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We formalize the optimal design of experiments when there is interference between 

units, i.e. an individual’s outcome depends on the outcomes of others in her group. 

We focus on randomized saturation designs, two-stage experiments that first randomize 

treatment saturation of a group, then individual treatment assignment. We map the 

potential outcomes framework with partial interference to a regression model with 

clustered errors, calculate standard errors of randomized saturation designs, and derive 

analytical insights about the optimal design. We show that the power to detect average 

treatment effects declines precisely with the ability to identify novel treatment and 

spillover effects.
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1 Introduction

The possibility of interference in experiments, where the treatment status of an individual

affects the outcomes of others, gives rise to a plethora of important questions. How does

the benefit of treatment depend on the intensity of treatment within a population? What

if a program benefits some by diverting these benefits from others? Does the study have an

unpolluted counterfactual? Further, in the presence of interference, a full understanding of

the policy environment requires a measure of spillover effects that are not captured, or are

even a source of bias, in standard experimental designs. This is critical to determine the

overall program impact.

Empirical researchers across multiple academic disciplines have become increasingly inter-

ested in bringing such spillover effects under the lens of experimental investigation. Over the

past decade, a new wave of experimental studies relax the assumptions around interference

between units. These studies have used a variety of methods, including using experimental

variation across treatment groups, leaving some members of a group untreated, exploiting

exogenous variation in within-network treatments, and intersecting an experiment with pre-

existing networks.1 Compared to experiments with no interference, these experiments often

seek to measure a larger set of effects and involve more complex design choices. Therefore,

researchers interested in using experiments to study interference face a novel set of design

questions.

In this paper, we study experimental design in the presence of interference. We focus on

settings with partial interference, in which individuals are split into mutually exclusive clus-

ters, such as villages or schools, and interference occurs between individuals within a cluster

but not across clusters. As established in Hudgens and Halloran (2008), a two-stage random-

ization procedure, in which first each cluster is randomly assigned a treatment saturation,

and second, individuals within each cluster are randomly assigned to treatment according

to the realized treatment saturation, can identify treatment and spillover effects when there

is partial interference.2,3 Hudgens and Halloran (2008); Liu and Hudgens (2014); Tchet-

1(i) Bobba and Gignoux (2016); Miguel and Kremer (2004); (ii) Barrera-Osorio, Bertrand, Linden and
Perez-Calle (2011); Lalive and Cattaneo (2009); (iii) Babcock and Hartman (2010); Beaman (2012); Conley
and Udry (2010); Duflo and Saez (2002); Munshi (2003); (iv) Banerjee, Chandrasekhar, Duflo and Jackson
(2013); Chen, Humphries and Modi (2010); Macours and Vakis (2008); Oster and Thornton (2012).

2Many recent empirical papers use this randomization procedure, including Banerjee, Chattopadhyay,
Duflo, Keniston and Singh (2012); Busso and Galiani (2014); Crepon, Duflo, Gurgand, Rathelot and Zamora
(2013); Gine and Mansuri (forthcoming); Sinclair, McConnell and Green (2012).

3Partial population experiments (Moffitt 2001), in which clusters are assigned to treatment or control,
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gen Tchetgen and VanderWeele (2010) define causal estimands, find unbiased estimators of

these estimands, and characterize the distributions of these estimators in such designs.4 But

a key questions remains: how should a researcher designing such a randomized saturation

(RS) experiment select the set of treatment saturations and the share of clusters to assign

to each saturation? In this paper, we explore the trade-offs involved in these design choices,

from the perspective of how they affect the standard errors of the estimators of different

treatment and spillover effects.

Our first contribution is to provide a foundation for the regression models commonly

used by economists to analyze RS experiments. We map a potential outcomes model with

partial interference into a regression model with intra-cluster correlation, which provides a

bridge between the causal inference literature and the methods used to analyze RS designs

in practice. This mapping requires two restrictions on the population distribution of poten-

tial outcomes: (i) the population average potential outcome only depends on an individual’s

treatment status; and (ii) the share of treated individuals in the cluster, and the variance-

covariance matrix of the population distribution of potential outcomes is block-diagonal.5

Athey and Imbens (2017) perform a similar derivation for a model with uncorrelated obser-

vations and no interference. Our derivation is an extension of their approach that allows for

intra-cluster correlation and partial interference.

We show that using this regression model to analyze data from an RS experiment iden-

tifies a set of novel estimands: not only can the researcher identify an unbiased estimate of

the usual intention-to-treat effect, but she can also observe spillover effects on treated and

untreated individuals, and understand how the intensity of treatment drives spillover effects

on these groups. These are the infinite population analogues of the estimands that Hudgens

and Halloran (2008) show can be consistently estimated in a finite population model. The

estimate of the average effect on all individuals in treated clusters, which we refer to as the

and a subset of individuals in treatment clusters are offered treatment, also identify certain treatment and
spillover effects when there is partial interference. But they provide no exogenous variation in treatment
saturation to identify whether these effects vary with the intensity of treatment. Most extant partial pop-
ulation experiments feature cluster-level saturations that are either endogenous (Mexico’s conditional cash
transfer program, PROGRESA/Oportunidades (Alix-Garcia, McIntosh, Sims and Welch 2013; Angelucci
and De Giorgi 2009; Bobonis and Finan 2009)) or fixed and typically set at 50% (Duflo and Saez 2003).

4Aronow and Samii (forthcoming) and Manski (2013) study identification and variance estimation under
more general forms of interference.

5Hudgens and Halloran (2008) make the stronger assumption of stratified interference to estimate vari-
ances in a setting with partial interference. Graham, Imbens and Ridder (2010) relax this assumption with
one of observational symmetry, i.e. exchangeability.

2



Total Causal Effect, provides the policy maker with a very simple tool to understand how

the intensity of treatment will drive outcomes for a representative individual.

Next we illustrate the power trade-offs that exist in designing RS experiments, i.e. choos-

ing the set of saturations and the share of clusters to assign to each saturation. We derive

closed-form expressions for the standard errors (SEs) of the OLS estimates of various treat-

ment and spillover estimands. Using these expressions, we derive properties of the optimal

designs to measure different sets of estimands. The ability to identify novel estimands, such

as slope effects, comes at a cost: decreased statistical power to measure intention-to-treat

effects pooled across all saturations. In other words, the same variation in treatment satura-

tion that permits measurement of how treatment and spillover effects vary with the intensity

of treatment is detrimental to the power of the simple experimental comparison of treatment

to pure control. By placing RS designs in the clustered error regression framework, we pro-

vide the closest possible analogue to the familiar power calculations in cluster randomized

trials. This makes the design trade-offs present in RS experiments transparent. In related

work, Hirano and Hahn (2010) study the power of a partial population experiment to analyze

a linear-in-means model with no intra-cluster correlation.

We conclude with numerical simulations of hypothetical and published RS designs. First,

we calculate the optimal designs for objective functions that include different sets of individ-

ual saturation, slope and pooled estimands. This demonstrates how the optimal design de-

pends on the set of estimands that the researcher would like to identify and estimate precisely.

Second, we calculate the standard errors for several RS designs used in published papers. This

illustrates how design choices affect the standard errors of different estimators. To compute

these numerical results, we use software that we developed to assist researchers in designing

RS experiments. It is publicly available at http://pdel.ucsd.edu/solutions/index.html.

The remainder of the paper is structured as follows. Section 2 sets up the potential

outcomes framework, formalizes an RS design and defines estimands related to spillovers.

Section 3 connects the potential outcomes framework to a regression model with clustered

errors, presents closed-form expressions for the standard errors and derives properties of the

optimal RS design to measure different sets of estimands. Section 4 presents the numerical

application. All proofs are in Appendix A.
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2 Causal Inference with Partial Interference

2.1 Potential Outcomes

A researcher seeks to draw inference on the outcome distribution of an infinite population I
under different treatment allocations. The population is partitioned into equal-sized, non-

overlapping groups, or clusters, of size n.6 Individual i in cluster c has response function

Yic : {0, 1}n → Y that maps each potential cluster treatment vector t = (t1, ..., tn) ∈ {0, 1}n

into potential outcome Yic(t) ∈ Y , where t ∈ {0, 1} is a binary treatment status in which

t = 1 corresponds to being offered treatment and t = 0 corresponds to not being offered

treatment, and Y ⊂ R is a set of potential outcomes. The response function is independent

of the treatment vectors for all clusters d 6= c – spillovers may flow within a cluster, but

do not flow between clusters. Thus, we relax the stable unit treatment value assumption

(SUTVA) within clusters, but maintain it across clusters. This set-up is referred to as partial

interference (Sobel 2006).7

A random sample is drawn from this infinite population and randomly assigned treat-

ment according to a prespecified experimental design. Our goal is to study the power of

different experimental designs to detect treatment and spillover effects by comparing the

standard errors of estimands across designs. In order to characterize these standard errors,

we make two assumptions on the mean and the variance-covariance matrix of the population

distribution of potential outcomes.

First, we assume that the expected potential outcome E[Yic(t)] at potential treatment

vector t ∈ {0, 1}n, where the expectation is with respect to the population distribution

of potential outcomes, only depends on individual treatment status ti and the treatment

saturation p(t) ≡ 1
n

∑n
j=1 tj. In other words, it is independent of the identity of the other

individuals who receive treatment.

Assumption 1. There exists a Y : {0, 1} × (0, 1) → co(Y), where co(Y) is the convex hull

of the set of potential outcomes, such that for all treatment vectors t ∈ {0, 1}n \{0n, 1n} with

p(t) = p, the expected potential outcome for an individual with treatment status t ∈ {0, 1} is

Y (t, p).

6We assume clusters are equal in size to simplify the analysis. In practice, datasets may have significant
variation in the size of the cluster and the researcher may want to group clusters into different sized bins,
i.e. rural and urban clusters.

7The assumption of no interference across groups is testable. For example, see Miguel and Kremer (2004).
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To maintain consistent notation, define Y (0, 0) ≡ E[Yic(0
n)] and Y (1, 1) ≡ E[Yic(1

n)] as

the expected potential outcomes when no individuals and all individuals within a cluster,

respectively, are treated. Assumption 1 allows for a characterization of the standard errors

of estimands without possessing information about the underlying network structure within

a cluster.8 Note that it does not preclude the realized potential outcomes from depending

on the identity of the individuals who receive treatment. Therefore, it is weaker than the

stratified interference assumption proposed by Hudgens and Halloran (2008), which assumes

that the realized potential outcomes of an individual are independent of the identity of the

other individuals assigned to treatment.

