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Abstract

We analyze a dynamic contribution game in which a group of agents exert costly e↵ort

over time to make progress on a project. The state of the project progresses gradually at

a rate that depends on the agents’ cumulative e↵orts, and it is completed once it teaches

a pre-specified threshold, at which point it generates a lump sum payo↵. We characterize

a budget balanced mechanism which at every moment, induces each agent to exert the

first best e↵ort level as the outcome of a Markov Perfect Equilibrium, thus eliminating

the free-rider problem. This mechanism specifies for each agent flow payments that are

due while the project is in progress, and rewards that are disbursed upon completion of

the project. The payments are placed in a savings account that accumulates interest, and

their magnitude is chosen to balance the budget. Our mechanism resembles the incentives

structure in early-stage entrepreneurial ventures and it can shed light on why the free-rider

problem is not as prevalent as traditional economic models suggest.
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1 Introduction

Team problems are ubiquitous in modern economies as individuals and firms often need to

collaborate in production and service provision. Moreover, the collaboration is often geared

towards a defined deliverable; i.e., towards completing a project. For example, in early-stage

entrepreneurial ventures (e.g., startups), individuals collaborate over time to create value, and

the firm generates a payo↵ predominantly when it goes public or it is acquired by another

corporation. Joint R&D and new product development projects also share many of these char-

acteristics: corporations work together to achieve a common goal, progress is gradual, and the

payo↵ from the collaboration is harvested primarily after said goal is achieved; for example, once

a patent is secured or the product under development is released to the market. It is well known

that such environments are susceptible to the free-rider problem (Olson (1965) and Alchian

and Demsetz (1972)).

We study a game of dynamic contributions to a joint project, wherein at every moment, each

agent in the group chooses his (costly) e↵ort level to progressively bring the project closer to

completion, at which point it will generate a lump-sum payo↵. An important feature of this

game is that e↵orts are strategic complements across time (Kessing (2007)). That is because

e↵ort increases with progress, and so by raising his e↵ort, an agent induces the other agents

to raise their future e↵orts. By comparing the equilibrium strategies to the e�cient ones, we

identify two kinds of ine�ciencies. First, because each agent is incentivized by his share of the

project’s payo↵ (rather than the entire payo↵), in equilibrium, he shirks by exerting ine�ciently

low e↵ort. Second, because e↵orts are strategic complements, in equilibrium, each agent front-

loads his e↵ort in order to induce others to raise their future e↵orts, which in turn renders

him better o↵. The former has been extensively discussed in the literature, but the latter,

while subtle, is also intuitive. For instance, startups often use vesting schemes to disincentivize

entrepreneurs from front-loading e↵ort; i.e., working hard early on and then walking away while

retaining their stake in the firm.

We propose a mechanism which at every moment, induces each agent to exert the e�cient

level of e↵ort as the outcome of a Markov Perfect equilibrium. This mechanism specifies for

each agent flow payments that are due while the project is in progress, and a reward that is

disbursed upon completion of the project. These payments are placed in a savings account that

accumulates interest, and their magnitude is chosen to balance the budget. The mechanism
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e↵ectively rewards each agent with the entire payo↵ that the project generates, thus making

him the full residual claimant, while the flow payments increase with progress so that the

marginal benefit from front-loading e↵ort is exactly o↵set by the marginal cost associated with

larger future flow payments. This mechanism is implementable provide that the agents have

su�cient cash reserves at the outset of the game to make the specified flow payments.1 This is a

reasonable assumption in most relevant applications. In startups for example, the founders need

to have some cash in hand to finance their project until they can raise capital. Similarly, the

firms that partner in R&D or new product development ventures typically do have substantial

cash reserves or access to credit.

Our mechanism resembles many of the features in the incentives structure in startups. In par-

ticular, entrepreneurs usually receive a salary that is below the market rate (if any). Therefore,

the flow payments in our mechanism can be interpreted as the di↵erential between what an

individual earns in the startup and his outside option; i.e., what he would earn if he were to

seek employment in the market. Moreover, it is reasonable to assume that his outside option

becomes more valuable as progress is made in the venture, which is consistent with the flow pay-

ments increasing with progress in our mechanism. Finally, entrepreneurs typically own shares,

and so they are residual claimants.

To facilitate the intuition, in our base model, the project progresses deterministically, and the

mechanism depends on the state of the project, but not on time. We extend our model to

incorporate uncertainty in the evolution of the project, and we characterize the e�cient time-

dependent mechanism. In this case, flow payments are specified as a function of both time

and the state of the project, and terminal rewards as a function of the completion time. This

mechanism specifies a terminal reward that decreases in the completion time of the project,

and at every moment, the flow payments are chosen so as to penalize the agents if the project

is on expectation closer to completion than it should if all agents were applying the first best

strategies. Intuitively, the former acts as a lever to mitigate the agents’ incentives to shirk,

while the latter as a lever to eliminate their incentives to front-load e↵ort. An important

di↵erence relative to the deterministic mechanism is that with uncertainty, it is impossible to

simultaneously achieve e�ciency and ex-post budget balance; instead, the e�cient mechanism

can only be budget balanced ex-ante (i.e., on expectation). Finally, in the special case in which

the project progresses deterministically, the e�cient time-dependent mechanism specifies that

the agents make zero flow payments on the equilibrium path (but positive o↵ path), and as

1For the case in which the e�cient mechanism is not implementable, we characterize the mechanism that
maximizes the agents’ ex-ante discounted payo↵ as a function of the agents’ cash reserves.
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such, it is implementable even if the agents are credit constrained.

Naturally, our paper is related to the static moral hazard in teams literature (Olson (1965),

Holmström (1982), Ma, Moore and Turnbull (1988), Bagnoli and Lipman (1989), Legros

and Matthews (1993), and others). These papers focus on the free-rider problem that arises

when each agent must share the output of his e↵ort with the other members of the team but

he alone bears its cost, and they explore ways to restore e�ciency. Holmström (1982) shows

that in a setting wherein a group of agents jointly produce output, there exists no budget

balanced sharing rule that induces the agents to choose e�cient actions. Moreover, he shows

how e�ciency is attainable by introducing a third party who makes each agent the full residual

claimant of output and breaks the budget using transfers that are independent of output. Legros

and Matthews (1993) provide a necessary and su�cient condition for the existence of a sharing

rule such that the team sustains e�ciency. Their construction uses mixed strategies where all

agents but one choose the e�cient actions, and the last agent chooses the e�cient action with

probability close to 1. However, a necessary condition for this mechanism to sustain e�ciency

is that the agents have unlimited liability. The idea behind our mechanism can be viewed as a

dynamic counterpart of Holmström’s budget breaker, except that the savings account plays the

role of the budget breaker in our setting.

Closer related to this paper is the literature on dynamic contribution games. Admati and Perry

(1991) characterizes a MPE with two players, and they show that e↵orts are ine�ciently low

relative to the e�cient outcome. Marx and Matthews (2000) generalize this result to games with

n players and also characterize non-Markov subgame perfect equilibria. More recently, Yildirim

(2006) and Kessing (2007) show that if the project generates a payo↵ only upon completion,

then e↵orts become strategic complements across time. Georgiadis (2015) studies how the

size of the group influences incentives, and he analyzes the problem faced by a principal who

chooses the group size and the agents’ incentive contracts. Our model is a generalized version

of Georgiadis et. al. (2014), who focus on the problem faced by a project manager who must

determine the optimal project size. In contrast to these papers, which highlight the ine�ciencies

that arise in these games and explore the di↵erences to their static counterparts, our objective

in this paper is to construct a mechanism that restores e�ciency.

Finally, our work is also related to the dynamic mechanisms of Bergemann and Valimaki

(2010) and Athey and Segal (2013). Our mechanism is similar in that it induces each agent

to internalize his externality on the other agents, and as a result, behave e�ciently in every

period. A key di↵erence however is that in our model, each agent faces a moral hazard problem,
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whereas in these two papers, the agents have private information and so they face an adverse

selection problem.

The remainder of this paper is organized as follows. We present the model in Section 2, and

in Section 3, we characterize the MPE when the agents are credit constrained, as well as the

e�cient outcome of this game. In Section 4, we present out main result: a budget balanced

mechanism that achieves e�ciency as the outcome of a MPE. In Section 5, we extend our model

to incorporate uncertainty and we characterize the e�cient mechanism, and in Section 6 we

conclude. In Appendix A, we characterize the mechanism that maximizes the agents’ total ex-

ante discounted payo↵ when the agents don’t have su�cient cash reserves and so the e�cient

(time-independent) mechanism characterized in Section 4 cannot be implemented. In Appendix

B, we consider two extensions to our model, and in Appendix C, we present an example with

quadratic e↵ort costs and symmetric agents, which enables us to characterize the mechanism in

closed-form. All proofs are provided in Appendix D.

2 Model

A group of n agents collaborate to complete a project. Time t 2 [0,1) is continuous. The

project starts at initial state q0, its state qt evolves at a rate that depends on the agents’

instantaneous e↵ort levels, and it is completed at the first time ⌧ such that qt hits the completion

state which is denoted by Q.2 Each agent is risk neutral, discounts time at rate r > 0, and

receives a pre-specified reward Vi = ↵iV > 0 upon completing the project, where
Pn

i=1 ↵i = 1.3

We assume that each agent i has cash reserves wi � 0 at the outset of the game, and outside

option ūi � 0. An incomplete project has zero value. At every moment t, each agent i observes

the state of the project qt, and privately chooses his e↵ort level ai,t � 0 at flow cost ci (ai,t) to

influence the process

dqt =

 

n
X

i=1

ai,t

!

dt .

4 We assume that each agent’s e↵ort choice is not observable to the other agents, and ci (·)
is a strictly increasing, strictly convex, di↵erentiable function satisfying c000i (a) � 0 for all a,

ci (0) = c0i (0) = 0 and lima!1 c0i (a) = 1 for all i. Moreover, we shall assume that the agents

2For simplicity, we assume that the completion state is specified exogenously. In Appendix B.2, we also
consider the case in which the project size is endogenous, and we show that all results carry over.

3Note that the project’s reward can random, and V can be interpreted as its expected reward. We assume
here that the project generates a payo↵ only upon completion. In Appendix B.1, we consider the case in which
it also generates flow payo↵s while it is in progress.

4For simplicity, we assume that the project progresses deterministically in the base model. We extend our
model to incorporate stochastic progress in Section 5.
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are ranked from most to least e�cient so that c0i (a)  c0j (a) for all i < j and a � 0. Finally, we

shall restrict attention to Markov Perfect equilibria (hereafter MPE), where at every moment,

each agent chooses his e↵ort level as a function of the current state of the project qt (but not

its entire evolution path {qs}st).
5

3 Equilibrium Analysis

For benchmarking purposes, in this section we consider the case in which the agents have no

cash reserves at the outset of the game (i.e., wi = 0 for all i). First, we characterize the MPE

of this game, wherein at every moment, each agent chooses his strategy (as a function of qt)

to maximize his discounted payo↵ while accounting for the e↵ort strategies of the other team

members. Then, we determine the first best outcome of the game; this is the problem faced

by a social planner who at every moment chooses the agents’ strategies to maximize their total

discounted payo↵. Finally, we compare the MPE and the first best outcome of the game to

pinpoint the ine�ciencies that arise when the agents do not take into account the (positive)

externality of their actions on the other agents.

3.1 Markov Perfect Equilibrium

In a MPE, at every moment t, each agent i observes the state of the project qt, and chooses his

e↵ort ai,t as a function of qt to maximize his discounted payo↵ while accounting for the e↵ort

strategies of the other team members. Thus, for a given set of strategies and a given initial

value qt = q, agent i’s value function satisfies

Ji (q) = e�r(⌧�t)↵iV �
ˆ ⌧

t

e�r(s�t)ci (ai,s) ds , (1)

where ⌧ is the completion time of the project. Using standard arguments, we expect that the

function Ji (·) satisfies the Hamilton-Jacobi-Bellman (hereafter HJB) equation:

rJi (q) = max
ai

(

�ci (ai) +

 

n
X

j=1

aj

!

J 0
i (q)

)

(2)

5We focus on the MPE, because (i) it requires minimal coordination among the agents, and (ii) it constitutes
the worst case scenario in terms of the severity of the free-rider problem. As shown by Georgiadis et. al. (2014),
this game has a continuum of non-Markovian equilibria that yield the agents a higher discounted payo↵ than
the MPE.

