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Abstract: The Diebold-Mariano (DM) test was intended for comparing forecasts; it has

been, and remains, useful in that regard. The DM test was not intended for comparing

models. Unfortunately, however, much of the large subsequent literature uses DM -type

tests for comparing models, in (pseudo-) out-of-sample environments. In that case, much

simpler yet more compelling full-sample model comparison procedures exist; they have been,

and should continue to be, widely used. The hunch that (pseudo-) out-of-sample analysis

is somehow the “only,” or “best,” or even a “good” way to provide insurance against in-

sample over-fitting in model comparisons proves largely false. On the other hand, (pseudo-)

out-of-sample analysis may be useful for learning about comparative historical predictive

performance.
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1 Introduction

One routinely has competing forecasts of the same object and seeks to determine which is

better. To take a concrete example, consider U.S. inflation forecasting. One might obtain

survey-based forecasts from the Survey of Professional Forecasters (S), {πSt }Tt=1, and simulta-

neously one might obtain market-based forecasts from inflation-indexed bonds (B), {πBt }Tt=1.

Suppose that loss is quadratic and that during t = 1, ..., T the sample mean-squared errors

are M̂SE(πSt ) = 1.80 and M̂SE(πBt ) = 1.92. Evidently “S wins,” and one is tempted to

conclude that S provides better inflation forecasts than does B. The forecasting literature is

filled with such horse races, with associated declarations of superiority based on outcomes.

Obviously, however, the fact that M̂SE(πSt ) < M̂SE(πBt ) in a particular sample realiza-

tion does not mean that S is necessarily truly better than B in population. That is, even if in

population MSE(πSt ) = MSE(πBt ), in any particular sample realization one or the other of

S and B must “win,” so the question arises in any particular sample as to whether S is truly

superior or merely lucky. The Diebold and Mariano (1995) (DM) test is an econometric tool

for answering that question, allowing one to assess the significance of apparent predictive

superiority.1 It provides a test of the hypothesis of equal expected loss (in our example,

MSE(πSt ) = MSE(πBt )), valid under quite general conditions including, for example, wide

classes of loss functions.

2 Forecast Comparisons

DM is a test for comparing forecasts, not models. Here I elaborate on that basic point,

which was missed by much of the ensuing literature.2 In particular, I discuss its implications

for construction and justification of the DM test statistic.

1The DM paper has a rather colorful history. It was written in summer 1991 when Diebold visited the
Institute for Empirical Macroeconomics at the Federal Reserve Bank of Minneapolis; see Diebold and Mariano
(1991) at http://econpapers.repec.org/paper/fipfedmem/default1.htm. Subsequently it was curtly
rejected by Econometrica after a long refereeing delay, with a quarter-page “report” expressing bewilderment
as to why anyone would care about the subject it addressed. I remain grateful to the Journal of Business
and Economic Statistics for quickly recognizing the paper’s contribution and eventually publishing it in
1995. Quite curiously, Econometrica published a Diebold-Mariano extension the next year. In 2002 the
Diebold-Mariano paper appeared in the JBES ’s Twentieth Anniversary Commemorative Issue (Ghysels and
Hall (2002)), containing reprints of the ten most influential papers published in the JBES ’s first twenty
years. As of August 2012 it had more than 3000 Google Scholar citations.

2Alas, Diebold and Mariano are partly responsible. They were careful to focus exclusively on forecast
comparison, as opposed to model comparison, throughout the bulk of their paper, but they nevertheless did
speculate briefly on the possibility of DM -based model comparison in their concluding remarks.

http://econpapers.repec.org/paper/fipfedmem/default1.htm


2.1 The DM Perspective, Assumption DM , and the DM Statistic

The essence of the DM approach is to take forecast errors as primitives, intentionally. Those

forecast errors need not come from models, and even if they do, the models need not be

known to the econometrician. This makes for wide DM applicability, because in many

important applications the models are either unknown, as for example with proprietary

models provided by a third party, or there simply are no “models,” as for example with

forecasts based on surveys, forecasts extracted from financial markets, forecasts obtained

from explicit prediction markets, and forecasts based on expert judgment (entirely or in

part).