Second, we make an assumption about the variance-covariance matrix of the distribution

of potential outcomes. Clustering of outcomes can be due to either (i) the extent to which

outcomes are endogenously driven by the treatment of others in the same cluster, which is

interference between units, or (ii) a statistical random effect in outcomes that is correlated

between individuals – correlated effects (Manski 1993) – which does not stem from inter-

ference between units. To capture (ii), we allow potential outcomes to be correlated across

individuals within the same cluster, while maintaining no correlation across clusters.

Assumption 2. There exist σ2 > 0 and τ 2 ≥ 0 such that for all t, t′ ∈ {0, 1}n, the variance-

covariance matrix for the distribution of potential outcomes satisfies:

1. Var(Yic(t)) = σ2 + τ 2,

2. Cov(Yic(t), Yjc(t)) = τ 2 for i 6= j,

3. Cov(Yic(t), Yjd(t
′)) = 0 for c 6= d.

Assumption 2 imposes homoskedasticity across all potential outcomes for a given individual

and across potential outcomes between two individuals in the same cluster. In other words,

the variance and covariance of the distribution of potential outcomes do not depend on the

treatment status of an individual or the treatment saturation of a cluster.9 We will often

use ρ ≡ τ 2/(τ 2 + σ2) to denote the intra-cluster correlation (ICC).

8In the absence of this assumption, a researcher would need to observe the complete network structure
in each cluster, understand the heterogeneity in networks across clusters, and use a model of network-driven
spillovers to simulate the variance in outcomes that could be generated by these networks. This is not an
issue when there is no interference.

9The analysis can allow for heteroskedasticity. The standard errors are less tractable to characterize
analytically, and hence, optimal design results are also less tractable. We view the homoskedastic case as a
natural benchmark to establish how randomizing treatment saturation impacts power.

5



Assumption 2 allows us to connect the potential outcomes framework to a regression

model with a block-diagonal error structure. Our goal is to provide a bridge between the

theoretical literature and the use of field experiments in economics to measure spillover

effects. To this end, it is natural to impose a variance structure on potential outcomes

that maps to the regression model typically used for power calculations when there is no

interference.10 It enables a direct comparison of the power of RS designs to the power of

the canonical individually-randomized (blocked) and cluster-randomized (clustered) designs,

making explicit the impact that randomizing saturation has on power. A regression model

with a block-diagonal structure is also the model underlying the use of OLS with clustered

standard errors to analyze resulting data, the method commonly used for analysis.

2.2 A Randomized Saturation Design

Suppose a researcher draws a sample of C clusters of size n. A randomized saturation (RS)

design is a two-stage treatment assignment mechanism that specifies how to assign treatment

to these N ≡ nC individuals. The first stage randomizes the treatment saturation of each

cluster. Let Π ⊂ [0, 1] be a finite set of treatment saturations. Each cluster c is randomly

assigned a treatment saturation Pc ∈ Π according to the distribution f ∈ ∆(Π), which

specifies the share of clusters assigned to each saturation. The second stage randomizes the

treatment status of each individual in the cluster, according to the realized saturation of

the cluster. Individual i in cluster c is randomly assigned treatment Tic ∈ {0, 1}, where

the realized cluster treatment saturation Pc specifies the share of individuals assigned to

treatment (i.e.
∑n

i=1 Tic = nPc). Let Tc denote the realized treatment vector for cluster c.

An RS design is completely characterized by the pair {Π, f}.11

We refer to individuals assigned to treatment as treated individuals, individuals in clusters

assigned saturation zero as pure controls, and individuals in treated clusters who are not

assigned to treatment as within-cluster controls. Let Sic = 1{Tic = 0, Pc > 0} and Cic =

1{Tic = 0, Pc = 0} denote whether individual ic is a within-cluster control or pure control,

respectively. An RS design has share of treated individuals µ ≡
∑

p∈Π pf(p), share of within-

10See Duflo, Glennerster and Kremer (2007) for power expressions when there is no interference.
11The framework discussed here use a simple, spatially defined definition of a cluster that is mutually

exclusive and exhaustive. This is distinct from determining how to assign treatment in overlapping social
networks (Aronow 2012), which requires a more complex sequential randomization routine (Toulis and Kao
2013). An additional benefit of an RS design is that it also creates exogenous variation in the saturation
of any overlapping network in which two individuals in the same cluster have a higher probability of being
linked than two individuals in different clusters.
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cluster control individuals µS ≡ 1−µ−ψ, and share of control individuals ψ ≡ f(0). There is

a pure control if ψ > 0. We say an RS design is non-trivial if it has at least two saturations,

at least one of which is strictly interior. Multiple saturations guarantee a comparison group

to determine whether effects vary with treatment saturation, and an interior saturation

guarantees the existence of within-cluster controls to identify spillovers on the untreated.

The RS design nests several common experimental designs, including the clustered,

blocked, and partial population designs.12 The blocked and clustered designs are trivial,

and it is not possible to identify any spillover effects in these designs. The partial population

design is non-trivial, and it is possible to identify whether there are spillover effects on the

untreated.

Variation in the treatment saturation introduces correlation between the treatment sta-

tuses of individuals in the same cluster. Fixing µ and defining η2 ≡
∑

p∈Π p
2f(p), the vari-

ance in treatment saturation η2− µ2 and correlation in treatment status for an RS design is

bracketed between that of a clustered design, which has the maximum possible variance in

treatment saturation and perfect correlation between the treatment statuses of individuals in

the same cluster, and that of a blocked design, which has no variance in treatment saturation

and slightly negative correlation in treatment status (due to sampling without replacement).

We will show that when there is also correlation between the potential outcomes of individ-

uals in the same cluster, ρ > 0, the interaction of these two correlations play a key role in

determining the power of an RS design.

Discussion. We implicitly assume that all individuals who are part of the spillover network

within a cluster are included in the sample. If spillovers occur on individuals outside of

the sampling frame, either because there is a ‘gateway to treatment’ within the cluster

and not all eligible individuals are sampled, or because not all individuals in a cluster’s

spillover network are eligible for treatment, then it is necessary to distinguish between the

true treatment saturation (the share of treated individuals in the cluster) and the assigned

treatment saturation (the share of treated individuals out of the sampled individuals in the

cluster).13 If the sampling rate and share of the cluster eligible for treatment are constant

12Fixing µ, the clustered design corresponds to Π = {0, 1} and f(1) = µ, the blocked design corresponds
to Π = {µ} and f(µ) = 1, and the partial population design corresponds to Π = {0, P} and f(P ) = µ/P .

13For example, Gine and Mansuri (forthcoming) sample every fourth household in a neighborhood, and
randomly offer treatment to 80 percent of these households. This causes the true treatment saturation
to be 20 percent rather than the assigned 80 percent. Other examples include: unemployed individuals
on official unemployment registries form a small portion all unemployed individuals in an administrative
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across clusters, the true saturation is proportional to the assigned saturation. If sampling

rates are driven by cluster characteristics, or the share of the cluster that is eligible for

treatment varies across clusters, then the true saturation is endogenous. In this case, the

researcher can instrument for the true saturation with the assigned saturation. To streamline

the analysis, we maintain the assumption that the assigned and true saturations coincide.

Our framework can be applied to settings with perfect compliance, or to identify intention

to treat effects in settings with imperfect compliance. While non-compliance does not bias

intention to treat estimands, it presents a second channel for interference – treatment and

spillover effects may vary with treatment saturation due to compliance effects, in addition to

the direct impact of an individual’s treatment on others outcomes. Exploring extensions that

allow compliance to depend on treatment saturation – thereby defining a response function

that depends on whether individuals comply with assigned treatment – is an important

avenue for future research.

2.3 Treatment and Spillover Estimands

Next we define a set of estimands for treatment and spillover effects. We focus on average

effects across all individuals in the population. Recall that Y (t, p) is the expected potential

outcome at individual treatment t and saturation p.

Individuals offered treatment will experience a direct treatment effect from the program,

as well as a spillover effect from the treatment of other individuals in their cluster. Let

p ≡ 1/n denote the treatment saturation corresponding to a cluster with a single treated

individual. The Treatment on the Uniquely Treated (TUT) measures the intention to treat

an individual, absent any spillover effects, TUT ≡ Y (1, p)−Y (0, 0), and the Spillover on the

Treated (ST) measures the spillover effect at saturation p on individuals offered treatment,

ST (p) ≡ Y (1, p) − Y (1, p). The familiar Intention to Treat (ITT) is the sum of these two

effects, ITT (p) = TUT+ST (p). Individuals not offered treatment experience only a spillover

effect. The Spillover on the Non-Treated (SNT) is the analogue of the ST for individuals not

offered treatment, SNT (p) ≡ Y (0, p)−Y (0, 0).14 Given these definitions, there are spillover

region (Crepon et al. 2013); neighborhoods eligible for infrastructure investments comprise only 3 percent
of all neighborhoods (McIntosh, Alegria, Ordonez and Zenteno 2013); and malaria prevention efforts target
vulnerable individuals, who account for a small share of total cluster population (Killeen, Smith, Ferguson,
Mshinda, Abdulla et al. 2007).

14If an RS design does not have a pure control, one could define analogous estimands relative to the lowest
saturation in the design. For example, if clusters have a base saturation of share p0 of individuals receiving
treatment before an intervention, one could define estimands relative to p0.
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effects on the treated (non-treated) if there exists a p such that ST (p) 6= 0 (SNT (p) 6= 0).

We can also measure the slope of spillovers with respect to treatment saturation. The

Slope of Spillovers on the Treated measures the rate of change in the spillover effect on

treated individuals between saturations p and p′, DT (p, p′) ≡ (ST (p′)− ST (p))/(p′ − p). If

spillover effects are affine, then this is a measure of the slope; otherwise, it is a first order

approximation. Let DNT (p, p′) denote the analogue for individuals not offered treatment.

In the presence of spillovers, the true effectiveness of a program is measured by the to-

tal effect of treatment on both treated and untreated individuals. The Total Causal Effect

(TCE) measures this overall cluster-level effect on clusters treated at saturation p, com-

pared to pure control clusters, TCE(p) ≡ pITT (p) + (1−p)SNT (p). We say that treatment

effects are diversionary at saturation p if the benefits to treated individuals are offset by

negative externalities imposed on untreated individuals in the same cluster, ITT (p) > 0 and

TCE(p) < pITT (p). Diversionary treatment effects redistribute units of the outcome within

a cluster to treated individuals, and the true effectiveness of the program is muted compared

to the intention to treatment effect.15 If the TCE is negative, the program causes an aggre-

gate reduction in the average outcome, even though treatment effects may be positive. This

highlights one reason why it is imperative to use the TCE, rather than the ITT, to inform

policy in the presence of spillovers. The ITT may misrepresent the true effectiveness of the

program.

