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Abstract

We propose a new quantitative measure of model fragility, based on the

tendency of a model to over-fit the data in sample with poor out-of-sample

performance. We formally show that structural economic models are fragile

when the cross-equation restrictions they impose on the baseline model appear

excessively informative about combinations of model parameters that are other-

wise difficult to estimate. Our fragility measure is analytically tractable, which

is helpful to identify the parameter combinations as sources of model fragility.

Using these new tools, we diagnose fragility in asset pricing models with rare

disasters and long-run consumption risk.
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1 Introduction

When building and evaluating a quantitative economic model, we care about how

the model performs out of sample in addition to how well it fits the past data. This

dual concern gives rise to the classic tradeoff between the accuracy of in-sample fit

and the tendency of over-fitting. Too much emphasis on in-sample fit favors complex

models, which are prone to over-fit the data in sample and likely to have poor out-of-

sample performance. Precisely, those complex structural models over-utilize degrees of

freedom of some parameters to accommodate certain economic restrictions implied by

structural components in obtaining accurate in-sample fit. We refer to such economic

restrictions (structural components) as fragile and such parameters as “dark matter”.

A model, containing such fragile structural components or “dark matter”, is also

referred to as fragile. Model fragility is a property of a model which captures its

tendency to over-fit the past data, or in other words, captures the unreliability to

conclude its out-of-sample performance based on the accuracy in-sample fit. Thus,

models with higher fragility should be less favored among a set of candidate models

that fit the past data well.

The above tradeoff is intuitive but not easy to implement in practice. As we build

increasingly sophisticated quantitative structural models, the need for a systematic

way to quantify model fragility also grows. Traditional over-fitting tendency measures,

including the Akaike Information Criterion (AIC) and its variants, focus on the number

of free parameters in a model used to accommodate its functional forms. Such measures

potentially miss the implicit complexity: the effective degrees of freedom in a model

depends not only on the number of free parameters, but also on the sensitivity of

the key model implications to “reasonable” perturbations of parameter values. If its

implications are highly sensitive, a particular economic restriction of the model can

always fit the data by choosing specific parameter values, and thus it tends to over-fit

the data in sample. In such case, the accuracy of in-sample fit becomes unreliable for

assessing the particular structural components and, of course, the full model.
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In this paper, we propose a new quantitative measure of model fragility from an

informational perspective. Our measure is constructed based on Fisher information

matrices, so we refer to it as Fisher fragility measure. Consider a typical structural

model as a combination of functional-form specifications and parameters implied

by economic theories and statistical distributions. The model describes a joint

distribution of variables xt and yt.
1 The baseline model describes the distribution

of sample xn ≡ (x1, · · · ,xn) using the parameter vector θ ∈ Θ. The structural

component assumed on top of the baseline model is chosen to be evaluated for its

fragility. We are therefore measuring the “dark matter” of parameters θ of the baseline

model. The structural component, on top of the baseline model, introduces additional

ingredients that establish a joint distribution of (xn,yn).2 To be more precise, we

think of the additional economic restrictions implied by economic theories as adding

cross-equation restrictions to the system of moments based solely on the baseline

model. By definition, our Fisher fragility measure effectively compares the inverse

Fisher information matrices for the baseline model and the full structural model along

the directions associated with these linear subspaces and aggregates the differences.

Our Fisher fragility measure provides a simple decomposition that attributes

the sources of model fragility (i.e. “dark matter”) to a set of 1-dimensional linear

subspaces of the parameter space. This decomposition offers an intuitive sample size

interpretation. Each 1-dimensional linear subspace, indexed by j, corresponds to

a particular linear combination of model parameters, vjθ. We assume that model

parameters are estimated by GMM, with the fitted parameter vector θ̂, and use the

GMM J-distance, J(θ̂; xn,yn), as the quantitative measure of model’s in-sample fit

given observations (xn,yn). Asymptotically, our measure corresponds to the amount

of extra data needed to lower the asymptotic variance of vj θ̂ under the baseline model

to the level of its variance under the full structural model (with the original data).

1We explain the details of the generic theoretical framework in Section 2.
2As an example, consider a Lucas-tree economy. There is a representative agent with certain

preferences, and the growth rate of endowment is IID normal. A structural model in this case can be
the model for the joint dynamics of the exogenous endowment (xt) and endogenous return on the
endowment claim (yt), and θ includes the mean and volatility of endowment growth.
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It is worth highlighting that when measuring model fragility, the goal is not to

prove a model wrong. It is true that if a model is misspecified, further testable

restrictions may reveal that. However, as Box (1976) and Hansen (2014) stress, all

models are simplifications of reality that can eventually be rejected with sufficient

data. Hansen (2014) states that “the important criticisms are whether our models

are wrong in having missed something essential to the questions under consideration.”

This is also why we formulate our measure using the GMM framework. Through the

selection of moment conditions, the econometrician has the ability to determine what

the essential predictions of the model are.

It is also worth emphasizing that when measuring model fragility, the goal is not to

estimating parameters. This paper is not really proposing new estimation procedures

or drawing statistical inferences of any point estimators. Rather, the main purpose

is to provide a new model fragility measure facilitating structural model selection

when there are multiple candidates that fit a common set of fixed observations well

in sample. Our model fragility measure is in the same spirit of those penalization

procedures based on statistical fragility measures and adopted in statistical model

selections such as AIC, BIC, and LASSO procedures. However, differently, our measure

is specifically constructed for structural economic models. The over-fitting (model

fragility) evaluation is opposite to the goodness-of-fit consideration; the latter takes a

parametric model as fixed and focuses on the distribution of possible sample generated

from it, whereas the former takes a sample as given and focuses on the sensitivity of

various parametric models that fit in sample.

How to justify that our measure is indeed a measure of model fragility? To

answer the important question, we extend a popular measure of statistical over-

fitting tendency to our structural setting,3and we establish an asymptotic equivalence

3Spiegelhalter, Best, Carlin, and van der Linde (2002) measures over-fitting in a similar way,
but using the log-likelihood instead of the J-distance. Also, they use arbitrary prior for generating
the “reasonable” alternative models to assess a statistical model’s over-fitting tendency; however,
we argue it’s crucial to choose a baseline model and a self-coherent posterior for generating the
“reasonable” alternative functional-form specifications of structural components in economic modeling
evaluation. This procedure allows for more economic-meaningful model assessment, beyond pure

3



result showing that the over-fitting tendency measure is actually equivalent to our

Fisher fragility measure. Let θ0 denote the parameter value for the true model. The

corresponding value of the J-distance, J(θ0; xn,yn) is generally higher than the fitted

value J(θ̂(xn,yn); xn,yn), because the latter is chosen to minimize the J-statistic

in sample. Then, the gap between the J-distance for the true model and the fitted

structural model, d {θ0; xn,yn} = J(θ0; x
n,yn)− J(θ̂(xn,yn); xn,yn), measures the

degree of over-fitting by the estimated model. Not knowing what the true model

is, we follow the common approach and average the degree of over-fitting over a set

of possible true models,
∫
θ∈Θ

ξ(θ)d{θ; xn,yn} dθ, where ξ(θ) assigns relative weights

to alternative models. There is no broadly accepted choice of how to weigh the

alternative models, and the exact specification depends on the context. We first

specify the baseline model for xt. We then use the posterior distribution for θ implied

by the baseline model, π(θ|xn), as the distribution over the alternative models ξ(θ).

With this definition, we are assuming that inference based on the baseline model is

reliable. We are therefore measuring the fragility of the full structural model relative

to the baseline model.

Sensitivity analysis is a common technique for assessing model robustness. In-

tuitively, a model is considered robust if its key implications are not excessively

sensitive to small perturbations of model parameters. In practical applications, one

must specify the relevant perturbations and quantify “excessive sensitivity.” As a

result, it is difficult to generalize the traditional sensitivity analysis to multivariate

settings. Model fragility may not be fully revealed by perturbing individual parameters

– one must contemplate all possible multivariate perturbations, making the common

approach impractical for high-dimensional problems.

Our methodology is not subject to such limitations. We use the posterior associated

with the baseline model to weigh the relevant perturbations, and use the variance of

the moments in the structural model to judge the degree of sensitivity of the moments.

statistical considerations. Using this procedure, economists can focus on the fragility of certain
economic restrictions implied by economic theories and the “dark matter” of certain parameter space,
not necessarily the whole model and all its parameters.
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This eliminates the need for ad hoc choices associated with traditional sensitivity

analysis. In addition, the asymptotic measure helps diagnose the sources of model

fragility. Knowing the relative importance of each subspace for the overall fragility

of the model effectively reduces the dimensionality of the multivariate sensitivity

analysis. For example, if a single 1-dimensional subspace is dominant in terms of

its contribution to overall model fragility, one only needs to examine the sensitivity

of various moments to the perturbation of parameters in this particular subspace to

quantify the main aspects of model fragility.

As a theoretical contribution, we connect the model fragility measure to the

informativeness of the economic restrictions on the model parameters. To introduce the

concept of informativeness, consider an example of a model that links the observations

of the stock price P to the parameter θ describing the distribution of cash flows through

a restriction: E[P ] = P̄ (θ). An econometrician starts with a baseline statistical model

for cash flows and forms an (unconstrained) posterior belief about θ based on the

observed cash-flow data and the baseline model, which is depicted in the left panel of

Figure 1. The flatness of this posterior distribution indicates that there is nontrivial

uncertainty about the true value of θ according to the baseline model.

The middle panel plots the model-implied price function P̄ (θ). Due to the high

sensitivity of P̄ to θ (the derivative ∂P̄ /∂θ is large), there is only a narrow set of

values of θ (highlighted by the shaded region) for which the observed price data are

statistically close to the model-implied prices. This has two implications. First, by

imposing the economic model, the econometrician obtains a posterior for θ (see the

right panel) that is much more concentrated than the posterior distribution under

the baseline model. In this case, we say that the economic restriction E[P ] = P̄ (θ) is

highly informative about θ.

Second, for values of θ away from the shaded region in the middle panel but still

in the range of values considered highly likely under the unconstrained posterior, the

fit between the model and the observed price data deteriorates drastically, which is

a sign of model fragility. Thus, high informativeness of the economic restrictions is
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Figure 1: An example of an “informative” economic restriction on the parameters.
The left panel plots the unconstrained posterior about θ based on cash-flow data. The
middle panel plots the price function P̄ (θ). The dashed lines represent the confidence
band for the mean of price observations. The right panel plots the constrained posterior
about θ based on both cash-flow and price data.

closely linked to model fragility. Economic parameter restrictions are highly infor-

mative when they can significantly influence inference about certain combinations of

model parameters that are relatively difficult to estimate statistically without such

restrictions. Such parameter combinations are where the “dark matter” concentrates

in the parameter space.

We formalize the above notion of informativeness of economic restrictions in an

information-theoretic framework with an intuitive effective sample size interpretation.

The informativeness of cross-equation restrictions relative to the baseline model is also

reflected in the effect of the former on the posterior distribution of model parameters.

We quantify the discrepancy between the posteriors of model parameters under the

baseline model and under the model with further economic restrictions using relative

entropy. We then define an effective sample size measure of informativeness of cross-

equation restrictions as the average amount of extra data that, under the baseline

model, generates the same magnitude of the shift in the posterior distribution. In

other words, we equate the information content of the economic restrictions with the

information content of additional data under the baseline statistical model. We show
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that the resulting measure of informativeness of cross-equation restrictions is related

asymptotically to our measure of model fragility.

An important class of applications of our measure is to structural models that

involve agents’ beliefs. One prevalent approach to discipline beliefs is by imposing

the rational expectations (RE) assumption. The RE assumption ties down the beliefs

of economic agents by endowing them with precise knowledge of the probability law

implied by an economic model. A common example of a RE model is a setting in

which the agents know the true parameter value θ0. The assumption of such precise

knowledge is usually justified as a limiting approximation to the beliefs formed by

learning from a sufficiently long history of data (see Hansen, 2007). If the posterior

distribution of θ given xn under the baseline model serves to describe the outcome

of such learning, then high fragility of the economic model means that the model

moments are highly sensitive to the exact choice among the likely values of the model

parameter vector. In that case, assuming that the agents know the true parameter

vector may be a poor approximation to a broader class of models in which agents

maintain nontrivial uncertainty about the probability law of the model.

We apply the fragility measure to two examples from the asset pricing literature.

The first example is a rare-disaster model. In this model, parameters describing

the likelihood and the magnitude of economic disasters are relatively difficult to

estimate from the data unless one uses information in asset prices.4 We describe the

fragility measure in this example analytically. We also illustrate how to incorporate

4A few papers have pointed out the challenges in testing disaster risk models. Zin (2002) shows
that certain specifications of higher-order moments in the endowment growth distribution can
help the model fit the empirical evidence while being difficult to reject in the data. In his 2008
Princeton Finance Lectures, John Campbell suggests that variable risk of rare disasters might be
the “dark matter for economists.” A related concept is the so-called “Peso problem” (see, e.g.,
Rogoff, 1980; Krasker, 1980; Veronesi, 2004; Lewis, 2008). The effect focuses on forecast errors that
are systematically mistaken ex post in finite sample when agents’ expectations about infrequent
discrete shifts do not materialize in their observations. Thus, the term is interchangeable with the
finite-sample weak identification problems. In contrast, the concept “dark matter” differs in three
aspects: (1) it is a model property but not a finite-sample issues; (2) it can be huge even when
parameters are well-identified in finite sample or the other way around; (3) it is not only about
dynamics of rare discrete events, but also about preference or learning specifications when the baseline
is structural.
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uncertainty about the structural parameters (preference parameters in this context)

when computing model fragility. The second example is a long-run risk model with a six-

dimensional parameter space. We use this example to illustrate how to systematically

diagnose the sources of fragility in a complex model.

1.1 Related Literature

The idea that model fragility is connected to complexity dates back at least to Fisher

(1922). Model complexity is traditionally measured by the number of parameters in

the model, because of the coincidence of the two quantities in Gaussian-linear models

(see, e.g. Ye, 1998; Efron, 2004). Numerous statistical model selection procedures are

based on this idea.5

The limitations of using the number of parameters to measure model complexity are

well known. Extant literature covers several alternative approaches to measuring the

“implicit model complexity.” Ye (1998), Shen and Ye (2002), and Efron (2004) propose

to measure complexity (or “generalized degrees of freedom” in their terminology) for

Gaussian-linear models using the sensitivity of fitted values with respect to the observed

data. Gentzkow and Shapiro (2013) apply a similar idea to examine identification

issues in complex structural models. Spiegelhalter, Best, Carlin, and van der Linde

(2002), Ando (2007) and Gelman, Hwang, and Vehtari (2013), among others, propose

a Bayesian complexity measure they call “the effective number of parameters,” which

is based on out-of-sample model performance. These methods measure the sensitivity

of model implications to parameter perturbations. The important common feature

of these proposals is that they rely on the model being evaluated to determine the

magnitude of necessary parameter perturbations. This is potentially problematic

when evaluating economic models that are fragile according to our definition. For such

models, the posterior distribution over the parameters is highly concentrated as a result

5Examples include the Akaike Information Criterion (AIC) (Akaike, 1973), the Bayesian Informa-
tion Criterion (BIC) (Schwarz, 1978), the Risk Inflation Criterion (RIC) (Foster and George, 1994),
and the Covariance Inflation Criterion (CIC) (Tibshirani and Knight, 1999).
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of excessive model sensitivity to its parameters. Relying on this posterior to generate

parameter perturbations can under-represent the true extent of model fragility. In

contrast, we propose to use the baseline model to determine the distribution ξ(θ) over

the potential alternative models.