6



defined on [q0, Q], subject to the boundary condition

Ji (Q) = ↵iV . (3)

The boundary condition states that upon completing the project, each agent receives his reward,

and the game ends.

It is noteworthy that the MPE need not be unique in this game. Unless the project is su�ciently

short (i.e., Q� q0 is su�ciently small) such that at least one agent is willing to undertake the

project single-handedly, there exists another (Markovian) equilibrium in which no agent ever

exerts any e↵ort, and the project is never completed. In that case, the boundary condition (3)

is not satisfied. This leads us to search for a su�ciently large value q such that for all q > q,

there exists a non-trivial MPE.

Assuming that (2) holds for each agent i’s value function, it follows that the corresponding first

order condition is c0i (ai) = J 0
i (q): at every moment, the agent chooses his e↵ort level such that

the marginal cost of e↵ort is equal to the marginal benefit associated with bringing the project

closer to completion. By noting that the second order condition is satisfied, c0 (0) = 0 and c (·) is
strictly convex, it follows that for any q, agent i’s optimal e↵ort level ai (q) = fi (J 0

i (q)), where

fi (·) = max
�

0, c0�1
i ( ·)

 

. By substituting this into (2), the discounted payo↵ function of agent

i satisfies

rJi (q) = �ci (fi (J
0
i (q))) +

"

n
X

j=1

fj
�

J 0
j (q)

�

#

J 0
i (q) (4)

subject to the boundary condition (3).

Thus, a MPE is characterized by the system of ODE’s defined by (4) subject to the boundary

condition (3) for all i 2 {1, .., n}, provided that the system has a solution. The following

proposition characterizes the unique project-completing MPE of this game, and establishes its

main properties.

Proposition 1. There exists a q < Q such that the game defined by (2) subject to the

boundary condition (3) for all i 2 {1, .., n} has a unique MPE on
�

q,Q
⇤

. We have q =

inf {q : Ji (q) > 0 for all i}. On
�

q,Q
⇤

, each agent’s discounted payo↵ is strictly positive, strictly

increasing, and, if twice di↵erentiable, strictly convex in q; i.e., Ji (q) > 0, J 0
i (q) > 0, and

J 00
i (q) > 0. The latter also implies that each agent’s e↵ort is strictly increasing in q; i.e.,

a0i (q) > 0.

The first part of this proposition asserts that if the project is not too long (i.e., Q � q0 is not
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too large), then the agents find it optimal to exert positive e↵ort, in which case the project is

completed. It is intuitive that Ji (·) is strictly increasing: each agent is better o↵, the closer the

project is to completion. That each agent’s e↵ort level increases with progress is also intuitive:

since he incurs the cost of e↵ort at the time e↵ort is exerted but is only compensated upon

completion of the project, his incentives are stronger the closer the project is to completion.

An implication of this last result is that e↵orts are strategic complements in this game. That is

because by raising his e↵ort, an agent brings the project closer to completion, thus incentivizing

agents to raise their future e↵orts (Kessing (2007)).

3.2 First Best Outcome

In this section, we consider the problem faced by a social planner, who at every moment chooses

each agent’s e↵ort level to maximize the group’s total discounted payo↵. Denoting the planner’s

discounted payo↵ function by S̄ (q), we expect that it satisfies the HJB equation

rS̄ (q) = max
a1,..,an

(

�
n
X

i=1

ci (ai) +

 

n
X

i=1

ai

!

S̄ 0 (q)

)

(5)

defined on some interval
�

qs, Q
⇤

, subject to the boundary condition

S̄ (Q) = V . (6)

The first order conditions for the planner’s problem are c0i (ai) = S̄ 0 (q) for every i: at every

moment, each agent’s e↵ort is chosen such that the marginal cost of e↵ort is equal to the group’s

total marginal benefit of bringing the project closer to completion. Note the di↵erence between

the MPE and the first best outcome: here, each agent’s e↵ort level trades o↵ his marginal cost

of e↵ort and the marginal benefit of progress to the entire group, whereas in the MPE, he trades

o↵ his marginal cost of e↵ort and his marginal benefit of progress, while ignoring the (positive)

externality of his e↵ort on the other agents.

Denoting the first best e↵ort level of agent i by āi (q), we have that āi (q) = fi
�

S̄ 0 (q)
�

, and

by substituting the first order condition into (5), it follows that the planner’s discounted payo↵

function satisfies

rS̄ (q) = �
n
X

i=1

ci
�

fi
�

S̄ 0 (q)
��

+

"

n
X

i=1

fi
�

S̄ 0 (q)
�

#

S̄ 0 (q) (7)

subject to the boundary condition (6).
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The following proposition characterizes the solution to the planner’s problem.

Proposition 2. There exists a qs < Q such that the ODE defined by (5) subject to the boundary

condition (6) has a unique solution on
�

qs, Q
⇤

. We have qs = inf
�

q : S̄ (q) > 0
 

. On this

interval, the planner’s discounted payo↵ is strictly positive, strictly increasing and, if twice

di↵erentiable, strictly convex in q; i.e., S̄ (q) > 0, S̄ 0 (q) > 0, and S̄ 00 (q) > 0. The latter also

implies that the e�cient level of e↵ort for each agent is strictly increasing in q; i.e., ā0i (q) > 0.

In contrast, S̄ (q) = āi (q) = 0 for all i and q  qs.

Provided that the project is not too long (i.e., Q is not too large), it is socially e�cient to

undertake and complete the project. The intuition for why each agent’s e↵ort level increases

with progress is similar to that in Proposition 1.

Note that it is e�cient to undertake the project if and only if
Pn

i=1 ūi  S̄ (0), because otherwise,

the agents are better o↵ collecting their outside options instead. We shall assume that this

inequality is satisfied throughout the remainder of this paper.

Next, because the project progresses deterministically, it is possible to study the completion

time of the project, which is also deterministic. A comparative static that will be useful for

the analysis that follows concerns how the completion time ⌧̄ depends on the group size n. We

suppose that qs < q0.

Remark 1. Suppose that the agents are identical; i.e., ci (a) = cj (a) for all i, j, and a. Then

the completion time of the project in the first best outcome ⌧̄ decreases in the group size n.

Intuitively, because e↵ort costs are convex, the larger the number of agents in the group, the

faster they will complete the project in the first best outcome. As shown in Georgiadis (2015),

this is generally not true in the MPE of this game, where the completion time of the project

decreases in n if and only if the project is su�ciently long (i.e., Q is su�ciently large).

3.3 Comparing the MPE and the First Best Outcome

Before we propose our mechanism, it is useful to pinpoint the ine�ciencies that arise in this

game when each agent chooses his e↵ort at every moment to maximize his discounted payo↵. To

do so, we compare the solution to the planner’s problem to the MPE in the following proposition.

Proposition 3. In the MPE characterized in Proposition 1, at every q > q, each agent exerts

less e↵ort relative to the planner’s solution characterized in Proposition 1, i.e., ai (q) < āi (q)

for all i and q.
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Intuitively, because each agent’s incentives are driven by the payo↵ that he receives upon com-

pletion of the project ↵iV < V , whereas the social planner’s incentives are driven by the entire

payo↵ that the project generates, in equilibrium, each agent exerts less e↵ort relative to the

first best outcome. This result resembles the earlier results on free-riding in partnerships (e.g.,

Holmström (1982), Admati and Perry (1991), and others).

It turns out that in this dynamic game, there is a second, more subtle source of ine�ciency.

Because this game exhibits positive externalities and e↵orts are strategic complements across

time, each agent has an incentive to front-load his e↵ort in order to induce the other agents to

raise their e↵ort, which in turn renders him better o↵.6

To see this formally, we use the stochastic maximum principle of optimal control and write the

agents’ e↵ort strategies as a function of time t instead of the state of the project q.7 To begin,

let us write down the planner’s Hamiltonian:

H̄t = �
n
X

i=1

e�rtci (ai,t) + �fb
t

 

n
X

i=1

ai,t

!

where �fb
t is his co-state variable. The optimality and adjoint equations are

dH̄t

dai,t
= 0 and �̇fb

t = �dHt

dq
,

respectively. These can be re-written as

e�rtc0i (āi,t) = �fb
t and �̇fb

t = 0 .

Therefore, each agent’s discounted marginal cost of e↵ort (i.e., e�rtc0i (āi,t)) must be constant

over time. This is intuitive: because e↵ort costs are convex, e�ciency requires that the agents

smooth their e↵ort over time. Next, let us consider the game in which each agent chooses his

e↵ort to maximize his own discounted payo↵. The Hamiltonian of agent i is

Hi,t = �e�rtci (ai,t) + �i,t

 

n
X

j=1

aj,t

!

,

where �i,t is his co-state variable. The optimality equation implies that e�rtc0i (ai,t) = �i,t,

6Front-loading here refers to an agent’s discounted marginal cost of e↵ort decreasing over time (and with
progress), whereas e�ciency requires that it is constant across time.

7Note that because the project progresses deterministically, there is a 1-1 mapping between t and q, so that
the two approaches are equivalent.
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whereas the adjoint equation can be written as

�̇i,t = �
X

j 6=i

dHi,t

daj,t

daj,t
dt

dt

dq
= �

X

j 6=i

�i,tȧj,t
Pn

l=1 �l,t

.

Because e↵orts are non-negative and increasing in q (and hence increasing in t), we have �j,t � 0

and ȧj,t � 0 for all j and t. Therefore, �̇i,t  0, which in turn implies that e�rtc0i (ai,t) decreases

in t; i.e., in equilibrium, each agent’s discounted marginal cost of e↵ort decreases over time.

Intuitively, because (i) at every moment t, each agent chooses his e↵ort upon observing the

state of the project qt, (ii) his equilibrium e↵ort level increases in q, and (iii) he is better o↵ the

harder others work, each agent has incentives to front-load his e↵ort in order to induce others

to raise their future e↵orts.

4 An E�cient Mechanism

In this section, we establish our main result: We construct a mechanism that induces each

self-interested agent to always exert the e�cient level of e↵ort as the outcome of a MPE. This

mechanism specifies flow payments for each agent while the project is in progress, which are

a function of q and they are placed in a savings account that accumulates interest at rate r,

and the reward that each agent receives upon completion of the project. We show that on the

equilibrium path, the mechanism is budget balanced, whereas o↵ the equilibrium path, there

may be a budget surplus in which case money must be burned. However, the mechanism never

results in a budget deficit.

The timing of the game proceeds as follows: First, a mechanism is proposed, which specifies (i)

an upfront payment Pi,0 for each agent i to be made before work commences (which turns out

to be 0 in the optimal mechanism), and (ii) a schedule of flow payments hi (qt) dt to be made

during every interval (t, t+ dt) while the project is in progress, and are a function of the state

qt.8 Then, each agent decides whether to accept or reject the mechanism. If all agents accept

the mechanism, then each agent makes the upfront payment specified by the mechanism, and

work commences. The payments are then placed in a savings account and they accumulate

interest at rate r. Otherwise, the group dissolves, and each agent receives his outside option.

An important remark is that for this mechanism to be implementable, the agents must have

8We abstract from the bargaining process that leads to a particular mechanism being proposed. However,
since this is a game with complete and symmetric information, multilateral bargaining will result in the agents
finding it optimal to agree to a mechanism that maximizes the ex-ante total surplus.
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su�cient cash reserves at the outset of the game (i.e., wi’s must be su�ciently large). As

such, our analysis is organized as follows. We begin in Section 4.1 by assuming that wi = 1
for all i (i.e., that the agents have unlimited cash reserves), and we characterize a mechanism

that implements the e�cient outcome. In Section 4.2, we establish a necessary and su�cient

condition for the mechanism to be implementable when agents’ cash reserves are unlimited.9

Then in Section 4.3, we consider the more general environment in which the mechanism may

depend on both t and q. In this case, there exists an e�cient mechanism which specifies zero

flow payments on the equilibrium path and positive flow payments only o↵ the equilibrium path.

As a result, this mechanism can be implemented even if the agents are cash constrained.