We can also measure the direct impact of being assigned to treatment at a given satura-

tion. The Value of Treatment (VT) measures the individual value of receiving treatment at

saturation p, V T (p) ≡ Y (1, p)−Y (0, p). If V T (p) is decreasing in p, then the value of treat-

ment is decreasing in the share of other individuals treated and spillover effects substitute

for treatment, while if the VT is increasing in p, then the value of treatment is increasing in

the share of other individuals treated and spillover effects complement treatment.

Hudgens and Halloran (2008) also study causal inference in the presence of partial inter-

ference, and define a similar set of estimands for a finite population. The estimands defined

above are the infinite population analogues.16

15This does not say anything about the welfare implications of diversionary effects. To do so requires a
welfare criterion specifying the social value of different distributions of the outcome within a cluster.

16The ST and SNT defined in our paper are the infinite population analogues of the indirect causal effects
defined in their paper, the ITT is the analogue of their total causal effect, the TCE is the analogue of their
overall causal effect and the VT is the analogue of their direct causal effect.
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Figure 1. Examples of Spillovers

2.4 Examples of Spillovers

We illustrate the subtlety and importance of measuring spillover effects with three stylized

examples: measles vaccinations, deworming interventions and job training programs. Con-

sider an intervention that vaccinates a share p of individuals in a cluster. The TUT measures

the efficacy of the vaccination in isolation. The vaccination almost fully protects vaccinated

individuals, independent of the treatment saturation – the ITT (p) is flat with respect to

p, and spillovers on treated individuals, ST (p), are small. However, the protection to the

non-treated only becomes sizeable when the saturation is high enough to provide herd im-

munity – the SNT (p) increases in p. Thus, the value of receiving the vaccination, V T (p),

is very large when vaccination rates are low, and approaches zero at high vaccination rates,

since the unvaccinated are protected by herd immunity. Positive spillovers on unvaccinated

individuals creates a free-rider problem that may diminish the salience of vaccinations in

populations with very high overall treatment levels. This is illustrated in the left panel of

Figure 1.

Deworming provides a more challenging case. Reinfection rates are proportional to the

population prevalence of worm infections, which means that individuals who have received

deworming treatment will quickly become reinfected in environments with high prevalence.

The population saturation of deworming treatment drives long-term outcomes for both

treated and non-treated individuals, and effective deworming requires near universal treat-

ment. The poignant irony of such a program is that the V T (p) is close to zero at all

saturations even though deworming can be effective if applied universally. The key feature
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of this setting is the positive externality of treatment on both non-treated and other treated

individuals. This is illustrated in the center panel of Figure 1.

Another example is a job training program in which the training has no effect on the

overall supply of jobs – treatment simply diverts benefits from non-treated to treated indi-

viduals, but provides little net benefit (Crepon et al. 2013). Similar examples are tutoring

programs for admissions to college or grant-writing workshops that improve specific propos-

als for a fixed funding pool. This type of diversionary treatment effect will have a TCE(p)

that is zero for all p, even though the ITT (p) and the V T (p) are strictly positive. In the face

of diversionary effects, an RS design is imperative to identify the total policy effect, which

is zero. A blocked design that uses within-cluster controls as counterfactuals will yield the

mistaken conclusion that the overall impact of a program is positive. This is illustrated in

the right panel of Figure 1.

3 Standard Errors and Optimal Design

This section maps the potential outcomes framework from Section 2.1 into a regression

model that identifies the estimands defined in Section 2.3, derives analytical expressions for

the standard errors of the OLS estimates, and characterizes properties of the optimal RS

design for several sets of estimands. We begin with the individual saturation and slope

estimands, and follow with complementary results for a model that estimates average effects

across multiple saturations (pooled estimands). We conclude with an illustration of the

power trade-off between measuring slope and pooled estimands.

3.1 Individual Saturation and Slope Effects

A Regression Framework. A regression model to estimate treatment and spillover ef-

fects at each saturation in the support of an RS design (Π, f) is

Y obs
ic = β0 +

∑
p∈Π\{0}

β1pTic ∗ 1{Pc = p}+
∑

p∈Π\{0}

β2pSic ∗ 1{Pc = p}+ εic, (1)

where Y obs
ic ≡ Yic(Tc) denotes the observed outcome for individual ic and εic is an unobserved

error. To map the potential outcomes framework into this regression model, we define the

regression coefficients and error in terms of potential outcomes, population average potential

outcomes and realized treatment status. Let β0 ≡ Y (0, 0), β1p ≡ Y (1, p) − Y (0, 0) and

11



β2p ≡ Y (0, p)− Y (0, 0).17 Define the residual as

εic ≡
∑

t∈{0,1}n
1Tc=t

(
Yic(t)− Y (ti, p(t))

)
, (2)

where p(t) is the share of treated individuals in treatment vector t = (t1, ..., tn). The

following lemma characterizes the distribution of the error in terms of the distribution of

potential outcomes.

Lemma 1. Assume Assumptions 1 and 2. Then the error defined in (2) is strictly exogenous,

E[εic|Tc] = 0, and has a block-diagonal variance-covariance matrix with E[ε2
ic|Tc] = σ2 + τ 2,

E[εicεjc|Tc] = τ 2 for i 6= j and E[εicεjd|Tc, Td] = 0 for c 6= d.

Athey and Imbens (2017) derive a similar result for a potential outcomes model with no

interference and no intra-cluster correlation.

Given Lemma 1, the OLS estimate of (1) yields an unbiased estimate of β. For any RS

design with an interior saturation and a pure control, this estimate identifies ˆITT (p) = β̂1p,

ˆSNT (p) = β̂2p, ˆTCE(p) = pβ̂1p + (1 − p)β̂2p and ˆV T (p) = β̂1p − β̂2p for each p ∈ Π \ {0}.
Tests for the presence of treatment and spillover effects at saturation p are β̂1p 6= 0 and

β̂2p 6= 0, β̂1p 6= β̂2p tests whether the value to treatment is non-zero, a one-tailed test of

the sign of β̂2p determines whether treatment creates a negative or positive externality on

untreated individuals, and {β̂1p ≥ 0, β̂2p ≤ 0} tests for diversionary effects.18 Hudgens and

Halloran (2008) present similar estimators for finite population estimands and show that

these estimators are unbiased.19

The OLS estimate of (1) also yields unbiased estimates of the slope estimands, D̂T (p, p′) =

(β̂1p′ − β̂1p)/(p
′ − p) for each (p, p′) ∈ Π \ {0}, with an analogous expression for ˆDNT (p, p′).

A pure control is not required to estimate the slope estimands – any RS design with two

interior saturations identifies the slope effect for both treatment and within-cluster control

individuals. If a design has no pure control, replace the control group with the within-cluster

17Note that we are not assuming a constant treatment effect in (1); β is the average effect.
18This model also allows for tests on the shape of the ITT (p) and SNT (p). For example, three interior

saturations allows one to test for concavity or convexity.
19In Hudgens and Halloran (2008), the sample is equal to the population, and uncertainty stems from the

unobserved potential outcomes for each individual. Our model has an infinite population, and uncertainty
stems from both the unobserved potential outcomes for each individual and sampling uncertainty from
observing a subset of the population. Minor technical modifications to their proofs establish the analogous
unbiased results in our setting.
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controls in the lowest saturation in the RS design, and redefine the coefficients in (1) to be

relative to the population mean of untreated individuals at the lowest saturation.

Standard Errors. Our first result characterizes the standard errors (SEs) for the OLS

estimator of the individual saturation and slope estimands from (1).20

Theorem 1. Assume Assumptions 1 and 2. For any RS design (Π, f) with a pure control,

the SE of the treatment effect at saturation p > 0 is

SEITT (p) =

√
τ 2 + σ2

nC
∗
(
nρ

(
1

f(p)
+

1

ψ

)
+ (1− ρ)

(
1

pf(p)
+

1

ψ

))
for each p ∈ Π. For any RS design (Π, f) with at least two interior saturations, the SE for

the slope effect on treated individuals between saturations p > 0 and p′ > p is

SEDT (p, p′) =
1

p′ − p

√
τ 2 + σ2

nC
∗
(
nρ

(
1

f(p)
+

1

f(p′)

)
+ (1− ρ)

(
1

pf(p)
+

1

p′f(p′)

))
Substituting 1− p and 1− p′ for p and p′ < 1, respectively, yields analogous expressions for

untreated individuals, denoted SESNT (p) and SEDNT (p, p′).21

Theorem 1 illustrates how the precision of the OLS estimates depends on the the RS design

and the correlation structure of outcomes. At one extreme, if there is no correlation (ρ = 0),

the variation in ˆITT (p) is inversely proportional to the number of treated individuals at

saturation p and the number of control individuals. There is no correlation between potential

outcomes within a cluster, so two observations from the same cluster provide the same

amount of information about ITT (p) as two observations from different clusters. At the other

extreme, if there is perfect correlation between potential outcomes within a cluster (ρ = 1),

the variation in ˆITT (p) is inversely proportional to the number of clusters at saturation p

and the number of control clusters. Observing Yic(1, p) provides perfect information about

Yjc(1, p), so a second observation from the same cluster provides no additional information

about ITT (p). At intermediate levels of correlation, SEITT depends on a weighted average

of the number of treated individuals and the number of clusters at saturation p.

20In general, the OLS estimator is inefficient when errors are correlated. The standard errors characterized
in Theorem 1 will be conservative if GLS or another more efficient estimator is used to analyze the resulting
data. However, the OLS standard errors are useful for studying ex-ante design questions, due to their
tractable analytical characterization.

21Using these expressions to inform experimental design requires estimates of τ2 and σ2. One could use
existing observational data or conduct a small pilot experiment (Hahn, Hirano and Karlan 2011).
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Next consider the standard error of the slope effect for treated individuals. As the

distance between two saturations increases, 1/(p′−p) decreases, making it possible to detect

smaller slope effects. At the same time, decreasing p decreases the number of treatment

individuals at this saturation, which increases the SE. The former effect dominates when the

saturations are close together, and spreading the saturations apart decreases the SE, while

the latter effect dominates when p is close to zero, and further decreasing p will increase the

SE. When ρ is large, the number of clusters assigned to each saturation play a larger role

in determining the SE; a more equal distribution leads to a smaller SE. When ρ is small,

the number of treated individuals assigned to each saturation is more important than the

number of clusters; equalizing the number of treated individuals at each saturation reduces

the SE.

Theorem 1 can be used to characterize the power of an RS design. The minimum de-

tectable effect (MDE) is the smallest value of an estimand that it is possible to distinguish

from zero (Bloom 1995). Given statistical significance level α, the null hypothesis of no treat-

ment effect at saturation p is rejected with probability γ (the power) for values of ITT (p)

that exceed MDE = (t1−γ + tα) SEITT (p). The expressions for the MDEs of the spillover

effect on untreated individuals and the slope effects are analogous.