DM makes assumptions directly on the forecast errors, or more precisely, on the forecast

error loss differential. Denote the loss associated with forecast error et by L(et); hence, for

example, time-t quadratic loss would be L(et) = e2
t . The time-t loss differential between

forecasts 1 and 2 is then d12t = L(e1t)− L(e2t). DM requires only that the loss differential

be covariance stationary. That is, DM assumes that:

Assumption DM :


E(d12t) = µ, ∀t
cov(d12t, d12(t−τ )) = γ(τ), ∀t
0 < var(d12t) = σ2 <∞.

(1)

The key hypothesis of equal predictive accuracy (i.e., equal expected loss) corresponds to

E(d12t) = 0, in which case, under the maintained Assumption DM :

DM12 =
d̄12

σ̂d̄12
→ N(0, 1), (2)

where d̄12 = 1
T

∑T
t=1 d12t is the sample mean loss differential and σ̂d̄12 is a consistent estimate

of the standard deviation of d̄12 (more on that shortly). That’s it, there’s nothing more to

do, it really is that trivial: If Assumption DM holds, then the N(0, 1) limiting distribution

of test statistic DM holds.

DM is obviously extremely simple, almost embarrassingly so. It is simply an asymptotic

z-test of the hypothesis that the mean of an observed series (the loss differential) is zero. The

only wrinkle is that forecast errors, and hence loss differentials, may be serially correlated

for a variety of reasons, the most obvious being forecast sub-optimality. Hence the standard

error in the denominator of the DM statistic (2) should be calculated robustly. Diebold

and Mariano (1995) use σ̂d̄ =
√
ĝ(0)/T , where ĝ(0) is a lag-window estimator of the loss
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differential spectrum at frequency zero.

DM is also readily extensible. The key is to recognize that the DM statistic can be triv-

ially calculated by regression of the loss differential on an intercept, using heterskedasticity

and autocorrelation robust (HAC) standard errors. Immediately, then (and as noted in the

original Diebold-Mariano paper), one can potentially extend the regression to condition on

additional variables that may explain the loss differential, thereby moving from an uncon-

ditional to a conditional expected loss perspective.3 For example, comparative predictive

performance may differ over the business cycle, in which case one might include a business

cycle chronology variable in the DM HAC regression.

2.2 Thoughts on Assumption DM

In the previous section I praised DM rather effusively, and its great simplicity and wide

applicability certainly are virtues: There is just one Assumption DM , just one DM test

statistic, and just one DM limiting distribution, always and everywhere (in sharp contrast

to the situation where one uses DM -type tests to compare models as opposed to forecasts,

as I discuss subsequently). But of course everything hinges on Assumption DM . Here I offer

some perspectives on the validity of Assumption DM .

First, as George Box (1979) famously and correctly noted, “All models are false, but some

are useful.” Precisely the same is true of assumptions, as models are just sets of assumptions.

Indeed all areas of economics benefit from assumptions that are surely false if taken literally,

but that are nevertheless useful. So too with Assumption DM . Surely dt is likely never

precisely covariance stationary, just as surely no economic time series is likely precisely

covariance stationary. But in many cases Assumption DM may be an accurate and useful

approximation.4

Second, special forecasting considerations lend support to the validity of Assumption

DM . Forecasters strive to achieve forecast optimality, which corresponds to unforecastable

covariance-stationary errors (indeed white-noise errors in the canonical 1-step-ahead case),

and hence unforecastable covariance-stationary loss differentials. Of course they may not

achieve optimality, resulting in serially-correlated, and indeed forecastable, forecast errors.

3For an important more recent development from the conditional perspective, see Giacomini and White
(2006).

