. We can note that conditional on stopping, it will be optimal to choose dτ = 1 ⇐⇒
g1(Zτ ) ≥ g2(Zτ ). We can define g(Zτ ) = max{g1(Zτ ), g2(Zτ )} and rewrite the optimal

problem as

sup
(τ,dτ )

E[e−rτg(Zτ )|Z0].

Because the process Zt is Markov and we have exponential discounting (and hence time

consistency), the principle of optimality tells us that Zt is a sufficient state variable for

the optimal policy from time t onward.

Let us define the value function when current beliefs are Z as

U(Z) := sup
τ

E[e−rτg(Zτ )|Z].

As is standard, we can describe τ be a continuation region C = {Z : U(Z) > g(Z)}
and a stopping region D = {Z : U(Z) = g(Z)}. Although the continuation region

could take a non-interval form (e.g., C = [Z1, Z2] ∪ [Z3, Z4] where Z1 ≤ Z2 ≤ Z3 ≤ Z4),

we are only concerned with the continuation region around Z0. Since the diffusion

process is continuous, for any C which depends only on Z, there is another continuation

region C′ = (Z ′1, Z
′
2) which delivers the same expected value when starting at Z0 (where

Z ′1 = sup
(τ,dτ ) Z

{Z ∈ ∂C : Z ≤ Z0} is the highest boundary of C which is below Z0 and

Z ′2 = inf
Z
{Z ∈ ∂C : Z ≥ Z0} is the lowest boundary point of C above Z0). Therefore,

there is an optimal stopping policy in the form of a threshold strategy around Z0.

Lemma 16 (Duality). Let {φi}ni=1 and Φ be bounded FXt -measurable functions and

define

C := {(τ, dτ ) : E[φi(τ, ω, dτ )|Z0] ≤ 0 ∀i = 1, ..., n}.

Suppose that ∃(τ, dτ ) such that E[φi(τ, ω, dτ )|Z0] < 0 ∀i = 0, ..., N and that the optimal

solution to sup
(τ,dτ )∈C

E[Φ(τ, ω, dτ )|Z0] is such that P(τ > 0) = 1. Then there is no duality

gap-i.e.,
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sup
(τ,dτ )∈C

E[Φ(τ, ω, dτ )|Z0] = infλ∈RN+1
−

sup
(τ,dτ )

E[Φ(τ, ω, dτ )|Z0] +
N∑
i=0

λiE[φi(τ, ω, dτ )|Z0].

Moreover, the infimum is obtained by some finite λ∗ ∈ RN+1
− . Additionally, (τ, dτ ) is a

solution to sup
(τ,dτ )∈C

E[Φ(τ, ω, dτ )|Z0] if and only if it is a solution to sup
(τ,dτ )

E[Φ(τ, ω, dτ )|Z0]+∑N
i=0 λ

∗
iE[φi(τ, ω, dτ )|Z0] and complementary slackness conditions hold:

∀i, λi · E[φi(τ, ω, dτ )|Z0] = 0.

Proof. See Balzer and Janben (2002) or Dokuchaev (1996).

Lemma 17. Let G(πt, dt) = dt(α1πt + α2) + α3 and α3 ≥ 0. If the solution to

V (πt) = sup
(τ,dτ )

E[e−rτG(πτ , dτ )|π0],

is a static threshold mechanism with approval at both the upper threshold πB and the

lower threshold πb, then πB = πb.

Proof. By standard arguments, V solves the differential equation rV (π) = φπ2(1 −
π2)V ′′(π). Then V (π) > 0, which implies that V ′′(π) ≥ 0. Let β = π−πb

πB−πb . Then

α1π0 + α2 + α3 ≤ V (π0) = V (βπb + (1− β)πB)

≤ βV (πb) + (1− β)V (πB)

= β(α1πb + +α2 + α3) + (1− β)(α1πB + +α2 + α3)

= α1π0 + α2 + α3,

which implies that immediate approval is optimal.

C Symmetric Information

C.1 Two-Sided Commitment

Proposition 1. The solution to the symmetric information problem with two-sided com-

mitment takes the form of a static-threshold policy. If b 6= −∞, then the optimal approval
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and rejection thresholds (B, b) are the solution to the following equations:

Ψb(1− e−B)
c
r [ψb(1 + e−b)− ψe−b] + Ψb[(1 + c

r + (a+ c
r )e−B)]

=
ΨB(1− e−B) + e−BΨ

aΨe−B + ΨB(1 + c
r + (a+ c

r )e−B) + ψB(1 + e−b) cr

Ψ(1 +
c

r
+ (a+

c

r
)e−B) +

c

r
ψ(1 + e−b) =

c

r

1 + eZ0

eZ0

where B < BFB and P (τ, dτ ) is binding. If b = −∞, then B = BFB.

Proof. We start by proving the conditions of Lemma 16 are met. To see this, note that

the stopping policy τ = ε and dτ = 1 will keep the participation constraint slack for ε

small enough. The other conditions of Lemma 16 are easily checked.

By applying Lemma 16, we can use a Lagrangian in order to turn the primal problem:

sup
(τ,dτ )

E[e−rτdτ
eZτ − 1

1 + eZτ
|Z0]

subject to

P : E[e−rτ (dτ
eZτ + a

1 + eZτ
+
c

r
)|Z0]− c

r
≥ 0,

into the dual problem

L = E[e−rτdτ
eZτ − 1

1 + eZτ
|Z0] + λ[

c

r
− E[e−rτ (dτ

eZτ + a

1 + eZτ
+
c

r
)|Z0]]

= E[e−rτ (dτ
eZτ − 1

1 + eZτ
− λe

Zτ + a

1 + eZτ
− λc

r
|Z0] + λ

c

r
.

By Lemma 15, we can verify that the solution is of a threshold form. Let (B, b) be the

approval and rejection threshold respectively. Then we know that the primal problem

must solve

L = Ψ
(eZ0(1− e−B)

1 + eZ0
− λ

eZ0 [1 + c
r + (a+ c

r )e−B]

1 + eZ0

)
− λψ c

r

eZ0(1 + e−b)

1 + eZ0

. Taking first-order conditions are rearranging yields the equality in the proposition.

D Symmetric Information with One-Sided Commitment

D.1 Proof of Lemma 1

Proof. Let (τ, dτ ) be a mechanism which satisfies all dynamic participation constraints.

Suppose that it did not satisfy a DP constraint-i.e., ∃τ ′ such that
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E[e−rτ (dτ
eZτ + a

1 + eZτ
+
c

r
)|Z0]− E[e−r(τ∧τ

′)(dτ1(τ ′ ≤ τ) +
c

r
)|Z0] < 0

⇒E[e−rτ (dτ
eZτ + a

1 + eZτ
+
c

r
)1(τ > τ ′)|Z0] <

c

r
.

Therefore, there must be a history hτ ′ such that at τ ′ we have E[e−rτ (dτ
eZτ+a
1+eZτ

+
c
r )|Zτ ′ , hτ ′ ] < c

r , a contradiction of the fact that all dynamic participation constraints

hold. Therefore all (τ, dτ ) which satisfy dynamic participation constraints also satisfy

DP constraints.

Next, let us consider a mechanism (τ̃ , d̃τ ) which satisfies DP . We will construct a

new mechanism, (τ̂ , d̂τ ) which satisfies all dynamic participation constraints and gives

the same payoff to R as (τ̃ , d̃τ ). If (τ̃ , d̃τ ) satisfies all dynamic participation constraints,

we are done. If some dynamic participation constraints are violated, we claim that it

must happen only on a zero probability set. Define, for some small ε, Γ = {ht ∈ Ht :

E[e−rτ (dτ
eZτ+a
1+eZτ

+ c
r )|Zt, ht] ≤ c

r − ε} to be the set of histories such that A’s continuation

value is at least ε worse than quitting immediately. Let us define τ ′ = inf{t : ht ∈ Γ} to

be the first time the history is in Γ. Then we know that

E[e−r(τ∧τ
′)(dτ1(τ ≤ τ ′)e

Zτ + a

1 + eZτ
+
c

r
)|Z0] = E[1(Ω\Γ)e−r(τ∧τ

′)(dτ1(τ ≤ τ ′)e
Zτ + a

1 + eZτ
+
c

r
)|Z0]

+ E[1(Γ)e−r(τ∧τ
′)(dτ1(τ ≤ τ ′)e

Zτ + a

1 + eZτ
+
c

r
)|Z0]

= E[1(Ω\Γ)e−rτ (dτ
eZτ + a

1 + eZτ
+
c

r
)|Z0]

+ E[1(Γ)e−r(τ∧τ
′)(dτ1(τ ≤ τ ′)e

Zτ + a

1 + eZτ
+
c

r
)|Z0].

Because (τ̃ , d̃τ ) satisfies DP , we know that
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E[e−rτ̃ (d̃τ
eZτ + a

1 + eZτ
+
c

r
)|Z0] ≥ E[1(Ω\Γ)e−rτ̃ (d̃τ

eZτ + a

1 + eZτ
+
c

r
)|Z0]

+ E[1(Γ)e−r(τ̃∧τ
′)(dτ1(τ̃ ≤ τ ′)e

Zτ + a

1 + eZτ
+
c

r
)|Z0]

⇒ E[1(Γ)e−rτ̃ (d̃τ
eZτ + a

1 + eZτ
+
c

r
)|Z0] ≥ E[1(Γ)e−r(τ̃∧τ

′)(dτ1(τ̃ ≤ τ ′)e
Zτ + a

1 + eZτ
+
c

r
)|Z0]

= E[1(Γ)e−rτ
′ c

r
|Z0],

where the final line holds since a dynamic participation constraint can only be violated

if τ̃ has not been reached. We note that

E[1(Γ)e−rτ̃ (d̃τ
eZτ + a

1 + eZτ
+
c

r
)|Z0] = E[1(Γ)E[e−rτ̃ (d̃τ

eZτ + a

1 + eZτ
+
c

r
)|Zτ ′ , hτ ′ ]|Z0].

By definition of Γ, we have that for each h′τ in B,

E[e−rτ̃ (d̃τ
eZτ + a

1 + eZτ
+
c

r
)|Zτ ′ , hτ ′ ] < e−rτ

′ c

r

⇒ E[1(Γ)E[e−rτ̃ (d̃τ
eZτ + a

1 + eZτ
+
c

r
)|Zτ ′ , hτ ′ ]|Z0] < E[1(Γ)e−rτ

′ c

r
|Z0].

a contradiction. Therefore, it cannot be that Γ has strictly positive probability and this

must hold for all ε.

