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Abstract

A frequent concern in empirical research is whether a handful of outlying obser-
vations have driven the key empirical findings. The current widespread practice in
economics is to redo the statistical analysis adjusting for outliers and see if we obtain
similar results, checking “robustness to outliers.” However, such empirical practices
have little theoretical justification, and researchers have had to rely on heuristic
arguments. This paper constructs a formal statistical test of outlier robustness that
accommodates many empirical settings. The key is to observe that statistics related
to outlier robustness analysis are represented as L-statistics—integrals of empiri-
cal quantile functions with respect to sample selection measures—and to consider
them in spaces equipped with appropriate norms. In particular, we characterize
weak convergence of empirical distribution functions in the space of bounded inte-
grable functions, establish the delta method for their inverses (empirical quantile
functions) as maps from this space into the space of integrable functions, character-
ize weak convergence of random sample selection measures in the space of bounded
integrable Lipschitz functions, and derive the delta method for L-statistics as maps
from those spaces into a Euclidean space. As an empirical application, we revisit the
outlier robustness analysis in Acemoglu et al. (2017) and demonstrate that our test
can detect sensitivity of a parameter that was otherwise indiscernible had we relied
on existing heuristics. Our theory of L-statistics is new and of independent inter-
est; we propose other applications, including multiple testing problems and tests of
higher-order Lorenz dominance.
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1 Introduction

In empirical research in economics, a common concern is whether a handful of outlying
observations may have driven crucial empirical findings. In estimating the effect of mi-
crocredit with experimental data, Augsburg et al. (2015) report that trimming 1% of
the observations makes the effect of the loan program on business profits significant that
is otherwise insignificant. The analysis of Acemoglu et al. (2001) on the effect of institu-
tions on economic performance using differences in mortality rates prompted extensive
discussion of whether outliers undermined the validity of mortality rates as instruments
(Albouy, 2012; Acemoglu et al., 2012). Herndon et al. (2014) discuss whether the exclu-
sion of some observations invalidates the findings in Reinhart and Rogoff (2010). Guthrie
et al. (2012) find that a result in Chhaochharia and Grinstein (2009) is driven by out-
liers. De Long and Summers (1991) and de Long et al. (1992) find that machinery and
equipment investment have a strong connection with economic growth, which is followed
by discussion of whether outliers drove their findings (Auerbach et al., 1994; de Long
and Summers, 1994).

It is thus considered an important characteristic of valid empirical findings that a
small number of outliers do not affect the conclusion of analysis to a nonnegligible degree
(Young, 2017). The common practice in empirical research is to carry out robustness
checks by redoing the analyses on the sample that is adjusted for outliers (such as
removal or winsorization) and comparing the results from the original ones relative to
standard errors (e.g., Acemoglu et al., 2001, 2016, 2017; Agarwal et al., 2010; Alatas
et al., 2016; Fabrizio et al., 2007). While such heuristic practices lack formal justification
(as explained in Section 2.2), it is technically demanding to obtain the joint distribution
of the estimates necessary to formalize the outlier robustness checks as statistical tests.

The main contribution of this paper is to develop a method to derive the joint distri-
bution of full-sample and outlier-adjusted estimators for a wide range of sample selection
procedures, including removal or winsorization at cutoffs that depend on the entire sam-
ple. With our results, we can test whether the parameter of interest changes its value
significantly before and after such sample selection, enabling formal statistical investiga-
tion of outlier robustness checks. Many statistics related to outlier robustness analysis
are represented as L-statistics—integrals of transformations of empirical quantile func-
tions with respect to random sample selection measures. We develop a new empirical
process theory tailored for these statistics, with an important innovation related to the
choice of appropriate norms. Despite the long tradition of empirical process techniques
in establishing asymptotic properties of L-statistics (Shorack and Wellner, 1986; Van der
Vaart and Wellner, 1996; Koul, 2002), the literature has confined attention to empirical
processes under the “uniform norm,” which has imposed severe limitations to the range
of applications; in particular, it did not cover some essential L-statistics that appear
in outlier robustness analysis. In contrast, our theory employs appropriate norms and
allows us to cover a very general form of L-statistics including them.

Our theoretical contribution consists of three key results: we consider empirical
distribution functions in the space of bounded integrable functions and characterize
weak convergence therein (Section 3.1); we consider empirical quantile functions in the
space of integrable functions and establish the functional delta method for the map from
distribution functions to quantile functions in these spaces (Section 3.2); we consider
random sample selection measures in the space of bounded integrable Lipschitz functions
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and establish a functional delta method for L-statistics from these spaces (Section 3.3).
Lastly, we obtain the formula for the joint asymptotic distribution of L-statistics and
establish the validity of bootstrap for computing the asymptotic distribution.

The challenge in deriving asymptotic distributions of outlier-adjusted statistics is
that the sample selection procedure often depends on the whole of the sample in ways
that render classical multivariate central limit theorems inapplicable. As the first step
of our analysis, we observe that many statistics related to outlier robustness analysis are
given by L-statistics. An L-statistic is a quantity given by∫ 1

0
m(Qn(u))dKn(u),

where m is a known continuously differentiable function, Qn : (0, 1) → R an empirical
quantile function of some random variable Xi, and Kn : (0, 1)→ R a Lipschitz function
that is possibly random.1 Here, Kn represents the sample selection procedure (such as
outlier removal or winsorization) that can be heavily dependent on the quantile function
and other observations.

As a toy example, let us consider the problem of deriving the joint distribution of
two sample means: the full sample mean and the α-trimmed sample mean, the mean
that drops α ∈ (0, 1) portions of observations from both tails,

1

n

n∑
i=1

Xi and
1

n− 2bαnc

n−bαnc∑
i=bαnc+1

X(i),

where X(i) denotes the ith smallest order statistic of X1, . . . , Xn. Surprisingly, deriving
the joint distribution of these statistics is a nontrivial problem, as the order statistics are
highly dependent, and the trimmed mean cannot be represented as a simple sum of i.i.d.
(or stationary) random variables, preventing the use of familiar central limit theorems.
We tackle this problem by transforming them into the integral forms:∫ 1

0
Qn(u)du and

n

n− 2bαnc

∫ 1−bαnc/n

bαnc/n
Qn(u)du,

where Qn is the empirical quantile function of Xi.
2 This formulation is susceptible to

functional delta methods, once we know “weak convergence” of the empirical quantile
process

√
n(Qn −Q), where Q : (0, 1)→ R is the population quantile function of Xi.

However, now we face a major difficulty; the empirical quantile process thus defined
does not converge in the standard sense. If Xi is supported on the whole of R, the true
quantile function Q is unbounded on (0, 1). On the other hand, the empirical quantile
function Qn is by construction bounded on (0, 1) since for each n there are only finitely
many values Qn can take (in particular, X1 through Xn). It is clear, then, that the
maximum distance between Qn and Q is infinity for every n, implying that Qn does not
converge to Q uniformly. Corresponding to this point, Van der Vaart (1998, p. 317) notes
that the functional delta method for L-statistics “is preferable in that it applies to more
general statistics, but it...does not cover the simplest L-statistic: the sample mean.” To

1The empirical quantile function is a generalized inverse of the empirical distribution function, in
particular, Qn(u) := inf{x ∈ R : Fn(x) ≥ u} where Fn(x) := 1

n

∑n
i=1 1{Xi ≤ x}.

2Note that the trimmed mean can be further written as
∫ 1

0
QndKn for Kn Lipschitz. See Section 2.
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circumvent this issue, the literature on empirical processes has often confined itself to
bounded or truncated quantile functions (Van der Vaart and Wellner, 1996, Chapter 3.9)
or weighted empirical quantile processes that suitably down-weight the tails (Csörgő and
Horváth, 1993). However, none of these methods work for our purpose, as we neither
want to limit attention to bounded random variables nor can we expect that the random
variables are weighted in such a nice way.

We solve this problem by considering the quantile functions in the L1 space instead of
in the traditional L∞ space. The important point is to realize that what we truly need
is the convergence of integrals of quantile functions; uniform convergence of quantile
functions, as often considered, is neither necessary nor sufficient for our purpose. In
light of this, we first characterize weak convergence of empirical distribution processes
in the space of bounded and integrable functions, and then establish the functional delta
method for the map from such distribution functions F to quantile functions Q = F−1;
this establishes weak convergence of empirical quantile processes in L1. The key intuition
in the proof is to observe that the L1 norm is compatible with Fubini’s theorem.

Given weak convergence of empirical quantile processes, we now proceed to weak
convergence of the possibly random sample selection function Kn and the functional
delta method for (Q,K) 7→

∫
QdK. Note that∫

QndKn −
∫
QdK =

∫
(Qn −Q)dKn +

∫
Qd(Kn −K).

For the first term to converge whenever the sample average
∫
Qndu does, we need Kn

to be uniformly Lipschitz. For the second to be well-defined, we need that Kn converges
to K in L∞. Then by integration by parts, the second term can be approximately
written as −

∫
(Kn −K)dQ, meaning that Kn needs to converge to K in LQ, the space

of functions integrable with respect to Q. This exercise reveals that the appropriate
convergence of the sample selection function Kn can be established in, again, the space of
bounded and integrable functions. Finally, we establish the functional delta method for
the L-statistic, (Q,K) 7→

∫
QdK (more precisely, we allow transformations of quantile

functions,
∫
m(Q)dK).

The utility of our functional delta method approach is not only the generality it
brings but also that it implies the validity of the nonparametric bootstrap. This allows
researchers to avoid making strong distributional assumptions to derive the asymptotic
distributions of their estimators.

This paper characterizes the asymptotic distributions of many L-statistics in the
form of Gaussian distributions. Note, however, that not all L-statistics converge weakly
to Gaussian distributions; for example, the largest order statistic, appropriately scaled,
often converges to some extreme value distribution (de Haan and Ferreira, 2006). In this
sense, this paper can be seen as establishing the conditions under which a general form
of L-statistics converges to a Gaussian distribution. The key to convergence toward
Gaussian distributions is that the sample selection mechanisms become less and less
dependent on n as n tends to infinity; in the outlier removal example, the threshold
α does not approach 0 as n tends to infinity. This assumption, however, may not be
plausible in some applications. We note that our delta method results are potentially
susceptible to generalizations to other nonstandard distributions; see Section 3.3.

Applying the theory developed thus far, we propose a test of outlier robustness
that takes into account natural comovement of the two estimators. As an empirical
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application, we revisit the outlier robustness analysis discussed in Acemoglu et al. (2017)
and carry out a formal statistical test as proposed in this paper. They estimate the
effect of democracy on the GDP growth, and examine the sensitivity of their results to
the removal of outliers on the residuals, in particular examining whether removing the
extreme values in GDP growth would significantly change their findings. For all but one
coefficient, the test is not rejected at 5% level, meaning that they exhibit robustness to
such outlier removal. For the one rejected—persistence of the GDP growth—we show
that the rejection would not have been “detectable” had we relied on the heuristic testing
procedure commonly practiced in the literature.

The theory of L-statistics developed in this paper is itself new and of independent
interest; it can be used to solve other econometric problems aside from outlier robustness
analyses. Kaji and Kang (2017) define a class of risk measures subsuming Value-at-
Risk and expected shortfall that can incorporate estimation errors into the risks being
estimated. The asymptotic results in their paper use the theory developed in this paper.
Kaji (2017) interprets quantile treatment effects as individual treatment effects that
attain the lower bound of the total absolute treatment effect and proposes a variant of
subgroup treatment effects to assess the heterogeneity of treatment effects. Again, the
asymptotic properties follow from the results of the present paper. In the main text, we
also discuss applications to multiple testing problems and tests of higher-order Lorenz
dominance.

The rest of the paper is organized as follows. Section 2 defines the class of L-
statistics considered in this paper and discusses how it subsumes many statistics widely
used in economics. Section 2 also elaborates on the outlier robustness analysis and
explains how outlier robustness can be tested using the asymptotic distributions of L-
statistics. Section 3 describes the main theoretical contribution of the paper; it develops
the asymptotic theory of L-statistics using integrable empirical processes and functional
delta methods. The exposition is aimed to be minimal and intuitive, leaving most of
the details to Appendices. Section 4 discusses an approach for testing outlier robustness
and revisits the outlier robustness analysis of Acemoglu et al. (2017). Section 5 applies
the asymptotic theory of L-statistics to other econometric problems: multiple testing
problems, tests of higher-order Lorenz dominance, tail risk measures by Kaji and Kang
(2017), and heterogeneous treatment effects by Kaji (2017). Section 6 reviews the related
literature on empirical processes, L-statistics, and robust estimation. Finally, Section 7
concludes. All figures, tables, and proofs appear in the Appendices.

2 Setup and Motivation

2.1 L-statistics

This paper concerns statistics that are averages of functions of independent and iden-
tically distributed (i.i.d.) random variables, where each observation may be omitted or
weighted differently from other observations. To fix this idea, let Xi be an i.i.d. scalar
random variable and wi a possibly random weight whose distribution is assumed to be
bounded but is allowed to depend on all of Xi. Consider a statistic of the form

β̂ =
1

n

n∑
i=1

m(Xi)wi,
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where m is some continuously differentiable function. For example, the sample average
is such a statistic where m is an identity and wi is identically one; the sample average
from 1st to 99th percentiles (excluding the bottom and top 1% of observations) is also
such a statistic for which m is an identity and wi is the indicator of whether Xi falls
between the 1st and 99th percentiles of X1, . . . , Xn. Thus, wi captures the idea that
each Xi may be weighted (or excluded) in an interdependent way.

Note that rearranging the summands does not affect the sum itself. In particular,
let X(i) be the order statistic of Xi; X(1) represents the smallest observation, X(2) the
second smallest, and so on. Denote by w(i) the weight corresponding to X(i) (so wi is
sorted according to the order of Xi). Then, one may rewrite the average without loss of
generality as

β̂ =
1

n

n∑
i=1

m(X(i))w(i).

This formulation is known as an L-statistic, where “L” stands for the fact that β̂ is a
linear combination of functions of order statistics X(i). Many statistics commonly used
in economics are L-statistics, as will be shown in examples below.

We develop a method to derive the distribution of β̂ using empirical quantile func-
tions. Let Qn(u), u ∈ (0, 1), be the empirical u-quantile of Xi, that is,

Qn(u) :=


X(1) u ∈

(
0, 1n

]
,

X(i) u ∈
(
i−1
n , in

]
,

X(n) u ∈
(
n−1
n , 1

)
.

Using this, one can write

β̂ =

∫ 1

0
m(Qn(u))dKn(u),

where Kn is the measure that assigns density w(i) to u ∈
(
i−1
n , in

]
. Although the two

representations are mathematically equivalent, the first representation as a sum of order
statistics evokes the multivariate central limit theorems, while the second representa-
tion as an integral evokes the functional central limit theorems and functional delta
methods. Correspondingly, there are two methods to derive the asymptotic distribution
of L-statistics—the Hájek projection and the functional delta method—each of which
covers nonoverlapping quantities (Van der Vaart, 1998, Chapter 22). For example, the
Hájek projection covers the full sample average, while the functional delta method cov-
ers plug-ins of estimated quantile functions. However, nonoverlapping coverage can be
problematic when we want the joint distribution of various L-statistics, as in the outlier
robustness analysis. While we leave further comparison of the two methods to Sec-
tion 6.2, this paper achieves substantial generalization of the second method that is
enough to accommodate quite general forms of L-statistics useful for outlier robustness
analyses and other problems.

To wrap up, our objective is to derive the joint distribution of finitely many statistics
of the form β̂ =

∫ 1
0 m(Qn)dKn; in particular, β̂j =

∫ 1
0 mj(Qn,j)dKn,j , j = 1, . . . , d.

2.2 Outlier robustness analysis

This section clarifies the motivation of outlier robustness analysis and explains why
L-statistics are useful for this purpose.
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What is the problem in current heuristic practice? Let β̂1 be the key estimator on
which our empirical findings are based. When we want to claim that β̂1 is “not the
consequence of only a few outlying observations,” we often compute another estimator
β̂2 from the sample that excludes some outliers and then argue that their difference is
not too large compared to the standard error estimated for β̂1. However, comparing the
difference β̂1 − β̂2 to the marginal standard error of β̂1 does not make much sense from
a statistical point of view. Naturally, β̂1 and β̂2 are based on almost identical sets of
observations. Therefore, even if the contribution of outliers is fairly large, the difference
of the two estimators can be, by construction, much smaller than the marginal standard
error of β̂1. Moreover, it so happens that the asymptotic distribution of an efficient
estimator is independent of its difference from another estimator; then, such empirical
practices may not be susceptible to an interpretation as a meaningful statistical testing
procedure of some hypothesis.

What does a researcher want to investigate by checking “robustness” to outliers?
As an example, consider the problem of estimating the treatment effect of microcredit
provision on households’ business profits in rural villages in some country. Let β1 be the
true average treatment effect and suppose that its estimate β̂1 is significantly positive.
We may then suggest policy implications such as “Since β̂1 is significantly positive, we
recommend to expand availability of microcredit to all villages in this country.” However,
we are worried that such a finding may be mostly driven by some “outlying” observations.
For example, we are concerned about the possibility that the treatment effects are largely
positive for above-the-poverty-line households while they can be negative for poor or
extremely poor households, aggregating to a modestly positive average treatment effect.
If this is the case, despite the average effect being positive, we may not wish to implement
microcredit as it may exacerbate economic inequalities. In another scenario, we may be
concerned that some extreme data points are not representative of the true population;
for example, some respondents with limited literacy may have mistakenly answered their
incomes as unreasonably high (or low) figures, and that may be driving the treatment
effect unreasonably positive and significant. If so, again, we may not wish to base our
policy recommendations on such imprecise measures.

In this setting, letXi be (a part of) household i’s characteristics; Xi can be a regressor
or can be a dependent variable. We are worried about the robustness of our findings to
outliers of Xi; let β2 be the true average treatment effect on the population that excludes
the outlying portion of Xi, e.g., E[Yi1 − Yi0 | Xi ≤ c]. Concerns about the first scenario
can be formulated as “the average effect β1 does not represent the average effect among
‘typical’ individuals, β2.” Then, the null hypothesis subject to be tested in the outlier
robustness analysis can be formulated as

H0 : |β1 − β2| ≤ h

for some h ≥ 0. In the second scenario, we are concerned that outliers may not be from
the true data generating process of interest, and they may be affecting the estimate
too much. However, if outliers affect the findings of the statistical analyses only to a
negligible degree, then we may say that our findings are robust to such possibilities.
Then, the null hypothesis we want to test is, again, H0 : |β1 − β2| ≤ h for some h ≥ 0.

The choice of h in the null hypothesis is an important practical question, but we treat
it as given in this paper. This h should be based on how much error can be tolerated
in applying the empirical findings, and hence should be determined on a case-by-case
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basis.3 That being said, we list a few special cases later in this section where the choice
of h is necessarily determined by the characteristics of the model. To summarize, if we
develop a way to test the above hypothesis, we can formalize many heuristic arguments
carried out in empirical research.4

To relate L-statistics to our context, consider the regression equation

yi = xiβ + εi, E[xiεi] = 0,

where we estimate β by the ordinary least squares (OLS) regression. Let us first con-
sider cases where we compare another OLS estimator that excludes outliers of yi as in
Acemoglu et al. (2016) or Banerjee et al. (2014). Now we have two estimators:

β̂1 =

(
1

n

n∑
i=1

x2i

)−1
1

n

n∑
i=1

xiyi, β̂2 =

(
1

n

n∑
i=1

x2iwi

)−1
1

n

n∑
i=1

xiyiwi, (1)

where wi = 1{y(bτnc+1) ≤ yi ≤ y(n−bτnc)}. Denote by Fn and Qn the empirical distribu-
tion and empirical quantile functions of xiyi. Then, they can also be written as

β̂1 =

∫ 1

0
Qn(u)dKn,1(u), β̂2 =

∫ 1

0
Qn(u)dKn,2(u),

where Kn,1 and Kn,2 are random measures that assign, respectively, density ( 1
n

∑n
i=1 x

2
i )
−1

to (0, 1) and density ( 1
n

∑n
i=1 x

2
iwi)

−1wi to u ∈ (Fn(xiyi)−1/n,Fn(xiyi)]. Along the same
line, we can represent the two-stage least squares (2SLS) estimators as L-statistics as
well.

We might instead think that outlying observations have some information and want
to winsorize xi as in Acemoglu et al. (2012). Here, winsorization of xi at quantile
τ means replacing every x(i) for i = 1, . . . , bτnc by x(bτnc+1), and every x(i) for i =
n−bτnc+ 1, . . . , n by x(n−bτnc). Thus, winsorization replaces “outliers” with the closest
value that is considered non-outlier. Then, we would have

β̂1 =

(
1

n

n∑
i=1

x2i

)−1
1

n

n∑
i=1

xiyi, β̂2 =

(
1

n

n∑
i=1

x2iw
2
i

)−1
1

n

n∑
i=1

xiyiwi, (2)

where

wi =


x(bτnc+1)/xi xi < x(bτnc+1) < 0,

x(n−bτnc)/xi xi > x(n−bτnc) > 0,

1 otherwise.

These can be written as

β̂1 =

∫ 1

0
Qn(u)dKn,1(u), β̂2 =

∫ 1

0
Qn(u)dKn,2(u),

3In the empirical application in Section 4, we use the severest null h = 0. If one cannot reject the
hypothesis with h = 0, that can be considered a “strong” indicator of robustness.

4One may wish to “test” whether the outliers affect the significance of the estimates. However,
significance depends by construction on data and hence is not solely determined by the population
characteristics; therefore, bringing it up in the null hypothesis is difficult to justify from a statistical
point of view.
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where Kn,1 and Kn,2 are, again, random measures that assign density ( 1
n

∑n
i=1 x

2
i )
−1

and density ( 1
n

∑n
i=1 x

2
iw

2
i )
−1wi to u ∈ (Fn(xiyi) − 1/n,Fn(xiyi)]. If we can derive the

joint distribution of the involved L-statistics, we are able to formally test our hypothesis
about the outlier robustness.