4To take an example about which I will have much more to say throughout this paper, suppose that one
uses DM to compare models, as opposed to forecasts, in a (pseudo-) out-of-sample environment. Although
loss-differential nonstationarity is induced as model parameters converge to their pseudo-true values in
expanding estimation samples, the induced nonstationarity may be small. Hence the loss differential may be
approximately stationary, and the DM null distribution approximately valid.
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But non-stationarity of forecast errors (e.g., I(1) behavior) takes serial correlation to the

extreme.

Third, even if nonstationary components do exist in forecast errors, there is reason to

suspect that they may be shared. Information sets overlap across forecasters, so that forecast-

error nonstationarities may vanish from the loss differential. For example, two loss series,

each integrated of order one, may nevertheless be cointegrated with cointegrating vector

(1,−1). Suppose for example that

L(e1t) = xt + ε1t (3)

L(e2t) = xt + ε2t,

where xt is a common nonstationary I(1) loss component, and ε1t and ε2t are idiosyncratic

stationary I(0) loss components. Then d12t = L(e1t)− L(e2t) = ε1t − ε2t is I(0), so that the

loss differential series is covariance stationary despite the fact that neither individual loss

series is covariance stationary.

Fourth, and most importantly, standard and powerful tools enable empirical assessment

of Assumption DM . That is, the approximate validity of Assumption DM is ultimately

an empirical matter, and a wealth of diagnostic procedures are available to help assess

its validity. One can plot the loss differential series, examine its sample autocorrelations

and spectrum, test it for unit roots and other nonstationarities including trend, structural

evolution, and structural breaks.5

3 Model Comparisons

Now I consider the use of DM -type tests in model, as opposed to forecast, comparisons.

Unavoidable and crucially-important issues arise, related both to finite-sample analysis vs.

asymptotic analysis, and more importantly, to comparisons of two models vs. many models.

5Even with apparent nonstationarity due to apparent breaks in the loss differential series, Assumption
DM may nevertheless hold if the breaks have a stationary rhythm, as for example in hidden-Markov processes
in the tradition of Hamilton (1989).
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3.1 Two Models

I have emphasized, and I will continue to emphasize, that DM compares forecasts via the

null hypothesis of a zero expected loss differential,

H0 : E(d12t) = E (L(e(F1t))− L(e(F2t))) = 0, (4)

where the new and slightly more detailed notation (e(Ft) rather than et) is designed to

emphasize that the errors are driven by forecasts, not models. As I have also emphasized,

in the DM framework the loss differential d12t is the primitive, and one makes Assumption

DM directly on d12t.

Many researchers, however, have used DM and DM -type tests not for comparing fore-

casts, but rather for comparing models, via forecasts, in (pseudo-) “out-of-sample” situations.

That approach traces to the work of West (1996) and Clark and McCracken (2001), inter

alia, and in what follows I will use “WCM” in broad reference to it. WCM assumes that the

forecasts are from fully-articulated econometric models, known to the researcher. It follows

the DM approach and effectively tests a null hypothesis based on the loss differential,

H0 : E(d12t) = E (L(e(F1t(M1(θ1))))− L(e(F2t(M2(θ2))))) = 0, (5)

where I now write e(Ft(M(θ))) to emphasize that the error e is ultimately driven by a model

M , which in turn involves a vector of pseudo-true parameters θ.

Mechanically, WCM proceeds roughly as follows. First split the data into a (pseudo-)

in-sample period t = 1, ..., t∗ and a (pseudo-) out-of-sample period t = t∗ + 1, ..., T . Then

recursively estimate the models with the last (pseudo-) in-sample observation starting at

t = t∗ and ending at T − 1, at each t predicting t+ 1. Finally, base a DM -style test on the

sample mean quadratic loss differential,

d̄12 =

∑T
t=t∗+1(e2

1,t/t−1 − e2
2,t/t−1)

T − t∗
, (6)

where et/t−1 is a time-t 1-step-ahead (pseudo-) forecast error, or “recursive residual.” There

are of course many variations. For example, the (pseudo-) in-sample period could be fixed

or rolling, as opposed to expanding, but (6) serves as something of a canonical benchmark.