Suppose that (τ̃ , d̃τ ) does violate some dynamic participation constraints. Then we

know that the set of histories Γ such that the constraints are violated has probability

zero. Therefore, we can specify (τ̂ , d̂τ ) to be equal to (τ̃ , d̃τ ) on the set of all histories

not in Γ and (τ̂ , d̂τ ) to reject at the first time that a dynamic participation constraint is

violated. With probability one, the outcome from (τ̂ , d̂τ ) is the same as (τ̃ , d̃τ ) and thus

they must yield the same payoffs.

D.2 Proof of Theorem 1

Theorem 1 and supporting Lemmas are special cases Theorem 4 and supporting Lemmas

(Assumption 2 clearly holds; Assumption 3 follows by Lemma 13). We therefore defer

to proof to Section I.

Lemma 5. The optimal approval threshold in belief-space BZ(MZ
t ) is independent of Z0

and depends only on MZ
t := min{Zs : s ≤ t}.
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Proof. Let us now consider the optimal mechanism as defined in belief space. Suppose

that at two different initial beliefs Za and Zc, the optimal mechanism called for different

initial approval thresholds (say B1
a and B1

c such that B1
a > B1

c ). Let b1i = b∗Z(B1
i ) and

suppose that b1a < Zc. Define Ji(z) be the utility of the mechanism under Zi at τ(z).

Note that switching over to the mechanism for Jc(b
1
a) is admissible for Ja(b

1
a) since it

lowers the approval threshold, which slackens DP constraints. Then we know that

E[e−rτdτ (b1a)
eZτ − 1

1 + eZτ
+ e−rτ(b1a)(1− dτ (b1a))Ja(b

1
a)|Za]

≥ E[e−rτdτ (b1a)
eZτ − 1

1 + eZτ
+ e−rτ(b1a)(1− dτ (b1a))Jc(b

1
a)|Za],

which, since Ji(b
1
a) is independent of the history prior to τ(b1a), implies that Jc(b

1
a) ≤

Ja(b
1
a). But, since the mechanism at Ja(b

1
a) is admissible with respect to Jc(b

1
a) (since by

definition is satisfies all DP constraints and DP constraints prior to τ(b1a) will not be

violated since B1
c > B1

a), we also know that

E[e−rτdτ (b1a)
eZτ − 1

1 + eZτ
+ e−rτ(b1a)(1− dτ (b1a))Jc(b

1
a)|Zc]

≥ E[e−rτdτ (b1a)
eZτ − 1

1 + eZτ
+ e−rτ(b1a)(1− dτ (b1a))Ja(b

1
a)|Zc],

which implies that Jc(b
1
a) = Ja(b

1
a).

It is then without loss to assume that at b1a, both Za and Zc us the same mechanism.

Treating this as a continuation value upon τ(b1a), we can see that the initial choice of Zi
must satisfy

max
B

Ψ
eZi(1− e−B)

1 + eZi
+ ψ

eZi(1− e−b)
1 + eZi

Ja(b
1
a).

Taking the first-order condition, we can easily show that the choice of B1
i is independent

of Zi and thus Za and Zc must use the same mechanism.

Finally, we consider the case where b1a > Zc. Consider the continuation mechanism

for Zi at time τ(Zc). Since the mechanism for Ja(Zc) satisfies all DP constraints, it

is admissible with respect to Jc(Zc); thus we must have Ja(Zc) ≤ Jc(Zc). Since the

mechanism for Jc(Zc) also satisfies DP constraints, it is admissible with respect to Ja(Za)

to switch to the mechanism for Jc(Zc) at τ(Zc), which tells us
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E[e−rτdτ (Zc)
eZτ − 1

1 + eZτ
+ e−rτ(b1a)(1− dτ (Zc))Ja(Zc)|Za]

≥ E[e−rτdτ (b1a)
eZτ − 1

1 + eZτ
+ e−rτ(b1a)(1− dτ (b1a))Ja(Zc)|Za],

and implies that Ja(Zc) = Jc(Zc). Therefore, we can replace the mechanism for Ja(Zc)

with that of Jc(Zc) and both solutions will be identical up to the minimum MZ
t .

E Symmetric Information with No Commitment

E.1 Proof of Proposition 2

Proof. Set-up 1 follows directly from Kolb (2016), so let us focus on the case of set-up

2. Let us check whether R or A has an incentive to deviate. A has no incentive to

deviate. He is quitting at his optimal level b∗(0) given R’s approval threshold and has no

incentive to quit early since R will not approve at any Zt < 0. Moreover, R will always

approve at any Zt ≥ 0 whenever A has quit and so A will always quit experimenting

immediately whenever Zt ≥ 0. R also has no incentive to deviate; if he approves at

Zt < 0 he earns a strictly negative payoff while if he rejects early, he gets a payoff of zero

(which is equal to his equilibrium payoffs). Since A and R have no incentive to deviate,

this is an equilibrium.

E.2 Proof of Proposition 3

Proof. Suppose that R uses the mechanism from the case of one-sided commitment

(τ∗, d∗τ ) and A uses the following strategy:

• Experiment until τ∗.

• If d∗τ = 0, then stop experimenting and do not restart.

• If d∗τ = 1, then stop experimenting and do not restart.

We claim that this is an equilibrium. To see this, let’s first consider the incentives

of R to deviate. Suppose that the equilibrium calls for R to approve at time τ∗. If

she doesn’t approve, then the agent quits experiment at time τ∗ forever. Since no new

learning occurs, R has a strict incentive to approve immediately at τ∗ since Zτ∗ > 0.

Suppose R had a profitable deviation τ ′ such that τ ′ ≤ τ∗ and there is some history such
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that τ ′ approves strictly sooner than τ∗.19 Than τ ′ will not violate any DP constraints

(approving sooner would only slacken the DP constraints), contradicting the optimality

of τ∗. Therefore no such deviation can exist.

Next, we consider the incentives of A to deviate from the proposed equilibrium. Note

that under the proposed approval rule, since all the DP constraints hold, A has no

incentive to quit early. If he were to quit early, R would believe that A will restart

experimenting immediately and therefore not find it optimal to approve. Moreover,

A has an incentive to stop experimenting at τ∗ since he believes that R will approve

immediately. In the off-path event that R doesn’t approve, A believes that R will approve

in the next instant and has no incentive to restart experimentation since it is costly and

will not increase the probability of approval.

Since neither A nor R have an incentive to deviate, (τ∗, d∗τ ) is indeed an equilibrium.

F Asymmetric Information with Two-Sided Commitment

F.1 Proof of Proposition 4

Proof. Let Vi ≥ 0 be the expected utility to type i from truthfully declaring his type.

Then we can write the problem for determining type i’s mechanism to be

sup(τ,dτ ) E[e−rτdτ
eZτ − 1

1 + eZτ
|Zi]

subject to (for k 6= i)

PK : E[e−rτ (dτ
eZτ + a

1 + eZτ
+
c

r
)|Zi]−

c

r
≥ Vi

IC(Zk, Zi) E[e−rτ (dτ
eZτ + a

1 + eZτ
+
c

r
)|Zk]−

c

r
≤ Vk

The only complication that prevents the applications of Lemma 16 and Lemma 15

to reach our desired conclusion that static threshold mechanisms are optimal is the fact

that the IC expectation is taken with respect to Zk. However, the same argument as in

Lemma 19 allows us to convert the expectation into one with respect to Zi, allowing us

to reach our desired conclusion.

19R will never find it profitable to reject earlier
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F.2 Proof of Proposition 5

Proof. Let (bh, Bh) be the thresholds used in h’s mechanism and suppose that bh 6= −∞
and R’s symmetric information mechanism for Zh doesn’t involve immediate rejection.

First, we will show that we cannot have IC(Zh, Z`) slack. Suppose that it were. It is

easy to see that we must then have IC(Z`, Zh) binding. We will show that we can reduce

bh and increase R’s utility while still satisfying IC(Z`, Zh) and IC(Zh, Z`). Suppose that

bh > b∗h(Bh) (where b∗h is as defined in Section 5.2). By Lemma ??, we can decrease bh
to b′h such that ṼX(Bh, bh, Zh) = ṼX(Bh, b

′
h, Zh) and ṼX(Bh, bh, Zh) > ṼX(Bh, b

′
h, Zh)

(where ṼX(B, b, Z) is the corresponding threshold utility in Xt-space given (b, B) and

initial belief Z`). Since R’s utility is decreasing in b, (bh, Bh) cannot have been optimal.

If bh < b∗h(Bh), then we can decrease bh slightly and increase R’s utility while decreasing

`’s utility since b∗h(Bh) < b∗` (B`). This is admissible since IC(Zh, Z`) is not binding by

assumption and IC(Z`, ZK) and P (Z`) imply that P (Zh) is slack:

0 ≤ ṼX(B`, b`, Z`) = ṼX(Bh, bh, Z`) ≤ ṼX(Bh, bh, Zh).

Therefore, we cannot have IC(Zh, Z`) slack.

Finally, if R’s optimal symmetric information mechanism for h involves immediate

rejection, then so does R’s optimal symmetric information mechanism for `. Therefore,

R can achieve the value of his problem without IC constraints (an upper-bound on the

problem including IC constraints) by rejecting immediately, in which case IC(Zh, Z`)

binds.

G Asymmetric Information with One-Sided Commitment

G.1 Proof of Lemmas 7 and 8

Rather than directly prove Lemmas 7 and 8 , we instead solve a generalization of AMh,γ

which will be useful in proving Lemma 12. Fix an arbitrary γ ∈ R (the proof of Lemmas

7 and 8 follow from letting γ = 0); we define the problem AMh,γ as

[AMh,γ ] : sup
(τ,dτ )

E[e−rτ (dτ
eZτ (1 + γ)− (aγ − 1)

1 + eZτ
+ γ

c

r
))|Zh]

subject to DP (Zh), DIC(Z`, Zh, V`).
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Let (τSM , dSM ) be the solution to SMγ(Zh) where SMγ(Zh) is the symmetric infor-

mation problem with prior Zh when R’s payoffs depend on γ as above. We define bSM,γ

to be the Xt such that, when ` has belief Zt = Z` + φ
σXt, he would quit immediately if

R proposed h’s symmetric mechanism SMγ(Xt) (the symmetric mechanism starting at

Xt,M
X
t = Xt):

bSM,γ := max{Xt : sup
τ ′

E[e−r(τ
SM
h ∧τ ′)(dSMτ,h 1(τ ≤ τ ′)e

Zτ + a

1 + eZτ
+
c

r
)|Xt, Zt = Z`+

φ

σ
Xt] =

c

r
}.