4.1 Unlimited Cash Reserves

Incentivizing E�cient Actions

Given a set of flow payment functions {hi (q)}ni=1, agent i’s discounted payo↵ function, which

we denote by Ĵi (q), satisfies the HJB equation

rĴi (q) = max
ai

(

�ci (ai) +

 

n
X

j=1

aj

!

Ĵ 0
i (q)� hi (q)

)

(8)

on [q0, Q], subject to a boundary condition that remains to be determined. His first order

condition is c0i (ai) = Ĵ 0
i (q), and because we want to induce each agent to exert the e�cient e↵ort

level, we must have c0i (ai) = S̄ 0 (q), where S̄ (·) is characterized in Proposition 2. Therefore,

Ĵi (q) = S̄ (q)� pi ,

where pi is a constant to be determined. Upon completion of the project, agent i must receive

Ĵi (Q) = S̄ (Q)� pi = V � pi ,

which gives us the boundary condition. Note that neither the upfront payments {Pi,0}ni=1, nor

the constants {pi}ni=1 a↵ect incentives directly; their role will be to ensure that the mechanism

is budget balanced. Using (7) and (8), we can solve for each agent’s flow payment function that

induces first best e↵ort:

hi (q) =
X

j 6=i

cj
�

fj
�

S̄ 0 (q)
��

+ rpi . (9)

9In Appendix A we characterize the mechanism that maximizes the agents’ discounted payo↵ when this
condition is not satisfied, and hence the e�cient mechanism cannot be implemented.
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Based on this analysis, we can establish the following lemma.

Lemma 1. Suppose that all agents make flow payments that satisfy (9) and receive V �pi upon

completion of the project. Then:

(i) There exists a MPE in which at every moment, each agent exerts the e�cient level of e↵ort

āi (q) as characterized in Proposition 2.

(ii) The e�cient flow payment function satisfies hi (q) � 0 and h0
i (q) � 0 for all i and q; i.e.,

the flow payments are always non-negative and non-decreasing in the state of the project.

To understand the intuition behind this construction, recall that the MPE characterized in

Section 3.1 is plagued by two sources of ine�ciency: first, the agents have incentives to shirk

by exerting ine�ciently low e↵ort, and second, they front-load their e↵ort, i.e., their discounted

marginal cost of e↵ort decreases over time, whereas it is constant in the e�cient outcome.

Therefore, to induce agents to always exert the first best e↵ort, this mechanism must neutralize

both sources of ine�ciency. To eradicate the former, each agent must e↵ectively be made the

full residual claimant of the project.10 To neutralize the latter, the flow payments must increase

with progress at a rate such that each agent’s benefit from front-loading e↵ort is exactly o↵set

by the cost associated with having to make larger flow payments in the future.

By observing (9), we make the following remark regarding the total flow cost that each agent

incurs while the project is in progress.

Remark 2. The flow cost that agent i incurs given the state of the project q is equal to

ci
�

fi
�

S̄ 0 (q)
��

+ hi (q) =
n
X

j=1

cj
�

fj
�

S̄ 0 (q)
��

+ r pi ;

i.e., it is the same across all agents and equal to flow cost faced by the social planner (up to a

constant) .

Intuitively, to induce e�cient incentives, the flow payment function for each agent i must be

chosen such that he faces the same flow cost (and reward upon completion) that the social

planner faces in the original problem (up to a constant).

Budget Balance

In this section, we characterize the payments {Pi,0}ni=1 and {pi}ni=1 such that the mechanism is

budget balanced, while at the same time minimizing the total discounted cost of the upfront

10Notice that ignoring the state-dependent component in (9), the ad infinitum discounted cost of making the
flow payments is equal to

´1
0 e�rtrp

i

dt = p
i

, so the net benefit to each agent from completing the project is
equal to (V � p

i

)� (�p
i

) = V .
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and flow payments along the e�cient e↵ort path.

Before the agents begin working on the project, each agent i’s discounted payo↵ is equal to

Ĵi (0) � Pi,0 = S̄ (0) � pi � Pi,0. Because each agent exerts the e�cient e↵ort level along

the equilibrium path, the sum of the agents’ ex-ante discounted payo↵s (before any upfront

payments) must equal S̄ (0). Therefore, budget balance requires that nS̄ (0)�
Pn

i=1 (pi + Pi,0) =

S̄ (0), or equivalently,
Pn

i=1 (Pi,0 + pi) = (n� 1) S̄ (0). Notice that the payments {Pi,0}ni=1 and

{pi}ni=1 are not determined uniquely.

The total discounted cost of the payments along the equilibrium path are equal to

n
X

i=1

"

Pi,0 +

ˆ ⌧̄

0

e�rs
X

j 6=i

cj
�

fj
�

S̄ 0 (qs)
��

+ rpi ds

#

= e�r⌧̄

"

(n� 1)V �
n
X

i=1

pi

#

. (10)

Because we require that the mechanism is never in deficit, it must be the case that
Pn

i=1 Pi,0 � 0,

and so
Pn

i=1 pi  (n� 1) S̄ (0). Therefore, (10) is minimized when

n
X

i=1

pi = (n� 1) S̄ (0) and Pi,0 = 0 8i .

Observe that the budget balance constraint only pins down the sum
Pn

i=1 pi, while the individual

pi’s will depend on the agents’ relative bargaining powers.

So far, we have characterized a mechanism that induces each agent to exert the first best e↵ort

at every moment while the project is in progress, and it is budget balanced on the equilibrium

path. A potential concern however, is that after a deviation from the equilibrium path, the

total amount in the savings account upon completion of the project may be greater or less

than (n� 1)
⇥

V � S̄ (0)
⇤

, in which case the mechanism will have a budget surplus or deficit,

respectively. A desirable attribute for such a mechanism is to be always budget balanced, so

that the rewards that the agents receive upon completion of the project sum up to the balance

in the savings account, both on and o↵ the equilibrium path. To analyze this case, we let

Ht =
n
X

i=1

ˆ t

0

er(t�s)hi (qs) ds (11)

denote the balance in the savings account at time t. We say that the mechanism is strictly

budget balanced if the sum of the agents’ rewards upon completion of the project (at time ⌧) is

equal to V +H⌧ . We assume that each agent i is promised reward �i (V +H⌧ ) upon completion

14



of the project, where �i 2 [0, 1] for all i and
Pn

i=1 �i = 1. The following lemma shows that there

exists no e�cient, strictly budged balanced mechanism.

Lemma 2. The maximal social welfare of the strictly budget balanced game is equal to the maxi-

mal social welfare of the game in which each player i is promised reward �iV upon completion of

the project, and the flow payments add up to zero; i.e.,
Pn

i=1 hi (q) = 0 for all q. In particular,

with strict budget balance, there exist no non-negative flow payment functions hi (·) that lead

to the e�cient outcome. Moreover, in the symmetric case, the maximal social welfare in the

strictly budget balanced game is obtained if and only if hi (q) = 0 for all i and q.

An implication of this result is that it is impossible to construct a mechanism that is simul-

taneously e�cient and strictly budget balanced. Moreover, if the agents are symmetric (i.e.,

ci (a) = cj (a) for all i 6= j and a, and �i =
1
n
for all i), then there exists no strictly budget

balanced mechanism that yields a greater total discounted payo↵ as an outcome of a MPE than

the payo↵ corresponding to the cash constrained case characterized in Proposition 1. This result

can be viewed as a dynamic counterpart to Theorem 1 in Holmström (1982).

While this is a negative result, as shown in the following proposition, it is possible to construct

a mechanism that is e�cient and budget balanced on the equilibrium path, and it will never

have a budget deficit.

Proposition 4. Suppose that each agent commits to make flow payments as given by (9) for all

q, where
Pn

i=1 pi = (n� 1) S̄ (0), and he receives lump-sum reward min {V � pi, �i (V +H⌧ )}
upon completion of the project, where �i =

V�pi
V+(n�1)[V�S̄(0)]

. Then:

(i) There exists a Markov Perfect equilibrium in which at every moment, each agent exerts the

e�cient level of e↵ort āi (q) as characterized in Proposition 2.

(ii) The mechanism is budget balanced on the equilibrium path, and it will never result in a

budget deficit (o↵ equilibrium).

(iii) The agents’ total ex-ante discounted payo↵ is equal to the first-best discounted payo↵; i.e.,
Pn

i=1 Ĵi (0) = S̄ (0).

The intuition for why there exists no e�cient, strictly budget balanced mechanism (as shown

in Lemma 2) is as follows: To attain e�ciency, the mechanism must eliminate the agents’

incentives to shirk. However, with strict budget balance, by shirking, an agent delays the

completion of the project, lets the balance in the savings account grow, and collects a larger

reward upon completion. By capping each agent’s reward, the agents no longer have incentives

to procrastinate since they will receive at most V � pi upon completion. As a result, these

perverse incentives are eliminated, and e�ciency becomes attainable.
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This modification raises the following concern: because the mechanism may burn money o↵ the

equilibrium path, it requires that the agents commit to not renegotiate the mechanism should

that contingency arise.11 As such, for the mechanism to implement the e�cient outcome, it is

necessary that the agents can commit to not renegotiate it or that the costs associated with

renegotiating the mechanism are su�ciently large.

4.2 Limited (but Su�cient) Cash Reserves

In this section, we consider the case in which the agents have limited cash reserves. Because the

mechanism requires that the agents make flow payments while the project is in progress, two

complications arise. First, the mechanism must incorporate the contingency in which one or

more agents run out of cash before the project is completed. Second, for the e�cient mechanism

to be implementable, the agents must have su�cient cash in hand. This section is concerned

with addressing these issues.

The following proposition establishes a necessary and su�cient condition for the mechanism

characterized in Proposition 4 to be implementable; that is each agent has enough cash wi to

make the flow payments hi (·) on the equilibrium path.

Proposition 5. The mechanism characterized in Proposition 4 is implementable if and only if

there exist {pi}ni=1 satisfying
Pn

i=1 pi = (n� 1) S̄ (0) such that

pi
�

1� e�r⌧̄
�

< wi �
ˆ ⌧̄

0

e�rt
X

j 6=i

cj
�

fj
�

S̄ 0 (qt)
��

dt and pi  S̄ (0)� ūi

for all i, where S̄ (0) and ⌧̄ are characterized in Proposition 2.

If the agents are symmetric (i.e., ci (·) ⌘ cj (·), wi = wj, and ūi = ūj for all i and j), then the

mechanism is implementable if and only if wi > e�r⌧̄
�

n�1
n

� ⇥

V � S̄ (0)
⇤

for all i.

The first condition asserts that each agent must have su�cient cash to make the flow payments

hi (·) on the equilibrium path. The second condition is each agent’s individual rationality

constraint; i.e., each agent must prefer to participate in the mechanism rather than collect

his outside option ūi. In general, these conditions are satisfied if each agent’s cash reserves are

11This contingency will arise if the agents exert less than first best e↵ort, which will result in the project being
completed at some time ⌧ > ⌧̄ and the balance in the savings account H

⌧

to exceed (n� 1)V . In this case,
the mechanism specifies that each agent receives reward V upon completion and the surplus H

⌧

� (n� 1)V is
burned.
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su�ciently large and his outside option is su�ciently small.12,13

Focusing on the symmetric case, the following remark examines how the minimum amount of

cash that each agent must have in hand at time 0 for the e�cient mechanism to be implementable

(i.e., e�r⌧̄
�

n�1
n

� ⇥

V � S̄ (0)
⇤

) depends on the number of agents in the group n.

Remark 3. The minimum amount of initial wealth w = e�r⌧̄
�

n�1
n

� ⇥

V � S̄ (0)
⇤

that each agent

must have for the mechanism characterized in Proposition 4 to be implementable increases in

the group size n.14

Intuitively, the ine�ciencies due to shirking and front-loading become more severe the larger the

group. As a result, the mechanism must specify larger payments to neutralize those ine�ciencies,

which in turn implies that the agents’ initial wealth must be larger.

Even if the conditions in Proposition 5 are satisfied, it is still possible that o↵ equilibrium, one or

more agents runs out of cash before the project is completed, in which case they will be unable

to make the flow payments specified by the mechanism. Thus, the mechanism must specify the

flow payments as a function not only of the state q, but also of the agents’ cash reserves.