Hansen (2007) discusses extensively concerns about the informational burden that

rational expectations models place on the agents, which is one of the key motivations

for research in Bayesian learning, model ambiguity, and robustness.6 In particular,

the literature on robustness in macroeconomic models (see Hansen and Sargent,

2008; Epstein and Schneider, 2010, for recent surveys) recognizes that the traditional

assumption of agents’ precise knowledge of the relevant probability distributions is

not reasonable in certain contexts. This literature explicitly incorporates robustness

considerations into agents’ decision problems. Our approach is complementary to

this line of research in that we propose a general methodology for measuring and

detecting fragility of economic models, thus identifying situations in which parameter

uncertainty and robustness could be particularly important.

Our work is connected to the literature in rational expectations econometrics, where

economic assumptions (the cross-equation restrictions) have been used extensively to

gain efficiency in estimating the structural parameters.7 When imposing such assump-

tions results in a fragile model, standard inference may result in excessively small

confidence regions for the parameters, with low coverage probability under reasonable

parameter perturbations. Related, fragile models tend to generate excessively high

quality of in-sample fit, which biases model selection in their favor. The combination

of these two effects makes common practice of post-selection inference misleading in

the presence of “dark matter”.

6See Gilboa and Schmeidler (1989), Epstein and Schneider (2003), Hansen and Sargent (2001,
2008), and Klibanoff, Marinacci, and Mukerji (2005), among others.

7For classic examples, see Saracoglu and Sargent (1978), Hansen and Sargent (1980), Campbell
and Shiller (1988), among others, and textbook treatments by Lucas and Sargent (1981), Hansen
and Sargent (1991).
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2 Measuring Model Fragility

In this section, we first introduce a formal measure of model fragility. Then we derive

asymptotic properties of the fragility measure.

2.1 A Generic Model Structure

Consider a baseline model P, which is a part of the full structural model Q. The

baseline model P specifies the dynamics of a vector of variables xt with the underlying

distribution P. In comparison, the full structural model Q aims to capture certain

economic features of the distribution Q that governs the joint dynamics of xt and

additional variables yt.

More precisely, the baseline model P of xn can be specified by a DΘ× 1 parameter

vector θ, while the whole structural model Q may incorporate extra data yn and

parameters ψ. The distribution of yn conditional on xn depends on not only the

baseline parameter vector θ, but also the DΨ × 1 nuisance parameter vector ψ.

The baseline parameters θ are over-identified by both P and additional structural

components in Q. The nuisance parameters ψ are parameters which are not part of

the baseline model but should be accounted for in assessing the full model. We assume

that the true parameter values θ0 and ψ0 are contained in the interiors of sets Θ and

Ψ, respectively.

We assume that the stochastic process {xt} is strictly stationary and ergodic with

a stationary distribution P. The true joint distribution for xn ≡ (x1, · · · ,xn) is Pn.

Similarly, we assume that the joint stochastic process {xt,yt} is strictly stationary and

ergodic with a stationary distribution Q. The econometrician does not need to specify

the full functional form of the joint distribution of (xn,yn) ≡ {(xt,yt) : t = 1, · · · , n},

which we denote by Qn. The unknown joint density is q(xn,yn).

We evaluate the performance of a structural model under the Generalized Method

of Moments (GMM) framework. The seminal paper by Hansen and Singleton (1982)
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pioneers the literature of applying GMM to evaluate rational expectation asset pricing

models. Specifically, we assume that the model builder is concerned with the model’s in-

sample and out-of-sample performances as represented by a set of moment conditions,8

based on a DQ × 1 vector of functions gQ(θ, ψ; x,y) of data observations (xt,yt) and

the parameter vectors θ and ψ satisfying the following conditions:

E [gQ(θ0, ψ0; xt,yt)] = 0. (1)

The baseline moment functions gP(θ; xt) characterize the moment conditions of the

baseline model. They constitute the first DP elements of the whole vector of moment

functions gQ(θ, ψ; xt,yt). Thus, the baseline moments can be represented by the full

set of moments weighted by a special matrix:

gP(θ; xt) = ΓPgQ(θ, ψ; xt,yt) where ΓP ≡
[
IDP , ODP×(DQ−DP)

]
. (2)

The moment functions gP(θ; xt) depend only on parameters θ, since all parameters

of the baseline model are included in θ. Accordingly, the moment conditions for the

baseline model is

E [gP(θ0; xt)] = 0. (3)

Denote the empirical moment conditions for the full model and the baseline model by

ĝQ,n(θ, ψ) ≡ 1

n

n∑
t=1

gQ(θ, ψ; xt,yt) and ĝP,n(θ) ≡ 1

n

n∑
t=1

gP(θ; xt), respectively.

Then, the optimal GMM estimator (θ̂Q, ψ̂Q) of the full model and that of the baseline

8We can also adopt the CUE method of Hansen, Heaton, and Yaron (1996) or its modification
Hausman, Lewis, Menzel, and Newey (2011)’s RCUE method, or some other extension of GMM with
the same first-order efficiency and possibly superior higher-order asymptotic properties. This will
lead to alternative but conceptually similar measures of overfitting. To simplify the comparison with
the Fisher fragility measure, we chose to use the original GMM framework.
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model θ̂P minimize, respectively,

Ĵn,SQ(θ, ψ) ≡ nĝQ,n(θ, ψ)TS−1
Q ĝQ,n(θ, ψ) and Ĵn,SP(θ) ≡ nĝP,n(θ)TS−1

P ĝP,n(θ). (4)

Here, Ĵn,SQ and Ĵn,SP are often referred to as the J-distances, and SQ and SP have the

following explicit formulae (see Hansen, 1982),

SQ ≡
+∞∑
`=−∞

E
[
gQ(θ0, ψ0; xt,yt)gQ(θ0, ψ0; xt−`,yt−`)

T
]
, and (5)

SP ≡
+∞∑
`=−∞

E
[
gP(θ0; xt)gP(θ0; xt−`)

T
]
, respectively. (6)

The matrix SQ and SP are the covariance matrices of the moment conditions at the

true parameter values. In practice, when SQ or SP is unknown, we can replace it with

a consistent estimator ŜQ,n or ŜP,n, respectively. The consistent estimators of the

covariance matrices are provided by Newey and West (1987a), Andrews (1991), and

Andrews and Monahan (1992).

We use GMM to evaluate model performance because of the concern of likelihood

mis-specification. The GMM approach gives the model builder flexibility to choose

which aspects of the model to emphasize when estimating model parameters and

evaluating model specifications. This is in contrast to the likelihood approach, which

relies on the full probability distribution implied by the structural model.

Finally, we introduce GMM Fisher information matrices. We denote the GMM

Fisher information matrix for the baseline model as IP(θ) (see Hansen, 1982; Hahn,

Newey, and Smith, 2011), and

IP(θ) ≡ GP(θ)TS−1
P GP(θ), (7)

where GP(θ) ≡ E [∇gP(θ; xt)],and for brevity, we denote GP ≡ GP(θ0). We denote the
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analog for the structural model as IQ(θ, ψ),

IQ(θ, ψ) ≡ GQ(θ, ψ)TS−1
Q GQ(θ, ψ), (8)

where GQ(θ, ψ) ≡ E [∇gQ(θ, ψ; xt,yt)], and for brevity, we denote GQ ≡ GQ(θ0, ψ0).

Computing the expectation GQ(θ) and GQ(θ, ψ) requires knowing the distribution Q.

In cases when Q is unknown, GP(θ) in (7) and GQ(θ, ψ) in (8) can be replaced by

their consistent estimators ∇gP(θ; xt) and ∇gQ(θ, ψ; xt,yt). For the full model Q, we

will focus on its implied Fisher information matrix IQ(θ|ψ):

IQ(θ|ψ) ≡
[
ΓΘIQ(θ, ψ)−1ΓTΘ

]−1
, where ΓΘ ≡ [IDΘ

, ODΘ×DΨ
] . (9)

More precisely, the Fisher information matrix IQ(θ, ψ) can be partitioned into a

two-by-two block matrix according to θ and ψ:

IQ(θ, ψ) =

 I
(1,1)
Q (θ, ψ), I

(1,2)
Q (θ, ψ)

I
(2,1)
Q (θ, ψ), I

(2,2)
Q (θ, ψ)

 , (10)

where I
(1,1)
Q (θ, ψ) is the DΘ ×DΘ information matrix corresponding to baseline pa-

rameters θ, I
(2,2)
Q (θ, ψ) is the DΨ ×DΨ information matrix corresponding to nuisance

parameters ψ, and I
(1,2)
Q (θ, ψ) = I

(2,1)
Q (θ, ψ)T is the DΘ ×DΨ cross-information matrix

corresponding to θ and ψ. Then IQ(θ|ψ) can be written as

IQ(θ|ψ) = I
(1,1)
Q (θ, ψ)− I

(1,2)
Q (θ, ψ)I

(2,2)
Q (θ, ψ)−1I

(1,2)
Q (θ, ψ)T , (11)

which generally is not equal to the Fisher information sub-matrix I
(1,1)
Q (θ, ψ) for baseline

parameters θ, except the special case in which I
(1,2)
Q (θ, ψ) = 0, i.e. the knowledge of θ

and that of ψ are not informative about each other. We assume that the information

matrices are nonsingular in this paper (Assumption A4 in Appendix A).

By using the GMM Fisher information matrices, we appeal to the optimal weighting
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matrices S−1
P and S−1

Q . In Hansen and Jagannathan (1997), it is shown that the optimal

weighting matrix is not efficient for measuring model mis-specification. Hansen and

Jagannathan (1997) try to measure model mis-specification but not the fragility of

model’s implications to potential mis-specifications (i.e. over-fitting tendency). They

are very different objects. More precisely, to construct the lack-of-fit measure (i.e.

measure of model mis-specification) in Hansen and Jagannathan (1997), the weighting

matrix is intentionally chosen not to be the optimal GMM weighting matrix for the

following reasons. First, the baseline metric for gauging the lack of fit should not be

sensitive to the choice of SDF proxies under the assessment. This idea is similar to

our idea of fixing a baseline model for over-fitting tendency measures. Second, the

weighting matrix should not reward the sampling errors associated with the sample

mean of the pricing errors. Since the absolute level of the pricing errors is a more

reasonable measure for the mis-specification of a SDF proxy. In contrast, our over-

fitting tendency measure requires model’s goodness-of-fit measures as loss functions

like in the statistical literature (see Spiegelhalter, Best, Carlin, and van der Linde,

2002). For the moment-based setting, as recommended by Hansen (1982), we adopt

J-distance as the goodness-of-fit measure (loss function) which uses the efficient GMM

weighting matrix. Following Hansen (1982), there have been further technical analysis

that justify the unique role of optimal weighting matrix in gauging moment condition

specifications from different angles. As emphasized by Newey and West (1987b), it

is crucial to define the GMM likelihood ratio test statistics based on the optimal

GMM estimator, for which W = S−1
Q . This is because another choice of the weighting

matrix W will destroy the asymptotic property of having chi-squared distribution

as limiting distribution and will break the asymptotic equivalence between GMM

likelihood ratio test statistics and other GMM test statistics such as Wald and LM

test statistics. Similarly, as highlighted in Kim (2002), it is important to use efficient

weighting matrix for developing the theory of limited information likelihood based on

(asymptotic) quadratic moment conditions.
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2.2 Model Fragility

We now define our measure of model fragility. We start with introducing the “Fisher

fragility measure” based on GMM Fisher information matrices and analyzing its

properties.

Definition 1 (Fisher Fragility Measure). The Fisher fragility measure corresponding

to a full-rank Dv ×DΘ matrix v is defined as

%v(θ0|ψ0) ≡ tr
[(

vIQ(θ0|ψ0)−1vT
)−1 (

vIP(θ0)−1vT
)]
, (12)

where IP(θ0) and IQ(θ0|ψ0) are the matrices defined in (7) and (11), respectively.

In the special case where v is a full-rank DΘ×DΘ matrix, %v(θ0|ψ0) is independent

of the choice of v. In that case we denote the Fisher fragility measure as %(θ0|ψ0),

which is the overall Fisher fragility measure of model. In another special case where

Dv = 1, our measure essentially becomes the ratio of two asymptotic variances of

optimal GMM estimators vθ̂Q and vθ̂P. From Definition 1, it immediately follows

that the Fisher fragility measure can be characterized by the solution of an eigenvalue

problem, which is summarized by Proposition 1 whose proof is in Appendix C.1.

Proposition 1. For a full-rank Dv×DΘ matrix v, let λ1(v) ≥ λ2(v) ≥ · · · ≥ λDv(v)

be the eigenvalues of a Fisher-information-ratio matrix Π0(v) defined as follows

Π0(v) ≡
(
vIQ(θ0|ψ0)−1vT

)−1/2 (
vIP(θ0)−1vT

) (
vIQ(θ0|ψ0)−1vT

)−1/2
. (13)

Then the Fisher fragility measure can be characterized by the sum of the eigenvalues:

%v(θ0|ψ0) = λ1(v) + λ2(v) + · · ·+ λDv(v). (14)

and the smallest eigenvalue λDv(v) is not less than one.

The measure %v(θ0|ψ0) is defined for specific feature directions v in the space of

baseline parameters. One might be interested in searching among a class of feature
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directions to find the worst-case configuration. It is actually quite straightforward for

the Fisher fragility measure, because the optimization problem is a finite-dimensional

one. This leads us to define the following worst-case Fisher fragility measure.

Definition 2. The worst-case Fisher fragility measure for the class of D-dimensional

feature functions (D ≤ DΘ) is defined as:

%D(θ0|ψ0) = max
v∈RD×DΘ ,Rank(v)=D

tr
[(

vIQ(θ0|ψ0)−1vT
)−1 (

vIP(θ0)−1vT
)]
. (15)

The problem in (15) is a generalized eigenvalue problem. The following proposition

summarizes its solution. The proof of Proposition 2 is in Appendix C.2.