We begin by proving solving a relaxed problem RAMh
N (γ) defined as

[RAMh,γ
N ] : sup

(τ,dτ )
E[e−r(τ∧τ(bSM,γ))(dτ (bSM,γ)(

eZτ (1 + γ) + (aγ − 1)

1 + eZτ
+ γ

c

r
)1(τ ≤ τ(bSM,γ))

+ 1(τ > τ(bSM,γ))SMh,γ(bSM,γ)|Zh]

subject to ∀Xi ∈ TN ∪ {bSM,γ}

RDIC`(Xi) : E[e−r(τ∧τ(Xi)∧τ(bSM,γ)(d(Xi)
eZτ + a

1 + eZτ
+
c

r
)|Z`] ≤ V` +

c

r
.

Define an analogous version of Hh(Xt) by

[Hh,γ
N (Xt)] : sup

(τ,dτ )
E[e−r(τ∧τ(bSM,γ))(dτ (bSM,γ)

eZτ (1 + γ) + (aγ − 1)

1 + eZτ
+ γ

c

r
)1(τ ≤ τ(bSM,γ))

+ 1(τ > τ(bSM,γ))SMh,γ(bSM,γ)|Zt]
subject to ∀Xi ∈ {Xj ∈ TN ∪ {bSM,γ} : Xj < Xt}

RPK(0) :E[e−r(τ∧τ(Xi)∧τ(bSM,γ))(dτ (Xi)1(τ ≤ τ(bSM,γ))
eZτ + a

1 + eZτ
+
c

r
)|Zt −∆Z ] ≤ c

r
.

Lemma 18. RAMh,γ
N is an upper-bound on AMh,γ.

Proof. First, we claim that the continuation function for AMh,γ at τ(bSM,γ) is bounded

above by SMh,γ . This is clear, since any mechanism admissible with respect to AMh,γ

must satisfy all DP constraints when starting at bSMh (γ) and thus is admissible with

respect to SMh,γ . Moreover, since we have dropped some constraints, for any (τ, dτ )

admissible with respect to AMh,γ , we have that (τ ∧ τ(bSM,γ), dτ (bSM,γ)) is admissible

with respect to RAMh,γ
N . The result then follows immediately.
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Lemma 19. The solution to RAMh,γ
N is given by a stationary approval threshold until

the first binding constraint X1. At X1, the continuation mechanism solves Hh,γ
N (X1).

Proof. We face the new complication in solving RAMh,γ
N in that the expectations are

taken with respect to different priors, which makes the arguments from Lemma 23 inap-

plicable. However, we can note that

E[e−r(τ∧τ(Xi))(dτ (Xi)
eZτ + a

1 + eZτ
+
c

r
)|Zh −∆z]

=
eZh−∆z

1 + eZh−∆z
E[e−r(τ∧τ(Zi))(1(τ ′ ≤ τ(Xi))d

′
τ +

c

r
)|θ = H]

+ a
1

1 + eZh−∆z
E[e−r(τ∧τ(Zi))(dτ (Xi) +

c

r
)|θ = L]

=
1 + eZh

1 + eZh−∆z

(
eZh

1 + eZh
E[e−r(τ

′∧τ(Xi))e−∆z(dτ (Xi) +
c

r
)|θ = H]

+ a
1

1 + eZh
E[e−r(τ∧τ(Zi))(dτ (Xi) +

c

r
)|θ = L]

)
=

1 + eZh

1 + eZh−∆Z
E[e−r(τ∧τ(Xi))(dτ (Xi) +

c

r
)
e−∆zeZτ∧τ(Xi) + a

1 + eZτ ′∧τ(Xi)
|Zh].

With this change of expectation, we can now apply Lemma 23 in order to conclude that

the optimal mechanism consists of a static approval threshold until the first binding

constraint X1 is reached or bSM,γ .

All that is left is to show that the continuation mechanism at τ(X1) is the solution

to Hh,γ
N (X1). This is immediate if X1 = bSM,γ . Therefore suppose that X1 > bSM,γ . As

noted in Lemma 23, the optimal mechanism from τ(X1) onward is independent of the

history up to τ(X1). Therefore, by complementary slackness at X1, we know that for

Xi < X1, we have

E[e−r(τ∧τ(Xi))(dτ (Xi)
eZτ + a

1 + eZτ
+
c

r
)|X0] ≤ V` +

c

r
. (5)

Let τ [hτ(X1)](Xi) be the threshold quitting time of Xi given X0 = X1. Since the

mechanism at τ(X1) is independent of the history until τ(X1), we know that
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E[e−r(τ∧τ(Xi))(dτ (Xi)
eZτ + a

1 + eZτ
+
c

r
)|X0]

= E[1(τ ≤ τ(X1))e−rτ (dτ
eZτ + a

1 + eZτ
+
c

r
)|X0]

+ E[1(τ > τ(X1))e−rτ(X1)E[e
−r(τ [hτ(X1)]∧τ [hτ(X1)](Xi))(dτ (Xi)

eZτ + a

1 + eZτ
+
c

r
)|X1]|X0]

= V` +
c

r
− c

r
E[e−rτ(X1)1(τ > τ(X1))|X0]

+ E[1(τ > τ(X1))e−rτ(X1)|X0]E[e
−r(τ [hτ(X1)]∧τ [hτ(X1)](Xi))(dτ (Xi)

eZτ + a

1 + eZτ
+
c

r
)|X1],

which, with equation 5, implies that

E[e
−r(τ [hτ(X1)]∧τ [hτ(X1)](Xi))(dτ (Xi)

eZτ + a

1 + eZτ
+
c

r
)|X1] ≤ c

r

and thus the expected continuation value to ` of continuing until τ(Xi) is weakly negative

at X1. Therefore, the continuation mechanism at τ(X1) is admissible with respect to

Hh,γ
N (X1) and thus Hh,γ

N (X1) is weakly higher than the value of the optimal mechanism

at τ(X1). Suppose that using the mechanism (τH , dhτ ) which solves Hh,γ
N (X1) yielded a

strictly higher value to R than the continuation mechanism at τ(X1). Then replacing

the continuation mechanism at τ(X1) with (τH , dHτ ) would give a value of

E[1(τ ≤ τ(X1))e−rτ (dτ
eZτ (1 + γ) + (aγ − 1)

1 + eZτ
+ γ

c

r
))|Zh] + E[1(τ > τ(X1))e−rτ(X1)Hh(γ,X1)|Zh]

≥ E[1(τ ≤ τ(X1))e−rτ (dτ
eZτ (1 + γ) + (aγ − 1)

1 + eZτ
+ γ

c

r
)|Zh]

+ E[1(τ > τ(X1))e−rτ(X1)E[e
−rτ [hτ(X1)](dτ

eZτ (1 + γ) + (aγ − 1)

1 + eZτ
+ γ

c

r
)|Z1

h = Zh +
φ

σ
X1]|Zh]

= E[e−rτ (dτ
eZτ (1 + γ) + (aγ − 1)

1 + eZτ
+ γ

c

r
)|Zh].

Moreover, the stopping rule given by replacing the continuation mechanism at τ(X1)

with (τH , dHτ ) yields a value to ` when quitting at Xi of
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E[1(τ ≤ τ(X1))e−r(τ∧τ(Xi))(dτ (Xi)
eZτ + a

1 + eZτ
+
c

r
)|Z`]

+ E[1(τ > τ(X1))e−rτ(X1)E[e
−r(τH∧τ [hτ(X1)](Xi))(dτ

eZτ + a

1 + eZτ
+
c

r
)|Z1

` ]|Z`]

= V` +
c

r
− c

r
E[e−rτ(X1)1(τ > τ(X1))|Z1

` ]

+ E[1(τ > τ(X1))e−rτ(X1)E[e
−r(τH∧τ [hτ(X1)](Xi))(dτ

eZτ + a

1 + eZτ
+
c

r
)|Z1

` ]|Z`]

≤ V` +
c

r
.

where Z1
` = Z` + φ

σX
1 is belief of ` at X1. Thus, switching to (τH , dHτ ) at τ(X1) is

admissible with respect to RSMh,γ
N . Therefore, the optimal mechanism at τ(X1) must

solve Hh,γ
N (X1).

Lemma 20. The limit as N →∞ of the mechanisms which solve Hh,γ
N (X1) is given by

τ = inf{t : Xt ≥ B`(M
X
t )} and dτ = 1(Xτ = B`(M

X
τ )).

Proof. Repeated application of Lemma 23 yields the conclusion that the approval rule

is a sequence of thresholds {Bi
h} such that the approval changes from Bi

h to Bi+1
h when

the ith binding RDIC constraint is reached. Applying Lemma 19, we know that at each

binding constraint Xj > bSM,γ , the continuation mechanism solves Hh,γ
N (Xj).

Let us consider the limit as N → ∞. By the same arguments as in Lemma 25, we

get that as long as RPK constraints are binding, the upper approval threshold must

converge to B`(M
X
t ) as N → ∞. All that is left to show is that RPK constraints are

binding until MX
t = bSM,γ . Consider a fixed N and suppose that ∃Xj > bSM,γ such that

∃Xi ∈ TN ∈ (bSM,γ , Xj) and all RPK constraints prior to bSM,γ are slack in Hh,γ
N (Xj). In

this case, the complementary slackness conditions in our Lagrangian amount to solving

sup
(τ,dτ )

E[e−r(τ∧τ(bSM,γ))
[
(dτ (bSM,γ)

eZτ (1 + γ) + (aγ − 1)

1 + eZτ
+ γ

c

r
)1(τ ≤ τ(bSM,γ))

+ 1(τ > τ(bSM,γ))SMh,γ(bSM,γ)
]
|Zt].

The solution to this consists of only an approval threshold at B (since SMh,γ(bSM,γ) ≥ 0,

R never benefits from rejecting prior to bSM,γ . We claim that B must be equal to the

initial approval threshold in the symmetric mechanism B1
SM (γ).
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We consider the corresponding relaxed version to SMh,γ(bSM,γ) in which we drop all

DP constraints except threshold quitting rules in TN . This problem (whose value we

call RSMh
N (γ)(Xt) when starting at Xt) yields the Lagrangian

L =sup
τ,dτ

E[e−rτ (dτ
eZτ − 1

1 + eZτ
(1 + γ) + γ

c

r
)

+

|BN |∑
j=1

λ(Xj)(e−r(τ∧τ(Xj))(dτ (Xj)
eZτ + a

1 + eZτ
+
c

r
)− e−rτ (dτ

eZτ + a

1 + eZτ
+
c

r
)|bSM,γ ].

With the dual-problem, we can apply the principle of optimality at Xt > bSM,γ to

conclude that the optimal symmetric mechanism solves

sup
(τ,dτ )

E[e−r(τ∧τ(bSM,γ))
[
(dτ (bSM,γ)

eZτ (1 + γ) + (aγ − 1)

1 + eZτ
+ γ

c

r
)1(τ ≤ τ(bSM,γ))

+ 1(τ > τ(bSM,γ))RSMh,γ
N (bSM,γ)

]
|Zt].

which is identical to that the problem prior to τ(b1SM (γ)) when we let N →∞ (the same

arguments applied in Theorem 1 show that RSMγ
N → SMh(γ)). Therefore, the approval

threshold which solves Hh
N (Xj) must be equal to B1

SM (γ).