To analyze this case, we denote by Ii (q) the indicator random variable that is equal to one if

agent i still has cash reserves given the state of the project q, and is equal to zero if he has run

out of cash at state q. The following proposition shows that the e�ciency properties established

in Proposition 4 continue to hold if an agent “loses” his share if he runs out of cash before the

project is completed.

Proposition 6. Suppose that each agent commits to make flow payments hi (q) Ii (q) for all q

(where
Pn

i=1 pi = (n� 1) S̄ (0)), and he receives lump-sum reward min {V � pi, �i (V +H⌧ )} Ii (Q)

upon completion of the project, where �i =
V�pi

V+(n�1)[V�S̄(0)]
. Moreover, assume that the condi-

tions of Proposition 5 are satisfied. Then the properties of Proposition 4 continue to hold.

For the mechanism to induce e�cient incentives, it must punish an agent who runs out of cash,

for this should not occur on the equilibrium path. In addition, it must deter others from shirking

to run an agent out of cash. Thus, if an agent runs out of cash, then he must “lose” his share,

and this share must be burned; i.e., it cannot be shared among the other agents.

12Note that in the symmetric case, we have p
i

=
�

n�1
n

�

S̄ (0) and
´
⌧̄

0 e�rt

P

j 6=i

c
j

�

f
j

�

S̄0 (q
t

)
��

=
n�1
n

⇥

e�r⌧̄V � S̄ (0)
⇤

for all i, and by assumption, S̄(0)
n

� ū
i

for all i. As such, the first condition reduces
to w

i

> e�r⌧̄

�

n�1
n

� ⇥

V � S̄ (0)
⇤

and the second condition is automatically satisfied.
13In Appendix A, we characterize the socially optimal mechanism when the conditions in Proposition 5 are

not satisfied.
14
This follows from Remark 1, which shows that the first best completion time ⌧̄ decreases in n. Therefore

e�r⌧̄

�

n�1
n

� ⇥

V � S̄ (0)
⇤

increases in n.
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4.3 Time-Dependent Mechanism

So far, we have focused on mechanisms that condition flow payments and terminal rewards on

the state of the project q, but not on time t. In this section, we consider the more general

environment in which the mechanism may depend on both t and q, and we characterize optimal

mechanisms. In particular, we consider the set of mechanisms that specify for each agent i a

flow payment function hi (t, q), and a reward gi (⌧), where ⌧ denotes the completion time of the

project.15

Given a set of flow payment functions {hi (t, q)}ni=1 and reward functions {gi (t)}ni=1, and assum-

ing that every agent other than i applies e↵ort of the form aj(t, q), agent i’s discounted payo↵,

which we denote by Ji (t, q), satisfies the HJB equation

rJi (t, q)� Ji,t (t, q) = max
ai

(

�ci (ai) +

 

n
X

j=1

aj (t, q)

!

Ji,q (t, q)� hi (t, q)

)

(12)

subject to the boundary condition Ji (t, Q) = gi (t).16 Each agent’s first order condition is

c0i (ai) = Ji,q (t, q), and because we want to induce him to exert the e�cient e↵ort level, we

must have c0i (ai) = S̄ 0 (q), where S̄ (·) is the social planner’s payo↵ function characterized in

Proposition 2. Therefore,

Ji (t, q) = S̄ (q)� pi (t) ,

where pi (·) is a function of t that remains to be determined. From the boundary conditions for

Ji (t, q) and S̄ (q), we have gi (t) = V � pi (t) for all t, and using (7) and (12), we can solve for

each agent’s flow payment function that induces first best e↵ort:

hi (t, q) =
X

j 6=i

cj
�

fj
�

S̄ 0 (q)
��

+ r (V � gi (t)) + g0i (t) . (13)

We aim to have zero flow payments on the equilibrium path, and noting that given any fixed

set of strategies, there is a 1-1 correspondence between q and t, we let q̄ (t) denote the state of

the project on the e�cient path at time t, starting at q0. To pin down the functions {gi (t)}ni=1

so that flow payments are zero along the equilibrium path, we solve the ODE

g0i (t)� rgi (t) +
X

j 6=i

cj
�

fj
�

S̄ 0 (q̄ (t))
��

+ rV = 0 (14)

subject to the boundary condition gi (⌧̄) = ↵iV for each i, where ⌧̄ denotes the first-best

15For example, g
i

(⌧) = ↵
i

V 1{⌧T} corresponds to the case with deadline T .
16J

i,t

(t, q) and J
i,q

(t, q) denote the derivative of J
i

(t, q) with respect to t and q, respectively.
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completion time of the project. This is a linear non-homogeneous ODE, and a unique solution

exists. Using (14), we can re-write each agent’s flow payment function as

hi (t, q) =
X

j 6=i

⇥

cj
�

fj
�

S̄ 0 (q)
��

� cj
�

fj
�

S̄ 0 (q̄ (t))
��⇤

. (15)

Noting that cj (fj (x)) increases in x and S̄ 00 (q) > 0 for all q, it follows that hi (t, q) > 0 if and

only if q > q̄ (t); i.e., by time t, the project has progressed farther than is e�cient.

If we want a mechanism that never has a budget deficit, then, the flow payments must be

nonnegative, and if we want to ensure that the agents always have incentives to complete

the project, then, the reward functions {gi (t)}ni=1 must also be nonnegative. The following

proposition characterizes a so modified mechanism that implements the first-best outcome.

Proposition 7. Suppose that each agent makes flow payments ĥi (t, q) = [hi (t, q)]
+ and receives

ĝi (⌧) = [min {↵iV, gi (⌧)}]+ upon completion of the project, where hi (t, q) and gi (⌧) satisfy

(15) and (14), respectively, and ĝi (⌧) decreases in ⌧ .17 Then there exists a MPE in which at

every moment, each agent exerts the first-best e↵ort level, he makes 0 flow payments along the

evolution path of the project, and he receives reward ↵iV upon completion. In this equilibrium,

the sum of the agents’ discounted payo↵s is equal to the first-best discounted payo↵. Moreover,

this mechanism is budget balanced on the equilibrium path and never has a budget deficit.

Recall that the mechanism must neutralize the two ine�ciencies described in Section 3.3. To

eliminate the agents’ incentives to shirk due to receiving only a share of the project’s payo↵

(i.e., ↵iV instead of V ), the mechanism specifies that each agent’s reward decreases in ⌧ at

a su�ciently rapid rate, such that the agents find it optimal to complete the project no later

than the first-best completion time ⌧̄ .18 To neutralize the front-loading e↵ect, the mechanism

specifies that as long as the state q at time t coincides with q̄ (t), then flow payments are 0, but

they are strictly positive whenever q > q̄ (t), which will occur if one or more agents work harder

than first-best.

In Proposition 7, we characterize a time-dependent mechanism in which along the equilibrium

path, each agent exerts the e�cient e↵ort level, makes 0 flow payments, and receives ↵iV upon

completion. Therefore, in contrast to the time-independent mechanism characterized in Section

4.2, this mechanism is implementable even if the agents are cash constrained.

17Note that [·]+ = max {·, 0}.
18This is reminiscent of the optimal contract in Mason and Valimaki (2015) who study “Poisson projects”.
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5 Uncertainty

An important restriction of the model is that the project progresses deterministically (rather

than stochastically). To evaluate the robustness of this assumption, in this section, we consider

the case in which the project progresses stochastically over time. We incorporate uncertainty

by assuming that its state evolves according to

dqt =

 

n
X

i=1

ai,t

!

dt+ �dWt ,

where � > 0 captures the degree of uncertainty associated with the evolution of the project, and

Wt is a standard Brownian motion. It is straightforward to show that the planner’s problem

satisfies the ODE

rS̄ (q) = �
n
X

i=1

ci
�

fi
�

S̄ 0 (q)
��

+

"

n
X

i=1

fi
�

S̄ 0 (q)
�

#

S̄ 0 (q) +
�2

2
S̄ 00 (q) (16)

subject to the boundary conditions

lim
q!�1

S̄ (q) = 0 and S̄ (Q) = V . (17)

Georgiadis (2015) provides conditions under which (16) subject to (17) admits a unique, smooth

solution. Note that each agent’s first-best level of e↵ort satisfies āi (q) = fi
�

S̄ 0 (q)
�

, and similarly

to the deterministic case, ā0i (q) > 0 for all i and q.

Next consider each agent’s problem facing an arbitrary flow payments function hi (t, q) and a

reward function gi (t). Using standard arguments, we expect agent i’s discounted payo↵ function

to satisfy the HJB equation

rJi (t, q)� Jt,i(t, q) = max
ai

(

�ci (ai) +

 

n
X

j=1

aj

!

Jq,i (t, q) +
�2

2
Jqq,i (t, q)� hi (t, q)

)

(18)

subject to limq!�1 Ĵi (q) = 0 and Ji (t, Q) = gi (t). His first order condition is c0i (ai) = Jq,i (t, q),

and because we want to induce each agent to exert the e�cient e↵ort level, we must have

c0i (ai) = S̄ 0 (q). Therefore, it needs to be the case that each agent’s discounted payo↵

Ji (t, q) = S̄ (q)� pi (t) ,

where pi (·) is a function of time that remains to be determined. From the boundary conditions
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for Ji (·, ·) and S̄ (·), it follows that pi (t) = V � gi (t). Using this, (18) and (16), we can solve

for each agent’s flow payment function that induces first best e↵ort:

hi (t, q) =
X

j 6=i

cj
�

fj
�

S̄ 0 (q)
��

+ r (V � gi (t)) + g0i (t) . (19)

Similar to the deterministic case, we choose the set of functions {gi (t)}ni=1 such that along the

equilibrium (or equivalently, first best) path q̄t, each agent i’s expected flow payment E [h (t, q̄t)]

is equal to zero; i.e.,

0 =
X

j 6=i

E
⇥

cj
�

fj
�

S̄ 0(q̄t)
��⇤

+ r (V � gi (t)) + g0i (t) (20)

This is an ODE that can be solved for any given initial condition gi (0). To ensure that the sum

of the agents’ discounted payo↵s is equal to the first best payo↵, the set of initial conditions

{gi (0)}ni=1 must satisfy
Pn

i=1 Ji (0, 0) = S̄ (0), or equivalently

n
X

i=1

gi (0) = V + (n� 1)
⇥

V � S̄ (0)
⇤

. (21)

This condition also ensures that the mechanism is ex-ante budget balanced (in expectation).19

Therefore, we have established the following proposition:

Proposition 8. Suppose that each agent makes flow payments hi (t, q) and receives gi (⌧) upon

completion of the project, which satisfy (19) and (20), respectively. Then there exists a MPE in

which at every moment, each agent exerts the first-best e↵ort level. In this equilibrium, the sum

of the agents’ expected discounted payo↵s is equal to the first-best expected discounted payo↵,

and each agent’s local flow payment has expected value equal to 0. Moreover, this mechanism is

ex-ante budget balanced ( i.e., in expectation).

The intuition behind this mechanism is similar to the deterministic case: the flow payment func-

tions and the terminal reward functions are chosen so as to eliminate the ine�ciencies described

in Section 3.3. However, there are two important di↵erences relative to the deterministic case.

First, in the stochastic mechanism, it is impossible to simultaneously achieve e�ciency and ex-

post budget balance. Instead, the mechanism is budget balanced in expectation, and as a result,

for the mechanism to be implementable, there needs to be a third party who collects the surplus

if the balance in the savings account upon completion of the project exceeds
Pn

i=1 gi (⌧) � V ,

19This follows by noting that the ex-ante budget balance condition is
P

n

i=1 E
⇥´

⌧

0 e�rth
i,t

dt� e�r⌧g
i

(⌧) + e�r⌧

V

n

⇤

= 0, and by using (1) and (19), one can show that it is
equivalent to (21).
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and she pays the di↵erence otherwise. Second, flow payments may be positive or negative, and

because the path of the Brownian motion until the project is completed can be arbitrarily long,

for the mechanism to be implementable, it is necessary that the agents as well as the third party

are cash unconstrained.

Finally, the following remark characterizes the set of time-independent mechanisms that imple-

ment the e�cient outcome in the game with uncertainty.

Remark 4. Let gi (t) = Gi, where Gi � 0 and
Pn

i=1 Gi =
Pn

i=1 V +(n� 1)
⇥

V � S̄ (0)
⇤

. Suppose

that each agent makes (time-independent) flow payments that satisfy (15), and he receives Gi

upon completion of the project. Then there exists a MPE in which at every moment, each agent

exerts the first-best e↵ort level. Moreover, this mechanism is ex-ante budget balanced (i.e., in

expectation).