Proposition 2. Let λ1 ≥ λ2 ≥ · · · ≥ λDΘ
be the eigenvalues of Fisher information

ratio matrix Π0(IDΘ
) = IQ(θ0|ψ0)

1
2 IP(θ0)

−1IQ(θ0|ψ0)
1
2 , with the corresponding DΘ ×

1 eigenvectors e1, e2, · · · , eDΘ
. Then the D-dimensional worst-case Fisher fragility

measure is equal to

%D(θ0|ψ0) = λ1 + λ2 + · · ·+ λD, (16)

with the worst-case D-dimensional linear subspace of the parameter space characterized

by the matrix v∗D = [v∗1 v
∗
2 · · · v∗D]T ,

v∗i = IQ(θ0|ψ0)
1
2 ei/

∣∣∣IQ(θ0|ψ0)
1
2 ei

∣∣∣ . (17)

As a special case, the overall Fisher fragility measure is given by

%(θ0|ψ0) = λ1 + λ2 + · · ·+ λDΘ
. (18)

From Proposition 2, it is easy to see that the worst-case Fisher fragility measure

%D(θ0|ψ0) is monotonically increasing in the dimension of the subspace D.
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Proposition 3. (Monotonicity) For D1 ≤ D2 ≤ DΘ,

%D1(θ0|ψ0) ≤ %D2(θ0|ψ0). (19)

The proof can be found in Appendix C.3.

2.3 An Informational Interpretation

The intuition behind the worst-case Fisher fragility measure is as follows. Through

the matrix v, we search over all D-dimensional linear subspaces of the parameter

space to find the maximum discrepancy between the inverses of the two information

matrices, IP(θ0) and IQ(θ0|ψ0). In the context of GMM estimation (or other moment-

based estimation), the inverse of the information matrix is linked to the asymptotic

covariance matrices of the estimators. Since we require baseline model P’s moment

conditions to be included in those for the full model Q, the asymptotic efficiency of

the GMM estimator for the structural model dominates that of the baseline model.

The Fisher fragility measure effectively compares the asymptotic covariance matrices

of these two estimators to isolate the information provided by the structural model

restrictions.

We can view Proposition 2 as a decomposition of the overall fragility of a model into

DΘ linear subspaces of 1 dimension. The i-th largest eigenvalue λi (1 ≤ i ≤ DΘ) of

Π0(IDΘ
) gives the marginal contribution of the 1-dimensional linear subspace associated

with v∗i to the overall fragility measure. In the language of sensitivity analysis, such

a decomposition reveals the directions in which small perturbations of parameters

can have the largest impact on the model output. Moreover, the decomposition is

also useful to gauge the tendency of obtaining extreme over-fitting outcomes for a

structural model (see Corollary 2).

The Fisher fragility measure has a natural “effective-sample-size” interpretation.

Consider the case of D = 1. In this case, we ask what is the minimum sample size
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required for the estimator of the baseline model to match or exceed the precision

of the estimator for the full structural model in all 1-dimensional linear subspaces

of the parameter space. Because the asymptotic covariance of the estimator is

proportional to the sample size n, the required additional effective sample size for

the baseline model is %1(θ0|ψ0) times the sample size n for the structural model to

achieve at least the same estimation accuracy. The idea is formalized under a rigorous

information-theoretic framework with the Kullback-Leibler divergence (i.e. the relative

entropy) and finite-sample validity in the supplemental material Chen, Dou, and

Kogan (2017). Therefore, the excessive informativeness of cross-equation restrictions

is fundamentally associated with model fragility. More precisely, the fundamental idea

of the Fisher fragility measure is that structural economic models are fragile when the

cross-equation restrictions appear excessively informative about certain combinations

of model parameters that are otherwise difficult to estimate (“dark matters”).

2.4 Redundancy of Moment Conditions

It may appear that the Fisher fragility measure favors redundant cross-equation

restrictions. To clarify that it is not the case, we emphasize that our work tries to answer

different questions from the literature of efficient estimation and testing with correctly

specified models. Our focus is related to efficient estimation with model uncertainty

involves model selection. Under the setting of correct specifications, Breusch, Qian,

Schmidt, and Wyhowski (1999) provide a general discussion of redundant moments, as

well as the useful conditions in identifying redundant moment conditions in practice.

Also, under the setting of correct specifications, Cheng and Liao (2015) propose a

one-step procedure to distinguish valid-and-relevant moments from invalid or irrelevant

moments and automatically achieve efficient point estimation with many moments. To

be more precise, we focus on the setting in which multiple specifications are statistically

valid in finite sample but there are over-fitting concerns in the statistical validity

assessment. This in-sample over-fitting tendency is exactly what we are after, and
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it is an important issue since it leads to poor out-of-sample performance of models.

Of course, if a model can be significantly rejected by efficient tests (i.e. statistical

invalid), say by Hansen (1982) over-identification tests, there is no need to evaluate

the fragility of that model.

3 Model Over-Fitting Tendency

The Fisher fragility measure, discussed in Section 2, is conceptually straightforward,

and it is ready to be implemented in various applications. The intuitive interpretation

of the measure is pure information-based in an asymptotic sense. How to justify that

the measure is indeed a measure of model fragility? To address this question, we first

introduce an econometric measure of over-fitting which extends a popular existing

statistical over-fitting tendency measure to our structural setting (see Spiegelhalter,

Best, Carlin, and van der Linde, 2002). We establish an asymptotic equivalence

result showing that our Fisher fragility measure essentially quantifies the over-fitting

tendency of certain structural component of model.

3.1 Econometric Measure of Over-fitting Tendency

Out theoretical results build on the Bayesian framework. The Bayesian framework is

the most natural one to investigate model’s over-fitting tendency (see Spiegelhalter,

Best, Carlin, and van der Linde, 2002) and is a vastly used method for estimating

macroeconomic structural models (see Herbst and Schorfheide, 2015). Let π(θ) be a

prior distribution on θ, and let πP(θ|xn) be the posterior of θ based on the likelihood

of the baseline model πP(xn|θ). To establish the theoretical results involving Bayesian

methods, we need to assume that the likelihood of the baseline model is well specified.

The theoretical result in this section is the only place we assume full likelihood

function for the baseline model. As far as the core idea is concerned, this assumption

is not needed. When the likelihood function is well specified and the score functions
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are all used as moment restrictions in defining the Fisher fragility measure, the

Fisher information matrix IP(θ0) becomes the standard one under the likelihood-based

approach.

Definition 3 (Over-fitting Tendency Measure). We define the over-fitting tendency

measure for the structural model Q relative to the baseline model P as

%o(θ0|ψ0,x
n,yn) ≡

∫
dSQ{θ; xn,yn}πP(θ|xn)dθ, (20)

where dSQ{θ; xn,yn} = Ĵn,SQ(θ, ψ̌Q)− Ĵn,SQ(θ̂Q, ψ̂Q). (21)

Here, Ĵn,SQ(θ, ψ) is the J-distance defined in (4), and (θ̂Q, ψ̂Q) is the GMM estimator,

and (θ, ψ̌Q) is the constrained GMM estimator with fixed θ. The covariance matrix SQ

theoretically depends on the true parameters θ0 and ψ0.

The idea of our fragility measure is to quantify the in-sample over-fitting of a

structural model. In Equation (21), dSQ{θ; xn,yn} is the J-distance (the GMM analog

of the log likelihood ratio) of the model with jointly-fitted baseline parameter θ̂Q and

nuisance parameters ψ̂Q, which provide the best in-sample fit of the data based on the

GMM criterion, against an alternative model with baseline parameters θ and their

fitted nuisance parameters ψ̌Q. Assuming true parameter is θ instead of θ̂Q, the fact

that the J-distance based on (θ̂Q, ψ̂Q) is smaller is a symptom of over-fitting.

The weights attached to alternative models are essential for our definition of model

fragility. We consider alternative values of θ, while tuning the nuisance parameters ψ

to fit the data as well as possible under the same criterion, i.e., we choose ψ = ψ̌Q,

the constrained GMM estimator. Starting with a prior π(θ), we weigh the various

alternative models using πP(θ|xn) – the posterior for θ based on baseline model’s

moment conditions and data xn. The weighted average of dSQ{θ; xn,yn} over the

entire set of alternative models represents the tendency of model over-fitting.

The weights on various alternative models depend on P, therefore %o(θ0|ψ0,x
n,yn)

is a measure of over-fitting tendency of Q relative to the baseline model P. That is,
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the measure %o(θ0|ψ0,x
n,yn) quantifies the degrees of freedom allowed by baseline

parameters θ accommodating the additional structural restriction imposed by Q to

achieve an accurate in-sample fit. Thus, the measure of model’s over-fitting tendency

(fragility) depends on the choice of the baseline model, or in other words, depends

on the particular structural components of Q chosen to be assessed. For example,

many structural models involve both a statistical model of exogenous variables and

restrictions on the endogenous variables which are derived from the economic model.

For such models, a natural choice may be to take the baseline P to be the statistical

model, with xt being the exogenous variables. Variables yt would then be the

endogenous ones in the structural model. In this context, our fragility measure

quantifies the fragility of the structural model relative to the statistical model.

Alternatively, a structural model could be taken as the baseline model. Then,

the fragility measure applies to the over-fitting caused by the additional economic

restrictions imposed by Q relative to the baseline model P.9

In general, there is no hard rule imposed on the choice of baseline model. These

choices must be made by the model builder depending on which aspects of the model

are intended to be covered by the fragility analysis. Thus, the choice of the baseline

model, together with θ, is more economical and less statistical.

The distribution over the alternative models also depends on the choice of the

prior π(θ). If the econometrician does not have any information about θ beyond the

baseline model and the data xn, an “uninformative” prior would be a desirable choice,

one candidate being the Jeffreys prior. In many cases a truly uninformative prior is

difficult to define, especially in the presence of constraints. If the econometrician has

additional information about θ outside the model (e.g., from additional data or other

9In this case, the preference parameters or belief parameters can be part of the baseline parameters
θ. A natural case in which the preference parameters and belief parameters can show up as part of
the baseline parameters θ is as follows. For example, consider a model that explains equity returns
and equity options returns simultaneously. If the model of equity returns alone is taken as the
baseline model, some preference parameters or belief parameters must be included in the baseline
parameters θ. The goal is evaluate the fragility/informativeness of the cross-equation restrictions on
the Euler equations of the equity options returns.
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models), such information can be incorporated through an informative prior.

Our definition of model fragility builds upon Spiegelhalter, Best, Carlin, and

van der Linde (2002), who propose a related measure of model complexity for statistical

models. Our measure differs from theirs in two respects. First, we adopt the GMM

framework as opposed to the likelihood framework to address the issue of stochastic

singularities that arise in structural models and to give the econometrician the flexibility

to focus on specific features of a model. Second, Spiegelhalter, Best, Carlin, and

van der Linde (2002) do not explicitly specify the weighting of alternative models.

By contrast, in economic modeling evaluation, it’s crucial to choose a baseline model

and use a self-coherent posterior to discipline the alternative structural component

specifications. This procedure allows to focus on the fragility of certain economic

restrictions implied by economic theories (i.e. the “dark matter” of certain parameter

space), not necessarily the whole model and all its parameters.

3.2 Over-fitting Tendency with Feature Functions

Next, we generalize the fragility measure %o(θ0|ψ0,x
n,yn) to allow for transformations

of parameters θ.

Definition 4 (Over-fitting Tendency Measure with Feature Functions). Let f be a

RDΘ → RDf continuously differentiable mapping with 1 ≤ Df ≤ DΘ. Then, we define

%fo(θ0|ψ0,x
n,yn) ≡

∫
dSQ{f(θ); xn,yn}πP(θ|xn)dθ, (22)

where dSQ{f(θ); xn,yn} = inf
(θ̃,ψ̃):f(θ̃)=f(θ)

Ĵn,SQ(θ̃, ψ̃)− Ĵn,SQ(θ̂Q, ψ̂Q). (23)

Here Ĵn,SQ(θ, ψ) is the J-distance defined in (4), and (θ̂Q, ψ̂Q) is the GMM estimator.

Transforming the original parameter vector is useful, for example, if one wants to

measure model’s robustness with respect to a low-dimensional subset in the parameter

space. For instance, to measure model robustness with respect to the first Df elements
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of θ (Df < DΘ), we set f(θ) = Fθ, where F = ∇f(θ) ≡
[
IDf , ODf×(DΘ−Df )

]
. In the

special case of f(θ) = Fθ, with F being an arbitrary full-rank DΘ ×DΘ matrix, we

recover the original overall fragility measure, %fo(θ0|ψ0,x
n,yn) = %o(θ0|ψ0,x

n,yn).10

3.3 Justification of Fisher Fragility Measures

The econometric over-fitting tendency measures in Sections 3.1 and 3.2 are built

on the basis of well-established statistical over-fitting tendency measures. In this

subsection, we show that our Fisher fragility measure fundamentally captures a par-

ticular structural component specification’s over-fitting risk. In practice, computation

of the over-fitting tendency measures %o(θ0|ψ0,x
n,yn) and %fo(θ0|ψ0,x

n,yn) may be

complicated by the complex form of the likelihood function of the baseline model,

the curse of dimensionality induced by high-dimensional parameter spaces, and the

additional minimization problem involved in the definition of the generalized mea-

sure. In contrast, the computation of our Fisher fragility measure is simple and an

eigen-decomposition is derived.

The over-fitting tendency measure is connected to the original Fisher fragility mea-

sure defined in Section 2.2, as we show in Theorem 1. To derive the theoretical results,

we require certain regularity conditions to discipline the behavior of the data. Specifi-

cally, the regularity conditions we choose are influenced by three major considerations.

First, our assumptions are chosen to allow processes of sequential dependence, which

should be relevant to inter-temporal asset pricing models. Second, our assumptions

are required to meet the analytical tractability. Third, our assumptions are sufficient

conditions in the sense that we are not trying to provide the weakest conditions to

guarantee the theoretical results work.

We now introduce the regularity conditions for establishing the theoretical results

in this paper. These regularity conditions are all standard in the econometric literature

10A similar monotonicity property to Proposition 19 applies to %fo (θ0, ψ0; xn,yn). Let f̃ =
[f, f1]′, where f and f1 are continuously differentiable and Df̃ ≤ DΘ. Then %fo (θ0|ψ0,x

n,yn) ≤
%f̃o (θ0|ψ0,x

n,yn).
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of GMM. More detailed discussions and remarks can be found in Appendix A. The

process {xt,yt} is assumed to be a strictly stationary Markov process (Assumption

A1). Specifically, we assume that the baseline moments to be included in the full vector

of moment functions gQ(θ, ψ; xt,yt) for fragility assessment. The moment functions

in gQ are twice continuously differentiable, and the partial derivatives with respect

to parameters satisfy standard dominance conditions. The times series satisfy the

uniform mixing condition as in Newey (1985a) and White and Domowitz (1984). The

mixing condition (Assumption A2) and the dominance condition (Assumption A3) are

needed for the ULLN as in White and Domowitz (1984). They also imply the moment

continuity of stochastic functions gQ, as well as their derivatives, adopted by Hansen

(1982). Lastly, we need identification conditions to guarantee that the minimization

problem in (5) has a unique solution asymptotically (Assumptions A4 and A5). A

standard sufficient condition for GMM identification is that the covariance matrix SQ

is positive definite, the moment conditions (1) and (3) are satisfied only at θ0, and

the Fisher information matrix IQ(θ0, ψ0) is non-singular. The GMM identification

condition is standard in GMM literature.11 The prior π(θ) is twice continuously

differentiable and positive (Assumption A6). The proof of the following theorem and

its corollaries are in Appendix B.