Lemma 21. Let (τN , dNτ ) solve RAMh,γ
N and (τ, dτ ) := lim

N→∞ (τN , dNτ ). Then (τ, dτ )

solves AMh,γ.

Proof. Since RAMh,γ
N is an upper-bound on AMh,γ , all that is necessary to verify is

that (τ, dτ ) is admissible with respect to AMh,γ . First, we need to show that h has no

incentive to quit early. This is immediate after τ(bSM,γ) since the symmetric mechanism,

which satisfies all DP constraints, is used. Before τ(bSM,γ), the continuation value to h

is always positive since B`(M
X
t ) < Bh(MX

t ).

We also need to check that `’s DIC constraint truly does hold. To this end, we

claim that the optimal quitting rule ` could use is a threshold quitting rule. Note that

the optimal mechanism is Markov with respect to (Xt,M
X
t ) and thus, by the principle

of optimality, `’s optimal quitting rule will also be Markov with respect to (Xt,M
X
t )

and thus can be expressed as τ ′ = inf{t : Xt ≥ κ(MX
t )} ∧ τ(bA) for some function

κ and constant bA (where we take κ(MX
t ) > B(MX

t ) to imply never quitting at any

Xt ∈ (MX
t , B(MX

t ))). However, since B(MX
t ) ≤ B`(M

X
t ), it is never optimal ` to
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quit at κ(MX
t ) > B(MX

t ). Therefore, the optimal quitting rule must be equivalent to

τ ′ = τ(bA) for some bA.

G.2 Proof of Lemma 10

Proof. As before, we define a relaxed version of AM ` to be

[RAM `
N ] : sup

(τ,dτ )
E[e−rτdτ

eZτ − 1

1 + eZτ
|Z`]

subject to ∀Xi ∈ TN

RDP`(Xi) : E[e−r(τ∧τ(Xi))(dτ1(τ < τ(Xi))
eZτ + a

1 + eZτ
+
c

r
)|Z`] ≤ E[e−rτ (dτ

eZτ + a

1 + eZτ
+
c

r
)|Z`]

PK`(V`) : E[e−rτ (dτ
eZτ + a

1 + eZτ
+
c

r
)|Z`] ≥ V` +

c

r
.

We claim that the value of RAM `
N is (for some value γ) equivalent to

[H`,γ
N ] : sup

(τ,dτ )
E[e−rτ (dτ

eZτ + a

1 + eZτ
(1− γ)− γ c

r
)|Z1

` ]

subject to RDP`(Xi) ∀Xi ∈ TN , Xi < X1.

By Lemma 16, we know that the value of RAM `
N is equal to

inf
(γ,λ`)∈RN+2

−

sup
(τ,dτ )

E[e−rτ (dτ
eZτ (1− γ) + (−aγ − 1)

1 + eZτ
− γ c

r
)|Z`] + γV`

+
N∑
i=0

λ`(Xi)(E[e−r(τ∧τ(Xi))(dτ1(τ < τ(Xi))
eZτ + a

1 + eZτ
+
c

r
)|Z`]− E[e−rτ (dτ

eZτ −+a

1 + eZτ
+
c

r
)|Z`])

= inf
γ∈R−

inf
λ`∈RN+1

−

sup
(τ,dτ )

E[e−rτ (dτ
eZτ (1− γ) + (−aγ − 1)

1 + eZτ
− γ c

r
)|Z`] + γV`

+

N∑
i=0

λ`(Xi)(E[e−r(τ∧τ(Xi))(dτ1(τ < τ(Xi))
eZτ + a

1 + eZτ
+
c

r
)|Z`]− E[e−rτ (dτ

eZτ + a

1 + eZτ
+
c

r
)|Z`])

= inf
γ∈R−

H`,−γ
N + γV`.

We can apply Theorem 4 to H`,γ
N , yielding the desired form of the optimal mechanism.
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G.3 Proof of Theorem 2

Proof. Suppose that b1` = b∗` (B
1
` ). Because ` receives zero expected utility conditional

on reaching b1h, `’s expected utility is given by V (B1
` , b

1
` , Z`). First we want to show that

Bh ≤ B`. Suppose that DIC(Z`, Zh) is binding. For the sake of contradiction, suppose

that Bh > B`. The utility that ` gets from claiming to be h is bounded above by
max
b

Ṽ (B1
h, b, Z`). Because b1` = b∗` (B

1
` ), then the utility ` gets from truthfully reporting

his type is given by max
b

Ṽ (B1
` , b, Z`). By Assumption 1 and the fact that Ṽ is single-

peaked in B, we know that for b > bSM we have max
b

Ṽ (B1
h, b, Z`) <

max
b

Ṽ (B1
` , b, Z`),

which contradicts DIC(Z`, Zh) binding.

Now suppose that b1` ≤ b∗(−
σ
φZ`). Again let B1

h > B1
` . Now consider the alternative

mechanism in which ` is given a stationary regime with B̃1
` = B1

h and b̃1` = b1h (with

rejection at b̃1` ). Because this is not optimal, we must have (for b1`,Z = Z` + φ
σ b

1
` and

B1
`,Z = Z` + φ

σB
1
` and similar for B̃1

`,Z , b̃
1
`,Z)

Ψ(B1
`,Z , b

1
`,Z , 0)

eZ` − eZ`−B
1
`,Z

1 + eZ`
≥ Ψ(B̃1

`,Z , b̃
1
`,Z , Z`)

eZ` − eZ`−B̃
1
`,Z

1 + eZ`
⇒ Ψ(B1

`,Z , b
1
`,Z , Z`) > Ψ(B̃1

`,Z , b̃
1
`,Z , Z`).

Thus the probability of approval when θ = H in the stationary regime is higher for

` when reporting ` rather than h in the stationary regime. But, because the B1
` < B̃1

` ,

we also have that the probability of approval when θ = L in the stationary regime is

higher for ` when reporting ` rather than h. But since the expected costs are lower

in the stationary regime for ` than h, we cannot have DIC(Z`, Zh) binding since the

probability of approval is higher and costs are lower. Therefore, we must have B1
h ≤ B1

` .

Suppose that B1
h < B1

` . Then we must have b1` < b1h in order to not violate

DIC(Z`, Zh); if we had b1h ≤ b1` , then ` could choose to report h and quit if the evi-

dence reaches b1` . This deviation is identical to lowering the approval standard for `,

which strictly increases utility for `.

Finally, we argue that if b1h 6= b1` , then it must be that h is getting his symmetric

information mechanism. By the arguments in Lemmas 7 and 8, R only changes the

approval threshold when a constraint is binding. For Xi < b1` , it is easy to see that

RDIC constraints are slack and thus the approval threshold must be constant until

bSMh . Since there is no change in the approval threshold at τ(bSMh ), this will be equal to

h’s symmetric mechanism.
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G.4 Proof of Proposition 6

Proof. First we establish that ∃Zh such thatDIC(Z`, Zh) binding implies thatDIC(Zh, Z`)

is slack. As Zh → ∞, we have that the probability of approval conditional on the state

being H (P(dτ = 1|H,h)) approaches 1 in the optimal mechanism for h. This is due

to the fact that as Zh → ∞, we have that R will reject with negligible probability as

b∗h(−σ
φZh)→ −∞. For a fixed Z`, we will have P(dτ = 1|H,h) > P(dτ = 1|H, `).

Let ρi = E[e−rτ
i |θ = H] be the expected discounted time till τ when θ = H. As

Zh →∞, we have that E[e−rτ (dτ + c
r )|Zh] ≈ ρi(1 + c

r ) since P(dτ = 1|H)→ 1. Similarly,

as Zh →∞, ρi ≈ J(τ, dτ , Zh).

Suppose that we solve the optimal mechanism dropping DIC(Zh, Z`). Since R could

always offer the `s mechanism to h, we must have ρh ≥ ρ`. This will imply that

DIC(Zh, Z`) is slack.

Finally, we argue that the fast-track mechanism is optimal. Take πh = 1 and suppose

that `’s utility V` is strictly positive and, for the sake of contradiction, that b1h = b∗(B1
h).

Let J(b1h) be the continuation value to R of the optimal mechanism at b1h. We will show

that b1h = b∗(B1
h) is suboptimal by constructing a two stage mechanism determined by

some b1 with initial approval threshold B(b1;V`) (equal to the approval threshold which

gives ` utility V` when `’s continuation value at b1 is zero) which jumps up to B`(b
1) at

b1, where B1 is set so that the expected utility to ` from (b1, B1) is equal to V`. The

utility of this mechanism to R is given by

Ψ(B′(b1;V`), b
1, X0) + ψ(B′(b1;V`, X0), b1, X0)[Ψ(B`(b

1), b1h, b
1) + ψ(B`(b

1), b1h, b
1)J(b1h)].

(6)

Let Ψ1 := Ψ(B`(b
1), b1, X0) and Ψ2 := Ψ(B`(b

1), b1h, b
1), which similar notation for ψ.

Because b1h = b∗` (B
1
h), we know that B′(b1;V`)|b1=b1h

= 0. If we take the derivative of

equation 6 with respect to b1, we have

Ψ1
b + ψ1

b [Ψ
2 + ψ2J(b1h)] + ψ1[Ψ2

x + ψ2
xJ(b1h)] (7)

+B′(b1;V`)

(
Ψ1
B + ψ1

B[Ψ2 + ψ2J(b1h)]

)
.

where Ψx and ψx are the derivatives with respect to X0. When evaluated at b1 = b1h,

straightforward calculations show that the above expression is equal to zero. Taking the

derivative of 7 and using the fact that B′(b1;V`) = 1, we get
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Ψ1
bb + ψ1

bb[Ψ
2 + ψ2J(b1h)] + 2ψ1

b [Ψ
2
x + ψ2

xJ(b1h)] + ψ1[Ψ2
xx + ψ2

xxJ(b1h)] (8)

+B′(b1;V`)
′′(b1)

(
Ψ1
B + ψ1

B[Ψ2 + ψ2J(b1h)]

)
.

Note that Ψ1
B + ψ1

B[Ψ2 + ψ2J(b1h)] < 0 (otherwise it would be profitable to increase

B1
h, keeping b1h fixed, which would still be incentive compatible since `’s utility is strictly

decreasing in B) and that B′′(b1;V`) < 0 (since increasing b1h decreases `’s utility and

therefore B must decrease to keep `’s utility fixed at V`). Taking X0 → B1
h, we have

that Ψbb, ψbb, ψb → 0; therefore it must be that increasing b1 will increase R’s utility will

keeping `’s utility fixed. Since this does better than using b1h = b∗` (B
1
h), the fast-track

mechanism must be strictly optimal.