A key observation is that in the WCM framework the ultimate primitives are not fore-

casts (or the loss differential), but rather models, so WCM proceeds by making assumptions
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not about the loss differential, but about the models. Complications arise quickly, how-

ever, as one may entertain a wide variety of models and model assumptions. Indeed there

is no single “Assumption WCM” analogous to Assumption DM ; instead, one must tiptoe

carefully across a minefield of assumptions depending on the situation.6 Such assumptions

include but are not limited to: (1) Nesting structure. Are the models nested, non-nested, or

partially overlapping? (2) Functional form. Are the models linear or non-linear? (3) Model

disturbance properties. Are the disturbances Gaussian? Martingale differences? Something

else? (4) Estimation method. Are the models estimated by OLS? MLE? GMM? Something

else? (5) Estimation sample(s). Is the (pseudo-) in-sample estimation period fixed? Recur-

sively expanding? Rolling? (6) Asymptotics. What asymptotics are invoked as T → ∞?

t∗/T → 0? t∗/T →∞? t∗/T → const?

But in many respects I digress. The key issue involves not details of implementation of

the (pseudo-) out-of-sample paradigm, but rather the paradigm itself. It is not only tedious

(one must construct the (pseudo-) out-of-sample forecast errors and ascertain the correct

limiting distribution), but also largely misunderstood and sup-optimal in certain important

respects, as I argue throughout the rest of this paper. I begin by stepping back and extracting

some basic principles of model comparison that emerge from the massive literature.

3.1.1 Optimal Finite-Sample Comparisons

I proceed by example, the first quite specialized and the second quite general. First consider

the classical model comparison paradigm, and the very special and simple comparison of

two nested Gaussian linear models, M1 and M2, where M1 ⊂ M2 and M2 is assumed true.

(Hence M1 may or may not be true.) In that time-honored case, and at the risk of belaboring

the obvious, one achieves exact finite-sample optimal inference using the F -test of linear

restrictions,

F12 =
(SSR1 − SSR2)/(k − 1)

SSR2/(T − k)
, (7)

where SSR denotes a sum of squared residuals, T is sample size, and k is the number of

restrictions imposed under the null hypothesis. As is well-known, F is the uniformly most

powerful test. Any other approach is sub-optimal. The key observation for our purposes is

that the optimal model comparison procedure is based on full-sample residuals, not (pseudo-)

out-of-sample forecast errors.

6 Lengthy surveys of the WCM approach, and implicitly the many varieties of “Assumption WCM,”
include West (2006) and Clark and McCracken (2011).
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Now maintain focus on exact finite-sample analysis but go in some sense to an opposite

extreme, considering the Bayesian model comparison paradigm, and a more general two-

model comparison (nested or non-nested, linear or non-linear, Gaussian or non-Gaussian).

Like the classical F test above, the Bayesian paradigm produces exact finite-sample infer-

ence, but the perspective and mechanics are very different. Its essence, which is to say the

essence of rational behavior (via the complete-class theorem), is to condition inference on

the observed data y – all observed data. In the model comparison context, the prescription

for doing so is simply to select the model favored by posterior odds,

p(M1|y)

p(M2|y)︸ ︷︷ ︸
posterior odds

=
p(y|M1)

p(y|M2)︸ ︷︷ ︸
Bayes factor

× p(M1)

p(M2)︸ ︷︷ ︸
prior odds

. (8)

As equation (8) emphasizes, however, all data-based information in the posterior odds comes

from the Bayes factor, which is the ratio of marginal likelihoods. Indeed if prior odds are

1:1, the Bayesian prescription is simply to select the model with higher marginal likelihood.

The marginal likelihood is

p(y|M) =

∫
p(y|θ,M)p(θ|M)dθ. (9)

The key observation for our purposes is that the marginal likelihood is a full-sample construct,

not a (pseudo-) out-of-sample predictive likelihood.

Thus from two-model classical hypothesis testing in very simple environments, to Bayesian

two-model posterior comparisons in much more general environments, optimal finite-sample

model comparison is full-sample model comparison. Indeed it’s hard to imagine otherwise:

If one discards data in finite samples, both intuition and mathematics suggest that surely

one must pay a price relative to an efficient procedure that uses all data.