Theorem 1. Consider a feature function f : RDΘ → RDf with v = ∇f(θ0) being the

Df ×DΘ Jacobian matrix. Suppose the regularity conditions above (Assumptions A1 -

A7 in Appendix A) hold. Then %fo(θ0|ψ0,x
n,yn) converges in distribution to

wlim
n→∞

%fo(θ0|ψ0,x
n,yn) = %v(θ0|ψ0) +

Df∑
i=1

[λi(v)− 1]χ2
1,i, (24)

where χ2
1,i’s are i.i.d. chi-squared random variables with 1 degree of freedom, and

λi(v)’s are eigenvalues of Π0(v) defined in (13). Here “wlim” is the operator denoting

a limit variable for convergence in distribution (weak convergence).

11See, e.g., Hansen (1982, Assumptions 3.4 - 3.6) and Newey (1985a, Assumptions 3 and 7).
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Theorem 1 shows that the asymptotic distribution of over-fitting tendency measures

can be characterized by the Fisher fragility measure %v(θ0|ψ0) and the distribution

of eigenvalues λi(v) given their sum %v(θ0|ψ0) =
∑Df

i=1 λi(v) is kept constant. This

result immediately leads to the following two corollaries.

Corollary 1. Suppose the regularity conditions of Theorem 1 hold, then %v(θ0|ψ0)

and %fo(θ0|ψ0,x
n,yn) are asymptotically related:

E
[
wlim
n→∞

%fo(θ0|ψ0,x
n,yn)

]
= 2%v(θ0|ψ0)−Df , (25)

where EQ stands for the expectation under the distribution of the full model Q.

In principle, the relationship of (25) shows that the Fisher fragility measure

%v(θ0|ψ0) captures the average tendency of over-fitting. It says, with a large sample

size, the econometrician can use re-sampling methods such as bootstrap based on the

sample (xn,yn) to estimate the average measure of over-fitting tendency. The limiting

result in (25) guarantees that 2%v(θ0|ψ0)−Df provides a reasonable approximation

for such average measure of over-fitting tendency when sample size is large. As

a special case where the feature function is the identical mapping, it holds that

E [wlimn→∞ %o(θ0|ψ0,x
n,yn)] = 2%(θ0|ψ0)−DΘ.

The Fisher fragility %v(θ0|ψ0) is a model property and does not depend on the

sample. This measure focuses on local departures from the true parameter vector θ0.

Corollary 1 shows that it captures the average model over-fitting tendency as sample

size goes large.

Theorem 1 also suggests that the likelihood of getting an extremely poor out-of-

sample performance (i.e. an extremely large %fo(θ0|ψ0,x
n,yn)) is determined by the

distribution of the eigenvalues λi(v) which decompose %v(θ0|ψ0) into subspaces.

Corollary 2. Suppose the regularity conditions of Theorem 1 hold and the largest

eigenvalue is λ1(v). Then, the tail probability of the limiting variable converges to zero
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at the exponential rate related negatively to λ1(v):

lim
x→∞

1

x
lnP

{
wlim
n→∞

%fo(θ0|ψ0,x
n,yn) > x

}
= − 1

2 [λ1(v)− 1]
(26)

Corollary 2 shows that the tail probability of the limiting variable converges to

zero faster when the largest eigenvalue λ1(v) is smaller. For a given level of %v(θ0|ψ0),

which captures the average tendency of overfitting, a heavily skewed distribution of

eigenvalues λi(v) results in a larger value of λ1(v). Then, the tail of the distribution of

%fo (θ0|ψ0,x
n,yn) is heavier and the probability of overfitting the data to an extremely

large degree, is higher.

4 Applications

In this section, we illustrate and implement the Fisher fragility measure in the context

of two widely studied asset pricing models. The first example is a rare disaster model,

for which we compute the fragility measure analytically. The second example is a

long-run risk model. We use this example to demonstrate how one can diagnose the

sources of fragility in a more complex model and deal with nuisance parameters in

measuring model fragility (or “dark matter”).

4.1 Disaster Risk Model

Rare economic disasters are a natural source of “dark matter” in asset pricing models.

It is difficult to evaluate the likelihood and the magnitude of rare disasters statistically.

Yet, agents’ aversion to large disasters can have an economically large effect on asset

prices.12

We consider a disaster risk model similar to Barro (2006). The structural model

describes the log growth rate of aggregate consumption gt and the excess log return

12See the early work by Rietz (1988), and recent developments by Barro (2006), Gabaix (2012),
Martin (2012), Wachter (2013), and Collin-Dufresne, Johannes, and Lochstoer (2016), among others.
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on the market portfolio rt. There are two regimes characterized by state variable zt:

the disaster regime (zt = 1) and the outside-of-disaster regime (zt = 0). The variable

zt has an i.i.d. Bernoulli distribution taking zt = 1 with probability p, independent of

the other variables. The realizations of zt are observable. Outside of disasters (zt = 0),

gt follows a normal distribution N(µ, σ2); in a disaster state (zt = 1), gt = −vt where

the log of decline in consumption vt follows a truncated exponential distribution with

density 1{vt > v}λe−λ(vt−v) with the lower bound for disaster size equal to v and the

average disaster size equal to v + 1/λ.

Now, we first impose the assumption on how excess log returns on market portfolio

rt depend on consumption growth gt. More precisely, the joint distribution of (gt, rt)

is time-varying contingent on the underlying disaster state zt. When the economy is

outside of disasters (zt = 0), gt and rt are jointly normal:

rt = η + ρ
τ

σ
(gt − µ) +

√
1− ρ2τut, (27)

where ut are independent standard normal shocks, and thus ρτσ is the leverage factor

in non-disaster states. When the economy is in a disaster state (zt = 1), the excess

log return is linked to the sizable decline in consumption with a leverage factor b > 0.

In addition, we add an independent standard normal shock εt to rt so that rt and gt

are imperfectly correlated in a disaster state:

rt = bgt + νεt, with ν > 0. (28)

Second, we impose the optimization restriction to the parameters of joint dynamics.

The representative agent has a separable, constant relative risk aversion utility function∑∞
t=0 δ

t
Dc

1−γD
t /(1− γD), where γD > 0 is the coefficient of relative risk aversion. The

log equity premium is E[rt] = (1− p)η− pb (v + 1/λ) where the Euler equation implies
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that η is a function of the other parameters (see Appendix D for details):

η = γDρστ −
τ 2

2
+ ln

[
1 + eγDµ−

γ2
Dσ

2

2 ∆(λ)
p

1− p

]
(29)

≈ γDρστ −
τ 2

2
+ eγDµ−

γ2
Dσ

2

2 ∆(λ)
p

1− p
, (30)

where

∆(λ) = λ

(
eγDv

λ− γD

− e
ν2

2
+(γD−b)v

λ+ b− γD

)
. (31)

Equation (29) provides a cross-equation restriction among the consumption growth

gt, the disaster state zt, and the excess log return of the market portfolio rt. The

first two terms on the right hand side give the market risk premium due to Gaussian

consumption shocks. The third term is due to the disaster risk premium. We need

λ > γD for the risk premium to be finite, which sets an upper bound for the average

disaster size and dictates how heavy the tail of the disaster size distribution can be.

The fact that the log equity premium E[rt] explodes as λ approaches the value of

γD is a crucial feature for our analysis. Even when we consider extremely rare disasters

(very small p), we can still generate an arbitrarily large risk premium E[rt] by making

the average disaster size sufficiently large (lowering λ towards γD). Extremely rare and

large disasters are difficult to rule out based on standard statistical tests. Below we

illustrate how our fragility measure can detect fragility in models with such features.

Fisher fragility measure

Equations (27) – (31) together specify the full structural model. We set the baseline

model to be the statistical model for rare disasters xt = (zt, vt). Thus, the baseline

parameters are θ = (p, λ). To focus our discussion on the rare disasters, we treat

the other parameters φ = (γD, µ, σ, v, τ, ρ, b, ν) as auxiliary parameters fixed at known

values. They are thus part of the functional-form specification in economic theories

whose fragility is gauged. Naturally, yt = (gt, rt). This treatment is reasonable since

the key structural components of asset pricing models include not only preferences but
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also joint distribution of fundamentals and returns (see, e.g., Hansen and Singleton,

1983). And importantly, this simplifying treatment allows us to obtain a simple

closed-form expression for the Fisher fragility measure. The nuisance parameter vector

ψ is empty here.

Based on the approximation (30), the Fisher fragility measure is approximately

(see Appendix D for details):

%(p, λ) ≈ 2 +
p∆ (λ)2 + p (1− p)λ2∆̇ (λ)2

(1− ρ2) τ 2 (1− p)2 e2γDµ−γ2
Dσ

2

, (32)

where ∆̇(λ) is the first derivative of ∆(λ),

∆̇(λ) = − eγDvγD

(λ− γD)2 +
e(γD−b)v(γD − b)
(λ− γD + b)2

eν
2/2. (33)

The one-dimensional worst-case asymptotic fragility measure is %1(p, λ) = %(p, λ)− 1.

As Equation (29) shows, ∆(λ) and ∆̇(λ) are related to the sensitivity of η to the

disaster probability p and disaster size parameter λ, respectively. When λ approaches

the value of γD, both ∆(λ) and ∆̇(λ) approach infinity. Thus, disaster risk models

with high average disaster size are fragile according to our measure.

Quantitative analysis

In our quantitative analysis, we use annual real per-capita consumption growth

(nondurables and services) from the NIPA and returns on the CRSP value-weighted

market portfolio for the period of 1929 to 2011. We fix the auxiliary parameters

µ, σ, ν, τ and ρ at the values of the corresponding moments of the empirical distribution

of consumption growth and excess stock returns: µ = 1.87%, σ = 1.95%, τ = 19.14%,

ν = 34.89% and ρ = 59.36%. The lower bound for disaster size is v = 7%. The

leverage parameter b is 3. In Figure 2, we plot the 95% and 99% confidence regions

for (p, λ) based on the baseline model.

The 95% confidence region for (p, λ) is quite wide. For low values of the disaster
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Figure 2: The 95% and 99% confidence regions of (p, λ) for the unconstrained model
and the equity premium isoquants implied by the asset pricing constraint (29) for

γD = 3, 10, 24. The maximum likelihood estimates are (p̂ML, λ̂ML) = (0.0122, 78.7922).

probability p, the baseline model has little power to reject models with a wide range

of average disaster size values (λ). Figure 2 also shows the equity premium isoquants

for different levels of relative risk aversion: lines with the combinations of p and λ

required to match the unconditional equity premium of 5.09% for a given value of γD.

The fact that these isoquants all intersect with the 95% confidence region implies that

even for low risk aversion (γD = 3), there exist many combinations of (p, λ) that not

only match the observed equity premium, but also are “consistent with the macro

data” in a sense that they cannot be rejected by the macro data based on standard

statistical tests. In the remainder of this section, we refer to a calibration of (p, λ)

that is within the 95% confidence region as an “acceptable calibration.”13

While it is difficult to distinguish among a wide range of calibrations using standard

statistical tools based on the macro data, these calibrated models differ significantly

13Julliard and Ghosh (2012) estimate the consumption Euler equation using the empirical likelihood
method and show that the model requires a high level of relative risk aversion to match the equity
premium. Their empirical likelihood criterion rules out any large disasters that have not occurred in
the historical sample, hence requiring the model to generate high equity premium using moderate
disasters.
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Figure 3: 95% confidence regions for the asymptotic distribution of the MLEs for four
“acceptable calibrations.” In Panels A through D, the Fisher fragility measures are
%(p, λ) = 75.03, 2.49, 1.78× 104, and 5.61× 102 respectively.

based on our fragility measures. We focus on four alternative calibrations, as denoted

by the four points located at the intersections of the equity premium isoquants (γD = 3

and 24) and the boundary of the 95% confidence region in Figure 2. For γD = 3, the

two points are (p = 3.96%, λ = 4.649) and (p = 0.31%, λ = 3.179). For γD = 24, the

two points are (p = 1.81%, λ = 446.36) and (p = 0.0699%, λ = 28.43).

With only two parameters in θ, we can illustrate the worst-case asymptotic fragility

measure by plotting the asymptotic confidence regions for (p, λ) in the baseline model

and the structural model, as determined by the respective information matrices IP(θ)

and IQ(θ).14 In each panel of Figure 3, the largest dash-line circle is the 95% confidence

region for (p, λ) under the baseline model. The smaller solid-line ellipse is the 95%

14In fact, we use all the score functions of likelihoods to construct the moments, so the optimal
GMM estimation is asymptotically equivalent to the MLE in our analysis of this disaster risk model.
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confidence region for (p, λ) under the structural model. The reason that the confidence

region under the structural model is smaller than that under the baseline model is

that the GMM moments in the structural model contain both the moments for the

baseline model and the moments (cross-equation restrictions) imposed by the structural

component under fragility assessment. In this example, the two confidence regions

coincide15 in the direction of v∗2 and differ the most in the direction of v∗1. Moreover,

with enough extra data, the confidence region for the unconstrained estimator can be

made small enough to reside within the confidence region of the constrained estimator.

In Panel A of Figure 3, with γD = 3, p = 3.96%, λ = 4.649, %(p, λ) = 75.07 and

%1(p, λ) = 74.07. This means that under the baseline model, we need to increase the

amount of consumption data by a factor of 74.07 to match or exceed the precision

in estimation of any linear combination of p and λ afforded by the equity premium

constraint. Panels C and D of Figure 3 correspond to the calibrations with “extra

rare and large disasters.” For γD = 3 and 24, %1(p, λ) rises to 1.78 × 104 and

5.60× 102, respectively. If, in Panel B of Figure 3, we raise γD to 24 while changing

the annual disaster probability to 1.81% and lowering the average disaster size to

7.002% (λ = 446.36), %1(p, λ) drops to 1.49. The reason is that by raising the risk

aversion coefficient we are able to reduce the average disaster size.

So far, we have been examining the fragility of a specific calibrated structural model.

We can also assess the fragility of a general class of models, relative to the baseline

model of rare disasters, by plotting the distribution of %(θ) based on a particular

distribution of θ. For example, if econometricians are interested in fragility of a class

of disaster risk models where the auxiliary parameters φ are fixed at given levels φ0

and the uncertainty of baseline parameters θ is explicitly taken into account, the

posterior for (p, λ) under the structural model (i.e., constrained posterior distribution)

denoted by πQ(θ|xn,yn) is proposed to be used as the distribution of θ.16 Since the

15This is not true in general. When localized, the deterministic cross-equation restriction from the
equity premium in this model is a linear constraint. Thus, the parameter estimates are not affected
along the direction of the constraint.