Optimal Design: Individual Saturation Effects. Given a set of saturations Π, the

design choice involves choosing the share of clusters to allocate to each saturation. If the

researcher places equal weight on estimating the treatment and spillover effect at each sat-

uration in Π \ {0}, she chooses f to minimize the sum of standard errors,

min
f∈∆(Π)

∑
p∈Π\{0}

(SEITT (p) + SESNT (p)) .22,23 (3)

First consider the choice of how many clusters to allocate to each positive saturation. By

design, clusters assigned to extreme saturations have a more unequal number of treatment

and within-cluster control individuals, relative to saturations closer to 0.5.24 A researcher

22For ease of exposition, throughout the optimal design sections, we maintain that any saturation p ∈ [0, 1]
and distribution f ∈ ∆(Π) are feasible. In other words, we ignore the indivisibility of individuals or clusters.
The properties of the optimal design extend in a straightforward way to the case where the set of feasible
saturations and distributions are discrete.

23This objective is equivalent to maximizing the probability of rejection for a test of the null of no effect
i.e. minimizing the minimum detectable effect.

24For example, if n = 20, clusters treated at saturation 0.25 have 5 treated individuals and 15 within-
cluster controls, whereas clusters treated at saturation 0.5 have 10 of each.
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who places equal weight on measuring effects at each positive saturation will want to allocate

a larger share of clusters to these more extreme saturations. This stems directly from the

concavity of the SE with respect to the number of treated or within-cluster control individuals

at that saturation. As ρ increases, the share of clusters at a given saturation has a larger

impact on the SE, relative to the share of treated or within-cluster control individuals at

that saturation. Therefore, the asymmetry of the optimal f decreases with ρ.

Next, consider the optimal control group size. The marginal impact of adding another

cluster to the control reduces all SEs in (3), while the marginal impact of adding another

cluster to an interior saturation only reduces the SEs at that saturation. Therefore, when

outcomes within a cluster are perfectly correlated, the optimal design allocates more clusters

to the control group than to each positive treatment saturation. When ρ < 1, the number

of treated and within-cluster control individuals are also important, and more extreme sat-

urations have more unequal numbers of treated and untreated individuals. In the optimal

design, the number of treated individuals at saturations close to one may be larger than the

number of pure control individuals, since a larger share of clusters are allocated to these high

saturations to guarantee enough within-cluster controls. Similar intuition holds for satura-

tions close to zero. However, since an additional control individual reduces all of the SEs

in (3), the minimum of the number of treated and within-cluster control individuals at each

saturation is smaller than the number of control individuals. Proposition 1 formalizes these

insights.

Proposition 1 (Optimal Shares). Assume Assumptions 1 and 2 and fix a set of saturations

Π. Let f ∗ minimize (3), with ψ∗ ≡ f ∗(0).

1. When ρ < 1, a larger share of clusters are allocated to more extreme saturations,

and the minimum of the share of treated and within-cluster control individuals at any

positive treatment saturation is less than the share of pure control individuals: for any

p, p′ ∈ Π \ {0} with |0.5− p| > |0.5− p′|, f ∗(p) > f ∗(p′), and ψ∗ > min{p, 1− p}f ∗(p)
for all p ∈ Π \ {0}.

2. When ρ = 1, an equal share of clusters are allocated to each treatment saturation, and

a larger share of clusters are allocated to the control group: ψ∗ > f ∗(p) = f ∗(p′) for all

p, p′ ∈ Π \ {0}.

For a given intra-cluster correlation ρ and cluster size n, it is straightforward to numerically
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solve for the optimal share of clusters to assign to each saturation.

Optimal Design: Slope Effects. There are two steps to the design choice to measure

slope effects: choosing the set of saturations and choosing the share of clusters to allocate to

each saturation. Suppose a researcher places equal weight on estimating the slope effect for

treated and untreated individuals, and believes that both slope effects are monotonic. Then

she chooses an RS design with two saturations to solve

min
p1,p2,f(p1)∈(0,1)3

SEDT (p1, p2) + SEDNT (p1, p2). (4)

The optimal saturations are symmetric about 0.5 in order to equalize the share of treated

individuals in the smaller saturation and the share of untreated individuals in the larger

saturation. The optimal distance between saturations is increasing in ρ, as the unequal

share of treated and untreated individuals at extreme saturations has a smaller impact on

the SEs when outcomes are more correlated. An equal share of clusters are allocated to

each saturation, irrespective of ρ, since both saturations are equally extreme (i.e. the same

distance from 0.5). This design equalizes the standard errors, SEDT (p∗1, p
∗
2) = SEDNT (p∗1, p

∗
2).

Proposition 2 (Optimal Saturations). Assume Assumptions 1 and 2. The RS design that

minimizes (4) equally divides clusters between two saturations that are symmetric about

0.5, p∗1 = (1 − ∆)/2 and p∗2 = (1 + ∆)/2, where the optimal distance between saturations

∆ ∈ [
√

2/2, 1) is increasing in ρ and n and satisfies

nρ

8(1− ρ)
=

2∆2 − 1

(1−∆2)2
.

If ρ = 0, then ∆ =
√

2/2 for all n, and if ρ = 1, then ∆ ≈ 1.25

Figure 2 plots the optimal treatment saturations as a function of ρ.

More generally, if a researcher is interested in identifying individual saturation or slope

effects at more than two saturations, Theorem 1 can be used to derive the optimal spacing

of saturations and the optimal share of clusters to assign to each saturation. For example,

a design to test for linearity has three saturations. The optimal design to test for linearity

would ensure that the three saturations are sufficiently far apart, and the two extreme

saturations are not too large or small.

25When ρ = 1 and n is finite, ∆ is the largest distance such that there is at least one treatment and one
within-cluster control individual at each saturation, i.e. ∆ = 1− 2/n.
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Figure 2. Optimal Design: Slope Effects

3.2 Pooled Effects

Suppose a researcher would like to combine observations from treated clusters to measure an

average effect across all saturations in the RS design. A pooled estimand is a weighted sum

of the estimand at each individual saturation. Given design (Π, f) and vector of weights

w : Π → [0, 1], a pooled treatment effect that assigns weight w(p) to ITT (p) is ITT ≡∑
Π\{0}w(p)ITT (p). The definitions for ST , SNT , TCE and V T are analogous.

A Regression Framework. A regression model to estimate pooled effects is

Y obs
ic = β0 + β1Tic + β2Sic + εic. (5)

As in Section 3.1, we map the potential outcomes framework into this model by defin-

ing the regression coefficients and error in terms of potential outcomes, population average

potential outcomes and realized treatment status. In the pooled case, the definition of

the regression coefficients also depends on the RS design. Given an RS design (Π, f), let

Y (1) ≡
∑

p∈Π\{0} pf(p)Y (1, p)/µ and Y (0) ≡
∑

p∈Π\{0}(1− p)f(p)Y (0, p)/µS be the popula-

tion average potential outcome, averaged across all non-zero saturations in the RS design, for

t = 1 and t = 0, respectively. Let β0 ≡ Y (0, 0), β1 ≡ Y (1)−Y (0, 0) and β2 ≡ Y (0)−Y (0, 0).

Define the residual as

εic ≡ Cic(Yic(0)− Y (0, 0)) +
∑

t∈{0,1}n\{0}

1Tc=t

(
Yic(t)− Y (ti)

)
. (6)
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The following lemma establishes that the OLS estimate of (5) is unbiased.

Lemma 2. Assume Assumption 1. For any RS design with an interior saturation and a

pure control, the OLS estimate β̂ is an unbiased estimate of β.

The interpretation of β̂ is somewhat subtle. When observations are pooled across satura-

tions, β̂1 places a disproportionate weight on treated individuals in high saturation clusters,

relative to low saturation clusters – it identifies the pooled ITT with weight w(p) = pf(p).

Similarly, β̂2 places a disproportionate weight on untreated individuals in low saturation

clusters, relative to high saturation clusters – it identifies the pooled SNT with weight

w(p) = (1 − p)f(p). Due to these different weights, the comparison of the two pooled

measures does not have a natural interpretation. Additionally, one must be careful when

combining these estimates to identify other effects. For example, β̂1 + β̂2 is a pooled measure

of the TCE with weight w(p) = f(p), but β̂1 − β̂2 is not a pooled measure of the VT.26

Pooling observations across multiple saturations introduces the possibility of heteroskedas-

ticity. The form of this heteroskedasticity depends on the RS design and the population

average potential outcome at each positive saturation. When ITT (p) and SNT (p) are rel-

atively flat with respect to p ∈ Π \ {0}, the heteroskedasticity will be small, whereas when

these estimands significantly vary with the intensity of treatment, the heteroskedasticity will

be large. The error is homoskedastic precisely when the ITT (p) and SNT (p) are constant

with respect to the positive treatment saturations in the RS design.

Definition 1. Treatment and spillover effects are constant on a set of saturations Π if for

all p, p′ ∈ Π \ {0}, Y (1, p) = Y (1, p′) and for all p, p′ ∈ Π \ {1}, Y (0, p) = Y (0, p′).

Lemma 3. Assume Assumptions 1 and 2. Given an RS design (Π, f), the error defined in

(6) has homoskedastic variance and within-cluster covariance if and only if treatment and

spillover effects are constant on the set of positive saturations Π \ {0}.
26What we call saturation weights, which have a similar interpretation to sampling weights, can be used

to adjust for the different probability of being assigned to treatment at each saturation. To estimate a
pooled ITT and SNT that places equal weight w(p) = 1/|Π| on the treatment or spillover estimand at each
saturation, estimate (5) with weights sic = 1/Pcf(Pc) for treated individuals and weight sic = 1/(1−Pc)f(Pc)

for within-cluster controls. Using these weights, β̂1− β̂2 is now a pooled measure of the VT that places equal
weight on each saturation, but β̂1 + β̂2 is no longer a pooled measure of the TCE. For example, consider a
design with three saturations, Π = {0, 1/3, 2/3} and an equal share of clusters assigned to each saturation,
f(p) = 1/3 for each p ∈ Π. An individual in a cluster assigned p = 2/3 is twice as likely to be treated as
a cluster assigned p = 1/3. Weighting the treated individuals in clusters assigned p = 1/3 and p = 2/3 by
sic = 3 and sic = 3/2, respectively, allows one to calculate the pooled estimate that places equal weight on
both clusters, rather than twice as much weight on the clusters treated at saturation 2/3.
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Generally, cluster robust standard errors should be used in two-level experiments due to

the correlated outcomes within clusters. This proposition provides an additional argument

for doing so when estimating (5), due to the variation in treatment and spillover effects

at different saturations. Lemma 4 in Appendix A characterizes the precise form of this

heteroskedasticity.