Now let us look at a few special cases of linear regression models in which outlier
removal will not cause the coefficient to change. First, if we have E[εi | xi] = 0, then
any sample selection conditional on xi does not change the value of β. Therefore, outlier
removal based on xi is harmless, and we can use h = 0. Second, if the conditional
distribution of εi conditional on xi is symmetric around zero and we remove samples
symmetrically by εi, it will not cause any bias on β (in reality, we remove by ε̂i, which
consistently estimates ε). Third, if εi is independent of xi, then the sample selection
based on εi does not introduce bias on β except for the intercept. However, if we select
samples based on yi, the true value of β will almost always change.5

2.3 Notes on the setup

The L-statistics introduced so far share an important feature that the random measure
Kn is “well-behaved” (in the sense defined precisely in the next section). The intuition
is that the selection or weighting mechanism does not depend on the sample size n, at
least asymptotically. The results of this paper apply in such contexts. The next example
does not possess this feature and thus falls outside the scope of the theory developed in
this paper.6

Example (Extreme order statistics). The minimum of the observations X1, . . . , Xn

can be written as

X(1) =
1

n

(1/n)n∑
i=1

nX(i) =

∫ 1

0
Qn(u)dKn(u),

where Qn is the empirical quantile of Xi, and Kn assigns density n on (0, 1/n] and zero
elsewhere. Then Kn “converges” to the measure that assigns mass 1 to u = 0 and zero
elsewhere, which is not absolutely continuous with respect to the Lebesgue measure. �

3 Overview of Main Results

This section describes the key ideas and theoretical contributions of this paper. The
formal mathematical development and proofs are given in the Appendices.

We recall our setup from Section 2.1. Let (Xi,1, . . . , Xi,d) be an i.i.d. random vector
and (wi,1, . . . , wi,d) vector of possibly random weights whose distribution is bounded but
allowed to depend on all of Xi,j . Denote by Fn,j the (marginal) empirical distribution
function of X1,j , . . . , Xn,j . We want to know the joint distribution of

β̂j =

∫ 1

0
mj(Qn,j(u))dKn,j(u), j = 1, . . . , d,

where Qn,j := F−1n,j denotes the generalized inverse of Fn,j , mj : R→ R are continuously
differentiable functions, and Kn,j possibly random measures. We derive this using the

5Or, if one regards β as a fixed structural parameter, then it can be put as “the plim of popular
estimators does not coincide with the structural β any more.”

6This does not mean that extension to such cases is impossible. See the end of Section 3.
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asymptotic distributions of Fn,j and Kn,j and applying the corresponding functional

delta methods for the map (F,K) 7→
∫ 1
0 m(F−1)dK.

What would be a plausible derivative formula for the delta method? Let Q and K
be the population counterparts of Qn and Kn and suppress dependence on j. Informal
calculation suggests that

√
n(β̂ − β) =

√
n

(∫ 1

0
m(Qn)dKn −

∫ 1

0
m(Q)dK

)
=

∫ 1

0

√
n[m(Qn)−m(Q)]dKn +

∫ 1

0
m(Q)d

(√
n(Kn −K)

)
≈
∫ 1

0

√
n[m(Qn)−m(Q)]dK −

∫ 1

0

√
n(Kn −K)dm(Q)

≈
∫ 1

0
m′(Q)

√
n(Qn −Q)dK −

∫ 1

0
m′(Q)

√
n(Kn −K)dQ, (3)

where the third “equality” follows from integration by parts and the fourth from a delta
method. One of the main goals of this paper is to give the conditions under which
this derivation can be justified. The purpose of this section is to provide an accessible
introduction to the issues involved, while the rigorous treatment is left to the Appendices.

We proceed in three steps:

Step 1. Explore in what sense the empirical distribution function Fn must converge, and
give sufficient conditions for such convergence. Along the way, we will also find
the right notion of convergence for the empirical quantile function Qn := F−1n .

Step 2. Under the stated conditions, show that functions of the empirical quantile func-
tion Qn do indeed converge in the required sense, and characterize its asymptotic
distribution. The key is the functional delta method for F 7→ m(Q) = m(F−1).

Step 3. Formulate a proper convergence notion for Kn. Combining these results, show
that our L-statistics converge to a normal random vector, and obtain its formula.
The key is the functional delta method for (Q,K) 7→

∫ 1
0 m(Q)dK.

3.1 Step 1: Convergence of empirical processes

The empirical process literature (Shorack and Wellner, 1986; Van der Vaart and Wellner,
1996; Kosorok, 2008; Dudley, 2014) shows that the classical empirical process

√
n(Fn−F )

converges to a Gaussian process in L∞. Due to the choice of this norm (the uniform
norm), such results are referred to as uniform central limit theorems. To proceed with
our agenda, however, such classical results turn out to be insufficient.

To understand the difficulty we face, consider the empirical quantile process in anal-
ogy with the empirical process for distribution functions,

√
n(Qn(u)−Q(u)), u ∈ (0, 1).

If the support of the underlying distribution F is unbounded (which is necessary to
accommodate many empirically relevant problems in economics), the true quantile func-
tion Q is an unbounded function on (0, 1), while the empirical quantile function Qn is
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bounded for every n by construction. Therefore, it immediately follows that the empiri-
cal quantile process, with no restrictions on its range, never converges in the traditional
uniform sense. This is why the previous literature has restricted its attention to conver-
gence of quantile processes of truncated or bounded random variables (Van der Vaart,
1998; Van der Vaart and Wellner, 1996) or of weighted versions of quantile processes so
they are effectively bounded (Csörgő and Horváth, 1993).

The first key idea of this paper is to switch to a new norm on the space of quantile
functions. Recall that our eventual target is the statistics represented by the integral
of the empirical quantile functions; we are not interested in any kind of inference that
requires uniform convergence of Qn (such as Kolmogorov-Smirnov type tests or uniform
confidence bands around a quantile function). Then, the appropriate space for our quan-
tile functions would naturally be the space of integrable functions, and the corresponding
notion of convergence be L1; the classical uniform norm L∞ appears neither appropriate
nor desirable. Thus, we give up the uniform convergence and seek the conditions under
which the empirical quantile process

√
n(Qn − Q) converges weakly in L1. In light of

this, define the following space.

Definition. Let B be the Banach space of measurable functions z from (0, 1) to R with
the norm

‖z‖B :=

∫ 1

0
|z(u)|du.

Not all probability distributions have a quantile function that is integrable. Precisely,
a quantile function is integrable if and only if the corresponding probability distribution
has a finite first moment (Lemma A.1). One sees therefore that even if the empirical
distribution function Fn converges to the true distribution function F in the uniform
sense (which is indeed the case for every probability distribution regardless of how many
moments it has), it might not be the case that the empirical quantile function Qn

converges to the true quantile function Q in L1. In other words, the inverse map F 7→
Q := F−1, when viewed as a map from L∞ to L1, is not even continuous, let alone
differentiable. This is why the classical uniform central limit theorems are not suitable for
our purpose; we need to make use of a sufficiently strong norm on the space of distribution
functions that ensures the existence of at least the first moment. Put together, the norm
must be strong enough that the inverse map F 7→ Q be differentiable, but not so strong
that it excludes many distributions of our potential interest.

The second key idea of this paper is to observe that the integrability of quantile
functions is equivalent to the integrability of distribution functions by integration by
parts. In particular, we require the distribution function F to be “integrable” in the
sense that its modification

F̃ (x) =

{
F (x) x < 0

F (x)− 1 x ≥ 0

is integrable. The adequacy of this norm is intuitively understood by observing that the
quantile function is integrable if and only if the modification of the distribution function
is integrable (Lemma A.1).

The precise definition of the norm is as follows.

11



Definition. Let −∞ ≤ a < c < b ≤ ∞ and µ be a positive Lebesgue-Stieltjes measure
on (a, b). Define the space Lµ of µ-measurable functions z : (a, b) → R with limits
z(a) := limx→a z(x) and z(b) := limx→b z(x), and the norm

‖z‖Lµ := ‖z‖∞ ∨ ‖z̃‖µ :=

(
sup
x∈(a,b)

|z(x)|
)
∨
(∫ b

a
|z̃(x)|dµ(x)

)
where

z̃(x) :=

{
z(x)− z(a) x < c,

z(x)− z(b) x ≥ c.

Definition. Let L be the special case of Lµ where (a, b, c) = (−∞,∞, 0) and µ be equal
to the Lebesgue measure. The space of distribution functions is the subset Lφ of L of
functions z that are monotone and cadlag with z(−∞) = 0 and z(+∞) = 1.

Note that we still require the distribution function to converge uniformly (the L∞
part of the norm); this ensures that the “inverse function” is well defined. Being the
intersection of the familiar spaces L∞ and L1, weak convergence in L implies convergence
in both.

Henceforth we will focus on distributions F that are members of L and prove weak
convergence of empirical processes

√
n(Fn − F ) in L. Eventually, we want to show that

this convergence of the empirical processes implies convergence of the empirical quantile
processes

√
n(Qn − Q) in B. Since convergence in L is a stronger requirement than

convergence in L∞, we cannot rely on classical results to show convergence in our norm;
now we develop the conditions for our convergence. The next theorem gives the complete
characterization of weak convergence in Lµ.

Theorem 1 (Characterization of weak convergence in Lµ). The sequence of processes
Xn : Ω → Lµ converges weakly in Lµ if and only if all of the following three conditions
are met. (We denote Xn(ω)(t) by Xn(t).)

(i) Every finite marginal (Xn(t1), . . . , Xn(tk)) converges weakly in Rk for every k.

(ii) There exists a semimetric ρ1 on (a, b) such that (a, b) is totally bounded in ρ1 and
Xn is asymptotically uniformly ρ1-equicontinuous in probability, that is, for every
ε, η > 0 there exists δ > 0 such that

lim sup
n→∞

P

(
sup

ρ1(s,t)<δ
|Xn(s)−Xn(t)| > ε

)
< η.

(iii) There exists a semimetric ρ2 on (a, b) such that (a, b) is totally bounded in ρ2 and
Xn is asymptotically (ρ2, µ)-equiintegrable in probability, that is, for every ε, η > 0
there exists δ > 0 such that

lim sup
n→∞

P

(
sup
t∈R

∫
0<ρ2(s,t)<δ

|X̃n(s)|dµ(s) > ε

)
< η.

Remark. The classical empirical process literature shows that weak convergence in L∞
is connected to the Arzelá-Ascoli theorem (Van der Vaart and Wellner, 1996, Chapter
1.5). This is to say that for the sequence of stochastic processes to converge weakly
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uniformly, the elements of the sequence must be equally uniformly continuous. The
upshot of the above theorem is that, in order for weak convergence in L1 to take place
additionally, the elements of the sequence must be “equally integrable” as well. This
insight is reminiscent of the Dunford-Pettis theorem in functional analysis.

Despite its technical complexity, the conditions of the theorem are not necessarily
difficult to check. It is known that the empirical process

√
n(Fn−F ) satisfies conditions

(i) and (ii) (Van der Vaart and Wellner, 1996, Examples 2.1.3 and 2.5.4). The following
proposition shows that if F has slightly more than variance, then it also satisfies condition
(iii).

Proposition 2 (Convergence of empirical processes). Let F be a probability distribution
function on R with a (2 + ε)th moment for some ε > 0.7 Then the empirical process√
n(Fn−F ) converges weakly in L to a Gaussian process with mean zero and covariance

function Cov(x, y) = F (x ∧ y)− F (x)F (y).

3.2 Step 2: Convergence of quantile processes

Now we proceed on to weak convergence of the empirical quantile process
√
n(Qn −Q)

in B. This is established by showing that the inverse map F 7→ Q = F−1 is Hadamard
differentiable as a map from L to B. Weak convergence of the empirical quantile process
then follows by the functional delta method.

The next theorem establishes Hadamard differentiability of the inverse map.

Theorem 3 (Differentiability of the inverse map). Let F ∈ Lφ be a distribution function
that has at most finitely many jumps and is otherwise continuously differentiable with
a strictly positive density. Then the inverse map φ : Lφ → B, φ(F ) = Q, is Hadamard
differentiable at F tangentially to the set L0 of all continuous functions in L. The
derivative map, φ′F : L0 → B, is given by

φ′F (z)(u) = −z(Q(u))Q′(u), u ∈ (0, 1).

Importantly, the derivative formula, we find, is the same as the one known in the
literature for the uniform norm (Van der Vaart and Wellner, 1996, Section 3.9.4.2).
Note that, although they are both about the “same” operator φ : F 7→ Q, the derivative
formula need not be the same as we have changed the norm. The delta method states
that the distribution of a function of a statistic is characterized by the derivative and
the distribution of the statistic. Then, that the derivative formula stays unchanged
reveals a relieving fact that we do not need to worry about the unboundedness of the
quantile functions when it comes to integrating them; we may continue using the same
old formula.

We summarize the main conclusion of this section.

Proposition 4 (Convergence of quantile processes). Let m : R → R be a continuously
differentiable function. For a distribution function F on R that has at most finitely
many jumps and is otherwise continuously differentiable with strictly positive density

7The classical central limit theorems only require finite variance. This marginal gap between the
classical central limit theorems and the L1 functional central limit theorem is mentioned in del Barrio
et al. (1999). This is the “cost of generality” we pay in this paper. In some cases, however, it is possible
to show that the second moment is sufficient, e.g., as in Shorack and Wellner (1986, Chapter 19) and ?.
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such that m(X) has a (2 + ε)th moment for X ∼ F and some ε > 0, the process√
n(m(Qn) − m(Q)) converges weakly in B to a Gaussian process with mean zero and

covariance function Cov(s, t) = m′(Q(s))Q′(s)m′(Q(t))Q′(t)(s ∧ t− st).

In addition to inversion, the proposition allows for transformation m. While we
leave the formal treatment to the Appendices, we provide an intuitive discussion of this
generalization in the remainder of this section.

Assume for simplicity that m is increasing. Observe that by integration by parts,∫
m(x)dF = −

∫
F̃ dm(x).

This indicates that existence of the expectation of the random variable m(X) is equiva-
lent to the distribution function F of X belonging to the space Lm of functions that are
integrable with respect to m. Meanwhile, by the change of variables u = F ◦m−1(x),∫

m(x)dF =

∫
xdF ◦m−1 =

∫
(F ◦m−1)−1du =

∫
m(Q)du.

Combine the results as follows. If X is such that m(X) has a finite first moment, then F
belongs to Lm. This is equivalent to saying that F ◦m−1 belongs to L. Now we invoke
Theorem 3 to find that its inverse (F ◦ m−1)−1 is in B. Since (F ◦ m−1)−1 = m(Q),
it follows that m(Q) is in B. Finally, if, in addition, m(X) has (slightly more than) a
variance, then its “empirical distribution function” Fn ◦m−1 converges weakly in L by
Proposition 2 and hence the result follows by the delta method just established.

3.3 Step 3: Convergence of L-statistics

The last step is to show that the L-statistics of the form
∫
mj(Qn,j)dKn,j , j = 1, . . . , d,

jointly converge weakly to a normal vector. Again, this is achieved by proving that the
L-statistics, when seen as a map, are Hadamard differentiable. But for this, we need to
take care of the randomness that arises from the measure Kn.

By the informal exercise in (3), the appropriate notion of convergence for Kn is
expected to involve integrability. It turns out that the norm developed in Section 3.1
does the right job. Here we recall the definition with specialization to the unit interval.

Definition. For a quantile function Q : (0, 1) → R, denote by LQ the Banach space of
functions κ : (0, 1)→ R with the norm

‖κ‖LQ :=

(
sup

u∈(0,1)
|κ(u)|

)
∨
(∫ 1

0
|κ̃(u)|dQ(u)

)
.

where κ̃(u) := κ(u)− κ(0)1{u ≤ 1/2} − κ(1)1{u > 1/2}. Define by LQ,M the subset of
LQ of Lipschitz functions whose Lipschitz constants are uniformly bounded by M .

Now we are ready to show Hadamard differentiability of L-statistics. Fortunately,
the derivative formula in the next theorem confirms our intuition in equation (3).

Theorem 5 (Differentiability of L-statistics). For each M , the maps λ : B×LQ,M → R
and λ̃ : B× LQ,M → L∞(0, 1)2,

λ(Q,K) =

∫ 1

0
Q(u)dK(u) and λ̃(Q,K)(s, t) =

∫ t

s
Q(u)dK(u),

14



are Hadamard differentiable at (Q,K) ∈ Bφ × LQ,M uniformly over LQ,M tangentially
to the set B × LQ,0 where LQ,0 is the subset of LQ of continuous functions κ such that
Q(u)κ(u)→ 0 as u→ {0, 1}. The derivative is given by

λ′Q,K(z, κ) =

∫ 1

0
Q(u)dκ(u) +

∫ 1

0
z(u)dK(u),

λ̃′Q,K(z, κ)(s, t) =

∫ t

s
Q(u)dκ(u) +

∫ t

s
z(u)dK(u),

where
∫
Qdκ is defined via integration by parts if κ is of unbounded variation.

Thus, for Hadamard differentiability of L-statistics, we require that the random
“distribution function” Kn be uniformly Lipschitz, that is, when seen as a measure, Kn

has a uniformly bounded density with respect to the Lebesgue measure.
Do selection measures such as outlier removal or winsorization satisfy this condition?

If so, how can we verify it? Are there more primitive conditions that are easy to check?
To answer these questions, consider the randomly weighted sum 1

n

∑n
i=1Xiwi, or equiv-

alently, 1
n

∑n
i=1X(i)w(i) where w(i) is sorted according to the order of Xi. Using the

empirical quantile function Qn of Xi, we write this sum as an integral:∫ 1

0
QndKn,0 where Kn,0(u) :=

1

n

bnuc∑
i=1

w(i) =
1

n

n∑
i=1

w(i) ×

{
0 u < i

n ,

1 i
n ≤ u.

This function Kn,0 is simple enough but the results developed in this paper require that
this function be Lipschitz. We accomplish this by linearly interpolating Kn,0, as Qn is
piecewise constant on 1/n intervals. In particular, we can replace the integral by

∫ 1

0
QndKn where Kn(u) :=

1

n

n∑
i=1

w(i) ×


0 u < i−1

n ,

n
(
u− i−1

n

)
i−1
n ≤ u <

i
n ,

1 i
n ≤ u.

Since Fn(X(i)) = i/n, we can write Kn(u) as

1

n

n∑
i=1

wi1
{

0 ∨ (nu− nFn(Xi) + 1) ∧ 1
}
.

Therefore, as long as wi is bounded by some constant, this Kn is Lipschitz almost surely.

Proposition 6 (Convergence of selection measures). Let U1, . . . , Un be independent
uniformly distributed random variables on (0, 1) and w1,n, . . . , wn,n random variables
bounded by some constant M whose distribution can depend on U1, . . . , Un and n. De-
fine

Fn(u) :=
1

n

n∑
i=1

1{Ui ≤ u}, Gn(u) :=
1

n

n∑
i=1

wi,n1{Ui ≤ u}.

Let I(u) := u and assume that K(u) := limn→∞ E[Gn(u)] exists and is Lipschitz and
differentiable. If

√
n(Gn−K) weakly converges jointly with

√
n(Fn− I) in L∞, then for

the “selection” measure

Kn(u) :=
1

n

n∑
i=1

wi1
{

0 ∨
(
nu− nFn(Ui) + 1

)
∧ 1
}
,
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we have
√
n(Kn−K) converge weakly in LQ for every quantile function Q whose distri-

bution has a (2 + c)th moment for some c > 0.

This means that most “well-behaved” sample selection measures converge in LQ;
roughly speaking, if the empirical distribution of the selected sample X1,n, . . . , Xm,n

converges in the traditional uniform sense together with that of the entire sample, then
the selection measure Kn as defined in Section 2 converges in LQ. This can be verified
as follows.

Example 1 (Outlier robustness analysis). Let F be the true distribution of xiyi. In
this example, Fn and Gn in Proposition 6 are

Fn(u) :=
1

n

n∑
i=1

1{F (xiyi) ≤ u}, Gn(u) :=
1

n

n∑
i=1

wi,n1{F (xiyi) ≤ u}.

Since both y(bτnc+1) and y(n−bτnc) converge almost surely to Qy(τ) and Qy(1 − τ), we
have that for outlier removal at τ - and (1−τ)-quantiles (1), wi,n converges almost surely
to 1{Qy(τ) ≤ y ≤ Qy(1− τ)} and for winsorization at τ - and (1− τ)-quantiles (2), to

wi =


Qy(τ)/yi yi < Qy(τ) < 0,

Qy(1− τ)/yi yi > Qy(1− τ) > 0,

1 otherwise.

Then, Fn and Gn jointly converge uniformly, respectively to an identity function and
E[wi | F (xiyi) = u]. �

Now we are ready to state the main result of this paper: the joint asymptotic distri-
bution of general L-statistics.