6 Discussion

We study a simple model of dynamic contributions to a discrete public good. In our model, at

every moment, each of n agents chooses his contribution to a group project, and the project

generates a lump sum payo↵ once the cumulative contributions reach a pre-specified threshold. A

standard result in such models is that e↵ort is under-provided relative to the e�cient outcome,

due to the free-rider problem. We propose a mechanism that induces each agent to always

exert the e�cient level of e↵ort as the outcome of a Markov Perfect equilibrium (MPE). The

mechanism specifies for each agent flow payments that are due while the project is in progress,

and a lump sum reward that is disbursed upon completion of the project.

Our mechanism has two key limitations: First, the agents must have su�cient cash in hand

at the outset of the game in order to implement the mechanism. In particular, if the project

progresses stochastically, then each agent must have unlimited liability. Second, for the mech-

anism to achieve the e�cient outcome, the agents must be able to commit to burn money o↵

the equilibrium path.

This paper opens several opportunities for future research, both theoretical and applied. On

the theory side, an open question is to characterize the mechanism that maximizes the agents’

total ex-ante discounted payo↵ when the project progresses stochastically and the agents’ cash

reserves are limited. In addition, our framework can be used to restore e�ciency in other

multi-agent environments that are susceptible to free-riding such as the dynamic extraction of

a common resource or experimentation in teams. The key ingredients for our mechanism to be
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applicable are that the game is dynamic and it exhibits positive or negative externalities. From

an applied perspective, it would be interesting to examine how such a mechanism performs in

practice. This could be accomplished by conducting laboratory experiments as a first step, and

then empirically by analyzing data on project teams.
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A Cash Constraints

While the time-dependent mechanism characterized in Section 4.3 implements the e�cient out-

come even if the agents are cash constrained, a disadvantage of this mechanism is that this

result is very sensitive to the assumption that the project progresses deterministically. In par-

ticular, with Brownian uncertainty (as analyzed in Section 5), e�ciency is achievable as the

outcome of a MPE only of the agents have unlimited liability. In addition, the strategies in the

time-dependent mechanism are more complex, in that they must depend both on time t and the

state q. In this section, we consider the case in which the agents’ cash reserves are insu�cient

to implement the e�cient mechanism characterized in Proposition 4, and we characterize the

time-independent mechanism that maximizes the agents’ total discounted payo↵ as a function

of their cash reserves.

From a technical perspective, this problem is more challenging than the one analyzed in Section

4, because one needs to determine the set of upfront payments and flow payment functions that

induce each agent to choose the strategy that maximizes the total surplus subject to a set of

budget and budget balance constraints, which involves solving a partial di↵erential equation and

a fixed point problem.20 To obtain tractable results, we assume that the agents are symmetric

(i.e., ci (a) = cj (a) and ūi = ūj = 0 for all a and i 6= j), each has w 2
�

0, e�r⌧̄
�

n�1
n

�

V
�

in

cash at time 0, and we restrict attention to mechanisms that treat the agents symmetrically

(i.e., Pi,0 = Pj,0 and hi (q) = hj (q) for all q and i 6= j).21 We also restrict the set of possible

flow payment functions hi (q) to those for which the agent’s value function uniquely solves the

corresponding HJB.

Before we proceed with characterizing the optimal mechanism, it is necessary to introduce some

notation. First, we let t; denote the time at which the agents run out of cash (and q; the

corresponding state). Observe that on [q;, Q], the agents have no cash left in hand, and so they

have no choice but to play the MPE characterized in Section 3.1, albeit with a di↵erent final

reward, which we denote by K. Our approach comprises of four steps:

1. We start with an initial guess for the triplet {t;, q;, K}, which will be pinned down later

by solving a fixed point problem, and we characterize the MPE of the game when the

agents have no cash left in hand and each agent receives reward K upon completion of

the project.

20In contrast, in Section 4, we chose the flow payment functions such that the agents always exert e↵ort
e�ciently. Because this mechanism yields the e�cient payo↵s to the agents, it immediately follows that it
maximizes their total discounted payo↵.

21For notational simplicity, we drop the subscript i that denotes agent i.
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2. We characterize the game while the agents still have cash in hand and they make flow

payments according to some arbitrary flow payment function, which is defined on [0, q;].

3. We consider the planner’s problem who pursues to maximize the agents’ total discounted

payo↵, and we determine the optimal upfront payment P0 and flow payment function h (·).

4. We solve a fixed point problem to pin down t;, q;, and K to complete the characterization

of the optimal mechanism.

Step 1: First, we fix the reward that each agent receives upon completion of the project K,

and the time and state at which the agents run out of cash (i.e., t; and q;, respectively). For a

given set of strategies, each agent’s discounted payo↵, after he has run out of cash, is given by

J; (q) = e�r(⌧�t)K �
ˆ ⌧

t

e�r(s�t)c (as) ds . (22)

Writing the HJB equation for each agent’s payo↵ function and using his first order condition

yields the ODE

rJ; (q) = �c (f (J 0
; (q))) + nf (J 0

; (q)) J
0
; (q) (23)

subject to the boundary condition

J; (Q) = K , (24)

Moreover, note that each agent’s e↵ort level is a; (q) = f
�

J 0
; (q)

�

. We know from Proposition 1

that (23) subject to (24) has a unique, well-defined solution.

Step 2: We now characterize the agents’ problem when they still have cash in hand (i.e., for

q  q;) given an arbitrary smooth flow payment function h (·). In this case, using the same

approach as before, it follows that each agent’s payo↵ function satisfies

rJh (q) = �c (f (J 0
h (q))) + nf (J 0

h (q)) J
0
h (q)� h (q) , (25)

subject to the boundary condition

Jh (q;) = J; (q;) . (26)

Condition (26) is a value matching condition: it ensures that each agent’s discounted payo↵ is

continuous at q;, and we denote each agent’s e↵ort function ah (q) = f (J 0
h (q)). By assumption

on h (q), we know that the agent’s value function is the solution to (25) subject to (26).

25



Step 3: Next, we turn to the planner’s problem who chooses the agents’ upfront and flow

payments to maximize their total discounted payo↵. First, we define the process

dPt = e�rth (qt) dt , or equivalently, Pt = P0 +

ˆ t

0

e�rsh (qs) ds

to denote the per-agent balance in the savings account at time t discounted to time 0, where P0

denotes each agent’s upfront payment. Note that t; is the first time such that Pt hits w, and q;

is the corresponding state at t;. Letting L (t, Jt, qt, Pt) denote the sum of the agents’ discounted

payo↵s at time t, given each agent’s continuation payo↵ Jt, the state of the project qt, and the

discounted balance in the savings account Pt, the planner solves

L (t, Jt, qt, Pt) = max
h

⇢

e�r(⌧�t)V �
ˆ ⌧

t

e�r(s�t)n c (as) ds

�

(27)

s.t. Pt  w

where as denotes each agent’s equilibrium e↵ort level, and ⌧ is the completion time of the

project, which is determined in equilibrium. The constraint asserts that each agent’s flow

payments cannot exceed the amount of cash that he has in hand. Note that in the definition of

L (t, Jt, qt, Pt), we took into account the budget balance constraint nK = nP⌧e
r⌧ + V : the total

rewards disbursed to the agents is equal to the total balance in the savings account when the

project is completed (i.e., at time ⌧) plus the payo↵ that the project generates.

Using (22) and (27), observe that after the agents have run out of cash (i.e., for P = w, or

equivalently, for q � q; and t � t;), their total discounted payo↵ function satisfies

L (t, Jt, qt, w) = nJ; (qt)� e�r(⌧�t) (nK � V ) , (28)

where J; (qt) is characterized in Step 1. Focusing on the case in which the agents still have cash

in hand and re-writing (27) in di↵erential form, it follows that for all P < w, L satisfies the

HJB equation22

rL� @L

@t
= max

h

⇢

�nc (f (J 0
h (q))) + nf (J 0

h (q))
@L

@q
+ ne�rth (q)

@L

@P
+ nf (J 0

h (q)) J
0
h (q)

@L

@J

�

.

(29)

On the set P  w, we conjecture (and verify in the proof that follows) that L (t, J, q, P ) = L (q),

22For notational brevity, we drop the arguments of the function L (t, J
t

, q
t

, P
t

).
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and so (29) can be re-written as

rL (q) = max
h

{nf (J 0
h (q))L

0 (q)� nc (f (J 0
h (q)))} , (30)

subject to the boundary condition

L (q;) = nJ; (q;)� e�r(⌧�t;) (nK � V ) . (31)

This condition follows from (28), and it ensures that L (q) is continuous at q = q;. Observe that

we can express h (·) in terms of Jh (·) and J 0
h (q), and then maximize (30) with respect to J 0

h (q).

By definition, c0 (f (J 0
h (q))) = J 0

h (q), and so the first order condition in (30) with respect to

J 0
h (q) is L

0 (q) = J 0
h (q). Substituting this into (30) yields the ODE

rL (q) = nL0 (q) f (L0 (q))� nc (f (L0 (q))) (32)

subject to the boundary condition (31). It is straightforward to verify using Proposition 1 that

there exists a unique solution to (32) subject to (31). By using the first order condition and

(26), we can pin down each agent’s discounted payo↵ function for q  q;:

Jh (q) = L (q)� L (q;) + J; (q;) . (33)

From (25) and (32), it follows that each agent’s flow payment function satisfies

h (q) = (n� 1) c (f (L0 (q)))� r [J; (q;)� L (q;)] . (34)

Because each agent’s ex-ante discounted payo↵ (i.e., Jh (0) � P0) must be equal to L(0)
n

, each

agent’s upfront payment must be equal to

P0 =
n� 1

n
L (0) + [J; (q;)� L (q;)] . (35)

Step 4: So far, we have characterized the upfront and flow payments that maximize the

agents’ total discounted payo↵, and the corresponding payo↵s and strategies given an arbitrary

triplet {t;, q;, K}; i.e., the time and state at which the agents run out of cash, and the reward

that each agent receives upon completion of the project. These parameters are pinned down in

equilibrium from the budget balance constraint and the agents’ budget constraint (27). In the

optimal mechanism, these constraints will bind at completion23, and so the triplet {t;, q;, K}
23If the constraint P

⌧

 w does not bind, then the agents still have cash in hand upon completion of the
project, and yet, by Proposition 4, they cannot attain e�ciency. By raising their upfront payments and by
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solves the fixed point problem

P0 +

ˆ t;

0

e�rth (qt) dt = w and nw er⌧ + V = nK , (36)

where P0 and h (·) are given in (35) and (34), respectively, J; (q) satisfies (23) subject to (24),

and L (q) satisfies (32) subject to (31).

This is a complex fixed point problem, and it does not seem feasible to show that a solution

exists or that it is unique. As such, we make the following assumption:

Assumption 1. There exists a triplet
�

t⇤;, q
⇤
;, K

⇤ such that on the equilibrium path, (36) is

satisfied.

We summarize our analysis in the following proposition, characterizing the optimal mechanism

when the agents’ cash reserves are insu�cient to implement the e�cient outcome.

Proposition 9. Suppose that the agents are symmetric (i.e., ci (a) = cj (a) and ūi = ūj for

all q and i 6= j), each has w 2 [0, w] in cash at the outset of the game and Assumption 1

is satisfied. Then the optimal symmetric budget-balanced mechanism specifies that each agent

makes an upfront payment as given by (35), flow payments as given by (34) on
⇥

0, q⇤;
�

, he makes

no flow payments on
⇥

q⇤;, Q
⇤

, and upon completion of the project, he receives reward K⇤.

Intuitively, the optimal mechanism specifies that while the agents still have cash in hand, they

make flow payments to induce them to exert the e�cient e↵ort level that corresponds to the

boundary condition (31). After their cash reserves are exhausted, they make no further payments

and they exert the e↵ort levels that correspond to the MPE in the case with zero flow payments.

The following remark establishes how the agents’ total ex-ante discounted payo↵ depends on

their initial cash reserves.

Remark 5. The agents’ total ex-ante discounted payo↵ under the optimal mechanism charac-

terized in Proposition 9 (weakly) increases in his initial wealth w.