Standard Errors. Since an RS design opens the door to a novel set of questions about how

treatment and spillover effects vary with intensity of treatment, and still identifies pooled

treatment and spillover effects, it may be tempting to conclude that there is no reason

not to run an RS design. If there is variation in treatment and spillover effects, then the

heteroskedastic errors in the pooled regression are not an important issue, as the researcher is

more interested in the individual saturation model (1), while if no slope effects emerge, then

the pooled model is homoskedastic and there is no need to worry about multiple treatment

saturations introducing heteroskedasticity. However, this line of reasoning misses a crucial

piece of the story. Next, we show that including multiple treatment saturations increases

the standard errors of pooled estimates, even when the treatment and spillover effects are

constant, so that the error in (5) is homoskedastic.

In order to isolate the impact that multiple positive treatment saturations have on the

SEs for the pooled estimands, we focus on the case where treatment and spillover effects are

constant across all positive saturations in the RS design. Let η2
T be the variance in treatment

saturation across treated clusters,

η2
T ≡

∑
p∈Π\{0}

p2f(p)

1− ψ
−
(

µ

1− ψ

)2

=
η2

1− ψ
− µ2

(1− ψ)2
, (7)

where f(p)/(1−ψ) is the share of treated clusters assigned to saturation p > 0 (recall η2−µ2

is the total variance in treatment saturation). Trivially, η2
T = 0 when there is a single positive

saturation. Theorem 2 characterizes the SEs for the OLS estimator of the pooled estimands

in (5).

Theorem 2. Assume Assumptions 1 and 2. Let (Π, f) be an RS design with at least one

interior saturation and a pure control, and suppose that treatment and spillover effects are
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constant on Π \ {0}. The SE of the pooled treatment effect is

SEITT =

√
τ 2 + σ2

nC
∗
(
nρ

(
1

(1− ψ)ψ
+

(
1− ψ
µ2

)
η2
T

)
+ (1− ρ)

(
1

µ
+

1

ψ

))
.

Substituting µS for µ yields an analogous expression for the SE of the pooled spillover effect

on the untreated, denoted SESNT .

The SE for the pooled treatment effect depends on the number of treated and control indi-

viduals and the variance in treatment saturation across treated clusters, η2
T . Crucially, when

outcomes within a cluster are correlated, the SE is strictly increasing in η2
T , and introducing

multiple treatment saturations reduces precision. The SE is minimized in a partial popula-

tion design, in which there is a single positive saturation and a pure control. This design

has no variation in treatment saturation across treated clusters, η2
T = 0.

Corollary 1 (Optimality of Partial Population Design). Assume Assumptions 1 and 2.

For any (ψ, µ) ∈ (0, 1) × (0, 1 − ψ), the partial population design with treatment saturation

p = µ/(1− ψ) simultaneously minimizes SEITT and SESNT .27,28

If a researcher a priori believes that slope effects are small and intra-cluster correlation is high,

she is best off selecting a partial population design. Moving away from the partial population

design to a design with multiple treatment saturations, the variance of the pooled treatment

effect increases linearly with respect to η2
T . The rate at which this variance increases is

proportional to ρ. Therefore, the power loss is more severe for settings with higher intra-

cluster correlation.

Optimal Partial Population Design. Next, we characterize the optimal treatment sat-

uration and control size for a partial population design. In a partial population design with

saturation p, the pooled effects are equivalent to the individual effects at p. The SE of the

ITT decreases with p, while the SE of the SNT increases with p, as illustrated in the left

panel of Figure 3. The relative importance a researcher places on estimating these two effects

will determine the optimal choice of p. If a researcher places equal weight on each effect,

min
(p,ψ)∈(0,1)2

SEITT (p) + SESNT (p), (8)

27Corollary 1 holds even when treatment and spillover effects are not constant on positive treatment
saturations. In this case, reducing the variation in treatment saturation leads to more precise standard
errors through two channels: that discussed above, as well as the resulting reduction in heteroskedasticity.

28The feasible range of µ is (0, 1− ψ) because there does not exist an RS design with µ > 1− ψ.
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Figure 3. Optimal Partial Population Design

then the optimal saturation p∗ = 0.5 creates equally sized treatment and within-cluster

control groups, and equalizes the SEs, SEITT (0.5) = SESNT (0.5). The optimal share of

control clusters depends on ρ. As ρ increases, the number of clusters at each saturation

becomes more important than the number of individuals in each treatment group. Similar

to Proposition 1, the optimal share of control clusters increases in ρ. It is always optimal to

allocate more than a third of clusters to the pure control, since a control individual serves

as a counterfactual for both treated individuals and within-cluster controls. When ρ = 0,

designating about 41% of clusters as pure controls is optimal, while when ρ = 1, 50% is

optimal. The right panel of Figure 3 illustrates the optimal share of control clusters for a

partial population design with p∗ = 0.5. Proposition 3 summarizes these results.

Proposition 3. Assume Assumptions 1 and 2. The partial population design that minimizes

(8) has saturation p∗ = 0.5 and allocates share of clusters

ψ∗ =
−κ+

√
κ2 + (1− ρ)κ

1− ρ
∈ [
√

2− 1, 0.5)

to pure control for ρ ∈ [0, 1), where κ ≡ 1 + (n− 1)ρ, and ψ∗ = 0.5 for ρ = 1. The optimal

control size ψ∗ is increasing in ρ and n.

This result is similar in spirit to Hirano and Hahn (2010). They show that a partial popu-

lation design identifies the V T and SNT in a linear-in-means model, and characterize the

standard errors for the case of no intra-cluster correlation. When ρ = 0, the optimal design
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in Proposition 3 is equivalent to the optimal design in their sequential optimization case.

3.3 The Design Trade-off.

Taken together, the results in Section 3 illustrate a novel design trade-off: introducing vari-

ation in the intensity of treatment identifies spillover estimands, but reduces the precision

of estimates of pooled effects, particularly when intra-cluster correlation is high. If the re-

searcher has a strong prior belief that spillover effects are relatively flat with respect to

treatment intensity, but ρ is high, then choosing an RS design with multiple positive treat-

ment saturations will reduce precision without yielding novel insights, and the researcher is

better off running a partial population design. However, partial population designs have the

drawback that they cannot identify or rule out spillover effects – to do so, the researcher

needs sufficient variation in the intensity of treatment.

Moreover, if the researcher is primarily interested in identifying slope effects, a design

with no pure control is optimal. But such a design cannot identify treatment and spillover

effects at any individual saturation or pooled across saturations. Thus, the optimal RS design

for a slope analysis stands in sharp contrast to that for an individual saturation or pooled

analysis. If the researcher seeks to identify both slope and individual or pooled effects, the

optimal design will depend on the relative importance that the researcher places on each

estimand, as well as the level of intra-cluster correlation.

Figure 4 depicts the trade-off between measuring pooled and slope effects for an RS

design with a pure control and two interior saturations that are symmetric about 0.5. The

precision of the pooled estimate is increasing as the two interior saturations approach 0.5,

which corresponds to a partial population design, while the precision of the slope estimate

first decreases and then increases as the interior saturations approach 0.5, capturing the non-

monotonic effect of the distance between saturations on the precision of the slope estimand.

4 Application

To illustrate our results, we numerically characterize the optimal design for several objective

functions and calculate the power of RS designs from published studies in economics and

political science. These examples quantify the power trade-offs that arise between measuring

individual, slope and pooled effects. The calculations are conducted using code we developed
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Figure 4. Trade-off between SEs of Pooled and Slope Estimands

as a tool for researchers.29

Suppose a researcher selects a sample of C = 100 clusters, each of which contain n = 10

individuals. As a benchmark, suppose the researcher uses a clustered design to identify

the average treatment effect, ITT (1). She implements the optimal clustered design, which

assigns 50% of the clusters to the control group and 50% to the treatment group. The

standard error of her estimate will depend on the intra-cluster correlation, ρ. We measure

this standard error in terms of standard deviations of the distribution of potential outcomes

(or equivalently, assume total variance is σ2 + τ 2 = 1). When ρ = 0, SEITT (1) = 0.063. It

increases with ρ, rising to 0.087 when ρ = 0.1 and 0.200 when ρ = 1 (Table 1, Columns 1-3).

The researcher cannot identify any spillover effects on treated or untreated individuals.

Next, suppose that the researcher also would like to measure spillover effects on untreated

individuals and cares equally about the precision of the estimates of the pooled ITT and

pooled SNT. Applying Corollary 1, the optimal design is a partial population experiment.

From Proposition 3, we know that the optimal treatment saturation assigns 50% of the

individuals in each treatment cluster to treatment, and the optimal share of control clusters

ranges from 41% to 50% as ρ increases from 0 to 1 (Table 1, Columns 4-6). The optimal

design equalizes the SEs for the ITT and SNT, which range from 0.076 to 0.200 as ρ increases

from 0 to 1. These SEs are larger than the SEs for the ITT in the clustered design. The

29We created a Graphical User Interface (GUI) to answer many optimal design questions and calculate
power for a given RS design. Code in R and Python is also available to conduct numerical optimization for
more complex design questions. All code is available at http://pdel.ucsd.edu/solutions/index.html.
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Table 1. Optimal Design for Pooled Estimands

Clustered Design Partial Population Design

minp,ψ minp,ψ minp,ψ
Objective minp,ψ SEITT (p) SEITT (p) SEITT (p) SESNT (p);
Function + + SEITT (p)

SESNT (p) 2 SESNT (p) ≤ .09

(1) (2) (3) (4) (5) (6) (7) (8)

ICC ρ 0.0 0.1 1.0 0.0 0.1 1.0 0.1 0.1
Pure control 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Optimal p 1.00 1.00 1.00 0.50 0.50 0.50 0.41 0.78
Optimal ψ 0.50 0.50 0.50 0.41 0.45 0.50 0.45 0.47
Optimal f(p) 0.50 0.50 0.50 0.59 0.55 0.50 0.55 0.53
SEITT (p) 0.063 0.087 0.200 0.076 0.097 0.200 0.100 0.090
SESNT (p) . . . 0.076 0.097 0.200 0.094 0.117

Sample Size: C = 100, n = 10

source of the power loss is obvious: it stems from reassigning some treatment and control

individuals to serve as within-cluster controls. The power loss is decreasing in ρ, as the

share of clusters at each saturation becomes more important for precision, and this share

approaches that of the clustered design.

Now suppose that the researcher cares more about estimating the pooled SNT, relative to

the pooled ITT. A partial population experiment remains optimal, but the optimal treatment

saturation decreases. If she places twice as much weight on the SESNT (p) in her objective

function, relative to the SEITT (p), then for ρ = 0.1, the optimal design assigns 41% of

the individuals in each treatment cluster to treatment and 45% of clusters to the control

group (Table 1, Column 7). This produces SEs of 0.100 and 0.094 for the ITT and SNT,

respectively.30 Alternatively, the design that minimizes the SE of the SNT while maintaining

a SE of 0.09 for the ITT (approximately the SE in the clustered design) assigns 78% of the

individuals in each treatment cluster to treatment and 47% of clusters to the control group

(Table 1, Column 8). This yields a SE of 0.117 for the SNT.