Proposition 7 (Convergence of L-statistics). Let m1,m2 : R→ R be continuously dif-
ferentiable functions and F : R2 → [0, 1] be distribution function on R2 with marginal
distributions F1, F2 that have at most finitely many jumps and are otherwise continuously
differentiable with strictly positive marginal densities such that m1(X1) and m2(X2),
(X1, X2) ∼ F , have a (2+ε)th moment for some ε > 0. Along with independent and iden-
tically distributed random variables X1,1, . . . , Xn,1 and X1,2, . . . , Xn,2, let w1,n,1, . . . , wn,n,1
and w1,n,2, . . . , wn,n,2 be random variables bounded by some constant M whose distribu-
tion can depend on n and all of X1,1, . . . , Xn,1 and X1,2, . . . , Xn,2 such that the empirical
distributions of Xi,1, Xi,2, wi,n,1Xi,1, and wi,n,2Xi,2 converge uniformly jointly to con-
tinuously differentiable distribution functions. Then, the normalized L-statistics

√
n

(
En[m1(Xi,1)wi,n,1]− E[m1(Xi,1)wi,n,1]
En[m2(Xi,2)wi,n,2]− E[m2(Xi,2)wi,n,2]

)
=
√
n

(∫ 1
0 m1(Qn,1)dKn,1 −

∫ 1
0 m1(Q1)dK1∫ 1

0 m2(Qn,2)dKn,2 −
∫ 1
0 m2(Q2)dK2

)
where

Kn,j(u) :=
1

n

n∑
i=1

wi,n,j1

{
0 ∨

(
u− Fn,j(Xi) +

1

n

)
∧ 1

n

}
,

Kj(u) := lim
n→∞

E[wi,n,j | Fj(Xi,j) ≤ u],
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converge weakly in R2 to a normal vector (ξ1, ξ2) with mean zero and (co)variance

Cov(ξj , ξk) =

∫ 1

0

∫ 1

0
m′j(Qj(s))Q

′
j(s)m

′
k(Qk(t))Q

′
k(t)×(

[Fjk(s, t)− st] + [Kjk(s, t)Fjk(s, t)− stKj(s)Kk(t)]

−Kj(s)[Fjk(s, t)− st]−Kk(t)[Fjk(s, t)− st]
)
dsdt,

where Fjk(s, t) := Pr(Xi,j ≤ Qj(s), Xi,k ≤ Qk(t)) and Kjk(s, t) := limn→∞ E[wi,n,jwi,n,k |
Xi,j ≤ Qj(s), Xi,k ≤ Qk(t)].

In applications, one can compute the distribution either analytically, by parametric
bootstrap, or by nonparametric bootstrap. Nonparametric bootstrap does not require
distributional assumptions and can be quite convenient when one iteration of the estima-
tion does not consume much time. The following is a procedure for the nonparametric
bootstrap, stated for completeness.

Proposition 8 (Validity of nonparametric bootstrap). In the assumptions stated in
Proposition 7, assume further that wi,n,j represents sample selection based on a fixed

number of empirical quantiles.8 Then, the joint distribution of (β̂1, . . . , β̂d) can be com-
puted by nonparametric bootstrap. The algorithm is as follows. Here, Xi denotes a vector
(Xi,1, . . . , Xi,d).

i. Bootstrap n (or fewer) random observations from X1, . . . , Xn with replacement.

ii. Compute the statistics (β̂∗1 , . . . , β̂
∗
d) for the bootstrapped sample.

iii. Repeat the above steps S times.

iv. Use the empirical distribution of (β̂∗1 , . . . , β̂
∗
d) as the approximation to the theoretical

asymptotic distribution of (β̂1, . . . , β̂d).

We have hitherto assumed that Xi of interest is univariate. Multivariate cases, as in
regressions, can be accommodated as follows.

Example (Multivariate regression). Let xi = (1, xi1, xi2)
′ and β = (β0, β1, β2)

′, and
consider yi = x′iβ + εi. The OLS estimator for β is

β̂ =

(
1

n

n∑
i=1

xix
′
i

)−1
1

n

n∑
i=1

xiyi = β +

(
1

n

n∑
i=1

xix
′
i

)−1
1

n

n∑
i=1

xiεi.

Therefore,

√
n(β̂1 − β1) = c1

1√
n

n∑
i=1

εi + c2
1√
n

n∑
i=1

xi,1εi + c3
1√
n

n∑
i=1

xi,2εi + oP (1)

for some constants c1, c2, and c3. Thus, one can reduce the weak convergence of the
vector

√
n(β̂ − β) to the joint convergence of univariate empirical quantiles of εi, xi,1εi,

and xi,2εi. �

8The assumption on convergence must be extended (from bivariate) to joint over all processes involved.
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We note some possibilities for generalizing our results to other cases that are not con-
sidered in this paper. For instance, we do not explicitly consider cases where data are
dependent (Dehling et al., 2002, 2014), where smoothed or estimated cdfs are substituted
for empirical cdfs (Hall et al., 1999; Berg and Politis, 2009), or where a non-conventional
convergence device such as extreme value theory is used for the stochastic processes
(Einmahl, 1992; Rootzén, 2009; Drees and Rootzén, 2010, 2016). The part that requires
additional work is the proof that Fn and Kn in each case converge weakly in our space Lµ.
Fortunately, since we have completely characterized weak convergence in Lµ in Theo-
rem 1 without relying particularly on the central limit theorem structure (see Section 6.1
and Appendix A.4), half of such work is already taken care of. Once convergence of Fn
and Kn is established, weak convergence of their transformations follows immediately
by the Hadamard differentiability of the maps proved herein.

This concludes the overview of the key ideas and main results of the paper. Interested
readers may consult the Appendices for general statements and proofs.

4 Application to Outlier Robustness Analysis

4.1 Test of Robustness to Outliers

We apply the results developed in Section 3 to the problem described in Section 2.2 and
construct a statistical test of outlier robustness analysis. We briefly recall our setup from
Section 2.2. Let β1 be the parameter of interest and β̂1 its estimator. Denote by β̂2 the
estimator that is computed with outlier-adjusted sample, i.e., the sample that excludes or
winsorizes outliers. Since outlier removal or winsorization can change the true parameter
in the population, we let β2 be the true parameter from the outlier-adjusted population.
The null hypothesis we want to test is given by

H0 : ‖β1 − β2‖ ≤ h

for a fixed h ≥ 0.
We assume that h is a scalar while β can be a vector, and we take the norm ‖ · ‖

to be the Mahalanobis distance between β1 and β2, that is, [(β̂1 − β̂2)′Σ−1(β̂1 − β̂2)]1/2
where Σ is either an identity, the covariance matrix of β̂1 − β̂2, or some other positive
definite symmetric matrix. The natural test statistic to use is ‖β̂1 − β̂2‖.

Let α ∈ (0, 1) be the size of the test. According to the main result, the variance
Σ of the difference β̂1 − β̂2 can be estimated either by the analytic formula or by the
bootstrap. Note that if h > 0, the null hypothesis is composite; hence the definition
of critical values includes taking supremum over the set of point null hypotheses. In
particular, the critical value cα in a general case must satisfy

sup
‖v‖≤1

Pr
(
‖hv + ξ‖2 > cα

)
≤ α,

where ξ ∼ N(0,Σ). If β is a scalar, it reduces to finding cα such that

Pr
(
(h+ ξ)2 > cα

)
= α

for ξ ∼ N(0, σ2) where σ2 is the variance of β̂1 − β̂2.
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4.2 Empirical Application to the Effect of Democracy on Growth

Now we apply this test to reinvestigate the outlier robustness analysis in Acemoglu
et al. (2017). The aim of their paper is to answer the long-standing question of whether
democracy affects economic growth in a negative or positive way. To address difficul-
ties arising from the effect of DGP dynamics and endogenous selection into democracy,
Acemoglu et al. (2017) conduct three analyses that guard against different possibilities
and find very similar results: after 25 years from permanent democratization, GDP per
capita is about 20% higher than it would be otherwise. The three analyses in Acemoglu
et al. (2017) consist of fixed effects regression on a dynamic panel that models GDP
dynamics, treatment effects analysis that does not impose parametric assumptions on
the GDP process, and IV fixed effects regression on the same dynamic panel instrument-
ing a wave of democratization. Acemoglu et al. (2017) then check robustness of their
results to outliers for the two panel regressions. In this section, we estimate the joint
distribution of the baseline and outlier-removed estimates in Acemoglu et al. (2017) and
conduct a test of outlier robustness as developed above.

The first regression equation is given by:

log GDPi,t = β0Democracyi,t +
4∑
s=1

βs log GDPi,t−s + αi + δt + εi,t,

where i represents a country, t a year, and Democracyi,t the indicator of democracy at
country i in year t. Here, Acemoglu et al. (2017) assume sequential exogeneity, which
means the error term is mean independent with all contemporary and past variables,
namely democracy, the GDP, and fixed effects:

E[εi,t | log GDPi,t−s,Democracyi,t−u, αi, δt : s = 1, . . . , t, u = 0, . . . , t] = 0 for all i and t.

The data consist of 6,336 observations. The original paper examines two more specifi-
cations, but we omit them as the results of reexamination are similar.

In the third analysis, Acemoglu et al. (2017) use the regional wave of democratization
as an instrument. The first-stage equation is now

Democracyi,t =
4∑
s=1

πsWaveOfDemocracyi,t−s +
4∑
s=1

φs log GDPi,t−s + θi + ηt + vi,t,

where WaveOfDemocracyi,t is the instrument that is constructed by indicators of democ-
racy of nearby countries that share similar political history as country i. The assumption
needed for this IV model is the exclusion restriction:

E[εi,t | log GDPi,t−s,WaveOfDemocracyi,t−s, αi, δt : s = 1, . . . , t] = 0 for all i and t.

Since the panel data is unbalanced, each country has a varied number of observations.
Let ti be the year of a country i’s first appearance in the sample and Ti be the number of
observations country i has. Then, i’s array of time observations consists of (i, ti), (i, ti +
1), . . . , (i, ti + Ti − 1).

Aside from the regression coefficients, Acemoglu et al. (2017) report three more
parameters. The first is the long-run effect of democracy defined as β5 := β0/(1− β1 −
β2 − β3 − β4), which represents the impact on log GDPi,∞ of the transition from non-
democracy Di,t−1 = 0 to permanent democracy Di,t+s = 1 for every s ≥ 0. The second
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parameter is the effect of transition to democracy after 25 years given by β6 := e25,
where ej = β0 + β1ej−1 + β2ej−2 + β3ej−3 + β4ej−4 and e0 = e−1 = e−2 = e−3 = 0,
which represents the impact on log GDPi,25 of the same transition. The third parameter
is persistence of the GDP process defined to be β7 := β1 +β2 +β3 +β4, which represents
how persistently a unit change in log GDP would remain.

To check robustness of their results to outliers, Acemoglu et al. (2017) carry out the
same regression but exclude some observations that have large residuals. For notational
convenience, let

xi,t :=



Democracyi,t
log GDPi,t−1

...
log GDPi,t−4

1i=1
...

1i=N

1t=0
...

1t=T



, β :=



β0
β1
...
β4
α1
...
αN
δ1
...
δT



, zi,t :=



WaveOfDemocracyi,t−1
...

WaveOfDemocracyi,t−4
log GDPi,t−1

...
log GDPi,t−4

1i=1
...

1i=N

1t=0
...

1t=T



, π :=



π1
...
π4
φ1
...
φ4
θ1
...
θN
η1
...
ηT



.

Outliers are defined in their paper by |ε̂i,t| ≥ 1.96 σ̂ε, where σ̂ε is the estimate of the
homoskedastic standard error of ε,9

σ̂2ε =
1

n

n∑
i=1

1

Ti

ti+Ti−1∑
t=ti

(yi,t − x′i,tβ̂)2,

and, for the IV model, also by |v̂i,t| ≥ 1.96 σ̂v, where

σ̂2v =
1

n

n∑
i=1

1

Ti

ti+Ti−1∑
t=ti

(xi1,t − z′i,tπ̂)2.

This means that they are concerned whether tail observations in the GDP might have
disproportionate effects on the estimates. Defining outliers based on ε̂ but not on y, even
if they are interested in the effects of outliers of the GDP, is a reasonable choice since,
under some assumptions, sample selection based on ε̂ does not affect the true parameters
while selection based on the dependent variable log GDP would almost certainly bias the
true parameters.

Let Fn,xy be the vector of marginal empirical distribution functions of 1
Ti

∑
t xi,tyi,t

and Qn,xy the vector of marginal empirical quantile functions of 1
Ti

∑
t xi,tyi,t. Note that,

with wi,t,n = 1{|ε̂i,t| ≥ 1.96σ̂ε}, the full-sample and outlier-removed OLS estimators are

9The purpose of computing the homoskedastic standard error σ̂ε is normalization. Acemoglu et al.
(2017) do allow for heteroskedasticity and use heteroskedasticity-robust estimators for inference.
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written as

β̂1OLS =

(
1

n

n∑
i=1

1

Ti

ti+Ti−1∑
t=ti

xi,tx
′
i,t

)−1
1

n

n∑
i=1

1

Ti

ti+Ti−1∑
t=ti

xi,tyi,t

=

(
1

n

n∑
i=1

1

Ti

ti+Ti−1∑
t=ti

xi,tx
′
i,t

)−1 ∫ 1

0
Qn,xy(u)du,

β̂2OLS =

(
1

n

n∑
i=1

1

Ti

ti+Ti−1∑
t=ti

xi,tx
′
i,twi,t,n

)−1
1

n

n∑
i=1

1

Ti

ti+Ti−1∑
t=ti

xi,tyi,twi,t,n

=

(
1

n

n∑
i=1

1

Ti

ti+Ti−1∑
t=ti

xi,tx
′
i,twi,t,n

)−1 ∫ 1

0
Qn,xy(u)dKn,xy(u),

where Kn,xy is the vector of random selection measures whose jth element assigns density∑
t xi,t,jyi,twi,t,n/

∑
t xi,t,jyi,t to u ∈ (Fn,xy,j( 1

Ti

∑
t xi,t,jyi,t)−1/n,Fn,xy,j( 1

Ti

∑
t xi,t,jyi,t)].

Assume that the cdfs of 1
Ti

∑
t xi,tyi,t are smooth with (2 + c)th moments for some c > 0

and σ̂ε has a well-defined limit. Since each density
∑

t xi,t,jyi,twi,t,n/
∑

t xi,t,jyi,t of Kn,xy

Then, our results indicate that the joint distribution of two vectors∫ 1

0
Qn,xy(u)du and

∫ 1

0
Qn,xy(u)dKn,xy(u)

converges and can be estimated by nonparametric bootstrap. Since β̂1OLS and β̂2OLS

converge to fixed combinations of elements of these vectors, their joint distribution can
also be estimated by nonparametric bootstrap, as we will do.

Similarly, let Fn,zy and Qn,zy be the vectors of marginal empirical distribution func-
tions and marginal empirical quantile functions of 1

Ti

∑
t zi,tyi,t. The full-sample and

outlier-removed IV estimators are written as

β̂1IV =
(
xz′(zz′)−1zx′

)−1
xz′(zz′)−1

∫ 1

0
Qn,zy(u)du,

β̂2IV =
(
xz′w̃(zz′w̃)−1zx′w̃

)−1
xz′w̃(zz′w̃)−1

∫ 1

0
Qn,zy(u)dKn,zy(u),

where w̃i,n = 1{|ε̂i| ≥ 1.96σ̂ε and |v̂i| ≥ 1.96σ̂v},

(zx′)′ = xz′ =
1

n

n∑
i=1

1

Ti

ti+Ti−1∑
t=ti

xi,tz
′
i,t, zz′ =

1

n

n∑
i=1

1

Ti

ti+Ti−1∑
t=ti

zi,tz
′
i,t,

(zx′w̃)′ = xz′w̃ =
1

n

n∑
i=1

1

Ti

ti+Ti−1∑
t=ti

xi,tz
′
i,tw̃i,t,n, zz′w̃ =

1

n

n∑
i=1

1

Ti

ti+Ti−1∑
t=ti

zi,tz
′
i,tw̃i,t,n,

and Kn,zy is the vector of random selection measures whose jth element assigns density∑
t zi,t,jyi,tw̃i,t,n/

∑
t zi,t,jyi,t to u ∈ (Fn,zy,j( 1

Ti

∑
t zi,t,jyi,t)−1/n,Fn,zy,j( 1

Ti

∑
t zi,t,jyi,t)].

Again, if 1
Ti

∑
t zi,tyi,t has smooth cdfs with (2 + c)th moments and σ̂v has a well-defined

limit, our results imply that the joint distribution of β̂1IV and β̂2IV can be derived by
nonparametric bootstrap.
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In a simple case where ε (and v) is independent of the covariates, outlier removal
according to this criterion will not change the true values of the coefficients at least
asymptotically; therefore, it is sensible to set the allowed bias h to the most conservative
choice, zero. Letting β1j and β2j be the full-sample and outlier-removed true coefficients

respectively, we are testing the null hypothesis in which β1j is postulated to be identical

to β2j , i.e., H0 : β1j = β2j .
The L-statistics formula used in our paper is visualized in Figures 1a and 1b. In par-

ticular, Figures 1a and 1b show selected elements of empirical quantile functions Qn,xy

and sample selection functions Kn,xy used in OLS estimators. The blue line in Figure 1a
is the empirical quantile function of the time average of Democracyi,t× log GDPi,t, which
is the first element of Qn,xy; the solid orange line is the sample selection function for
outlier removals, which is the first element of Kn,xy; the dashed orange line is the iden-
tity function (the sample selection function for the baseline estimator). Similarly, Fig-
ure 1b shows the empirical quantile and sample selection functions for the time average
of log GDPi,t−1 × log GDPi,t. Figures 1c and 1d depict selected elements of empirical
quantile functions Qn,zy and sample selection functions Kn,zy used in IV estimators.
Now, the first element of Qn,zy is the empirical quantile function of the time average of
WaveOfDemocracyi,t × log GDPi,t, which we represent with the blue line in Figure 1c.
The sample selection function for this time average is the solid orange line, which is
less steep than that in Figure 1a; this is due to the additional removal of observations
for large first-stage errors. Figure 1b shows the empirical quantile and sample selection
functions for the time average of products of log GDP and its lag for IV estimators.

Outlier selection criteria are visualized in Figures 2a to 2d; they indicate that there
is no “crazy” observations that can drastically change the analysis but instead error
distributions are as smoothly distributed as normal distributions. Figure 2a gives the
histogram of estimated errors ε̂i,t of the OLS regression. The dotted line indicates the
threshold of outliers, 1.96σ̂ε and −1.96σ̂ε. The blue observations are included in the
outlier-adjusted sample and the red are excluded. Figure 2b gives the two-dimensional
histogram of estimated errors (v̂i,t, ε̂i,t); the blue observations in the rectangle are in-
cluded in the outlier-removed sample while the red outside the rectangle are not. Fig-
ure 2c and Figure 2d show the marginal distributions of v̂i,t and ε̂i,t; some observations
in the blue bars are excluded because of the other error falling outside the cutoff.

We carry out nonparametric bootstrap by randomly drawing countries i. All fixed
effects are replaced by their corresponding dummy variables. Each draw of country i
adds a Ti number observations to the bootstrap sample; equivalently, we treat each sum
over time, in particular, 1

Ti

∑
t xi,tyi,t,

1
Ti

∑
t yi,tyi,t−s, and 1

Ti

∑
t zi,tyi,t, as an observation

in the bootstrap in order to exploit the i.i.d. structure needed for our theory. Here, the
bootstrap consists of 10,000 iterations. In each iteration for OLS regression, we draw
175 random countries with replacement; for IV regression, 174 random countries with
replacement.

Our reexamination of Acemoglu et al. (2017) mostly reconfirms robustness to outliers
of the results found in Acemoglu et al. (2017) with the most stringent choice of a hypoth-
esis (h = 0). However, there is one coefficient, persistence of the GDP process, for which
the hypothesis of outlier robustness is rejected. Table 1 lists the estimates and p-values
for the hypotheses that outliers have no effect on the parameters. Column 1 shows the
baseline OLS estimates of key parameters that use the full sample. The figures in Column
2 are the outlier-removed OLS estimates that remove observations with |ε̂i,t| ≥ 1.96σ̂ε.
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Column 3 provides the baseline IV estimates, and column 4 the outlier-removed IV es-
timates, removing observations with |ε̂i,t| ≥ 1.96σ̂ε or |v̂i,t| ≥ 1.96σ̂v. Columns 5 to 8
illustrate the utility of our results in formal tests of outlier robustness analysis. Column
5 gives the p-values of the hypotheses that the two parameters estimated by columns 1
and 2 are identical, H0 : β1j = β2j , using the standard error of the difference of two esti-
mators estimated by bootstrap. Column 6 gives the “p-values” of the same hypotheses,
but uses the standard error of the marginal distribution of the baseline OLS estimates.
These results can be considered as p-values of the “heuristic arguments” explained in
the introduction. Column 7 shows the p-values of the same hypotheses calculated with
IV estimates, using the standard error of the difference. Column 8 lists the “p-values”
using the marginal standard error of the baseline IV estimates. We see that the identity
of persistence of the GDP process is rejected in formal tests while accepted in heuristic
tests at the 5% level. We note that the magnitudes of persistence are very close in both
regressions (0.96 and 0.97), so if we allow bias h of, say, 0.01, the hypothesis will not be
rejected. The point of this paper is that, even when we end up accepting the robustness
hypothesis, such results should be rooted in correct statistical reasoning.

Positive correlation of baseline and outlier-adjusted estimators can be visualized by
our bootstrap results. Figures 3a and 3b illustrate the joint distributions of baseline and
outlier-removed OLS estimators, (β̂10 , β̂

2
0) and (β̂17 , β̂

2
7). Figures 3c and 3d show the joint

distributions of baseline and outlier-removed IV estimators, (β̂10 , β̂
2
0) and (β̂17 , β̂

2
7). For

the contour plots, we use the kernel density estimators for ease of visualization (instead
of scatter-plotting the bootstrap points). We see that the estimators are positively
correlated, which is anticipated by the fact that they are based on similar sets of samples.
The figures illustrate why we need the joint distributions to statistically test our null
hypotheses. Graphically, the tests examine if each red star in the figures is close enough
to the 45 degree line shown as the black dotted line.