G.5 Proof of Lemma 11

Proof. Since h will always have a higher belief than `, we can conjecture that h will

never quit as long ` still finds it optimal to experiment. This leads us to define a relaxed

problem in which we assume that h will not quit early:

[RAMBIND
` ] : sup

(τ,dτ )
E[e−rτdτ

eZτ − 1

1 + eZτ
|Z`]

subject to PK`(V`), RDP`(Xi) ∀Xi ∈ TN ,

RDICh(Vh) : E[e−rτ (dτ
eZτ + a

1 + eZτ
+
c

r
)|Zh] ≤ Vh +

c

r
.

Using the arguments of Lemma 10 and a similar change of expectation as in Lemma

7, we can see that the solution to RAMBIND
` is a sequence of static stopping thresholds

{Bi}Mm=1 (where M is the number of binding RDP constraints; if M = 0, there is a

single stopping threshold B1) and which moves from Bi to Bi+1 when the ith binding

RDP constraint is reached, as well as a rejection threshold br.

We need to argue that R approves whenever Xt reaches the stopping threshold Bi.

It is clear that in order for RDP to be satisfied when the threshold is BM , R cannot be

rejecting at both BM and br. Suppose that R approves at br (with beliefs Zr). Then for

approval to be optimal, it must be that

eZr − 1

1 + eZr
−
(

(

|BN |∑
j=0

λ`(X
j) + λ`)

eZr + a

1 + eZr
− λh

e∆eZr + a

1 + eZr

)
> 0,
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where λ`, λh, λ(Xj) are the Lagrange multipliers in our dual problem for RAMBIND
` as-

sociated with the PK(V`), RDICh(Vh) and RDP`(Xi) constraints respectively. Because

Zr < Z` < 0, this implies that eZr−1
1+eZr

< 0 and thus

(

|BN |∑
j=0

λ`(X
j) + λ`)

eZr + a

1 + eZr
− λh

e∆eZr + a

1 + eZr
< 0.

Suppose that R rejects at BM and that M ≥ 1. This means that at XM , R is only

approving at belief br which give negative utility and hence would be better off rejecting

immediately (which can only weaken h’s DIC constraint). Now suppose that no RDP

constraints are binding. Then the optimal mechanism stops at τ≥(B) ∧ τ(b) for some

(b, B). If there is approval at B and rejection at b, we are done. Suppose instead that

R rejects at B and approves at b. Because approval at b yields negative utility to R, R

would be better off approving immediately with probability equal to `’s expected utility

of

E[e−rτ(b)(1(τ(b) ≤ τ≥(B))
eZτ + a

1 + eZτ
+
c

r
)|Z`]−

c

r
.

Because DIC(Z`, Zh) holds, this satisfies DIC(Zh, Z`) (since ` will receive lower expected

utility in h’s mechanism than h will). Moreover, this will yield a higher utility for R. To

see this, let Qb, QB be defined as

Qb := E[e−r(τ≥(B)∧τ(b))1(τ(b) < τ≥(B))|Z`],

QB := E[e−r(τ≥(B)∧τ(b))1(τ(b) > τ≥(B))|Z`]

Let Zr = Z` + φ
σ b. Then we the utility of stopping immediately (divided by 1 + c

r ) is

given by

eZ` − 1

1 + eZ`
(Qb

eZr +
a+ c

r
1+ c

r

1 + eZr
+

c

r + c
(QB − 1)) >

eZ` − 1

1 + eZ`
Qb
eZr +

a+ c
r

1+ c
r

1 + eZr

while the utility from the original mechanism was

Qb
eZr − 1

1 + eZr

Thus the utility of stopping immediately is higher if
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eZ` − 1

1 + eZ`

eZr +
a+ c

r
1+ c

r

1 + eZr
≥ eZr − 1

1 + eZr

which holds since
a+ c

r
1+ c

r
< 1 and eZr−1

1+eZr
< 0.

Finally, we need to rule out approval at both B and b. Our Lagrangian for RAMBIND
`

when the final binding RDP constraint has been reached is

E[e−rτ (dτ [
eZτ − 1

1 + eZτ
−
(

(

|BN |∑
j=0

λ`(X
j) + λ`)

eZτ + a

1 + eZτ
− λh

e∆eZτ + a

1 + eZτ
)]

− c

r
(

|BN |∑
j=0

λ`(X
j) + λ` − λh

e∆eZτ + 1

1 + eZτ
)))|ZMt ].

Approval at br (corresponding to belief Zr) implies that

eZr − 1

1 + eZr
−
(

(

|BN |∑
j=0

λ`(X
j) + λ`)

eZr + a

1 + eZr
− λh

e∆eZr + a

1 + eZr

)
> 0

Because eZr−1
1+eZr

< 0, we must have
∑|BN |

j=0 λ`(X
j) + λ` − λh

e∆eZr+1
1+eZr

< 0. Therefore

by Lemma 17, we know that waiting is strictly suboptimal and R could do better by

approving immediately, a contradiction.

G.6 Proof of Lemma 12

Suppose that DIC(Zh, Z`) is binding and let Vh be the utility promised to h under the

optimal mechanism. The design problem for h’s optimal mechanism is similar to that in

Lemma 18 expect for the addition of a promise keeping constraint for h:

[AMh] : sup
(τ,dτ )

E[e−rτdτ
eZτ − 1

1 + eZτ
|Zh]

subject to DP (Zh), DIC(Z`, Zh, V`)

PK(Vh) : E[e−rτ (dτ
eZτ + a

1 + eZτ
+
c

r
)|Zh] ≥ Vh +

c

r
.

Proof. We define a relaxed problem, dropping quitting rules except for threshold quitting

rules in TN as
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[RAMh
N ] : sup

(τ,dτ )
E[e−rτdτ

eZτ − 1

1 + eZτ
|Zh]

subject to ∀Xi ∈ TN

RDPh(Xi) : E[e−r(τ∧τ(Xi))(dτ (Xi)
eZτ + a

1 + eZτ
+
c

r
)|Zh] ≤ E[e−rτ (dτ

eZτ + a

1 + eZτ
+
c

r
)|Zh],

RDIC`(Xi) : E[e−r(τ∧τ(Xi))(dτ (Xi)
eZτ + a

1 + eZτ
+
c

r
)|Z`] ≤ V` +

c

r
,

PK(Vh) : E[e−rτ (dτ
eZτ + a

1 + eZτ
+
c

r
)|Zh] ≥ Vh +

c

r
.

By the same arguments as in Lemma 10, ∃γ < 0 such that RAMh = Hh(γ, Vh) where

[Hh
N (γ, Vh)] : sup

(τ,dτ )
E[e−rτ (dτ

eZτ − 1

1 + eZτ
− γ(dτ +

c

r
)|Zh] + γVh

subject to RDPh(Xi)∀Xi ∈ TN ,

RDIC(Z`, Zh) : E[e−r(τ∧τ(Xi))(dτ (Xi)
eZτ + a

1 + eZτ
+
c

r
)|Z`] ≤ V` +

c

r
.

By applying Lemmas 18 - 20, we get our desired for the optimal stopping mechanism

(where B2
h is the initial level set for SMh(γ)) as N →∞.

G.7 Proof of Proposition 7

Proof. Let ji(X,M
X) be given by

ji(X,M
X) = Ψ(Bi,Z(M),M,Zi)

eZi − eZi−Bi,Z(M)

1 + eZi
+ψ(Bi,Z(M),M,Zi)

eZi + eZi−M

1 + eZi
ji(M),

which is the solution to the Dirichlet problem (dropping i subscripts)

LXj(X,MX) = rj(X,M)

j(B(M),M) = B(M)

j(M,M) = j(M)

and j(M) is the solution to the differential equation (derived using the principle of

normal reflection ∂j(X,MX)
∂MX |X=MX = 0)
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j′(MX) =
φ

σ

(
j(MX)[

1

1 + eMZ − ψBB′Z(M)− ψb]−
eM

Z − eMZ−B′Z(MZ)

1 + eMZ [ΨBB
′
Z(MZ) + Ψb]

)
,

(9)

with boundary condition j(M) = 0.

We first argue that there is a unique solution to the differential equation for j′(M).

Lipschitz continuity of the RHS of equation 9 is clear and continuity in M follows from the

continuity of B(M), B′(M). Therefore, the Picard-Lindelof Theorem implies a unique

solution.

Now we want to argue that j(X0,M
X
0 ) = E[e−rτdτ

eBZ (MZ
τ )−1

1+eBZ (MZ
τ )
|Z0,M0] where τ =

inf{t : Xt ≥ B(MX
t )} ∧ τ(−φ

σZi). By applying Ito’s Lemma to j(X,MX), we have

e−rtj(Xt,M
X
t ) =j(Z0,M

X
0 ) +

∫ t

0
e−rs[σ

∂j(Xs,M
X
s )

∂X
dBs +

∂j(Xs,M
X
s )

∂Xs
µ(Xs)ds

+
∂2j(Xs,M

X
s )

∂X2

σ2

2
ds− rj(Xs,M

X
s )ds+

∂j(Xs,M
X
s )

∂MX
s

dMX
s ]

= j(X0,M
X
0 ) + St +

∫ t

0
e−rt[LXj(Xs,M

X
s )− rj(Xs,M

X
s )]ds,

where we use the fact that ∂j(MX ,MX)
∂MX = 0 and ∆MX

s = 0 when Xs > MX
s and we

define St to be

St =

∫ t

0
e−rt

∂j(Xs,M
X
s )

∂Xs
dBs,

which is a continuous local martingale.

We now note that LXj(Zs,M
X
s ) − rj(Xs,M

X
s ) = 0 for all Xs ∈ (MX

s , B(MX
s )).

Therefore, we can reduce the above equation for e−rtj(Xt,M
X
t ) to

e−rτ j(Xτ ,M
X
τ ) = j(X0,M

X
0 ) + Sτ ,

When the process is stopped, the value j(Xτ ,M
X
τ ) is always equal to 1(Xτ ≥

B(MX
t )) e

BZ (MX
τ )−1

1+eBZ (MX
τ )

. Therefore, we have that

e−rτ1(Xτ ≥ BX(MX
t ))

eZτ − 1

1 + eZτ
= e−rτ j(Xτ ,M

X
τ ) = j(X0,M

X
0 ) + Sτ .

Taking expectations of both sides, we have
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E[e−rτ1(Xτ = B(MX
t ))

eZτ − 1

1 + eZτ
|Z0] = j(X0,M

X
0 ) + E[St|Z0].