3.1.2 Asymptotically-Optimal Comparisons

Now consider asymptotic analysis. First consider again the classical nested model compari-

son paradigm, but now including non-linear and/or non-Gaussian environments. Little can

generally be said analytically in finite-sample environments, but simulation studies find clear

superiority of full-sample procedures (e.g., Kilian and Taylor (2003)). Moreover, powerful

analytic results are available asymptotically, and they lead to the same conclusion. In partic-

ular, as has been known for many decades, each of the “trinity” of likelihood-ratio, Lagrange

7



multiplier and Wald tests achieves maximum asymptotic local power. The key observation

for our purposes is that each member of that trinity is based on the full sample of available

data.

Second, consider again the Bayesian marginal likelihood paradigm. Asymptotic analysis

is in a certain sense ill-posed there, as the Bayesian perspective is fundamentally finite-

sample, conditioning precisely and exclusively on the available sample information. From

that perspective, once one determines the model with higher marginal likelihood there’s noth-

ing more to do, regardless of whether the sample size is small or huge. The Bayesian optimal

finite-sample two-model comparison procedure (8) remains the Bayesian asymptotically-

optimal two-model comparison procedure – nothing changes.

Nevertheless, one can ask interesting and important asymptotic questions related to

Bayesian model selection. For example, because the marginal likelihood (8) can be very

difficult to calculate, the question arises as to whether one can approximate it asymptotically

with a simpler construct. Schwarz (1978) answers in the affirmative, showing that, under

conditions including T → ∞, the model with higher marginal likelihood is the model with

smaller Schwarz information criterion (SIC), where

SIC = k lnT − 2 lnL, (10)

and k is the number of parameters estimated. Indeed SIC is often, and appropriately, called

the Bayesian information criterion (BIC). The key observation for our purposes should by

now be familiar: SIC is based on the full-sample likelihood, not a (pseudo-) out-of-sample

predictive likelihood.

3.2 Many Models

But there’s much more to consider. In reality we typically compare many models, nested

and non-nested, one or none of which may be coincide with the true data-generating pro-

cess (DGP).7 Let us continue our asymptotic discussion from that much more compelling

perspective.

SIC extends immediately to comparisons of many models; one simply selects the model

7Note that the explicit or implicit assumption thus far has been that at least one of the two models
considered is true. The classical nested approach clearly assumes that at least the larger model is correctly
specified, as mentioned earlier. Interestingly, the Bayesian (possibly non-nested) approach also implicitly
assumes that one of the models is correctly specified, as first emphasized in Diebold (1991). Only recently
has that assumption begun to be relaxed, as in Geweke (2010).
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with smallest SIC. Closely-related and equally popular, but derived from a different (approximation-

theoretic) perspective, is the Akaike (1974) information criterion (AIC). The AIC is

AIC = 2k − 2 lnL, (11)

and one selects the model with smallest AIC. SIC and AIC are central because they have

the key properties of consistency (SIC) and efficiency (AIC) in model selection.

Consistency and efficiency have very different definitions in the model selection literature

than in the traditional estimation literature. Model selection consistency refers to situations

where the DGP is among a fixed set of models considered. Very roughly put, consistency of

a selection procedure (sometimes called the “oracle property”) means that it selects the true

DGP asymptotically almost surely. Model selection efficiency refers to situations where the

DGP is not among an expanding set of models considered. Again very roughly put, efficiency

of a selection procedure means that it selects the Kullback-Leibler- (KLIC-) optimal sequence

of approximations to the the DGP asymptotically.8 The key observation for our purposes is

that SIC and AIC – and their optimality properties – are based on full-sample likelihoods,

not (pseudo-) out-of-sample predictive likelihoods.