16The simulated sample of the constrained posterior πQ(θ|xn,yn) used for generate Figure 4 are
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Figure 4: Distribution of the Fisher fragility measure %(p, λ) for different levels of risk
aversion. For each γD, the boxplot shows the 1, 25, 50, 75, and 99-th percentile of the
distribution of %(p, λ) based on the constrained posterior for (p, λ).

constrained posterior updates the prior π(θ) based on information from the data and

the asset pricing constraint, it can be viewed as summarizing our knowledge of the

distribution of θ assuming the model constraint is valid.

We implement this idea in Figure 4. For each value of γD, the boxplot shows the

1, 25, 50, 75, and 99-th percentile of the distribution of %(θ) based on πQ(θ|xn,yn).

The Fisher fragility measures are higher when the levels of risk aversion are low. For

example, for γD = 3, the 25, 50, and 75-th percentile of the distribution of %(p, λ)

are 23.0, 61.6, and 217.4, respectively. This is because a small value of γD forces the

constrained posterior for θ to place more weight on “extra rare and large” disasters,

which imposes particularly strong restrictions on the parameters (p, λ). As γD rises, the

mass of the constrained posterior shifts towards smaller disasters, which imply lower

information ratios. For γD = 24, the 25, 50, and 75-th percentile of the distribution of

%(p, λ) drop to 2.8, 3.5, and 5.8, respectively.

simulated based on the Approximate Bayesian Computation (ABC) method, which is described in
the online appendix.
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4.2 Long-run risk model

In the second example, we consider a long-run risk model similar to Bansal and Yaron

(2004) and Bansal, Kiku, and Yaron (2012). In the model, the representative agent

has recursive preferences as in Epstein and Zin (1989) and Weil (1989) and maximizes

his lifetime utility,

Vt =

[
(1− δL)C

1−1/ψL
t + δL

(
Et
[
V 1−γL
t+1

]) 1−1/ψL
1−γL

] 1
1−1/ψL

, (34)

where Ct is consumption at time t, δL is the rate of time preference, γL is the

coefficient of risk aversion for timeless gambles, and ψL is the elasticity of intertemporal

substitution when there is perfect certainty.

The log growth rate of consumption ∆ct, the conditional mean of consumption

growth xt, and the conditional volatility of consumption growth σt follow the process

∆ct+1 = µc + xt + σtεc,t+1 (35a)

xt+1 = ρxt + ϕxσtεx,t+1 (35b)

σ̃2
t+1 = σ2 + ν(σ̃2

t − σ2) + σwεσ,t+1 (35c)

σ2
t+1 = max

(
σ2, σ̃2

t+1

)
(35d)

where the shocks εc,t, εx,t, and εσ,t are i.i.d. N(0, 1) and mutually independent. The

volatility process (35c) potentially allows for negative values of σ̃2
t . Following the

literature, we impose a small positive lower bound σ (= 1 bps) for volatility σt in

solutions and simulations. This negative volatility could be avoided in other ways.

For example, the process of σ2
t can be modeled as a discrete-time version of the square

root process. Next, the log dividend growth ∆dt follows the processes

∆dt+1 = µd + φdxt + ϕd,cσtεc,t+1 + ϕd,dσtεd,t+1, (36)

where the shocks εd,t are i.i.d. N(0, 1) and mutually independent with the other shocks
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in (35a)–(35c).

From the consumption Euler equation, one can derive a linear approximation of

the stochastic discount factor,

mt+1 = Γ0 + Γ1xt + Γ2σ
2
t − λcσtεc,t+1 − λxϕxσtεx,t+1 − λσσwεσ,t+1. (37)

The formulae for the coefficients Γ0,Γ1, Γ2, λc, λx, and λσ are standard in the long-run

risk model literature and given in the online appendix. Moreover, the equilibrium

excess (log) return follows

rem,t+1 = µer,t + βcσtεc,t+1 + βxσtεx,t+1 + βσσwεσ,t+1 + ϕd,dσtεd,t+1, (38)

where the conditional average (log) excess return is

µer,t = λcβcσ
2
t + λxβxϕxσ

2
t + λσβσσ

2
w −

1

2
σ2
rm,t, (39)

where σ2
rm,t = β2

cσ
2
t + β2

xσ
2
t + β2

σσ
2
w + ϕ2

d,dσ
2
t . (40)

The expressions for βc, βx, and βσ are also given in the online appendix.

There are stochastic singularities in the model. One example is that the excess log

market return rem,t+1 is a deterministic function of ∆ct+1,∆dt+1, xt+1, xt, σ
2
t+1, and σ2

t .

Another example is that the market log price-dividend ratio zm,t is a deterministic

function of xt and σ2
t . The moment-based methods such as GMM can focus on the

marginal distribution and economic relationships targeted by the structural model.

We focus on the marginal distribution of (∆ct+1, xt, σ
2
t ,∆dt+1, r

e
m,t+1), denoted by

Q and specified by (35a) – (35d), (36), and (38) – (40), except that excess (log)

returns in (38) is augmented by shocks ϕrσtεr,t+1 with εr,t being i.i.d. standard normal

variables and mutually independent with other variables. This is a standard approach

in DSGE literature for dealing with stochastic singularity. In other words, although

the structural model Q does not capture some part of the whole distribution Q
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Table 1: Benchmark Calibration for the Long-Run Risk Model

Preferences δL γL ψL

0.9989 10 1.5
Consumption µc ρ ϕx σ ν σw

0.0015 0.975 0.038 0.0072 0.999 2.8e− 6
Dividends µd φd ϕd,c ϕd,d

0.0015 2.5 2.6 5.96
Returns ϕr

3.0

(misspecified up to ϕrσtεr,t+1), the moment conditions are correctly specified under

the whole distribution Q.17

Quantitative Analysis

We choose the model of consumption (35a)–(35d) as the baseline model P. We assume

that the econometrician observes the process for consumption, the latent variables xt

and σ2
t , and the process for asset returns. We make the latent variables observable to

be consistent with the postulated process for asset returns, which is derived assuming

that these variables are observable.

Accordingly, the baseline parameters are θ = (µc, ρ, ϕx, σ
2, ν, σw, µd, φd, ϕd,c, ϕd,d)

with DΘ = 10 and xt = (∆ct+1, xt, σ
2
t ,∆dt+1). By measuring the fragility of the

long-run risk model relative to this particular baseline, we can interpret the fragility

measure as quantifying the additional information that asset pricing restrictions

provide for the consumption dynamics (in particular, the long-run risk components)

relative to information contained in consumption data. We explicitly account for the

uncertainty of preference parameters γL and ψL by including them into the nuisance

parameter vector ψ. Thus, ψ = (γL, ψL). The extra data investigated by the full

structural model Q are yt = rem,t+1. Other parameters are included in the auxiliary

parameter vector φ = (δL, ϕr) which are fixed at known values, and these values are

17The moment conditions can be found in the online appendix.
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part of the imposed functional-form specification of the structural component that

is under the fragility assessment. It’s worth noting that the joint dynamics between

consumption growth processes and dividend growth are included in the baseline model,

which is different from the disaster risk example. Thus, the fragility measure here is

only about preferences and optimization specifications. Alternatively, including ∆dt+1

into yt, our measure quantifies different model components’ fragility.

The benchmark calibration of the model follows Bansal, Kiku, and Yaron (2012)

and is summarized in Table 1. As Bansal, Kiku, and Yaron (2012) (Table 2, p. 194)

show, the simulated first and second moments match the set of key asset pricing

moments in the data reasonably well. The same is true for the alternative calibration

in Table 1 (see the online appendix).

Let’s first focus on Panel I of Table 2. It reports the fragility measures for preference

parameters considered as nuisance parameters. The row (BC) reports the fragility

measures for the benchmark calibration. The Fisher fragility measure is % = 276.3,

indicating a high level of model fragility. The worst-case 1-dimensional Fisher fragility

measure is also high, %1 = 196.3, which implies that the sample size needs to be 195.3

times longer in order for the baseline model estimator to match the precision of the

estimator for the full structural model in all 1-D directions.

The large size of %1 implies that the model under the benchmark calibration is

highly sensitive to perturbations in the parameters in a single direction, as identified

by v∗1 (i.e. the worst direction). However, this does not mean that one can discover

the full scope of the fragility issue by examining individual parameters one at a time.

We demonstrate this point by computing the fragility measure for each individual

parameter %v, where v is the appropriate standard basis vector ei whose i-th element

is one and other elements are zeros. As Panel I of Table 2 shows, the fragility measures

for all the individual parameters are relatively small. While the measure is somewhat

larger in magnitude for σ2 (the long-run variance of consumption growth) and ν

(the persistence of conditional variance of consumption growth), all of the univariate

measures are much smaller than % and %1. Had we focused only on the sensitivity of
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Table 2: Fragility Measures for the Long-Run Risk Models

Model % %1 %v

µc ρ ϕx σ2 ν σw µd φd ϕd,c ϕd,d

I. Nuisance parameter vector ψ: (γL, ψL)

(BC) 276.3 196.3 1.0 1.1 1.0 48.9 97.8 1.0 1.0 3.4 1.0 1.0

(AC) 34.0 21.1 1.0 1.1 1.0 1.0 3.4 1.0 1.4 4.2 1.0 1.0

II. Nuisance parameter vector ψ: empty

(BC) 3.58 · 105 3.57 · 105 1.0 2.1 1.1 115.6 117.5 1.3 1.1 7.1 1.0 1.0

(AC) 323.3 287.7 1.0 2.5 1.0 1.0 6.3 1.0 1.9 31.3 1.0 1.0

Note: The direction corresponding to the worst-case 1-D fragility measure %1 for the benchmark cali-

bration (BC) is given by v∗1 = [0.000, 0.000,−0.000, 0.020,−0.001, 0.999,−0.001, 0.000,−0.000, 0.000].

The alternative calibration (AC) has ν = 0.98 and γL = 27 with other parameters unchanged. In

panel I, the uncertainty of preference parameters (γL, ψL) are accounted for; whereas in panel II, they

are fixed as auxiliary parameters φ with nuisance parameter vector ψ empty.

the model’s implications to individual parameters in θ, we would have missed the very

high fragility of the full model and the large dark matter hidden in θ.

In comparison, Panel II of Table 2 reports fragility measures for the preference

parameters being fixed. In such case, the preference specification is also part of

the structural restrictions under fragility assessment. Thus, the fragility measures

in Panel II are higher. Especially, the overall fragility % and the worst-case 1-D

fragility %1 increase dramatically from 276.3 to 3.58× 105 and from 196.3 to 3.57× 105,

respectively.18

18In our example, we assume all long-run components (xt and σt) are observable. If the long-run
components are not observed and act as latent state variables, they need to be filtered (see Schorfheide,
Song, and Yaron, 2014; Collin-Dufresne, Johannes, and Lochstoer, 2016), the model is likely to be
more fragile. This is because there is more degrees of freedom to improve the in-sample fit of the
asset pricing moments, while the persistence parameters ρ and ν are even more weakly identified by
the joint dynamics of consumption growth and dividend growth processes. However, the models with
latent state variables that endogenize the latent long-run risk in consumption growth (e.g. Hansen
and Sargent, 2010) may be helpful to alleviate the fragility since the dynamic parameters of long-run
components there can be endogenously linked to other fundamental variables for better identification.
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2 of the benchmark calibration.

Diagnosing the sources of fragility Besides measuring the fragility of the model,

the Fisher fragility measures have provided a set of tools to diagnose the sources of

fragility. First, the rankings of the eigenvalues of IQ(θ0|ψ0)
1
2 IP(θ0)

−1IQ(θ0|ψ0)
1
2 are

informative. Each eigenvalue denotes the marginal contribution of a 1-D subspace to

the overall fragility measure (see Definition 2 and Proposition 2). As Figure 5 shows,

there are large differences between the eigenvalues. Model fragility along the worst

direction in 1-dimensional subspaces, as captured by the leading eigenvalue, is 196.3,

which accounts for over 71% of the total fragility. This result means that one can

dramatically reduce the dimensionality (from 10 to 1) when analyzing the fragility of

this model.

Second, the worst direction (i.e., the worst-case 1-dimensional subspace) is v∗1.

Knowing that the majority of the model fragility is concentrated in this direction,

we can conveniently search for the fragile moments in the model by examining

which moments are the most sensitive to the change in θ along the direction of v∗1.

For illustration, we focus on four moments from the long-run risk model, the risk

loading and price of risk for volatility shocks (βσσw, λσσw), and for growth shocks

(βxσt, λxϕxσt). The conditional market excess return depends crucially on these
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Figure 6: Sensitivity of return betas and risk prices with respect to the perturbation
along the worst-case direction in the benchmark calibration with nuisance parameters.

moments (see Equation (39)).

In Figure 6, we plot the sensitivities of βσ, λσ, βx and λx with respect to per-

turbations of θ along the worst direction v∗1 (solid line) and compare them to the

sensitivities of the same set of moments to perturbations of θ along the best-case

direction v∗10 (dash line). We measure the size of a perturbation of θ relative to the

standard deviation of θ in the baseline model P. We measure sensitivity of a moment

as the change in the moment normalized by the moment’s standard deviation in the

structural model Q.

The risk loading and the price of risk for volatility shocks are both highly sensitive

to changes in θ along the direction of v∗1, while the corresponding sensitivities to

changes in θ along the direction of v∗10 are all very low in comparison. For example, a
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one standard deviation change in θ along the direction of v∗1 can lead to a 9-standard

deviation change in βσ under the full structural model Q. Thus, an important source

of fragility of the long-run risk model based on the benchmark calibration is in the

risk exposure of the market portfolio to volatility shocks. If the true value of θ is

slightly different from the benchmark calibration along the direction v∗1, this version

of the long-run risk model will perform poorly at explaining the relation between asset

returns and volatility shocks out of sample.

Finally, we can further trace the sources of fragility by examining how λσ and

βσ are determined. For example, the fact that the persistence parameter for the

conditional variance of consumption growth, ν, is close to 1, makes both βσ and λσ

sensitive to changes in θ. This motivates us to consider an alternative calibration (row

(AC) of Table 2) with a smaller value for ν. Specifically, we change ν from 0.999 to

0.98, and simultaneously raise the coefficient of relative risk aversion γ from 10 to 27

in order to match the unconditional equity premium as in the benchmark calibration.

The rest of the parameters are unchanged. This alternative calibration produces asset

pricing moments largely similar to those in the benchmark calibration. However, based

on our fragility measures, the alternative calibration is much less fragile compared

to the benchmark calibration. As Panel I of Table 2 shows, under the alternative

calibration (row (AC)), % drops from 276.3 to 34, and %1 drops from 196.3 to 21.1.