If a researcher wishes to estimate the slope effect for treated and untreated individuals,

and does not care about identifying individual or pooled effects, then from Proposition 2,

the optimal design will equally divide clusters between two interior saturations that are

30Moving to a more extreme objective that places nine times as much weight on the SNT does not
substantially alter the share of clusters allocated to pure control (47%), but does significantly reduce the
optimal treatment saturation (23%).
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Table 2. Optimal Design for Slope Estimands and Precision in Existing Studies

Optimal RS Designs Existing Studies

minp2,p3,f Banerjee Baird

Objective minp1,p2,f SEITT+ et al.; Sinclair Baird et al. Π;

Function SEDT (p1, p2)+ SESNT+ Crepon et al. et al. minf SESNT
SEDNT (p1, p2) SEDT (p2, p3)+ et al. s.t. SEITT

SEDNT (0, p3) ≤ .095

(1) (2) (3) (4) (5) (6) (7) (8)

ICC ρ 0.0 0.1 1.0 0.1 0.1 0.1 0.1 0.1
p1 0.15 0.13 0.10 0.00 0.00 0.00 0.00 0.00
p2 0.85 0.87 0.90 0.21 0.25 0.10 0.33 0.33
p3 . . . 0.88 0.50 0.50 0.67 0.67
p4 . . . . 0.75 1.00 1.00 1.00
p5 . . . . 1.00 . . .
f(p1) 0.50 0.50 0.50 0.28 0.20 0.25 0.55 0.45
f(p2) 0.50 0.50 0.50 0.33 0.20 0.25 0.15 0.21
f(p3) . . . 0.39 0.20 0.25 0.15 0.21
f(p4) . . . . 0.20 0.25 0.15 0.13
f(p5) . . . . 0.20 . . .

SEITT . . . 0.104 0.113 0.109 0.095 0.095

SESNT . . . 0.109 0.120 0.111 0.115 0.106
SEDT 0.179 0.191 0.250 0.217 0.240 0.242 0.289 0.269
SEDNT 0.179 0.191 0.250 0.192 0.240 0.274 0.251 0.221

Sample Size: C = 100, n = 10

symmetric about one half, and will not have a pure control. When ρ = 0, the optimal

design assigns either 15% and 85% of individuals in each cluster to treatment, and the SE of

the slope effect is 0.179 for both treated and non-treated individuals (Table 2, Column 1).

Increasing ρ moves the optimal saturations further apart and increases the SEs for the slope

effects (Table 2, Columns 2 - 3). When outcomes within a cluster are perfectly correlated,

the optimal saturations are as far apart as possible while still maintaining at least one treated

and one non-treated individual in each treatment cluster. This corresponds to saturations

1/n and (n− 1)/n.

However, few researchers will likely be interested in designing an experiment to maximize

the precision of slope estimates, at the expense of sacrificing the ability to identify standard

estimands, such as the ITT. Suppose a researcher places equal weight on the precision of

the pooled and slope estimates, and chooses a design with a control group p1 = 0 and two
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positive saturations p3 > p2 > 0 to minimize

min
p2,p3,f

SEITT + SESNT + SEDT (p2, p3) + SEDNT (0, p3).31 (9)

When ρ = 0.1, the optimal design assigns either 21% and 88% of individuals in treated

clusters to treatment, and allocates 33% of clusters to the low treatment saturation, 39% to

the high treatment saturation, and the remaining 28% to the control group (Table 2, Column

4).32 The SEs of 0.104 and 0.109 for the pooled ITT and SNT, respectively, are 7-13% larger

than the SEs in the optimal partial population design (Table 1, Column 5).33 The precision

loss in moving from a partial population design to an RS design arises from the variation in

treatment saturation. But this variation is precisely what enables the identification of slope

effects. This illustrates the design trade-off discussed in Section 3.3.

Finally, we calculate the standard errors for RS designs used by three published studies.

To facilitate comparability with the optimal designs discussed above, we use the same number

of clusters (C = 100), individuals per cluster (n = 10) and intra-cluster correlation (ρ = 0.1)

as in our examples, rather than the actual values from each study.34

We begin with the RS design used in Banerjee et al. (2012) and Crepon et al. (2013). Clus-

ters were assigned to a pure control group and four equally spaced treatment saturations in

equal shares, Π = {0, 0.25, 0.50, 0.75, 1} and f = {0.2, 0.2, 0.2, 0.2, 0.2}. By virtue of having

a pure control group and more than two interior saturations, this study design can identify

the ITT and SNT (pooled and saturation-specific) effects and slope effects. Our power cal-

31With a control group, the saturations used to measure the slope for non-treated individuals (0 and p3)
are further apart than the saturations used to measure the slope for treated individuals (p2 and p3). This is
because there are no treated individuals in the control group, so SEDT (0, p3) is undefined.

32The optimal interior saturations are not symmetric around one half. Since the distance between satu-
rations for the slope effect on non-treated individuals is greater than the distance between saturations for
the slope effect on treated individuals, the small share of non-treated individuals at p3 has less of an effect
on the SEDNT , relative to the effect of the small share of treated individuals at p2 on the SEDT .

33The SEDT is larger than in the optimal slope design in Column 2 because the distance between satu-
rations for treated individuals is smaller in this design, and fewer clusters are allocated to the saturations
that identify the DT . The SEDNT is approximately the same as in the optimal slope design in Column 2 –
the distance between the saturations for untreated individuals is larger, but fewer clusters are allocated to
the highest saturation.

34The pooled SEs are calculated for a model with constant treatment and spillover effects, which implies
homoskedastic errors. These are lower bounds for the pooled SEs when treatment and spillover effects are
not constant, and therefore, errors are heteroskedastic. Even if it is not possible to reject the null hypothesis
of a zero slope effect, there may still be a small slope effect that creates heteroskedasticity. For example,
in column 4, the design is powered to detect slope effects on treated individuals that are larger than 0.62.
Suppose the true slope is 0.5. Then the design is not powered to detect an effect this small, but there will
still be heteroskedasticity, and the pooled SE for treated individuals will be strictly larger than 0.104. To
account for this, researchers should build some sample size cushion into their designs.
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culations yield SEITT = 0.113, SESNT = 0.120 and SEDT (0.25, 1) = SEDNT (0, .75) = 0.240

(Table 2, Column 5). All of these SEs are higher than their counterparts in the design that

minimizes the sum of these four SEs (Table 2, Column 4). This illustrates the power loss

that arises from having a richer design that can, for example, test for the concavity of ITT (p)

and SNT (p).

Our next example is the design used by Sinclair et al. (2012). They randomized clus-

ters into a pure control and three different saturations, Π = {0, 1/n, 0.50, 1} and f =

{0.25, 0.25, 0.25, 0.25}, where 1/n is the saturation in which only one household is treated.35

In addition to the estimands that can be identified in Banerjee et al. (2012) and Crepon et al.

(2013), this design can also identify the TUT and the ST (p). Our power calculations yield

SEITT = .109, SESNT = 0.111, SEDT (1/n, 1) = 0.242 and SEDNT (0, 0.5) = 0.274 (Table

2, Column 6). The pooled SEs are quite similar to their counterparts in the design that

minimizes the sum of these four SEs (Table 2, Column 4). However, the slope effect SEs

are substantially higher, particularly for the non-treated (0.274 vs. 0.192). This is because

the largest saturation containing within-cluster controls is 0.50, so the saturations used to

identify the slope effect on non-treated individuals are too close together.

Our final example is Baird, McIntosh and Özler (2011), which has a pure control and

three positive saturations, Π = {0, 0.33, 0.67, 1} and f = {0.55, 0.15, 0.15, 0.15}. While the

saturations in this design are equally spaced, they are not equally sized: the pure control

group, at 55% of clusters, is much larger than the share assigned to any treatment saturation.

The combination of having a larger control group and smaller variation in treatment satura-

tions produces a smaller SE for the pooled ITT, relative to Banerjee et al. (2012) and Crepon

et al. (2013), but higher SEs for the slope effects, particularly for treated individuals (Table

2, Column 7). The SE for the pooled SNT is 2 percentage points (or 21%) higher than that

for the ITT, indicating that the pooled spillover effects on the untreated are underpowered,

relative to the pooled treatment effects.

Given this large difference between the SEs for the pooled ITT and SNT, we explore

whether it is possible to allocate clusters to this set of saturations in a way that reduces

the SE of the pooled SNT, while maintaining the SE of the pooled ITT at 0.095. The

optimal distribution of treatment saturations allocates a lower share of clusters to the pure

35The saturation of 0.5 is approximate, as one core household plus half of the remaining households were
assigned to treatment in these clusters. For the purposes of our calculations, we use 0.5.
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control group and saturation 1, and a higher share to the two interior saturations, 1/3 and

2/3 (Table 2, Column 8). Such a design dominates the original study design, as it not

only lowers the SE for the pooled SNT, but it also decreases the SEs of both slope effects.

The improved precision comes from redistributing clusters more efficiently between different

treatment saturations, particularly by reallocating clusters from the pure control to interior

saturations.

5 Conclusion

In recent years, empirical researchers have become increasingly interested in studying inter-

ference between subjects. Experiments designed to rigorously estimate spillovers open up a

fascinating set of research questions and provide policy-relevant information about program

design. For example, if a vaccination or a bed net distribution program with fixed resources

can either treat 50% of all villages or 100% of half of them, measuring spillover effects will

determine which treatment allocation maximizes the total benefit. Variation in the intensity

of treatment can determine whether there are important scale or congestion effects that lead

to differential impacts on prices, norms or behavior. Further, RCTs that fail to account for

spillovers can produce biased estimates of intention-to-treat effects, while finding meaningful

treatment effects but failing to observe deleterious spillovers can lead to misconstrued policy

conclusions. The RS design presented here provides an experimental framework that can

inform these policy questions and bolster both internal and external validity.