It follows from Doob’s optimal sampling theorem that E[St|Z0,M
X
0 ] = 0. Noting

that E[e−rτdτ
eBZ (Mτ )−1

1+eBZ (MX
τ )
|Z0,M

X
0 ] = E[e−rτ1(Xτ ≥ B(MX

t )) e
Zτ−1

1+eZτ
|Z0], we can conclude

that j(X0,M
X
0 ) = E[e−rτdτ

eBZ (MX
τ )−1

1+eBZ (MX
τ )
|Z0,M

X
0 ]

G.8 Proof of Proposition 8

Proof. Consider the case of c = 0. Let αi = E[e−rτi1(diτ = 1)|θ = H]and β :=

E[e−rτi1(diτ = 1)|θ = L] be the discounted probability of approval for type Zi when

θ = H and θ = L (respectively). In order to preserve incentive compatibility, we must

have

πhαh + (1− πh)βh ≥ πhα` + (1− πh)β`

π`α` + (1− π`)β` ≥ π`αh + (1− π`)βh.

By optimality of τh, τ`, we also must have

πhαh − (1− πh)βh ≥ πhα` − (1− πh)β`

π`α` − (1− π`)β` ≥ π`αh − (1− π`)βh.

Adding the equations using π`, we get α` ≥ αh. Doing the same with πh, we get

that αh ≥ α`. Therefore we must have αh = α` and therefore βh = β`. Therefore, it is

without loss to offer both types the same mechanism. This mechanism must maximize

R’s utility subject to offering both types the same mechanism, which corresponds to R’s

optimal solution with prior P(Zh)πh + P(Z`)π`. A straightforward application of the

Theorem of the Maximum yields the statement of the proposition.

G.9 Proof of Proposition 9

Proof. Suppose that πh = 1 and π` = 0. We first examine a limiting case where the signal

to noise ratio µ
σ → 0 and c → 0. We claim that the value of the optimal mechanism is

zero. By Proposition 8, we know that the value of the optimal mechanism converges to
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that of a single decision maker. As µ
σ → 0, learning becomes impossible and the expected

time to approval becomes infinitely long. If P(Z`) > P(Zh), then R’s utility will converge

to zero.

Next, we want to show that for c large enough, we can devise a (suboptimal) approval

rule such ` will drop out immediately and h will be approved with strictly positive

probability. To do this, we propose a testing rule which approves if and only if Xdt > Xc,

where Xc is set such that, for some small dt,

−cdt+ (1− rdt)
∫ ∞
Xc

1

2
√
σ2dtπ

e−
(x+µdt)2

σ2dt dx = 0.

We can find a large c and small dt such that this is solved by Xc < 0 (so that h is ap-

proved more than half the time) and h will choose to experiment since
∫∞
Xc

1

2
√
σ2dtπ

e−
(x+µdt)2

σ2dt dx <∫∞
Xc

1

2
√
σ2dtπ

e−
(x−µdt)2

σ2dt dx. In this case, the value of the project to R is bounded below by
P(Zh)

2 > 0. Therefore, the value for high c is higher than the value for low c.

G.10 Proof of Proposition 10

Proof. Suppose that A knows the state perfectly and R uses the symmetric mechanism

for π = P(Zh). Then h will never have an incentive to quit early, since B is increasing in

Z. Moreover, by the same argument, ` will choose to quit early. Therefore, let us define

(τh, dhτ ) to be the same as the symmetric mechanism and (τ `, d`τ ) to be the same as the

symmetric mechanism except that it rejects whenever ` would find it optimal to quit.

This menu of mechanisms is clearly incentive compatible and using the (τh, dhτ ) will yield

the same distribution of approval times as the symmetric mechanism if θ = H is present,

but, (τ `, d`) will less approval than the symmetric mechanism if θ = L. Therefore,

we conclude that the value of the asymmetric mechanism using (τ i, diτ )i=h,` when A is

informed of the state is higher than the value of the symmetric information mechanism

when A has no private information since

E[e−rτ
SM eZτ − 1

1 + eZτ
|Z0] = P(Zh)E[e−rτ

SM |θ = H]− P(Z`)E[e−rτ
SM |θ = L]

< P(Zh)E[e−rτ
h |θ = H]− P(Z`)E[e−rτ

` |θ = L]
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H Transfers

H.1 Proof of Proposition 11

Proof. We again define a relaxed problem by dropping keeping on threshold quitting

rules. Our Lagrangian is then

E[e−rτdτ
eZτ − 1

1 + eZτ
−
∫ τ

0
e−rtwtdt

−
N∑
i=1

λ(Xi)

(
e−rτ (dτ

eZτ + a

1 + eZτ
+
c

r
) +

∫ τ

0
e−rτu(wt)dt

− [e−r(τ∧τ(Xi))(dτ (Xi)
eZτ + aeZτ

1 + eZτ
+
c

r
) +

∫ τ∧τ(Xi)

0
e−rtu(wt)dt]

)
The first order condition for wt is given by

1 = −
N∑
i=1

λ(Xi)1(MX
t ≤ Xi)u

′(wt).

Plugging this into the Lagrangian, the solution to the relaxed problem will again be

a threshold strategy where the threshold changes in MX
t . The sufficiency of the relaxed

problem follows from the arguments given for the case without transfers.

I General Markov Process

We now move to the model of Section 7.2 and begin by proving a useful Lemma on the

agent’s value function V̂ .

Lemma 22. Under Assumptions 2, for each (b, B) such that B > Xmy, V̂ (B, b,X)

satisfies strict single-crossing of f(X, 0).

Proof. Since B > Xmy and f(B, 1) > f(B, 0), we know that V̂ (B, b, b) = f(b, 0) and

V̂ (B, b,B) > f(B, 0). For the sake of contradiction. Suppose that ∃X such that for

some X ′ < X ′′ such that X ∈ (X ′, X ′′) and we had

V̂ (B, b,X ′)− f(X ′, 0) = V̂ (B, b,X ′′)− f(X ′′, 0) = 0 < V̂ (B, b,X)− f(X, 0).

We can rewrite V̂ (B, b,X) as
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V̂ (B, b,X) = E[e−rτ(X′)V̂ (B, b,X ′)1(τ(X ′) < τ(X ′′)|X] + E[e−rτ(X′′)V̂ (B, b,X ′′)1(τ(X ′′) < τ(X ′)|X]

= E[e−rτ(X′)f(X ′, 0)1(τ(X ′) < τ(X ′′)|X] + E[e−rτ(X′′)f(X ′′, 0)1(τ(X ′′) < τ(X ′)|X]

< f(X, 0)

where the last line follows from the fact that pure delay is suboptimal. This contradictions

the assumption that V̂ (B, b,X)− f(X, 0) > 0 and shows that we must have strict single

crossing.

Before considering the problem GSM , we first consider the following constrained

optimal stopping problem which is useful in the proof of Theorem 4 as well as Section

5.2:

sup
(τ,dτ )

E[e−rτg(Xτ , dτ )|X0]

subject to ∀Xi ∈ TN such that Xi ≤ X0 and Ym ∈ YM
RDP (Xi) : E[e−r(τ∧τ(Xi))f(Xτ∧τ(Xi), dτ (Xi))|X0] ≤ E[e−rτf(Xτ , dτ )|X0]

RPK(Xi, Ym) : E[e−r(τ∧τ(Xi))wm(Xτ∧τ(Xi), dτ (Xi))|X0] ≤ Ym.

(10)

where TN ∈ RN+1 and YM ∈ RM+1. We can think of g as the utility function for R

and f as the utility function for A, while wm are a set of promise keeping constraints.

We will assume that g, f, w are all bounded in X, d and that problem 10 satisfies all the

conditions of Lemma 16. Let HN (X1) be defined as the optimal mechanism without

RPK constraints which makes sure that A weakly wants to continue experimenting.

[HN (Xt)] : sup
(τ,dτ )

E[e−rτg(Xτ , dτ )|Xt]

subject to ∀Xi ∈ TN ∪ {Xt} such that Xi ≤ Xt

RDP (Xi) : E[e−r(τ∧τ(Xi))f(Xτ∧τ(Xi), dτ (Xi))|Xt] ≤ E[e−rτf(Xτ , dτ )|Xt]

PK(Xt) : E[e−rτf(Xτ , dτ )|Xt] ≥ f(Xt, 0).

Let us define the set of RDP constraints which are binding when using the optimal

(τ, dτ ) for RSMN as

BN = {Xi ∈ TN : RDP (Xi) or, for some m RPK(Xi, Ym) is binding}.

We will assume write BN = {X1, ..., X |BN |} which are ordered from largest to smallest.
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Lemma 23. Let (τ, dτ ) be the solution to 10. Then the optimal stopping rule is a static

threshold until X1 is reached for the first time; if there are no RPK constraints, then

the continuation mechanism at τ(X1) solves HN (X1) where PK(X1) binds.

Proof. By Lemma 16, there exists a set of multipliers (λ(X0), ..., λ(XN )) ∈ RN+1
− and

(γ(K0, X0), ..., γ(KM , XN )) ∈ R(M+1)(N+1)
− such that the solution to sup

(τ,dτ )∈∆C

E[e−rτg(Xτ , dτ )|X0]

is also a solution to

sup
(τ,dτ )

E[e−rτg(Xτ , dτ )|X0]

−
|BN |∑
j=1

[
λ(Xj)

(
E[e−r(τ∧τ(Xj))f(Xτ∧τ(Xj), dτ (Xj))|X0]− E[e−rτf(Xτ , dτ )|X0]

)
+

M∑
m=0

γ(Km, X
j)E[e−r(τ∧τ(Xj))wm(Xτ∧τ(Xj), dτ (Xj))|X0])

]
.

We will argue that as long as Xt has not reached X1, the optimal policy must be a

threshold policy where the process stops if Xt ≥ B1 for some B1 ≥ 0. To see this, define

the value of the optimal stopping rule after crossing X1 as

kR(X1) := sup
(τ,dτ )

E[e−rτ (g(Xτ , dτ ) + λ(X1)f(Xτ , dτ ) (11)

+

|BN |∑
j=2

[
λ(Xj)

(
e
−r(τ∧τ [hτ(X1)](X

j))
f(Xτ∧τ(Xj), dτ (Xj)))− e−rτf(Xτ , dτ )

)
+

M∑
m=0

γ(Km, X
j)e
−r(τ∧τ [hτ(X1)](X

j))
wm(Xτ∧τ(Xj), dτ (Xj))

]
|X1]

+ λ(X1)f(X1, 0) +
M∑
m=1

γ(Kj , X
1)wm(X1, 0).

Note that at X1 if
∑M

j=1 γ(Kj , X
1)wm(X1, 0) < 0, then R receives a one-time loss of∑M

j=1 γ(Kj , X
1)w(X1, 0) at exactly τ(X1), which might make it optimal to stop immedi-

ately. Therefore, we allow the continuation value at τ(X1) to be equal to the maximum

of the payoff of continuing or stopping. This value KR(X1) is given by

KR(X1) := max{kR(X1),max
dτ

g(Xτ , dτ ) +

|BN |∑
j=1

M∑
m=1

γ(Km, X
j)wm(X1, dτ )}. (12)
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The solution to KR is independent of the previous history up until X1 is reached.