5 Conclusion

In this paper, we propose a new measure of model fragility by quantifying a model’s

tendency of in-sample over-fitting. We formally connect the fragility of structural

models to the informativeness of the cross-equation restrictions imposed on the

parameters. We also provide a tractable asymptotic approximation to the fragility

measure, which helps with diagnosing sources of model fragility.

Our methodology has a broad range of applications. In addition to the examples

of applications in asset pricing that we consider in this paper, our measure can be
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used to assess robustness of structural models in many other areas of economics, such

as structural industrial organization (IO) and structural corporate finance.
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Appendix

A Regularity Conditions for Theoretical Results

The regularity conditions we choose to impose on the behavior of the data are influenced by three
major considerations. First, our assumptions are chosen to allow processes of sequential dependence.
In particular, the processes allowed should be relevant to intertemporal asset pricing models. Second,
our assumptions are required to meet the analytical tractability. Third, our assumptions are sufficient
conditions in the sense that we are not trying to provide the weakest conditions or high level
conditions to guarantee the results; but instead, we chose those regularity conditions which are
relatively straightforward to check in practice.

Assumption A1 (Stationarity Condition)
We assume that the underlying time series (xt, yt) with t = 1, · · · , n follow an mS-order strictly
stationary Markov process. Thus, the marginal conditional density for xt can be specified as
πP(xt|θ, xt−1, · · · , xt−mS ). Define the stacked vectors xt = (xt, · · · , xt−mS )T and yt = (yt, · · · , yt−mS )T ,
then the marginal conditional density under P can be rewritten as πP(xt; θ). The stacked vectors
(xt,yt) follow a first-order Markov process.

Assumption A2 (Mixing Condition)
The stationarity condition and the m-dependence condition imply that there exists constant λD ≥
2dD/(dD − 1), where dD is the constant in Assumption 3 (dominance condition), such that (xt,yt)
for t = 1, 2, · · · , n is uniform mixing and there exists a constant φ̄ such that the uniform mixing
coefficients satisfy

φ(m) ≤ φ̄m−λD for all possible probabilistic models,

where φ(m) is the uniform mixing coefficient. Its definition is standard and can be found, for example,
in White and Domowitz (1984) or Bradley (2005).

Remark. Following the literature (see, e.g. White and Domowitz, 1984; Newey, 1985b; Newey
and West, 1987a), we adopt the mixing conditions as a convenient way of describing economic and
financial data which allows time dependence and heteroskedasticity. The mixing conditions basically
restrict the memory of a process to be weak, while allowing heteroskedasticity, so that large sample
properties of the process are preserved. In particular, we employ the uniform mixing which is discussed
in some detail by White and Domowitz (1984) where definition and its relationship with other type of
mixing conditions can be found in the survey by Bradley (2005).

Assumption A3 (Dominance Condition)
The function gQ(θ, ψ; x,y) is twice continuously differentiable in (θ, ψ) almost surely. There exist
dominating measurable functions a1(x,y) and a2(x,y), and constant dD > 1, such that almost
everywhere

|gQ(θ, ψ; x,y)|2 ≤ a1(x,y), ||∇gQ(θ, ψ; x,y)||2S ≤ a1(x,y),

||∇2gQ,(i)(θ, ψ; x,y)||2S ≤ a1(x,y), for i = 1, · · · , Dg,

|q(x,y)| ≤ a2(x,y), |q(x1,y1,xt,yt)| ≤ a2(x1,y1)a2(xt,yt), for t ≥ 2,∫
[a1(x,y)]

dD a2(x,y)dxdy < +∞,
∫
a2(x,y)dxdy < +∞,

where || · ||S is the spectral norm of matrices.

Remark. The dominating function assumption is widely adopted in the literature of generalized
method of moments (Newey, 1985a,b; Newey and West, 1987a). The dominating assumption, together
with the uniform mixing assumption and stationarity assumption, imply the stochastic equicontinuity
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condition (iv) in Proposition 1 of Chernozhukov and Hong (2003). In the seminal GMM paper by
Hansen (1982), the moment continuity condition can also be derived from the dominance conditions.

Remark. Consider the assumption of the theoretical results in Section 3 where gP(θ; x,y) contains
all the score functions of well specified baseline likelihood. For each pair of j and k, it holds that for
some constant ζ > 0 and large constant C > 0,

EP sup
θ∈Θ

∣∣∣∣ ∂2

∂θj∂θk
lnπP(w; θ)

∣∣∣∣2+ζ

< C, and EP sup
θ∈Θ

∣∣∣∣ ∂∂θj lnπP(w; θ)

∣∣∣∣2+ζ

< C, and (41)

The dominance condition, together with the uniform mixing assumption and stationarity assumption,
implies the stochastic equicontinuity condition (i) in Proposition 3 of Chernozhukov and Hong (2003).

Assumption A4 (Nonsingular Condition)
The Fisher information matrices IP(θ) and IQ(θ, ψ) are positive definite for all θ, ψ.

Remark. It implies that the covariance matrices SP and SQ are positive definite, and the expected
moment function gradients GP(θ) and GQ(θ, ψ) have full rank for all θ and ψ.

Assumption A5 (Identification Condition)
The true baseline parameter vector θ0 is identified by the baseline moment conditions in the sense
that EP [gP(θ; x)] = 0 only if θ = θ0. And, the true parameters (θ0, ψ0) of the full model is identified
by the moment conditions in the sense that EQ [gQ(θ, ψ; x,y)] = 0 only if θ = θ0 and ψ = ψ0.

Remark. Consider the assumption of well-specified likelihood in Section 3. The continuous differen-
tiability of moment functions, together with the identification condition, imply that the parametric
family of distributions Pθ, as well as the moment conditions, are sound: the convergence of a sequence
of parameter values is equivalent to the weak convergence of the distributions:

θ → θ0 ⇔ Pθ → Pθ0 ⇔ EP [ln (dPθ/dP)]→ EP [ln (dPθ0/dP)] = 0. (42)

Let γ = (θ, ψ) and γ0 = (θ0, ψ0). The convergence of a sequence of parameter values is equivalent to
the convergence of the moment conditions:

γ → γ0 ⇔ EQ [gQ(γ; x,y)]→ EQ0
[gQ(γ0; x,y)] = 0. (43)

Assumption A6 (Regular Bayesian Condition)
Suppose the parameter set is Θ × Ψ ⊂ RDΘ+DΨ with Θ and Ψ being compact. And, the prior is
absolutely continuous with respect to the Lebesgue measure with Radon-Nykodim density π(θ, ψ),
which is twice continuously differentiable and positive. Denote π ≡ maxθ∈Θ,ψ∈Ψ π(θ, ψ) and π ≡
minθ∈Θ,ψ∈Ψ π(θ, ψ). The probability measure defined by the limited-information posterior density
πQ(θ|xn,yn) is dominated by the probability measure defined by the baseline limited-information
posterior density πP(θ|xn), for almost every xn,yn under Q0.

Remark. Compactness implies total boundness. In our diaster risk model, the parameter set for the
prior is not compact due to the adoption of uninformative prior. However, in that numerical example,
we can truncate the parameter set at very large values which will not affect the main numerical
results.

Remark. The concept of dominating measure here is the one in measure theory. More pre-
cisely, this regularity condition requires that for any measurable set which has zero measure under
πQ(θ|xn,yn), it must also have zero measure under πP(θ|xn). This assumption is just to guarantee
that DKL (πQ(θ|xn,yn)||πP(θ|xn)) to be well defined.

Assumption A7 (Regular Feature Function Condition)
The feature function f : Θ→ R is twice continuously differentiable. We assume that there exist DΘ−1
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twice continuously differentiable functions f2, · · · , fDΘ on Θ such that F = (f, f2, · · · , fDΘ) : Θ→
RDΘ is a one-to-one mapping (i.e. injection) and F (Θ) is a connected and compact DΘ-dimensional
subset of RDΘ .

Remark. A simple sufficient condition for the regular feature function condition to hold is that f

is a proper and twice continuously differentiable function on RDΘ and
∂f(θ)
∂θ(1)

> 0 at each θ ∈ RDΘ .

In this case, we can simply choose fk(θ) ≡ θ(k) for k = 2, · · · , d. Then, the Jacobian determinant
of F is nonzero at each θ ∈ RDΘ and F is proper and twice differentiable mapping RDΘ → RDΘ .
According to the Hadamard’s Global Inverse Function Theorem (e.g. Krantz and Parks, 2013), we
know that F is a one-to-one mapping and F (Θ) is a connected and compact DΘ-dimensional subset
of RDΘ .

B Proof of Theorem 1 And Its Corollaries

B.1 Asymptotic Normality of Posteriors

Proposition 4. Under Assumptions A1 - A6 in Appendix A, it holds that

DKL(πP(θ|xn)||N(θ̂PML, n
−1IP(θ0)−1))→ 0 in Pn.

Proof. We extend the proof of Theorem 2.1 in Clarke (1999) which is under the i.i.d. condition.
However, we have to adjust two parts of their proof, to extend the result to the case that the
observations are time series with uniform mixing. The first part is to show that supθ∈Θ |ĤP,n(θ)| =
Op(1) where

ĤP,n(θ) ≡ − 1

n

n∑
t=1

lnπP(xt; θ). (44)

When n is large enough, we obtain that

sup
θ∈Θ
|ĤP,n(θ)| ≤ 1 +

1

n

n∑
t=1

sup
θ∈Θ
| lnπP(xt; θ)|.

Based on the mixing condition and the dominance condition, it follows from Theorem 2.3 of White
and Domowitz (1984) that

1

n

n∑
t=1

sup
θ∈Θ
| lnπP(xt; θ)| → EP sup

θ∈Θ
| lnπP(xt; θ)| a.s.

which further implies that supθ∈Θ |ĤP,n(θ)| = Op(1). The second part is to show that∫
uTu

∣∣∣πP(θ̂PML + u/
√
n|xn)− ϕP(u)

∣∣∣du→ 0 in P0,n (45)

where ϕP(u) =
√

detIP(θ0)/(2π)DΘ exp
[
− 1

2u
T IP(θ0)u

]
. In Clarke (1999), it shows that when

x1, · · · ,xn are i.i.d., the limit result (45) is satisfied under the regularity conditions in Assumptions
A3 - A6. To extend this limit result to allow weak dependence, we appeal to Theorem 1 and
Proposition 3 of Chernozhukov and Hong (2003) whose conditions are implied by Assumptions A1 -
A6 in Appendix A. �
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B.2 Proof of Theorem 1

In this section, we prove the result of Theorem 1. One major additional technical challenge, compared
with standard large-sample inferences of GMM (see Hansen, 1982; Newey, 1985a,b), is that we need
to establish uniform convergence and bounds for constrained GMM over a set of mis-specified moment
constraints. Thus we need special treatments in our proof in establishing the uniform convergence
and bounds.

Because of Assumption A7 (the regular feature function condition), as well as the fact that the
definition of our “dark matter” measure (Definition 4) and regularity assumptions A1 - A6 in Appendix
A are invariant under invertible and second-order smooth transformations of parameters, we can
assume that f(θ) = θ1 ≡ (θ(1), · · · , θ(Df ))

T and hence ∇f(θ) ≡ v =
[
IDf , ODf×(DΘ−Df )

]
, without

loss of generality. That is, f(θ) = θ1 = vθ. The remaining baseline parameters are summarized in
θ2 ≡ (θ(Df+1), · · · , θ(DΘ))

T . Thus, the over-fitting tendency measure with feature functions can be
written as

%fo (θ0|ψ0,x
n,yn) ≡

∫
dSQ{vθ; xn,yn}πP(θ|xn)dθ, where (46)

dSQ{vθ; xn,yn} = inf
(θ̃,ψ̃) : vθ̃=vθ

Ĵn,SQ(θ̃, ψ̃)− Ĵn,SQ(θ̂Q, ψ̂Q). (47)

For clear exposition, we divide our whole proof into the following steps.

(1) A local reparametrization. Because it is an asymptotic equivalence result in a parametric
setting, we follow the convention of asymptotic statistics (see, e.g. van der Vaart, 1998) to consider
the local reparametrization:

(θ, ψ) = (θ̂P, ψ̂P) +
1√
n

(u, h). (48)

Thus, the over-fitting tendency measure defined in (46) and (47) can be rewritten as

%fo (θ0|ψ0,x
n,yn) ≡

∫
dSQ{vu; xn,yn}πP(θ̂P + u/

√
n)du, where (49)

dSQ{vu; xn,yn} = inf
(ũ,h̃) : vũ=vu

Ĵn,SQ

(
θ̂P + ũ/

√
n, ψ̂P + h̃/

√
n
)

− Ĵn,SQ

(
θ̂P + ûQ/

√
n, ψ̂P + ĥQ/

√
n
)
. (50)

The transformed variable u1 = vu is defined by vu =
√
n
(
vθ − vθ̂P

)
, and other transformed

variables are defined analogously. The GMM estimator of the transformed variables are (ûQ, ĥQ)

such that (θ̂Q, ψ̂Q) =
(
θ̂P + ûQ/

√
n, ψ̂P + ĥQ/

√
n
)

.

(2) Uniform quadratic bounds for the over-fitting gap dSQ{vu; xn,yn}. According
to Assumption 3 (the dominance condition), the distance dSQ{vu; xn,yn} is bounded by

0 ≤ dSQ{vu; xn,yn} ≤ 4nλ−1
SQ
|ĝQ,n(θ, ψ)|2 ≤ 4λ−1

SQ

n∑
t=1

a1(xt,yt)

where λSQ
is the smallest eigenvalue of SQ. The uniform upper bound is crude because it does

not take the advantage of ĝQ,n(θ, ψ) being close to zero when (θ, ψ) is in the local neighborhood of
(θ0, ψ0).
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Now, we provide much sharper quadratic bounds. First, it holds that,

dSQ{vu; xn,yn} ≤ 2Ĵn,SQ

(
θ̂P +

u√
n
, ψ̂Q

)
− 2Ĵn,SQ

(
θ̂P +

ûQ√
n
, ψ̂Q

)
. (51)

The inequality above is point by point for all sample (xn,yn) and all u ∈ RDΘ .

The second-order Taylor expansion of Ĵn,SQ

(
θ̂P + u/

√
n, ψ̂Q

)
around (θ̂Q, ψ̂Q) implies the fol-

lowing relationship:

Ĵn,SQ

(
θ̂P + u/

√
n, ψ̂Q

)
− Ĵn,SQ

(
θ̂P + ûQ/

√
n, ψ̂Q

)
= (u− ûQ)T

{
ΓΘ

[
n−1∇2Ĵn,SQ(θu, ψ̂

Q)
]

ΓTΘ

}
(u− ûQ) (52)

where θu lies on the segment between θ̂P + u/
√
n and θ̂Q = θ̂P + ûQ/

√
n. The Hessian matrix has the

expression

n−1∇2Ĵn,SQ(θu, ψ̂
Q) = 2

[
∇ĝQ,n(θu, ψ̂

Q)
]T
S−1
Q

[
∇ĝQ,n(θu, ψ̂

Q)
]

+ 2

Dg∑
i=1

∇2ĝQ,n,(i)(θu, ψ̂
Q)
[
eTi S

−1
Q ĝQ,n(θu, ψ̂

Q)
]

(53)

where ei is a column vector with its i-th element equal to one and others equal to zeros, and
ĝQ,n,(i)(θu, ψ̂

Q) is the i-th element of ĝQ,n(θu, ψ̂
Q).