This result is intuitive: If the agents’ initial wealth increases, then the mechanism corresponding

to the lower wealth is still feasible. Therefore, the optimal mechanism corresponding to the

higher wealth must give each agent an ex-ante discounted payo↵ that is at least as large as the

payo↵ corresponding to the lower wealth.

consequence the reward K that they receive upon completion, they can strengthen their incentives and increase
their joint payo↵.
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Figure 1: An example with ci (a) =
a2

2 for all i, Q = 100, V = 500, r = 0.1, and n = 4.

Figure 1 uses the example analyzed in Appendix B with quadratic e↵ort costs to illustrate

how the optimal mechanism depends on the agents’ initial cash reserves w. First, as shown in

Remark 5, the total surplus generated by the optimal mechanism (i.e., L (0)) increases in the

agents’ wealth w. Moreover, observe that the relationship is concave in w, which implies that

even small cash reserves can have a significant e↵ect in mitigating the free-rider problem and

increasing total surplus. Moreover, in the optimal mechanism, each agent makes no upfront

payment, and both the state q⇤; at which the agents run out of cash, and each agent’s reward

upon completion of the project K⇤ increase steadily in the wealth w.

B Extensions

In this section, we extend our work in two directions to illustrate the versatility of our mecha-

nism. To simplify the exposition, we shall assume throughout this section that each agent has

large cash reserves at the outset of the game and outside option 0.

B.1 Flow Payo↵s

First, we consider the case in which the project generates flow payo↵s while in it is progress, in

addition to a lump-sum payo↵ upon completion. To model such flow payo↵s, we assume that

during every (t, t+ dt) interval while the project is in progress, it generates a payo↵ K (qt) dt,

plus a lump-sum V � K(Q)
r

upon completion, where K (·) is a well-behaved function so as to
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ensure that the planner’s problem has a well-defined solution. As in the base model, each agent

i is entitled a share ↵i of those payo↵s, where
Pn

i=1 ↵i = 1.

Using the same approach and notation as in Sections 3.2 and 4, we shall construct a mechanism

that induces each agent to exert the e�cient e↵ort level as an outcome of the MPE of the game.

To begin, we characterize the e�cient outcome of this game. The planner’s problem satisfies

the ODE

rS̄ (q) = K (qt)�
n
X

i=1

ci
�

fi
�

S̄ 0 (q)
��

+

"

n
X

i=1

fi
�

S̄ 0 (q)
�

#

S̄ 0 (q) (37)

defined on some interval
�

qs, Q
⇤

, subject to the boundary condition

S̄ (Q) = V , (38)

and each agent i’s first best e↵ort level is given by āi (q) = fi
�

S̄ 0 (q)
�

. It follows from Proposition

2 that the ODE defined by (37) subject to (38) has a unique solution on
�

qs, Q
⇤

.

Next, consider the problem faced by each agent given a mechanism that specifies arbitrary flow

payments {hi (q)}ni=1. Using standard arguments, we expect agent i’s discounted payo↵ function

to satisfy the HJB equation

rĴi (q) = max
ai

(

↵iK (q)� ci (ai) +

 

n
X

j=1

aj

!

Ĵ 0
i (q)� hi (q)

)

subject to a boundary condition that remains to be determined. As in the base model, his first

order condition is c0i (ai) = Ĵ 0
i (q). To induce each agent to exert the e�cient e↵ort level, we

require that Ĵ 0
i (q) = S̄ 0 (q) for all q, which also implies that Ĵi (q) = S̄ (q) for all q. It then

follows that each agent’s flow payments function must satisfy

hi (q) =
X

j 6=i

cj
�

fj
�

S̄ 0 (q)
��

� (1� ↵i)K (q) .

To ensure that the budget is balanced (on the equilibrium path), the agents’ upfront payments

must be chosen such that
Pn

i=1 Pi,0 = (n� 1) S̄ (0). Finally, it follows that Proposition 6 that

as long as each agent receives min
�

V, V+H⌧
n

 

upon completion, where H⌧ denotes the balance

in the savings account upon completion of the project, the mechanism characterized above

implements the e�cient outcome, it is budget balanced on the equilibrium path, and it will

never result in a budget deficit.
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B.2 Endogenous Project Size

In this base model, the project size was given exogenously. Motivated by the fact that in many

natural applications, the size of the project Q to be undertaken is part of the decision making

process, in this section, we endogenize the project size. In particular, we assume that if the

agents choose to undertake a project of size Q, then it generates a lump-sum payo↵ equal to

g (Q) upon completion, where g (·) is an arbitrary function.

To begin, let Q⇤
q denote the project size that maximizes the social planner’s ex-ante payo↵

given the current state q; i.e., Q⇤
q 2 argmaxQ

�

S̄ (q;Q)
 

, where S̄ (q;Q) denotes the planner’s

discounted payo↵ given project size Q as characterized in Proposition 2. Recall from Section

4.1 that each agent’s ex-ante discounted payo↵ is equal to S̄ (q0;Q)�Pi,0, and observe that this

is maximized at Q⇤
q0

for all i. Therefore, all agents will be in agreement with respect to the

project size that maximizes their ex-ante payo↵, and this project size coincides with the socially

optimal one. Moreover, Georgiadis et. al. (2014) shows hat Q⇤
q is independent of q, which

implies that the agents will not have any incentives to later renegotiate the project size chosen

at t = 0.

C An Example

In this section, we use an example to illustrate the mechanism proposed in Sections 3 and 4. In

particular, we assume that the agents are symmetric, have quadratic e↵ort costs, outside option

0, and cash reserves w � 0 at the outset of the game (i.e., ci (a) = a2

2 , ūi = 0 and wi = w

for all i). These simplifications enable us to compute the optimal mechanism analytically and

obtain closed form formulae, which are amenable for conducting comparative statics. We first

characterize the the MPE of this game when the agents are cash constrained (i.e., w = 0), and

the first best outcome in Sections C.1 and C.2, respectively. Then in Section C.3, we characterize

the mechanism that implements the e�cient outcome, per the analysis in Section 4. Finally,

in Section C.4, we characterize the optimal mechanism when the agents’ cash reserves are not

large enough to implement the e�cient outcome.
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C.1 Markov Perfect Equilibrium

Using the same approach as in Section 3.1, it follows that in any MPE, each agent i’s discounted

payo↵ function satisfies

rJi (q) = �1

2
[J 0

i (q)]
2 +

"

n
X

j=1

J 0
j (q)

#

J 0
i (q)

subject to the boundary condition Ji (Q) = V
n
. Georgiadis et. al. (2014) shows that this game

has a unique project-completing MPE that is symmetric, and each agent’s discounted payo↵

and e↵ort level satisfies

J (q) =
r

2

�

[q � C]+
�2

2n� 1
and a (q) =

r

2n� 1
[q � C]+ ,

respectively, where C = Q�
q

2V
r

2n�1
n

. Provided that C < 0, in this equilibrium, the project is

completed at ⌧ = 2n�1
rn

ln
�

1� Q
C

�

.24

Note that this game may have another MPE in which no agent ever exerts any e↵ort, the project

is never completed, and each agent’s discounted payo↵ is 0. A non-completing equilibrium exists

if the project is su�ciently large such that no agent is willing to undertake the project single-

handedly; i.e., if C|n=1 < 0. In this case, if all other agents exert no e↵ort, then each agent’s

best response is to also exert no e↵ort, and consequently, the project is never completed.

C.2 First Best Outcome

We now turn to analyze the social planner’s problem who at every moment, chooses the agents’

e↵orts to maximize the group’s total discounted payo↵. From Section 3.2 and using the results

of Georgiadis et. al. (2014), it follows that the planner’s discounted payo↵ is given by

S̄ (q) =
r

2n

⇣

⇥

q � C̄
⇤+
⌘2

, (39)

where C̄ = Q �
q

2nV
r
, and the first best e↵ort level of each agent is ā (q) = r

n

⇥

q � C̄
⇤+

. If

C̄ < 0, then the project is completed at ⌧̄ = 1
r
ln
�

1� Q
C̄

�

, whereas otherwise, no agent ever

exerts any e↵ort and the project is not completed. Intuitively, if the project’s payo↵ or the

group size (i.e., V or n) is too small, or the agents are too impatient (i.e., r is too large), or the

project is too long (i.e., Q is too large), then e�ciency dictates that the project should not be

24Because the equilibrium is symmetric, we henceforth drop the subscript i.

32



undertaken.

First, it is straightforward to verify that C̄ < C for all n � 2. Therefore, some projects which are

e�cient to undertake, are not completed in the MPE. Moreover, both the first best payo↵s and

the corresponding e↵orts are always greater than their MPE counterparts; i.e., S̄ (q) � nJ (q)

and ā (q) � a (q) for all q.

C.3 An E�cient Mechanism

In this section, we compute the mechanism that implements e�ciency as the unique outcome

of a MPE. Using (39), it follows from Proposition 4 that assuming C̄ < 0, then the e�ciency-

inducing, budget balanced mechanism specifies that each agent’s flow payment function satisfies

h (q) =
r2 (n� 1)

2n2

h

�

q � C̄
�2

+ C̄2
i

,

and upon completion of the project, he receives the smaller of V and one-nth of the total balance

in the savings account. Moreover, this mechanism is implementable if and only if each agent’s

cash reserves

w � w =

✓

n� 1

n

◆✓

C̄

C̄ �Q

◆

V � rC̄2

2n

�

.

Time-Dependent Mechanism

At this point, it is useful to also characterize the e�cient time-dependent mechanism as analyzed

in Section A.3. First, note that along the e�cient path, q̄ (t) = �C̄ (ert � 1). From Proposition

7, and using (14) and (15), we know that there exists a MPE in which agents always exert the

e�cient e↵ort level when each agent’s flow payment and reward function satisfies

h (t, q) =



r2 (n� 1)

2n2

⇣

�

q � C̄
�2 � C̄2e2rt

⌘

�+

and g (⌧) =



V � r (n� 1) C̄2

2n2
er⌧

�+

,

respectively. Observe that each agent’s reward decreases in the completion time at an expo-

nential rate, so as to provide incentives to complete the project no later than the first-best

completion time ⌧̄ . As a result, any deviation will be towards higher e↵ort (i.e., they will front-

load e↵ort) to induce others to raise their future e↵orts. On the equilibrium path, q = q̄ (t) and

so h (t, q) = 0. However, if q > q̄ (t) for some t, then the mechanism punishes the agents by

specifying a strictly positive flow payment.
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C.4 Cash Constraints

We now consider the case in which each agent’s cash reserves satisfy w < w. To analyze this

case, we use the four-step approach proposed in Appendix A. To begin, let us fix the state q;

at which the agents run out of cash, and the reward that each agent receives upon completion

of the project K, which will be pinned down in the final step by solving a fixed point problem.

Step 1: First, we characterize the game after the agents have run out of cash. The agents

will play the MPE that corresponds to the cash constrained case with boundary condition

J; (Q) = K. It follows from Sections 5.1 and B.1 that each agent’s discounted payo↵ and e↵ort

level satisfies

J; (q) =
r

2

�

[q � C;]
+�2

2n� 1
and a; (q) =

r

2n� 1
[qt � C;]

+ ,

respectively, where C; = Q�
q

2(2n�1)K
r

. To compute the amount of time it takes for the project

to progress from q; to Q, we solve the ODE q̇t = n a; (qt) subject to the boundary condition

qt; = q;, which assuming that C; < q;, yields

⌧ � t; =
2n� 1

r n
ln

✓

Q� C;

q; � C;

◆

.