We formalize the design and analysis of such RS designs. We show that varying the

treatment saturation across clusters generates direct experimental evidence on the nature

of spillover effects for both treated and non-treated individuals. Having laid out the as-

sumptions necessary to identify average treatment and spillover effects, we derive analytical

closed-form expressions for the standard errors. This allows us to gain analytical insights

into the optimal design of such experiments and derive ex-ante power calculations. The stan-

dard errors for the pooled intention-to-treat effect and spillover effect on the non-treated are

directly related to the variation in treatment saturation. A design trade-off emerges: varying

the treatment saturation allows the researcher to identify novel estimands, but this variation

comes with a cost – it reduces the precision of the estimates of more basic estimands. This

is an inherent feature of RS designs.
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A Appendix: Proofs from Section 3

A.1 Preliminary Calculations

This section provides background material used in the proofs of Lemma 2 and Theorems 1

and 2. Consider the OLS estimate of

Yic = X ′icβ + εic, (10)

where Xic is a vector of treatment status covariates and εic is an error term with a block-

diagonal variance-covariance matrix. Given X ′c = [X1c ... Xnc] and ε′c = [ε1c ... εnc], let

E[εcε
′
c|Xc] = σ2In + τ 21n denote the within-cluster variance-covariance matrix, where 1n

is the n × n matrix of ones. Between clusters, E[εicεjd|X] = 0 for all c 6= d, where X′ =

[X ′1 ... X
′
C ]. Let Y denote the vector of observed potential outcomes. The estimate of β is

β̂ = A−1X′Y (11)

and the exact finite sample variance of β̂ is

Var(β̂|X) = A−1

(
C∑
c=1

X ′cE[εcε
′
c|Xc]Xc

)
A−1

= A−1

(
C∑
c=1

X ′c(σ
2In + τ 21n)Xc

)
A−1

= σ2A−1 + τ 2A−1BA−1, (12)

where

A ≡
C∑
c=1

X ′cXc =
C∑
c=1

n∑
i=1

XicX
′
ic (13)

B ≡

(
C∑
c=1

X ′c1nXc

)
. (14)

A.2 Proofs of Lemmas 1, 2 and 3

Proof of Lemma 1. Suppose the realized treatment vector for cluster c is t = (t1, ..., tn).

Then E[εic|Tc = t] = E[Yic(t)− Y (ti, p(t))] = 0. The variance of the error is E[ε2
ic|Tc = t] =

E[(Yic(t) − Y (ti, p(t)))2] = τ 2 + σ2. The covariance of the error between individuals in the
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same cluster is E[εicεjc|Tc = t] = E[(Yic(t) − Y (ti, p(t)))(Yjc(t) − Y (tj, p(t)))] = τ 2. Errors

across clusters are not correlated, since outcomes across clusters are not correlated.

Proof of Lemma 2. The error defined in (6) is not strictly exogenous, so we need to

establish directly that β̂ is unbiased for (10) when X ′ic = [ 1 Tic Sic ]. From β̂ = A−1X′Y,

with

A =
C∑
c=1

n∑
i=1


1 Tic Sic

Tic T 2
ic TicSic

Sic TicSic S2
ic

 = nC


1 µ µS

µ µ 0

µS 0 µS

 (15)

and

X′Y =
C∑
c=1

n∑
i=1

[
Yic TicYic SicYic

]′
,

β̂ =
1

nC

C∑
c=1

n∑
i=1

[
1
ψ
CicYic

1
µ
TicYic − 1

ψ
CicYic

1
µS
SicYic − 1

ψ
CicYic

]′
.

Therefore, E[β̂0|X] = Y (0, 0),

E[β̂1|X] =
1

µ

∑
p∈Π\{0}

pf(p)Y (1, p)− Y (0, 0) = Y (1)− Y (0, 0)

and

E[β̂2|X] =
1

µS

∑
p∈Π\{0}

(1− p)f(p)Y (0, p)− Y (0, 0) = Y (0)− Y (0, 0),

which establishes that β̂ is unbiased.

Lemma 4. Assume Assumptions 1 and 2. Given RS design (Π, f), the error defined in (6)

has individual variances

E[ε2
ic|Tic = 1, Tc = t] = σ2 + τ 2 + (Y (1, p(t))− Y (1))2

E[ε2
ic|Sic = 1, Tc = t] = σ2 + τ 2 + (Y (0, p(t))− Y (0))2

E[ε2
ic|Cic = 1, Tc = t] = σ2 + τ 2

33



and within-cluster covariances

E[εicεjc|Tic = Tjc = 1, Tc] = τ 2 + (Y (1, p(t))− Y (1))2

E[εicεjc|Sic = Sjc = 1, Tc] = τ 2 + (Y (0, p(t))− Y (0))2

E[εicεjc|Tic = Sjc = 1, Tc] = τ 2 + (Y (0, p(t))− Y (0))(Y (1, p(t))− Y (1))

E[εicεjc|Cic = Cjc = 1, Tc] = τ 2.

The errors are uncorrelated across clusters, E[εicεjd|Tc, Td] = 0 for c 6= d.

Proof. The variance of the error for treated individuals is

E[ε2
ic|Tic = 1, Tc = t] = E[(Yic(1, t−i)− Y (1))2]

= E[Yic(1, t−i)
2 − 2Y (1)Yic(1, t−i) + Y (1)2]

= τ 2 + σ2 + Y (1, p(t))2 − 2Y (1)Y (1, p(t)) + Y (1)2

= τ 2 + σ2 + (Y (1, p(t))− Y (1))2.

The covariance of the error between treated individuals in the same cluster is

E[εicεjc|Tic = Tjc = 1, Tc = t] = E[(Yic(1, t−i)− Y (1))(Yjc(1, t−j)− Y (1))]

= τ 2 + Y (1, p(t))2 − 2Y (1)Y (1, p(t)) + Y (1)2

= τ 2 + (Y (1, p(t))− Y (1))2.

The other variances and covariances are analogous. Errors across clusters are not correlated

since outcomes across clusters are not correlated. �

Proof of Lemma 3. Suppose treatment effects are constant on Π \ {0}. Then Y (1, p) =

Y (1) and Y (0, p) = Y (0) for all p ∈ Π \ {0}. From Lemma 4, E[ε2
ic|Tic = 1, Tc = t] =

σ2 +τ 2 +(Y (1, p(t))−Y (1))2 = σ2 +τ 2, with similar calculations for the other variances and

covariances. Therefore, the variance-covariance matrix reduces to a block-diagonal structure

with variance σ2 + τ 2 and covariance τ 2.

For the other direction, suppose the variance-covariance matrix is block-diagonal with

variance σ2 + τ 2 and covariance τ 2. Then Y (1, p(t)) − Y (1) = 0 for all t 6= 0 that arise in

(Π, f). But then there must be no variation in the population average potential outcome

across positive saturations for treated individuals. Similarly, there must be no variation
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in the population average potential outcome across positive saturations for within-cluster

controls. Therefore, treatment effects are constant on Π \ {0}.

A.3 Proof of Theorems 1 and 2

Proof of Theorem 1. Assume Assumptions 1 and 2. Consider an RS design with two

interior saturations, p1 and p2, and a pure control. Let Tkic ≡ Tic ∗ 1{Pc = pk} and S1ic ≡

Sic ∗ 1{Pc = pk} for k = 1, 2. We want to compute Var(β̂|X) for (10) when

X ′ic = [ 1 T1ic S1ic T2ic S2ic ].

By Lemma 1, the error distribution is block-diagonal. Let µk ≡ pkf(pk), sk ≡ (1− pk)f(pk),

ηk ≡ p2
kf (pk) and qk ≡ (1− pk)2 f (pk) = sk − µk + ηk. From (12), Var(β̂|X) = σ2A−1 +

τ 2A−1BA−1, with

A =
C∑
c=1

n∑
i=1



1 T1ic S1ic T2ic S2ic

T1ic T 2
1ic S1icT1ic T2icT1ic S2icT1ic

S1ic T1icS1ic S2
1ic T2icS1ic S2icS1ic

T2ic T1icT2ic S1icT2ic T 2
2ic S2icT2ic

S2ic T1icS2ic S1icS2ic T2icS2ic S2
2ic


= nC



1 µ1 s1 µ2 s2

µ1 µ1 0 0 0

s1 0 s1 0 0

µ2 0 0 µ2 0

s2 0 0 0 s2


and

B =
C∑
c=1





n∑n
i=1 T1ic∑n
i=1 S1ic∑n
i=1 T2ic∑n
i=1 S2ic


∗



n∑n
i=1 T1ic∑n
i=1 S1ic∑n
i=1 T2ic∑n
i=1 S2ic



′
= n2C



1 µ1 s1 µ2 s2

µ1 η1 µ1 − η1 0 0

s1 µ1 − η1 q1 0 0

µ2 0 0 η2 µ2 − η2

s2 0 0 µ2 − η2 q2


,

where the second equalities follow from
∑n

i=1 Tkic = npk,
∑n

i=1 Skic = n(1−pk),
∑C

c=1

∑n
i=1 Tkic =

npk×Cf(pk) = nCµk,
∑C

c=1

∑n
i=1 Skic = n(1−pk)×Cf(pk) = nCsk, T

2
kic = Tkic,

∑C
c=1(

∑n
i=1 Tkic)

2 =

n2p2
k×Cf(pk) = n2Cηk,

∑C
c=1(

∑n
i=1 Tkic×

∑n
i=1 Skic) = n2pk(1−pk)×Cf(pk) = n2C(µk−ηk),

(
∑n

i=1 T1ic) (
∑n

i=1 S2ic) = 0, and other analogous calculations. Taking the diagonal entries of
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Var(β̂|X) = σ2A−1 + τ 2A−1BA−1 yields

Var(β̂1pj) =
1

nC
∗
{
nτ 2

(
1

f(pj)
+

1

ψ

)
+ σ2

(
1

µj
+

1

ψ

)}
(16)

Var(β̂2pj) =
1

nC
∗
{
nτ 2

(
1

f(pj)
+

1

ψ

)
+ σ2

(
1

sj
+

1

ψ

)}
(17)

for each pj ∈ Π \ {0}. Taking the square root yields the standard errors.

To compute the SEDT , note Var(D̂T (p1, p2)) = Var(β̂1p2 − β̂1p1)/ (p2 − p1)2 and

Cov(β̂1p1 , β̂1p2) =
nτ 2 + σ2

ψnC
,

where the expression for the covariance comes from the matrix Var(β̂|X). Therefore,

Var(β̂1p2 − β̂1p1) = Var(β̂1p1) + Var(β̂1p2)− 2 Cov(β̂1p1 , β̂1p2)

=
1

nC
∗
{
nτ 2

(
1

f(p1)
+

1

f(p2)

)
+ σ2

(
1

µ1

+
1

µ2

)}
, (18)

where Var(β̂1pk) follows from (22). Similarly, Var( ˆDNT (p1, p2)) = Var(β̂2p2−β̂2p1)/ (p2 − p1)2,

where

Var(β̂2p2 − β̂2p1) = Var(β̂2p2) + Var(β̂2p1)− 2 Cov(β̂2p1 , β̂2p2)

=
1

nC
∗
{
nτ 2

(
1

f(p1)
+

1

f(p2)

)
+ σ2

(
1

s1

+
1

s2

)}
. (19)

Dividing (18) and (19) by (p2− p1)2 and taking the square root yields the SEDT (p1, p2) and

SEDNT (p1, p2). It is straightforward to extend these expressions to more than two interior

saturations.