To see whether there were countries that were consistently labeled as outliers, we
present the histograms of numbers of removal in Figures 4a and 4b. If any observation
with index i is removed in an iteration, we increment the “number of removal” for
country i. There is the largest spike at 6,000–6,200, with the second largest one at 0
in each figure. This means that more than half the countries experience about 6,000
removals throughout the bootstrap, while a little fewer than half do not undergo any
removal. In other words, there is no small portion of countries that is consistently marked
as an outlier, while there is a slight tendency to remove a certain subset of countries.
We interpret this as follows: there are likely to be no “outliers” in the sample in the
sense that they potentially come from a different data-generating process, while there
are observations that happen to be relatively more extreme than the rest, which is a
natural consequence of random observations.

5 Applications to Other Econometric Problems

Our results on L-statistics are new and of independent interest. As L-statistics appear
in many places in economics, the results can be applied to other problems aside from the
outlier robustness analysis. We discuss two applications and briefly describe two more
applications from Kaji and Kang (2017) and Kaji (2017).
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5.1 Multiple testing with dependence

Economists often contend with tens or hundreds of statistical inference problems in a
single research project (Banerjee et al., 2015b; Casey et al., 2012; Anderson, 2008). As a
consequence, economists devote increasing attention to the simultaneous inference prob-
lem. The simultaneous inference problem refers to the issue that statistical discoveries
often arise purely by chance when many hypotheses are tested simultaneously and in-
dividually. For instance, if one tests a hundred hypotheses at size 5% each, then even
when all of the null hypotheses are true, we expect that about five of them come out
rejected (if the hypotheses were jointly independent).

If we value even a single statistical discovery out of a large number of hypothe-
ses, then procedures that control the probability of obtaining even one false positive,
the familywise error rate (FWER), turn out to be too conservative for practical use in
many contexts. Therefore, statisticians have proposed alternative forms of error control
(Lehmann and Romano, 2005; Romano et al., 2010). Among them, the false discovery
rate (FDR) is an increasingly popular concept (Benjamini and Hochberg, 1995; Ben-
jamini and Yekutieli, 2001; Yekutieli, 2007; Romano et al., 2008).

To illustrate the utility of our results in this setting, suppose we have many hypothe-
ses to test, and some of the test statistics are based on different subgroups. Consider,
for example, the effects of productivity shocks on rice yields among subgroups classified
by quartiles of land ownership (Demont, 2013); relationship between the wage and crop
yield instrumented by the indicator of rainfall being above and below certain percentiles
(Jayachandran, 2006); or the effect of access to microcredit on business revenue with and
without individuals who are above the 99th percentile in business revenue (Augsburg
et al., 2015). Assuming that these statistics are asymptotically linear, we are interested
in d statistics β̂1, . . . , β̂d of the form

β̂j =
1

n

n∑
i=1

mj(Xi)wi,j + oP

(
1√
n

)
=

∫ 1

0
mj(Qn)dKn + oP

(
1√
n

)
,

where wi,j is an indicator of subgroup j, Qn the empirical quantile function of Xi, and Kn

the random measure that assigns density wi,j to (Fn(xi)− 1/n,Fn(xi)] for the empirical
distribution function Fn of Xi.

10

Many early applications of multiple testing procedures in economics overlooked the
issue of dependence among such test statistics and relied on procedures that assumed
independence. But if we can estimate the joint distribution of these statistics, then
we can safely rely on the multiple testing procedures that exploit the knowledge of the
dependence structure, such as Yekutieli (2007) and Romano et al. (2008).

5.2 Testing higher degree Lorenz dominance

For an income or wealth variable X with quantile function Q, the Lorenz curve is the
function

LQ(τ) :=
1

E[X]

∫ τ

0
Q(u)du.

It is customary to interpret LQ(τ) as the fraction of total income or wealth held by
the lowest τ -fraction (Lorenz, 1905; Csörgő, 1983). The value of the Lorenz curve at a

10The (asymptotic) influence function of Xi corresponds to the function mj(·) + βj . Note that each
function mj may differ as sample selection may change the influence function.
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specific point τ is called the Lorenz share at τ (Bhattacharya, 2005). The Gini coefficient
is then defined as

GQ := 1− 2

∫ 1

0
LQ(τ)dτ =

1

E[X]

∫ 1

0
(2τ − 1)Q(τ)dτ.

The Gini coefficient is one of the most popular inequality indices used in economics since
its introduction by Gini (1912). Both the Lorenz curve and the Gini coefficient can be
estimated by replacing E[X] and Q with their sample analogues En[X] and Qn. Such
estimators are L-statistics.

The Lorenz curve is a continuous visualization of inequality over the income dis-
tribution. As such, comparing Lorenz curves across within-country, cross-country, or
counterfactual income distributions has become a way to “uniformly” assess differences
or changes in economic inequalities (Bishop et al., 1991, 1993; Morelli et al., 2015; Fell-
man, 2002). This led an important inequality comparison concept, Lorenz dominance
(Dasgupta et al., 1973; Lambert, 2001). Namely, a Lorenz curve L1 is said to Lorenz
dominate another Lorenz curve L2 if L1(τ) ≥ L2(τ) for every u ∈ (0, 1). If this is the
case, the society with income distribution L1 is considered to be “more equal” than that
with L2.

While conceptually simple and appealing, these concepts are criticized for being
too restrictive; Lorenz curves often cross in data. Thus, in order to obtain a finer
(partial) ordering of distributions, generalized versions of Lorenz dominance are proposed
(Aaberge, 2009).11 The kth degree downward Lorenz curve puts more emphasis on income
transfers to the poor and less emphasis on transfers to the rich; it is defined for some
k ≥ 2 by

LkQ(τ) :=

∫ 1

τ
Lk−1Q (u)du =

1

(k − 1)!E[X]

∫ 1

τ
(u− τ)k−1Q(u)du,

where L1
Q := 1 − LQ. The higher the value of k, the larger the emphasis put on the

poor. We say that a Lorenz curve L1 kth degree downward Lorenz dominates another L2

if the corresponding kth degree downward Lorenz curve Lk1 dominates Lk2; intuitively,
the society with income distribution L1 is more equal than that with L2 when additional
emphasis is put on the poorer population. Likewise, the kth degree upward Lorenz curve
is defined by

L̃kQ(τ) :=

∫ τ

0
L̃k−1Q (u)du =

1

(k − 1)!E[X]

∫ τ

0
(τ − u)k−1Q(u)du,

where L̃1
Q := LQ, and puts more emphasis on the rich. The Lorenz curve L1 kth degree

upward Lorenz dominates another L2 if L̃k1 ≥ L̃k2 uniformly. Again, the natural sample
analogue estimators of higher degree Lorenz curves are L-statistics.

Comparison of Lorenz curves in applied work has relied mostly on visual inspection.
To formally test dominance calls for uniform inference on the Lorenz curves; in particular,
we require the joint distribution of every Lorenz share indexed by the income quantile τ ∈
(0, 1). The nonparametric uniform test of the standard (first degree) Lorenz dominance

11These extensions differ from the generalized Lorenz curve in Shorrocks (1983).
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is recently established in the literature (Barrett et al., 2014).12 The present paper allows
the extension of the uniform test to arbitrary degree Lorenz dominance.

The testing procedure is as follows. Since (u− τ)k−1 ≤ 1 for τ ≤ u ≤ 1, we have∫ 1

τ

∣∣(u− τ)k−1Q
∣∣du ≤ ∫ 1

0
|Q|du.

Therefore, the uniform convergence of the estimated kth degree downward Lorenz curve
(uniformly over τ) follows by the L1 convergence of the empirical quantile Qn. Suppose
one has estimates of two kth degree downward Lorenz curves L̂k1 and L̂k2,

L̂kj (τ) :=
1

(k − 1)!En[Xj ]

∫ 1

τ
(u− τ)k−1Qn,j(u)du.

The assumptions posited here are that both income distributions Xj , j = 1, 2, have a
(2 + ε)th moment for some ε > 0, and that both empirical quantile processes

√
n(Qn,j −

Qj), j = 1, 2, converge weakly in a joint manner. As in Barrett et al. (2014), we consider
the null hypothesis that L1 dominates L2:

H0 : Lk1(τ) ≥ Lk2(τ), ∀τ ∈ (0, 1).

Rewrite this hypothesis as
H0 : sup

τ∈(0,1)
(Lk2 − Lk1) ≤ 0.

Thus, the test statistic is supτ (L̂k2 − L̂k1), and the critical value cα must satisfy

Pr

(
sup

τ∈(0,1)
(L̂k2 − L̂k1) > cα

)
≤ α

under the null hypothesis. Although involvement of a supremum makes analytic calcula-
tion of the asymptotic distribution difficult, we may rely on the nonparametric bootstrap
to obtain the critical value.

Let (X1,1, X1,2), . . . , (Xn,1, Xn,2) be the random variables representing households’
incomes in two different economic states (be it within-country, cross-country, or coun-
terfactual). In particular, Xi,1 is the income of a household in one economy, and Xi,2 is
that in another. We denote them as a pair Xi = (Xi,1, Xi,2) since they can be dependent
(as in within-country or counterfactual comparison), but they can also be treated sep-
arately if they are clearly independent (as in cross-country comparison); they can even
have different sample sizes. Let X∗1 , . . . , X

∗
n denote the bootstrapped sample. Compute

the bootstrap Lorenz curves by

L̂k∗j (τ) :=
1

(k − 1)!En[X∗i,j ]

∫ 1

τ
(u− τ)k−1Q∗n,j(u)du.

Then, compute the quantity supτ (L̂k∗2 − L̂k∗1 ). We can use the bootstrap (1−α)-quantile
of this quantity as the critical value for supτ (L̂k2 − L̂k1) to test for kth order Lorenz
dominance.

12Bishop et al. (1988) and Arora and Jain (2006) present tests of (generalized) Lorenz dominance on
finitely many points.

26



5.3 Controlling tail risk with estimation errors

In the context of risk measurement in finance, Kaji and Kang (2017) develop a method to
incorporate the estimation error into the risk to be estimated. For example, the expected
shortfall is becoming popular in financial trading and banking regulation, which is defined
as the expected return in the worst event of probability α, typically 5%. Letting X be
the return of a portfolio, the expected shortfall ESα is defined by

sup
E∈F

{
Pr(E) : E[−X | E] ≥ ESα

}
≤ α,

where F is the set of events. Algebra reveals that

ESα = −
∫ α

0
Q(u)du,

where Q is the population quantile function of X. The true expected shortfall cannot
be observed, so in practice an estimated quantity is used. Suppose for simplicity that
observations of returns are i.i.d.; then a natural estimator is (the negative of) the sample
mean of observations of X below the α-quantile, which is an L-statistic. The estimated
expected shortfall, however, does not satisfy the above equation because of the estimation
error. Instead, consider the (1 − α)-confidence set of the estimator and let ESα be its
upper bound, that is,

Pr
(
ESα ≥ ESα

)
≥ 1− α.

Then, by the Bonferroni inequality,

sup
E

Pr
(
E ∧ E[−X | E] ≥ ESα

)
≤ sup

E

{
Pr(E) : E[−X | E] ≥ ESα

}
+ α ≤ 2α.

This enables us to control the risk (the probability of “bad” events) by an observable
quantity ESα. Kaji and Kang (2017) generalize this idea and define a class of risk
measures called the tail risk measure to which we can apply this bound. Many tail risk
measures admit representations as L-statistics, and thus are susceptible to the use of
our theory.

5.4 Assessing outcome-dependent heterogeneity in treatment effects

Kaji (2017) proposes a method to assess outcome-dependent heterogeneity in treatment
effects. Let Y0 be the outcome of an individual in the control group and Y1 be that of an
individual in the treatment group. Letting X represent the characteristics to control for,
the conditional average treatment effect E[Y1 − Y0 | X] is frequently used in empirical
research, especially in ones with randomized controlled trials. Meanwhile, the average
treatment effects conditional on outcome variables such as E[Y1−Y0 | Y0 ∈ A] cannot be
estimated since the joint distribution of Y1 and Y0 is not identified (Heckman et al., 1997).
However, it often happens that treatment effects conditional outcomes are of interest.
Taking the microcredit example from Section 2.2, if the treatment effect for households
with originally high business profits (Y0 is large) is positive and that for households with
low profits (Y0 is small) is negative, then even if the average treatment effect is positive,
one may not wish to implement the microcredit. The common practice to assess such
heterogeneity is the quantile treatment effect (Banerjee et al., 2015a; Augsburg et al.,
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2015; Tarozzi et al., 2015). However, quantile treatment effects cannot in general be
interpreted as individual treatment effects. Kaji (2017) interprets quantile treatment
effects as a distribution of individual treatment effects that attains the minimal sum
of absolute individual treatment effects, and proposes the integral function of quantile
treatment effects as an alternative measure of outcome-dependent subgroup treatment
effects that has better asymptotic properties. These asymptotic results are derived using
results of the present paper.

6 Literature Review

We review three strands of the literature related to this paper: (1) empirical and quantile
processes in statistics/econometrics, (2) L-statistics in statistics and risk measures in
finance, and (3) outlier detection and robust estimation in statistics.

6.1 Empirical and quantile processes

Central limit theorems in Banach spaces such as Lp are a classical topic of which Ledoux
and Talagrand (1991) provide an excellent exposition. It is known that tightness and the
limiting properties of the Banach-valued random variables are closely tied to the struc-
ture and geometry of the Banach spaces. Among Banach spaces, however, the uniform
space L∞ attracts independent attention, not only because of its own statistical impor-
tance, but for its mathematical complication epitomized by the fact that pre-Gaussianity
alone does not immediately imply central limit theorems. Such difficulty called for direct
characterization of asymptotic tightness and developed into rich literature—in an effort
to show tightness—including tail bounds, entropy theory, and the Vapnik-C̆ervonenkis
theory (Van der Vaart and Wellner, 1996; Dudley, 2014). This paper contributes to the
literature by directly characterizing asymptotic tightness in L1 in combination with L∞,
enabling the establishment of weak convergence of processes that are not necessarily
sample averages of i.i.d. Banach-valued random variables (thereby preventing the use
of central limit theorems). In the particular context of this paper, notwithstanding the
i.i.d. assumption, we needed such characterization to show weak convergence of Kn.

The study of quantile processes is as old as that of empirical processes (Csörgő,
1983), but to the best of our knowledge the study is limited to quantile processes of
bounded random variables and weighted (standardized) quantile processes (Shorack and
Wellner, 1986; Csörgő and Horváth, 1988, 1990, 1993; Csörgő et al., 1986, 1993; Koul,
2002). This paper is the first to show the weak convergence of raw quantile processes
of unbounded random variables directly in L1. It is also novel that the functional delta
method is proved for the inverse map with norms replaced by more appropriate ones.
In this respect, this work is related to Beutner and Zähle (2010); they consider the
weighted sup norm on the space of distribution functions and establish the functional
delta method for risk functionals. Their paper and ours share the similar idea that
the use of a new norm gives a new functional delta method, but their work is closer in
spirit to the literature on weighted suprema of empirical processes. Although less clearly
related, we note that a non-uniform norm for empirical processes has been occasionally
considered in probability theory as well; e.g., Dudley (1997).

Some readers may wish to associate the results with the quantile regression literature
popularized in economics (Koenker, 2005). This literature, initiated by Koenker and Bas-
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sett (1978), reinvigorated the old work by Laplace (1812), and yielded many important
results, including Koenker and Xiao (2002), Chernozhukov (2005), Chernozhukov and
Hansen (2005), Angrist et al. (2006), Firpo et al. (2009), Chernozhukov et al. (2010),
and Belloni and Chernozhukov (2011). There is an obvious relationship between the
conditional mean and conditional quantiles when some simplifying assumptions hold.
Let yi = x′iβ + εi and E[εi | xi] = 0 for every xi. Then, by the change of variables,

x′iβ = E[yi | xi] =

∫ 1

0
Qyi(u | xi)du =

∫ 1

0
x′iβ(u)du.

So, if xi is sufficiently rich, it must be that β =
∫ 1
0 β(u)du. Although this type of

relationship is known and used in survival analysis (Cox et al., 2013) (and a remotely
related one used in economics; Chernozhukov et al., 2013), it does not offer much to our
purpose, as there is no guarantee that the relationship continues to hold in their sample
analogues. It is, however, an important direction of future research to examine if weak
convergence in L1 takes place for quantile regression estimators on the whole of (0, 1).13

Also, the paper does not explicitly consider weakly dependent samples, although as
noted at the end of Section 3.3 it would be straightforward to extend the results to
subsume such cases, e.g., by incorporating results of Dehling et al. (2002, 2014). Other
extensions potentially useful for measuring financial risk are the application of extreme
value theory for the tail empirical processes (Einmahl, 1992; Rootzén, 2009; Drees and
Rootzén, 2010, 2016) or the use of smoothed or other explicitly estimated empirical
distributions (Hall et al., 1999; Berg and Politis, 2009).

6.2 L-statistics

L-statistics are an old topic in statistics, especially in the study of location estimation
(Van der Vaart, 1998, Chapter 22). There are two major ways to prove the asymptotic
normality of L-statistics: the Hájek projection and the functional delta method. The
difficulty of showing asymptotic normality lies in that the summands are intercorrelated
with each other in a complicated way. The Hájek projection projects the summands
onto the space of independent observations, thereby pulling the situation back to ones of
classical central limit theorems. This requires, however, an effort to find the projection
and to show that the residual of the projection goes away. This can be a hard task
when the statistic of interest involves complicated estimation procedures or comes from
nontrivial structural models.

The functional delta method, on the other hand, directly deals with the complicated
intercorrelation in the raw form of an empirical quantile function. Therefore, it is more
general than the Hájek projection, yields simple representation of the asymptotic dis-
tribution, and proves the validity of bootstrap at much less or no cost. The cons of
this method are that the empirical processes literature usually requires uniform conver-
gence, which unavoidably entails boundedness of the processes. All this has led to stan-
dardization methods using bounded quantile processes, as seen in the Chibisov-O’Reilly
theorem. This paper, in combination with giving L1 convergence of quantile processes,
tackles this thorny issue by extending the functional delta method to L1 processes and
L-statistics.

13One notable difference from our setup is that they involve optimization over a class of functions to
obtain a process.
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6.3 Outlier detection and robust estimation

In this paper, we refer to observations lying in either tail as “outliers.” The classical
subfield of statistics, outlier detection, defines outliers instead as observations arising
from a different unknown data-generating process and thereby subject to elimination
(Hawkins, 1980; Aggarwal, 2013). Starting from a null hypothesis about the true data-
generating process, the literature develops a way to detect observations that fall outside
of the behavior permissible under the null. Distributional assumptions in the null hy-
pothesis may vary from a complete description of the data generating process to only
the tail behaviors to the proximity or temporal models. Outlier detection in a regres-
sion framework is also studied by Chatterjee and Hadi (1988) and Gujarati and Porter
(2009).

Despite the concern for outliers and their removal, the paper has not much to share
with this literature. This paper does not make assumptions on distributions but on
existence of moments, and the null we aim to reject is about specific parameters rather
than outliers themselves. Nevertheless, if one dares to draw a connection, one can say
that the paper provides a new way to formulate the null hypothesis in outlier detection.
If one has a particular parameter in mind that should not be largely affected by any few
observations, then by conducting the outlier robustness test for that parameter one can
detect the outliers when the test is rejected.

The final literature we review is on robust estimation in statistics (Hampel et al.,
1986; Koul, 2002; Maronna et al., 2006; Huber and Ronchetti, 2009). These works
concern estimators that are robust against deviations from an ideal model, especially
when highly influential (erroneous) outliers are introduced. Similarly to this paper, they
mostly consider estimators whose deviation from the true parameters is represented by
the sum of influence functions of observations. To estimate asymptotic distributions
of robust estimators, they often rely on empirical process theory (Koul, 2002, Chapter
4); in this sense, this paper can be considered an extension of their asymptotic theory.
Their motivation goes further in finding the best influence function under some criteria
and construct the best estimator for the purpose of robust estimation. Although such
robust estimation has been considered in the economics discipline (Krasker, 1980), it is
rather a minor subject—possibly due to the resulting estimators’ non-straightforward
interpretability.

7 Conclusion

Motivated by a need for formal tests of outlier robustness, this paper develops substan-
tially generalized asymptotic theory of L-statistics. In particular, observing that essen-
tial for convergence of L-statistics is not the uniform convergence of empirical quantile
processes but L1 convergence, we establish the theory of L-statistics through the devel-
opment of the theory of integrable empirical processes. The highlights of this theoretical
development are the new norms introduced to the spaces of functions.

First, we consider distribution functions in the space of bounded integrable func-
tions. Distribution functions need to converge uniformly in order for their inverses to be
well-defined, and they also need to converge in L1 in order for their inverses (quantile
functions) to be integrable. We characterize weak convergence in this space by asymp-
totic uniform equicontinuity and equiintegrability in probability. Uniform equicontinuity
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is needed for uniform convergence, and equiintegrability for L1 convergence. Using this,
we show that empirical processes converge in this norm if the underlying distribution F
has a (2 + ε)th moment for some small ε > 0.

Second, we consider quantile functions in the space of integrable functions, and
derive weak convergence using the functional delta method. The key to the proof is
the compatibility of the L1 norm with Fubini’s theorem. This is in contrast to classical
results such as the Chibisov-O’Reilly theorem that use the L2 norm.

Then, we consider sample selection functions in the set of Lipschitz functions in the
space of bounded integrable functions. We need the Lipschitz property to make

∫
QndKn

converge whenever
∫
Qndu does, boundedness to ensure that the Lebesgue-Stieltjes in-

tegral with respect to K is well-defined, and integrability to ensure convergence of the
integral itself. We derive weak convergence of sample selection functions by another
application of our earlier results.