Since KR is finite, we can use Assumption 2 to apply Proposition 5.7 from Dayanik and

Kaaratzas (2003) to conclude that an optimal stopping rule to the problem defined such

that the game ends when X1 is first reached, yielding the stopping value KR. By the

principal of optimality, we know that at time τ(X1), the value of optimal mechanism will

be equal to KR(X1). Thus, treating KR(X1) as the continuation value upon reaching

X1 for the first time and dropping the constants Ym from the problem, we can rewrite

equation 11 as

sup
(τ,dτ )

E[1(τ ≤ τ(X1))[e−rτg(Xτ , dτ ) +

|BN |∑
j=1

[
λ(Xj)

(
e−r(τ∧τ(Xi))f(Xτ∧τ(Xj), dτ (Xj))− e−rτf(Xτ , dτ )

)
+

M∑
m=0

γ(Km, X
j)e−r(τ∧τ(Xj))wm(Xτ∧τ(Xj), dτ (Xj))

]
+ 1(τ > τ(X1))e−rτ(X1)KR(X1)|X0].

By applying Lemma 15, we can see that the optimal stopping policy takes a threshold

form which stops when Xt ≥ B1 until τ(X1). If the policy stops at τ(X1), then we are

done.

Therefore, suppose that the mechanism doesn’t end at τ(X1) and that RDP (X1) is

binding. The optimal stopping rule from τ(X1) onward is that which solves KR(X1).

Since this continuation mechanism does not depend on the history of play up until τ(X1),

it must be that the constraint expectations over f at τ(X1)

E[e−r(τ−τ(X1))f(Xτ , dτ )|X1, hτ(X1)],

are also independent of the history to τ(X1) (and similarly for the other f constraint

expectations). Let τ1 := τ [hτ(X1)], d
1 := d[hτ(X1)] and τ1(X) := τ1[hτ(X1)](X), d1(X) :=

d1[hτ(X1)](X) be the continuation mechanism and continuation threshold quitting rule

at τ(X1). Then we can define the continuation value at τ(X1) as

KA(X1) := E[e−rτ
1
f(Xτ1 , d1

τ )|X1].

We can further decompose this value into what happens before and after τ(X1):

E[e−rτf(Xτ , dτ )|X1] = E[1(τ ≤ τ(X1))e−rτf(Xτ , dτ )|X0]

+ E[1(τ > τ(X1))e−rτ(X1)KA(X1)|X0],
(13)

and similarly for any Xi ≤ X1
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E[e−r(τ∧τ(Xi))f(Xτ∧τ(Xi), dτ (Xi))|X0]

= E[1(τ ≤ τ(X1))e−rτf(Xτ , dτ )|X0]

+ E[1(τ > τ(X1))e−rτ(X1)E[e−r(τ
1∧τ1(Xi))f(Xτ1∧τ1(Xi), d

1
τ (Xi))|X1]|X0].

(14)

Then we know by complementary slackness we know that for all Xj

E[e−rτf(Xτ , dτ )|X0] = E[e−r(τ∧τ(Xj))f(Xτ∧τ(Xj), dτ (Xj))|X0].

Substituting in equations 13, 14, we get

E[1(τ > τ(X1))e−rτ(X1)KA(X1)|X0]

= E[1(τ > τ(X1))e−rτ(X1)E[e−r(τ
1∧τ1(Xj))f(Xτ1∧τ1(Xj), d

1
τ (Xj)|X1]|X0].

Then, using the fact that neither KA(X1) nor

E[e−r(τ
1∧τ1(Xj))f(Xτ1∧τ1(Xj), d

1
τ (Xj))|X1]

depend on the history up until τ(X1) or the specific time of τ(X1), we see that

KA(X1)E[1(τ > τ(X1))e−rτ(X1)|X0]

= E[e−r(τ
1∧τ1(Xj))f(Xτ1∧τ1(Xj), dτ (Xj))|X1]E[1(τ > τ(X1))e−rτ(X1)|X0],

KA(X1) = E[e−r(τ
1∧τ1(Xj))f(Xτ1∧τ1(Xj), dτ (Xj))|X1].

(15)

Evaluating this at Xj = X1, we see that

KA(X1) = f(X1, 0).

Thus, upon reaching X1, the expected continuation value to A is equal to the value of

quitting at X1.

We now seek to show that the mechanism which solves KR(X1) also solves HN (X1)

when there are no RPK constraints. Let (τH , dHτ ) be the mechanism which solves HN .

Because it satisfies all RDP constraints, then we know that for all Xi,
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λ(Xi)E[e−r(τ
H∧τ(Xi))f(XτH∧τ(Xi), d

H
τ (Xi))− e−rτ

H
f(XH

τ , d
H
τ )|X1] ≥ 0.

Let (τK , dKτ ) be the continuation mechanism at τ(X1). Since (τK , dKτ ) satisfies all RDP

and PK(0) constraints, it is admissible with respect to HN . Therefore, it must be that

E[e−rτ
H
g(XτH , d

H
τ )|X1] ≥ E[e−rτ

K
g(XτK , d

K
τ )|X1]

Moreover, since (τH , dHτ ) satisfies all RPD constraints, we know that

E[1(τ < τ(X1))e−rτg(Xτ , dτ ) + 1(τ ≥ τ(X1))e−rτ(X1)E[e−rτ
K
g(XτK , d

K
τ )|X1]X0]

≥ E[1(τ < τ(X1))e−rτg(Xτ , dτ ) + 1(τ ≥ τ(X1))e−rτ(X1)E[e−rτ
H
g(XτH , d

H
τ )|X1]X0]

which, using the fact that E[e−rτ
H
g(XτH , d

H
τ )|X1] and E[e−rτ

K
g(XτK , d

K
τ )|X1] are inde-

pendent of the history up until τ(X1), implies that

E[e−rτ
K
g(XτK , d

K
τ )|X1] ≥ E[e−rτ

H
g(XτH , d

H
τ )|X1]

Therefore, it must be that (τK , dKτ ) solves HN . Since complementary slackness implies

that E[e−rτ
K
f(XτK , d

K
τ )|X1] = f(X1, 0), we know that PK(0) must be binding.

Analogously to the sketch of the proof in Section 4.3, we define a relaxed version of

GSM to be GRSMN , which is given by

[GRSMN ] : sup
(τ,dτ )

E[e−rτg(Xτ , dτ )|X0]

subject to ∀Xi ∈ TN
RDP (Xi) : E[e−r(τ∧τ(Xi))f(Xτ∧τ(Xi), dτ (Xi))|X0] ≤ E[e−rτf(Xτ , dτ )|X0]

where TN = {X0 + n(X0−X)
N }Nn=0.

Lemma 24. Under Assumption 2, The solution to GRSMN is a static approval threshold

policy until τ(X1). Then continuation mechanism at τ(X1) is the solution to HN (X1)

where PK(0) is binding.

Proof. Let us suppose that at least one RDP constraint is binding (if no RDP con-

straints are binding, then the optimal solution must be a static threshold mechanism
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with approval at B and rejection at b). By Lemma 23, the optimal stopping rule until

time τ(X1) is given by a static stopping rule τ = inf{t : Xt ≥ B} for some B ≥ X0.

All that is left to derive is the decision rule.

First, let us suppose that R does not stop immediately at τ(X1) and, for the sake

of contradiction, that R rejected at B. By Lemma 23, the continuation value to A at

τ(X1) is equal to his outside option and thus A receives the same utility as if R rejected

at X1: V (τ, dτ , X0) = V (τ≥(B)∧ τ(X1), 0, X0). But this will violate RDP (X0) since by

Assumption 2

E[e−r(τ≥(B)∧τ(b))f(Xτ≥(B)∧τ(b)), 0)|X0] ≤ f(X0, 0).

Therefore, it must be that R is approving at τ≥(B) if τ≥(B) < τ(X1).

Now we must rule out the case in which R also stops at X1 < X0 (the constraint at

X1 will be binding if R acts at X1). We can construct the Lagrangian corresponding to

GRSMN as

L = sup
(τ,dτ )

E[e−rτg(Xτ , dτ )+

|BN |∑
j=1

λ(Xj)
(
e−r(τ∧τ(Xj))f(Xτ∧τ(Xj), dτ (Xj))−e−rτf(Xτ , dτ )

)
|X0].

Since we can now analyze the problem as a single-decision maker would, it is easy to see

that

dτ(X1) = 1 ⇐⇒ g(X1, 1) > g(X0, 0)⇒ g(B, 1) > g(B, 0) ⇐⇒ dτ≥(B) = 1.

Therefore, if the optimal decision rule approves at X1, then it must approve at both B

as well. But by Assumption 2, we know that immediate approval would be better for R

than waiting to approve. Since this is also better for A, immediate approval would be

admissible with respect to GRSMN , contradicting the optimality of waiting until B or

X1.

Finally, we consider the case in which R rejects at X1. Since rejection at X1 is

admissible with respect to HN (X1), it must be that immediate rejection solves HN (X1).

Otherwise, if HN (X1) > g(X1, 0), then we could replace rejection at X1 with the solution

to HN (X1). It is easy to see that this would satisfy all RDP constraints and would yield

higher utility for R in the primal problem, contradicting the optimality of rejection at

X1.
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Lemma 25. Under Assumptions 2 and 3, as N → ∞, the solution to HN (X1) (when

PK(0) is binding) is given by τ = inf{t : Xt ≥ B(MX
t )} ∧ τ(br) and dτ = 1(Xt =

B(MX
t )) for some cutoff br.

Proof. We now want to solve for the optimal mechanism which solves HN (X) when

PK(X) is binding. By applying Lemma 23 repeatedly, we see that the optimal mech-

anism will consist of a sequence of upper stopping thresholds {Bn}|BN |n=1 and one lower

threshold b. Moreover, at each binding constraint Xj > X |BN |, we must have PK bind-

ing at Xj . As the mechanism progresses, the current upper threshold depends only on

the lowest binding threshold which has been reached; hence, we can write the upper

threshold at time t as a step function BN (MX
t ) of the minimum of the X until time t.