According to the expression above and Assumption 3 (the dominance condition), there exist a
sequence of integral nonnegative variables DQ,n(xn,yn) such that DQ,n(xn,yn)’s first moments are
uniformly bounded over n and∣∣∣∣∣∣ΓΘ

[
n−1∇2Jn,SQ(θu, ψ̂

Q; xn,yn)
]

ΓTΘ

∣∣∣∣∣∣
S
≤ DQ,n(xn,yn), for all u. (54)

From (51), (52), and (54), the over-fitting gap dSQ{vu; xn,yn} has the upper bound

dSQ{vu; xn,yn} ≤ DQ,n(xn,yn)|u− ûQ|2, for all u. (55)

(3) Uniform lower bounds for the Hessian matrix of J-distance n−1∇2Ĵn,SQ(θ, ψ).
Now we show that there exist constants λJ > 0 and δ > 0 such that, with probability converges to

one, the smallest eigenvalue of Hessian matrix n−1∇2Ĵn,SQ(θ, ψ) is bigger than λJ uniformly over
N0(δ) ≡

{
(θ, ψ) : |θ − θ0|2 + |ψ − ψ0|2 ≤ δ2

}
. In other words, there exist λJ > 0 and δ > 0 such

that
Q0,n

{
All eigenvalues of n−1∇2Ĵn,SQ(θ, ψ) > λJ for all (θ, ψ) ∈ N0(δ)

}
→ 1. (56)

To prove the convergence result of (56), we first appeal to the Uniform Law of Large Numbers
(ULLN) in White and Domowitz (1984): the sample averages gQ,n(θ, ψ; xn,yn), ∇gQ,n(θ, ψ; xn,yn),
and ∇2gQ,n(θ, ψ; xn,yn) converge to their population means in probability uniformly over Θ ×Ψ
due to the dominance condition and the mixing condition. It implies that

n−1∇2Ĵn,SQ(θ, ψ)→ 2GQ(θ, ψ)TS−1
Q GQ(θ, ψ) in Qn uniformly over (θ, ψ). (57)

Because of the second-order continuous differentiability of the moment function and the dominance
condition, the limit on the right hand side of (57) is a continuous function of (θ, ψ) due to the
Dominance Convergence Theorem. Moreover, at (θ0, ψ0), the limiting function in (57) is equal
to GTQS

−1
Q GQ which is positive definite. Thus, the uniform convergence and the continuity of the
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limiting function directly imply the result in (56). Therefore, under the reparametrization in (48), the
result implies that for an arbitrary constant K > 0, the probability that the smallest eigenvalue of
∇2Ĵ(θ̂P + u/

√
n, ψ̂P + h/

√
n) is bigger than λJ converges to one uniformly over |u| ≤ K and |h| ≤ K.

It suffices to focus on the big probability set in (57).

(4) First-order conditions of GMM estimators. The GMM estimator (θ̂Q, ψ̂Q) = (θ̂P, ψ̂P)+
1√
n

(ûQ, ĥQ) satisfies the first-order condition

0 = ∇Ĵn,SQ(θ̂Q, ψ̂Q). (58)

The constrained GMM estimator (θ̌Q, ψ̌Q) with restriction θ̌Q = θ is the minimizer of Ĵn,SQ(θ̃, ψ̃)

subject to the constraint R(θ̃, ψ̃; θ, ψ) = 0 where

R(θ̃, ψ̃; θ, ψ) ≡ vΓΘ

(
θ̃ − θ
ψ̃ − ψ

)
=

1√
n

vΓΘ

(
ũ− u
h̃− h

)
=

1√
n
R(ũ, h̃;u, h).

The constraint is linear and effectively restricts the first Df elements of the baseline parameter
vector to be θ1 = vθ. Recall that θ1 is the first Dt elements of θ. The gradient of the constraint is
∇R(θ̃, ψ̃) ≡ vΓΘ. The first-order condition and the complementarity condition (equality constraint):

∇Ĵn,SQ(θ̌Q, ψ̌Q) = (vΓΘ)TΛn, (59)

where Λn is a Df × 1 vector containing the Lagrangian multipliers of constraints, and

R(θ̌Q, ψ̌Q; θ, ψ) = 0. (60)

The constrained GMM (θ̌Q, ψ̌Q) depends on the parameters u1 = vu or θ1 = vθ.

(5) Uniform bounds and convergence for constrained GMM estimators. Under
the standard regularity conditions (especially the dominance condition), it is straightforward to show

that (reparametrized) GMM estimators (ûQ, ĥP) are Op(1) variables. However, the (reparametrized)
constrained GMM estimators (ǔQ, ȟQ) depend on the restriction parameter u1 = vu, and thus it
is unclear whether the constrained GMM estimators are uniformly Op(1) variables over all u, even
though (ǔQ, ȟQ) are Op(1) for each fixed u.

In fact, the second-order Taylor expansion of Jn,SQ(θ̌Q, ψ̌Q) around (θ̂Q, ψ̂Q) implies that

dSQ{vu; xn,yn} =

(
ǔQ − ûQ
ȟQ − ĥQ

)T [
n−1∇2Ĵn,SQ(θu, ψu)

]( ǔQ − ûQ
ȟQ − ĥQ

)
(61)

where (θu, ψu) lies on the segment between (θ̂P+ǔQ/
√
n, ψ̂P+ȟQ/

√
n) and (θ̂P+ûQ/

√
n, ψ̂P+ĥQ/

√
n).

On the big probability set of (57) in Step (3), it holds that

dSQ{vu; xn,yn} ≥ λJ
(
|ǔQ − ûQ|2 + |ȟQ − ĥQ|2

)
. (62)

Combining (55) and (62), it holds that for any ε > 0, there exists a large enough constant K > 0 and
a small enough λJ > 0 such that

lim sup
n→∞

Qn
{
|ǔQ − ûQ|2 + |ȟQ − ĥQ|2 ≤ λ−1

J DQ,n(xn,yn)(|ûQ|2 +K2), ∀ |u| ≤ K
}
< ε

where DQ,n(xn,yn) is defined in (54). This result is crucial since it implies that the constrained
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GMM estimators (θ̌Q, ψ̌Q) converges to (θ0, ψ0) with the rate of
√
n in probability uniformly over

|u| ≤ K for large enough constant K. Therefore, according to the ULLN result of (57), it follows
that for large enough K

n−1∇2Ĵn,SQ(θu, ψu)→ GTQS
−1
Q GQ, uniformly over |u| ≤ K in Qn. (63)

And thus, combining the second-order Taylor expansion relationship (61) and the asymptotic result
of (63), it implies that

dSQ{vu; xn,yn} =

(
ǔQ − ûQ
ȟQ − ĥQ

)T
GTQS

−1
Q GQ

(
ǔQ − ûQ
ȟQ − ĥQ

)
+ op,K(1), (64)

where the term op,K(1) converges to zero uniformly over |u| ≤ K in probability.

(6) A normal approximation of weighting posterior distributions in the integral.
As a result of the uniform bound on the over-fitting gap dSQ{vθ; xn,yn}, the approximating error

of replacing πP(θ|xn) by the normal density for N(θ̂P, n−1IP(θ0)−1), denoted by ϕP,n(θ), can be
bounded as follows

|%fo (θ0|ψ0,x
n,yn)−

∫
dSQ{vθ; xn,yn}ϕP,n(θ)dθ|

≤
∫
dSQ{vθ; xn,yn}|πP(θ|xn)− ϕP,n(θ)|dθ. (65)

Change of variable θ = θ̂P + u√
n

, the inequality (65) can be rewritten as

|%fo (θ0|ψ0,x
n,yn)−

∫
dSQ{vu; xn,yn}ϕP(u)du|

≤
∫
dSQ{vu; xn,yn}|πP(θ̂P + u/

√
n|xn)− ϕP(u)|du. (66)

From the inequality above (66) and (55), it follows that

|%fo (θ0|ψ0,x
n,yn)−

∫
dSQ{vu; xn,yn}ϕP(u)du|

≤ DQ,n(xn,yn)

∫
|u− ûQ|2|πP(θ̂P + u/

√
n|xn)− ϕP(u)|du. (67)

Convergence in relative entropy implies convergence in total variation distance due to the Pinsker’s
inequality (see, e.g. Pinsker, 1964). Thus, Proposition 4 and the intermediate convergence result (45)
imply that ∫

|u− ûQ|2|πP(θ̂P + u/
√
n|xn)− ϕP(u)|du. = op(1). (68)

Therefore, because DQ,n{xn,yn} defined in (55) is Op(1), it holds that

%fo (θ0|ψ0,x
n,yn) =

∫
dSQ{vu; xn,yn}ϕP(u)du+ op(1). (69)

Thus, as far as the asymptotic properties of %fo (θ0|ψ0,x
n,yn) are concerned, we need to only focus

on the integral in (69).
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(7) A Wald-type approximation for the over-fitting gap dSQ{vu; xn,yn}. Let’s

define a Wald-type distance between u1 and ûQ1 :

wSQ{vu; xn,yn} =

(
ûQ − u
ĥQ − h

)T
ΓTΘvT

{
vΓΘ

[
GTQS

−1
Q GQ

]−1
ΓTΘvT

}−1

vΓΘ

(
ûQ − u
ĥQ − h

)
Based on the definition of IQ(θ0|ψ0) in (9), the Wald-type distance above can be rewritten as

wSQ{vu; xn,yn} =
(
ûQ − u

)T
vT
[
vIQ(θ0|ψ0)−1vT

]−1
v
(
ûQ − u

)
(70)

= R(ûQ, ĥQ;u, h)TΓTΘvT
[
vIQ(θ0|ψ0)−1vT

]−1
vΓΘR(ûQ, ĥQ;u, h). (71)

Our idea is to approximate dSQ{vu; xn,yn} by the Wald-type distance wSQ{vu; xn,yn}. More
precisely, we shall show that∫

dSQ{vu; xn,yn}ϕP(u)du =

∫
wSQ{vu; xn,yn}ϕP(u)du+ op(1). (72)

Because of the gaussian tail of ϕP(u) and the quadratic bounds of dSQ and wSQ , it suffices to show
that for any large enough constant K,∫

|u|≤K
dSQ{vu; xn,yn}ϕP(u)du =

∫
|u|≤K

wSQ{vu; xn,yn}ϕP(u)du+ op(1). (73)

(8) Proof of the Wald-type approximation in (73). The starting point of the proof
of Wald-type approximations goes back to the second-order Taylor expansion of Jn,SQ(θ̌Q, ψ̌Q)

around (θ̂Q, ψ̂Q) and its large-sample approximation in (64). Now we represent

(
ǔQ − ûQ
ȟQ − ĥQ

)
in the

approximation relationship (64) by R(ûQ, ĥQ;u, h). The most direct connection between them is

obviously based on the first-order Taylor expansion of R(ûQ, ĥQ;u, h) around (ǔQ, ȟQ):

R(ûQ, ĥQ;u, h) = −vΓΘ

(
ǔQ − ûQ
ȟQ − ĥQ

)
(74)

However, vΓΘ is not invertible, and thus we need to figure out another strategy. Basically, it is

to first represent

(
ǔQ − ûQ
ȟQ − ĥQ

)
by ∇Ĵn,SQ(θ̌Q, ψ̌Q), and then we represent ∇Ĵn,SQ(θ̌Q, ψ̌Q) by the

Lagrangian multiplier Λ, and lastly we represent the Lagrangian multiplier Λn by R(ûQ, ĥQ;u, h).

Again, we use the first-order Taylor expansion of ∇Ĵn,SQ(θ̌Q, ψ̌Q) around (θ̂Q, ψ̂Q):

∇Ĵn,SQ(θ̌Q, ψ̌Q) = n−1∇2Ĵn,SQ(θ′u, ψ
′
u)

(
ǔQ − ûQ
ȟQ − ĥQ

)
(75)

where (θ′u, ψ
′
u) lies on the segment between (θ̂P+ǔQ/

√
n, ψ̂P+ȟQ/

√
n) and (θ̂P+ûQ/

√
n, ψ̂P+ĥQ/

√
n).

Thus,

∇Ĵn,SQ(θ̌Q, ψ̌Q) = GTQS
−1
Q GQ

(
ǔQ − ûQ
ȟQ − ĥQ

)
+ op,K(1), (76)

where the term op,K(1) converges to zero uniformly over |u| ≤ K in probability. Thus, it holds that(
ǔQ − ûQ
ȟQ − ĥQ

)
=
(
GTQS

−1
Q GQ

)−1∇Ĵn,SQ(θ̌Q, ψ̌Q) + op,K(1). (77)

53



Now we represent ∇Ĵn,SQ(θ̌Q, ψ̌Q) by the Lagrangian multiplier Λn using the first-order condition of
constrained GMM estimators, which is Equation (59):

∇Ĵn,SQ(θ̌Q, ψ̌Q) = (vΓΘ)TΛn. (78)

Plugging the equation above into (74), it follows that

R(ûQ, ĥQ;u, h) = −vΓΘ

(
GTQS

−1
Q GQ

)−1
(vΓΘ)TΛn + op,K(1). (79)

Thus,

Λn = −
{

vΓΘ

(
GTQS

−1
Q GQ

)−1
(vΓΘ)T

}−1

R(ûQ, ĥQ;u, h) + op,K(1). (80)

Combining (77), (78), and (80), it leads to(
ǔQ − ûQ
ȟQ − ĥQ

)
=
(
GTQS

−1
Q GQ

)−1
ΓTΘvT

[
vΓΘ

(
GTQS

−1
Q GQ

)−1
ΓTΘvT

]−1

R(ûQ, ĥQ;u, h) + op,K(1).

Now, we plug the relationship above into (64), and we obtain the following approximation:

dSQ{vu; xn,yn}

= R(ûQ, ĥQ;u, h)TΓTΘvT
[
vIQ(θ0|ψ0)−1vT

]−1
vΓΘR(ûQ, ĥQ;u, h) + op,K(1). (81)

Comparing (71) and (81), we have shown what we promised earlier in Equation (73). In other words,
we have established the large-sample relationship in (72). In the end, we derive the asymptotic
distribution of

∫
wSQ{vu; xn,yn}ϕP(u)du as follows.