Finally, we derive weak convergence of L-statistics using the functional delta method
on the map from quantile functions and sample selection functions to L-statistics. This
can be seen as a generalization of the results on Wilcoxon statistics to subsume un-
bounded functions. As a byproduct of our functional delta method approach, we derive
validity of nonparametric bootstrap.

Using our results, we construct a formal test of outlier robustness analysis. We apply
our test to Acemoglu et al. (2017) and contrast heuristic arguments to formal tests. For
one of the parameters, we “discover” sensitivity to outliers that could not have been
discovered by heuristics.

Our theory of L-statistics is itself new and of independent interest. As applica-
tions other than outlier robustness analysis, we explained multiple testing problems,
tests of higher-order Lorenz dominance, estimation of tail risk measures by Kaji and
Kang (2017), and estimation of bounds on outcome-dependent treatment effects by Kaji
(2017).
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Appendices

A.1 Figures and Tables

(a) Empirical distribution and sample
selection functions for OLS estimators.
1
Ti

∑
t Democracyi,t × log GDPi,t [in 100

units].

(b) Empirical distribution and sample
selection functions for OLS estimators.
1
Ti

∑
t log GDPi,t−1× log GDPi,t [in 100,000

units].

(c) Empirical distribution and sample
selection functions for IV estimators.
1
Ti

∑
t WaveOfDemocracyi,t× log GDPi,t [in

100 units].

(d) Empirical distribution and sample
selection functions for IV estimators.
1
Ti

∑
t log GDPi,t−1× log GDPi,t [in 100,000

units].

Figure 1: Empirical distribution and sample selection functions for OLS and IV estima-
tors.
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(a) Distribution of estimated residuals ε̂i,t
for OLS regression.

(b) Joint distribution of estimated residuals
(v̂i,t, ε̂i,t) for IV regression.

(c) Distribution of estimated first-stage
residuals v̂i,t for IV regression.

(d) Distribution of estimated second-stage
residuals ε̂i,t for IV regression.

Figure 2: Distributions of residuals of OLS and IV regressions. Clusters at the bound-
aries indicate how many observations fall outside of the range.
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(a) Distribution of full-sample and outlier-
removed OLS estimators for the effect of
democracy β0. p = 0.15.

(b) Distribution of full-sample and outlier-
removed OLS estimators for persistence of
GDP β7. p = 0.0002.

(c) Distribution of full-sample and outlier-
removed IV estimators for the effect of
democracy β0. p = 0.20.

(d) Distribution of full-sample and outlier-
removed IV estimators for persistence of
GDP β7. p = 0.004.

Figure 3: Joint distributions of full-sample and outlier-removed OLS and IV estimators
for Acemoglu et al. (2017). Outliers are defined by |ε̂i,t| ≥ 1.96 σ̂ε or |v̂i,t| ≥ 1.96 σ̂v.
The black dotted lines indicate the 45-degree line. Nonparametric bootstrap is repeated
for 10,000 times, randomly sampling across i. The contours drawn are of kernel density
estimators.
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(a) Histogram of numbers of removal that
countries had in 10,000 iterations of OLS
bootstrap.

(b) Histogram of numbers of removal that
countries had in 10,000 iterations of IV
bootstrap.

Figure 4: Histogram of numbers of removal that countries had in 10,000 iterations of
bootstrap.
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A.2 Proofs of Results Stated in the Main Text

Proof of Theorem 1. If (a, b) is totally bounded in ρ1 and ρ2, then so it is in ρ := ρ1∨ρ2.
Then the theorem follows in combination of Theorems A.5 and A.6. �

Proof of Proposition 2. This proposition is proved as Proposition A.2. �

Proof of Theorem 3. This theorem is proved as Lemma A.7 and its extension in Theo-
rem A.9. �

Proof of Proposition 4. This proposition is proved as Proposition A.10. �

Proof of Theorem 5. This theorem is proved as Theorem A.11. �

Proof of Proposition 6. This proposition is proved as Proposition A.13. �

Proof of Proposition 7. This proposition is proved as Proposition A.15. �

Proof of Proposition 8. This proposition is proved as Proposition A.20. �

A.3 Mathematical Preliminaries

The inverse function f−1 : R → R of a function f : R → R is defined by the left-
continuous generalized inverse, i.e.,

f−1(y) := inf{x ∈ R : f(x) ≥ y}.

This inverse is often denoted by f← or f− in the literature (Dudley, 1997; Embrechts
and Hofert, 2013). While we keep the notation f−1 for this, when we refer to the
right-continuous generalized inverse, we use the notation f→, that is,

f→(y) := sup{x ∈ R : f(x) ≤ y}.

For properties of generalized inverses, see Feng et al. (2012) and Embrechts and Hofert
(2013).

Let −∞ ≤ a < b ≤ +∞. The Lebesgue-Stieltjes measure µ on (a, b) associated with
an increasing function m : (a, b) → R assigns to an open interval (c, d) the measure
m(d−) −m(c+), where m(·−) is the left limit and m(·+) the right limit. Conversely,
a function m : (a, b) → R associated with the Lebesgue-Stieltjes measure µ on (a, b)
is any function such that µ((c, d]) = m(d) − m(c) for every c < d.14 Because of this
relationship, we often denote both the function and the measure by the same letter.

The following lemma is used throughout Appendices.

Lemma A.1. Let F be a probability distribution on R, F̃ (x) := F (x)− 1{x ≥ 0}, and
Q := F−1 the quantile function. For p > 0 we have (i) ⇔ (ii) ⇔ (iii) ⇒ (iv) ⇔ (v),
where

14Note that the function constructed from a Lebesgue-Stieltjes measure is cadlag, while the Lebesgue-
Stieltjes measure can be given to any increasing but not necessarily cadlag function. This asymmetry
introduces minor adjustments to the change of variables for Lebesgue-Stieltjes integrals. See Falkner
and Teschl (2012).
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(i) F has a pth moment;

(ii) Q is in Lp(0, 1);

(iii) |x|p−1F̃ is integrable;

(iv) |x|pF̃ converges to 0 as x→ ±∞;

(v) u1/p(1− u)1/pQ converges to 0 as u→ {0, 1}.

Proof. We prove the following directions in order: (i) ⇒ (iv), (iii) ⇒ (iv), (i) ⇔ (iii), (i)
⇔ (ii), and (iv)⇔ (v). The second claim seems unnecessary, but will be used in proving
the third claim.

(i) ⇒ (iv). For M > 0, note that∫
R
|x|pdF ≥

∫
[−M,M ]

|x|pdF +Mp|F̃ (−M)|+Mp|F̃ (M)|.

Since the left-hand side (LHS) is finite, one may take M large enough that∫
R
|x|pdF −

∫
[−M,M ]

|x|pdF

is smaller than an arbitrarily small positive number, which then bounds the two non-
negative terms. Hence |x|pF̃ (x)→ 0 as x→ ±∞.

(iii) ⇒ (iv). Suppose that |x|p−1|F̃ | is integrable but |x|pF does not vanish as x →
−∞, that is, there exist a constant c > 0 and a sequence 0 > x1 > x2 > · · · → −∞ such
that |xi|pF (xi) ≥ c. Since F → 0, one may take a subsequence such that

|xi|pF (xi+1) ≤ 2−i.

By monotonicity of F ,

p

∫ 0

−∞
|x|p−1F (x)dx ≥ F (x1)

∫ 0

x1

p|x|p−1dx+ F (x2)

∫ x1

x2

p|x|p−1dx+ · · ·

= |x1|pF (x1) +
(
|x2|p − |x1|p

)
F (x2) +

(
|x3|p − |x2|p

)
F (x3) + · · ·

≥ c+
∞∑
i=1

(c− 2−i) =∞,

which is a contradiction. Hence |x|pF must vanish. Deduce similarly that |x|p(1−F )→ 0
as x→ +∞.

(i) ⇔ (iii). Note that dF = dF̃ for x 6= 0. Integration by parts yields∫
R
|x|pdF =

∫
R
|x|pdF̃ =

[
|x|pF̃

]∞
−∞

+ p

∫ ∞
−∞
|x|p−1|F̃ |dx.

If the LHS is finite (i), then the first term in the right-hand side (RHS) is 0 (iv) and
hence the second term is finite (iii). Conversely, if the second term is finite (iii), then
the first term is 0 (iv) and hence the LHS is finite (i).

(i) ⇔ (ii). By the change of variables,∫
R
|x|pdF =

∫ 1

0
|Q|pdu.
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Hence the LHS is finite if and only if the RHS is.
(iv) ⇔ (v). Let u = F (x). Then, limx→−∞ |x|pF̃ = limu→0(u

1/pQ)p = 0. Conver-
gence of the other tail can be shown analogously. �

Remark. One-sided implication in the lemma is strict. One can construct F̃ such that
(iv) holds but (iii) does not. Let F̃ satisfy |x|p−1F̃ ≈ 1/pd|x|e where pn denotes the nth
prime number. Then, it is not integrable since the sum of the reciprocals of the primes
diverges, but |x|pF̃ → 0 since the primes only increase at a logarithmic speed.

Remark. Similar properties in norms play an important role in characterizing the asymp-
totic behaviors in general Banach spaces (Ledoux and Talagrand, 1991).

A.4 Tightness of Bounded Integrable Processes

First, we consider the stochastic processes that are integrable with respect to a general
measure. The main objective of this section is to develop the conditions for the sequence
of integrable processes to converge weakly in the corresponding L1 space. Most exposi-
tion of this section parallels the flow of arguments of Van der Vaart and Wellner (1996,
Chapter 1.5).

Definition. Let (T, T , µ) be a measure space where T is an arbitrary set, T a σ-field
on T , and µ a σ-finite signed measure on T . Let Lµ be the Banach space of bounded
and µ-integrable functions z : T → R, that is,

‖z‖Lµ := ‖z‖T ∨ ‖z‖µ :=

(
sup
t∈T
|z(t)|

)
∨
(∫

T
|z||dµ|

)
<∞,

where |dµ| represents integration with respect to the total variation measure of µ.15

In the main text, special cases of this are used for the distribution functions and the
sample selection measures. General construction allows us to accommodate many other
cases, including the following.

Example (pth moment). Let Fn be the empirical distribution of a real-valued random
variable. By integration by parts, the sample pth moment is given by∫

xpdFn = −
∫

F̃ndxp where F̃n(x) =

{
Fn(x) x < 0,

Fn(x)− 1 x ≥ 0.

Then it is natural to consider F̃n as a stochastic process integrable with respect to the
σ-finite signed measure µ((a, b]) := bp − ap on R. �

For processes represented as the sum of i.i.d. random variables, such as the empirical
process

√
n(Fn − F ) itself, one can easily prove weak convergence in this space by the

combination of classical central limit theorems (CLT) (Van der Vaart and Wellner, 1996;
Dudley, 2014; Ledoux and Talagrand, 1991), as shown in the next proposition. However,
for other types of processes that are not an average of i.i.d. variables, notably the random

15Integration with respect to the total variation measure is often denoted with d|µ|. However, because
we sometimes mix Lebesgue-Stieltjes integrals, we denote the total variation integration by |dµ| so it not
be confused with the Lebesgue-Stieltjes integration with respect to the “function” |µ|.
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measure process
√
n(Kn−K) in this paper, we are unable to resort to CLT-type results.

Therefore a more general, direct way of showing weak convergence will be developed
subsequently.

Proposition A.2. Let m : R → R be a function of locally bounded variation and µ
the Lebesgue-Stieltjes measure associated with m. For a probability distribution F on
R such that m(X) has a (2 + c)th moment for X ∼ F and some c > 0, the empirical
process

√
n(Fn − F ) converges weakly in Lµ to a Gaussian process with mean zero and

covariance function Cov(x, y) = F (x ∧ y)− F (x)F (y).

Proof. The marginal convergence is trivial. According to Van der Vaart and Wellner
(1996, Example 2.5.4), the empirical process

√
n(Fn − F ) converges weakly in L∞. In

light of Van der Vaart and Wellner (1996, Proposition 2.1.11), it suffices to show that
for Xi ∼ F and Zi(x) := 1{Xi ≤ x} − F (x),

Pr(‖Zi‖µ > t) = o(t−2) as t→∞

and ∫
R

(
E[Zi(x)2]

)1/2|dµ| = ∫
R

(
F (x)[1− F (x)]

)1/2|dµ| <∞.
Since a function of locally bounded variation can be written as the difference of two
increasing functions, m can be assumed without loss of generality increasing, that is, µ
be a positive measure. Observing Zi(x) = (1{Xi ≤ x}−1{0 ≤ x})− (F (x)−1{0 ≤ x}),
find16

‖Zi‖µ ≤ |m(Xi+)−m(0+)|+
∫
R
|F̃ ◦m−1|dx.

Therefore, the first condition is satisfied if F̃ ◦ m−1(t) = o(t−2), which is the case if
m(Xi) has a variance by Lemma A.1. Secondly, if m(Xi) has a (2 + c)th moment, then
by Lemma A.1 again, |x|1+cF̃ ◦m−1 is integrable and |x|2+cF̃ ◦m−1 → 0 as x → ±∞.
Therefore, F̃ ◦m−1(x) = o(1/|x|2+c) and hence [(F ◦m−1)(1−F ◦m−1)]1/2 is integrable,
which means that [F (1 − F )]1/2 is integrable with respect to µ. Thus, the empirical
process

√
n(Fn − F ) converges weakly in L1(µ) as well, as desired. �

As in the classical empirical process literature, we first characterize weak convergence
in Lµ by asymptotic tightness plus weak convergence of marginals. For this purpose,
we consider a sequence of random elements taking values in Lµ, that is, Xn : Ω → Lµ.
Following Van der Vaart and Wellner (1996), there are some generalizations we allow
in our setup. We consider the generalized version of a sequence, a net Xα indexed by
an arbitrary directed set, rather than a sequence Xn indexed by natural numbers. Note
that a sequence is a special case of a net. Moreover, we allow the sample space Ω to
be different for each element in a net, that is, we consider Xα : Ωα → Lµ. Finally, we
allow that each element in the net is not necessarily measurable, so, when we seek rigor,
we shall call Xα a net of “arbitrary maps from Ωα to Lµ” in lieu of “random elements
taking values in Lµ.” There is also a caveat on the notation: when we write X(t) for a
map X : Ω → Lµ, t is understood to be an element of T and we regard X(t) as a map
from Ω to R indexed by T ; when we explicitly use ω ∈ Ω in the discussion, we write
X(t, ω).

The following lemmas and theorem characterize weak convergence in our space.

16See Falkner and Teschl (2012) for the change of variables formula.
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Lemma A.3. Let Xα : Ωα → Lµ be asymptotically tight. Then, it is asymptotically
measurable if and only if Xα(t) is asymptotically measurable for every t ∈ T .

Lemma A.4. Let X and Y be tight Borel measurable maps into Lµ. Then, X and Y
are equal in Borel law if and only if all corresponding marginals of X and Y are equal
in law.

Theorem A.5. Let Xα : Ωα → Lµ be arbitrary. Then, Xα converges weakly to a tight
limit if and only if Xα is asymptotically tight and the marginals (Xα(t1), . . . , Xα(tk))
converge weakly to a limit for every finite subset t1, . . . , tk of T . If Xα is asymptotically
tight and its marginals converge weakly to the marginals (X(t1), . . . , X(tk)) of a stochastic
process X, then there is a version of X with sample paths in Lµ and Xα  X.

Proofs. Since our norm is stronger than the uniform norm, Lemmas A.3 and A.4 follow
as corollaries to Van der Vaart and Wellner (1996, Lemmas 1.5.2 and 1.5.3). Now we
prove the theorem.

Necessity is immediate. We prove sufficiency. If Xα is asymptotically tight and
its marginals converge weakly, then Xα is asymptotically measurable by Lemma A.3.
By Prohorov’s theorem (Van der Vaart and Wellner, 1996, Theorem 1.3.9), Xα is rel-
atively compact. Take any subnet in Xα that is convergent. Its limit point is unique
by Lemma A.4 and the assumption that every marginal converges weakly. Thus, Xα

converges weakly. The last statement is another consequence of Prohorov’s theorem. �

Although we consider a different norm, our space contains the same elements as the
classical literature (e.g., empirical processes). Therefore, weak convergence of marginals
can easily be established by the classical results such as the multivariate central limit
theorems. Hence the question that remains is how to establish asymptotic tightness.

The space of interest Lµ is the intersection of the uniform space (with respect to the
norm ‖ · ‖T ) and the L1 space (with respect to the norm ‖ · ‖µ). As such, asymptotic
tightness in Lµ is equivalent to joint satisfaction of asymptotic tightness in each space.
Again, tightness in the uniform space can be established by classical results. Following
Van der Vaart and Wellner (1996), we characterize tightness in L1 in two ways: through
the finite approximation and by the Dunford-Pettis theorem. The second characteriza-
tion connects asymptotic tightness in L1 to asymptotic equiintegrability of the sample
paths. In light of this, define the following.

Definition. For a µ-measurable semimetric ρ on T ,17 a function f : T → R is uniformly
ρ-continuous and (ρ, µ)-integrable if for every ε > 0 there exists δ > 0 such that for every
t ∈ T (

sup
ρ(s,t)<δ

|f(s)− f(t)|
)
∨
(∫

0<ρ(s,t)<δ
|f(s)||dµ(s)|

)
< ε.

Definition. For a µ-measurable semimetric ρ on T , the net Xα : Ωα → Lµ is asymp-
totically uniformly ρ-equicontinuous and (ρ, µ)-equiintegrable in probability if for every
ε, η > 0 there exists δ > 0 such that

lim sup
α

P ∗
(

sup
t∈T

[(
sup

ρ(s,t)<δ
|Xα(s)−Xα(t)|

)
∨
(∫

0<ρ(s,t)<δ
|Xα(s)||dµ(s)|

)]
> ε

)
< η.

17We define a semimetric to be µ-measurable if every open set thereby induced is measurable with
respect to µ.
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Remark. The nomenclature equiintegrable is based on the fact that the standard defini-
tion of µ-equiintegrability (or “uniform” µ-integrability) in functional analysis roughly
coincides with (µ, µ)-equiintegrability defined herein, albeit µ is not a metric. Here we
prefer the prefix equi- over the (arguably more popular) qualifier uniformly for the mean-
ing “equally among the class of functions” in order to maintain coherence with uniformly
equicontinuous.

Theorem A.6. The following are equivalent.

(i) A net Xα : Ωα → Lµ is asymptotically tight.

(ii) Xα(t) is asymptotically tight in R for every t ∈ T , ‖Xα‖µ is asymptotically tight in

R, and for every ε, η > 0 there exists a finite µ-measurable partition T =
⋃k
i=1 Ti

such that

lim sup
α

P ∗

([
sup

1≤i≤k
sup
s,t∈Ti

|Xα(s)−Xα(t)|
]
∨

k∑
i=1

inf
x∈R

∫
Ti

|Xα−x||dµ| > ε

)
< η. (4)

(iii) Xα(t) is asymptotically tight in R for every t ∈ T and there exists a µ-measurable
semimetric ρ on T such that (T, ρ) is totally bounded and Xα is asymptotically
uniformly ρ-equicontinuous and (ρ, µ)-equiintegrable in probability.

If, moreover, Xα  X, then almost all paths t 7→ X(t, ω) are uniformly ρ-continuous
and (ρ, µ)-integrable; and the semimetric ρ can without loss of generality be taken equal
to any semimetric ρ for which this is true and (T, ρ) is totally bounded.

Remark. The condition on the supremum “0 < ρ(s, t)” is to allow for the point masses
in µ and plateaus in Xα. In (4), this condition corresponds to the subtraction of “x.”

Proof. We prove (ii) ⇒ (i) ⇒ (iii) ⇒ (ii), and then the addendum.
(ii) ⇒ (i). Fix ε, η > 0 and take the given partiton T1, . . . , Tk. Pick one ti from each

Ti. Then, ‖Xα‖T ≤ maxi |Xα(ti)| + ε with inner probability at least 1 − η. Since the
maximum of finitely many tight nets of real variables is tight and ‖Xα‖µ is assumed to
be tight, it follows that the net ‖Xα‖Lµ is asymptotically tight in R.

Fix ζ > 0 and take εm ↘ 0. Let M be a constant such that lim supP ∗(‖Xα‖Lµ >
M) < ζ. Taking (ε, η) in (4) to be (εm, 2

−mζ), we obtain for each m a measurable
partition T =

⋃k
i=1 Ti (suppressing the dependence on m). For each Ti, enumerate all

of the finitely many values 0 = ai,0 ≤ ai,1 ≤ · · · ≤ ai,p ≤M such that∫
Ti

(ai,j − ai,j)|dµ| ≤
εm
k

for j = 1, . . . , p and

∫
Ti

ai,p|dµ| ≤M.

Since µ is not necessarily finite on the whole T , it can be that on some partition Ti the
only possible choice of ai,j is 0. Let z1, . . . , zq be the finite exhaustion of all functions in
Lµ that are constant on each Ti and take values only on

0,±εm, . . . ,±bM/εmcεm, ±a1,1, . . . ,±a1,p, . . . , ±ak,1, . . . ,±ak,p.

Again, it can be that on a partition with
∫
Ti
|dµ| = ∞, the only value that zi can take

is 0. Let Km be the union of q closed balls of radius 2εm around each zi. Then, since
infj

∫
Ti
|Xα − ai,j ||dµ| ≤ εm

k + infx
∫
Ti
|Xα − x||dµ|, the following three conditions

‖Xα‖T ≤M, sup
i

sup
s,t∈Ti

|Xα(s)−Xα(t)| ≤ εm,
∑
i

inf
x

∫
Ti

|Xα − x||dµ| ≤ εm
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imply that Xα ∈ Km. This holds for each m.
Let K =

⋂∞
m=1Km, which is closed, totally bounded, and therefore compact. More-

over, we argue that for every δ > 0 there exists m with Kδ ⊃
⋂m
j=1Kj . Suppose not.