Proof of Theorem 2. Assume Assumptions 1 and 2. Consider an RS design (Π, f)

with at least one interior saturation and a pure control, and suppose that treatment and

spillover effects are constant on Π \ {0}. We want to compute Var(β̂|X) for (10) when

X ′ic = [ 1 Tic Sic ]. By Lemma 2, the error distribution is block-diagonal. From (12),

Var(β̂|X) = σ2A−1 + τ 2A−1BA−1, with

A =
C∑
c=1

n∑
i=1


1 Tic Sic

Tic T 2
ic TicSic

Sic TicSic S2
ic

 = nC


1 µ µS

µ µ 0

µS 0 µS

 (20)
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and

B =
C∑
c=1


n2 n

∑n
i=1 Tic n

∑n
i=1 Sic

n
∑n

i=1 Tic (
∑n

i=1 Tic)
2

(
∑n

i=1 Tic) (
∑n

i=1 Sic)

n (
∑n

i=1 Sic) (
∑n

i=1 Tic) (
∑n

i=1 Sic) (
∑n

i=1 Sic)
2



= n2C


1 µ µS

µ η2 µ− η2

µS µ− η2 µS − µ+ η2

 , (21)

where the second equalities follow from
∑n

i=1 Tic = nPc,
∑n

i=1 Sic = n(1−Pc)1Pc>0,
∑C

c=1 nPc =

nC
∑

p∈Π pf(p) = nCµ,
∑C

c=1(
∑n

i=1 Tic)
2 = n2

∑C
c=1 P

2
c = n2Cη2,

∑C
c=1(

∑n
i=1 Tic

∑n
i=1 Sic) =

n2
∑C

c=1 Pc(1−Pc) = n2C(µ−η2) and
∑C

c=1(
∑n

i=1 Sic)
2 = n2

∑C
c=1(1−Pc)2

1Pc>0 = n2C(1−

ψ − 2µ+ η2) = n2C(µS − µ+ η2). Taking the diagonal entries of Var(β̂|X) yields

Var(β̂1) =
1

nC
∗
{
nτ 2

(
η2

µ2
+

1

ψ

)
+ σ2

(
1

µ
+

1

ψ

)}
(22)

Var(β̂2) =
1

nC
∗
{
nτ 2

(
µS − µ+ η2

µ2
S

+
1

ψ

)
+ σ2

(
1

µS
+

1

ψ

)}
. (23)

Substituting ρ = τ 2/(τ 2 + σ2) and the expression relating η2 and η2
T defined in (7), then

taking the square root yields the standard errors.

A.4 Proofs of Optimal Design Results

Proof of Proposition 1. Suppose that there are two interior saturations, p1 and p2.

Without loss of generality, let p1 > p2 ≥ 0.5. Let f denote f(p1). Then f(p2) = 1− ψ − f .

First fix ψ and consider the optimal f ∈ [0, 1−ψ] to minimize (3). If ρ = 1, then SEITT (p) =

SESNT (p), and the first order condition is√
1

f
+

1

ψ

(√
1

1− ψ − f
+

1

ψ

)−1

= f 2(1− ψ − f)−2.

Therefore, f ∗ = 1 − f ∗ − ψ and an equal share of clusters are allocated to each treatment

saturation, f(p1) = f(p2) = (1− ψ)/2. This allocation equalizes all four SEs. If ρ = 0, then

for p > 0.5, SEITT (p) < SESNT (p), so it will not be possible to equalize the SEs. The first
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order condition is

1

p1f 2
√

1
p1f

+ 1
ψ

+
1

(1− p1)f 2
√

1
(1−p1)f

+ 1
ψ

− 1

p2(1− ψ − f)2
√

1
p2(1−ψ−f)

+ 1
ψ

− 1

(1− p2)(1− ψ − f)2
√

1
(1−p2)(1−ψ−f)

+ 1
ψ

= 0. (24)

For any f ∈ (0, 1), the function (
x

√
1

xf
+

1

ψ

)−1

is decreasing and strictly convex in x for all x ∈ (0, 1). By assumption, p1 > p2 > 1− p2 >

1 − p1. Therefore, if f = 1 − ψ − f , (24) is positive. The marginal value, measured in

terms of the marginal reduction in the SE, from an additional individual in a given group

is concave. When f = 1 − ψ − f , it is highest for within-cluster controls at saturation p1,

followed by within-cluster controls at p2, then treated individuals at p2, and finally, treated

individuals at saturation p1. Given this concavity, when f = 1− ψ − f , the marginal value

of an additional cluster at saturation p1 is higher than the marginal value of an additional

cluster at saturation p2, and it must be that f ∗ > 1 − f ∗ − ψ. Similarly, for ρ ∈ (0, 1), it

must be that f ∗ > 1− f ∗ − ψ.

Next we consider the optimal share of control clusters. An additional control cluster

reduces the SEs for every term in (3), whereas an additional cluster at saturation p reduces

the SEs for only that saturation. If ρ = 0, then non-control clusters are divided evenly

between each treatment saturation, f = (1 − ψ)/2, and the SEs are equalized. Therefore,

the objective simplifies to

min
ψ∈[0,1]

√
2

1− ψ
+

1

ψ
,

which has solution ψ∗ > f ∗. If ρ > 0, then the optimal control size depends on the satura-

tions. Suppose p1 is close to one. Then when ψ = f , the marginal value of an additional

cluster at saturation p1 can be higher than the marginal value of an additional control cluster,

due to the low number of within-cluster controls in each p1 cluster. Therefore, it is possible

that ψ∗ < f ∗. There are a large number of treated individuals at extreme p1, so it may also

be the case that ψ∗ < (1− p1)f ∗. However, it can never be that ψ∗ < (1− p1)f ∗, as it would

be optimal to reallocate a cluster from p1 to the control.
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Proof of Proposition 2. Consider an RS design with two interior saturations and let

p2 > p1. Denote the size of saturation p1 by f(p1) = f , and f(p2) = 1− f . Let ∆ ≡ p2 − p1

denote the distance between the two saturations. The SEDT and SEDNT are concave in p1, p2

and 1−p1, 1−p2, respectively, and symmetric about one half. Therefore, the optimal design

will equalize the SEs and minimizing (4) is equivalent to solving:

min
f,∆,p1∈[0,1]3

1

∆2

(
nρ

(
1

f
+

1

1− f

))
+

1

∆2

(
(1− ρ)

(
1

fp1

+
1

(1− f)(p1 + ∆)
+

1

f(1− p1)
+

1

(1− f)(1−∆− p1)

))
.

Fixing ∆, the FOC wrt p1 and f are

f

1− f
=

p2
1(1− p1)2(2(p1 + ∆)− 1)

(p1 + ∆)2(1− p1 −∆)2(1− 2p1)(
1

(1− f)2

)(
1− ρ

(p1 + ∆)(1−∆− p)
+ nρ

)
=

(
1

f 2

)(
1− ρ

p1(1− p1)
+ nρ

)
The solution to this FOC is p1 = (1 − ∆)/2 and f = 0.5, which implies p2 = p1 + ∆ =

(1 + ∆)/2. Therefore, the optimal size of each saturation bin is equal and the optimal

saturations are symmetric about 0.5. The ∆ that minimizes (4) is equivalent to solving:

min
∆

1

∆2

(
nρ+ 8(1− ρ)

(
1

1−∆2

))
.

The optimal ∆∗ solves:
nρ

8(1− ρ)
=

2∆2 − 1

(1−∆2)2
.

If ρ = 0, then 2∆2 − 1 = 0, yielding ∆∗ =
√

2/2. Note that (2∆2 − 1)/(1 − ∆2)2 is

monotonically increasing for ∆ ∈ [0, 1), and strictly positive for ∆ >
√

2/2. The left hand

side is increasing in ρ and n, and strictly positive when ρ > 0. Therefore, ∆∗ >
√

2/2 for

ρ > 0, and ∆∗ is increasing in ρ and n. If ρ > 0, then the left hand side converges to ∞

as n → ∞, which requires ∆∗ → 1. At the extreme, when ρ = 1, the optimal saturations

are the furthest apart saturations that maintain one treated individual and one with-cluster

control individual in each saturation, p∗1 = 1/n and p∗2 = (n− 1)/n.

Proof of Corollary 1. Fixing (µ, ψ) ∈ (0, 1), SEITT and SESNT are both minimized at

η2
T = 0. This corresponds to a partial population design with a control group of size ψ and
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a treatment saturation of p = µ/(1− ψ).

Proof of Proposition 3. Consider a partial population design with share of control

clusters ψ and share of treated individuals µ. Then

SE(β̂1) =

√
τ 2 + σ2

nC
∗
{
nρ

(
1

(1− ψ)ψ

)
+ (1− ρ)

(
1

µ
+

1

ψ

)}
. (25)

SE(β̂2) is analogous, replacing µ with 1 − µ − ψ. Fixing ψ, the optimal treatment share

solves minµ SE(β̂1) + SE(β̂2), which has solution µ = (1− ψ)/2. This implies µS = µ, which

corresponds to a partial population experiment with treatment saturation p∗ = 0.5. Plugging

µ = (1− ψ)/2 into (25) yields SE(β̂1) = SE(β̂2). Thus, the optimal share of control clusters

solves

min
ψ
nρ

(
1

ψ(1− ψ)

)
+ (1− ρ)

(
1 + ψ

ψ(1− ψ)

)
. (26)

When ρ = 0, (26) is minimized at ψ∗ =
√

2− 1. When ρ = 1, (26) is minimized at ψ∗ = 0.5.

When ρ ∈ (0, 1), the general FOC for (26) is

(1− ρ)(ψ2 + 2ψ − 1) + nρ(2ψ − 1) = 0. (27)

Using the quadratic formula with a = 1−ρ, b = 2(1−ρ+nρ) and c = −(1−ρ+nρ) to solve

for ψ yields the optimal control group size. Given that (1 +ψ)/ψ(1−ψ) and 1/ψ(1−ψ) are

both convex and have unique minimums, any weighted sum of these functions is minimized

at a value ψ∗ that lies between the minimum of each function. Therefore, when ρ ∈ (0, 1),

ψ∗ ∈ (
√

2− 1, 1/2). Taking the derivative of (27) with respect to n yields

∂ψ∗

∂n
=

ρ(1− 2ψ∗)

2nρ+ 2(1− ρ)(1 + ψ∗)
≥ 0

A similar calcuation establishes that ∂ψ∗

∂ρ
> 0.
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