It is illuminating from a model comparison perspective to specialize SIC and AIC to the

Gaussian linear regression case, in which they can be written in terms of penalized in-sample

mean-squared error (MSE),

SIC = T ( k
T ) MSE (12)

AIC = e(
2k
T ) MSE, (13)

where MSE =
∑T

t=1 e
2
t

T
. SIC and AIC inflate in-sample MSE in just the right ways, relative

to their respective optimality criteria, to offset the MSE deflation inherent in model fitting.

This is an important lesson: good ways of estimating out-of-sample predictive MSE typi-

cally first estimate full-sample residual MSE (thereby using all data) and then transform

it appropriately. In particular, AIC and SIC asymptotically guard against in-sample over-

fitting – the spurious appearance of good forecast performance when selecting over many

models – not by moving to (pseudo-) out-of-sample analysis, but rather by using all data as

embedded in full-sample sums of squared errors (SSE’s), and simultaneously deflating those

SSE’s with degree-of-freedom penalties harsher than those associated with traditional F and

8It is important to note that of the two optimality properties consistency is the less compelling, as the
DGP is surely never among the models considered.
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related tests.9

In closing this section, it is useful to step back and note that although SIC and AIC

were developed as pure model selection tools, not as hypothesis tests for model comparison,

they can be readily adapted in that way, so that my basic points extend in that direction.

The leading example is Vuong (1989) and Rivers and Vuong (2002), who develop inferential

methods for AIC.10 That is, the AIC measures KLIC divergence from the DGP, and

they develop methods for testing the pairwise null hypothesis of equal population KLIC

divergence. Hansen et al. (2011) go even farther by developing methods for controlling the

family-wise error rate when performing many Vuong-type tests, allowing them to obtain a

set of models containing the KLIC-optimal approximating model with controlled error rate,

the so-called model confidence set.

4 Whither Out-of-Sample Model Comparisons?

Several questions remain. First I ask whether any (pseudo-) out-of-sample model comparison

procedure can compete with the full-sample procedures discussed above. The answer turns

out to be yes, but only if one takes an asymptotic perspective and invokes the less-compelling

optimality concept of consistency, and even then there is a much simpler procedure with the

same asymptotic justification and likely-superior finite-sample properties. In light of this, I

then proceed to ask whether there is any role for (pseudo-) out-of-sample model comparisons.

The answer is a cautious yes.

4.1 Can Out-of-Sample Ever Compete with Full-Sample?

I have considered a variety of model comparison situations: two-model and many-model,

nested and non-nested, finite-sample and asymptotic. In every case, optimal procedures

were full-sample procedures. I emphasized, moreover, that it is possible to perform model

selection in ways that are asymptotically robust to data mining. But again, in every case,

9F and related tests were not designed for large-scale model selection, and they have poor properties (even
asymptotically) when used in that way, as do the closely-related strategies of model selection by maximizing
R̄2 or minimizing S2. Indeed max R̄2 model selection is equivalent to min S2 model selection, where S2 =∑T

t=1 e2t
T−k = T

T−k

∑T
t=1 e2t
T . Hence its form matches the “penalty × MSE” form of AIC and SIC, but with

penalty T
T−k . Efficient model selection requires the harsher penalty factor e(

2k
T ) associated with AIC, and

consistent model selection requires the even harsher penalty factor T ( k
T ) associated with SIC.

10See also Li (2009).
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optimal procedures were full-sample procedures. Is there no role for (pseudo-) out-of-sample

procedures?

It turns out that there is some role, at least from an asymptotic perspective. That is,

despite the fact that they discard data, certain (pseudo-) out-of-sample procedures can be jus-

tified asymptotically, because the discarded data become asymptotically irrelevant. Rather

than estimating out-of-sample MSE by inflating in-sample MSE, such out-of-sample proce-

dures attempt to estimate out-of-sample MSE directly by mimicking real-time forecasting.

The key example is “predictive least squares” (PLS). PLS should sound familiar, as it is pre-

cisely the foundation on which WCM-type procedures are built. First split the data into a

(pseudo-) in-sample period t = 1, ..., t∗ and a (pseudo-) out-of-sample period t = t∗ +1, ..., T .