Then there is a sequence zm not in Kδ, but with zm ∈
⋂m
j=1Kj for every m. This has

a subsequence contained in only one of the closed balls constituting K1, and a further
subsequence contained in only one of the balls constituting K2, and so on. The diagonal
sequence of such subsequences would eventually be contained in a ball of radius 2εm for
every m. Therefore, it is Cauchy and its limit should be in K, which is a contradiction
to the supposition d(zm,K) ≥ δ for every m.

Thus, we conclude that if Xα is not in Kδ, then it is not in
⋂m
j=1Kj for some m.

Therefore,

P ∗(Xα /∈ Kδ) ≤ P ∗
(
Xα /∈

m⋂
j=1

Kj

)
≤ P ∗(‖Xα‖Lµ > M)

+

m∑
j=1

P ∗
([

sup
i

sup
s,t∈Ti

|Xα(s)−Xα(t)|
]
∨
∑
i

inf
x

∫
Ti

|Xα − x||dµ| > εj

)

≤ ζ +

m∑
j=1

ζ2−j < 2ζ.

Hence, we obtain lim supα P
∗(Xα /∈ Kδ) < 2ζ, as asserted.

(i) ⇒ (iii). If Xα is asymptotically tight, then so is each coordinate projection.
Therefore, Xα(t) is asymptotically tight in R for every t ∈ T .

Let K1 ⊂ K2 ⊂ · · · be a sequence of compact sets such that lim inf P∗(Xα ∈ Kε
m) ≥

1− 1/m for every ε > 0. Define a semimetric d on T induced by z by

d(s, t; z) := |z(s)− z(t)| ∨
∫
T
|z|1{z(s) ∧ z(t) ≤ z ≤ z(s) ∨ z(t)}1{z(s) 6= z(t)}|dµ|.

Observe that d(s, s; z) = 0 and that d is measurable with respect to µ.18 Now for every
m, define a semimetric ρm on T by

ρm(s, t) := sup
z∈Km

d(s, t; z).

We argue that (T, ρm) is totally bounded. For η > 0, cover Km by finitely many balls of
radius η centered at z1, . . . , zk. Consider the partition of R2k into cubes of edge length
η. For each cube, if there exists t ∈ T such that the following 2k-tuple is in the cube,

r(t) :=

(
z1(t),

∫
T
z11{0 ∧ z1(t) ≤ z1 ≤ 0 ∨ z1(t)}|dµ|, . . . ,

zk(t),

∫
T
zk1{0 ∧ zk(t) ≤ zk ≤ 0 ∨ zk(t)}|dµ|

)
,

then pick one such t. Since ‖zj‖Lµ is finite for every j (i.e., the diameter of T measured
by each d(·, ·; zj) is finite), this gives finitely many points t1, . . . , tp. Notice that the balls

18T is not necessarily complete with respect to d.
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{t : ρm(t, ti) < 3η} cover T , that is, t is in the ball around ti for which r(t) and r(ti) are
in the same cube; this follows because ρm(t, ti) can be bounded by

2 sup
z∈Km

inf
j
‖z − zj‖Lµ + sup

j
d(t, ti; zj) < 3η.

The first term is the error of approximating z(t) and z(ti) by zj(t) and zj(ti); the second
is the distance of t and ti measured by d(·, ·; zj).

Define the semimetric ρ by

ρ(s, t) :=
∞∑
m=1

2−m
(
ρm(s, t) ∧ 1

)
.

We show that (T, ρ) is still totally bounded. For η > 0 take m such that 2−m <
η. Since T is totally bounded in ρm, we may cover T with finitely many ρm-balls of
radius η. Denote by t1, . . . , tp the centers of such a cover. Since Km is nested, we have
ρ1 ≤ ρ2 ≤ · · · . Since we also have ρm(t, ti) < η, for every t there exists ti such that
ρ(t, ti) ≤

∑m
k=1 2−kρk(t, ti) + 2−m < 2η. Therefore, (T, ρ) is totally bounded.

By definition we have d(s, t; z) ≤ ρm(s, t) for every z ∈ Km and that ρm(s, t) ∧ 1 ≤
2mρ(s, t). And if ‖z0 − z‖Lµ < ε for z ∈ Km, then d(s, t; z0) < 2ε + d(s, t; z) for every
pair (s, t). Hence, we conclude that

Kε
m ⊂

{
z : sup

ρ(s,t)<2−mε
d(s, t; z) ≤ 3ε

}
.

Therefore, for δ < 2−mε,

lim inf
α

P∗

(
sup

ρ(s,t)<δ
d(s, t;Xα) ≤ 3ε

)
≥ lim inf

α
P∗

(
sup
t∈T

[
sup

ρ(s,t)<δ
|Xα(s)−Xα(t)| ∨

∫
0<ρ(s,t)<δ

|Xα(s)||dµ|
]
≤ 3ε

)
≥ 1− 1

m
.

(iii) ⇒ (ii). For ε, η > 0 and correspondingly taken δ > 0, one may construct the
finite partition of T , denoted by {T εi }, as follows. Since T is totally bounded, it can be
covered with finitely many balls of radius δ; let t1, . . . , tK be their centers. Disjointify
the balls to obtain {T εi }. If

∫
{ti} |Xα||dµ| > 0, then further separate the partition T εi

into {ti} and T εi \ {ti} (then they both have the same center).
There are three types of components in the partition: (a) singleton components of

mass points of µ, (b) components with |µ|(T εi ) =∞, and (c) components with |µ|(T εi ) <
∞. The size of (a) is controlled by construction, so we are to control (b) and (c) one by
one. Clearly,

sup
s,t∈T εi

|Xα(s)−Xα(t)| ≤ 2 sup
ρ(s,ti)<δ

|Xα(s)−Xα(ti)| ≤ 2ε. (5)

Denote by i∞ the index for which |µ|(T εi∞) =∞. We argue that
∑

i∞

∫
T εi∞
|Xα||dµ| can

be arbitrarily small (with inner probability at least 1 − η) for sufficiently small ε. By
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the construction of the partition, sups∈T εi∞
|Xα(s)| ≤ 2ε.19 Thus,

∑
i∞

∫
T εi∞
|Xα||dµ| ≤∫

T |Xα|1{|Xα| ≤ 2ε}|dµ|. Since T is totally bounded by the given semimetric,
∫
T |Xα||dµ|

is bounded by Kε with inner probability at least 1− η (proving asymptotic tightness of
‖Xα‖µ), and hence the previous integral must be arbitrarily small for small ε. Now we
turn to (c). Let ε′ be such that

lim sup
α

P ∗
(∫

T
|Xα|1{|Xα| ≤ 3ε′}|dµ| > ε

)
< 1− η. (6)

Take the partition for this ε′, namely T ε
′
i , to be nested on T εi and pick up only the

components {T ε′j } on |µ|(T εi ) < ∞. Note that {T εi∞} ∪ {T
ε′
j } defines another finite

partition of T . For ease of notation, denote T = T∞ t T ′. If there exists s ∈ T ε′j such
that |Xα(s)| ≤ ε′, then by the construction of the partition sup

t∈T ε′j
|Xα(t)| ≤ 3ε′. The

contrapositive of this is also true. Thus, observing

∑
j

inf
x

∫
T ε
′
j

|Xα − x||dµ|

≤
∑
j

inf
x

∫
T ε
′
j

|Xα − x|1{|Xα| > ε′}|dµ|+
∫
T
|Xα|1{|Xα| ≤ 3ε′}|dµ|,

we may assume infT ′ |Xα(s)| ≥ ε′ > 0 at the cost of one more ε. Then, we also have∫
T ′ |dµ| ≤ Kε/ε′ since ε′

∫
T ′ |dµ| ≤

∫
T |Xα||dµ|. For the partition T ε

′
j of T ′, further

construct a nested finite partition T
ε′/K
k . Now

∑
k

inf
x

∫
T
ε′/K
k

|Xα − x||dµ|

≤
∑
k

∫
T
ε′/K
k

|dµ| sup
s,t∈T ε

′/K
k

|Xα(s)−Xα(t)| ≤ ε′

K

∫
T ′
|dµ| ≤ ε (7)

with inner probability at least 1− η. Combine (5), (6), and (7) to yield the result.
Finally, we prove the addendum. Define Km as before. Then, if Xα  X, we have

P (X ∈ Km) ≥ 1− 1/m, and hence X concentrates on
⋃∞
m=1Km. Since elements of Km

are uniformly ρm-equicontinuous and (ρm, µ)-equiintegrable, they are also uniformly ρ-
equicontinuous and (ρ, µ)-equiintegrable. This proves the first statement. Next, note
that the set of uniformly continuous and integrable functions on a totally bounded,
semimetric (denote by d) space is complete and separable in Lµ. Thus the map X that
takes its values in this set is tight. If, moreover, Xα  X, then Xα is asymptotically
tight, so the compact sets for asymptotic tightness of Xα can be taken to be the compact
sets for tightness of X. If every path of X is uniformly d-continuous and (d, µ)-integrable,
then these compact sets can be chosen from the space of uniformly d-continuous and
(d, µ)-integrable functions. Since a compact set is totally bounded, every one of the
compact sets is necessarily uniformly d-equicontinuous and (d, µ)-equiintegrable. This
completes the proof. �

19This follows because infTε
i∞
|Xα| = 0 given that

∫
Tε
i∞
|Xα||dµ| <∞.
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Without having to resort to the classical central limit theorem for the L1 spaces,
Proposition A.2 can also be proved using Theorem A.6. This (loosely) checks consistency
of our theorem with known results.

Proof of Proposition A.2 through Theorem A.6. Being continuously differentiable, m can
be represented as a difference m1 −m2 of two strictly increasing and continuously dif-
ferentiable functions m1 and m2 such that m1(X) and m2(X) has a (2 + c)th moment
for X ∼ F . In other words, we assume without loss of generality that m is strictly
increasing. Since asymptotic uniform equicontinuity is classical, in light of Theorem A.6
it remains only to show that the process Xn :=

√
n(Fn − F ) is asymptotically equiinte-

grable in probability. By Lemma A.1, |y|1+cF̃ ◦m−1(y) is integrable. This enables us to
use the semimetric

ρ(s, t) :=

(∫ m−1(t)

m−1(s)

(
|y|1+c ∨ 1

)
|F̃ ◦m−1(y)|dy

)1/2

=

(∫ t

s

(
|m(x)|1+c ∨ 1

)
|F̃ (x)|dµ(x)

)1/2

,

as it makes R totally bounded. By the Cauchy-Schwarz inequality,(∫ t

s
|Xn|dµ

)2

≤
(∫ t

s

(
|m(x)|1+c ∨ 1

)
X2
ndµ

)(∫ ∞
−∞

1

|m(x)|1+c ∨ 1
dµ

)
.

By the change of variables,∫ ∞
−∞

1

|m(x)|1+c ∨ 1
dµ =

∫ ∞
−∞

1

|y|1+c ∨ 1
dy <∞.

With E[X2
n(x)] = F (x)[1− F (x)], this implies that for some constant C,

E
[(∫ t

s
|Xn|dµ

)2]
≤ C

∫ t

s

(
|m(x)|1+c ∨ 1

)
F (x)[1− F (x)]dµ ≤ Cρ(s, t)2.

Therefore, by Van der Vaart and Wellner (1996, Theorem 2.2.4), for any η, δ > 0,

E
[(

sup
ρ(s,t)≤δ

∫ t

s
|Xn|dµ

)2]
≤ K

[∫ η

0

√
D(ε, ρ)dε+ δD(η, ρ)

]2
for some constant K where D(ε, ρ) is the packing number of T with respect to ρ. With
this choice of ρ, the packing number satisfies D(ε, ρ) ≈ 1/ε. Thus, we obtain

E
[(

sup
ρ(s,t)≤δ

∫ t

s
|Xn|dµ

)2]
≤ K̃

(
2
√
η +

δ

η

)2

for some K̃. With Markov’s inequality,

P

(
sup
t∈R

∫
0<ρ(s,t)<δ

|Xn|dµ(s) > ε

)
≤ 1

ε2
E
[(

sup
ρ(s,t)≤δ

∫ t

s
|Xn|dµ

)2]
≤ K̃

ε2

(
2
√
η +

δ

η

)2

.

This can be however small for any ε by the choice of η and δ. �
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A.5 Differentiability of the Inverse Map

We use the space L constructed in the previous section to show differentiability of the
inverse map for distribution functions. Let m be a strictly increasing continuous function
and µ the Lebesgue-Stieltjes measure associated with m. For a real-valued random
variable X distributed as F , Lemma A.1 implies that m(X) has a first moment if and
only if F̃ belongs to Lµ with T equal to R and T appropriately chosen. Specifically, the
space we work on is as follows.

Definition. Let Lµ be the space of µ-measurable functions z from R to R with limits
z(±∞) := limx→±∞ z(x) and the norm

‖z‖Lµ := ‖z‖∞ ∨ ‖z‖µ :=

(
sup
x∈R
|z(x)|

)
∨
(∫ ∞
−∞
|z̃(x)|dµ

)
where

z̃(x) =

{
z(x)− z(−∞) x < 0,

z(x)− z(+∞) x ≥ 0.

Denote by Lµ,φ the subset of Lµ of monotone cadlag functions with z(−∞) = 0 and
z(+∞) = 1. If µ is the Lebesgue measure, we omit the subscript µ and denote them by
L and Lφ, and ‖ · ‖µ by ‖ · ‖1.

Next, we define the space of quantile functions for distributions that have first mo-
ments. Note that there is no supremum component in its norm.

Definition. Let B be the space of ladcag functions z from (0, 1) to R with the norm

‖z‖B :=

∫ 1

0
|z(u)|du.

Remark. The metric on quantile functions induced by ‖ · ‖B is known as the Wasserstein
metric in probability theory and the Mallows distance in statistics.

The next lemma establishes differentiability of the inverse map for distribution func-
tions with finite first moments (or more generally, monotone functions F whose modifi-
cations F̃ are integrable).

Lemma A.7 (Inverse map). Let F ∈ Lφ be a distribution function on (an interval of)
R that has at most finitely many jumps and is otherwise continuously differentiable with
strictly positive density f . Then, the inverse map φ : Lφ → B, φ(F ) := Q = F−1, is
Hadamard differentiable at F tangentially to the set L0 of all continuous functions in L.
The derivative is given by

φ′F (z) = −(z ◦Q)Q′ =

{
−(z/f) ◦Q if Q is increasing,

0 if Q is flat.

Proof. Take zt → z in L and Ft := F + tzt ∈ Lφ. We want to show that∥∥∥∥φ(Ft)− φ(F )

t
− φ′F (z)

∥∥∥∥
B

=

∫ 1

0

∣∣∣∣φ(Ft)− φ(F )

t
− φ′F (z)

∣∣∣∣du −→ 0 as t→ 0.
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Let j ∈ R be a point of jump of F . For small ε > 0, one can separate the integral as(∫ F (j−ε)

0
+

∫ F (j+ε)

F (j−ε)
+

∫ 1

F (j+ε)

)∣∣∣∣φ(Ft)− φ(F )

t
− φ′F (z)

∣∣∣∣du.
Observe that∫ F (j+ε)

F (j−ε)

∣∣∣∣φ(Ft)− φ(F )

t
− φ′F (z)

∣∣∣∣du ≤ 2ε

∥∥∥∥Ft − Ft
∥∥∥∥
∞

+

(∫ F (j−)

F (j−ε)
+

∫ F (j+ε)

F (j)

)
|φ′F (z)|du.

The first term equals 2ε‖zt‖∞ and can be arbitrarily small by the choice of ε. If ε is
small enought that there is no other jump in [j − ε, j + ε], by Fubini’s theorem,∫ F (j−)

F (j−ε)
|φ′F (z)|du =

∫ j

j−ε

∣∣∣ z
f

∣∣∣dF ≤ ε‖z‖∞,
which can also be arbitrarily small by the choice of ε. Similarly, the last integral can as
well be arbitrarily small. Therefore, one can ignore any finitely many jumps of F ; we
assume hereafter that F has no jump and has positive density f everywhere.

For every ε > 0 there exists a large number M such that F (−M) < ε and 1−F (M) <
ε. Write∥∥∥∥φ(Ft)− φ(F )

t
− φ′F (z)

∥∥∥∥
B
≤
∫ F (M)−ε

F (−M)+ε

∣∣∣∣φ(Ft)− φ(F )

t
− φ′F (z)

∣∣∣∣du
+

(∫ 2ε

0
+

∫ 1

1−2ε

)∣∣∣∣φ(Ft)− φ(F )

t
− φ′F (z)

∣∣∣∣du.
By Van der Vaart and Wellner (1996, Theorem 3.9.23 (i)), uniform convergence of the
integrand holds on [F (−M) + ε, F (M)− ε]. Since the first integral is bounded by

sup
u∈[F (−M)+ε,F (M)−ε]

∣∣∣∣φ(Ft)− φ(F )

t
− φ′F (z)

∣∣∣∣,
it vanishes as t→ 0.

We now turn to the second integral. The triangle inequality bounds the integral by∫ 2ε

0

∣∣∣∣φ(Ft)− φ(F )

t

∣∣∣∣du+

∫ 2ε

0
|φ′F (z)|du.

Since F and Ft are nondecreasing, by Fubini’s theorem,∫ 2ε

0

∣∣∣∣φ(Ft)− φ(F )

t

∣∣∣∣du =
1

|t|

∫ 2ε

0

∣∣F−1t − F−1
∣∣du ≤ 1

|t|

∫ F−1(2ε+‖tzt‖∞)

−∞
|tzt|dx

≤ ‖zt − z‖L1 +

∫ F−1(2ε+t‖zt‖∞)

−∞
|z|dx.

The first term goes to 0 and the second term can be arbitrarily small by the choice of ε.
Finally, by the change of variables,∫ 2ε

0
|φ′F (z)|du =

∫ F−1(2ε)

−∞

∣∣∣ z
f

∣∣∣dF =

∫ F−1(2ε)

−∞
|z|dx.

This quantity can be arbitrarily small. Similarly, the integral from 1 − 2ε to 1 can be
shown to converge to 0. This completes the proof. �

48



Remark. A probability distribution F has a pth moment if and only if its quantile
functionQ is in Lp (Lemma A.1). This may spur speculations that if F has a pth moment,
then the map F 7→ Q may be differentiable for Q ∈ Lp. However, we have not been able
to prove that this is the case (although the Glivenko-Cantelli type results do hold; see
Addendum A.22). The success of Lemma A.7 hinges upon the fact that Fubini’s theorem
is compatible with the L1 norm. Nevertheless, it is possible to extend differentiability
of inverse maps to subsume pth moments, or even to more general transformations, by
regarding the range space to be L1 as done below.

Now we extend the result to subsume transformations. Consider, for example, the
second moment. Observe that the second moment of X can be thought of as the first
moment of Z := X2. In other words,∫ ∞

−∞
x2dF (x) =

∫ ∞
0

zdF (
√
z) +

∫ 0

−∞
−zdF (−

√
−z) =

∫ ∞
0

zd
(
F (
√
z) + F (−

√
z)
)
.

Here, F (
√
·) + F (−

√
·) is the distribution function of the random variable Z.20 This is

in line with the informal mental exercise that if one inverts the pth power of an inverse
function, (F−1)p, one obtains the composition of the original function and the 1/pth
power, F ◦ (·)1/p. Thus, one expects that this composition, F ◦ (·)1/p, is in L whenever
F is in L|x|p . Then, Hadamard differentiability of the map F 7→ (F−1)p may follow by

the chain rule on F 7→ F ◦ (·)1/p 7→ [F ◦ (·)1/p]−1 = (F−1)p. For this, one only needs
Hadamard differentiability (or anything stronger) of the first map, F 7→ F ◦ (·)1/p.
Remark. As remarked above, a subtle but important distinction is that the last element
in this chain (F−1)p should be seen as itself belonging to B (the L1 space), but not as
F−1 belonging to the Lp space.

More generally, for a monotone function m, we exploit the relationship m(F−1) =
(F ◦ m−1)−1. The requirement of monotonicity of m is almost innocuous since any
function of locally bounded variation can be represented by a difference of two increasing
functions, so the lemma extends naturally to more general transformation.

Lemma A.8. Let m : R→ R be a strictly increasing continuous function and µ be the
associated Lebesgue-Stieltjes measure. Then, the map ψ : Lµ → L, ψ(F ) := F ◦m−1, is
uniformly Fréchet differentiable with rate function q ≡ 0.21 The derivative is given by
ψ′F (z) := z ◦m−1.

Proof. Observe that ψ(F + z)− ψ(F ) = (F + z)(m−1)− F (m−1) = z(m−1). Therefore,
ψ(F + z)− ψ(F )− φ′F (z) = 0. �

This lemma is obvious since the map F 7→ F ◦m−1 is by itself linear. Now differen-
tiability of the inverse map for general transformations follows by the chain rule.

Theorem A.9 (Transformed inverse map). Let m : R → R be a continuously differ-
entiable function and µ be the associated Lebesgue-Stieltjes measure. Let F ∈ Lµ,φ be
a distribution function on (an interval of) R that has at most finitely many jumps and

20After a minor fix for right-continuity.
21A map ψ : L→ B is uniformly Fréchet differentiable with rate function q if there exists a continuous

linear map ψ′F : L → B such that ‖ψ(F + z) − ψ(F ) − ψ′F (z)‖B = O(q(‖z‖L)) uniformly over F ∈ L as
z → 0 and q is monotone with q(t) = o(t).
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is otherwise continuously differentiable with strictly positive density f . Then, the map
φ ◦ψ : Lµ,φ → B, φ ◦ψ(F ) := m(Q), is Hadamard differentiable at F tangentially to the
set Lµ,0 of all continuous functions in Lµ. The derivative is given by

(φ ◦ ψ)′F (z) := −(m′z/f) ◦Q.