Suppose that the state is Xt = MX
t = Xj and Xj > X |BN |. By complementary

slackness, we know that at Xj , we have

E[e−rτf(Xτ , dτ )|Xj ] = f(Xj , 0)

Therefore, in order to satisfy RDP at Xj+1, we must have approval at BN (Xj+1), since,

if R rejected at Bj ,

E[e−rτf(Xτ , dτ )|Xj ] = E[1(τ ≤ τ(Xj+1))e−rτf(Xτ , dτ )|Xj ]

+ E[1(τ > τ(Xj+1))e−rτ(Xj+1)E[e−r(τ−τ(Xj+1))f(Xτ , dτ )|Xj+1]|Xj ]

= E[e−r(τ(Bi)∧τ(Xj+1))f(Xτ(Bi)∧τ(Xj+1), 0)|Xj ]

< f(Xi, 0).

a violation of RDP at Xj . Therefore, since R is approving at B and PK is binding,

the threshold at Xj must be B̃(Xj+1, Xj) (we rule out the possibility that BN (Xi) <

maxb B
∗A(b) in Lemma 2.

We now turn to the relationship between Xj and Xj+1. Intuitively, we should not

expect them to be far apart: Between time τ(Xj) and τ(Xj+1), the optimal mechanism

yields A’s outside option to A whenever Xt = Xj (since, for A, the mechanism is equiv-

alent to a static threshold with approval at B and rejection at b) and when Xt = Xj+1

(by complementary slackness). Therefore, when Xt ∈ (Xj+1, Xj), the mechanism is,

for A, equivalent to a static threshold mechanism (with thresholds (Xj+1, Xj)) giving

him his outside option at both thresholds. Therefore, we should expect him to prefer

taking his outside option at such Xt. Thus, if there is a constraint Xi ∈ TN such that
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Xi ∈ (Xj+1, Xj), this would seem to violate RDP (Xi). Formally we need to use the

single-crossing of V̂ to establish this.

At Xj , the agent’s continuation value is equal to V̂ (B̃(Xj+1, Xj), Xj+1, Xj). If there

were a slack constraint Xi ∈ (Xj+1, Xj), then since V̂ (B̃(Xj+1, Xj), Xj+1, X) > f(X, 0)

at Xi+1 and X ≈ B̃(Xj , Xi) (since f is increasing in dτ ) and V̂ (B̃(Xj+1, Xj), Xj+1, X) =

f(X, 0) at Xj and Xj+1, which implies violates strict single crossing of V̂ and f . There-

fore, no such Xi can exist and thus Xj+1 = Xj − 1
N .

We can also show that at the final binding quitting threshold X |BN |, R must be

rejecting. After time τ(X |BN |), there are no more binding constraints and the optimal

stopping mechanism will solve

sup(τ,dτ ) E[e−rτ (g(Xτ , dτ ) +

|BN |∑
j=1

λ(Xj)f(Xτ , dτ )|X |BN |].

By Lemma 15, the solution to this problem will be a pair of threshold (b, B) and,

using arguments from Lemma 24, it must be that R approves at B and rejects at b (which

implies that Xi < b are binding).

We now turn to examine lim
N→∞BN (MX

t ). Since X |BN | ∈ [X,X1], there exists a limit

of X |BN | as N → ∞. Let X(MX
t ) := max{Xi ∈ TN : Xi < MX

t }. Since BN (MX
t ) =

B̃(X(MX
t ), X(MX

t ) − 1
N ) and B̃(Xj , Xi) is continuously differentiable, BN (MX

t ) has

uniformly bounded variation on [X,X0] and is uniformly bounded; therefore, by Helly’s

Selection Theorem, it has a limit. Since RDP binding at Xi implies that it is binding at

Xi+1 = Xi − 1
N , we can see that on MX

t > X |BN | we have

lim
N→∞BN (MX

t ) = B̃(X(MX
t ), X(MX

t )− 1

N
) = B(MX

t )

Lemma 1. For X ∈ [b∗(maxbB
∗
A(b)), XA

my), there exists two function B1, B2 such that

argmaxb V (B1(X), b,X) = argmaxb V (B2(X), b,X) = X with B1 decreasing and B2

increasing.

Proof. We know that for eachX, lim
B→0

V (B, b,X) < f(Xt, 0); becauseX > b∗(maxbB
∗
A(b)),

there exists B1(X) which keeps A’s utility equal to zero. For the existence of B2(X),

note that for B = XA
my, A utility of continuing is strictly negative: reaching B is equiv-

alent to rejecting at XA
my and b. Since delay is sub-optimal, it would be better to quit

immediately. Therefore, by increasing B, there must exist some B2(x) < maxb B
∗
A(b)

such that A’s best utility against B2(x) is equal to zero.
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Lemma 2. lim
N→∞ BN (·) = B1(·).

Proof. We know that there exist two curves B1(x) and B2(x) such that B1(x) is in-

creasing and B2(x) is decreasing, and at x, A is indifferent between experimenting and

quitting against an approval threshold of Bi(x). We argue here that the optimal approval

threshold must be to follow B2(x).

Suppose that for large N the optimal choice of B switched from B1 to B2 (a similar

argument will rule out a switch from B2 to B1); then ∃X1 > X2 such that B(X1) =

B1(X1) > B(X2) = B2(X2). Because we know that R’s preferences are single-peaked,

the fact that B2(X2) was not chosen at X2 implies that when faced with a lower value of

J(X3) upon reaching X3 for the first time, R’s preferred threshold must be below B(X2).

If R’s preferred threshold was above B2(X2), then she could her preferred threshold at

τ(X2) until τ(X3) and preserve all DP constraints. Therefore, it must be that R’s

preferred threshold is below B(X2).

By continuity of R’s preferred threshold, we know that it will be roughly equal when

evaluated at X1 against a continuation value upon reaching X2 of J(X2). But this

implies that R would do better by using a threshold of B2(X2) at X1 (which would

again preserve all DP constraints by the single-peaked property of A’s preferences), a

contradiction of the optimality of B1(X1). Therefore it cannot be that B switches from

B1 to B2.

Finally, we argue that the optimal curve cannot be only B2(x). Let us assume that

the approval rule follows B2 from X1 onwards. Then let us consider a relaxed problem

in which R can choose an approval rule subject to the condition that R can approval

only at levels less than B∗A and R must reject at br (and we add only a participation

constraint at X1):

sup
(τ,dτ )

E[e−r(τ∧τ(br))g̃(Xτ∧τ(b), dτ1(τ ≤ τ(b)))|X1]

subject to

P : E[e−r(τ∧τ(b))f(Xτ∧τ(b), dτ1(τ ≤ τ(b)))|X1]

where g̃(Xτ , dτ ) = g(Xτ , dτ ) if Xτ ≤ B∗A and is equal to −∞ otherwise. Similar

to our mechanism with two-sided commitment, it is straightforward to show that the

optimal mechanism here is a threshold rule. Because we assume that R’s preferences

are single-peaked and B∗R(br) > B∗A(br), then it must be that the optimal threshold in

this relaxed probem is B∗A(br). However, this threshold could be used in our original

problem from X1 onwards (since it clearly satisfies all DP constraints as it gives A his
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best approval threshold subject to rejection at br). Therefore we conclude that B2 is

never used in the optimal mechanism.

Lemma 26. Let (τN , dNτ ) be the solution to GRSMN and define (τ, dτ ) = lim
N→∞ (τN , dNτ ).

Then (τ, dτ ) is admissible with respect to GSM .

Proof. Our stopping rule τ = inf{t : Xt ≥ B(MX
t )} ∧ τ(br) is clearly a FXt -measurable

and thus is admissible if it satisfies all DP constraints. We need to verify that after any

history, the continuation value for A is weakly positive. Since the mechanism (τ, dτ ) is

(Xt,M
X
t )-Markov, we need only check that E[e−rτf(Xτ , dτ )|Xt,M

X
t ] ≥ f(Xt, 0).

When MX
t > b∗(B1), then A’s continuation utility is given by V̂ (B1, b∗(B1), Xt),

which is greater than f(Xt, 0) by definition of b∗(B1) and the fact that Xt > b∗(B1).

WhenMX
t ≤ b∗(B1), then A’s continuation utility is given by V̂ (B(MX

t ),MX
t , Xt), which

is greater than f(Xt, 0) since Xt ≥ MX
t . Thus, for all (Xt,M

X
t ), dynamic participation

constraints are satisfied.

I.1 Proof of Theorem 4

Proof. Let (τ, dτ ) := lim
N→∞ (τN , dNτ ) where (τN , dNτ ) solves GRSMN . We know that

the value of GRSMN (i.e., J(τN , dNτ , X0)) is an upper bound on the value of GSM .

Moreover, since the J(τN , dNτ , X0) is bounded above by sup
(τ,dτ )

E[e−rτf(Xτ , dτ )|X0], the

dominated convergence theorem implies that J(τ, dτ , X0) = lim
N→∞ J(τN , dNτ , X0). There-

fore, we can conclude that J(τ, dτ , X0) is an upper bound on the value of GSM . Since

(τ, dτ ) is admissible to GSM by Lemma 26, this implies that (τ, dτ ) is a solution to

GSM .

Finally, we need to show that the threshold B(MX
t ) is continuous. By Lemma 23,

we know that the approval threshold (call it B1) is constant until τ(X1). After τ(X1),

Lemma 20 implies that B(MX
t ) = B(MX

t ). Thus, we will be done if we can show that

X1 = b∗(B1).

Clearly, we cannot have X1 < b∗(B1), since this would violate the RDP constraints

for Xi ∈ (X1, b∗(B1)). For the sake of contradiction, suppose that for large enough

N we had X1 > b∗(B1) where B1 is the initial threshold for GRSMN . Let Ĵ(Xc) be

the continuation value of the optimal mechanism (τN , dNτ ) of GRSMN to R at some

Xc ∈ (X1, X0) when MX
t > X1 and let J̃(Xc) be the continuation value to R at Xc

when MX
t ∈ (X2, X1). The utility to R at t = 0 is given by

99



E[1(τ ≤ τ(Xc))e
−rτg(Xτ , dτ ) + 1(τ > τ(Xc))e

−rτ(Xc)Ĵ(Xc)|X0,M
X
t = X0].

Switching to the mechanism which delivers J̃(Xc) at τ(Xc) would be admissible since

J̃(Xc) satisfies all RDP constraints. Therefore, for this to not be optimal, it must be that

J̃(Xc) < Ĵ(Xc). Similarly, consider the continuation value of the optimal mechanism at

τ(X1), which is given by

E[1(τ(X2) < τ(Xc))e
−rτ(X2)J̃(X2) + 1(τ(X2) > τ(Xc))e

−rτ(Xc)J̃(Xc)|X1,MX
t = X1].

We can see that switching to the mechanism which delivers Ĵ(Xc) if Xc is reached before

τ(X2) will satisfy all RDP at τ(X1) (since the mechanism at J̃(Xc) satisfies all RDP

constraints). Therefore, for this to not be optimal, we must have J̃(Xc) > Ĵ(Xc), a

contradiction. Letting N →∞, we can conclude that X1 = b∗(B1).
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