Then recursively estimate the models over t = t∗ + 1, ..., T , at each t predicting t + 1, and

finally construct for each model

PLS =

∑T
t=t∗+1 e

2
t/t−1

T − t∗
, (14)

where êt/t−1 is the time-t 1-step-ahead (pseudo-) forecast error, or “recursive residual,” and

select the model with smallest PLS.

Wei (1992) establishes consistency of PLS, but not the more compelling property of effi-

ciency, and it appears that a procedure cannot be both consistent and efficient, as discussed

in Yang (2005).11 So PLS has the less-compelling asymptotic optimality property of consis-

tency, and it’s more tedious to compute than SIC, which also has that property. Moreover,

one would expect better finite-sample SIC performance, because SIC uses all data.

Hence, based on the considerations invoked thus far, it’s hard to imagine why one would

do PLS with WCM-type inference as opposed to, say, AIC with Vuong-type inference. In-

troducing additional considerations, moreover, often worsens matters for PLS/WCM. For

example, (pseudo-) out-of-sample methods actually expand the scope for data mining in fi-

nite samples, as emphasized in Rossi and Inoue (2012) and Hansen and Timmermann (2011),

because one can also mine over the sample split point t∗.12 They develop methods robust to

choice of split point, but only at the cost of (additional) power loss.

11See also Inoue and Kilian (2006).
12All procedures under consideration, even those that achieve robustness to data mining asymptotically,

are subject to strategic data mining in finite samples. Achieving robustness to data mining in finite samples
requires simulation methods, as in the “reality check” of White (2000) or the bootstrap model confidence
set procedure of Hansen et al. (2011).
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4.2 What Role for (Pseudo-) Out-of-Sample Model Comparisons?

Nevertheless, in my view there is still a potential role for (pseudo-) out-of-sample model

comparisons. Importantly, however, it comes with a caveat.

Quite apart from testing models, (pseudo-) out-of-sample model comparisons may be

useful for learning about comparative predictive performance during particular historical

episodes. Suppose, for example, that using a full-sample Vuong test one finds that M1

KLIC-approximates the DGP significantly better than M2. It may nevertheless be of great

interest to go farther, assessing (pseudo-) out-of-sample predictive performance period-by-

period via recursive residuals, with particular attention (say) to performance over different

business cycles. Such analyses may help to dig into the reasons – the “whens and whys and

hows” – for M1’s predictive superiority. Rapach et al. (2010), for example, use out-of-sample

predictive methods to argue that stock market returns can be forecast during recessions but

not during expansions.

An important caveat arises, however. Accurate and informative real-time comparisons

require using period-by-period “vintage” data, in contrast to simply using the most recent

vintage as if had been available in real time. This is rarely done in the (pseudo-) out-of-

sample model comparison literature. It is of course irrelevant for data not subject to revision,

such as various financial series, but tremendously relevant for variables subject to revision,

such as most macroeconomic series.13 Moreover, incorporating vintage data causes (even

more) complications if one wants to do inference, as emphasized by Clark and McCracken

(2009).

5 Conclusion

The DM test was intended for comparing forecasts; it has been, and remains, useful in that

regard. The DM test was not intended for comparing models. Unfortunately, however, much

of the large subsequent literature uses DM -type tests for comparing models, in (pseudo-) out-

of-sample environments. In that case, much simpler yet more compelling full-sample model

comparison procedures exist; they have been, and should continue to be, widely used.14 The

hunch that (pseudo-) out-of-sample analysis is somehow the “only,” or “best,” or even a

“good” way to provide insurance against in-sample over-fitting in model comparisons proves

13For an overview, see Croushore (2006).
14Many open and issues remain, of course, even for full-sample procedures. Recent work, for example, has

begun to tackle the challenging problem of model comparison in the presence of possible structural change,
as in Giacomini and Rossi (2010).
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largely false.15 On the other hand, (pseudo-) out-of-sample analysis may be useful for learning

about comparative historical predictive performance.

15See Inoue and Kilian (2004) for complementary discussion and insights.
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