Proof. Since m is continuously differentiable and hence of locally bounded variation, one
can set m(x) = m1(x)−m2(x), where m1 and m2 are both increasing and continuously
differentiable functions. Moreover, m1 and m2 can be taken such that they are strictly
increasing, and for their corresponding Lebesgue-Stieltjes measures µ1 and µ2, F belongs
to both Lµ1,φ and Lµ2,φ.22 Since the derivative formula is linear in m′, it suffices to show
that the claim holds for each of m1 and m2 separately. In other words, we can assume
without loss of generality that m is strictly increasing.

Now observe that z is in Lµ (or Lµ,0) if and only if z ◦ m−1 is in L (or L0). The
assertion then follows by the chain rule (Van der Vaart and Wellner, 1996, Lemma 3.9.3)
applied to Lemmas A.7 and A.8. �

The main conclusion of this section is summarized as follows.

Proposition A.10. Let m : R → R be a continuously differentiable function. For a
distribution function F on (an interval of) R that has at most finitely many jumps and
is otherwise continuously differentiable with strictly positive density f such that m(X)
has a (2 + c)th moment for X ∼ F and some c > 0, the process

√
n(m(Qn) − m(Q))

converges weakly in B to a Gaussian process with mean zero and covariance function
Cov(s, t) = m′(Q(s))Q′(s)m′(Q(t))Q′(t)(s ∧ t− st).

Proof. This follows in combination of Proposition A.2 and Theorem A.9. �

A.6 Differentiability of L-Statistics

Given the weak convergence of the integral of empirical quantiles, we investigate whether
this is the case for the integral with respect to a random measure. Or precisely, we
seek conditions under which the integral of a stochastic process with respect to another
stochastic process converges weakly. This is the extension of the results on Wilcoxon
statistics (Van der Vaart and Wellner, 1996, Section 3.9.4.1) to allow for an unbounded
integrand. Then, the general L-statistics result follows with Proposition A.10.

The spaces we work on in this section are given as follows.

Definition. Let Q ∈ B and define the space LQ of functions κ : (0, 1) → R with the
norm

‖κ‖LQ := ‖κ‖Q,∞ ∨ ‖κ‖Q :=

(
sup

u∈(0,1)
|(|Q| ∨ 1)(u)κ(u)|

)
∨
(∫ 1

0
|κ(u)||dQ(u)|

)
.

Let LQ,M be the subset of LQ of Lipschitz functions.

First, we give a generalization of differentiability of Wilcoxon statistics.

22For example, take m1 and m2 to be the least steep functions and add a normal cdf.
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Theorem A.11 (Wilcoxon statistic). For each fixed M , the maps λ : B × LQ,M → R
and λ̃ : B× LQ,M → L∞(0, 1)2,

λ(Q,K) :=

∫ 1

0
QdK and λ̃(Q,K) :=

∫ t

s
QdK,

are Hadamard differentiable at every (Q,K) ∈ B × LQ,M uniformly over LQ,M . The
derivative maps are given by

λ′Q,K(z, κ) :=

∫ 1

0
Qdκ+

∫ 1

0
zdK

where
∫
Qdκ is defined via integration by parts if κ is of unbounded variation.

Proof. The derivative map is linear by construction; it is also continuous since∣∣λ′Q,K(z1, κ1)− λ′Q,K(z2, κ2)
∣∣ =

∣∣∣∣∫ 1

0
Qd(κ1 − κ2) +

∫ 1

0
(z1 − z2)dK

∣∣∣∣
≤ ‖κ1 − κ2‖Q,∞ + ‖κ1 − κ2‖Q +M‖z1 − z2‖B,

which vanishes as ‖z1 − z2‖B → 0 and ‖κ1 − κ2‖LQ → 0. Let zt → z and κt → κ such
that Qt := Q+ tzt is in B and Kt := K + tκt is in LQ,M . Observe

λ(Qt,Kt)− λ(Q,K)

t
− λ′Q,K(zt, κt) =

∫
(zt − z)d(Kt −K) +

∫
zd(Kt −K).

We want to show that this converges to zero as t→ 0. The first term vanishes since∣∣∣∣∫ (zt − z)d(Kt −K)

∣∣∣∣ ≤ 2M

∫
|zt − z|du = 2M‖zt − z‖B.

Since z is integrable, for every ε > 0 there exists a small number δ > 0 such that(∫ δ

0
+

∫ 1

1−δ

)
|z|du+

∫ 1−δ

δ
(|z| − (|z| ∧ δ−1))du ≤ ε.

This gives the inequality∣∣∣∣∫ zd(Kt −K)

∣∣∣∣ ≤ ∣∣∣∣∫ 1−δ

δ
(−δ−1 ∨ z ∧ δ−1)d(Kt −K)

∣∣∣∣
+

∣∣∣∣∫ zd(Kt −K)−
∫ 1−δ

δ
(−δ−1 ∨ z ∧ δ−1)d(Kt −K)

∣∣∣∣
≤
∣∣∣∣∫ 1−δ

δ
(−δ−1 ∨ z ∧ δ−1)d(Kt −K)

∣∣∣∣+ 2Mε.

Let z̃ := −δ−1 ∨ z ∧ δ−1. Since z̃ is ladcag on [δ, 1− δ], there exists a partition δ = t0 <
t1 < · · · < tm = 1 − δ such that z̃ varies less than ε on each interval (ti−1, ti]. Let z̄ be
the piecewise constant function that equals z̃(ti) on each interval (ti−1, ti]. Then∣∣∣∣∫ 1−δ

δ
z̃d(Kt −K)

∣∣∣∣ ≤ 2M sup
u∈[δ,1−δ]

|z̃ − z̄|+ |z̃(δ)||(Kt −K)({δ})|

+
m∑
i=1

|z̃(ti)||(Kt −K)((ti−1, ti])|.
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The first term is arbitrarily small by the choice of ε, and the second and third terms are
collectively bounded by (2m+ 1)δ−1‖Kt−K‖∞ = (2m+ 1)δ−1t‖κt‖∞, which converges
to 0 regardless of the choice of K.

The proof for λ̃ is basically the same as that for λ. �

Next, we give conditions under which the random measure Kn converges in LQ. Not
surprisingly, this convergence hinges on the tail behavior around 0 and 1. Roughly
speaking, if Q has a (2 + c)th moment, then weak convergence of Xα

ur(1−u)r to X
ur(1−u)r in

L∞ for some r > 1
2+c implies weak convergence of Xα to X in LQ.

Lemma A.12. Let Q : (0, 1)→ R be a quantile function whose probability measure has
a (2 + c)th moment for some c > 0. If for a net of processes Xα : Ωα → LQ there exists
r > 1

2+c such that for every η > 0 there exists M satisfying

lim sup
α

P ∗
(∥∥∥∥ Xα

ur(1− u)r

∥∥∥∥
∞
> M

)
< η,

then there exists a semimetric ρ on (0, 1) such that (0, 1) is totally bounded, QXα

is asymptotically uniformly ρ-equicontinuous in probability, and Xα is asymptotically
(ρ,Q)-equiintegrable in probability.

Proof. Assume r < 1 first. Define ρ by23

ρ(s, t) :=

∫
(s,t)

ur(1− u)rdQ.

We show that (0, 1) is totally bounded with respect to ρ. Observe that Lemma A.1 and
r > 1

2+c imply ur(1− u)rQ(u)→ 0 as u→ {0, 1}. Therefore, integrating by parts,

ρ(0, 1) ≤
∫
(0,1)

ur ∧ (1− u)rdQ ≤ |Q|
(1

2

)
+

∫ 1
2

0
ur−1|Q|du+

∫ 1

1
2

(1− u)r−1|Q|du.

Since Q ∈ L2+c and ur−1 ∧ (1 − u)r−1 ∈ Lq for every q < 1/(1 − r), in particular for
q = (2 + c)/(1 + c), this integral is finite by Hölder’s inequality. This means that the
diameter of (0, 1) is finite, concluding that (0, 1) is totally bounded.

Note that |Q| is eventually smaller than 1/ur(1− u)r near 0 and 1, so that for every
η there exists M such that

lim sup
α

P ∗(‖(|Q| ∨ 1)Xα‖∞ > M) ≤ lim sup
α

P ∗
(∥∥∥∥ Xα

ur(1− u)r

∥∥∥∥
∞
> M

)
< η.

This shows uniform equicontinuity.
Next, for every 0 < s ≤ t < 1,∫

(s,t)
|Xα|dQ ≤

(
sup

u∈(0,1)

|Xα(u)|
ur(1− u)r

)∫
(s,t)

ur(1− u)rdQ ≤
∥∥∥∥ Xα

ur(1− u)r

∥∥∥∥
∞
ρ(s, t).

Therefore,

P ∗
(

sup
t∈(0,1)

∫
0<ρ(s,t)<δ

|Xα|dQ(s) > ε

)
≤ P ∗

(∥∥∥∥ Xα

ur(1− u)r

∥∥∥∥
∞
>
ε

δ

)
.

23This semimetric is reminiscent of the condition for ‖·/q‖p-metric convergence in Csörgő et al. (1993).
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By assumption, this can be however small by the choice of δ. Conclude that Xα is
asymptotically (ρ,Q)-equiintegrable in probability.

Finally, if r ≥ 1, replace every r appeared in the proof by 1/2. Then the result
follows since

∥∥ Xα
ur(1−r)r

∥∥
∞ ≥

∥∥ Xα
u1/2(1−u)1/2

∥∥
∞. �

Next, we apply this lemma to show that most “well-behaved” sample selection mea-
sures satisfy the condition. Let X1, . . . , Xn be independent continuous random variables
and X1,n, . . . , Xm,n be subset of X1, . . . , Xn that are selected by some (possibly random)
criterion. Then, roughly speaking, if the empirical distribution of the selected sample
X1,n, . . . , Xm,n converges in L∞ to a smooth distribution, then the selection measure Kn

defined in the text converges in LQ.

Proposition A.13. Let U1, . . . , Un be independent uniformly distributed random vari-
ables on (0, 1) and w1,n, . . . , wn,n random variables bounded by some constant M whose
distribution can depend on U1, . . . , Un and n. Define

Fn(u) :=
1

n

n∑
i=1

1{Ui ≤ u}, Gn(u) :=
1

n

n∑
i=1

wi,n1{Ui ≤ u}.

Let I(u) := u and assume that K(u) := limn→∞ E[Gn(u)] exists and is Lipschitz and
differentiable. If

√
n(Gn−K) weakly converges jointly with

√
n(Fn− I) in L∞, then for

the selection measure

Kn(u) :=
1

n

n∑
i=1

wi,n1
{

0 ∨
(
nu− nFn(Ui) + 1

)
∧ 1
}
,

we have
√
n(Kn−K) converge weakly in LQ for every quantile function Q whose distri-

bution has a (2 + c)th moment for some c > 0.

Proof. Assume without loss of generality that M = 1. Define U(0) := 0. Let F̃n and G̃n

be the continuous linear interpolations of Fn and Gn, that is, for U(i−1) ≤ u < U(i),

F̃n(u) :=
i− 1

n
+

u− U(i−1)

n(U(i) − U(i−1))
,

G̃n(u) :=
1

n

n∑
i=1

wi,n1{Ui ≤ u}+
wi,n(u− U(i−1))

n(U(i) − U(i−1))
,

and for u ≥ U(n), F̃n(u) := 1 and G̃n(u) := 1
n

∑
wi,n. Observe that Kn(u) = G̃n(F̃−1n (u)).

By Lemma A.14 it suffices to show that
√
n(F̃n − I) and

√
n(G̃n −K) converge weakly

jointly in LQ. Note that

‖Fn − I‖∞ −
1

n
≤ ‖F̃n − I‖∞ ≤ ‖Fn − I‖∞ +

1

n
,

‖Fn − I‖Q − C ≤ ‖F̃n − I‖Q ≤ ‖Fn − I‖Q + C,

for C =
∫

(Ĩ − bnĨc/n)dQ = O(1/n). Thus,
√
n(F̃n − I) converges weakly in LQ if and

only if
√
n(Fn − I) does, and they share the same limit. The same is true for G̃n and

Gn.
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The classical results imply that
√
n(Fn − I) converges weakly in L∞ to a Brownian

bridge and ∥∥∥∥√n(Fn − I)

ur(1− u)r

∥∥∥∥
∞

= OP (1)

for every r < 1/2 (Csörgő and Horváth, 1993). By Lemma A.12 it follows that
√
n(Fn−I)

converges weakly in LQ. By assumption
√
n(Gn − K) converges weakly in L∞ jointly

with
√
n(Fn− I), and since M |Fn− I| ≥ |Gn−K|, conclude that

√
n(Gn−K) converges

weakly in LQ jointly with
√
n(Fn − I). �

Lemma A.14 (Inverse composition map). Let LQ contain the identity map I(u) := u.
Let D be the subset of LQ × LQ such that every (A,B) ∈ D satisfies A(u1) − A(u2) ≥
B(u1) − B(u2) ≥ 0 for every u1 ≥ u2, the range of A contains (0, 1), and B is differ-
entiable and Lipschitz. Let LQ,UC be the subset of LQ of uniformly continuous func-
tions. Then, the map χ : D → LQ, χ(A,B) := B ◦ A−1, is Hadamard differentiable at
(A,B) ∈ D for A = I tangentially to LQ × LQ,UC. The derivative is given by

χ′I,B(a, b)(u) = b(u) +B′(u)a(u), u ∈ (0, 1).

Proof. For (A,B) ∈ D and u1 ≥ u2, denote v1 := A(u1) and v2 := A(u2). By assumption
we have v1 − v2 ≥ B(A−1(v1))−B(A−1(v2)) ≥ 0 for every v1 ≥ v2. Therefore, B ◦A−1
is monotone and bounded by the identity map up to a constant. This implies∫

(0,1)

∣∣B̃ ◦A−1∣∣|dQ| ≤ ∫
(0,1)
|Ĩ||dQ| <∞

and ‖Q(B ◦A−1)‖∞ <∞; it follows that B ◦A−1 is in LQ,1.
Let at → a and bt → b in Lν2 and (At, Bt) := (I + tat, B + tbt) ∈ D. We want to

show that ∥∥∥∥Bt ◦A−1t −B ◦ I−1t
− b−B′a

∥∥∥∥
LQ
−→ 0 as t→ 0.

That ‖ · ‖Q,∞ → 0 follows by applying Van der Vaart and Wellner (1996, Lemma 3.9.27)
to (A−1, QB) as elements in L∞. Thus, it remains to show that ‖ · ‖Q → 0. In the
assumed inequality, substitute (u1, u2) by (u,A−1t (u)) to find that

|At(u)− u| ≥ |Bt(A−1t (u))−Bt(u)| ≥ 0.

Therefore, the following inequality holds pointwise:

|Bt ◦A−1t −B| ≤ |Bt ◦A
−1
t −Bt|+ |Bt −B| ≤ |At − I|+ |Bt −B| = |tat|+ |tbt|.

For ε > 0, write ‖ · ‖Q as(∫ ε

0
+

∫ 1−ε

ε
+

∫ 1

1−ε

)∣∣∣∣Bt ◦A−1t −Bt
− b−B′a

∣∣∣∣|dQ|.
For any fixed ε > 0 the middle term vanishes as t→ 0 since ‖ · ‖Q,∞ → 0. It remains to
show that the first term can be however small by the choice of ε since then by symmetry
the third term must likewise be ignorable. Using the inequality obtained above, write∫ ε

0

∣∣∣∣Bt ◦A−1t −Bt
− b−B′a

∣∣∣∣|dQ| ≤ ∫ ε

0

(
|at|+ |bt|+ |b|+ |B′a|

)
|dQ|.
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Since ‖at − a‖Q → 0 and ‖bt − b‖Q → 0, this integral should be arbitrarily small by the
choice of ε, as desired. �

Now we are ready to give the main conclusion of this paper.

Proposition A.15 (L-statistic). Let m1,m2 : R → R be continuously differentiable
functions and F : R2 → [0, 1] be a distribution function on (a rectangular of) R2 with
marginal distributions (F1, F2) that have at most finitely many jumps and are other-
wise continuously differentiable with strictly positive marginal densities (f1, f2) such that
m1(X1) and m2(X2), (X1, X2) ∼ F , have (2 + c)th moments for some c > 0. Along
with i.i.d. random variables X1,1, . . . , Xn,1 and X1,2, . . . , Xn,2, let w1,n,1, . . . , wn,n,1 and
w1,n,2, . . . , wn,n,2 be random variables bounded by a constant M whose distributions can
depend on n and all of X1,1, . . . , Xn,1 and X1,2, . . . , Xn,2 such that the empirical distribu-
tions of Xi,1, Xi,2, wi,n,1Xi,1, and wi,n,2Xi,2 converge uniformly jointly to continuously
differentiable distribution functions. Then, the normalized L-statistics

√
n

(
En[m1(Xi,1)wi,n,1]− E[m1(Xi,1)wi,n,1]
En[m2(Xi,2)wi,n,2]− E[m2(Xi,2)wi,n,2]

)
=
√
n

(∫ 1
0 m1(Qn,1)dKn,1 −

∫ 1
0 m1(Q1)dK1∫ 1

0 m2(Qn,2)dKn,2 −
∫ 1
0 m2(Q2)dK2

)
where

Kn,j(u) :=
1

n

n∑
i=1

wi,n,j1
{

0 ∨
(
nu− nFn,j(Xi) + 1

)
∧ 1
}
,

Kj(u) := lim
n→∞

E[wi,n,j | Fj(Xi,j) ≤ u],

converge weakly in R2 to a normal vector (ξ1, ξ2) with mean zero and (co)variance

Cov(ξj , ξk) =

∫ 1

0

∫ 1

0
m′j(Qj(s))Q

′
j(s)m

′
k(Qk(t))Q

′
k(t)×(

[FQjk(s, t)− st] + [Kjk(s, t)F
Q
jk(s, t)− stKj(s)Kk(t)]

−Kj(s)[F
Q
jk(s, t)− st]−Kk(t)[F

Q
jk(s, t)− st]

)
dsdt,

where FQjk(s, t) := Pr(Xi,j ≤ Qj(s), Xi,k ≤ Qk(t)) and Kjk(s, t) := limn→∞ E[wi,n,jwi,n,k |
Xi,j ≤ Qj(s), Xi,k ≤ Qk(t)]. If F has no jumps, this is equal to

Cov(ξj , ξk) =

∫ ∞
−∞

∫ ∞
−∞

(
[1−KF

j (x)−KF
k (y)][Fjk(x, y)− Fj(x)Fk(y)]

+ [KF
jk(x, y)Fjk(x, y)−KF

j (x)KF
k (y)Fj(x)Fk(y)]

)
dmj(x)dmk(y),

where Fjk(x, y) := Pr(Xi,j ≤ x,Xi,k ≤ y) and KF
jk(x, y) := limn→∞ E[wi,n,jwi,n,k | Xi,j ≤

x,Xi,k ≤ y]. Given mj and mk known, this can be consistently estimated by its sample
analogue

̂Cov(ξj , ξk) =

∫ ∞
−∞

∫ ∞
−∞

(
[1−KF

n,j(x)−KF
n,k(y)][Fn,jk(x, y)− Fn,j(x)Fn,k(y)]

+ [KF
n,jk(x, y)Fn,jk(x, y)−KF

n,j(x)KF
n,k(y)Fn,j(x)Fn,k(y)]

)
dmj(x)dmk(y),
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where Fn,jk(x, y) := En[1{Xi,j ≤ x,Xi,k ≤ y}] and KF
n,jk(x, y) := En[wi,n,jwi,n,k | Xi,j ≤

x,Xi,k ≤ y].

Proof. Weak convergence follows by Propositions A.10 and A.13 and Theorem A.11.
The derivative formulas give us

Cov(ξj , ξk) =

∫ 1

0

∫ 1

0
m′j(Qj(s))Q

′
j(s)m

′
k(Qk(t))Q

′
k(t)[F

Q
ik (s, t)− st]dsdt

+

∫ 1

0

∫ 1

0
m′j(Qj(s))Q

′
j(s)m

′
k(Qk(t))Q

′
k(t)[Kjk(s, t)F

Q
jk(s, t)− stKj(s)Kk(t)]dsdt

−
∫ 1

0

∫ 1

0
m′j(Qj(s))Q

′
j(s)m

′
k(Qk(t))Q

′
k(t)Kj(s)[F

Q
jk(s, t)− st]dsdt

−
∫ 1

0

∫ 1

0
m′j(Qj(s))Q

′
j(s)m

′
k(Qk(t))Q

′
k(t)Kk(t)[F

Q
jk(s, t)− st]dsdt,

where FQjk(s, t) := Pr(Xi,j ≤ Qj(s), Xi,k ≤ Qk(t)) andKjk(s, t) := limn→∞ E[wi,n,jwi,n,k |
Xi,j ≤ Qj(s), Xi,k ≤ Qk(t)]. Apply the change of variables x = Qj(s) and y = Qk(t)
to obtain the second formula. Consistency of the sample analogue estimator follows by
uniform convergence of KF

n,j and KF
n,k and Addendum A.21. �

A.7 Validity of Nonparametric Bootstrap

In this section, we establish the validity of nonparametric bootstrap. Since we have
proved the Hadamard differentiability of maps involved, it remains to show the weak
convergence of bootstrap processes conditional on the original observations.