(9) Asymptotic distribution of
∫
wSQ{vu; xn,yn}ϕP(u)du. We consider the decompo-

sition

wS0{vu; xn,yn} =uTvT
[
vIQ(θ0|ψ0)−1vT

]−1
vu (82)

+ 2(ûQ)TvT
[
vIQ(θ0|ψ0)−1vT

]−1
vu (83)

+ (ûQ)TvT
[
vIQ(θ0|ψ0)−1vT

]−1
vûQ. (84)

The integral of term (83) over the Gaussian density ϕP(u) is zero, while the integral of term (84) is
just itself. Lastly, the integral of term (82) over the Gaussian density is∫

tr
{[

vIQ(θ0|ψ0)−1vT
]−1

vuuTvT
}
ϕP(u)du = %v(θ0|ψ0). (85)

Thus, the integral can be rewritten as∫
wSQ{vu; xn,yn}ϕP(u)du = %v(θ0|ψ0) + (ûQ)TvT

[
vIQ(θ0|ψ0)−1vT

]−1
vûQ. (86)

To derive the asymptotic approximation of (ûQ)TvT
[
vIQ(θ0|ψ0)−1vT

]−1
vûQ, we appeal to the

standard large-sample approximations of GMM in the literature; see, for example, Hansen (1982,
Theorem 3.1) and Newey (1985a, Lemma 1 and Theorem 3). More precisely, we have

vûQ = −v
[
ΓΘ

(
GTQS

−1
Q GQ

)−1
GTQS

−1
Q −

(
GTP S

−1
P GP

)−1
GPS

−1
P ΓP

]√
nĝQ,n(θ0, ψ0) + op(1),
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where ΓP =
[
IDP , ODP×(DQ−DP)

]
and ΓΘ =

[
IDf , ODf×(DΘ−Df )

]
.

Thus, ûQ is asymptotically normally distributed

wlim
n→∞

vûQ = vΥQZ

where Z ∼ N(0, IDQ) and

ΥQ ≡ −
[
ΓΘ

(
GTQS

−1
Q GQ

)−1
GTQS

−1
Q −

(
GTP S

−1
P GP

)−1
GTP S

−1
P ΓP

]
S

1/2
Q . (87)

The Continuous Mapping Theorem implies that

wlim
n→∞

(ûQ)TvT
[
vIQ(θ0|ψ0)−1vT

]−1
vûQ = ZTΥT

QvT
[
vIQ(θ0|ψ0)−1vT

]−1
vΥQZ. (88)

Consider the Singular Value Decomposition (SVD):

ΥT
QvT

[
vIQ(θ0|ψ0)−1vT

]−1/2
= UΣŨT ,

where U is a DQ ×DQ orthogonal matrix, Ũ is a Df ×Df orthogonal matrix, and Σ is a DQ ×Df

diagonal matrix with singular values on the diagonal line. Plugging back into (88), it implies the
following convergence:

wlim
n→∞

(ûQ)TvT
[
vIQ(θ0|ψ0)−1vT

]−1
vûQ =

(
UTZ

)T
ΣΣTUTZ

= σ1z
2
1 + · · ·+ σDf z

2
Df
, (89)

where UZ = (z1, · · · , zDf , zDf+1, · · · , zDΘ
)T contains DΘ i.i.d. standard normal random variables,

and σ1, · · · , σDf are the nonzero diagonal elements of ΣΣT . In fact, σ1, · · · , σDf are actually the
eigenvalues of the matrix

ŨΣTΣŨT =
[
vIQ(θ0|ψ0)−1vT

]−1/2
vΥQΥT

QvT
[
vIQ(θ0|ψ0)−1vT

]−1/2
(90)

From the definition of ΥQ in (87), it follows that

ΥQΥT
Q = IP(θ0)−1 − IQ(θ0|ψ0)−1. (91)

In deriving the equality of (91), there are two relationships that worth mentioning on top of
straightforward matrix algebra:

ΓPSQΓTP = SP and ΓPGQ = [GP, ODP×DΨ ] = [GP, ODP×DΨ ] ΓTΘΓΘ. (92)

Plugging (91) back into (90), we know that σ1, · · · , σDf are actually the eigenvalues of the matrix

ŨΣTΣŨT =
[
vIQ(θ0|ψ0)−1vT

]−1/2 [
vIP(θ0)−1vT

] [
vIQ(θ0|ψ0)−1vT

]−1/2 − IDf
= Π0(v)− IDf ,

where Π0(v) is the (Fisher) information matrix defined in (13). Thus, the eigenvalues are

σi = λi(v)− 1, for all i = 1, · · · , Df . (93)

Here, the λi(v)’s are eigenvalues of Π0(v) as in Proposition 1. Therefore, according to (86), (89),
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and (93), it follows that

wlim
n→∞

∫
wSQ{vu; xn,yn}ϕP(u)du = %v(θ0|ψ0) +

Df∑
i

[λi(v)− 1]χ2
1,i, (94)

where χ2
1,i’s are i.i.d. chi-squared random variables with 1 degree of freedom.

B.3 Proof of The Corollaries

The result of Corollary 1 follows immediately from Theorem 1. The result of Corollary 2 follows from
Theorem 1 of Nakagawa (2005). More precisely, the Laplace-Stieltjes transform of the cumulative

distribution function of wlimn→∞ %fo (θ0|ψ0,x
n,yn) = %v(θ0|ψ0) +

∑Df
i=1 [λi(v)− 1]χ2

1,i is

M(z) ≡ EQe
−z

{
%v(θ0|ψ0)+

∑Df
i=1[λi(v)−1]χ2

1,i

}
= e−z%

v(θ0|ψ0)

Df∏
i=1

[1 + 2z (λi(v)− 1)]
−1/2

. (95)

Let Rz denote the real part of z. Thus, the abscissa of convergence of M(z) is equal to − 1
2[λ1(v)−1]

where λ1(v) is the largest eigenvalue; that is, when Rz > − 1
2[λ1(v)−1] , the transform M(z) converges,

and when Rz < − 1
2[λ1(v)−1] , the transform M(z) diverges. Therefore, according to Theorem 1 of

Nakagawa (2005), the tail probability has the convergence property stated in the corollary.

C Proof of Propositions on Fisher Model Fragility

C.1 Proof of Proposition 1

It is straightforward from the fact that

tr
[(

vIQ(θ0|ψ0)−1vT
)−1 (

vIP(θ0)−1vT
)]

= tr
[(

vIQ(θ0|ψ0)−1vT
)−1/2 (

vIP(θ0)−1vT
) (

vIQ(θ0|ψ0)−1vT
)−1/2

]
and the fact that trace of a symmetric matrix is equal to the sum of its all eigenvalues. Because
gP(θ; xt) is part of gQ(θ, ψ; xt,yt), according to Hansen (1982), the asymptotic covariance matrices
satisfy IQ(θ0|ψ0)−1 ≤ IP(θ0|ψ0)−1. Thus, for any full-rank matrix v, it holds that vIQ(θ0|ψ0)−1vT ≤
vIP(θ0|ψ0)−1vT . As a result, the smallest eigenvalue is not less than one.

C.2 Proof of Proposition 2

If we define u = IQ(θ0)−1/2v, we can rewrite the %Da (θ0) as

%Da (θ0) = max
u∈RDΘ×D,Rank(u)=D

tr
[(

uTu
)−1

(
uT IQ(θ0)1/2IP(θ0)−1IQ(θ0)1/2u

)]
= max

u∈RDΘ×D,Rank(u)=D
tr
[
u
(
uTu

)−1
uT IQ(θ0)1/2IP(θ0)−1IQ(θ0)1/2

]
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The linear operator Pu ≡ u
(
uTu

)−1
uT is the projection operator onto the subspace spanned by

the column vectors of u. Therefore, we have

%Da (θ0) = max
u∈RDΘ×D,Rank(u)=D

tr
[
PuIQ(θ0)1/2IP(θ0)−1IQ(θ0)1/2

]
.

The projection operator can be equivalently expressed in terms of the orthonormal column vectors
lying in the subspace spanned by u. Thus, without loss of any generality, we can assume that the
column vectors of u are orthonormal vectors, i.e. uTu is a D-dimensional identity matrix. Therefore,

%Da (θ0) = max
u∈RDθ×D,Rank(u)=D,uTu=I

tr
[
uuT IQ(θ0)1/2IP(θ0)−1IQ(θ0)1/2

]
= max

u∈RDθ×D,Rank(u)=D,uTu=I
tr
[
uT IQ(θ0)1/2IP(θ0)−1IQ(θ0)1/2u

]
= max

u∈RDθ×D,Rank(u)=D,uTu=I

D∑
i=1

uTi IQ(θ0)1/2IP(θ0)−1IQ(θ0)1/2ui

= λ1 + λ2 + · · ·+ λD.

The argmax matrix is u∗ = [e∗1, e
∗
2, · · · , e∗D] whose column vectors are the corresponding eigenvectors.

Thus, correspondingly, the worst-case matrix is v∗ = [v∗1 , v
∗
2 , · · · , v∗D] with v∗i = IQ(θ0)1/2e∗i . Moreover,

for i = 1, · · · , D, it holds that

λi =
(v∗i )T IP(θ0)−1v∗i
(v∗i )T IQ(θ0)−1v∗i

. (96)

We have completed the proof. Furthermore, the eigen problem above is equivalent to the one

λi =
(v̂∗i )T IQ(θ0)v̂∗i
(v̂∗i )T IP(θ0)v̂∗i

, (97)

where v̂∗i = IP(θ0)−1/2ê∗i with ê∗i to be the corresponding eigenvector of IP(θ0)−1/2IQ(θ0)IP(θ0)−1/2.
That is, the vector v̂∗i corresponds to v∗i .

C.3 Proof of Proposition 3

From Proposition 2, it holds that

%D1(θ0|ψ0) = λ1 + · · ·+ λD1 , and %D2(θ0|ψ0) = λ1 + · · ·+ λD2 . (98)

As the eigenvalues are nonnegative, it must hold that %D1(θ0|ψ0) ≤ %D2(θ0|ψ0) when D1 ≤ D2.

D Derivations of The Disaster Risk Model

We first show how to derive the Euler equation, and then we show how to obtain the Fisher fragility
measure %(p, λ).

D.1 The Euler Equation

The total return of market equity from t to t + 1 is erM,t+1 which is unknown at t, and the total
interest gain of risk-free bond is erf,t which is known at t. Thus, the excess log return of equity is
rt+1 = rM,t+1− rf,t. The state-price density is Λt = δtDc

−γD
t , and the inter-temporal marginal rate of
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substitution is Λt+1/Λt = δDe
−γDgt+1 . The Euler equations for risk-free rate and the market equity

return are

1 = Et
[

Λt+1

Λt
erM,t+1

]
and e−rf,t = Et

[
Λt+1

Λt

]
. (99)

Thus, we can obtain the Euler equation for the excess log return:

Et
[

Λt+1

Λt

]
= Et

[
Λt+1

Λt
ert+1

]
. (100)

The left-hand side of (100) can be computed as

Et
[

Λt+1

Λt

]
= Et

[
e−γDgt+1

]
= (1− p)e−γDµ+ 1

2γ
2
Dσ

2

+ pλ
eγDv

λ− γD

,

and the right-hand side of (100) can be computed as

Et
[

Λt+1

Λt
ert+1

]
= Et

[
e−γDgt+1+rt+1

]
= (1− p)e−γDµ+η+ 1

2 (γ2
Dσ

2+τ2−2γDρστ) + pλ
e
ν2

2 +(γD−b)v

λ+ b− γD

Thus, the Euler equation (100) can be rewritten as

(1− p)e−γDµ+ 1
2γ

2
Dσ

2
[
eη+ 1

2 τ
2−γDρστ − 1

]
= p∆(λ), (101)

where

∆(λ) = λ

(
eγDv

λ− γD

− e
ν2

2 +(γD−b)v

λ+ b− γD

)
.

Rearranging terms in (101), it leads to the final Euler equation in (29). Using the Taylor expansion,
we have the following approximation:

eη+ 1
2 τ

2−γDρστ − 1 ≈ η +
1

2
τ2 − γDρστ. (102)

Combining (101) and the approximation in (102), we have finished proving the approximated Euler
equation in (30).

D.2 Fisher fragility measure

The joint probability density for rare disasters (z, v) in the baseline model is

fP(z, ṽ|p, λ) = pz(1− p)1−zδ(v)1−z [1{v > v}λ exp {−λ(v − v)}]z , . (103)

where δ(·) is the dirac delta function. The Fisher information matrix is

IP(p, λ) =

 1
p(1− p) 0

0
p
λ2

 . (104)
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Next, the probability density function fQ(z, v, r, u|θ) for the structural model is

fQ(z, v, r, u|θ, φ) = pz(1− p)1−z

×

[
1

2πστ
√

1− ρ2
exp

{
− 1

2(1− ρ2)

[
(u− µ)2

σ2
+

(r − η(θ, φ))2

τ2
− 2ρ(u− µ)(r − η(θ, φ))

στ

]}]1−z

×
[
1{v > v}λ exp {−λ(v − v)} 1√

2πν
exp

{
− 1

2ν2
(r − bg)2

}]z
1{η(θ, φ) > η∗, λ > γ},

where

η(θ, φ) ≡ γDρστ −
τ2

2
+ ln

[
1 + eγDµ−

γ2
D
σ2

2 λ

(
eγDv

λ− γD

− e 1
2ν

2 e(γD−b)v

λ+ b− γD

)
p

1− p

]
. (105)

We can derive the simple intuitive closed-form approximation for the fragility measure in (32), if we
consider the approximated Euler equation. More precisely, we consider the following approximation:

η(θ, φ) ≈ γDρστ −
τ2

2
+ eγDµ−

γ2
D
σ2

2 λ

(
eγDv

λ− γD

− e 1
2ν

2 e(γD−b)v

λ+ b− γD

)
p

1− p
, (106)

Then, using the notation introduced by (31) and (33), we can express the Fisher information for
(p, λ) under the full structural model as

IQ(p, λ) ≈


1

p(1− p) +
∆(λ)2

(1− ρ2)τ2
e2γDµ−γ2

Dσ
2

(1− p)3
p

(1− ρ2)τ2
e2γDµ−γ2

Dσ
2

(1− p)2 ∆(λ)∆̇(λ)

p
(1− ρ2)τ2

e2γDµ−γ2
Dσ

2

(1− p)2 ∆(λ)∆̇(λ)
p
λ2 +

∆̇ (λ)
2(

1− ρ2
)
τ2 e

2γDµ−γ2
Dσ

2 p2

1− p

 . (107)

Following Proposition 2, the worst-case Fisher fragility is the largest eigenvalue of the matrix
Π0(IDΘ) ≡ IQ(θ0)1/2IP(θ0)−1IQ(θ0)1/2. Important for simplifying the calculation, it is also the
largest eigenvalue of IP(θ0)−1/2IQ(θ0)IP(θ0)−1/2. In this case, the eigenvalues and eigenvectors are
available in closed form. This gives us the formula for %(p, λ) and %1(p, λ) in (32). The minimum Fisher
fragility in this case is 1, which is obtained in the direction along the deterministic cross-equation
restriction.
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