Steps 2 and 3: Turning to the planner’s problem and considering the game while the agents

still have cash in hand, it follows from (31) and (32) that the planner’s discounted payo↵

function satisfies rL (q) = n
2 [L

0 (q)]2 subject to the boundary condition L (q;) = nJ; (q;) �
e�r(⌧�t;) (nK � V ). This ODE has unique solution

L (q) =
r

2n

�

[q � Ch]
+�2 ,

where Ch = q;�
r

n2

2n�1 (q; � C;)
2 � 2n(nK�V )

r

⇣

q;�C;
Q�C;

⌘

2n�1
n

. It follows that on [0, q;], each agent’s

discounted payo↵ and e↵ort level satisfies

Jh (q) = L (q)� L (q;) + J; (q;) and ah (q) =
r

n
[q � Ch]

+ ,

respectively. Next, we must compute the amount of time it takes for the project to progress

from q0 = 0 to q;. By solving the ODE q̇t = r [q � Ch]
+ subject to the boundary condition

q0 = 0, we obtain qt = �Ch (ert � 1). Then solving for qt; = q;, we find that, provided Ch < 0,

the agents run out of cash at t; =
1
r
ln
⇣

Ch�q;
Ch

⌘

.
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Using (34), we can compute each agent’s flow payment function

h (q) =
r2 (n� 1)

2n2

�

[q � Ch]
+�2 � r [J; (q;)� L (q;)] , (40)

and his upfront payment

P0 =
r (n� 1)

2n2
C2

h + [J; (q;)� L (q;)] , (41)

where J; (q;)�L (q;) = (nK � V )
⇣

q;�C;
Q�C;

⌘

2n�1
n � r(n�1)

2(2n�1) (q; � C;)
2. So far, we have characterized

the upfront payment and flow payment function that maximizes the agents’ total discounted

payo↵ given an arbitrary pair {q;, K}. To complete the characterization, we must ensure that

the agents indeed run out of cash at q;, and upon completion of the project, the total balance

in the savings account is nK�V . We do this by solving a fixed point problem in the next step.

Step 4: To write the fixed point problem, it is useful to express h (q) as a function of time.

Using (40) that qt = �Ch (ert � 1) for t  t;, we have h (t) =
r2(n�1)

2n2 C2
he

2rt � r [J; (q;)� L (q;)].

The total payments that each agent makes along the equilibrium path, discounted to time 0

is equal to P0 +
´ t;
0 e�rth (qt) dt = � r(n�1)

2n2 q;Ch + q;
Ch�q;

[J; (q;)� L (q;)], and so each agent’s

budget constraint must satisfy

r (n� 1)

2n2
Ch (Ch � q;) +

Ch

Ch � q;
[J; (q;)� L (q;)] = w . (42)

Budget balance requires that nwer⌧ + V = nK, or equivalently

nw

✓

Q� C;

q; � C;

◆

2n�1
n Ch � q;

Ch

= nK � V . (43)

Therefore, in the optimal mechanism is pinned down by a pair {q;, K} that simultaneously

satisfies (42) and (43). Unfortunately, it is not feasible to show that a solution to this fixed

point problem exists, or that it is unique25. As such, we assume that this is the case to establish

the following result.

Result 1. Suppose that the agents are identical, and each has initial cash reserves w 2 [0, w].

Moreover, assume that there exists a pair
�

q⇤;, K
⇤ that satisfies (42) and (43). Then the

optimal, symmetric, budget-balanced mechanism specifies that each agent makes an upfront pay-

25In the numerical example mentioned at the end of Appendix A, our procedure does find a fixed point.
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ment as given in (41), flow payments as given in (40) for all q  q⇤;, and upon completion of

the project, he receives reward K⇤.

D Proofs

Proof of Proposition 1.

To study the existence of a solution, we proceed as follows. First, we note that the value

function of each agent is bounded below by 0, since he can exert no e↵ort and guarantee himself

a nonnegative payo↵. Next, we write the ODE system (4) in the form

Ji (q) = Gi (J
0
1 (q) , . . . , J

0
n (q))

whereGi (J 0
1 (q) , . . . , J

0
n (q)) =

1
r

n

�ci (fi (J 0
i)) +

h

Pn
j=1 fj

�

J 0
j

�

i

J 0
i

o

. Because the value function

of each agent is nonnegative, we are only interested in solutions for which Ji (q) � 0, and from

(4), it follows then that J 0
i (q) � 0, too. Thus, we consider Gi only on the domain [0,1)n. Note

that
@Gi

@J 0
i

=
1

r

n
X

j=1

f
�

J 0
j

�

and
@Gi

@J 0
j

=
1

r
f 0
j

�

J 0
j

�

J 0
i for j 6= i .

Thus, Gi is strictly increasing in J 0
i on the domain

�

(J 0
1, . . . , J

0
n) : maxj J 0

j > 0 , minj J
0
j � 0

 

.

Moreover, if Jj (qt) and J 0
j (qt) are zero for some qt and all j at time t , then the project cannot

move away from q, hence, it cannot be completed, and Jj (qs) = J 0
j (qs) = 0 for all j and s > t.

This is the degenerate equilibrium that does not satisfy the boundary condition of the ODE

system. Thus, we consider Gi only on the domain Rn
+ = (0,1)n. We first prove the following

lemma.

Lemma 3. The mapping G = (G1, . . . , Gn) from Rn
+ to Rn

+ is invertible and the inverse mapping

F is continuously di↵erentiable. Moreover, @Fi
@xi

> 0, that is, the i-th component of the inverse

mapping is strictly increasing in the ith variable.

Proof of Lemma 3.

By the Gale-Nikaido generalization of Inverse Function Theorem (see, for example, Theorem 20.4

in Nikaido (1968)), for the first part of the lemma it is su�cient to show that all the principal

minors of the Jacobian matrix of the mapping G are strictly positive for all (J 0
1, .., J

0
n) 2 Rn

+. We

prove this by induction. The 1⇥1 principal minors, that is, the diagonal entries 1
r

Pn
j=1 fj

�

J 0
j

�

of
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the Jacobian are positive (for any n). For n = 2, from the expressions for the partial derivatives

of Gi, we see that the determinant of the Jacobian is proportional to

 

2
X

j=1

fj
�

J 0
j

�

!2

� f 0
1 (J

0
1) f

0
2 (J

0
2) J

0
1J

0
2 > 0

where the inequality holds on the domain R2
+, by noting that fi (x) > xf 0

i (x) for all i and

x > 0.26 The same argument shows that 2⇥ 2 principal minors of the Jacobian are positive, for

any n. For n = 3, we can compute the determinant of the Jacobian by summing the diagonal

terms multiplied with the 2⇥2 principal minors, that we have just shown to be strictly positive.

Since the diagonal terms are strictly positive, the determinant of the Jacobian is also strictly

positive. And so on, for n = 4, 5, ...

For the last statement, by the Inverse Function Theorem, we need to show that the diagonal

entries of the inverse of the Jacobian matrix are strictly positive. By Cramer’s rule, those entries

are proportional to the diagonal entries of the adjugate of the Jacobian, thus proportional to

the diagonal entries of the cofactor matrix of the Jacobian. Those entries are equal to the

corresponding (n� 1)⇥(n� 1) principal minors, which, by the argument above, are positive.

This lemma asserts that the values Ji and the marginal values J 0
i , and hence the optimal actions

ai, are in one-to-one smooth strictly increasing correspondence, outside of the trivial equilibrium

in which all the values are zero. That is, increasing an agent’s action also increases his value

function, and vice-versa (holding everything else constant).

Next, we show that the set of solutions to the system of ODE’s is not empty.

Lemma 4. For every ✏ 2 (0,mini {Vi}), there exists some q✏ < Q such that there exists a unique

solution (J1, . . . , Jn) to the ODE system on interval [q✏, Q] that satisfies Ji � ✏ on that interval,

for all i.

Proof of Lemma 4.

The ODE system (4) can be written as

J 0
i (q) = Fi (J1 (q) , . . . , Jn (q)) (44)

26To see why, first note that for all x > 0 we have f 0
i

(c0
i

(x)) = 1
c

00
i (x)

and so f 00
i

(c0
i

(x)) = � c

000
i (x)

[c00i (x)]
3  0. Next,

let k
i

(x) = f
i

(x)� xf 0
i

(x), and observe that k
i

(0) = 0 by assumption and k0
i

(x) = �xf 00
i

(x) � 0 for all x > 0.
Therefore, f

i

(x) > xf 0
i

(x) for all x > 0.
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for those values of Jj (q) for which maxj Jj (q) > 0. For given ✏ > 0, denote

MF = max
i

max
✏xiVi

Fi (x1, . . . , xn)

Pick q✏ < Q so close to Q such that, for all i,

Vi � (Q� q✏)MF � ✏

Then, define �q = Q�q✏
N

and functions JN
i by Picard iterations, going backwards from Q,

JN
i (Q) = Vi

JN
i (Q��q) = Vi ��qFi (V1, . . . , Vn)

JN
i (Q� 2�q) = JN

i (Q��q)��qFi

�

JN
1 (Q��q) , . . . , JN

n (Q��q)
�

= Vi ��qFi (V1, . . . , Vn)��qFi

�

JN
1 (Q��q) , . . . , JN

n (Q��q)
�

and so on, until JN
i (Q�N�q) = Ji (q✏). Then, we complete the definition of function JN

i

by making it piecewise linear between the points Q � k�q, k = 1, . . . , N . Notice, from the

assumption on Q � q✏ that JN
i (Q� k�q) � ✏, for all k = 1, . . . , N . Since Fi are continuously

di↵erentiable, they are Lipschitz on the n�dimensional bounded domain ⇧n
j=1 [✏, Vi]. Thus, by

the standard ODE argument,
�

JN
i

 

converge to a unique solution {Ji} of the ODE system on

q 2 [q✏, Q], and we have Ji � ✏.

We can define

q = inf
✏>0

q✏

with q 2 (�1, Q), and Lemma 4 shows that the the system of ODE’s has a unique solution

on [q✏, Q] for every ✏ > 0. Thus, there exists a unique solution on
�

q,Q
⇤

. Then, by standard

optimal control arguments, Ji (q) is the value function of agent i, for every initial project value

q > q.

We now want to show that the ODE solution Ji (q) is the value function of agent i, for every

initial project value q0 > q, if every other agent plays aj (q) = J 0
j (q). We have, for any action
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ai (qt),

e�r⌧Ji (Q) = Ji (q0) +

ˆ ⌧

0

d
�

e�rtJi (qt)
�

= Ji (q0) +

ˆ ⌧

0

e�rt

"

�rJi (qt) + J 0
i (qt)

n
X

j=1

aj (qt)

#

dt

 Ji (q0) +

ˆ ⌧

0

e�rtci (ai (qt)) dt

Since Ji (Q) = ↵iV , this implies that the agent’s value function, denoted J⇤
i , satisfies J

⇤
i (q0) 

Ji (q0). Moreover, the upper bound is attained if the agent plays ai (q) = J 0
i (q). A similar

argument works for J (q) for any q = qt 2
�

q,Q
⇤

.

To establish convexity, we di↵erentiate the ODE for Ji to obtain

rJ 0
i = �J 0

if
0
iJ

00
i

We can view this as a linear system for the vector J 00 with entries J 00
i , which can be written as

MJ 00 = rJ 0, where J 0 denotes the vector with entries J 0
i , and the i-th row of matrix M is

 

J 0
if1 (J

0
1) , . . . , J

0
ifi�1

�

J 0
i�1

�

,
X

j

fj
�

J 0
j

�

, J 0
ifi+1

�

J 0
i+1

�

, . . . , J 0
ifn (J

0
n)

!

Using the main result of Kaykobad (1985), a su�cient condition for J 00 to have all strictly

positive entries is that J 0 has all strictly positive entries and

n
X

j=1

fj
�

J 0
j

�

>
X

j 6=i

J 0
jf

0
j

�

J 0
j

�

,

which holds if fj (x) � xf 0
j (x) for all x � 0 and j. By noting that this condition is always

satisfied (see footnote 26 for details), the proof is complete.

Proof of Proposition 2.

To study the existence of a solution, we proceed as in Proposition 1. First, we write the system

of ODE’s (7) in the form

rS̄ (q) = G
�

S̄ 0 (q)
�

for an appropriate function G. As in the MPE case, we can show that G(x) has a continuously
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di↵erentiable and strictly increasing inverse function F (y), for y > 0. Except for convexity,

the proof is similar to the proof of Proposition 1 (and so we omit the details). To show that

S̄ 00 (q) > 0 for all q > qS, note that di↵erentiating (7) yields

rS̄ 0 (q) =

"

n
X

j=1

fj
�

S̄ 0 (q)
�

#

S̄ 00 (q) .

Thus, S̄ 00 (q) > 0 for all q for which S̄ 0 (q) > 0, which completes the proof.

Remark 1.