The bootstrap process is given by

Ẑn(x) :=
√
n(F̂n − Fn)(x) :=

1√
n

n∑
i=1

(Mni − 1)1{Xi ≤ x}

=
1√
n

n∑
i=1

(Mni − 1)(1{Xi ≤ x} − F (x))

where Mni is the number of times Xi is drawn in the bootstrap sample. We want to prove
that this process converges weakly to the same limit as Zn :=

√
n(Fn−F ) conditional on

the observations Xi. The strategy is very similar to the one employed in Van der Vaart
and Wellner (1996, Chapter 3.6) and goes as follows: since Mni sums up to n, it is slightly
dependent to each other; we replace Mni with independent Poisson random variables ξi
by Poissonization, that is, we show equivalence of weak convergence of the bootstrap
process Ẑn and the multiplier process Z′n := n−1/2

∑
ξi(1{Xi ≤ x}−F ) (Lemma A.16);

then, we prove unconditional convergence of Z′n (so randomness comes from both Xi

and ξi) by symmetrization, which replaces ξi with independent Rademacher random
variables εi (Lemma A.17); next, we show conditional convergence of Z′n conditional on
Zn (so randomness comes only from ξi) by discreting Z′n (Lemma A.18).

We observe that many results in Van der Vaart and Wellner (1996, Chapters 2.9, 3.6,
and A.1) translate directly to our norm Lµ; therefore, we will not reproduce the entire
discourse but rather note when this is the case and prove results that require modification
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to accommodate our norm. Additionally, in order to show validity of bootstrap for L-
statistics, we also need to show conditional weak convergence of the bootstrap sample
selection process

√
n(K̂n − Kn). We restrict attention to the case of sample selection

based on sample quantiles and show validity by writing the sample selection process as
a function of the sum of i.i.d. random variables (Lemma A.19).

We first prove the key lemma used in Poissonization, the counterpart of Van der
Vaart and Wellner (1996, Lemma 3.6.16).

Lemma A.16. For each n, let (Wn1, . . . ,Wnn) be an exchangeable nonnegative random
vector independent of X1, X2, . . . such that

∑n
i=1Wni = 1 and max1≤i≤n |Wni| converges

to zero in probability. Then, for every ε > 0, as n→∞,

PrW

(∥∥∥∥ n∑
i=1

Wni

(
1{Xi ≤ x} − F (x)

)∥∥∥∥∗
µ

> ε

)
as∗−→ 0.

Proof. Assume without loss of generality that µ is a positive measure, that is, m is
increasing (we may do so since m is of locally bounded variation). Since Van der Vaart
and Wellner (1996, Lemma 3.6.7) can be restated with our norm ‖ · ‖Lµ , the proof of
this lemma is almost identical to that of Van der Vaart and Wellner (1996, Lemma
3.6.16) modulo the norm. Essentially, the only part that requires modification is the
boundedness of n−1

∑n
i=1 ‖1{Xi ≤ x} − F (x)‖rµ. Note that

|1{Xi ≤ x} − F (x)| ≤ |1{Xi ≤ x} − 1{0 ≤ x}|+ |F̃ (x)|.

Therefore,
‖1{Xi ≤ x} − F (x)‖µ ≤ |m(Xi)−m(0)|+ ‖F̃‖µ.

Find that

1

n

n∑
i=1

‖1{Xi ≤ x} − F (x)‖rµ ≤
1

n

n∑
i=1

|m(Xi)−m(0)|r + ‖F̃‖rµ,

which converges almost surely to E[|m(Xi)−m(0)|r] + ‖F̃‖rµ, which is finite. �

Given this lemma, we may infer by the same arguments as Van der Vaart and Wellner
(1996, Theorem 3.6.1) that conditional weak convergence of the bootstrap process Ẑn
follows from conditional weak convergence of the multiplier process Z′n. Before moving on
to the conditional convergence, however, we need to show the unconditional convergence
of the multiplier process Z′n in our norm. For a random variable ξ, we use the notation

‖ξ‖2,1 :=

∫ ∞
0

√
Pr(|ξ| > x)dx.

That ‖ξ‖2,1 < ∞ means that ξ has slightly more than a variance. The following is a
modification of Van der Vaart and Wellner (1996, Theorem 2.9.2).

Lemma A.17. Let m : R → R be a function of locally bounded variation and µ the
Lebesgue-Stieltjes measure associated with m. Let ξ1, . . . , ξn be i.i.d. random variables
with mean zero, variance 1, and ‖ξ‖2,1 < ∞, independent of X1, . . . , Xn. For a proba-
bility distribution F on R such that m(X) has a (2 + c)th moment for X ∼ F and some
c > 0, the process Z′n(x) := n−1/2

∑n
i=1 ξi[1{Xi ≤ x}−F (x)] converges weakly to a tight

limit process in Lµ if and only if Zn := n−1/2
∑n

i=1[1{Xi ≤ x} − F (x)] does. In that
case, they share the same limit processes.
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Proof. By Proposition A.2 and Van der Vaart and Wellner (1996, Theorem 2.9.2),
marginal convergence and asymptotic equicontinuity of Z′n are trivial. It remains to
show the equivalence of asymptotic equiintegrability of Z′n and Zn.

Note that the proofs of Van der Vaart and Wellner (1996, Lemmas 2.3.1, 2.3.6, and
2.9.1 and Propositions A.1.4 and A.1.5) do not depend on the specificity of the norm
‖ · ‖F ; therefore, they continue to hold with ‖ · ‖Lµ . Given these, Van der Vaart and
Wellner (1996, Lemma 2.3.11) also holds with ‖ · ‖Lµ (and ‖ · ‖Lµ,δn ). Finally, rewriting
the proof of Van der Vaart and Wellner (1996, Theorem 2.9.2) in terms of ‖ · ‖Lµ yields
the proof of this lemma. �

Third, we show conditional convergence of the multiplier process Z′n using the above
result. Van der Vaart and Wellner (1996, Theorem 2.9.6).

Lemma A.18. Let m : R → R be a function of locally bounded variation and µ the
Lebesgue-Stieltjes measure associated with m. Let ξ1, . . . , ξn be i.i.d. random variables
with mean zero, variance 1, and ‖ξ‖2,1 < ∞, independent of X1, . . . , Xn. For a proba-
bility distribution F on R such that m(X) has a (2 + c)th moment for X ∼ F and some
c > 0, the process Z′n(x) = n−1/2

∑n
i=1 ξi[1{Xi ≤ x} − F (x)] satisfies

sup
h∈BL1(Lµ)

∣∣Eξh(Z′n)− Eh(Z)
∣∣ −→ 0

in outer probability, and the sequence Z′n is asymptotically measurable.

Proof. By Lemma A.17, Z′n is asymptotically measurable. Assume without loss of gen-
erality that m is continuous and strictly monotone (see footnote 22), and define a semi-
metric ρ on R by

ρ(s, t) =

(∫ t

s

(
|m(x)|1+c ∨ 1

)
|F̃ (x)|dµ(x)

)1/2

.

For δ > 0, t1 < · · · < tp be such that ρ(−∞, t1) ≤ δ, ρ(tj , tj+1) ≤ δ, and ρ(tp,∞) ≤ δ.
Define Zδ by

Zδ(x) :=

{
0 x < t1 or x ≥ tp,
Z(ti) ti ≤ x ≤ ti+1, i = 1, . . . , p− 1.

Define Z′n,δ analogously. By the continuity and integrability of the limit process Z, we
have Zδ → Z in Lµ almost surely as δ → 0. Therefore,

sup
h∈BL1(Lµ)

∣∣Eh(Zδ)− Eh(Z)
∣∣ −→ 0 as δ → 0.

Second, by Van der Vaart and Wellner (1996, Lemma 2.9.5),

sup
h∈BL1(Lµ)

∣∣Eξh(Z′n,δ)− Eh(Zδ)
∣∣ −→ 0 as n→∞

for almost every sequence X1, X2, . . . and fixed δ > 0. Since Zδ and Z′n,δ take only on a
finite number of values and their tail values are zero, one can replace the supremum over
BL1(Lµ) with a supremum over BL1(Rp). Observe that BL1(Rp) is separable with respect
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to the topology of uniform convergence on compact sets; this supremum is effectively
over a countable set, hence measurable. Third,

sup
h∈BL1(Lµ)

∣∣Eξh(Z′n,δ)− Eξh(Z′n)
∣∣ ≤ sup

h∈BL1(Lµ)
Eξ
∣∣h(Z′n,δ)− h(Z′n)

∣∣
≤ Eξ‖Z′n,δ − Z′n‖∗Lµ ≤ Eξ‖Z′n‖L∗µ,δ

This implies that the outer expectation of the LHS is bounded above by E∗‖Z′n‖Lµ,δ ,
which vanishes as n → ∞ by the modified Van der Vaart and Wellner (1996, Lemma
2.9.1) as in Lemma A.17. �

These results show that nonparametric bootstrap works for the empirical process√
n(Fn − F ) and the empirical quantile process

√
n(Qn −Q). However, we also need to

verify validity for the sample selection process
√
n(Kn −K). The key in the proof is to

represent Kn in terms of Hadamard differentiable functions of “Fn” in Proposition A.13.

Lemma A.19. Let U1, . . . , Un be independent uniformly distributed random variables on
(0, 1) and ξ1, . . . , ξn be i.i.d. random variables with mean zero, variance 1, and ‖ξ‖2,1 <
∞, independent of U1, . . . , Un. Define the bootstrapped empirical process of U by

F′n(u) :=
1

n

n∑
i=1

ξi1{Ui ≤ u},

and let w′i,n be the indicator of whether Ui is above the α-quantile of the bootstrapped

sample, that is, w′i,n = 1{Ui > F′−1n (α)}. Define

G′n(u) :=
1

n

n∑
i=1

ξiw
′
i,n1{Ui ≤ u}.

Then, for F (u) = 0 ∨ u ∧ 1 and G(u) = 0 ∨ (u− α) ∧ (1− α),

sup
h∈BL1(Lν2 )

∣∣Eξh(
√
n(F′n − F ))− Eh(

√
n(Fn − F ))

∣∣ −→ 0,

sup
h∈BL1(Lν2 )

∣∣Eξh(
√
n(G′n −G))− Eh(

√
n(Gn −G))

∣∣ −→ 0,

in outer probability, and the sequences
√
n(F′n − F ) and

√
n(G′n −G) are asymptotically

measurable.

Proof. Noting that G′n(u) = 0∨ [F′n(u)−F′n ◦F′−1n (α)], weak convergence of
√
n(F′n−F )

and
√
n(G′n −G) follows from Lemmas A.14 and A.18. �

Remark. Note that Lemma A.19 immediately implies the validity of bootstrap for any
selection of samples based on a finite number of empirical quantiles.

Now we show the validity of nonparametric bootstrap when sample selection is based
on empirical quantiles.

Proposition A.20 (Validity of nonparametric bootstrap). In the assumptions stated
in Proposition A.15, assume further that wi,n,j represents sample selection based on a

fixed number of empirical quantiles.24 Then, the joint distribution of (β̂1, . . . , β̂d) can be
consistently estimated by nonparametric bootstrap. The algorithm is as follows. Here,
Xi denotes a vector (Xi,1, . . . , Xi,d).

24The assumption on convergence must be extended (from bivariate) to joint over all processes involved.
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i. Bootstrap n (or fewer) random observations from X1, . . . , Xn with replacement.

ii. Compute the statistics (β̂∗1 , . . . , β̂
∗
d) for the bootstrapped sample.

iii. Repeat the above steps S times.

iv. Use the empirical distribution of (β̂∗1 , . . . , β̂
∗
d) as the approximation to the theoretical

asymptotic distribution of (β̂1, . . . , β̂d).

Proof. With the remark below Lemma A.16, the proposition follows from Lemmas A.18
and A.19 and Van der Vaart and Wellner (1996, Theorem 3.9.11). �

A.8 Glivenko-Cantelli Type Results

We state some of the Glivenko-Cantelli type results for distribution functions and quan-
tile functions when we have additional information about their expectations. The results
are generally stronger than the classical Glivenko-Cantelli theorems. It is noteworthy
that the Glivenko-Cantelli theorem of quantile functions holds for the Lp spaces (see
Appendix A.5 for discussion). Related results are found in Parzen (1980) and Csörgő
and Horváth (1993).

The first addendum provides a stronger Glivenko-Cantelli result for the distribution
function when the underlying distribution has a finite expectation when transformed by
a function m.

Addendum A.21. Let m : R → R be a function of locally bounded variation and µ
the associated Lebesgue-Stieltjes measure. For a probability measure F on R such that
m(X) has a finite expectation for X ∼ F , we have

∥∥m(t)Fn(t)−m(t)F (t)
∥∥
∞

as∗−→ 0,

∥∥∥∥∫
[s,t]
|m|dFn −

∫
[s,t]
|m|dF

∥∥∥∥
∞

as∗−→ 0,∥∥∥∥∫
[s,t]
|F̃n||dµ| −

∫
[s,t]
|F̃ ||dµ|

∥∥∥∥
∞

as−→ 0,

∫
R
|Fn − F ||dµ|

as−→ 0,

where the supremum is taken respectively over t ∈ R, (s, t) ∈ R2
, and (s, t) ∈ R2

.

Proof. Note first that since a function of bounded variation can be represented as a
difference of two increasing functions, we may assume without loss of generality that
m is increasing (and hence µ is a positive measure). Moreover, we may also assume
m(0) = 0 for otherwise the residual terms m(0)(Fn − F ) of the first two quantities
vanish by the classical Glivenko-Cantelli theorem.

In view of Van der Vaart and Wellner (1996, Theorem 2.4.1), to prove the first two
claims it suffices to show that the classes of functions,

F =
{
ft : R→ R : t ∈ R, ft(x) = m(t)1{x ≤ t}

}
,

G =
{
gs,t : R→ R : s, t ∈ R, gs,t(x) = |m(x)|1{s ≤ x ≤ t}

}
,

have finite bracketing numbers with respect to L1(P ), i.e., N[](ε,F , L1(F )) < ∞ and
N[](ε,G, L1(F )) < ∞ for every ε > 0. For F take −∞ = t0 < t1 < · · · < tm = ∞
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such that
∣∣∫ (fti+1 − fti)dF

∣∣ < ε for each i and consider the brackets {fti}.25 Such a
partition is finite since m(X) has a finite first moment and by Lemma A.1. For G take
−∞ = t0 < t1 < · · · < tm =∞ such that

∣∣∫
(−∞,ti+1]

|m|dF −
∫
(−∞,ti] |m|dF

∣∣ < ε for each

i, then consider the brackets {gs,t} for every pair s, t ∈ {t0, . . . , tm}.26 Such a partition
is finite by the assumption that m(X) has a finite first moment.

To prove the third claim, observe that by integration by parts,∫
[s,t]
|m|dFn =

∫
[s,t]
|m|dF̃n =

[
|m|F̃n

]t
s

+

∫
[s,t]
|F̃n|dµ.

Then the claim follows in observation of the following triangle inequality and the two
claims proved so far,27∥∥∥∥∫

[s,t]
|F̃n|dµ−

∫
[s,t]
|F̃ |dµ

∥∥∥∥
∞
≤ 2
∥∥m(t)Fn(t)−m(t)F (t)

∥∥
∞

+

∥∥∥∥∫
[s,t]
|m|dFn −

∫
[s,t]
|m|dF

∥∥∥∥
∞
.

To prove the last claim, observe that Lemma A.1 and the preceding claim imply that
for ε > 0 there exists M <∞ such that(∫

(−∞,−M ]
+

∫
[M,∞)

)
|F̃n|dµ+

(∫
(−∞,−M ]

+

∫
[M,∞)

)
|F̃ |dµ < ε

with probability tending to 1. By the triangle inequality,∫
R

∣∣F̃n − F̃ ∣∣dµ ≤ ∫
(−M,M)

∣∣F̃n − F̃ ∣∣dµ+ ε ≤ ‖Fn − F‖∞µ((−M,M)) + ε.

Then the assertion follows by the Glivenko-Cantelli theorem. �

We next provide the Glivenko-Cantelli results for the quantile functions. Two points
are interesting. First, despite the fact that we were unable to prove Hadamard differ-
entiability of F 7→ Q as a map from Lp to Lp, the Glivenko-Cantelli result still holds
for the Lp norm. Second, the addendum gives the “sup norm” for quantile functions.
Although the quantile function for an unbounded random variable is unbounded, we still
have a reasonable pseudo-uniform convergence when Q is continuous.

Addendum A.22. Let F be a probability distribution on R with a pth moment for p > 0
and Q := F−1. Then (∫ 1

0
|Qn −Q|pdu

)1/p
as−→ 0.

Moreover, if and only if Q is continuous, we have∥∥u1/p(1− u)1/p(Qn −Q)
∥∥
∞

as∗−→ 0,

where the supremum is taken over u ∈ (0, 1).

25If F has a probability mass at t, then for small ε take, instead of ft, f̃t,c(x) = m(t)[c1{x ≤
t}+ (1− c)1{x < t}] for appropriately chosen c.

26Again, if F has a mass, similar adjustments are required.
27Measurability of the sup on the LHS follows by continuity of the Lebesgue integrals.
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Proof. By the strong law of large numbers on Y = |X|p, X ∼ F , we have∫ ∞
−∞
|x|pdFn −

∫ ∞
−∞
|x|pdF as−→ 0.

Applying the change of variables,∫ 1

0
|Qn|pdu−

∫ 1

0
|Q|pdu as−→ 0.

In view of this (and since Q is in Lp by Lemma A.1), for ε > 0 one can take δ > 0 such
that (∫ 2δ

0
+

∫ 1

1−2δ

)
|Qn|pdu < ε,

(∫ 2δ

0
+

∫ 1

1−2δ

)
|Q|pdu < ε,

with probability tending to 1. Combination with the triangle inequality allows us to
bound the target as ∫ 1

0
|Qn −Q|pdu ≤

∫ 1−2δ

2δ
|Qn −Q|pdu+ 2ε.

Moreover, observe∫ 1−2δ

2δ
|Qn −Q|pdu ≤ εp +

∫ 1−2δ

2δ
|Qn −Q|p1

{
|Qn −Q| > ε

}
du.

We want to bound the last integrand by a multiple of |Qn−Q| to eliminate the pth power,
since then we may further apply Fubini’s theorem to eliminate the inverse. Toward this
goal, we aim to use the following inequality: for p > 0 and M ≥ 0,

|x|p1{|x| > ε} ≤
(
εp−1 ∨Mp−1

)
|x| for every |x| ≤M .

But to do that, we need to find the bound M on |Qn − Q| over (2δ, 1 − 2δ) that does
not depend on n.

By the classical Glivenko-Cantelli theorem, we may take n large enough so that
‖Fn − F‖∞ < δ with outer probability at least 1− ε. This implies F − δ ≤ Fn ≤ F + δ,
and since F and Fn are nondecreasing,

(F − δ)−1 ≤ F−1n = Qn ≤ (F + δ)−1.

This yields the following bounds on Qn over the region of integration.

Qn(1− 2δ) ≤ (F + δ)−1(1− 2δ) = Q(1− δ),
Qn(2δ) ≥ (F − δ)−1(2δ) = Q(δ).

Note that nondecreasingness of F implies analogous inequalities for Q itself, namely,
Q(1− 2δ) ≤ Q(1− δ) and Q(2δ) ≥ Q(δ). Therefore, the difference |Qn −Q| is bounded
by M := Q(1− δ)−Q(δ) over the region of integration.

Given this, we can successfully bound the last integral by(
εp−1 ∨Mp−1

)∫ 1−2δ

2δ
|Qn −Q|du.
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Finally, invoke Fubini’s theorem to find∫ 1−2δ

2δ
|Qn −Q|du =

∫ 1−2δ

2δ

∫ Q∨Qn

Q∧Qn
dxdu ≤

∫ Q(1−δ)

Q(δ)
|Fn − F |dx ≤M‖Fn − F‖∞,

which vanishes outer almost surely.
Next, we prove the second claim. Since Q ∈ Lp, Qn ∈ Lp, and Qn converges to Q in

Lp, for every ε > 0 there exists δ such that(∫ δ

0
+

∫ 1

1−δ

)(
|Qn|p + |Q|p

)
du < ε

with probability tending to 1. When this inequality holds, we argue that |Qn|p and
|Q|p never exceed the function ε/[u(1− u)] on u ∈ (0, δ) ∪ (1− δ, 1). Suppose otherwise
(without loss of generality consider Q only) and let u be the point of exceedance. Since Q
is monotone, the area of |Q|p must contain either the left rectangle (0, u)×(0, ε/[u(1−u)])
or the right rectangle (u, 1) × (0, ε/[u(1 − u)]). In either case, the integral of |Q|p over
(0, δ) ∪ (1 − δ, 1) must exceed ε, since each rectangle has area bigger than ε. This is a
contradiction to the assumption that the integral is less than ε.

This ensures that the difference |Qn −Q|p is less than 2pε/[u(1− u)] on this region.
In other words, the supremum of u(1 − u)|Qn − Q|p over (0, δ) ∪ (1 − δ, 1) is less than
2pε. Meanwhile, if Q is continuous, then Qn converges to Q pointwise on any fixed
closed interval of (0, 1) since Qn and Q are monotone. Therefore, the supremum of
u(1−u)|Qn−Q|p over [δ, 1−δ] must vanish as n→∞. Combining the results, sufficiency
follows.

On the other hand, suppose Q is discontinuous at u ∈ (0, 1). By construction Qn

can only have discontinuity points on {1/n, . . . , n/n}. But there exist infinitely many
n such that u /∈ {1/n, . . . , n/n}. Therefore, |Qn −Q| can infinitely often be as large as
half the jump height at u. �
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Csörgő, M., S. Csörgő, L. Horváth, and D. M. Mason (1986): “Weighted Em-
pirical and Quantile Processes,” Annals of Probability, 14, 31–85.
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Annales de l’Institut Henri Poincaré, Section B, Calcul des Probabilités et statistiques,
26, 65–85.

——— (1993): Weighted Approximations in Probability and Statistics, Chichester: John
Wiley & Sons Ltd.
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