Let S̄n (q) denote the social planner’s value function when the group comprises of n symmetric

agents, and observe that S̄n (q) is non-decreasing in n. That is because the social planner can

always instruct the additional agent(s) to exert zero e↵ort without decreasing her payo↵. Then

it follows from (7) that G
�

S̄ 0
n (q)

�

also increases in n, where

G (x) = n [f (x) x� c (f (x))] .

Now consider the change of variables

y = nf (x) so that x = c0
⇣y

n

⌘

,

and the function

G̃ (y) = yc0
⇣y

n

⌘

� nc
⇣y

n

⌘

.

Observe that G̃0 (y) = c0
�

y
n

�

+ y
n
c00
�

y
n

�

�c0
�

y
n

�

= y
n
c00
�

y
n

�

> 0, so G̃ (y) is increasing in y = nf (x).

To show that n
�

f
�

S̄ 0
n (q)

��

increases in n for all q, suppose that the contrary is true; i.e., that

there exists some q for which n
�

f
�

S̄ 0
n (q)

��

decreases in n. Then G̃
�

n
�

f
�

S̄ 0
n (q)

���

must also

decrease in n. However, this is a contradiction , because G̃
�

n
�

f
�

S̄ 0
n (q)

���

= S̄n (q). Therefore,

qt = q0+
´ t
0 n

�

f
�

S̄ 0
n (qs)

��

ds also increases in n, which in turn implies that the completion time

⌧̄ decreases in n.

Proof of Proposition 3.

Let us define D (q) = S̄ (q) �
Pn

i=1 Ji (q). By definitions, D(q) � 0. This implies that q � qS.

First, we claim that D0(Q) � 0. Suppose not. Then, there exists a value q⇤ 2 (q⇤, Q), such that

for q 2 [q⇤, Q], D(q) is decreasing. Since D(Q) = 0, this would mean that D(q) < 0, for those

values of q, which is a contradiction. Next, let �i (q) = S̄ (q)� Ji (q). Note that �0
i(q) > D0(q).
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We then have �0
i(Q) > 0. Therefore, either �0

i(q) > 0 for all q 2 (q,Q], or there exists some z

such that �0
i (z) = 0. Suppose that the latter is true. Then, using (4) and (7), we have

r�i (z) = �
X

j 6=i

cj
�

fj
�

S̄ 0 (z)
��

< 0

However, this is a contradiction, because �i (q) � D (q) � 0 for all q. Therefore, we conclude

that �0
i (·) > 0, that is, S̄ 0 (q) > J 0

i (q), which in turn implies that āi (q) > ai (q) for all i and

q.

Proof of Lemma 1.

To establish existence of a MPE that implements the e�cient outcome, substitute (9) into (8)

and take agent i’s the first order condition. This yields the system of ODE

rĴi (q) = �ci

⇣

fi

⇣

Ĵ 0
i (q)

⌘⌘

+

"

n
X

j=1

fj

⇣

Ĵ 0
i (q)

⌘

#

Ĵ 0
i (q)�

X

j 6=i

cj
�

fj
�

S̄ 0 (q)
��

=

"

n
X

j=1

fj

⇣

Ĵ 0
i (q)

⌘

#

Ĵ 0
i (q)�

n
X

j=1

cj
�

fj
�

S̄ 0 (q)
��

subject to Ĵi (Q) = V . It follows from (7) that Ĵi (q) = S (q) satisfies this ODE for all i and

q > qS. Because the planner’s problem has a unique solution (by Proposition 1), it follows that

this is the unique project-completing MPE. Budget balance on the equilibrium path follows by

constructions of the upfront payments given in (??).

The first assertion for part (iii) is straightforward. The second follows by noting that fi (·) is in-
creasing for all i, S̄ 0 (q) � 0 and S̄ 00 (q) � 0 for all q, so that h0

i (q) = S̄ 0 (q) S̄ 00 (q)
P

j 6=i f
0
j

�

S̄ 0 (q)
�

�
0.

Proof of Lemma 2.

Noting that the balance in the savings account evolves according to dHt =
h

rHt +
Pn

j=1 hj (qt)
i

dt,

each agent i’s problem is

rJi (q,H) = max
ai

(

�ci (ai) +

 

n
X

j=1

aj

!

Ji (q,H)

@q
+

 

rH +
n
X

j=1

hj

!

Ji (q,H)

@H
� hi (q)

)
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subject to the boundary condition

Ji (Q,H) = �i (V +H)

Note that here, each agent’s discounted payo↵ function Ji is a function of of both the state of

the project q and the balance in the savings account H. We conjecture that Ji is of the form

Ji (q,H) = �iH + J̃i (q)

in which case the HJB equation for J̃i (q) can be re-written as

rJ̃i (q) = max
ai

(

�ci (ai) +

 

n
X

j=1

aj

!

J̃ 0
i (q)�

"

hi (q)� �i

n
X

j=1

hj (q)

#)

subject to

J̃i(Q) = �iV

The first order condition gives ai (q) = fi

⇣

J̃ 0
i (q)

⌘

so that

rJ̃i (q) = �ci

⇣

fi

⇣

J̃ 0
i (q)

⌘⌘

+

"

n
X

j=1

fj

⇣

J̃ 0
j (q)

⌘

#

J̃ 0
i (q)�

"

hi (q)� �i

n
X

j=1

hj (q)

#

Thus, we see that J̃i (q) is equal to the value function of agent i who receives �iV upon completion

of the project and makes flow payments h̃i (q) = hi (q) � �i

Pn
j=1 hj (q). These flow payments

have to add up to zero, and the proposition is proved.

Proof of Proposition 4.

Let J̄i (q) denote agent i’s discounted payo↵ function for the problem in which each agent i

plays the e�cient strategy āi (q), he makes flow payments hi (q) =
P

j 6=i cj
�

fj
�

S̄ 0 (q)
��

+ rpi

and receives V �pi upon completion, where
Pn

i=1 pi = (n� 1) S̄ (0). Fix an agent i, and assume

that every agent j 6= i plays āj (q) = fj (S 0 (q)). Moreover, let �i =
V�pi

V+(n�1)[V�S̄(0)]
. We have,
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for any e↵ort ai (q) process of agent i, with ⌧a denoting the corresponding completion time,

e�r⌧a min {V � pi, �i (V +H⌧ )}�
ˆ ⌧a

u

e�rs {hi (qs) + ci (ai (qs))} ds

e�r⌧a (V � pi)�
ˆ ⌧a

u

e�rs {hi (qs) + ci (ai (qs))} ds

e�ruJ̄i (qu)

where the last equality holds because J̄i is the value function of the problem. In particular, with

u = t, we see that J̄i (qt) is an upper bound for agent i’s problem. On the other hand, with

ai (q) = āi (q) for all q, all the inequalities above become equalities, so it is optimal for agent

i to also choose strategy āi (q). We see that this is also true starting from any point in time

t  u  ⌧ , thus all playing āi (q) is an MPE.

So far, we have shown that this game has a unique project-completing MPE. To complete the

proof for part (i), we must show that there exists no equilibrium in which the project is not

completed. Clearly, there cannot exist an equilibrium in which the agents make the upfront

payments and then the equilibrium is not completed; at least one agent would be better o↵

rejecting the mechanism to guarantee himself a zero rather than a negative payo↵. Moreover,

observe that each agent has a (weakly) dominant strategy to accept the mechanism, since he will

have to make the upfront payments only if all agents accept the mechanism, in which case he

obtains a nonnegative payo↵, whereas rejecting the mechanism yields him payo↵ 0. Therefore,

this game has a unique MPE.

Since each agent’s reward is capped by �i (V +H⌧ ), the mechanism will never result in a budget

deficit. From Lemma 1, it follows that on the equilibrium path, the total balance in the savings

account is H⌧ = (n� 1)
⇥

V � S̄ (0)
⇤

, which implies that the budget is balanced, and hence

proves part (ii). Parts (iii) follows directly from the construction in Section 4.1.

Proof of Proposition 6. Suppose first that each agent i receives zero if he runs out of cash before

the project is completed, and otherwise he gets exactly V upon completion. Then, the system

of ODE looks the same as before, except hi (q) in the ODE is multiplied by Ii (q) and V in the

terminal condition is multiplied by Ii (Q). The e�cient outcome is still an MPE, because with

the corresponding choice of e↵ort, Ii (q) = 1 for all i and all q  Q, and the system of ODE is

the same as before.
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Suppose now that each agent i is promised min
�

V, V+H⌧
n

 

instead of V at completion, and zero

if he runs out of cash. Then, the agent’s payo↵ is equal to

Ii (Q) e�r⌧ min {V � pi, �i (V +H⌧ )}�
ˆ ⌧

0

e�rs {Ii (qs)hi (qs) + ci (ai (qs))} ds

Ii (Q) e�r⌧ (V � pi)�
ˆ ⌧

0

e�rs {Ii (qs)hi (qs) + ci (ai (qs))} ds

Consider first the deviations in which the agent does not run out of cash by completion. Then,

as before, with J̄i (q) denoting agent i’s value function in the e�cient MPE, the last term is no

greater than J̄i (q0), and hence the agent would not deviate if no one else does. If the agent

applies a deviation in which he runs out of cash, then his value function is negative, and the

same conclusion holds.

Proof of Proposition 7. We first show that ĝi (⌧) is non-increasing in ⌧ . For all ⌧ such that

gi (⌧)  ↵iV  V , because
P

j 6=i cj
�

fj
�

S̄ 0 (Q)
��

> 0 for all i, it follows from (14) that g0i (⌧) < 0,

and so ĝ0i (⌧)  0. On the other hand, for ⌧ such that gi (⌧) > ↵iV , we have ĝi (⌧) = ↵iV and

so it is independent of ⌧ . From this it follows that for ⌧ < ⌧̄ , we have gi (⌧) > ↵iV . Because, if

we had gi (⌧)  ↵iV for some ⌧ < ⌧̄ , then, gi (·) would be strictly decreasing on s > ⌧ , and we

could not have gi (⌧̄) = ↵iV .

Next, let J̄i (t, q) denote agent i’s discounted payo↵ function corresponding to the game in which

each agent i pays hi (t, q) and receives gi (⌧) at completion time ⌧ , and agents j 6= i play the

first best strategies. Then, by the arguments in Section 4.3, agent i also plays first best strategy

ai (t, q) = S̄ 0 (q).

We aim to show that if each agent makes flow payments ĥi (t, q) = [hi (t, q)]
+ and receives

ĝi (⌧) = [min {↵iV, gi (⌧)}]+ upon completion of the project, and all agents except for i play

first best strategies, then agent i cannot do better then playing first best himself. There are

three cases to consider:

(i) If the e↵ort process ai (t, q) of agent i does not lead to completion, then he has to pay

non-negative payments forever but will never receive a lump-sum reward, which is worse than

playing first best.

(ii) Similarly, playing ai (t, q) such that the corresponding completion time ⌧a is larger than

or equal to ⌧ 0i , where ⌧ 0i = min {⌧ : gi (⌧) = 0}, is worse than first best, because he gets zero

reward upon completion.
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(iii) Suppose now he plays ai (t, q) such that the corresponding completion time ⌧a is less than

⌧ 0i . Then, for ⌧ < ⌧ 0i , we have ĝi (⌧) = min {↵iV, gi (⌧)} and the discounted payo↵ satisfies

e�r⌧a ĝi (⌧
a)�

ˆ ⌧a

t

e�rs
�

h+ (s, qs) + ci (ai (s, qs))
 

ds

e�r⌧agi (⌧
a)�

ˆ ⌧a

t

e�rs {hi (s, qs) + ci (ai (qs))} ds

e�rtJ̄i (t, qt)

where the last equality holds because J̄i is the value function of the problem of maximizing the

expression in the second line. In particular, with t = 0, we see that J̄i (0, q0) is an upper bound

for agent i’s payo↵. Moreover, with all other agents playing the first best strategy, if agent i

also plays first best, we have ⌧a = ⌧̄ , gi (⌧̄) = ĝi (⌧̄) = ↵iV , hi ⌘ ĥi ⌘ 0, and all the inequalities

above become equalities, so it is optimal for agent i to also choose first best strategy S̄ 0 (q).

Altogether, we see that under the mechanism
n

ĝ, ĥ
o

playing first best is a MPE, in which

case the budget is balanced on the equilibrium path, and there is no budget deficit even o↵

equilibrium path.
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